Docket Number:	17-IEPR-10		
Project Title:	Renewable Gas		
TN #:	219875		
Document Title:	Presentation - The Feasibility of Renewable Natural Gas as a Large-Scale, Low Carbon Substitute		
Description:	Presentation by Amy Jaffe of UCD		
Filer:	Raquel Kravitz		
Organization:	UC Davis		
Submitter Role:	Public Agency		
Submission Date:	6/23/2017 1:21:32 PM		
Docketed Date:	6/23/2017		

Sustainable Transportation Energy Pathways (STEPS)

The Feasibility of Renewable Natural Gas as a Large-Scale, Low Carbon Substitute

June 27, 2017

Amy Myers-Jaffe, Nathan Parker, Rosa Dominguez-Faus, Dan Scheitrum, Justin Wilcock, Marshall Miller

Renewable Gas Market: Key Observations

- CA has large RNG production potential (90.6 bcf/yr ≈ 750 million gasoline gallons)
- Our findings show that RNG can achieve significant market penetration by the 2020s of 14 BCF (roughly 85% of current natural gas use in transport in California) at LCFS credits of \$120 per metric ton of CO2, much higher volumes if combined with RIN credits
- Tipping fee increases could incentivize higher volumes of RNG from MSW
- Cost of production is sensitive to size of resource at each site and proximity to pipeline network
- CA's high costs of pipeline interconnect and upgrading to pipeline standards as main barriers to RNG

Natural Gas small but growing fuel source

CA Vehicular Nat Gas Consumption

Source: EIA

Natural Gas Price Discount Relative to Oil

Source: CME Group

Evolution of Natural Gas Refueling Network

Initial locations of LNG (red dots) and CNG (blue dots) refueling infrastructure and route deployment.

Annual gallons of LNG and CNG fuel delivered at outset- 0.2% Penetration Rate.

No Subsidy.

Renewable gas as an emissions reduction mechanism

Capture methane

- Collect natural methane emissions (landfill)
- Anaerobic digestion of organic matter (dairy, MSW, WWTP)

Upgrade to pipeline quality standards

Removing CO₂ and pollutants

Connect to pipeline network

- construct pipeline to nearest nat gas pipe
- construction of interconnect (\$\$\$\$)

Use in vehicles

Large carrot already dangling

Renewable Natural Gas Potential in California

CA Production Potential

CA Renewable Gas Supply Estimates

Carbon or Other Credit Support Required for Renewable Gas

	Support Required to Incentivize Production		RNG Supplied under
	over \$3.00/mmBTU nat gas market price		\$120 LCFS under
	(2015\$)		2020 target
RNG Production	\$ per mmBTU	\$ per gasoline gallon	Billion cubic
Pathway		equivalent	feet/year
MSW	\$11.50	\$1.38	1.75
Landfill	\$3.75	\$0.45	6.3
WWTP	\$5.90	\$0.71	1.5
Dairy	\$26.00	\$3.15	4.3

RNG supplied under \$100 LCFS credit price

MSW RNG Production sensitive to tipping fees

We recommend that by increasing CA tipping fees by **20%**

Combined with a \$120 LCFS price

Would increase MSW RNG production from **1.75** bcf/yr to **12.4** bcf/yr

RNG supplied as a function of LCFS price

Renewable Gas Estimation Data

Geolocated Data:

- Dairies: 1,369 sites, Central Valley and Santa Ana Regional Water Quality Control Boards
- Landfills: 147 sites, Landfill Methane Outreach Program
- WWTP: 86 sites, California
 Association of Sanitation Agencies
- MSW: 38 sites, California Biomass Collaborative, Solid Waste Information Systems, CalRecycle

14