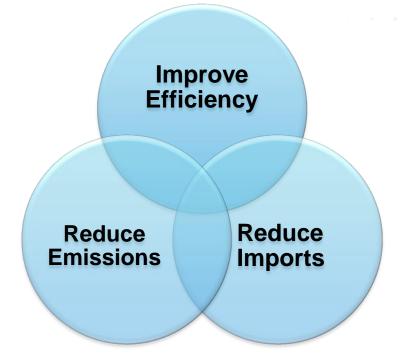
DOCKETED	
Docket Number:	17-MISC-02
Project Title:	Potential Areas of Natural Gas Research and Development for the Proposed Program Plan and Funding Request for 2017/18
TN #:	220083
Document Title:	Presentation - Monitor 2017 CEC Meeting - A Year of Progress and Innovation
Description:	July 7, 2017 by Joseph King from the U.S. Department of Energy
Filer:	Gina Fontanilla
Organization:	U.S. Department of Energy
Submitter Role:	Public Agency
Submission Date:	7/7/2017 12:07:41 PM
Docketed Date:	7/7/2017



Mission: To overcome long-term and high-risk technological barriers in the development of energy technologies

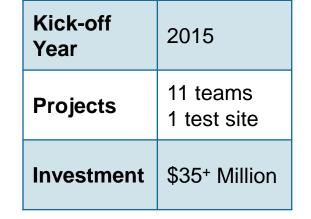
Goals: Ensure America's

- Economic Security
- Energy Security
- Technological Lead in Advanced Energy Technologies

If it works...

will it matter

MONITOR

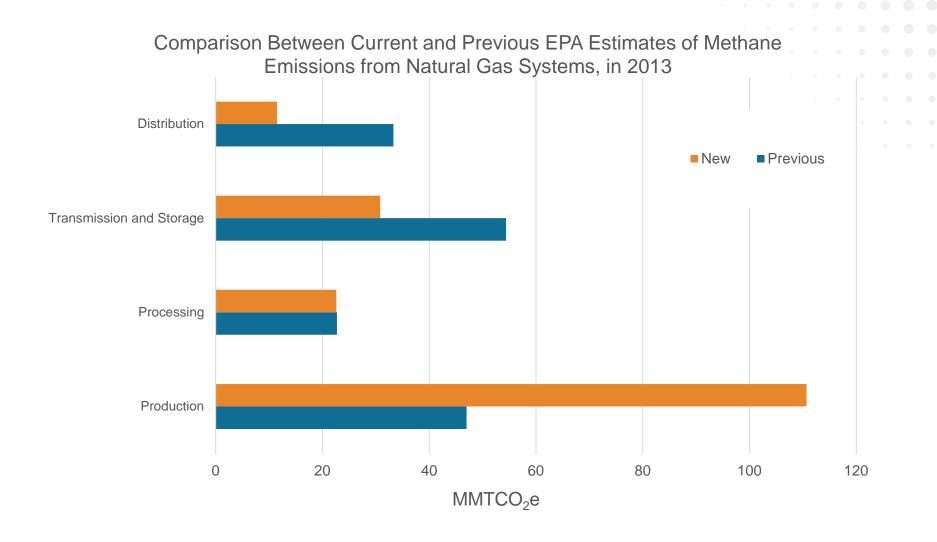

Methane Observation Networks with Innovative Technology to Obtain Reductions

• GOALS:

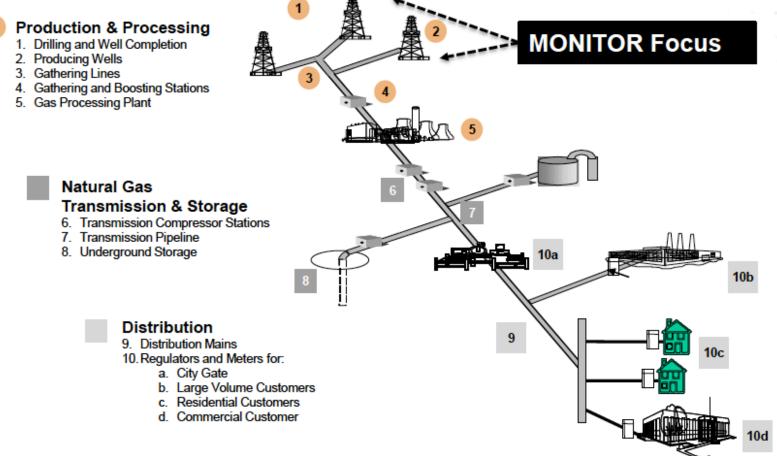
- Develop innovative, cost-effective technologies to detect, locate and quantify methane emissions associated with natural gas production
- Enable reductions in methane leaks, improve safety, promote operational productivity, and reduce the overall GHG impact from natural gas development

HIGHLIGHTS:

- Advancing SOA for numerous detection and quantification technologies with at least an order magnitude reduction in costs
- Employs a variety of deployment platforms that will provide quantification coverage throughout the natural gas supply chain
- Multiple industry, regulatory and environmental relationships developed: early result is explicit technology on-boarding pathway in current EPA and BLM regulations.



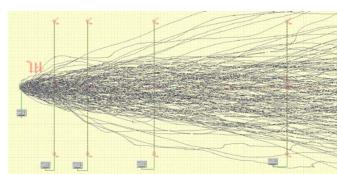
The U.S. Natural Gas Infrastructure


More Refined Emissions Data

Monitor's Initial Focus

Natural gas systems encompass wells, gas gathering and processing facilities, storage, and transmission and distribution pipelines.

Source: Adapted from American Gas Association and EPA Natural Gas STAR Program


MONITOR Metrics & Targets

Sensitivity	1 ton per year (6 standard cubic feet per hour; ~111 grams/h or ~1.9g/min)
Economical Cost	\$3,000 per site per year (for basic functionality)
Actionable Information	90% methane leakage reduction with a 90% confidence level
Quantification	Able to estimate mass flow rate within ± 20% margin of error
Leak Location	Able to estimate location ± 1 meter or better
False Positives	≤ 1 per year
Communications	Transmits results wirelessly to remote receiver
Enhanced Functionality	Methane selectivity, speciation capability, thermogenic/biogenic differentiation, continuous measurement, enhanced stability

MONITOR's Methane Detection, Localization and Quantification Challenge

- Leak Detection, Localization and Rate:
 - Source/Receptor Geometry
 - Weather Effects
 - Wind Speed
 - Stability
 - Topography and morphology

Complete & Partial Solutions to Detection

Complete measurement systems: 6 projects

- Systems that include:
 - 1) Methane emission sensing
 - Leak rate characterization and data analytics
 - 3) Provisions for data quality control
 - 4) Digital communication
 - 5) Enhanced functionality

Bozeman, MT

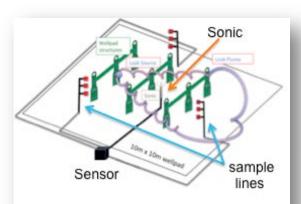
Palo Alto, CA

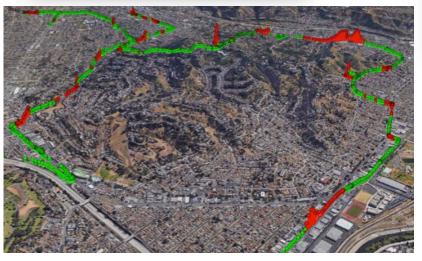
Redwood City, CA

Yorktown Heights, NY

Houston, TX

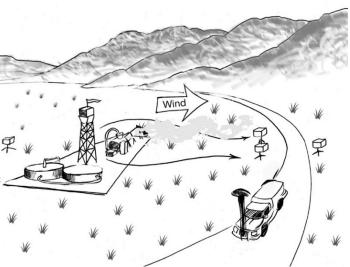
Partial measurement systems: 5 projects

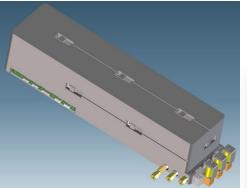

- Nascent technologies that may be too early in the development process for incorporation into a complete system
- Could significantly contribute to meeting system-level objectives
- Primarily envisioned as advances in detector technology or data analytics

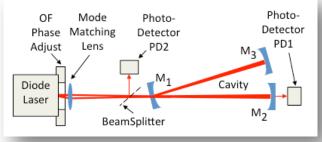

Miniature, High Accuracy Tunable Mid-IR Laser Spectrometer for CH₄/C₂H₆ Leak Detection

PROJECT HIGHLIGHTS

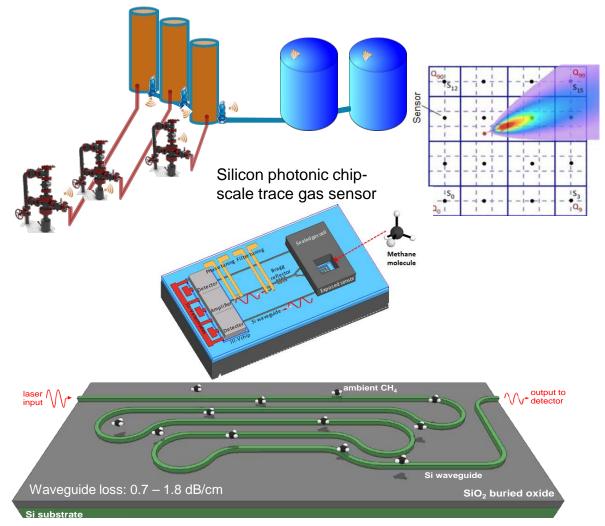
- Enables ppb/s sensitivity via simple and robust direct absorption spectroscopy
- Uniquely discriminates biogenic vs. thermogenic emissions real time
- 1/15th the size and power of existing insitu laser sensors
- 100⁺x more sensitive/accurate than legacy FID/NDIR
- Compatible with other industry applications that require high accuracy, real-time analyses (*e.g.* mobile applications)


AWARD AMOUNT: \$2.4 million PROJECT PARTNERS: Los Alamos National Laboratory, Rice University




Laser Spectroscopic Point Sensor for Methane Leak Detection

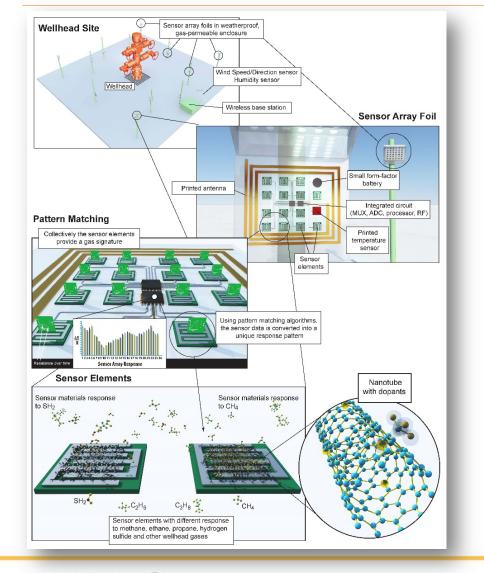
PROJECT HIGHLIGHTS


- Performance of state of the art cavitybased point sensors at reduced cost
- High sensitivity, selectivity, and stability measurements with low maintenance
- Closed path instrument is weather-proof, high-performance, and low power consumption
- Suitable for continuous or intermittent stationary and mobile applications
- Advanced spectral models and high instrument stability allow unattended operation
- Advanced manufacturing and novel design/alignment enable cost reductions

AWARD AMOUNT: \$2.85 million PROJECT PARTNERS: Colorado State University, Gener8

On-Chip Optical Sensors and Distributed Mesh Networks for Methane Leak Detection

Evanescent field sensing - wave guide


PROJECT HIGHLIGHTS

- Developing novel, low cost, on-chip optical sensors with high methane selectivity
- Distributed and modular system with selforganizing network of low-power motes
- State of the art silicon photonics technology for on-chip 1.3-1.65µm TDLAS
- Allows for selectivity to molecule of choice
- Orders of magnitude lower cost (\$250/sensor target)
- Low power consumption (<1 Watt)</p>
- Cloud-based analytics for source detection and localization

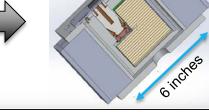
AWARD AMOUNT: \$4.5 million PROJECT PARTNERS: Princeton University, Harvard University, Southwestern Energy

Printed Carbon Nanotube Sensors for Methane Leak Detection

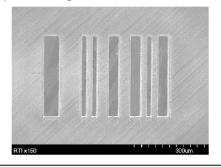
CHANGING WHAT'S POSSIBI F

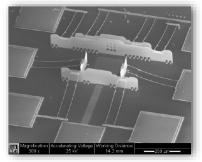
PROJECT HIGHLIGHTS

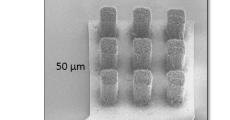
- Developing a mesh network of ultra-low-cost printed sensor arrays that can detect multiple gases
- Uses scalable low-cost, additive printing methods to print chemical sensor arrays based on modified carbon nanotubes
- Sensor elements with different responses to methane, ethane, propane and other wellhead gases
- Total system costs under \$350 per site per year; sensor cost target of ≤ \$15 each.
- Multiple sensors reduces false positives
- Sub-ppm sensitivity with leak localization within 1 m


AWARD AMOUNT: \$3.4 million PROJECT PARTNERS: NASA Ames Research Center, BP, Xerox Corporation

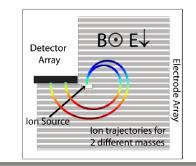
13


Coded Aperture Miniature Mass Spectrometer for Methane Sensing

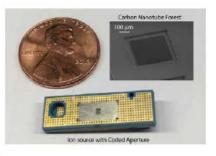




1) Aperture Coding

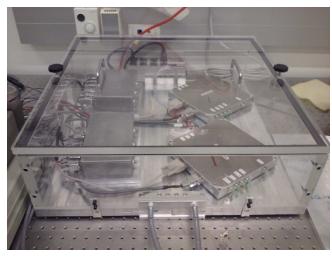

3) Microfabricated ion sources and detectors

2) CNT field emission cathodes


4) Cycloidal double focusing mass analyzer

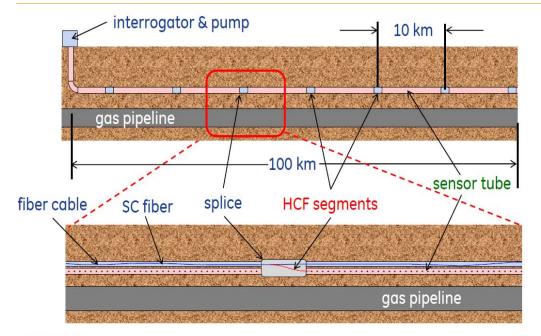
PROJECT HIGHLIGHTS

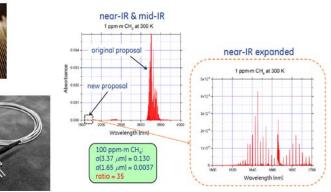
- Miniaturizing a mass spectrometer utilizing microfabrication and aperture coding
- High selectivity measurements at short detection times for methane as well as VOC's (such as benzene, C₂-C₇)
- Capable of thermogenic vs. biogenic differentiation
- Developing advanced search/location algorithms for optimum sampling


AWARD AMOUNT: \$2.9 million PROJECT PARTNERS: RTI International

Frequency Comb-based Methane Sensing Spectroscopy

PROJECT HIGHLIGHTS


- High sensitivity (ppb-m) kilometer-scale path length measurements with specificity of FTIR: 1.64-1.70µm
- Ability to monitor 100's of sites from a central location with thermogenicbiogenic differentiation
- Simplifying design to reduce the cost of phase locked dual comb spectroscopy
- Multispecies sensing includes CH₄, ¹³CH₄, C₂H₆, H₂O, CO₂, and propane
- Coupled to large eddy dispersion modeling to provide localization


AWARD AMOUNT: \$2.1 million PROJECT PARTNERS: NIST, NOAA

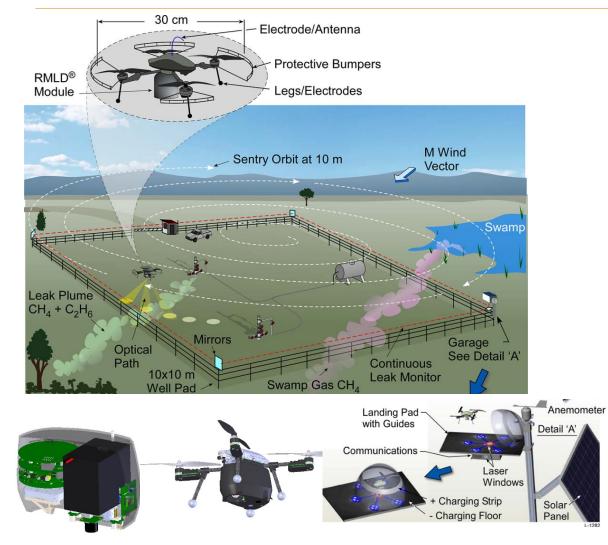
Micro-structured Optical Fiber for Methane Sensing

Applied Optoelectronics

PROJECT HIGHLIGHTS

- Fiber optic sensor is broadly applicable throughout the oil and gas industry, particularly for large-scale infrastructure (such as gathering lines and storage facilities)
- Photonic crystal fiber design will minimize optical losses while permitting ambient gas to enter hollow core
- Implement components available in telecommunications to manage price
- Hollow-core fiber segments in a design that can span over 100km and offer continuous pipeline monitoring along its entire length

AWARD AMOUNT: \$1.4 million PROJECT PARTNERS: Virginia Tech


Wavelength, nn

HC-1550

Eblana Photonics

UAV-based Mid-IR Laser Spectroscopy for Methane Leak Measurement

PROJECT HIGHLIGHTS

- Continuous leak monitoring with leak quantification and real-time alarm notification
- Two modes of operation: continuous perimeter monitoring and search mode to pinpoint leak location
- Speciation of methane and ethane differentiates thermogenic vs. biogenic emission
- Improved production processes reduce costs of mid-IR Interband Cascade Laser (ICL) sources

AWARD AMOUNT: \$2.9 million PROJECT PARTNERS: Heath Consultants, Thorlabs, Princeton University, University of Houston, Cascodium

Mobile LiDAR Sensors for Methane Leak Detection

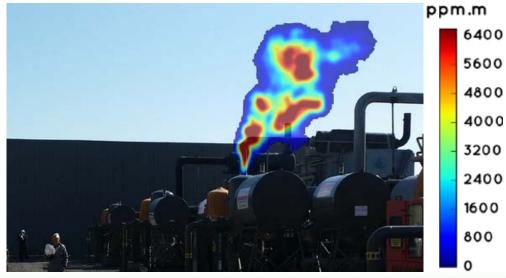
PROJECT HIGHLIGHTS

 Simultaneous, rapid, and precise 3D topography and methane gas sensing on fixed or mobile platform

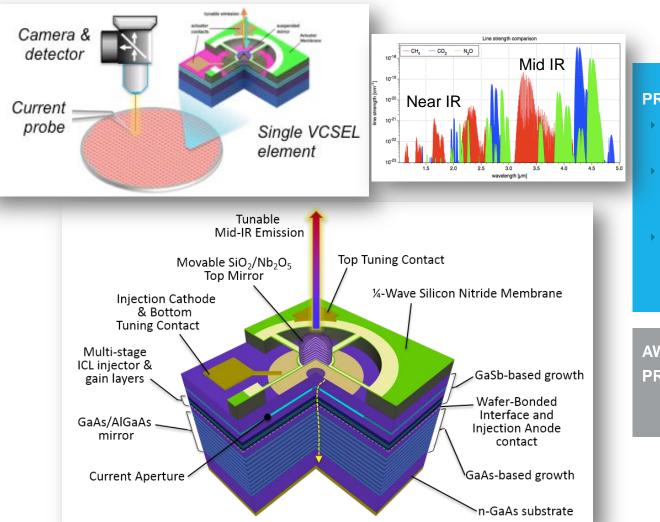
PHOTONICS

- Capable of covering a broad range: a frequency-swept laser beam is transmitted to a topographical target 1-300 m from the sensor
- Produces detailed situational awareness reports derived from overlaid methane concentration, 3D topography, and RGB picture data
- Potentially able to achieve a minimum leak rate detection of 1 gram per minute
- Estimated between ~\$1,400-2,200 per well per year

AWARD AMOUNT: \$1.5 million


Portable Imaging Spectrometer for Methane Leak Detection

PROJECT HIGHLIGHTS


- Miniaturization of Rebellion's Gas Cloud Imager (GCI), a long-wave infrared imaging spectrometer: 7-14µm
- Camera will be lightweight and portable
 the size of a Red Bull can and
 capable of being incorporated into
 personal protective equipment
- Data processing uses cloud-based computing architecture that streams results to mobile device

AWARD AMOUNT: \$4.3 million

Tunable Mid-infrared Laser for Methane Sensing

PROJECT HIGHLIGHTS

- Innovative, low-cost mid-IR laser with VCSEL architecture
- Integrated micro-electro-mechanical system (MEMS) mirror enables a wide tuning range
- Approximately 40x reduction in laser cost, applicable across a wide array of sensors and applications

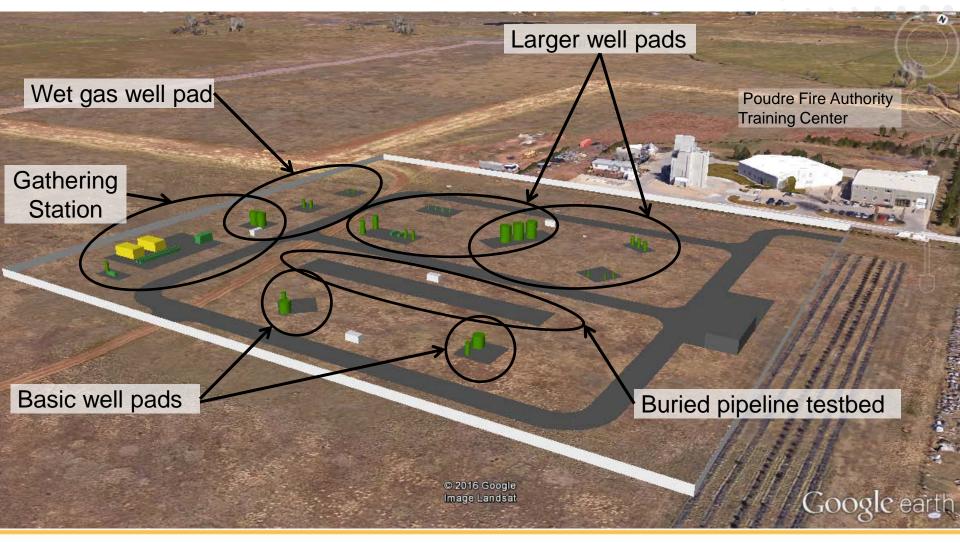
AWARD AMOUNT: \$1.9 million PROJECT PARTNERS: Thorlabs Quantum Electronics, Praevium Research, Rice University

MONITOR Testing

- Round 1 Initial Project Testing February 15, 2017 July 31, 2017
 - First required test in an outdoor environment
 - Simplified per run scenario:
 - Single blind
 - Six Single leaks on one of three well pads (0-150 SCFH)
 - Non-elevated CH₄ natural background (~ 2ppm)
 - Pure methane or mixture of methane and ethane

Round 2 - Final Qualification Testing – October 15, 2017 – June 26, 2018

- Single blind
- Challenging conditions with site structural complexity (*e.g.* more obstacles that disrupt gas flow and varying/multiple emissions rates and locations distributed over the entire site)
- Multiple, simultaneous leaks
- Elevated background of methane (≥2ppm)
- Higher order hydrocarbons ($C_3 C_6$) and H_2S in gas mixture



Facility at a Glance: Capabilities

Colorado State University METECH4

Methane Emissions Technology Evaluation Center

Industrial Advisory Board (IAB)

"Readers of *Science* are unlikely to be surprised that decision-makers often disregard the best, most empirically informed conclusions."

Darren Frey's review of Hugo Mercier and Dan Sperber's book, "*The Enigma of Reason*," in *Scienc*e, 12 May 2017, v. 356, pg. 589.

Need to Ensure On-boarding of Innovation

Policy Needs

Main goal: Avoid technology lock-in; move towards performance-based

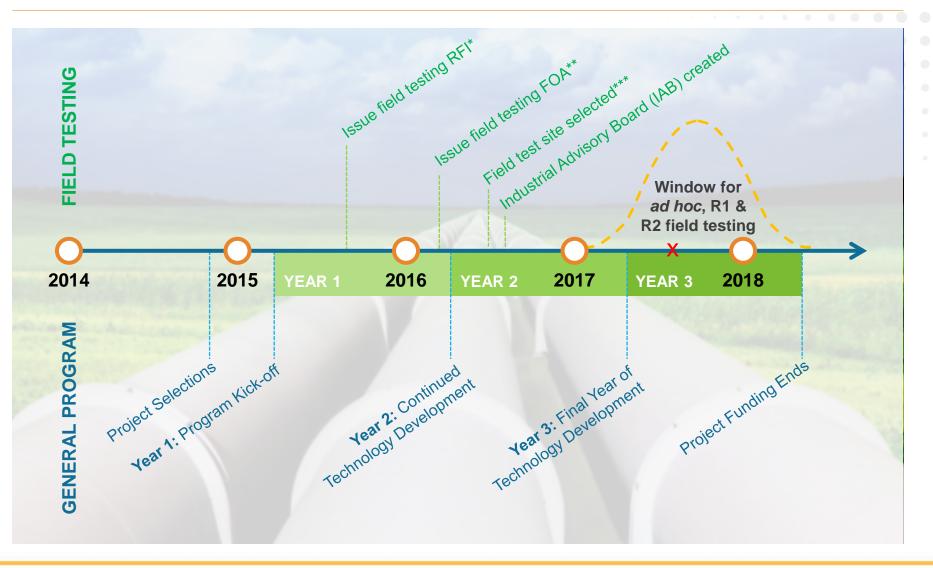
- MONITOR technologies will enable:
 - Detection, localization, quantification, continuous monitoring, remote communication - at low-cost and high sensitivity
 - Result: leak prioritization, non-arbitrary measurement intervals or concentration thresholds, and decreased operational costs

Policy needs:

 Inclusion of a technology on-boarding mechanism - *i.e.* insurance that yesterday's technologies aren't "locked-in"

Policy should move towards:

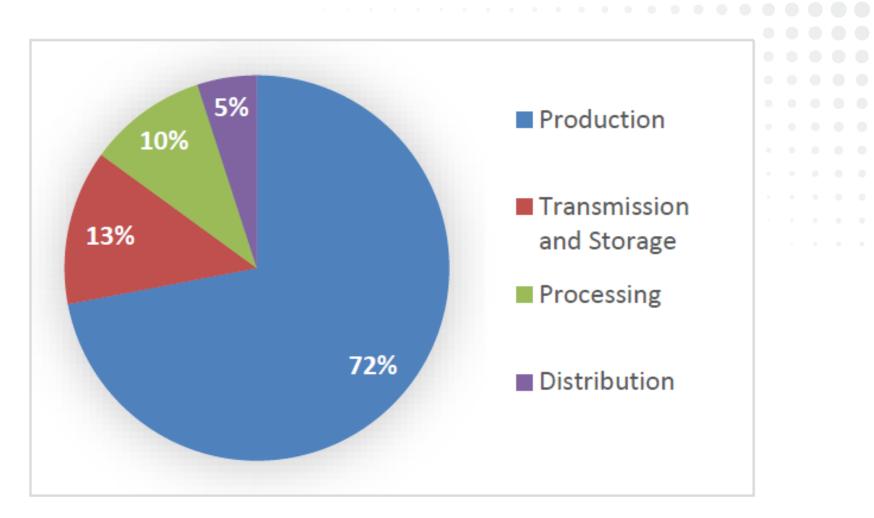
Mass flow thresholds and automated, continuous monitoring



Joseph.King@hq.doe.gov

www.arpa-e.energy.gov

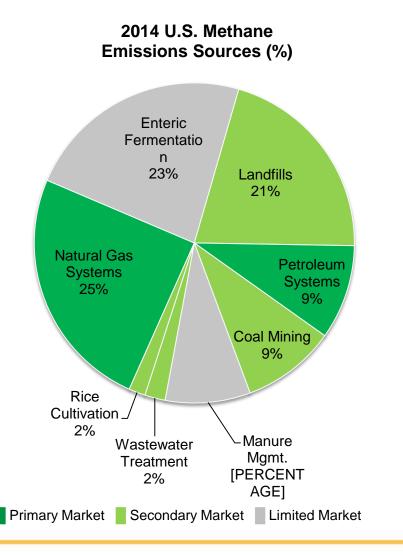
The MONITOR Timeline: ARPA-E & Beyond



* Request for Information = RFI

** Funding Opportunity Announcement = FOA

*** CSU proposal selected May 31, 2016



Source: EPA Greenhouse Gas Inventory Report (2016)

Figure 1:Total Methane Emissions from Natural Gas and Petroleum Systems Supply Chains (2014)

Roughly one-third of methane emissions come from secondary markets that could benefit from better sensing

CHANGING WHAT'S POSSIBLE

PRIMARY MARKETS

Natural Gas and Petroleum Systems: Advances in drilling technology have enabled natural gas booms across the globe, notably in the U.S. where shale has changed the energy landscape.

SECONDARY MARKETS

- Landfills: Beginning 1-2 years after placing waste in landfills, bacterial decomposition begins releasing methane over the course of several decades.
- Coal Mining: Coal extraction released methane stored in the coal bed and surrounding geology; coal consumption is expected to grow significantly on a global scale in the coming decades.
- Wastewater Treatment: Natural decomposition of waste material leads to both venting and fugitive methane emissions; this is a larger problem in developing countries that use aerobic treatment.
- **Other**: Rice cultivation, stationary and mobile combustion, chemicals production are significantly smaller sources of CH4 emissions.

