DOCKETED					
Docket Number:	17-IEPR-12				
Project Title:	Distributed Energy Resources				
TN #:	220511				
Document Title:	2025 California Demand Response Potential Study				
Description:	8.8.17 Presentation by MaryAnn Piette of LBNL				
Filer:	Raquel Kravitz				
Organization:	California Energy Commission				
Submitter Role:	Commission Staff				
Submission Date:	8/2/2017 12:04:57 PM				
Docketed Date:	8/2/2017				

2025 California Demand Response Potential Study

Integrated Energy Policy Report Presentation

August 8, 2017

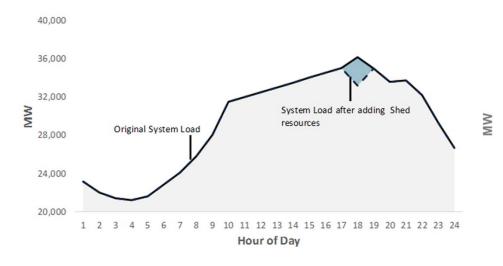
Lawrence Berkeley National Laboratory

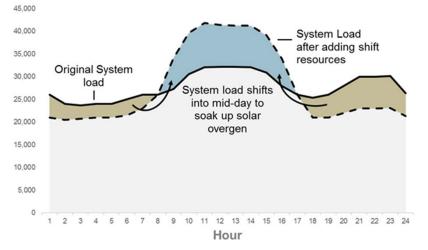
Peter Alstone, Jennifer Potter, Mary Ann Piette, Peter Schwartz, Michael A. Berger, Laurel N. Dunn, Sarah J. Smith, Michael D. Sohn, Sofia Stensson, Julia Szinai, Travis Walter E3: Lucy McKenzie, Luke Lavin, Brendan Schneiderman, Ana Mileva, Eric Cutter, Arne Olson Nexant: Josh Bode, Adriana Ciccone, Ankit Jain

PresentationOverview

- Introduction
- Executive Summary
- Methods
- Results
- Recommendations
- Next Steps and Q&A

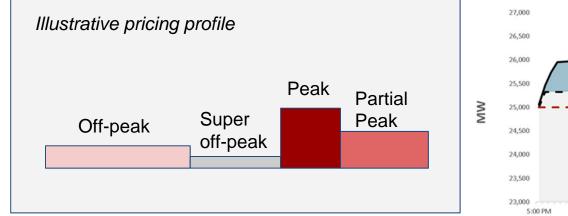
DR Potential Study Objectives

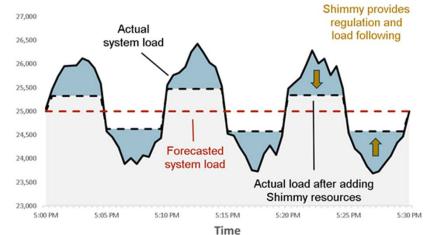

- CPUC bifurcated IOU DR programs into 2 categories
 - Load modifying resources reshape net load
 - Supply resources integrate into CAISO energy markets
- DR Potential Study part of CPUC's Order Instituting Rulemaking to Enhance Role of DR in Meeting State's Resource Planning Needs & Operational Requirements (13-09-011).
- Objectives Assess CA DR Potential & valuation for bifurcated IOU DR programs & identify opportunities for DR to help meet long-term goals.


DR Service Types Address Grid Needs Shed & Shift

Shed Service Type: Peak Shed DR

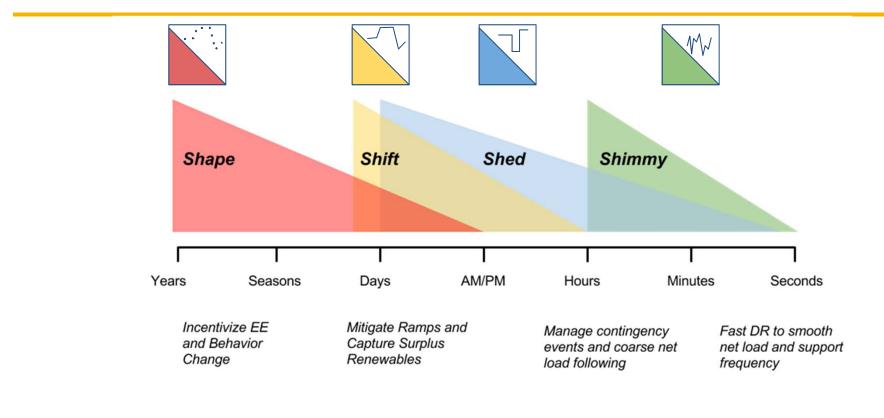
Shift Service Type: Shifting load from hour to hour to alleviate curtailment/ overgeneration


DR Service Types Address Grid Needs Shape & Shimmy



Shape Service Type as modeled: Accomplishes Shed & Shift with prices & behavioral DR.

Shimmy Service Type: Load Following & Regulation DR



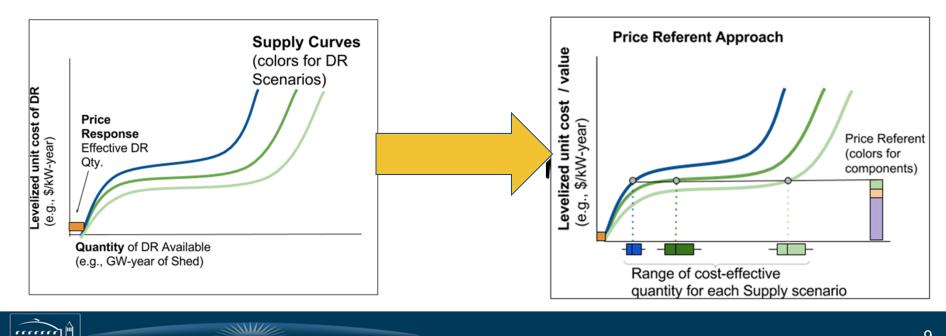
DR Service Type Table

	Service Type	Description	Grid Service Products/Related Terms	Analysis Unit	Shape (TOU/CPP) Included in service type analysis?
	Shift	Demand timing shift (day-to-day)	Flexible ramping DR (avoid/reduce ramps), Energy market price smoothing	kWh-year	Yes
	Shed	Peak load curtailment (occasional)	CAISO Proxy Demand Resources/Reliability DR Resources; Conventional DR, Local Capacity DR, Distribution System DR, RA Capacity, Operating Reserves	kW-year	Yes
M	Shimmy	Fast demand response	Regulation, load following, ancillary services	kW-year	No

DR Service Spans Time Scales

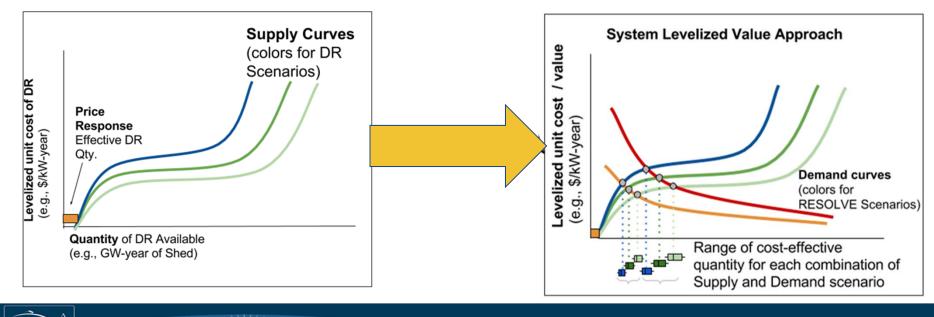
Methodology

LBNL-Load analysis - IOU-provided customer load (~220,000 customers) & demographic data (~11 million customers) "clusters," based on observable similarities. Developed characteristic load profiles for total & end use-specific load clusters. **LBNL-Load** forecasts loads for 2020 & 2025 according to 2015 IEPR.


<u>DR-Path</u> generates range of DR pathways based on load forecasts from LBNL-Load. These pathways represent likely futures, given technology adoption, DR participation & cost projections for existing & emerging technologies.

Renewable Energy Solutions (RESOLVE) model estimates value benchmarks for each DR type based on avoided investment & operation costs when DR available for use. Availability ranges run to establish DR's value **low & high** renewable curtailment.

1. Price Referent Approach


Price Referent Approach: Compares DR Supply to cost of procuring alternative resource (e.g., NG combustion turbine). A "horizontal" demand curve **for "Shed".**

BERKELEY LAB ENERGY TECHNOLOGIES AREA

2. System Levelized Value Approach

System Levelized Value Approach: Compare DR supply with estimated "levelized value" to grid as effective annual demand curves.

.....

BERKELEY LAB

Phase 2 DR Quantity Findings: By 2025, Medium DR Scenario Suggests...

Shape: Conventional TOU / CPP rates provide <u>1 GW Shed & 2 GWh Shift</u> at ~zero cost.

Shed: Generation overbuild means ~zero need for system-level shed, but <u>2-10 GW</u> in cost-effective local Shed & distribution system service.

Shift: <u>10-20 GWh</u> of cost-effective daily Shift (2-5% of daily load), with opportunity for system value at ~\$200-500+M/year

ERKELEY LA

Shimmy: <u>300 MW</u> Load-following at <u>300 MW</u> Regulation. Opportunity for system-level total value ~\$25 M/year.

Keys to Achieving DR Potential Opportunities for each resource could be:

Shape: Could there be <u>deeper potential</u> for shift with more aggressive rates & dynamic pricing, combined with automated DR?

Shed: <u>*Targeted Shed*</u> for local capacity & distribution system service, may require faster DR technology. ¹/₂ of Shed resources in local capacity area.

Shift: Explore conventional DR <u>transition</u> to Shift. ISO integration presents <u>baseline & settlement challenges</u> – pursue retail price pathways ("Shape").

RKELEY LA

Shimmy: Ancillary services markets "thin" but high value for grid. <u>*Explore*</u> <u>portfolios</u> with Shimmy & other services with fast-responding automation.

DR Potential Value to Grid

RESOLVE: Advanced DR from'Shift' & 'Shimmy' have significant potential value

- Resources can help CA meet operational challenges associated with high renewable levels
- Shift: \$700 million/year in 2025 @ 20% of load shiftable
- Shimmy: \$21 million/yr for 600 MW of Load-Following & \$22.5 million/yr for 600 MW of Regulation

Value grows over time

• Much higher value in 2030 than 2020 from higher renewables/curtailment

Value decays with increased DR penetration

- Shift market is saturated at 10% of load in 2025
- Regulation market is saturated by 600 MW in 2025
- Load Following market is not saturated by our current cases (up to 1,000 MW)
- Conventional DR measures are found to have low value
- Shed: \$31 million/year in 2025 @ 10,000 MW

Cluster Summary

		С	Avg. Number of Time		
Sector	Clusters (Quantity)	(5th Percentile)	(Median)	(95th Percentile)	Series per Cluster
Residential	493	1,450	11,148	56,530	201
Commercial	1,402	9	247	2,639	55
Industrial	1,614	4	43	619	15
Other	68	345	831	2,308	23
Total	3,577				

End Uses and Enabling Technologies

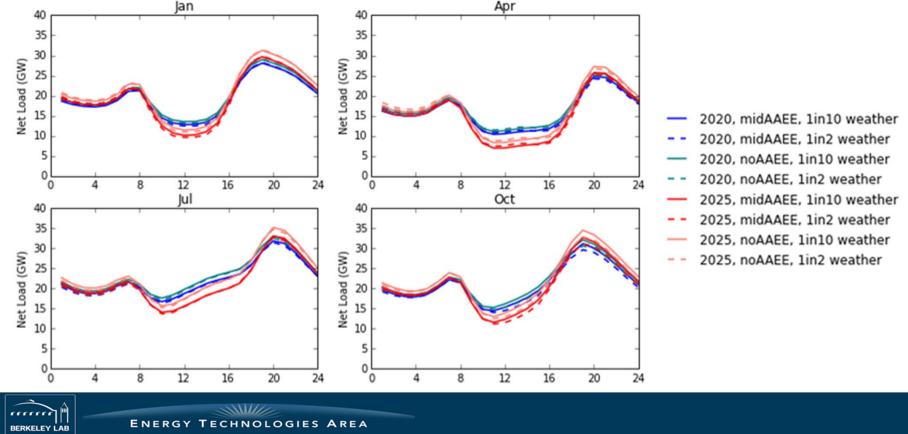
Sector	End Use	Enabling Technology Summary				
All	Battery-electric and plug-in hybrid vehicles	Level 1 and Level 2 charging interruption				
	Behind-the-meter batteries	Automated DR (Auto-DR)				
Residential	Air conditioning	Direct load control (DLC) and Smart communicating thermostats (Smart T-Stats)				
	Pool pumps	DLC				
	HVAC	Depending on site size, energy management system Auto-DR, DLC, and/or Smart T-Stats				
Commercial	Lighting	A range of luminaire-level, zonal and standard control options				
	Refrigerated warehouses	Auto-DR				
	Processes and large facilities	Automated and manual load shedding and process interruption				
Industrial	Agricultural pumping	Manual, DLC, and Auto-DR				
muusunai	Data centers	Manual DR				
	Wastewater treatment and pumping	Automated and manual DR				

Enabling Technology Modeling Framework

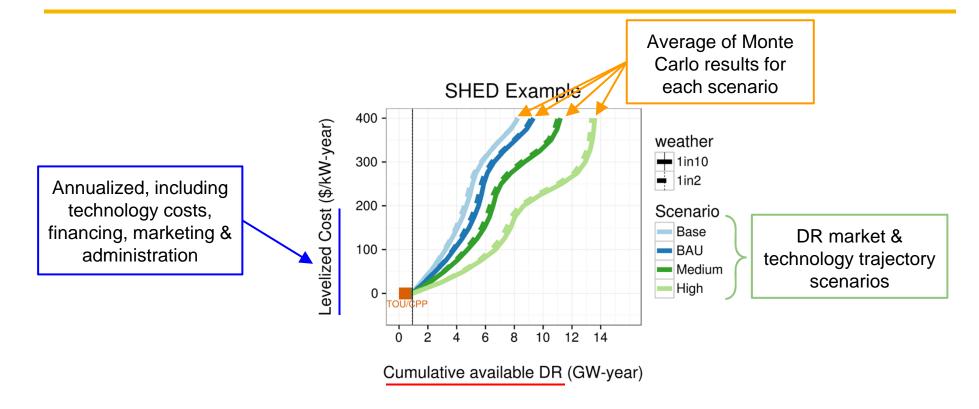
Components:

Costs

- Initial
- Operating
- Etc.


Performance

- Speed of response
- Magnitude
- Persistence


Propensity to Adopt

Based on customer factors

Forecast Results - System Net Load for 8 Scenarios (Gross Demand - Solar & Wind Generation)

How to Read a DR Supply Curve

Supply Curve Cost Variations

Each supply curve presented will use one of 4 costs as y-axis:

1. Total cost (i.e., "gross" cost)

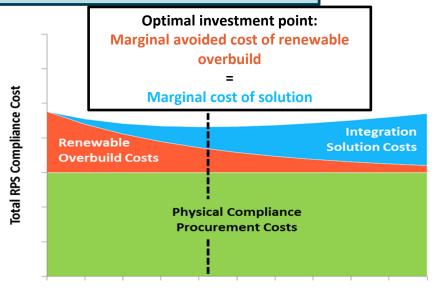
Levelized cost to a DR aggregator, including: up-front fixed & operational technology costs, marketing, customer incentive costs.

2. Net Market Revenue

Includes annualized market revenues estimated to come from energy/capacity/RA markets

3. Net Revenue & other Co-Benefits

Net costs plus cost reduction realized from non-DR benefits of installing DR enabling technologies at site (e.g., EE benefits)


4. Net Revenue + Co-Benefits + Distribution System Service

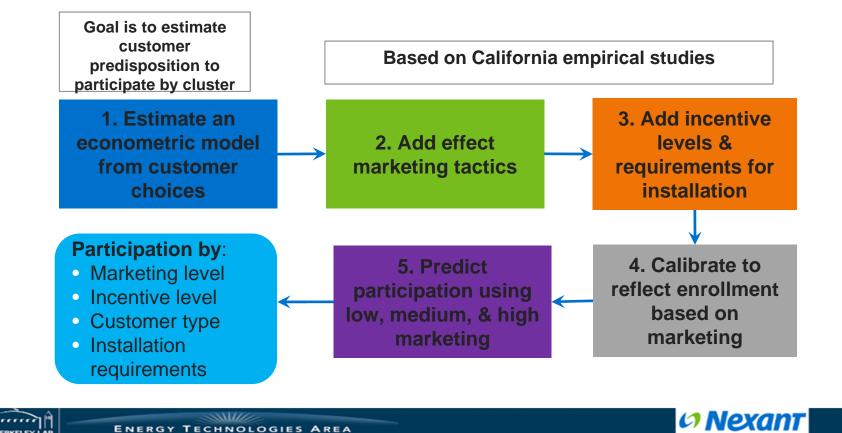
Same as above, also with illustrative revenue from distribution system service.

RESOLVE Provides a Framework for Valuation of Flexible Resources

Economic curtailment & renewable overbuild are default solution to flexibility challenges, & form "avoided cost" of power system inflexibility

- Sizing elect system to deliver every MWh of renewable generation is costprohibitive
- Reduction of renewable curtailment & overbuild provide value to ratepayers
- Flexible resources selected when benefits—primarily reduced renewable overbuild—are greater than costs

Integration Solutions



Enrollment Rates are Key Building Block

Process to Estimate Propensity Scores

ENERGY TECHNOLOGIES AREA

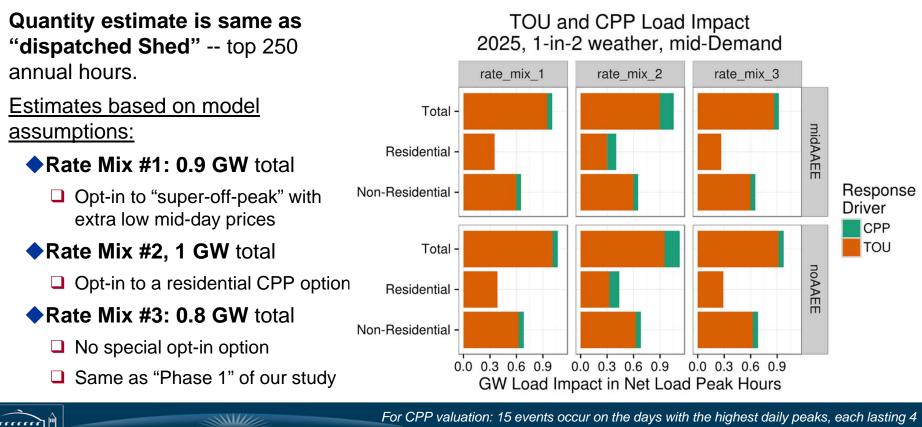
22

Rate Scenarios for Shape Resource

Rate Mixes Analyzed in this Study

Hourly Rate Structures

		Residentia	al	Non- Residential			Off-Peak		Super Off-Peak		Part	Partial Peak	Peak	ĸ		
	Default	Opt-in	Opt-out					ion 2	Spring							
		option	option			ш .	Summer			Ī						
Rate	PG&E	SCE	Flat			PG&	Winter									
Mix 1	Opt 2	Opt 3	Fidi	Pre-existing	_											
Rate	PG&E			TOU and CPP impacts derived from Christenson, 2015.				on 3	Spring							
Mix 2	Opt 2	+ CPP*	Flat			0	Summer									
Rate	PG&E						SCE	Winter								
Mix 3	Opt 2		Flat		ŀ	Hour	of Day 0		4	8	12	16	20	24		


*Residential CPP dispatched 15 x for 4 hrs. Customers who opt-in to CPP remain on default TOU rate during non-CPP hours.

BERKELEY LAB

Shape as Shed: ~1 GW Total

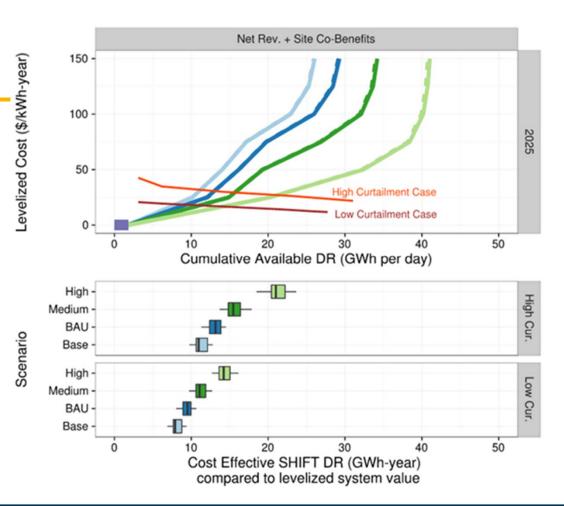
ENERGY TECHNOLOGIES AREA hours, dispatched during the summer months, for a total of 60 hours.

Shift Service Type

Daily Load Management: Energy-neutral load management able to reduce system ramping needs, lower system peak & avoid renewable curtailment.

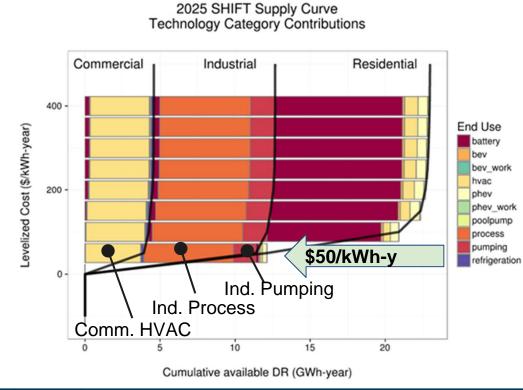
Units of analysis:

- Quantity: GWh/day, amount of energy shifted during day, averaged over year
- Cost: \$/kWh-year, levelized cost of providing shiftable kWh, available on every day of year



Shift Supply Curves

2025 Supply + Demand (Net ISO Rev and Co-Benefits)


Shown with ~2 GWh Shape-Shift

<u>10-20 GWh cost-effective supply</u> (~ 2-5% of daily load shifted)

Shift Technologies

Key Technology Options at \$50 /kWh-year cost:

- Industrial process & pumping
- Commercial HVAC Loads
 Electric Vehicles & Batteries could
 be significant if prices fall.

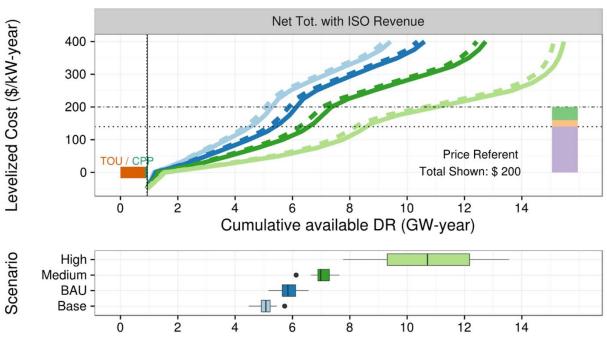
Shed Service Type

Peak Load Curtailment - Conventional DR dispatched to decrease load during a peak day event, meant to offset the need for peaking power plants or respond to contingencies

Units of analysis:

- Quantity: GW-year, average amount of load shed during top 250 net load hours of the year
- Cost: \$/kW-year, levelized cost of providing 1 kW of peak load shed throughout year

......


BERKELEY LAB

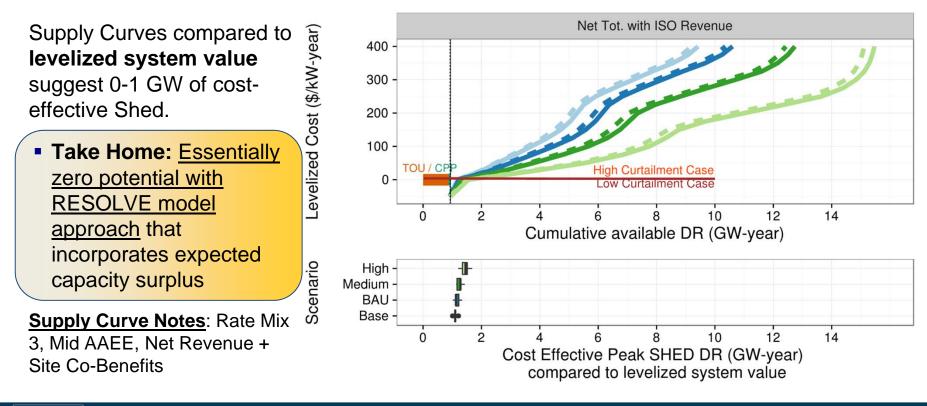
2025 Shed DR Potential Supply Curve vs. Price Referent

Supply Curves compared to **conventional price referent** suggest 6-10 GW of cost-effective Shed.

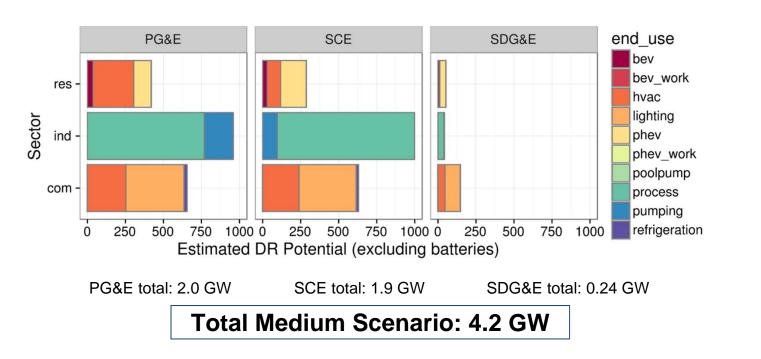
 Take Home: <u>Significant Shed</u> <u>potential with price</u> <u>referent approach</u> that assumes capacity investments are offset.

Supply Curve Notes: Rate Mix 3, Mid AAEE, Net Revenue + Site Co-Benefits

Cost Effective Peak SHED DR (GW-year) @ \$200 Price Referent



......


BERKELEY LAP

2025 Shed DR Potential Supply Curve Vs. Levelized System Value

Shed Technology Mix at \$200 Price Referent 2025, Rate Mix 3, Mid AAEE, 1-in-2 Weather, Net Total Cost, Medium Case

com	battery	0
com	bev	0
com	bev_work	0
com	hvac	538
com	lighting	860
com	phev	0
com	phev_work	0
com	refrigeration	36
ind	battery	0
ind	process	1710
ind	pumping	292
res	battery	0
res	bev	79
res	hvac	356
res	phev	324
	priev	524

Total MW:

tot

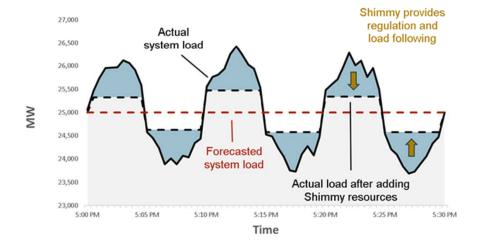
sector end_use

Shimmy Service Type

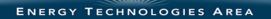
- Fast response DR: available daily in two types
 - **Load-following:** 5-minute dispatch signal
 - Regulation: 4-second dispatch signal

Units of analysis:

- Quantity: GW, market price-weighted average of hourly availability to provide regulation or load-following
- Cost: \$/kW-year, levelized cost of providing kW of service available during all hours


jii

.....


BERKELEY LAB

Modeling Shimmy in RESOLVE

- + Shimmy = Loads providing Load Following and Regulation ancillary services (modeled separately)
 - Modeled using hourly resource availability in RESOLVE

Illustrative Shimmy Resource

Recommendations for Guiding California's DR Pathways

- Policy Direction
 - Data-driven Energy Markets & Policy
 - Catalyze Shift
 - □ Future Rate Design for Residential & Non-Residential Customers
 - Developing Market Mechanisms for Market Entrance
- Technology Advances
 - Shift as Energy DR
 - Explore linking EE and DR and Integrated DSM
 - Interoperability Standards for Plug & Play Grid
 - Distribution System Automation

Possible Next Steps

Research to be considered for future work:

- □ Analysis on EE & DR technologies' costs, integrated DSM.
- Deep dive on DR's value to distribution system
- Further analysis of shift technologies and values
- □ Forecast error, extreme weather and emergencies
- Partnership on integrated systems, internet communications, performance guarantees

Acknowledgements

Technical Advisory Group (TAG)

- Kenneth Abreau, PG&E
- Fabienne Arnoud, PG&E
- Rick Aslin, PG&E
- Barbara Barkovich, CLECA
- Serj Berelson, Opower
- Eric Borden, TURN
- Jennifer Chamberlin, Joint Parties
- Fred Coito, DNV-GL
- Paul DeMartini, Newport Consulting
- Chris Ann Dickerson, DAWG
- Kent Dunn, Comverge
- James Fine, EDF
- Debyani Ghosh, Navigant
- John Goodin, CAISO
- Marcel Hawiger, TURN

- Don Hilla, CFC
- Eric Huffaker, Olivine
- David Hungerford, CEC
- Mike Jaske, CEC
- Xian (Cindy) Li, ORA
- Mona Tierney Lloyd, EnerNOC
- Alex Lopez
 Opower
- David Lowrey, Comverge
- Carol Manson, SDG&E
- Mark Martinez, SCE
- Ali Miremadi, CAISO
- Neda Oreizy, PG&E
- Sam Piell, PG&E
- Jill Powers, CAISO
- Heather Sanders, SCE

- Heather Sanders, SCE
- Nora Sheriff, CLECA
- Mike Ting, Itron
- Greg Wikler, Navigant
- Gil Wong, PG&E

