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Abstract
During August 25–30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation,
particularly over Houston and the surrounding area on August 26–28. This resulted in extensive
flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return
period of the highest observed three-day precipitation amount, 1043.4 mm 3dy−1 at Baytown, is more
than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750
mm 3dy−1) over a large area in the current climate. Observations since 1880 over the region show a
clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two
times the increase of the moisture holding capacity of the atmosphere expected for 1 ◦C warming
according to the Clausius–Clapeyron (CC) relation. This would indicate that the moisture flux was
increased by both the moisture content and stronger winds or updrafts driven by the heat of
condensation of the moisture. We also analysed extreme rainfall in the Houston area in three
ensembles of 25 km resolution models. The first also shows 2×CC scaling, the second 1×CC scaling
and the third did not have a realistic representation of extreme rainfall on the Gulf Coast.
Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation
about 15% (8%–19%) more intense, or equivalently made such an event three (1.5–5) times more
likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And
while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey
may not be economically feasible, it is critical that information regarding the increasing risk of
extreme rainfall events in general should be part of the discussion about future improvements to
Houston’s flood protection system.

1. Introduction

Hurricane Harvey formed as a tropical storm over
the Atlantic Ocean on August 17, 2017 and crossed
into the Caribbean Sea the next day. It weakened to
a tropical depression as it crossed the Yucatan Penin-
sula, but attained hurricane strength over the Gulf of
Mexico on August 24, rapidly intensifying to reach

Category 4 strength just before making landfall on the
Texas coast 50 km east of Corpus Christi on August
25, causing severe wind damage in coastal towns. Har-
vey moved slowly inland, remaining nearly stationary
about 100 km inland for four days before moving back
into the Gulf and making a second landfall in Louisiana
on August 30. While Hurricane Harvey was a signifi-
cant hurricane in terms of its size and wind speed,
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ultimately, the storm will be remembered for the
extremeflooding it caused inHoustonandsurrounding
areas.

Between August 25–30, unprecedented rainfall
totals for a tropical cyclone (TC) in the contiguous
United States were recorded. The station Cedar Bayou
at FM1942 (www.harriscountyfws.org/GageDetail/
Index/1730), about 40 km west of Houston, had
observed an accumulated 1318 mm (51.89′′) by Thurs-
day August 31, 10 AM CDT. Widespread flooding
necessitated more than 120 000 rescues, exceeding the
capacity of formal emergency response organisations
and requiring the assistance of volunteers with access
to boats or large vehicles. Over 80 deaths have been
attributed to Harvey, mostly as a result of drowning,
and financial analysts estimate it to be among the costli-
est natural disaster in US history (NOAA NCEI 2017).
It is estimated that flooding ultimately impacted more
than 100 000 homes, of which nearly 80 000 are esti-
mated to have been flooded to a depth of at least 0.46 m
(18′′) and 23 000 to at least 1.5 m (5 ft) (FEMA 2017).

In the immediate aftermath of the event, the ques-
tion was raised as to what extent the impacts of
Hurricane Harvey were intensified due to anthro-
pogenic climate change. In this paper, we analyze the
rainfall associated with Hurricane Harvey, contextual-
ising it with relevant flood risk factors, to answer this
question.

The observed and expected response of TCs to
greenhouse gas-induced climate change has been the
subject of intense research. Globally, there is an expec-
tation that increasing greenhouse gases will lead to a
decrease or no change in the overall number of TCs, but
that the maximum wind speed and precipitation of the
strongest storms should increase (Hesselbjerg Chris-
tensen et al 2013). However, there is low confidence
in region-specific projections. For the Atlantic basin,
there is considerable spread in the expected change in
TC frequency resulting from CO2 increases, even con-
sidering only the strongest storms (Knutson et al 2013).
Furthermore, changes in observing practices limit con-
fidence in century-scale trends in Atlantic hurricane
frequency (Vecchi and Knutson, 2011). That is, at this
stage, there is no clear scientific evidence to support
the notion that the existence of Harvey was made more
likely by global warming.

However, the impacts of Harvey may have been
influencedbyglobalwarming; studies consistently indi-
cate that greenhouse gas-induced warming should lead
to increases in the total and maximum rainfall by TCs
(Knutson et al 2010, Scoccimarro et al 2014, Villar-
ini et al 2014). In general, the maximum moisture
content of air increases with 6%–8.5% per degree
warming, according to the Clausius-Clapeyron (CC)
relationship (Clapeyron 1834, Clausius 1850, Held and
Soden2006,O’Gorman2015). If relativehumidity stays
the same, which is the norm near oceans, the actual
amount of water vapour in the air increases by the same
amount. Studies exploring the response of TC rainfall

to greenhouse warming find rates of increase at least
as large as CC-scaling, with various studies indicat-
ing increases that follow or exceed CC-scaling (e.g.
Knutson et al 2010, 2013, Scoccimarro et al 2014).
The hypothesis underlying higher scaling is that the
extra heat of condensation gives extra energy to drive
the circulation in a well-organised system. The mois-
ture flux is thus enhanced twice: not only with higher
moisture content, but also with higher velocities. This
could result in up to two times CC-scaling, as was
found on smaller and shorter time scales by Lenderink
et al (2017). Another contribution may be a possible
increase in the probability that a hurricane stalls over
the coast either by a systematic trend in persistency
of high pressure events globally (Mann et al 2017) or
simply a local tendency in mean circulation.

Van der Wiel et al (2017) showed that the high
tail of the distribution of extreme precipitation on the
US Gulf Coast can be described well by a generalised
extreme value distribution (GEV), in spite of the many
different mechanisms that cause these high precipita-
tion events there (Schumacher and Johnson 2006). It
was found that the change in intensity was compati-
ble with 2×CC scaling. The distribution of the most
extreme events was also found to be simulated reason-
ably well by the GFDL HiFLOR model with a 25 km
atmospheric resolution, and to a lesser extent by the
50 km resolution FLOR-FA model. These models sim-
ulated 1×CC scaling for the most extreme events, as
is observed for global one-day precipitation extremes
(Westra et al 2013). However, regionally and for longer
time-scale events, the scaling may well be different. For
instance, inBoulder,Colorado, lower scalingwas found
forfive-dayprecipitationextremes (Hoerling et al2013,
Eden et al 2016).

We follow the same methodology as van der Wiel
et al (2017) to attribute the extreme precipitation from
Hurricane Harvey to anthropogenic climate change
and refer to that paper for an extensive discussion
of the methods and assumptions. In addition, we are
including two supplementary observational datasets
and two additional high-resolution models. This anal-
ysis does not consider the relatively low-resolution
(50 km) FLOR-FA model.

The analysis herein focuses on extreme precipi-
tation as the primary cause of flooding. We do not
consider the backwater effects of elevated water lev-
els due to storm surge or relative sea level rise in
Galveston Bay on the ability of the system to drain,
but previous studies have suggested that this may be
an important factor in determining the intensity and
extent of coastal flooding (Torres et al 2015, Sebastian
et al 2017). In addition, we acknowledge that other
anthropogenic factors have contributed to increased
flood risk in Houston, specifically urban develop-
ment, which has led to floodplain encroachment,
increased impervious cover, reduced overland and
channel roughness, decreased storage capacity (Brody
et al2008,2011), andresourcewithdrawal thathas led to
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Figure 1. Hydrographs of gauge levels, NWS flood stage value and previous historical record for USGS stations (a) 08069000 on
Cypress Creek, (b) 08068090 on the San Jacinto River and (c) 08073600 at Buffalo Bayou. Shaded pink areas indicate the three-day
period of maximum precipitation (August 26–28, 2017). Observed stream gauge information was downloaded on September 4, 2017
from the USGS; provisional USGS data are subject to adjustment.

subsidence of up to 3 m (10 ft) (http://hgsubsidence.
org/subsidence-data/). Moreover, the operation of
emergencyfloodcontrol structures, suchas theAddicks
and Barker Reservoirs west of downtownHouston, fur-
ther exacerbated flooding in some areas of the city.
While the impact of urban development and subsi-
dence on flooding during Hurricane Harvey is not
directly addressed in this paper, we provide sugges-
tions for future research regarding this event and its
impacts.

2. Event definition

The time scale of the event definition is set by the main
impact: flooding in the city of Houston. Hydrographs
at http://water.weather.gov/ahps/region.php?state=tx
show that most rivers and bayous in Houston crested
on Monday August 28 or Tuesday August 29 local time,
see figures 1(a) and (b). Note that Buffalo Bayou is an
exception, as it was affected by the controlled release
of waters from the Addicks and Barker Reservoirs
upstream (figure 1(c)). The 10 minute meteorologi-
cal station ‘Houston’ (ID 639466112 on wow.knmi.nl,
figures 2(a) and (b)) also shows that the three days up
to Monday August 28 produced the highest amounts
of precipitation. We therefore take the three-day aver-
age for Saturday August 26 to Monday August 28 to be
the most relevant time scale. This implies the rainfall
accumulations we consider are lower than the all-storm
totals mentioned in the introduction.

The highest official gauge recording over the
three-day period reported immediately after the event
was at the William P. Hobby International Airport
(Hobby Airport), WMO 72244, with 824.7 mm 3dy−1

(32.47′′ 3dy−1), corresponding to 274.9 mm dy−1

(10.82′′ day−1) on August 26–28. At airports, this is
usually 0–24 UTC. Later updates of the GHCN-D
v2 dataset added to stations with higher precipita-
tion: Houston NWSO (USC00414333) with 999.2
on August 26–28 and Baytown (USC00410586) with
1043.4 mm 3dy−1 (41.07′′ 3dy−1), corresponding to
347.8 mm dy−1 (13.69′′ dy−1) on August 27–29, pre-
sumably 8–8 local time. We use the latter value as the
highest observed point value for this event.

Amateur stations give even higher amounts, but
were not used in this study. It should be noted that
often-quoted ‘72 hr sums’ use higher resolution data
(hourly or 10 minute) and choose the beginning
arbitrarily. This precludes comparison with historical
observations that are usually daily with a fixed obser-
vation time.

Van der Wiel et al (2017) showed that extreme pre-
cipitation could be considered homogeneous along the
Gulf Coast, using the land area 29◦N–31◦N, 85◦W–
95◦W. As the most-affected areas are just west of this
box, we extended it to Corpus Christi, 27.5◦N–31◦N,
85◦W–97.5◦W (figures 2(c) and (d)). The extreme
western part of this area has slightly lower extreme pre-
cipitation,but thisdoesnot affect theanalysis, especially
not the spatial maximum that is used for the models.
Note that extreme precipitation in this area is not only
due to tropical storms, but also to a variety of other
mechanisms such as the cut-off low studied in van der
Wiel et al (2017). Extreme precipitation events occur
throughout the year, with only a modest increase in the
hurricane season (June–November).

3. Data and methods

3.1. Observational data
For the observational analysis, we primarily use the two
rain gauge-based datasets that were also used in van der
Wiel et al (2017). The first is the GHCN-D v2 collection
of rain gauge data extended with GTS data. There are
312 stations in thebox covering1878–2017.Thedensity
of stations is much higher than the decorrelation length
of three-day precipitation. To obtain less-dependent
datasets, we analyse the station data in two ways: all
stations with 30 or more years of data and at least 0.1◦

apart (85 stations), and a subset with 80 years or more
of data and at least 1◦ apart (13 stations). The subsetting
was done in the order of station IDs. The first subset
is slightly stricter than in the previous study (van der
Wiel et al 2017) to ensure the validity of the moving
spatial blocks technique that we use in the bootstrap to
obtain uncertainty estimates in the presence of spatial
dependencies. We finally note that the rain gauges have
varying observation times.
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Figure 2. (a) 10 min precipitation rates as observed at Houston, TX (mm hr−1), about 1% missing data have been left out. (b)
Cumulative precipitation at this station (mm). Data from www.knmi.nl, station ID 639466112. Shaded pink areas indicate the three-
day period of maximum precipitation (August 26–28 UTC, 2017). (c) Precipitation total 26–28 August 2017, (d) precipitation
associated with the average annual three-day maximum (mm 3d−1). Gridded data from CPC unified gauge-based analysis of daily
precipitation. Red box shows analysis region (27.5◦N–31.0◦N, 85.0◦W–97.5◦W), red dots indicate the cities of Corpus Christi and
Houston, TX.

For comparison against the model data, we use
the CPC Unified Precipitation Analysis, a 25 km grid-
ded dataset based on rain gauges. This dataset has a
maximum three-day precipitation of 251.1 mm dy−1

or 614.2 mm 3dy−1 (9.89′′ day−1 or 24.18′′ 3dy−1), see
figure 3(b). This is only slightly lower than the high-
est point value available at the time in spite of the
area-averaging, showing the large spatial extent of the
extreme precipitation. However, the observations at
Baytown and Houston NWSO, and a comparison with
the rain radar data (figure 3(c)), show that this dataset
likely underestimated the rainfall. However, as it is the
best estimate we have with a long time series, we use it
anyway, keeping this underestimation in mind.

At this resolution, the grid points are insufficiently
independent to do an extreme value analysis, so for
these we averaged the grid boxes into a 50 km grid. At
this resolution the highest 2017 value is 186.7 mm dy−1

or 560.2 mm 3dy−1 (7.35′′ dy−1 or 22.05′′ 3dy−1).
To check these datasets, we also considered the

NASA GPM/IMERG data and the NOAA calibrated
rain radar fields. The NASA dataset is 0–24 UTC and
the NOAA dataset 12–12 UTC. In figures 3(c) and (d)
we show the highest three-day precipitation in 2017 up
to September 30 (only for August 25–30 for NOAA)
fields. The NOAA calibrated rain radar dataset has
somewhat higher point maxima, up to 385.5 mm dy−1

or 1156.5 mm 3dy−1 (15.18′′ dy−1 or 45.53′′ 3dy−1), as

it can catch local maxima that usually are not caught by
official rain gauges. However, as it has no long historical
record, we could not use it for the quantitative analysis.
The NASA GPM/IMERG datasets show lower maxi-
mum amounts than any other dataset, 203.3 mm dy−1

(8.00′′ dy−1) at 10 km resolution.

3.2. EC-Earth
We used the output of atmosphere-only EC-Earth 2.3
(Hazeleger et al 2010) experiments at T799 (∼25 km)
described in detail in Haarsma et al (2013). There are
four experiments of six ensemble members each: pre-
industrial 1850–1854, present-day 2002–2006, near
future 2030–2034 and end-of-century 2094–2098 (120
years total). The present-day experiment uses pre-
scribed daily observationally-based reconstructions of
sea surface temperatures (SST) at 0.25◦ resolution. The
other experiments use the 2002–2006 observed SSTs
transformed to the appropriate epoch by subtracting
or adding the mean SST change of the ECHAM5/MPI-
OM model used in the ESSENCE project with SRES
A1B forcings (Sterl et al 2008) to the 2002–2006 condi-
tions. Other boundary conditions, such as atmospheric
greenhouse gas concentrations, were taken from the
RCP4.5 scenario. This model has been shown to rep-
resent Atlantic hurricanes well in Haarsma et al (2013)
and Baatsen et al (2015).
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(b) CPC gridded(a) GHCN-D stations

(d) NASA GPM/IMERG(c) NOAA radar

Figure 3. Observed maximum three-day averaged rainfall January–September 2017 (mm dy−1). (a) GHCN-D v2 rain gauges, (b) CPC
25 km analysis, (c) NOAA calibrated radar (August 25–30 only), (d) NASA GPM/IMERG.

3.3. GFDL HiFLOR
As a second model, GFDL HiFLOR is used. HiFLOR is
a fully coupled global climate model, based on GFDLs
CM2.1 and CM2.5 (Delworth et al 2006, 2012). It uses
a 25 km horizontal atmospheric and land grid, coupled
to a coarser ocean and sea ice model. A detailed model
description is provided in Murakami et al (2015) and
van der Wiel et al (2016). Four static forcing experi-
ments (1860, 1940, 1990, 2015) of variable length are
available. The first 20 years of each integration are
removed to allow for fast, near-surface ocean spin-up,
and the remaining years concatenated to form a dataset
that covers 565 years. Full details of the model experi-
ments used are provided in van der Wiel et al (2017).
The models are biased towards smaller precipitation
extremes in the Gulf Coast region, though due to the
relatively high resolution, this bias is significantly lower
than in coupled models of average CMIP5 resolution
(van der Wiel et al 2016).

The model data of HiFLOR are identical to the data
that were used in van der Wiel et al (2017) because
neither extensions to these experiments nor data over
an extended region are publicly available at this time.
However, the statistics along the coast are fairly con-
stant (figure 2(d)), so the only problem arising when
using a smaller box is that the probability for an event
to occur anywhere on the coast is underestimated. In

the observational gridded dataset, the return time for
an event to occur in the larger box is about 25% lower
than a similar event in the smaller box. However, the
estimate of the change in return period or the changes
in intensity due to anthropogenic climate change is not
impacted by the size of the box after this bias correc-
tion. We have therefore chosen to include HiFLOR in
this analysis, using the available model data.

3.4. Weather@home
The third model is the regional climate model (RCM)
HadRM3P with ∼25 km horizontal resolution and 19
vertical levels (Massey et al 2015, Guillod et al 2017).
The domain includes Central America, the United
States, and the entire Gulf of Mexico region. Most
modelled hurricanes affecting the Gulf Coast origi-
nate inside this domain. It is nested in and driven by
the global HadAM3P model at N96 resolution. Three
experiments are used in our analysis. (1) A 30 year
climatology (1986–2015) with 30 simulations per year
(= 900 members; ACTCLIM). (2) An actual ensemble
with 1000 simulations for the August–October 2017
period (ACTUAL). (3) A natural or counterfactual
ensemble with 1500 simulations for the August–
October 2017 period (NATURAL). A smaller ensemble
of ∼100 ACTUAL and NATURAL simulations is
available for the February–July 2017 period. Lower
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Figure 4. Fit of the annual maximum three-day average GHCN-D station precipitation on the US Gulf Coast to a GEV that scales with
smoothed global mean surface temperature. (a) Location of 85 GHCN-D stations with minimum 30 years of data and 0.1◦ apart, (c)
observations (blue marks), location parameter 𝜇 (thick red line), 𝜇+𝜎 and 𝜇+ 2𝜎 (thin red lines) versus global mean temperature
anomalies, relative to 1951–1980; the two vertical red lines show 𝜇 and its 95% CI for the two climates in (e). (e) Gumbel plot of the
GEV fit in 2017 (red line, with 95% uncertainty estimates) and 1900 (blue line); marks show data points drawn twice: scaled up with
the fitted trend to 2017 and scaled down to 1900. The green square (line) denotes the intensity of the observed event at Baytown, TX.
Panels (b, d, f) are the same as (a, c, e), but for 13 GHCN-D stations with a minimum 80 years of data and minimum spatial separation
of 1.0◦.

boundary conditions are prescribed using OSTIA SSTs
forACTCLIM, andGloSea5 forecast SSTs forACTUAL
and NATURAL. ΔSSTs from CMIP5 historical and
natural runs are used to obtain the naturalised SSTs
(see Haustein et al (2016) for details). Forcings are
prescribed according to the CMIP5 protocol (Mein-
shausen et al 2011).

3.5. Methods
Estimates of return periods and changes therein and
changes in intensity are obtained with fits to GEVs
that scale with the smoothed global mean temperature
(GMST), inspired by the Clausius–Clapeyron relation.
We investigated the alternative of using of SST aver-
aged over the Gulf of Mexico, which would be more
directly related to local atmospheric moisture content.
The results this gives are very similar to those obtained
using GMST, albeit with larger uncertainties due to the
strongernoise in the localSST(fromweather, local forc-
ings and observational problems). Again, full details
and the underlying assumptions are given in van der
Wiel et al (2017).

Spatial dependencies are accounted for by a spa-
tial moving block analysis as recommended by Efron

and Tibshirani (1998) for temporal dependencies. This
technique was also used in Eden et al (2016) and van
der Wiel et al (2017). The quality of the fits is checked
by comparing the fit and observations for the current
climate (red in subsequent plots) andaprevious climate
(blue in subsequent plots). We always quote two-sided
95% confidence intervals, which are estimated by a
non-parametric bootstrap procedure.

4. Return periods and trends in observations

4.1. GHCN-D rain gauges
As mentioned before, for 2017, we take the
observedvalue atBaytown(USC00410586)with1043.4
mm 3dy−1, corresponding to 347.8 mm dy−1, over
August 27–29. This is also the highest value observed
in the box over all years. The 2017 event under study
here is not included in the fits, although, of course, the
2016 Louisiana event is included.

In the larger station set of 85 stations (5193 station
years, about 800 degrees of freedom), the return period
of the 2017 three-day maximum in the current climate
is more than 9000 yr (97.5% CI), figures 4(a), (c) and
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Figure 5. The same as figure 4 but for the 0.25◦ × 0.25◦gridded CPC analysis of 1948–2016. (a) Annual maximum three-day average
of all grid points averaged to 0.5◦, (b) the spatial and annual maximum three-day average of the 0.25◦ data.

(e). The large extrapolation required makes the uncer-
tainties large. This is a factor of four (2.1–5.0) larger
than it was in the climate of 1900, corresponding to a
19% (12%–22%) increase in intensity.

This is confirmed by the fit to the much smaller
dataset of 13 stations with at least 80 years of data
and minimum distance 1◦ that are almost independent
(1310 station years, about 1000 degrees of freedom),
figures 4(b), (d) and (f). The GEV fit gives a return
period of larger than 9000 yr in the current climate
(97.5% CI), a factor of four (2.0–11) larger than in the
climate of around 1900. The increase in intensity is also
compatible: 18% (11%–25%).

We finally considered the spatial maximum in
the box (not shown). For this, we use the 13-station
dataset, which has a roughly constant number of sta-
tions between1910 and 2010. A GEV fit over this period
gives the return period for an event like this happen-
ing anywhere along the Gulf Coast between Corpus
Christi, TX, and Apalachicola, FL. This is about once
in 800 yr, with a 97.5% upper bound of less than once
every 100 yr (i.e. less than a 1% probability every year).
The risk ratio (RR), or the change in probability, has
larger uncertainties in this measure than when using all
stations. We find a value between 0.5 and 11.

4.2. CPC gridded analysis
As mentioned in section 3.1, we averaged the CPC
gridded analysis to 0.5◦ to reduce the spatial depen-
dencies. On this scale, the 2017 event is the highest
in the dataset of 85 grid points (237.8 mm dy−1 or
9.36′′ dy−1), of which only five are independent. We
find a return period for this much rain in a 50 km grid
box of about 10 000 yr (2200–30 000 yr). Note that this
likely an underestimate, as the rain radar gave higher

area averages. The probability in the current climate
is a factor 5.4 (1.6–10) larger than in the climate of
1950, corresponding to an 18% (7%–24%) increase in
intensity (figures 5(a) and (c)).

If we consider the annual and spatial maxi-
mum in the Gulf Coast region in the 0.25◦ dataset
(251.1 mm dy−1 or 9.89′′ dy−1), this also shows an
increase, albeit, again, with larger uncertainties (figures
5(b) and (d)). The return period of an extreme event
like the one observed in 2017 or worse anywhere in
the box is around 230 yr (60–5000 yr). The RR is very
uncertainover this short time period: 3.2 (0.6–80) since
1950, corresponding to an increase in intensity of very
roughly 12% (−5% to 29%).

We conclude from these two observational datasets
that the probability of observed intense rainfall has
increased by a factor of roughly four, very likely more
than two, corresponding with an increase in intensity
of about 20%, very likely more than 12%.

This was an extremely rare event given the past
observations, even taking the trend into account. The
return periods for a point observation as large as
observed or larger is more than9000 yr (97.5% CI). The
chances of observing an event like this anywhere on the
Gulf Coast are higher, but still low: less than 1 in 100
years (<1% yr−1, 97.5% CI) for a point observation.

We show in the supplementary material available at
stacks.iop.org/ERL/12/124009/mmedia that the prob-
ability in 2017 is not increased due to natural variability.

5. Attribution to anthropogenic factors

To investigate the source of the observed increase, we
have to use climate models in which we can study a
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Figure 6. The same as figure 4, but for (a, c) the four EC-Earth T799 experiments and (b, d) the four static forcing HiFLOR experiments.
For EC-Earth, the fit of the annual and spatial maximum three-day average precipitation on the US Gulf Coast to a GEV that scales
with the RCP4.5 equivalent CO2 concentration. For HiFLOR, the fit is to a GEV that scales with the modelled GMST.

counterfactual climate without anthropogenic influ-
ences, such as the emissions of greenhouse gases. As
in van der Wiel et al (2017), we consider the spatial
maximum over 27.5◦N–31◦N, 85◦W–97.5◦W of the
annual maximum of three-day averaged precipitation.
For HiFLOR, we could only use the somewhat smaller
box 29◦N–31◦N, 85◦W–95◦W. This implies that there
are fewer locations to reach the maximum precipita-
tion. We correct the model output for this difference
together with the bias correction.

5.1. Model evaluation
We investigated whether the models were fit for pur-
pose in two ways: by comparing the tail of the extreme
precipitation and the seasonal cycle of somewhat less
extreme precipitation to the observations. The details
are shown in the supplementary material. Based mainly
on the shape of the tail, we decided to use the EC-Earth
and GFDL models, but not the HadRM3P model.

5.2. EC-Earth
The extreme precipitation is fitted to a GEV that
depends on the RCP4.5 equivalent CO2 concentration,
not the global mean temperature (figure 6(a)). This
was done because there are no GMST observations for
the two future periods and the CMIP5 RCP4.5 multi-
model global mean temperature is not well-defined
before 1860, as not all models simulate that period.
The equivalent CO2 concentration and multi-model
global mean temperature are correlated at r = 0.996.

The GEV fit shows that the spatial maximum of the
annual maximum of three-day precipitation along the
Gulf Coast is simulated reasonably well (figure 6(c)),
although due to the high scale parameter 𝜎 (steeper

slope), the return period is lower than in the observa-
tions (figure 5(d)). The fit assumes that the scaling up
to 2100 is the same as up to 2017. It gives an increase
in intensity from of 1861–2017 of 17% (10%–23%),
corresponding to an increase in probability of a factor
2.2 (1.5–4.1).

5.3. HiFLOR
As mentioned in the supplementary material, the GEV
fits provide a multiplicative bias correction of 80%
to correct for the modelled extremes that are smaller
than observed and the difference in box sizes (see sec-
tion 3.3). The model bias over the same box is about
40%. The returnperiod is compatible with the observed
one, as expected after bias correction. The increase in
probability (RR) is 1.6 with a 95% CI of 1.3–2.3. This
corresponds toan increase in intensityof 8%(4%–11%,
figures 6(b) and (d)).

6. Synthesis

Figure 7 summarises the results obtained above. The
top three results show the changes for local extremes,
i.e. for an event to occur at a specific location. The
next four show the changes in the spatial maximum,
i.e. for an event to occur anywhere along the US Gulf
Coast. The latter fits involve only the most extreme
events, giving (10) times fewer degrees of freedom.
Theuncertaintiesdue tonatural variability are therefore
larger, but the two models that passed the evaluation
can only reproduce these most extreme events reliably.
In the observations, the regional extremes are smoothly
connected to less extreme events, so we can use the
changes in the local extremes to deduce the changes
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Figure 7. Synthesis of the results. (a) Intensity changes 1880–2017 for local and regional extreme three-day precipitation events along
the US Gulf Coast (%). Observations are shown in blue, models in red. The magenta line is the average of the three estimates from local
observations (with smaller uncertainties) and the two regional model analyses (that can only reproduce these more extreme events
reliably). (b) Same for the RRs (changes in probability).

in the regional extremes. We therefore compute the
last line as the unweighted average of the three esti-
mates for changes in local extremes from observational
datasets and the two estimates from models for changes
in regional extremes.

It should be noted that changes at the return period
of the extreme rainfall from Hurricane Harvey in 2017,
estimated at more than 9000 yr from the station data,
can only be deduced from a GEV fit to the various
datasetsbyassuming thepropertiesdonot change in the
extrapolation from the more common extreme events,
as none of the models has enough data to sample this
probability directly.

Both the observations and EC-Earth show an
increase in intensity ΔI of around 16% per degree
global warming (figure 7(a)). As this part of the Gulf of
Mexico and the Gulf Coast have warmed by about the
same amount as the global mean, this is equivalent to
two times Clausius–Clapeyron scaling. In contrast, the
HiFLOR model only shows an increase of about 8%,
which is more compatible with 1×CC scaling. The
spread in results is not compatible within natural vari-
ability, 𝜒2/dof≈ 4 for the two datasets and two model
results, so there are systematic differences between the
models that must be taken into account.

The same picture appears for the RRs
(figure 7(b)); again, the EC-Earth results are in line
with the observations (in spite of the too high variabil-
ity). Extreme rainfall on the Gulf Coast in HiFLOR is
less sensitive to global warming than EC-Earth in this
region.

We conclude that precipitation extremes on the US
Gulf Coast have increased due to global warming. The
increase is higher in the observations (12<ΔI< 22%)
and one of the two models (10<ΔI< 23%) than in
the other model (4<ΔI< 11%). Both should include
possible stalling effects. If the station observations
are homogeneous enough, this points to 2×CC scal-
ing. However, there may be inhomogeneities in the
observations (well after 1948) that could cause an
overestimation of the trend, which would imply some-
what lower scaling. The unweighted average of the
local change in intensity in three relatively indepen-
dent observational datasets and the regional change

in the two models gives an increase of 15% with an
uncertainty range 8%–19%.

These increases are equivalent to an increase in
probability of at least a factor two in the observations,
somewhat less in the models. An unweighted average
on a logarithmic scale gives a most likely increase of a
factor of 3, with uncertainty range of 1.5–5.

Extrapolating these trends to the future, we expect
another similar increase if global warming is limited
to 2 ◦C above pre-industrial levels. However, under a
‘business-as-usual’ scenario in which the world con-
tinues to rely primarily on fossil fuels, the intensity
of extreme rainfall events on the Gulf Coast would
increase by about 50% as the world warms another
four degrees. This corresponds to an increase in prob-
ability of a factor of roughly 10 (both numbers have
large uncertainties). This is in rough agreement with
the increase of a factor of 18 that Emanuel (2017) finds
relative to 1981–2000 for large-area averaged precipita-
tion (their value for 2017 is larger than ours mainly due
to the linear interpolation rather than the exponential
one we use).

7. Vulnerability and exposure

While this study focuses on the rainfall hazard, the
primary impact was flooding. Drivers that exacer-
bate or reduce impacts in storms of this scale are a
complex combination of an extreme natural hazard,
long-term planning decisions and short term disas-
ter preparedness and response decisions. These are
discussed in detail in the supplementary material.
Although the extreme rainfall levels from Hurricane
Harvey are extremely rare, additional factors, such
as rapid population growth, urban growth policies,
and ageing water management infrastructure further
exacerbate the ultimate impacts of this storm. Recent
flood events resulting from storms such as Tropical
Storm Allison (2001), Hurricane Ike (2008), Memo-
rial Day (2015), and Tax Day (2016) further illustrate
the importance of managing exposure and vulnera-
bility when reducing the level of flood impacts in
Houston.
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8. Conclusions

As described in the introduction and methods, this
study has focused primarily on the changes in extreme
rainfall in the US Gulf Coast region, applied to the
rainfall during Hurricane Harvey that caused record
flooding in Houston. The first result is that the three-
day rainfall sums that were responsible for most of the
flooding were extremely rare, with a return time for
station observations of more than 9000 yr (97.5% CI)
in the current climate, taking the trend into account.
This would have caused flooding in any city.

The second result is that we find strong evidence
that global warming over the last century, primarily
causedby anthropogenic greenhousegas emissions, has
increased the intensity of the three-day rainfall extremes
on the Gulf Coast, or equivalently, has increased the
probability of a given rainfall event. Due to the rarity of
the observed rainfall in Houston, applying the increase
observed for less extreme events to this event requires
a (reasonable) extrapolation. We find that the intensity
of rainfall increased by 15% (8%–19%) and the prob-
ability of this much rain or more by a factor of three
(1.5–5). This increase in rainfall intensity contributed
to the flooding observed in Houston and surrounding
areas. Less extreme rainfall events have also resulted in
impactful flooding in Houston in previous years, and
their return times are also decreasing.

We also acknowledge that several other factors
have likely also contributed to increased flood risk in
Houston over the past century and should be further
explored. First, given Houston’s proximity to the coast,
relative sea level rise has likely contributed to increases
in flood risk in the region. While NOAA estimates
that sea level rise near Galveston Island is increas-
ing by approximately 6.47 mm yr−1, further analysis
is required to disentangle the relative contributions of
anthropogenic climate change and regional subsidence
to increases in sea levels in Galveston Bay and their
effects on flood risk in Houston. Second, the effects of
regional changes in land use and land cover on flooding
during Hurricane Harvey, as well as the long-term per-
formance and operation of flood adaptation measures
employed in Houston, are of interest and importance
to local governing bodies. Finally, additional research
is required to determine to what extent Harvey’s storm
surge contributed to compound flooding in coastal
watersheds, and whether compound flooding during
tropical cyclones should be considered in the design of
coastal flood defences.

While these questions were not answered in this
study, our results provide one of the big pieces of
the puzzle showing that although rainfall during Hur-
ricane Harvey was exceptional, the trend in extreme
rainfall needs to be taken into account when consid-
ering upgrades to flood infrastructure in Houston and
surrounding areas since additional global warming will
continue to increase the risk of extreme precipitation
events further.
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