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PROJECT SUMMARY 

PS.1 PURPOSE OF STUDY  

The Federal Emergency Management Agency (FEMA) is responsible for preparing Federal 
Insurance Rate Maps (FIRMs) that delineate hazard zones and Base Flood Elevations in coastal 
areas of the United States.  These areas are among the most densely populated and economically 
important areas in the nation.  Coastal areas are subject to a variety of natural processes that result 
in significant hazards to public safety and property along the nation’s coastlines, including 
extreme conditions of storm surge flooding, waves, erosion, rainfall, and wind.  The purpose of 
this study is to evaluate existing FEMA procedures for delineating coastal flood hazard areas in 
three major coastal regions of the United States (Atlantic, Gulf, and Pacific) and to develop 
recommended new guidelines and procedures in one of these areas (Pacific). 

This project was authorized cooperatively by FEMA Headquarters, FEMA Region IX, and 
FEMA Region X in October 2003.  The project is managed by Les Sakumoto, Project Officer for 
FEMA Region IX.  Northwest Hydraulic Consultants, Inc. is the lead consultant and manager of 
the Technical Working Group.  The primary work products for the study are the Final Draft 
Guidelines attached to this Project Summary, and a Phase 1 Summary Report (May 2004).  The 
Final Draft Guidelines (generally referred to below as “Guidelines”) provide guidance for coastal 
flood hazard analyses and mapping, specific to the Pacific Coast of the United States. The Phase 
1 Summary Report provides background on the project approach; describes the process used for 
evaluating existing guidelines; and summarizes the recommendations for the Pacific, Atlantic, 
and Gulf Coasts.  Appendices to the Phase 1 Report include information on the Technical 
Working Group, key references, and Focused Studies conducted on 11 categories of technical 
topics. 

PS.2 PROJECT CONTEXT AND GOAL 

Approximately 50 percent of the population of the United States resides on or near the coast (less 
than 50 miles from the coastline).  More than 3,000 communities are located in this 12,000-mile-
long coastal zone, which is covered by approximately 7,400 existing FIRM panels.  Much of this 
inventory of coastal FIRMs is more than 20 years old.  Faced with maintenance of the present 
inventory and creation of new FIRM panels, FEMA began an ambitious plan for Map 
Modernization in 1997.  Congress approved a FY 2003 budget that included a significant increase 
for funding the Map Modernization Plan, and FEMA has placed a high priority on coastal flood 
hazard mapping.   

While considering the needs of Map Modernization in coastal areas, FEMA recognized the need 
for a comprehensive review of procedures that will be used to identify coastal flood hazards.  
This review was needed to consider recent advances in coastal flood hazard assessment and 
mapping, and potential modifications to existing FEMA procedures based on state-of-the-art 
scientific understanding of coastal processes, new technology and numerical modeling 
techniques, improved and expanded data, and modern mapping techniques. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The overall goal of this project is to incorporate recent advances in the sciences and in coastal 
engineering into a recommended approach for improved coastal flood hazard mapping for the 
Pacific Coast of the United States, based on an understanding of local and regional coastal 
processes. 

PS.3 DESCRIPTION OF NEEDS BY GEOGRAPHIC REGION 

Guidelines for the Atlantic Coast, Gulf Coast, and Great Lakes have been assembled from 
elements developed over the course of many years; however, no comprehensive assessment has 
been done to evaluate their effectiveness in hazard mapping for the Atlantic and Gulf Coasts.  
During this time, the Pacific Coast was recognized as a special case because of differences in 
coastal processes (e.g., tsunamis, El Niño, swell) and geomorphic characteristics, but no FEMA 
guidance was established specifically for this coast. 

PS.3.1 Pacific Coast 

In general, the FIRMs for the Pacific Coast of the United States are more than 20 years old. These 
maps require comprehensive updating to adequately define hazard zones in some of the most 
densely populated and fastest growing areas of the United States.  FEMA’s existing coastal 
flooding guidelines focus on storm types (especially hurricanes) and coastal processes that are 
relevant to the open coast settings of the Atlantic and Gulf Coasts.  The Pacific Coast is subject to 
storm types, wave conditions, and coastal processes that differ from those in other coastal regions 
of the country.  Therefore, much of the existing guidance is not directly transferable to the 
analysis of Pacific Coast coastal flood hazards.  An assessment of the existing guidance was 
needed to determine which portions may be transferred or modified for use on the Pacific Coast 
and what new procedures are needed. 

PS.3.2 Atlantic and Gulf Coasts 

A comprehensive review of the existing guidelines was needed in light of more recent experience 
and new technology.  Modified or new procedures are needed to incorporate experience from 
previous studies and appeals, information on actual damages, and post-storm verification data.  In 
addition, a review of the basis of existing procedures was needed in light of an improved 
understanding of ocean and coastal processes from recent research and new data.  The existing 
procedures include little guidance on analysis of storm meteorology, storm surge, or wave setup.  
In addition, there is a need to evaluate expansion of the guidelines to address flood hazards in 
coastal areas not directly exposed to ocean swell and waves generated by distant weather 
conditions (e.g., bays and estuaries, referred to as Sheltered Waters in this document). 

PS.3.3 Other Areas 

The review and update of the guidelines are intended to facilitate consistent and accurate mapping 
of coastal flood hazards in the Map Modernization Plan.  Because of the unique coastal processes 
in Alaska, Hawaii, the Great Lakes, Caribbean islands, and Pacific islands, the project focuses on 
guidelines for the oceanic coastlines of the conterminous United States.  It is anticipated that 
many of the identified procedures will be transferable to these other areas, but that additional 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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work will be required to address unique physical characteristics and processes in each of these 
regions. 

PS.4 PROJECT APPROACH AND SCHEDULE 

The project approach included two key elements to ensure that the project was completed rapidly 
and effectively: (1) a team of technical experts (Technical Working Group, or TWG) was 
assembled with experience in various coastal processes and their effects in different geographic 
regions of the country, and (2) the project was conducted in two phases—Phase 1 to evaluate the 
existing guidelines for all three coasts and Phase 2 to develop proposed new draft guidelines for 
the Pacific Coast. 

The TWG is comprised of coastal experts from private industry, academic and research 
institutions, federal agencies (National Oceanic and Atmospheric Administration, U.S. Army 
Corps of Engineers, and U.S. Geological Survey), flood insurance study contractors, map 
coordination contractors, and FEMA Headquarters and regional engineers.  The TWG includes 
members from all three coastal regions of the United States and from Europe. An alphabetical 
listing of the Technical Working Group is provided after the Executive Summary. This group was 
organized to implement a collaborative approach to identify the needs and priorities for improved 
coastal flood hazard mapping procedures, consider potential alternatives, and develop 
recommendations based on consensus among coastal experts. 

The project schedule was established based on FEMA’s targets for the Map Modernization Plan.  
The project approach recognized that improvements to the Guidelines would need to be 
prioritized to maintain the adopted schedule.   Phase 1 was initiated in October 2003, and a final 
draft Phase 1 Summary Report was delivered to FEMA in June 2004. 

Phase 2 of the project was initiated in May 2004, and Final Draft Guidelines were delivered to 
FEMA in electronic format in November 2004.  The Final Draft Guidelines are appended to this 
Project Summary in hard copy. Additional Technical Support information will be submitted to 
FEMA in January 2005.   

Completion of the project on this schedule allows coastal flood insurance studies to proceed with 
new draft guidance in fiscal year (FY) 2004/2005.  The schedule has required an intensive work 
effort to complete a comprehensive review of existing procedures, to recommend modifications 
to existing procedures, develop new methods, and prepare the Final Draft Guidelines.  This effort 
involved approximately 30 organizations and active participation of more than 60 individuals. 

PS.5 PHASE 1 TASKS  

The approach for the assessment phase of the project (Phase 1) was to examine all technical areas 
of the coastal flood hazard mapping process.  Initial tasks focused on a review of the existing 
guidelines and the needs and priorities for their improvement.  Under these tasks, coastal experts 
from the TWG reviewed existing guideline methodologies for the ocean and coastal processes 
analyzed in flood insurance studies (e.g., storm meteorology, storm surge, wave setup, wave 
transformation, wave runup, and overtopping) and evaluated their applicability for each coastline.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Case studies were prepared to demonstrate application of guideline methodologies in previous 
coastal flood insurance studies on each coast, and representative studies were prepared to 
demonstrate application of guideline procedures to particular coastal processes. 

An international literature search was conducted to identify sources of information on existing 
and evolving coastal engineering practices and to identify pertinent scientific research that may 
be useful in developing new guidelines.  The international experience of several TWG members 
was used during this task to provide the project with information, techniques, and practices from 
around the world. 

The initial tasks described above served as the basis for reporting and discussion at Workshop 1, 
held in Sacramento, California, on December 2–4, 2003.  The workshop was attended by 38 
members of the TWG from across the country.  The workshop agenda included: 

 

 

 

 

review of existing guidelines and practices; 

technical presentations on the state of the science in coastal processes; 

workshop sessions to identify needs, priorities, and potential guideline improvements by 
coastal geographic areas and coastal processes; and 

Summary sessions to list and prioritize needed guideline improvements. 

The primary result of Workshop 1 was a list of 53 technical topics for consideration in updating 
the guidelines.  Each item also included an initial assessment of the time and data required to 
develop improved procedures.  This assessment resulted in categorizing each topic as “Critical,” 
“Important,” “Available,” or “Helpful.”  “Critical” and “Important” topics were considered the 
highest priorities for development of new or improved procedures, and were subdivided into 
topics that could likely be addressed in the 6-month time frame of the project (“Critical”) and 
those that would require longer term development by FEMA (“Important”).  “Available” topics 
were considered areas where existing data or methodologies were readily available for updating 
or creating guidelines.  “Helpful” topics were considered valuable but lower priority.  These 
priority classes were assigned by the TWG for each topic on the Atlantic and Gulf Coasts, Pacific 
Coast, and in Sheltered Waters (Non-Open Coast). 

The results from Workshop 1 were used to formulate focused studies that organized the 53 
technical topics into 11 categories according to coastal processes and coastal flood hazard 
mapping procedures.  Each of these 11 categories became the subject of a focused study:  (1) 
Storm Meteorology, (2) Stillwater Elevations, (3) Wave Characteristics, (4) Wave 
Transformation, (5) Wave Setup, (6) Event-Based Erosion, (7) Wave Runup and Overtopping, (8) 
Coastal Structures, (9) Sheltered Waters, (10) Tsunamis, and (11) Hazard Zones. These focused 
studies are included in the Appendices to the Phase 1 Report. 

The focused studies were conducted by groups of individuals from the TWG, each coordinated by 
a focused study leader.  This organization allowed the 11 focused studies to be completed 
simultaneously and rapidly.  Preliminary drafts of the focused studies were presented at 
Workshop 2 on February 23–26, 2004, and subsequently were refined by the study groups.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The focused studies contain recommendations on the approach for updating the guidelines on 
three coasts (Pacific, Atlantic, and Gulf).  These recommendations include further studies and 
guideline development work that vary in complexity, level of effort, and time requirements.  The 
level of effort required to complete the recommendations for “Critical” and “Available” items 
identified in Workshop 2 significantly exceeded the available time and budget for Phase 2 
(development of Pacific Coast guidelines).  Therefore, in March 2004 the project team engaged in 
a significant effort to develop options for limiting the scope and cost of Phase 2 work while 
retaining the most important topics and a balance among the 11 technical categories.  The 
selected option deferred some recommendations for future development in the National Flood 
Insurance Program (NFIP) but maintained the target of producing reliable guidelines for coastal 
studies on the Pacific Coast in FY 2004/2005. 

PS.6 SUMMARY OF PHASE 1 FINDINGS  

A complete list of topics and recommendations developed by the TWG during Workshops 1 and 
2 is provided in Table 2 of the Phase 1 Summary Report. Following are a few of the key findings 
from the Phase 1 activities:  

 

 

 

 

 

 

 

 

 

 

Procedures are needed to compute the 1% annual chance flood elevation where 1% stillwater 
levels do not necessarily coincide with 1% wave conditions (e.g., Pacific Coast and sheltered 
waters along all three coasts). 

Procedures to better represent wave setup are needed on all coasts.  

Procedures should be developed to use regional databases and wave transformation models 
to develop wave spectra at the surf zone. 

Methods are needed to evaluate the amount of wave dissipation due to propagation over 
muddy or flat nearshore areas. 

Procedures to quantify the effects of wave setup and event-based erosion in a variety of 
geomorphic settings are needed. 

On the Atlantic Coast, a review of the 540 square-foot erosion criterion is needed in light of 
new data; on the Pacific Coast, a similar geometric method is needed based on Pacific Coast 
data. 

A probabilistic method for tsunami hazard assessment and methods for combining tsunami 
hazards with other coastal hazards are needed. 

Updates and amplification of existing guidelines for wave runup and overtopping and 
associated hazard zones are needed. Improved methodology for wave overwash is needed. 

Some coastal processes, such as surge, wave transformation, and tsunamis, are best analyzed 
at a regional scale rather than in flood studies of individual communities. 

Sheltered waters (non-open coast areas) require specialized guidance because of their unique 
hydrodynamic and geomorphic characteristics compared to the open coast. For example, 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.



  6 
 
 FEMA COASTAL FLOOD HAZARD ANALYSIS AND MAPPING GUIDELINES 

  
COASTAL FLOOD HAZARD ANALYSIS AND MAPPING GUIDELINES FOR THE PACIFIC COAST OF THE UNITED STATES 

PROJECT SUMMARY, DECEMBER 2004 

 

FEMA INTERNAL REVIEW
NOT FOR DISTRIBUTION

new methods for calculating fetch-limited wind waves should be evaluated and incorporated 
in guidelines, to the extent appropriate. 

Recommended approaches to address these and other needs are included in Sections 4 and 5 of 
the June 2004 Phase 1 Summary Report.    

PS.7 PHASE 2 – PREPARATION OF DRAFT GUIDELINES  

As noted above, priorities were established by the TWG to implement a portion of the Phase 1 
recommendations to prepare new guidelines for the Pacific Coast during Phase 2.  The Guidelines 
developed in Phase 2 are designed to address the following general requirements: 

 

 

 

Consideration of geomorphic settings and their relationship to required analysis, including 
clear distinction between the open coast and sheltered water settings; 

Development of procedures for defining the 1% percent annual chance flood elevation as a 
combination of wave and water level characteristics where a single dominant storm 
mechanism (e.g., hurricane) can not be defined; and 

Identification of analyses that may best be accomplished at a regional scale (e.g., wave 
transformation, tsunamis), and the appropriate input to local analyses and hazard mapping. 

Phase 2 included limited case studies to develop and test new procedures and to develop simple 
models designed specifically for use in FEMA flood insurance studies.  The following technical 
areas were identified for case studies and testing:   

 

 

 

 

 

 

 

 

Storm Meteorology – testing to develop procedures for 1% flood elevation determination 
based on wave and water level combinations in open coast and sheltered waters settings  

Stillwater Elevations – testing for procedures to extract surge data from tide gage data; 
development of a simplified surge model for the Pacific Coast 

Wave Characteristics – case study to develop wind field and other input data specifications 
and methods for application of spectral models  

Wave Transformation – assess wave transformation models 

Wave Setup – testing of Boussinesq models; development and testing of a new setup model  

Runup and Overtopping – runup model testing combined with 1% flood elevation testing in 
Storm Meteorology; develop an analytical model for waver overtopping; and test numerical 
wave overtopping model 

Event-Based Erosion – testing of geometric models and procedures 

Flood Hazard Zones – development of  new criteria for VE Zone mapping based on depth 
and velocity of flow  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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A separate case study was also recommended by the TWG to develop a probabilistic 
methodology that considers both near-field and far-field sources of tsunamis.  This case study is 
being accomplished outside the scope of the current project because of the highly specialized 
nature of the required analyses.  This case study is expected to be accomplished through 
interagency cooperation among FEMA, the National Oceanic and Atmospheric Administration, 
and the U.S. Geological Survey, with assistance from private consultants and research 
institutions, such as the University of Southern California. This case study is scheduled for 
completion early in 2005. 

The Final Draft Guidelines developed in Phase 2 provide guidance for selecting and combining 
specific methods to evaluate coastal flood hazards for a wide range of coastal settings and storm 
conditions found along the Pacific Coast of the United States.  Within these Guidelines, 
“methods” means the individual techniques used to make specific computations.  “Study 
methodology” is the combination of appropriate methods and data necessary to develop flood 
hazard zones for depiction on a Flood Insurance Rate Map (FIRM).  

The Guidelines are numbered to fit into FEMA’s existing guidance document for coastal 
flooding, Appendix D of the Guidelines and Specifications for Flood Hazard Mapping Partners 
(April 2003).  

Section D.4.1 provides an overview of the Guidelines for the Pacific Coast, and Section D.4.2 
provides guidance on study methodology. Specific methods for analysis of flood frequencies; 
waves and water levels; wave setup, runup, and overtopping; coastal erosion; and coastal 
structures are presented in Sections D.4.3 through D.4.7. Section D.4.8 provides a placeholder for 
future guidance on analysis of flood hazards due to tsunamis. In most cases, several methods may 
be applicable to a specific coastal setting.  The objective of these guidelines is to provide 
guidance for developing an appropriate methodology based on the coastal setting and available 
data for a given project location. Section D.4.9 provides guidance on mapping of flood hazard 
zones and Base Flood Elevations, and Section D.4.10 provides guidance on study documentation.  
Sections D.4.11 through D.4.13 provide references, notations, and acronyms.  

The following are key components of the new Pacific Coast Final Draft Guidelines:  

 

 

 

Guideline procedures summarize the basic steps in selecting analysis methods 
according to coastal setting and availability of data. 

Clear distinctions are made between “open coast” and “sheltered water” areas and 
how hazard assessments shall proceed in each setting. 

An approach is presented for evaluating the 1% annual chance flood, based on the 
concept of “system response analyses” rather than traditional “event analyses.” The 
response approach uses measured or predicted wave conditions along with 
simultaneously measured or predicted water-levels to determine site specific storm 
response parameters, such as runup and maximum water levels at points of interest.  
Storm event responses in the surf zone and backshore are computed for a variety of 
storms, and statistically evaluated to define the 1% annual chance flood 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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characteristics. This method of assessing system responses in the surf zone and 
backshore avoids the need to consider joint probability analysis of waves and water 
levels. 

 

 

 

 
 

 
 

 

 

 
 

 
 

A statistical method is recommended for determining the 1% still water level for a 
tidal location subject to flooding by both coastal and riverine mechanisms. 

A section on “flood frequency analysis methods” is provided in the guidelines. For 
studies where long periods (greater than 30 years) of measured or hindcast data are 
available, the Generalized Extreme Value Distribution Method with parameters 
estimated by the Method of Maximum Likelihood is recommended for estimating  
extreme values, such as 1% annual chance total water level and stillwater level. For 
flood studies where long periods of measured or hindcast data are NOT available 
then statistical simulation methods such as the Monte Carlo Method are 
recommended. 

Several available wave hindcast databases are compared.  The Global Reanalysis of 
Ocean Waves (GROW) is recommended for use in “open coast” FIS studies for the 
Pacific.  

A modified version of WHAFIS is described that allows for variation of wind speed 
and its application to the non-hurricane wind climate found along the Pacific Coast. 

Regional wave transformation modeling is recommended for areas such as the 
Southern California Bight where offshore islands, deep canyons and headlands 
require complex wave transformations.  

New procedures for computing wave setup and runup using parametric, simple 
numerical models, and advanced “Boussinesq” modeling procedures are provided, 
with guidance explaining where and when such procedures are required. 

Wave runup is recommended to be evaluated at the 2% exceedance level rather than 
the 50% (mean) exceedance level presently recommended in Appendix D. 

A new numerical model using the Direct Integration Method (DIM) is recommended 
for calculating static and dynamic (infragravity) components of wave setup for the 
Pacific Coast setting. Simple parameterized models are also developed based on 
DIM.  

The Atlantic and Gulf Coast “540 Rule” for beach and dune erosion is not 
recommended for the Pacific Coast. Simple “geometric models” are recommended 
for estimating event-based erosion of sand beaches and dunes for the Pacific Coast.  
The concept of the “most likely winter profile” for various coastal beach settings is 
introduced and procedures for estimating eroded winter profiles during 1% annual 
flood conditions are presented for six coastal beach settings. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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New runup and overtopping methods are recommended. A simple analytical 
trajectory model is developed for wave overtopping by splash. (Please note that the 
TWG recommends that these new methods be thoroughly tested for several settings, 
prior to their general application.) 

The guidelines propose to define the VE splash zone as the landward extent of the 
overtopping splash trajectory. 

A new criterion for VE Zone delineation referred to as the high velocity flow zone is 
proposed. This criterion is applicable to areas landward of  the wave overtopping 
splash zone, where the product of flow depth times the flow velocity squared (hv2) is 
greater than or equal to 200 ft 3/sec2. This new criterion may also be applicable to 
hazard delineation of tsunami runup in the future. 

Guidance is presented for delineating coastal flood hazard zones and Base Flood 
Elevations (BFEs) based on these new methods.  

 

PS.8  Summary 

These Guidelines offer insight and recommended methods to analyze complex Pacific Coast 
flood processes in a reasonable way.  However, they require technical judgment and experience in 
their application, and are not a prescriptive technique that can be applied uniformly in all study 
areas.  The Guidelines are intended to apply to a range of settings, but they cannot address all 
settings and conditions due to the broad variability of the Pacific Coast.  They include new 
methods that were developed over a one-year period by the TWG assembled by FEMA. Methods 
were selected and developed through collaboration and consensus to be robust and reproducible, 
but at the release date of this document (November 2004), many of these methods have not been 
fully tested in FISs. Therefore, the TWG recommends that these new methods and Guidelines be 
thoroughly tested for a variety of settings, prior to general distribution and application throughout 
FEMA.  

Experience and judgment in coastal engineering is required in order to apply the procedures 
provided in the Final Draft Guidelines. The Mapping Partner may determine that minor 
modifications or deviations from the Guidelines are necessary to adequately define the coastal 
flooding conditions and map flood hazard zones in specific areas.  In these cases, documentation 
of these differences is required as part of the intermediate and final study submittals. 

Some “Critical” and “Important” topics identified in Phase 1 for the Pacific Coast were not 
addressed in Phase 2 because of limited time and resources.  Section 4 of the Phase 1 Summary 
Report provides a brief summary that can be used for planning of future guidance development 
by FEMA, and the Focused Studies appended to the report provide background on these topics.  

No additional work on guideline development for the Atlantic and Gulf Coasts was conducted in 
Phase 2. Section 5 of the Phase 1 Summary Report provides a brief summary of recommendations 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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that can be used for planning future guidance development by FEMA.  In addition, some Pacific 
Coast guidelines developed during Phase 2 may be applicable to analyses on the Atlantic and 
Gulf Coasts with little or no modification.  The potential applicability of Pacific Coast guidelines 
in specific technical categories is identified in Section 5 of the Phase 1 Summary Report.  The 
Focused Studies appended to the report also provide reference information that may be useful to 
study contractors as a supplement to the existing guidelines. 

The project approach relied heavily on the collaboration of Technical Working Group members 
to meet a compressed schedule.   It is envisioned that the next phase of guideline development for 
coastal flood hazards will be guided by TWG recommendations for testing, extending, and 
refining the procedures defined in the Final Draft Guidelines.  Specialized FEMA Study 
Contractors and other Mapping Partners will likely be engaged in preparing test cases and 
examples, and in providing feedback on application to specific settings. FEMA recognizes that 
the Guideline is an evolving document, and will encourage refinement through various 
mechanisms.    
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D.4 Coastal Flooding Analyses and Mapping: 
Pacific Coast 

This section of Appendix D provides guidance for coastal flood hazard analyses and mapping 
that are specific to the Pacific Coast of the United States, generally referred to as “guidelines”. 
The procedures described in this section were developed by a Technical Working Group (TWG) 
assembled by the Federal Emergency Management Agency (FEMA) in October 2003. They are 
intended to provide guidance that is generally independent of other Appendix D sections, and 
that is based on the specific physical processes that influence coastal flooding on the Pacific 
Coast.  

This section focuses on the Pacific Coast from California’s border with Mexico to the State of 
Washington’s border with Canada, as shown in Figure D.4.1-1. The coastline of the States of 
Alaska and Hawaii, and other islands in the Pacific Ocean are subject to unique meteorological 
conditions and physical processes that are important to coastal flooding, but are not specifically 
addressed in this version of Section D.4. However, much of this section is considered applicable 
in these geographic areas if engineering methods and judgment that address geographically 
unique processes or settings are applied to supplement the procedures described. In addition, 
some procedures may be applicable to specific settings in other geographic areas of the United 
States.  

Applicable 
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Figure D.4.1-1. Applicable Area – Pacific Coast Guidelines  
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D.4.1 Pacific Coast Guidelines Overview 

Section D.4 is organized to:  

• Present background information (Section D.4.1);

• Provide guidance on selecting study methodologies (Section D.4.2);

• Provide a set of technical methods as potential tools to be used in various study
settings (Sections D.4.3 to D.4.8);

• Provide guidance on flood hazard mapping (Section D.4.9);

• Provide guidance on study documentation (Section D.4.10); and

• Provide reference information (Sections D.4.11 to D.4.14).

Figure D.4.1-2 shows the general layout of the document. Because it is anticipated that few 
readers will use the guidance by reading sequentially from beginning to end, Section D.4.2 
provides a framework for overall study methodologies that Mapping Partners can use to refer to 
more detailed analysis methods in subsequent subsections. In many cases, multiple methods are 
presented for analysis of a single coastal process, and several coastal processes must be analyzed 
from offshore to onshore to produce hazard zone designations for a coastal Flood Insurance 
Study (FIS). Section D.4.2 provides guidance on selecting analysis methods that are applicable to 
particular coastal settings and on linking the analysis of individual coastal processes together in a 
study methodology. In this sense, the document is organized with a set of general instructions in 
Section D.4.2, and a toolbox for selection of specific methods in Sections D.4.3 to D.4.8. The 
appropriate tools must be selected based on study objectives, coastal exposure, geomorphic 
setting, and available data.  

Coastal flooding on the Pacific Coast is a product of combined offshore, nearshore, and shoreline 
processes. The interrelationships of these processes are complex, and their relative effects vary 
significantly with coastal setting. These complexities present challenges in the determination of 
the 1% annual chance flood for FEMA hazard mapping purposes. The fundamental philosophy 
of this section is to provide a set of technical tools that can be selected and applied as needed to 
match specific site conditions and physical processes relevant to coastal flood hazards.  

These guidelines offer insight and recommended methods to analyze complex Pacific coast flood 
processes in a reasonable way. However, they require technical judgment and experience in their 
application, and are not a prescriptive technique that can be applied uniformly in all study areas. 
The guidelines are intended to apply to a range of settings, but they cannot address all settings 
and conditions due to the broad variability of the Pacific Coast. They include new methods that 
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Figure D.4.1-2. Pacific Coast Guidelines Overview  

were developed over a one-year period by the TWG assembled by FEMA. Methods were 
selected and developed to be robust and reproducible, but at the release date of this document 
(November 2004), many of these methods have not been fully tested in FISs. Application of 
experience and judgment in coastal engineering is necessary to apply the procedures described. 
The Mapping Partner may determine that minor modifications or deviations from these 
guidelines are necessary to adequately define the coastal flooding conditions and map flood 
hazard zones in specific areas. In these cases, documentation of these differences is required as 
part of intermediate and final study submittals.  

Other appendices provide specific information on subjects such as study scoping (Appendix I), 
aerial mapping and surveying (Appendix A), treatment of levee systems (Appendix H), formats 
for FIS reports and rate maps (Appendices J and K), formats for draft digital data and Digital 
Flood Insurance Rate Map (DFIRM) databases (Appendix L), guidance for technical and 
administrative support data (Appendix M), and draft data capture standards and guidelines (draft 
Appendix N). The guidance provided here is intended only to supplement these sections with 
information specific to coastal flooding on the Pacific Coast. The Mapping Partner shall refer to 
other appendices where specific guidance is required on technical elements common to most 
FISs. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Subsections D.4.1.1 and D.4.1.2 provide an overview of the Pacific Coast setting relevant to 
flood hazards and an introduction to FISs for the Pacific Coast, respectively.  

D.4.1.1 Pacific Coast Setting and Characteristics 

The Pacific Coast of the contiguous United States is approximately 1,000 miles in overflight 
length, but significantly longer when inlets, bays, headlands, and islands are considered. It 
encompasses a broad spectrum of geological and biological provinces.  

The overall geology is determined by the existence of tectonic activity throughout, in sharp 
contrast to the Atlantic and Gulf coasts (Inman and Nordstrom, 1971). On the Pacific Coast, 
active faults marking tectonic plate boundaries cross the coastline in a number of locations. 
Subduction zones (continental plate riding over downward-plunging oceanic plates) are found in 
the northern half. The leading edge of the Pacific Coast is marked by very narrow and steep 
continental shelves with oceanic depths often found within a few miles of the shoreline. Southern 
California, a fragment of continental crust attached to the largely oceanic Pacific Plate, has 
widely varying coastal geology caused by the collection of plate fragments during tectonic 
collisions in the distant past. Although it has the characteristic narrow continental shelf, the 
Southern California Bight is marked by a large number of offshore islands and banks rising 
sharply out of deep water more than 60 miles offshore. This results in partial to nearly complete 
sheltering of some sections of this 200-mile-long coast from wave energy arriving from certain 
directions, and produces one of the most complex wave environments in the world. 

A string of near-coast mountain ranges is almost continuous along the Pacific Coast. The 
subduction of the oceanic Pacific Plate under the North American Plate in Washington and 
Oregon results in volcanic activity well inland from the coast and its influence on the coastal 
setting is a slow uplift of the land, tending to partially offset the worldwide increase in sea level. 
Coastal mountain ranges have a profound effect on the geology of the shoreline. The majority of 
the Pacific Coast’s length is comprised of rocky headlands and steep slopes dropping directly to 
the shore. 

The Pacific Coast is ice-free in spite of the high latitude of its northern boundary because of the 
moderating effects of the south-flowing current, which originates as the warm Kuroshio Current, 
that cools as it traverses the Northern Pacific. It is broad and slow near the end of its path 
compared to the relatively narrow and fast-flowing character near its origin. As a result, the 
North Pacific current (it carries a variety of local names) has negligible effect on the intensity or 
direction of storm waves reaching the Pacific Coast.  

Pacific Coast tides are semidiurnal (two highs per day) and have a range of about 6 feet in the 
south increasing to about 9 feet in the north. 

The Pacific Coast, on the eastern rim of a very long wave-generating fetch, is in the path of the 
westerly winds that dominate the weather in the Northern Temperate Zone. This results in swell 
and storm waves with very long periods, greater than 20 seconds in major storms. Antarctic-
generated swell, with a number of potential great circle paths, results in low southern swell on 
the Pacific Coast throughout the year, most obvious during the summer when northern 
hemisphere waves are at a minimum.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The dominant storm waves result from winter storms initiated south of the Aleutian chain. The 
fetch is often more than 600 miles, such that wave height and period are controlled by wind 
speed and duration. Because these storm paths are at a low angle to the general coastline trend, 
the wave energy impacting a particular location is highly variable. In general, these winter 
storms produce the highest waves in the northwest and the lowest in the Southern California 
Bight, which is protected by the abrupt coastal direction change at Point Conception and the 
offshore islands. Thus, the typical La Niña conditions (intervals between El Niños) provide low 
southern swell in summer with occasional local storms and a series of major wave events with 
long peak periods during the winter months (December through March or April.) 

The El Niño of 1982-83, the strongest such global climate oscillation in recorded history, 
resulted in several record-breaking storm wave events, extensive structural damage, and severe 
erosion (Seymour et al., 1984). During El Niño episodes, for intervals of a year or two, the trade 
winds normally blowing towards the west near the equator weaken or reverse. This causes a slow 
sloshing of the Pacific Ocean towards the east and an increase in local sea level that can be as 
great as 1.5 feet. More significantly, a series of winter storms are spawned north of the Hawaiian 
Islands with paths directed towards the Pacific Coast. The 1982-83 storms approached the 
Southern California Bight from almost exactly west, resulting in extreme flooding and wave 
impact damage on this coast and slightly lower waves impacting the Northwest. The El Niño of 
1997-98, steered on a more northerly track by continental high pressure areas, resulted in larger 
waves in the Northwest than in Southern California (Komar, 1998). The largest waves recorded 
off Southern California occurred in a La Niña year resulting from a very tight and intense storm 
initiated close to the coast in January 1988, which moved rapidly onshore (Shore and Beach, 
1989). The largest waves recorded off the North Pacific Coast in the last century also occurred in 
a La Niña interval (Allen and Komar, 2000). Major storms along the Pacific Coast, regardless of 
the wave generation area, typically persist for 3 to 4 days. 

Exposure to long waves generated anywhere in the Pacific Ocean yields the potential for tsunami 
impacts anywhere on the Pacific Coast; however, much of the seacoast is protected from 
extensive tsunami flooding by cliffs, steep coastal slopes, or deep water very close to shore. The 
magnitude of the amplification at the shoreline of the modest deep water tsunami wave heights is 
dictated by local bathymetry. Flooding risk from tsunamis is highly variable along the coast. One 
such susceptible location, Crescent City, in Northern California, suffered substantial damage in 
1964 from a tsunami initiated by an earthquake in Alaska (Kanamori, 1970). 

The Pacific Coast can be divided into two rainfall regimes. North of Monterey Bay, precipitation 
is greater and snow accumulation is heavy and reliable on inland mountain peaks, such that 
rivers flow year-round and spring floods are common. South of this point, rainfall is restricted to 
the winter months and declines in magnitude with reduced latitude. Rivers flow only in the 
winter and flooding is highly episodic. Except at San Francisco Bay, all of the Pacific Coast 
rivers discharge directly into the Pacific Ocean. Because the sediment load-carrying capacity is 
strongly related to both rainfall in the watershed and flooding intensity in the river system 
(Inman and Jenkins, 1999), the supply of sand to the coastline grades from a maximum in the 
north to a minimum in the south. The combination of this sand supply condition, the varying 
coastal geology, and the north-south gradient in wave energy levels results in very different 
beach configurations in the two rainfall provinces.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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North of Monterey, beaches are found in the lowered valleys at the mouths of streams or rivers 
that flow year-round. The sizes of the accompanying spits are related to the sediment capacity of 
the streams. South of Monterey Bay and extending to Point Conception, a series of beaches and 
accompanying dune fields exist as large (10-15 miles long) crescentic bays anchored on the north 
by large rocky headlands. Beginning at Point Conception and continuing south and east to the 
border with Mexico are a series of more or less continuous beaches, broken into littoral cells by 
rocky headlands (such as Palos Verdes, Fermin, Dana and La Jolla points), most in the order of 
60 miles in length (Inman and Frautschy, 1966). Thus, the vast majority of the sandy beaches on 
the Pacific Coast are found in a region that is slightly more than 20% of the total coastline. Their 
existence in the area with the lowest potential for delivering sand to the coastline owes entirely to 
the reduced incident wave energy related to latitude and to the substantial wave barriers provided 
by Point Conception and the offshore islands. 

Relevant to FEMA FISs, the dominant coastal flood-related hazards differ substantially for the 
Pacific Coast from those on the Atlantic and Gulf coasts. Whereas the dominant source of coastal 
hazards on the Atlantic and Gulf coasts is associated with large storm surge (up to 20+ feet) 
caused by high wind stresses over broad and shallow continental shelves, the narrow continental 
shelves of the Pacific Coast preclude surges greater than a few feet. Here, however, large waves 
with long periods can cause both static and oscillating elevation of the water levels at the shore. 
The combination is referred to as “wave runup”. The oscillating component of wave runup can 
have periods from tens of seconds to several minutes. Wave runup and the energy of large 
breaking waves contribute to coastal hazards and can cause significant beach erosion and 
structural damage. Because Pacific storms often result in large rainfalls, coastal and riverine 
flooding can combine to increase flood hazards near river mouths. 

Characteristics of sheltered waters along the Pacific Coast differ from the Atlantic and Gulf 
coasts. For example, much of the Atlantic and Gulf coasts are characterized by barrier islands, 
while few barrier islands exist on the Pacific Coast. Also, while 80 to 90% of the Atlantic and 
Gulf coast shorelines are marshes fringing sheltered waters, less than 20% of the Pacific Coast 
consists of marsh lands and these are concentrated in lagoons and bays (CEM, 2003). More 
specific characteristics also differ between the coasts. For example, the inner bars of Pacific 
Coast inlets are less pronounced than those at Atlantic and Gulf coast inlets (O’Brien, 1976).  

Sheltered waters in the State of Washington are predominantly associated with the straits, 
passages, channels, and islands of Puget Sound. Farther south along the open coast, the large 
river estuaries of Grays Harbor and Willapa Bay provide sheltered water conditions with jettied 
and natural inlets. At the Washington and Oregon state border, the Columbia River forms the 
largest river estuary along the Pacific Coast. Sheltered waters along the coast of Oregon are 
limited to isolated bays and estuaries associated with rivers flowing out of the Coast Range.  

The coastline of Northern California presents more isolated sheltered water areas than the 
Oregon Coast, with Humboldt Bay as the most significant sheltered water body in this area. The 
largest sheltered water body in California is the San Francisco Bay. This bay is actually a series 
of bays, with San Francisco Bay oriented to the south and east of San Francisco, and San Pablo, 
Suisun, Grizzly, and Honker bays to the north and east and confluencing with the Sacramento 
and San Joaquin rivers. A series of open embayments characterize the Southern California Coast, 
the largest of these include Monterey and Santa Monica bays. In the vicinity of Santa Barbara 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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and Los Angeles, a series of large offshore islands provide sheltering effects within the Santa 
Barbara Channel and Passage, the San Pedro Channel, and the Gulf of Santa Catalina. At the 
Mexican border, Mission and San Diego bays represent the last major sheltered water bodies 
along the Pacific Coast. 

Although this version of guidance for the Pacific Coast does not specifically address Alaska and 
the Pacific Islands, the physical setting and coastal flooding processes in sheltered water areas 
are generally similar, with Alaskan waters further characterized by deep fjords, passages, and 
inland waterways, and Pacific Island waters by offshore reefs and islands. 

D.4.1.2 Pacific Coast Flood Insurance Studies 

This subsection briefly introduces Pacific Coast FISs through a discussion of general study 
considerations, including special considerations for sheltered waters and unique study conditions. 
Descriptions of typical study scoping activities, hazard zone definitions, and study reporting 
requirements are also provided. Additional information on flood hazard zone mapping and study 
documentation is provided in Sections D.4.9 and D.4.10, respectively. 

D.4.1.2.1 Study Scoping 

Study scoping is defined as the process of determining the extent of a particular coastal FIS and 
defining the fundamental methodologies to be used in completing the study. As used in this 
subsection, this process includes two major tasks.  

The first task is designed to assess the need for flood hazard mapping for communities and to 
assign priorities. FEMA has implemented the use of an automated study scoping tool as a 
module in the Watershed Information SystEm (WISE®) software package to assist Mapping 
Partners in conducting study scoping. This system provides a consistent methodology for 
producing a database of information and associated shapefiles that can be used to assess mapping 
needs. The module can be used to produce reports and maps for community scoping meetings, 
and to interactively revise and prioritize study reaches during the meetings. The module’s 
ranking tools can be used to assign ranking and funds to community requests and to 
geographically display the results. The Mapping Partner shall consult with the FEMA study 
representative to define the appropriate use of the WISE scoping module for a particular study 
area, including review of previous scoping efforts. 

The second task involves determining of general study methodologies based on study area 
setting, morphology, and coastal processes. This step also includes practical considerations of 
data availability and data collection needs, as well as study time and budget requirements. 
Sections D.4.2 and D.4.3 on study methodology and analysis methods shall be consulted by 
Mapping Partners to determine which methods are appropriate for a particular coastal study 
setting and their general requirements for data and flooding analysis. In some complex study 
areas, a scoping phase of the coastal FIS may be needed to determine the availability of data and 
define a study methodology that combines a number of analysis methods and mapping 
procedures.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The following general procedures shall be followed for scoping the study methodology: 

1. Define the objectives of the study using the scoping module of WISE, information from 
the communities, and information from the FEMA study representative. 

2. Review prior flood studies at the site or in the vicinity.  

3. Review the study area setting exposure and shoreline morphology. 

4. Make an initial assessment of the probable types and extent of hazard zones in the study 
area. 

5. Identify subregions and reaches based on onshore conditions (e.g., shore geometry, 
structures), nearshore conditions (e.g., local exposure, profile morphology), and offshore 
conditions (e.g., depth contours, geometry of sheltered waters). 

6. Define potentially applicable study methodologies using Sections D.4.2 and D.4.3 as 
guidance. 

7. Determine data requirements and data availability to support various analysis methods. 

8. Assess the probable study methods in terms of level of complexity and probable accuracy 
of results – in general, the simplest methodology that provides reliable results shall be 
chosen. Incremental benefits of more sophisticated or detailed analysis may be assessed 
in this step.  

9. Refine selection of analysis methods based on data requirements and reliability to 
synthesize an overall study methodology that effectively combines multiple analysis 
methods. For some studies, alternatives to the methods described in this section may be 
required to address specific situations. 

10. Confirm that the study methodology is adequate to support development of anticipated 
flood hazard zones and produce required mapping. 

11. Estimate time and budget requirements. 

12. Adjust study extent, data collection, analysis methods, or overall methodology, if 
necessary, to meet study time and budget constraints. 

Some flexibility is desirable in selecting study methodologies with respect to the procedures 
defined in these guidelines. Overarching considerations in selecting study methodologies shall 
include a basis in physical processes and quality-assured data, use of technically reliable and 
current analysis methods, reproducibility using standard engineering methods, verification of 
results using sensitivity tests and simple checks, and consistency with this appendix and other 
FEMA guidance.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.1.2.2 Regional vs. Local Studies  

Flood insurance studies have usually been performed for a single political jurisdiction, most 
commonly a county, with the FISs and Flood Insurance Rate Maps (FIRMs) being specifically 
developed for that community. Adjacent communities have been addressed only insofar as 
necessary to ensure that Base Flood Elevations (BFEs) match at the study community 
boundaries. The hydrologic and hydraulic efforts have also typically stopped at the community 
boundaries, or have extended only so far beyond them as to encompass complete hydrologic 
units, such as drainage basins, which are necessary to determine conditions within the study 
community. 

This local study approach has been followed, in part, due to the demanding computational effort 
necessary to encompass large regions within the analysis. For example, storm surge calculations 
require large computational grids, which in turn require large computer capacity and long 
execution time. To model more than a limited coastal region was difficult or impossible with the 
computer capabilities of only a few years ago. Similarly, ocean wave simulations have been 
restricted to limited zones in past studies. Although this community-by-community approach 
proved tractable, it also introduces some compromise into the studies. For example, a long length 
of coast that is simulated by breaking it into small sections means that boundary conditions must 
be specified for each segment, with some probable loss in both efficiency and accuracy. 

A second compromise in local studies is that different Mapping Partners may make different 
assumptions that lead to differences between adjacent studies. Furthermore, not all Mapping 
Partners have the necessary tools and experience to perform some types of coastal flooding 
analyses.  

The idea of regional studies is to perform large-scale regional analyses for certain portions of the 
engineering tasks needed in a community study and to make these analyses available as input to 
the local studies. For example, Section D.4.4 of these guidelines describes large regional 
databases (such as the Global Reanalysis of Ocean Waves [GROW] data) of wave hindcast data. 
These data can be transformed to the nearshore area, just outside the surf zone, as part of a 
regional study effort covering a very large portion of the Pacific Coast, using a single, consistent, 
state-of-the-art methodology. The advent of modern computational abilities makes these regional 
efforts feasible and more cost-effective than community-by-community repetition of a similar 
effort. 

Regional studies can be implemented to varying degrees. Regional studies need not be as large as 
an entire coastline or a statewide analysis, but instead might cover a small number of counties. 
This would be the case if there is a physical characteristic of a region that makes it logical to 
treat it as a unit, instead of breaking it up into smaller areas. For example, wave studies might be 
accomplished regionally according to directional exposure, island sheltering, breadth of shelf, or 
other physical factors. Similarly, tsunami analysis might be done by region according to large-
scale tectonic considerations. In a general way, processes that originate in the far field – such as 
incident waves and tsunamis – are candidates for regional analysis because a single coherent 
source might affect a large coastal reach. In an event-selection analysis, the selected event might 
be adopted regionally, controlling behavior within a multi-community basin such as a large 
sound. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The extent to which regional studies, perhaps focused on particular coastal processes, are 
available and can be used in local FISs depends on planning and implementation of these studies 
by FEMA. The Mapping Partner shall consult with FEMA study representatives during the study 
scoping to determine if relevant regional information or analysis is available and should be 
incorporated into the study methodology.  

D.4.1.2.3 Sheltered Waters  

Generally accepted definition for “sheltered waters”, which are taken here to include inland 
waters, enclosed basins, fetch-limited waters, and low-energy beaches, does not exist (Jackson et 
al., 2002). For the purposes of these guidelines, “sheltered” is assumed to imply a significant 
sheltering effect on the inland propagation of storm surge, waves, and wind by land masses and 
vegetation. “Sheltered waters” are water bodies or regions that experience diminished forces 
from wind and/or wave action relative to the open coast due to the presence of physical barriers, 
both natural and human, either on land or under water. 

Sheltered water areas are exposed to the same flood-causing processes as are open coastlines 
(high winds, wave setup, runup, and overtopping), but sheltering effects reduce the wave energy 
and flood potential. The Mapping Partner shall evaluate these potential sheltering effects at both 
a regional scale and at a local site scale. 

At a regional scale, wind-generated waves in sheltered water areas are highly dependent on the 
shape and orientation of the surrounding terrain to prevailing wind directions. Wave generation 
and transformation in sheltered waters are usually limited by the open water fetch distance, 
complex bathymetry, and often the presence of in-water and shoreline coastal structures. Other 
processes, such as the effects of flood discharges from rivers, can modify local tidal and storm 
surge elevations, and relatively strong tidal and/or fluvial currents can combine to create tidal 
and hydrodynamic conditions only found in sheltered water areas.  

Bays and estuaries often display significant spatial variability in tidal still water elevations. For 
example, South San Francisco Bay often exhibits a standing wave with nearly twice the tide 
range of the central bay and an elevated mean tide and high water elevation compared to the 
open coast. San Pablo and Suisun bays, to the north and extending into the Sacramento-San 
Joaquin Delta area, display a progressively muted tidal range and lower elevated mean tide. 
These effects are the result of the combined effects of complex tidal hydraulics, residual currents, 
local winds, and river runoff. Oceanic storm surge can also be modified in estuaries, with surge 
heights sometimes uniformly additive to local tidal datums throughout an estuary, or amplified or 
muted within a given region of a large estuary.  

The Mapping Partner shall review bathymetric and topographic maps and aerial photographs, 
and make field observations to determine if a coastal flood study site is located within sheltered 
waters and to assess the degree of sheltering from swell, waves, and wind. The Mapping Partner 
shall investigate local site scale features contributing to sheltering from wind and waves and 
affecting flooding at a study site. It is important to note that sheltered water characteristics and 
processes viewed at a regional scale may be different at a local scale due to site-specific controls 
(Jackson and Nordstrom, 1992). In general, more detailed examination of local conditions will be 
required in sheltered waters than on the open coast. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Based on map observations of bathymetry and terrain, the extent of sheltered water areas can be 
approximately delineated. A rule of thumb for estimating a wind sheltering effect is to assume 
wind speeds can be blocked if the ratio U/hm is less than 0.1, where U is wind speed and hm is the 
height of the land barrier, in consistent units (CEM, 2003). For example, wind speeds up to 80 
mph may be blocked by a land mass 800 feet high. This disruption of the wind creates a 
boundary layer effect, which can be roughly estimated to extend in the downwind direction a 
distance approximately 30 times the height of the land mass (CEM, 2003), or for this example, 
about 4 miles. Mapping Partners shall evaluate the terrain surrounding a flood study site, 
together with the seasonal direction of local storm winds. 

General wave transformation conditions within a sheltered water body may be inferred from 
wave patterns observed on vertical aerial photographs. During field reconnaissance, the Mapping 
Partner shall make field observations to identify conditions that affect selection of a study 
approach. Jackson et al. (2002) have identified characteristics of sheltered water shorelines that 
may be useful as a guide for field reconnaissance. 

The Mapping Partner shall define a general approach to a sheltered water study at the scoping 
phase of the project. Because sheltered water areas experience the same flood-causing processes 
as open coast areas, guidance for performing coastal flood studies in sheltered waters is 
integrated throughout the remainder of these guidelines. Where procedures apply specifically to 
sheltered waters, they are identified in the individual subsections.  

Beyond the initial effort to determine if a study site is located within a sheltered water area, as 
described above, a general approach to sheltered water studies shall address the following topics: 

• Topography/Bathymetry: The Mapping Partner shall obtain backshore topography to 
define hazard zones, obtain nearshore bathymetry to define beach profiles, and define the 
geometry (size and volume) of the sheltered water body to evaluate hydrodynamic 
conditions. Detailed bathymetric data will likely be required in tidal inlets to assess their 
hydrodynamic characteristics, which may control the magnitude and timing of flood 
components, such as tidal still water levels (SWLs) and wave propagation. 

• Wind: The climate in sheltered waters is dependent on localized wind conditions, and 
wave data are typically unavailable at suitable resolution. The study approach will 
typically focus more on the identification of appropriate wind data sources rather than 
wave data (as may be relied upon for open coast studies). Accordingly, the Mapping 
Partner shall identify, obtain, and review available wind data from the nearest appropriate 
sources; augment long-term data from established weather stations with available short-
term data from local governments, industries, or private landowners to verify local wind 
conditions; and define characteristics related to fundamental wind parameters, such as 
wind source, seasonal direction, duration, magnitude, and vertical velocity distribution. 

• Tide and Currents: The Mapping Partner shall identify, obtain, and review available 
tide gage data to define fundamental tide characteristics, such as astronomical tide, storm 
surge, tidal amplification, wind setup, and tidal and fluvial currents. Long-term data from 
established tide stations with observed tides may need to be augmented with data from 
other sources. In some cases, estimates of natural tidal datums from landscape features, 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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such as mud and vegetation lines, may provide verification of estimated extremal tide 
elevations.  

• Waves: The Mapping Partner shall obtain available data on observed wave height, wave 
length, and wave period, and shall assess probable extreme wave conditions given 
potential bathymetric and vegetative effects on wave energy.  

These general topics can define the forcing functions, boundary conditions, and constraints 
necessary for analytical and/or numerical modeling approaches to flood determination. Sheltered 
water physical processes can be complex and may require detailed numerical modeling to define 
adequately the flood hazards. Given the availability and relative ease of use of modern numerical 
models, the Mapping Partner shall consider a numerical modeling approach to a sheltered water 
study where simpler methods do not appear reliable. Model selection shall be made with 
consideration of the level of complexity of physical processes, data available for calibration, 
flood risk, and available study budget. If the physical scale of the sheltered water coastal flood 
study is small and the geographic setting and physical processes are relatively well understood 
and simple, the Mapping Partner shall confer with the FEMA study representative about the 
feasibility of using simplified analytical approaches instead of numerical models. A limited 
analytical approach may also be appropriate to obtain a quick assessment of physical conditions 
and/or to provide a check of the results from a numerical modeling approach. 

D.4.1.2.4 Tsunami Hazards 

Much of the Pacific Coast and the sheltered waters along the Pacific Coast are subject to tsunami 
hazards. The most recent major tsunami to affect the Pacific Coast was the 1964 Great Alaskan 
Tsunami that affected California, Oregon, and Alaska. Tsunamis are very long waves of small 
steepness generated by impulsive geophysical events such as earthquakes and landslides. This 
version of the Pacific Coast guidelines includes a placeholder (Section D.4.8) for future FEMA 
guidance on tsunami hazards. The Mapping Partner shall confer with the FEMA study 
representative to discuss treatment of tsunami hazards in a particular study area.  

D.4.1.2.5  Debris 

Debris entrained in tidal floodwaters and cast inland by wave runup and overtopping is a 
common phenomenon on parts of the Pacific Coast. Natural debris consists of floating woody 
debris, such as drift logs, branches, cut firewood, and other natural floatable materials. Masses of 
drift logs covering large portions of open water have been observed during flood events along 
the Oregon Coast. Wave-cast beach sediments, such as cobbles and gravel, also constitute natural 
debris. Debris from human sources may originate from flood damage. This debris may include 
broken pieces of shore revetment cast inland by extreme wave runup, or floatable materials, such 
as construction materials, building materials, and home furnishings. 

Debris hazards depend on the beach type and configuration, debris sources, the inland extent of 
wave overtopping, the proximity of insured structures to the shoreline, and the height of the 
structures above the BFE. At the present time, debris hazards are not explicitly included in 
FEMA flood hazard zones. However, the Mapping Partner shall note significant debris hazards 
in a study area and confer with the FEMA study representative, so relevant information may be 
shared with community floodplain managers.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.1.2.6  Beach Nourishment and Constructed Dunes 

Current FEMA policy is not to consider the effects of beach nourishment projects in flood hazard 
mapping. Beach nourishment, in effect, is treated as a temporary shoreline disturbance, or an 
“uncertified” coastal structure (a structure not capable of withstanding the base flood event 
and/or a structure without an approved maintenance plan).  

However, given that beach nourishment is being used by more and more communities in 
response to coastal erosion, it is becoming increasingly difficult to obtain recent topographic data 
that do not reflect prior beach nourishment. In many communities, beach nourishment has been 
ongoing for a decade or more (predating the NFIP in some cases). 

Mapping Partners should be aware that flood hazard mapping of coastal areas could potentially 
be affected by various types of beach nourishment, and that current topographic data may reflect 
beach nourishment efforts.  

The Mapping Partner shall determine whether beach nourishment affects a study area, research 
any beach nourishment projects identified, identify any available data that would allow the 
performance of the beach nourishment project(s) to be assessed, and determine whether the 
beach nourishment is likely to persist and to have an effect on flood hazard mapping. If the beach 
nourishment is determined likely to have an effect on flood hazard zones or BFEs, the Mapping 
Partner shall contact the FEMA study representative to determine whether an exception to 
current FEMA policy should be considered. 

The presence of constructed dunes in the study area may raise similar questions. For all practical 
purposes, the Mapping Partner shall treat constructed or reconstructed dunes (referred to as 
“artificial” dunes by FEMA) as natural dunes would be treated during the FIS. Note, however, 
the condition of the artificial dune may alter this procedure; NFIP regulations [44 CFR 65.11(a)] 
do not allow an artificial dune to be considered an effective barrier to coastal flooding unless it 
has well-established, longstanding vegetative cover, regardless of its size and cross-section.  

D.4.1.2.7 Hazard Zone Definitions and Use by FEMA  

Coastal flood hazard zones shown on the FIRM are generally divided into three categories: 1) 
VE zone (the coastal high hazard area); 2) AE zone (and other A zones, where flood hazards are 
not as severe as in VE zones); and 3) X zone (which is only subject to flooding by floods more 
severe than the 1% annual chance flood). AH zone and AO zone designations are used in special 
situations. 

Delineation of flood hazard zones involves a set of analyses (waves, water levels, wave effects, 
and shoreline response) combined into a methodology for a particular study area.  The criteria for 
establishing flood hazard zones are briefly described below. The reader should refer to 
subsequent sections for a detailed description of the mapping parameters and their derivation.    

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.1.2.7.1 VE Zone 

VE Zones are coastal high hazard areas where wave action and/or high-velocity water can cause 
structural damage during the 1% annual chance flood. VE Zones are identified using one or more 
of the following criteria for the 1% flood conditions:  

1. The wave runup zone occurs where the (eroded) ground profile is 3.0 feet or more below 
the TWL.  

2. The wave overtopping splash zone is the area landward of the crest of an overtopped 
barrier, in cases where the potential wave runup exceeds the barrier crest elevation by 3.0 
feet or more(∆R>3.0 feet). The landward extent is defined by yG,outer (Section D.4.5.2) 

3. The high-velocity flow zone is landward of the overtopping splash zone (or area on a 
sloping beach or other shore type), where the product of depth of flow times the flood 
velocity squared (hv2) is greater than or equal to 200 ft3/sec2.  

4. The breaking wave height zone occurs where 3-foot or greater wave heights could occur 
(this is the area where the wave crest profile is 2.1 feet or more above the static water 
elevation). 

5. The primary frontal dune zone, as defined in 44 CFR Section 59.1 of the National Flood 
Insurance Program (NFIP) regulations. 

D.4.1.2.7.2 AE Zone 

AE Zones are areas of inundation by the 1% annual chance flood, including areas with TWL less 
than 3.0 feet above the ground, or areas with wave heights less than 3.0 feet. These areas are also 
subdivided into elevation zones with BFEs assigned. The AE Zone generally will extend inland 
to the limit of the 1% annual chance flood still water elevation or TWL, whichever dominates. 

D.4.1.2.7.3 AH Zone 

AH Zones are areas of shallow flooding or ponding with water depths generally limited to 1.0 to 
3.0 feet. These areas are usually not subdivided, and a BFE is assigned. 

D.4.1.2.7.4 AO Zone 

AO Zones are areas of sheet-flow shallow flooding where the product of hv2 is less than 200 
ft3/sec2, or where the potential runup is less than 3.0 feet above an overtopped barrier crest 
(∆R<3.0 feet). Sheet flow in these areas will either flow into another flooding source (AE Zone), 
result in ponding (AH Zone), or deteriorate because of ground friction and energy losses to 
merge into the X Zone. AO areas are designated with 1-, 2-, or 3-foot depths of flooding.  

D.4.1.2.7.5 X Zone 

X Zones are areas above the 1% annual chance flood level. On the FIRM, a shaded X Zone area 
is inundated by the 0.2% annual chance flood, and an unshaded X Zone area is above the 0.2% 
annual chance flood. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Detailed guidance on hazard zone mapping is provided in Section D.4.9. 

D.4.1.2.8 Reporting Requirements 

Reporting requirements for coastal FISs shall follow guidance provided in Appendix M for the 
preparation of a Technical Support Data Notebook (TSDN). The TSDN shall consist of the 
following four major sections, which are more specifically described in Appendix M:  

• General documentation;  
• Engineering analyses; 
• Mapping information; and 
• Miscellaneous reference materials.  

In general, the material compiled for these sections of a coastal FIS TSDN will be similar to a 
riverine study, with the exception of the engineering analyses section. The engineering analyses 
section of a TSDN for a coastal study shall be formatted to reflect the required intermediate data 
submissions, together with the subsequent correspondence from FEMA and any other subsequent 
documentation related to a particular intermediate data submission. The purpose and content of 
individual intermediate data submissions are briefly described below. 

Due to the differences between coastal and riverine flood studies and the complexity of coastal 
studies, intermediate data submissions are required from the Mapping Partner. Intermediate data 
submissions provide defined milestones in the coastal flood study process where independent 
reviews are conducted to confirm that the methods and findings are acceptable to FEMA. The 
primary purpose of this submission and review process is to minimize revisions to analysis 
methods late in the study.  

Coastal analyses involving hydrodynamic modeling for development of water levels and wave 
processes (transformation, refraction, and diffraction) are highly specialized and complex. 
Changes or corrections to water-level and wave analyses after they have been used in analysis of 
shoreline processes and in flood hazard zone mapping are expensive and time consuming. 
Therefore, FEMA has established intermediate data submission requirements to facilitate review 
of analysis methods and results at appropriate milestones. The Mapping Partner shall submit the 
data for FEMA review in accordance with the sequence discussed below.  

D.4.1.2.8.1 Intermediate Submission No. 1 – Scoping and Data Review 

In this phase of reporting, the Mapping Partner provides the background information on the 
study setting and available data relevant to the study area. Any new data needed for the detailed 
coastal analyses in the following phases (offshore waves and water levels and nearshore 
hydraulics) should be identified in this phase. The study should not proceed until all of the 
information is available and incorporated in the scoping document for approval.  

• Data Review: If available at this stage, data may include survey control data, 
topographic data from aerial photography, LIght Detection and Ranging (LIDAR), and 
field surveys, and bathymetric survey data. Data shall include available tidal elevation, 
wind speed, and tidal current data; evaluation of local and regional tide gage records; 
selection of wind stations in the vicinity of the study area that can provide reasonable 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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length of record, hourly values, and peak gusts to help estimate extreme wind statistics; 
available tidal current data where currents have a significant influence on coastal flooding 
potential, including effects on wave refraction and wind wave development; and available 
historical data (measured and anecdotal) on past coastal flood events.  

• Site Reconnaissance: The results of the site reconnaissance shall be documented to 
characterize exposure and coastal morphology; inventory existing coastal structures and 
levees (including buried coastal structures); identify shorelines where beach nourishment 
has occurred and could influence coastal flooding analyses and mapping; characterize 
coastal vegetation where it may influence coastal flooding analyses and mapping; locate 
analysis transects for subsequent field survey and ultimate use in wave calculations; and 
identify representative reaches with similar exposure, morphology, and features. 

• Technical Approach: The submission shall describe the technical approach to analysis 
of coastal processes and mapping flood hazards in the various settings and shoreline 
morphologies present in the study area. 

D.4.1.2.8.2 Intermediate Submission No. 2 – Offshore Water Levels and Waves 

This submission shall be completed before operational modeling runs or computations are 
performed to transform waves in the shoaling zone and compute wave runup, setup, and 
overtopping. This submission shall document the selection of offshore water level and wave 
storm events from data and hindcasts; summarize offshore wave characteristics and statistics; 
present extremal assessments of wind and wave data; and define input data for restricted fetch 
analyses. 

D.4.1.2.8.3 Intermediate Submission No. 3 – Nearshore Hydraulics 

This submission shall be completed before flood hazard mapping is conducted and document the 
analyses related to: water level and wave analyses to develop base (1% annual chance) flood 
conditions at the shoreline, including wave modeling for transformation, refraction, diffraction, 
and shoaling; wave runup, setup, and overtopping assessments in the surf zone; coastal structure 
and erosion analyses; and inland and overland water level and wave analyses. This submission 
should include data on control, field, aerial, and bathymetric surveys. It should also include 
validation of results with available historical flood data, and discussion of modeling results by 
transect (as needed for interpretation of flood hazards). Where riverine sources influence coastal 
flood hazard zones in the study area, this submission shall include analysis of riverine flood 
stages and frequencies.  

D.4.1.2.8.4 Intermediate Submission No.4 – Hazard Mapping  

This submission will be prepared at the completion of draft delineations of flood hazard zones. 
The following information shall be submitted to describe the use of analysis results to identify 
and delineate flood hazard zones: 

• Flood Hazard Zone Limit Identification: Discuss the determination of hazard zone 
limits and BFEs resulting from the wave runup analyses and wave overtopping rates 
determined during the coastal hydraulics phase. Describe the results of coastal flood 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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mapping at shoreline reaches protected by coastal structures (credited or failed). Provide 
discussion of the values used to define thresholds for the horizontal and vertical limits of 
the VE zone for wave runup, wave overtopping, and splash zones (at structures). Provide 
a table of results as a summary by transect of the still water elevation, wave setup, 
maximum wave crest elevation, wave runup elevations, overtopping rates, maximum 
shoreward VE zone elevations, and landward VE zone elevations. 

• Flood Hazard Zone Map Boundary Delineation: Draft work maps for the study area 
showing all flood hazard zone limits identified along the transects resulting from the 
detailed analyses and transferred to the topographic work maps. Describe any engineering 
judgment used to interpolate and delineate hazard zones in between transects including 
land features that might affect flood hazards, changes in contours, the lateral extent of 
coastal structures. Provide detailed documentation and technical justification of any 
adjustments in the hazard zone mapping due to observed historical flood data and/or 
damages in the study area. 

The Mapping Partner will receive review comments within 30 days of the receipt of each data 
submission. The Mapping Partner shall include the interim review in the project schedule and 
shall plan the study work to minimize the effect of the reviews on the overall schedule for FIS 
and DFIRM production. Additional information on reporting requirements is provided in Section 
D.4.10. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.2 Study Methodology  

This section provides guidance for selecting and combining specific technical methods and data 
into a study methodology. The selection of methods depends upon the coastal setting and 
available data. 
 
D.4.2.1 Overview 

In this appendix, “methods” means the individual techniques used to make specific 
computations. “Study methodology” is the combination of appropriate methods and data 
necessary to develop flood hazard zones for depiction on a Flood Insurance Rate Map (FIRM). A 
variety of technical methods are presented in Sections D.4.3 through D.4.7 of this appendix. In 
most cases, several methods may be applicable to a specific coastal setting. The objective of this 
section is to provide guidance for developing an appropriate methodology based on the coastal 
setting and available data. 

A significant portion of Appendix D is devoted to the presentation of technical methods. It is 
important to remember that the objective of this document is to provide guidance necessary to 
develop flood hazard zones and maps. The level of technical analysis should remain consistent 
with this objective. It is only necessary to obtain data and conduct analyses that are required to 
accomplish this objective. Because there are often several methods available to conduct similar 
analyses, the Mapping Partner must choose methods that are technically consistent, are 
applicable for the study setting, use available data, and are appropriate for project resources.  

The recommended generalized study methodology is summarized below. To consider what data 
and technical methods are appropriate, begin onshore by identifying information that is required 
to develop the flood hazard zones and mapping. This involves identifying the physical processes 
that likely contribute to flood hazards in the study area, and their interaction with particular 
geomorphic settings. In some cases, this initial review will not resolve all of the questions related 
to coastal processes and hazard zones. However, the review should identify the data 
requirements for one or more methods that can be applied to make these determinations. For 
example, it may not be clear at the beginning of a study whether a particular coastal structure or 
levee will meet Federal Emergency Management Agency (FEMA) criteria. In this case, the data 
and methods needed to determine whether the structure will fail or not, and the data and methods 
needed to analyze the failed and in-place conditions, should be identified.  

After a review of probable hazards at the shoreline, progress offshore considering what data and 
analyses are then required at each level and for each setting within the study area to accomplish 
the previous onshore analysis step. This will establish the offshore limit of the data and 
computations necessary to conduct the analyses. In most cases, this limit will correspond to 
offshore conditions. Once the offshore data requirements for the study are established, bring the 
waves and other information back onshore to determine information to develop the hazard zones. 
In other words, the mapping needs are established by progressing from the hazard map to the 
offshore, but the analysis proceeds in the direction of the physics — from offshore to onshore.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Different data requirements are associated with different analysis methods. For example, if 
methods are based on the deep water unrefracted significant wave height and peak wave period, 
it is not necessary to examine the details of the spectrum. If it is not necessary to transform the 
waves across the surf zone, the surf zone bathymetry is not required for this method. More 
advanced methods generally require additional data.  

Figure D.4.2-1 summarizes the basic steps in selecting analysis methods. This logic may be 
applied to both the overall study (study methodology) and to selection of methods for each major 
coastal process to be analyzed in developing flood hazard zones. The basic logic begins with the 
definition of objectives, which should focus on development of flood hazard zones at an 
appropriate resolution and level of accuracy considering potential damages, inherent uncertainty 
in the analyses, schedule, and budget. The geomorphic setting is a key factor in identifying 
dominant physical processes that must be analyzed and the appropriate methods for analysis. 
Potential methods applicable to a given setting may have different data requirements, and the 
availability of data may influence the selection of methods. Once a methodology has been 
defined (combination of methods and data), the Mapping Partner must confirm that the 
methodology satisfies the study objectives, including time and budget constraints.  

 

Figure D.4.2-1. Study Methodology Development Considerations 

 
D.4.2.2 Setting 

The study area setting and hazard history will determine which methods and data are necessary 
and/or appropriate. Important considerations include the coastal exposure (open water or 
sheltered water), the shoreline morphology (e.g., dunes, bluffs, cliffs, etc.), and the shore 
conditions (topography, development, etc.). Consideration of each of these conditions frames the 
data requirements and the appropriate analysis methods.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

 D.4.2-3 Section D.4.2 

  
 

D.4.2.2.1 Open Coast and Sheltered Water 

A primary consideration is the exposure of the shoreline; either open coast or sheltered water. 
Open coast settings are exposed to the full influence of the Pacific Ocean and include processes 
such as sea, swell, astronomical tides, and El Niño. In sheltered water, the waves are primarily 
due to local processes, while on the open coast, waves may be generated by both local and 
distant weather conditions. On the open coast, the interrelationships among waves and water-
level processes may be quite complex. As a result, simultaneous measurements and/or hindcasts 
of these processes are recommended to avoid reconstructing the complex interrelationships. This 
is a key point for the Pacific Coast. Methodologies prescribed in Appendix D.4 recognize the 
complexity of describing the interactions between waves and water levels, and as such these 
processes are analyzed simultaneously in time as they naturally occur in nature.  

In sheltered water, the waves are typically generated by local weather, which simplifies the 
interrelationships. As a result, it may be possible to employ statistical or simulation techniques to 
analyze these processes. However, additional considerations in sheltered water such as tidal 
amplification, currents, and the effects of river inflows must be considered. While most methods 
for open coasts are also applicable for sheltered water, a number of special considerations for 
sheltered water exist.  

D.4.2.2.2 Shoreline Profile Settings 

The shoreline morphology determines which analysis tools are appropriate for estimating 
shoreline responses. The general shoreline settings on the Pacific Coast include: 1) sandy beach 
backed by low sand berm or high sand dune formations; 2) sandy beach backed by coastal 
development or shore protection structures; 3) cobble, gravel, shingle beach or mixed grain sized 
beach; 4) erodible coastal bluffs; 5) non-erodible coastal bluffs and cliffs; and 6) tidal flats and 
wetlands. Details of the specific methods for each setting are given in Section D.4.6.  

Figures D.4.2-2a, b summarize key considerations for each of these six settings. In all settings, 
the existing shoreline conditions must be determined. These are required to determine the present 
location of the shoreline, condition of structures, etc. For settings in which beach profile changes 
are computed (beach/dune and structures), the initial winter profile from which storm-induced 
changes are calculated must be determined. This initial profile is referred to as the most likely 
winter profile (MLWP). Profile changes are estimated with the appropriate model to yield an 
eroded profile. If the eroded profile results in dune breaching, structure failure, or bluff 
recession, then an adjusted final profile must be determined. Wave setup, runup, overtopping, 
and overland propagation are then determined for the final profile. These result are then used for 
mapping the flooding hazards.  

1. For a sandy beach backed by a low sand berm or high sand dune, the MLWP is the 
expected winter condition of the beach profile at the time when a large storm might 
occur. This is the initial profile condition from which beach changes associated with large 
storms are calculated. This is an important step because there are significant differences 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.2-2a. Shoreline Profile Setting Nos. 1 to 3 

  

 

 

Figure D.4.2-2b. Shoreline Profile Setting Nos. 4 to 6 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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between the summer and winter profile conditions. The changes are estimated using 
geometric profile response models to determine the eroded profile. Process-based 
models are an alternative means of estimating the profile changes. At present, process-
based models have not been adequately calibrated for Pacific Coast conditions, and are 
not recommended without site-specific calibration. If the dune is overtopped or 
breached, then the profile is adjusted by removing a portion of the dune. The runup 
(Ru), overtopping (OT), overland wave propagation (OLP), and possibly ponding are 
then calculated using this final profile.  

2. For a sandy beach backed by shore protection structures, the eroded profile is determined 
from data rather than a shoreline change model. The structure may cause local scour and 
the structure may fail. The final profile based on these processes is then examined for 
Ru/OT/OLP and possibly ponding.  

3. For a cobble beach, little analytical guidance is available because many of the cobble 
beaches on the Pacific Coast are mixed grain sizes and are difficult to model. As a result, 
observed profiles during large events are used as the basis for determining Ru/OT/OLP 
and possibly ponding.  

4. For erodible bluffs, the eroded winter beach profile is determined from measurements. 
The bluff recession is estimated with a bluff erosion model. The resulting profile is then 
used to determine the Ru/OT/OLP and possibly ponding.  

5. For non-erodible bluffs, the eroded winter beach profile is determined from 
measurements. This profile is then used to determine the Ru/OT/OLP and possibly 
ponding.  

6. For tidal flats and wetlands, it is assumed that there is no erosion over the timescale of a 
single storm. Therefore, Ru/OT/OLP are determined on the existing profile for high water 
level and storm conditions. 

D.4.2.3 Coastal Zones 

Figure D.4.2-3 shows the cross-shore divided into four zones. The offshore zone is the area 
influenced by waves and water levels that are not substantially influenced by bathymetry or 
topography. Dominant processes in this zone include swell, seas, astronomical tides, storm surge, 
and large-scale climatic perturbations such as El Niño. The shoaling zone is the area outside the 
surf zone where offshore conditions are transformed by interaction with bathymetry or 
topography. This includes refraction, diffraction, dissipation, and generation of waves. The surf 
zone is where waves break as they interact with the bottom. Dominant processes include wave 
setup, runup, overtopping, erosion, and interaction with structures. The backshore zone is the 
area that is outside the normal surf zone, but may be subject to inundation during coastal 
flooding events. This area is subject to development and is the critical area for determination of 
flood hazards.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.2-3. Coastal Zones 

Typical computations for a coastal Flood Insurance Study (FIS) progress from offshore through 
the shoaling and surf zones. The transformation of waves and the interaction of waves and 
corresponding water levels with the backshore zone are used to define hazard zones. The general 
parameters used for hazard zone mapping are water level (elevation and depth), water velocity, 
and the product of water depth and velocity squared. This last parameter is used as a threshold 
indicator for damage potential in areas of sheet flow overtopping.  

Figure D.4.2-4 shows the coastal processes as they are referenced to in the analysis methods 
given in Sections D.4.3 through D.4.7. Note that offshore does not necessarily mean deep water 
conditions. Offshore simply means outside the surf zone. If the offshore is not in deep water, 
then the offshore and shoaling zones are combined. Also, the determination of hazards is not 
restricted to the backshore. Depending on the type and magnitude of event, the flood hazard may 
also occur in the surf or other zones. 

Computations made in each zone use data from the preceding zone and pass the results to the 
next zone. Computations generally start in the offshore zone. Wave information is determined 
from measurements or hindcasts. Water levels are determined primarily from measurements. The 
resulting estimates for waves and water levels are then passed to the shoaling zone where wave 
transformations are determined. The offshore wave conditions are input to wave transformations, 
but the wave transformations do not influence the offshore wave conditions. Therefore, offshore 
wave conditions may be determined independently from the transformations.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.2-4. Coastal Zones and Processes 

In the shoaling zone, the offshore waves are transformed onshore to a water depth outside the 
breaker line. This requires information for the bathymetry and possibly other factors, such as 
dissipation over kelp beds, mud flats, or wetlands. Several of the surf zone analysis methods 
require unrefracted deep water wave conditions. After the waves have been transformed across 
the shoaling zone, the corresponding unrefracted deep water conditions may also be determined. 
These results are then passed on to the surf zone. Again, the surf zone results do not influence the 
wave transformations, so wave transformations may be determined independently of the surf 
zone. The structure of this appendix reflects this independence. Section D.4.4, Waves and Water 
Levels, includes processes that occur in the offshore and shoaling zones; these are offshore 
waves, water levels, and wave transformations.  

Surf zone computations use nearshore bathymetry and either the wave conditions determined 
outside the breaker line or the unrefracted deep water conditions. Setup, runup, overtopping, and 
erosion are estimated at the shoreline depending upon the specific shoreline conditions. These 
results are then passed to the backshore zone to determine flood hazards.  

In the backshore, information from the surf zone is combined with topography and land use type 
to calculate hazards and develop a hazard map. For most cases, the backshore does not influence 
the surf zone and the surf zone is independent of the backshore. However, it is possible that 
processes in the surf zone are not completely independent of processes in the backshore zone. 
For example, surface runoff during a storm can increase backshore flooding, but may also 
develop an ephemeral stream across the beach face that will impact surf zone processes. Unless 
site-specific conditions that violate this assumption exist, it is recommended that independence 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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be used in the analysis. This key assumption is invoked below to define the transition from 
analyses based on multiple events to an analysis based on a single event.  

D.4.2.4 Event and Response Analysis Considerations 

On the Atlantic and Gulf coasts, the 1% annual chance flood has typically been associated with a 
1% storm event condition defined offshore and transformed to the surf zone. Because increased 
wave heights and water levels are both associated with the same forcing event, typically a 
hurricane, this association is reasonable. However, on the Pacific Coast, waves may be 
associated with both local and distant storms; water levels are influenced by El Niño, setup, and 
tides; and low frequency oscillations in the surf zone significantly influence runup. As a result, 
no single mechanism is responsible for the 1% annual chance flood. Rather, a number of 
processes are occurring and the statistical interrelationships among these processes are not well 
defined. Therefore, statistical tools such as joint probability, Monte Carlo, and empirical 
simulation methods are difficult to apply. An alternative is to use measured or predicted wave 
conditions along with simultaneous measured or predicted water-level conditions. Bundling the 
physical processes together as they actually occur in nature eliminates the need to determine the 
statistical relationships among the various processes. The response in the surf zone and 
backshore to these simultaneous physical processes may then be determined, and the 1% annual 
chance flood characteristics are determined from the response statistics rather than the event 
statistics.  

An event corresponds to a set of time-dependent wave and water-level conditions taken as a 
paired data set with a specific duration. This differs from the concept of independently analyzing 
a 1% wave or 1% water level. When treated together, no statistical probability is assigned to 
either the waves or the water levels. Rather, a number of observed large events (i.e., high waves 
and water levels) are analyzed to determine a number of responses in the backshore zone each 
year. The largest response from each year is noted and then the annual maxima for the entire 
period of record are analyzed to determine the 1% annual chance flood response. This general 
methodology differs substantially from that typically used on the Atlantic and Gulf coasts.  

As noted above, the wave and water-level analysis for the offshore and shoaling zones in 
sheltered water may be treated differently than open water due to a smaller number of 
independent variables and/or lack of reliable wave data or hindcasts. However, the concept of 
using a set of conditions to define responses and performing statistical analysis on the responses 
may also be applied in sheltered water.  

The 1% response may be determined at the boundary of any one of the zones shown in Figure 
D.4.2-3. For example, a 1% annual chance combination of waves and water levels might be 
statistically determined in the offshore zone by examining the joint occurrence of waves and 
water levels. This condition could be transformed onshore, setup and runup estimated, and the 
flood hazard zone mapped. However, it is unlikely that this single combination of waves and 
water levels with a 1% annual chance in the offshore zone corresponds to the 1% annual chance 
flood hazard in the backshore zone. Other combinations of waves and water levels that have a 
lower probability of occurrence may result in higher levels of the flood hazard due to differing 
responses in the form of runup, setup, erosion, or coastal structure interaction in the backshore 
zone. These responses are dependent on variables such as wave period and event duration. The 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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1% annual chance flood is defined as the basis for hazard zone mapping by FEMA; thus, the 
response at the backshore is the condition of interest. Again, the mapping of the hazard is not 
restricted to the backshore, and under some circumstances may also occur in the surf zone or 
other zones.  

Although the response-based approach is reasonable theoretically, it may not be practical to 
include all coastal processes in the computations before statistical analysis in the backshore. This 
would require a very large set of computations with potentially significant spatial variation in 
controlling conditions and results. However, the further the response-based approach can 
practically be carried onshore, the better the estimate of the 1% annual chance flood hazard in 
the backshore zone. As a standard methodology, it is recommended that the 1% annual chance 
determination be made on total water level (TWL) elevations. If overtopping occurs, then the 
determination of the overtopping rate and overtopping volume should be made using the 1% 
runup and the associated storm. These are the most significant hydrodynamic parameters 
influencing flood hazards. This standard methodology may require modification where processes 
in the backshore (ponding, riverine flows, etc.) influence the flood hazards.  

Figure D.4.2-5 shows a cross-shore diagram of the transition from multiple storms to a single 
condition for the case of a dune-backed sand beach. Waves and simultaneous water levels are 
determined for multiple storms each year. Each of these storms is then transformed to the 
nearshore. Then, setup, runup, and dune recession are determined for each of the storms. The 
largest TWL elevation is selected from each year, and then an extreme value statistical analysis 
is conducted on the annual maxima from all years of the record to determine the 1% annual 
chance runup event. This single event is then used to determine the corresponding 1% 
overtopping rate and volume. These terms are then used to determine hazards. Hazard indicators 
include the water depth, velocity, and product of depth times velocity squared. 

 

Figure D.4.2-5. Transition from Multiple to Single Events 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.2.5 Selection of Events 

D.4.2.5.1 Open Coast 

Offshore wave conditions, as either measured data or hindcasts, are available for most of the 
open coast shorelines of the Pacific. It is recommended that these data be used for offshore wave 
conditions. Each storm year, the largest 10 to 20 storms from these data are selected for analysis. 
The water levels occurring at the time of each of the storms are determined from measurements 
or calculations. By examining the 10 to 20 largest storms each year, it is very probable that one 
of these, along with the associated water levels, captures the largest actual response for the year. 
The largest storms should be based on largest wave height and the largest resulting runup. The 
largest response for each year of the simulations (annual maximum) is used in an extreme value 
statistical analysis to determine the 1% annual chance flood response. Concerns about capturing 
the relevant storm each year may be addressed by analyzing more storms each year.  

D.4.2.5.2 Sheltered Waters 

For open coasts, wave conditions can be determined from existing data, either wave 
measurements or wave hindcasts. In sheltered waters, if these data are available, then analysis 
methods similar to open water coastlines are recommended. If these data are not available, wave 
information must be estimated through hindcasts. These hindcasts should be based on two-
dimensional (2-D) numerical models or using the parametric methods prescribed in the Coastal 
Engineering Manual (CEM) (USACE, 2003). Winds used in the hindcast model should 
correspond to the largest storms each year. The resulting waves are combined with water levels 
occurring at the same time to estimate the responses. The largest response for each year is 
selected and analyzed to determine the 1% annual chance flood response similar to the methods 
used in open waters.  

Conducting this type of analysis for a number of storms each year for a number of years requires 
substantial amounts of data and a significant computational effort to combine actual water levels 
with hindcast waves. It may not be practical or possible to conduct this number of computations. 
For these cases, joint probability methods may be used. In this approach, a limited set of wave 
and water-level conditions are used to estimate joint probabilities. A number of responses are 
then calculated based on the data from these distributions. The results are then analyzed to 
determine the 1% annual chance flood response.  

Sheltered waters are the only exposure setting in which joint probability methods are applicable. 
They are only to be used where data are not available or sufficient hindcasts cannot be conducted 
to capture the annual maximum response.  

D.4.2.5.3 1% Annual Chance Conditions 

The determination of the 1% annual chance flood hazards based on a 1% annual chance response 
at the shoreline (as opposed to estimation of 1% annual chance storm conditions offshore) 
provides a more direct connection between the actual causal events and the flooding response. 
However, as soon as the 1% annual chance response is statistically estimated through extemal 
analysis, the resulting flood parameters (e.g., elevation, velocity, depth, volume) are no longer 
coupled to the forcing physics.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The still water level (SWL) is the elevation of the free surface in the absence of waves and wave 
effects. The primary components are the astronomical tide, El Niño, and surge. The TWL is the 
SWL plus the wave effects. The primary wave effects are static setup, dynamic setup, and runup. 
The TWL is an important parameter for identifying coastal flood hazards because it is the 
primary term that identifies if overtopping will occur. Therefore, the TWL is the variable upon 
which the selection of the 1% conditions is based. However, the TWL is not the only important 
variable for determining flood hazards. Other variables include the profile change, the 
overtopping rate (q), and the overtopping volume (V). The determination of the 1% q and V 
somewhat complicates the analysis.  

The 1% TWL does not correspond to any single physical event. Rather, it is an extrapolation of 
the TWL conditions from the largest events because of the limited duration of the available data. 
If the TWL exceeds the backshore elevation, the overtopping rate and overtopping volume are 
also calculated. The TWL primarily depends on the water level, wave conditions, and the beach 
face or structure slope. The overtopping rate depends on these variables and the height of the 
dune or structure. The overtopping volume depends upon these variables and the duration of the 
overtopping event. In the 1% annual chance determinations, the 1% overtopping rate and 
overtopping volume are all assumed to be associated with the 1% TWL events. This may not 
always be the case. Mapping Partners may propose an alternative statistical approach for 
defining the 1% annual chance flood if this assumption is not appropriate for specific conditions.  

A similar concern may exist if multiple transects are considered for a ponding calculation. The 
1% annual chance overtopping volume would correctly be addressed by considering all transects 
that contribute to the ponding simultaneously in the overtopping analysis. However, this may be 
computationally intensive and not justified by the accuracy of other steps in the analysis. Unless 
there are unique site-specific reasons to do otherwise, it is recommended that the 1% values of 
TWL, overtopping rate, and overtopping volume calculated for each transect be used.  

The following discussion outlines the procedure for determining the 1% overtopping rate and 
volume using the TWL as the basis for selecting the most significant conditions. For this 
discussion, it is assumed that the wave data have 20 storms per year for each year of 30 years of 
wave data. For each storm, the following terms are computed: the maximum TWL; the 
maximum wave height (H) and the associated wave period (T); peak enhancement factor of the 
spectrum (γ); the storm duration (D); the storm duration recession reduction factor (α); the 
maximum overtopping (q) (if overtopping occurs); and overtopping volume (V) (integral q dt). H 
corresponds to the appropriate wave height for the analysis. For a beach, it is the offshore wave 
height, but for a structure, it is the wave height at the toe of the structure.  

The values for the computed terms that correspond to the largest TWL each year are saved for 
the extreme value analysis. Again, the TWL is the indicator for selecting the most significant 
conditions. In addition, the largest storm in the wave data is noted and the time series of both the 
waves and the water levels are recorded.  

For all storms, the TWL is computed and therefore it is straightforward to make a 1% estimate of 
TWL based on the annual maxima. The determination of the 1% overtopping rate and volume 
are more complicated and fall into three categories.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Case 1: If the 30 years of wave data do not result in overtopping and the extrapolation to 
the 1% conditions does not result in overtopping, then it is not necessary to consider 
overtopping. The results correspond to the adjusted profile and the 1% TWL conditions.  

• Case 2:  If at least one storm in each year of the 30 years of waves results in overtopping, 
then an extreme value analysis may be directly conducted using the TWL, overtopping 
rate, and overtopping volume. The profile corresponds to the adjusted profile with 
overtopping.  

• Case 3:  If there is not an overtopping event for each year of data, it is more difficult to 
determine the 1% overtopping rate and volume. For this case, the 1% q is calculated from 
the appropriate overtopping equation using the 1% estimates for H and T (and other 
variables if required). The profile corresponds to the adjusted profile with overtopping. 
The 1% V is more difficult to estimate because it depends on the variation of wave 
conditions and water levels during a storm. A 1% storm is approximated by linearly 
scaling up the largest storm time series in the record by the 1% H, T, and D. Overtopping 
is then computed using the 1% storm, the water-level changes associated with the 1% 
storm, and the data for SWL. The overtopping is integrated over the storm duration to 
yield the 1% V. Note that this 1% storm is only used in Case 3 and only then for 
estimating V. It is not a 1% design storm condition as is commonly used on the Atlantic 
and Gulf coasts.  

To summarize the three cases:  

• Case 1:  There is no overtopping.  

• Case 2:  The annual maxima provide sufficient data to make a direct statistical 
determination of the 1% Q and V.  

• Case 3:  The annual data are not sufficient to make a direct statistical determination, so 
the variables needed to compute q and V are determined (by scaling) at the 1% level and 
then these are used to calculate the 1% q and V.  

In general, the application of these procedures to shoreline settings that may experience profile 
changes (berms/dunes, erodible bluffs, and structures) are more difficult than settings that do not 
have profile changes (cobble beaches, non-erodible bluffs/cliffs, and tidal flats/wetlands). Figure 
D.4.2-6 shows a general flow diagram for all shoreline settings. For settings that do not have 
profile changes, the profile change boxes do not apply. For cases with changes, then the 
appropriate type of profile change for the setting shall be used. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.2-6.  Determination of 1% Conditions 
 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Example: Sandy Beach Backed by Berm or Dune (Setting No. 1) 

For each of the 20 annual storms: 

1. Determine static setup and/or TWL as required by geometric recession model to calculate 
the potential recession for the storm, R∞ storm. 

2. Determine storm duration recession reduction factor for the storm, α. 

3. Determine duration limited recession for storm, Rstorm, and if the berm/dune is breached. 

4. If runup is different on modified profile, re-compute runup. 

5. If runup results in overtopping, then compute overtopping. Save the maximum 
overtopping value. Compute the overtopping volume as V = integral q dt over duration of 
storm. 

6. For each year, save conditions corresponding to the largest annual TWL conditions: 
TWL, q, V, α, H, T, D, γ, etc.  

Determine 1% conditions: 

If every year of the 30 years has overtopping (Case 2): 
• The profile corresponds to the adjusted profile. 

• Directly compute 1% estimates of TWL, q, and V (Generalized Extreme Value [GEV] 
and maximum likelihood).  

If there are any years with no overtopping: 
• Determine the 1% setup and/or TWL α, and Rstorm.  

If there is no overtopping at the 1% level (Case 1): 
– If runup is different on modified profile, re-compute TWL. 

If there is overtopping at the 1% level (Case 3): 
– The profile corresponds to the adjusted profile. 

– Compute the 1% H, T, D, etc. 

– Calculate the 1% q from overtopping equations. 

– Select the largest storm, and scale it up by the 1% H, T, and D to define 1% storm 
to obtain q and V. 

– Using the 1% storm, water-level changes due to the 1% storm, and the measured 
SWL, determine the 1% V by integrating q over the duration of the storm.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Example: Beach Backed by Structure (Setting No. 2)  

For each of the 20 annual storms: 

1. Determine the TWL and wave height at structure. 

2. Compute scour and adjust profile as required. 

3. Determine structure stability. If structure fails, completely or partially remove structure. 

4. If runup is different on modified profile, re-compute runup. (Note: Runup requires wave 
height at the toe of the structure.) 

5. If runup results in overtopping, then compute overtopping. Save the maximum 
overtopping value. Compute the overtopping volume as V = integral q dt over duration of 
storm. 

6. For each year, save conditions corresponding to the largest annual TWL conditions: 
TWL, q, V, α, H, T, D, γ, etc.  

Determine 1% conditions: 

If every year of the 30 years has overtopping (Case 2): 
• The profile corresponds to the adjusted profile (structure removed or partially failed). 
• Directly compute 1% estimates of TWL, q, and V (GEV and maximum likelihood).  

If there are any years with no overtopping: 
• Determine the 1% TWL and local H. 

If there is no overtopping at the 1% level (Case 1): 
– If runup is different on modified profile, re-compute TWL.  

If there is overtopping at the 1% level (Case 3): 
– The profile corresponds to the adjusted profile. 

– Compute the 1% H, T, D, etc. 

– 

– Select the largest storm, and scale it up by the 1% H, T, D. 

– Using the 1% storm, water-level changes because of the 1% storm, and the 
measured SWL, determine the 1% V by integrating q over the duration of the 
storm.  

The methodology for determining the 1% overtopping rate and volume is similar for the other 
settings, cobble beach, erodible bluff, non-erodible bluff or cliff, and tidal flats/wetlands.  

Calculate the 1% q from overtopping equations. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.2.5.4 0.2% Annual Chance Conditions  

The 0.2% annual chance conditions (500-year conditions) are used to map the X zones. The 
determination of the 0.2% conditions and the associated flood hazards is completely analogous to 
the methods used to determine the 1% conditions. The 0.2% conditions are determined using the 
same GEV results as the 1% conditions (but evaluating at the 0.2% level) and all of the same 
physical processes are addressed in a similar way. 

D.4.2.6 Summary of Methods 

Table D.4.2-1 is a summary of methods presented in Section D.4. This table provides an 
overview of available methods and reference to the appropriate section of the document. 

Table D.4.2-1. Summary of Methods Presented in Section D.4 

Zone/Process Method Comments 
All Zones Statistics (D.4.3) 

1% condition - GEV and maximum 
likelihood fit  
Peak over threshold with Pareto 
distribution  
Joint Probability Methods (JPM), Monte 
Carlo, Empirical Simulation Technique 
(EST) 

Annual maxima are used to 
determine the 1% condition.  

JPM, Monte Carlo, or EST are only 
used in sheltered waters 

Offshore Zone Waves (D.4.4) 
Measured 

NDBC, CDIP 
Hindcast 

GROW, WIS, WAVEWATCH III 
Wave Generation 

2-D models 
CEM parametric model 

 

The use of significant wave 
conditions (height, period, direction, 
storm duration) or directional spectra 
depends upon the choice of the 
methods selected for determining 
setup, runup, and overtopping.  

The wave record must be long 
enough (30 years or longer) to 
reasonably estimate the 1% annual 
chance condition.  

Wave generation methods are only 
applicable in sheltered waters or a 
regional-scale offshore model. 

Offshore Zone Water Level (D.4.4) 
Measured Water Level 

astronomical tide, surge, El Niño 
Sheltered Waters 

Seich, tidal amplification, rivers 

In most cases, the measured TWL, 
corrected to local conditions, is used 
in the analyses.  

A number of other factors can 
influence the water level in sheltered 
waters. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Table D.4.2-1. Summary of Methods Presented in Section D.4 

(cont.) 

Zone/Process Method Comments 
Shoaling Zone Wave Transformations (D.4.4) 

Straight and parallel contours 
shoaling and Snell’s Law 

Spectral methods 
transformation coefficients, CDIP 

Nearshore transformations 
2-D spectral and time domain 
models 
Sheltered waters 
seiching, inlets 

Numerical models are typically only 
required for complex bathymetry 

Surf Zone Wave Setup and Runup (D.4.5) 
Beaches 

DIM parametric 
DIM numerical 
Advanced Models - Boussinesq 

Structures 
van der Meer, CEM 

Methods combine setup and runup.  

Parametric method only requires 
significant wave height.  

Advanced models are only necessary 
for complex conditions. 

Surf Zone and 
Backshore Zone 

Erosion (D.4.6) 
Beaches 

Geometric Models  
Process-Based Models 

Shore Protection Structures 
CEM scour equations 

Cobble Beaches 
Observed storm profiles 

Erodible Bluffs 
Nobel bluff erosion model 

Non-Erodible Bluffs and Cliffs 
No erosion 

Tidal Flats and Wetlands 
No erosion 

Process-based models are not 
recommended for the Pacific Coast 
at this time. 

The Atlantic and Gulf Coast “540 
Rule” is not recommended for the 
Pacific Coast. 

Backshore Zone Overtopping (D.4.5) 
Beaches  

CEM 
Structures 

CEM, Besley 

 

Backshore Zone Overland Flow (D.4.5) 
Cox and Machemehl, WHAFIS 

 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Table D.4.2-1. Summary of Methods Presented in Section D.4 
(cont.) 

Zone/Process Method Comments 
Backshore Hazard Indicators (D.4.8) 

Runup depth 
Overtopping splash distance 
Depth times velocity squared 
Wave height 
Primary frontal dune 

 

  
D.4.2.7 Examples 

There are many methods and data sources presented in this appendix. The development of the 
details for a specific study methodology depends on the coastal setting, available data, and 
project resources. However, the overall methodology for most studies is likely to be similar. 
Consider the three cases shown in Figure D.4.2-7.  

 

Figure D.4.2-7. Methodology Examples 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Case (a) is for an open coast exposure, with a sand beach backed by dunes. The principal steps 
are:  

1. In the offshore zone, determine the wave and water-level conditions. 

2. In the shoaling zone, transform the waves to the nearshore. 

3. In the surf zone, determine the setup, runup, dune recession, eroded beach profile, and 
overtopping. 

4. In the backshore zone, determine the hazard indicators: depth, velocity, depth times 
velocity squared (hv2), overtopping, etc. 

5. Map the hazards. 

Now consider the setting for Case (b). The only difference between Cases (a) and (b) is that the 
setting for Case (b) is in sheltered water. The most significant difference in the methodologies is 
that in sheltered water, wave information is generally not available and must be hindcast or 
statistically estimated. The waves and water levels are then combined and transformed onshore 
to the study area. There are differences in the magnitude of specific components in wave 
transformations between open coasts and shelter waters (i.e., dissipation over shoals), but the 
overall processes are similar. The same comment is also true for the surf zone and backshore 
processes.  

Case (c) is similar to Case (a), except that rather than a dune, there is a coastal shore protection 
structure. The only significant difference in the analysis is the method to estimate dune recession 
is replaced by a method to estimate structure responses. All of the other principal steps in the two 
methodologies are similar. 

The principal steps in the methodology are similar for most study cases. However, there are 
differences in the specific methods that may be employed at a given step. The following 
examples demonstrate the selection of specific methods. These examples are for demonstration 
purposes and may not correspond to an actual study site.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.2.7.1 Open Coast, Dune Backed Beach Scenario Using Parametric DIM Model for 
Setup/Runup 

Setting: Open coast, bottom contours that are nearly straight and parallel, and a sand beach 
backed by dunes.  

Data: Offshore GROW hindcast data and measured water levels. Winter season beach and dune 
profiles. Sand grain size. 

__________  

For this example, the parametric DIM model is selected to estimate setup and runup, and 
overtopping is estimated with empirical equations.  

The hazards are determined primarily from the 1% annual chance TWL. The 1% TWL is 
determined at the corresponding eroded beach profile location. This final TWL may be based on 
the results from the DIM parametric runup model or re-evaluated on the eroded profile using the 
more complex DIM numerical runup model. If there is overtopping, this may cause additional 
erosion of the dune. This is addressed in a very simplistic manner. For the modified Komar and 
Allan method, the MLWP slope is extended until it daylights out the back side of the dune. For 
the Kriebel and Dean method, the profile is recessed until it daylights out the back of the dune. 
For this breached condition, the 1% overtopping rate and volume are determined using the wave 
and water-level conditions corresponding to the 1% TWL.  

The DIM model (both the parametric and numerical versions) provides estimates of the total 
runup. The total runup is the sum of the static setup plus the dynamic setup plus the wave runup. 
For random waves, the runup corresponds to the value exceeded by 2% of the runup events. This 
is a short-term statistic associated with a group of waves or associated with a particular storm. It 
is a standard definition of runup and is commonly denoted as R2%. This 2% is different from the 
1% annual condition that is associated with long-term extreme value statistics. The 1% condition 
has an annual probability of occurrence of 1%, which approximately corresponds to the 100-year 
condition, while the runup corresponds to the 2% exceedance in several hours of waves. To 
avoid confusion, the 2% runup is referred to as the total runup or just the runup and is denoted as 
R. Unless otherwise indicated, the runup in all sections of D.4 is defined as the 2% runup.  

The GROW waves are analyzed for each storm year to determine the 10 storms that have the 
largest wave height and the 10 storms that have the largest runup, yielding up to 20 storms per 
year. The parametric DIM model is used to estimate the setup/runup that depends upon the 
product of the wave height and wave length. Therefore, the 10 storms that have the largest wave 
height-length product are selected. Many of the storms selected by the height and by the height-
length criteria may be the same. The parametric DIM model is based on the unrefracted deep 
water significant wave height. The dune recession model is based on the peak runup that occurs 
during the storm and the duration of the storm. Therefore, the required wave conditions for each 
storm are the peak unrefracted deep water wave height, the wave period, and the storm duration. 
No computations regarding the spectral or time series details of the waves are required, nor are 
details of the waves in the surf zone.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The dune recession model requires the determination of the MLWP. This is the expected 
condition of the beach profile during the winter season when a large storm might occur. The 
MLWP may be determined from winter beach profile data, average winter wave conditions, or 
historical information. For this example, winter profile data are available.  

Next, each storm in each storm year is examined with the dune recession model. The model can 
start each storm from the MLWP or sum the recession from multiple storms over a season. 
Unless there are data or other information available to suggest that multiple storms be 
considered, a single storm-by-storm analysis is used. For the present example, this would yield 
10 to 20 TWL estimates per year. The conditions corresponding to the largest TWL each year are 
saved. These annual maxima for each storm year of wave data are then analyzed using a GEV 
and maximum likelihood. The methods discussed in Subsection D.4.2.5.3 are used to determined 
the 1% overtopping rate and volume. Using these values and an overland flow model, the depth, 
depth times velocity squared, and wave height are estimated in the backshore. The hazards are 
identified based on these results.  

Specific methods for each of these steps are identified in Table D.4.2-2. In Table D.4.2-2, Hs is 
the significant wave height, Tp is the peak wave period, D is the storm duration, Hs max is the 
maximum significant wave height during the storm, L0 is the deep water wave length, h is the 
water depth, q is the overtopping rate, and v is the water velocity.  

If the 0.2% annual chance flood conditions are to be determined, the steps starting from the 
statistical analysis are repeated at the 0.2% level. It is not necessary to repeat any of the analyses 
before this step. The results from the GEV are used to determine the 0.2% values. These are then 
used in the remaining steps following the same procedures as for the 1% conditions.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.2.7.2 Open Coast, Dune Backed Beach Scenario Using Numerical DIM Model for 
Setup/Runup  

Setting: Open coast, bottom contours that are nearly straight and parallel, and a sand beach 
backed by dunes.  

Data: Offshore GROW hindcast data and measured water levels. Winter season beach and dune 
profiles. Sand grain size.  

__________  

For this example, the DIM numerical model is selected to estimate setup. Runup is determined 
by the methods described in Subsection D.4.5.1. All other conditions and methods are the same 
as in the preceding example. This example shows that the data requirements are dependent upon 
the choice of analysis methods. An advantage of the DIM numerical model over the parametric 
version is that the effects of surf zone bathymetry and detailed spectral wave statistics may be 
included. The DIM model integrates a 1-D wave spectrum across a transect to yield the setup. 
The dynamic wave setup and the incident wave runup are combined statistically.  

A wave time series is developed assuming a JONSWAP spectrum. The magnitude of the 
dynamic setup is sensitive to the bandwidth of the spectrum that is characterized by the 
JONSWAP peak enhancement factor, γ. GROW wave data sets provide information to estimate 
γ. Time series are developed assuming random phases. The DIM model uses the unrefracted 
deep water wave conditions. The shoaling/refraction may be estimated for the spectrum using the 
spectral wave transformation methods. Waves on the Pacific Coast, and especially in Southern 
California, tend to have three energy components; southern swells, northern storms, and local 
seas. The DIM model can treat each of these as a JONSWAP spectrum and develop a combined 
time series. Unless there are unusual conditions, this computational effort is not warranted and a 
single JONSWAP spectrum may be used. The DIM numerical model is 1-D in the cross-shore 
direction, and a directional spectrum is not required. However, the influence of wave direction 
on the energy must be considered in the wave transformations.  

The DIM numerical model integrates the momentum equations across the surf zone and requires 
the beach profile as input data. Steps in implementing the numerical DIM model are summarized 
in Table D.4.2-3. The spectral wave information, wave transformations, and estimates for 
runup/setup differ from the preceding example. All other steps are similar.  

 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.2.7.3 Sheltered Water, Seawall Backed Beach Scenario Using Parametric DIM for 
Setup/Runup 

Setting: Sheltered water, bottom contours that are nearly straight and parallel, and a sand beach 
backed by seawall.  

Data: Historical meteorological information and measured water levels. Winter season beach 
profile. Structure configuration. Sand grain size.  

__________  

In this example, wave data are not available and must be estimated. There are two methods for 
estimating waves: 1) 2-D wave generation models and 2) parametric models. The 2-D models are 
generally superior, but are data-, labor-, and computationally intensive. For this example, the 
CEM parametric approach is used. The objective is to determine the largest TWL that occurs 
each year, which is then used in the GEV to determine the 1% conditions. The computational 
effort may be significantly reduced by carefully selecting which storms to analyze. The wind 
speed, duration, and fetch length (wave direction) determine the magnitude of the waves. The 
waves, along with water level (which may include the effects of both tidal and riverine 
processes), determine the TWL. Different transects in a sheltered water area will have different 
storms for the 1% TWL because of the wind direction. For many sheltered water areas, the 
waves will be fetch limited.  

Once the waves have been hindcast, they are transformed to the site. The beach profile fronting 
the structure should be determined from data corresponding to winter conditions. For these 
conditions, local scour at the structure is determined using the methods from the CEM. Next, the 
stability of the structure is examined. If the structure fails, or is not a FEMA-recognized 
structure, it should be fully or partially removed. Details of this procedure are given in Section 
D.4.8.  

Determination of runup on structures differs from beaches in that the wave conditions are 
evaluated at the toe of the structure rather than in deep water. Simple estimates of the wave 
height at the toe may be made assuming a breaker index times the total static water depth (SWL 
plus the static wave setup). Other alternatives are to use the DIM numerical model or Boussinesq 
models. The specific wave runup equation depends on the structure configuration.  

Once the largest TWL for each year has been determined, the rest of the analysis is similar to the 
previous two examples. Table D.4.2-4 summarizes considerations for a structure in sheltered 
water.  

  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.3 Flood Frequency Analysis Methods 

This section outlines general features of statistical methods used in a flood insurance study, 
including providing basic statistical tools that are frequently needed. It is recommended that 
extremal analysis of annual maxima be performed using the Generalized Extreme Value (GEV) 
Distribution with parameters estimated by the Method of Maximum Likelihood. The discussion 
in this section is illustrative only; guidelines for application of these tools in specific instances 
are provided in other sections of this appendix. 

 

D.4.3.1 The 1% Annual Chance Flood 

The primary goal of a coastal Flood Insurance Study (FIS) is to determine the flood levels 
throughout the study area that have a 1% chance of being exceeded in any given year. The level 
that is exceeded at this rate at a given point is called the 1% annual chance flood level at that 
point, and has a probability of 0.01 to be equaled or exceeded in any year; on the average, this 
level is exceeded once in 100 years and is commonly called the 100-year flood. 

The 1% annual chance flood might result from a single flood process or from a combination of 
processes. For example, astronomic tide and storm waves combine to produce the total high 
water runup level. There is no one-to-one correspondence between the 1% annual chance flood 
elevation and any particular storm or other flood-producing mechanism. The level may be 
produced by any number of mechanisms, or by the same mechanism in different instances. For 
example, an incoming wave with a particular height and period may produce the 1% annual 
chance runup, as might a quite different wave with a different combination of height and period. 

Furthermore, the flood hazard maps produced as part of an FIS do not necessarily display, even 
locally, the spatial variation of any realistic physical hydrologic event. For example, the 1% 
annual chance levels just outside and just inside an inlet will not generally show the same 
relation to one another as they would during the course of any real physical event because the 
inner waterway may respond most critically to storms of an entirely different character from 
those that affect the outer coast. Where a flood hazard arises from more than one source, the 
mapped level is not the direct result of any single process, but is a construct derived from the 
statistics of all sources. Note then that the 1% annual chance flood level is an abstract concept 
based as much on the statistics of floods as on the physics of floods. 

Because the 1% annual chance flood level cannot be rigorously associated with any particular 
storm, it is a mistake to think of some observed event as having been the 1% annual chance 
event. A more intense storm located at a greater distance might produce the same flood level, or 
the same flood level might be produced by an entirely different mechanism, such as by a tsunami 
from a distant landslide or earthquake. Furthermore, if a particular storm were, in fact, the so-
called 100-year event, it could not be so everywhere, but only in its effect at a particular point. 

The 1% annual chance flood level is a consequence solely of the areawide flooding mechanisms 
recognized for a particular location. That is, there may be mechanisms that are not taken into 
account, but that could also produce water levels comparable to the 1% level or that could 
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contribute to the 1% level. For example, tsunamis occur in all oceans, so even the Atlantic Coast 
is vulnerable to tsunami attack at some frequency. The Great Lisbon earthquake of 1755 (with 
magnitude approaching 9) produced a large Atlantic tsunami that was felt in the New World; 
however, tsunamis are not recognized as areawide flood sources for the Atlantic Coast. 
Similarly, advances in science may from time to time reveal new flood mechanisms that had not 
previously been recognized; for example, only in recent years has the physics of El Niños been 
clarified and their contribution to coastal flood levels recognized.  

D.4.3.2 Event vs. Response Statistics  

The flood level experienced at any coastal site is the complicated result of a large number of 
interrelated and interdependent factors. For example, coastal flooding by wave runup depends 
upon both the local waves and the level of the underlying still water upon which they ride. That 
still water level (SWL), in turn, depends upon the varying astronomic tide and the possible 
contribution of a transient storm surge. The wave characteristics that control runup include 
amplitude, period, and direction, all of which depend upon the meteorological characteristics of 
the generating storm including its location and its time-varying wind and pressure fields. 
Furthermore, the resulting wave characteristics are affected by variations of water depth over 
their entire propagation path, and thus depend also on the varying local tide and surge. Still 
further, the beach profile, changing in response to wave-induced erosion, is variable, causing 
variation in the wave transformation and runup behavior. All of these interrelated factors may be 
significant in determining the coastal flood level with a 1% annual chance of occurrence.  

Whatever methods are used, simplifying assumptions are inevitable, even in the most ambitious 
response-based study, which attempts to simulate the full range of important processes over time. 
Some of these assumptions may be obvious and would introduce little error. For example, a 
major tsunami could occur during a major storm, and it might alter the storm waves and runup 
behavior and dominate the total runup. However, the likelihood of this occurrence is so small 
that the error incurred by ignoring the combined occurrence would be negligible. On the other 
hand, the conclusion might not be so clear if the confounding event were to be storm surge rather 
than a tsunami because extreme waves and surge are expected to be correlated, with high waves 
being probable during a period of high surge. 

These guidelines offer insight and methods to address the complexity of the coastal flood process 
in a reasonable way. However, the inevitable limitations of the guidance must be kept in mind. 
No fixed set of rules or cookbook procedures can be appropriate in all cases, and the Mapping 
Partner must be alert to special circumstances that violate the assumptions of the methodology. 

D.4.3.2.1 Event-Selection Method 

A great simplification is made if one can identify a single event (or a small number of events) 
that produces a flood thought to approximate the 1% flood. This might be possible if, for 
example, a single event parameter (such as deep-water wave height) is believed to dominate the 
final runup, so the 1% value of that particular item might suffice to determine the 1% flood. In its 
simplest form, one might identify a significant wave height thought to be exceeded with only 1% 
chance, and then to follow this single wave as it would be transformed in propagation and as it 
would run up the beach. This is the event-selection method. Used with caution, this method may 
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allow reasonable estimates to be made with minimal cost. It is akin to the concept of a design 
storm, or to constructs such as the standard project or probable maximum storms.  

The inevitable difficulty with the event-selection method is that multiple parameters are always 
important, and it may not be possible to assign a frequency to the result with any confidence 
because other unconsidered factors always introduce uncertainty. Smaller waves with longer 
periods, for example, might produce greater runup than the largest waves selected for study. A 
slight generalization of the event-selection method, often used in practice, is to consider a small 
number of parameters – say wave height, period, and direction – and attempt to establish a set of 
alternative, “100-year” combinations of these parameters. Alternatives might be, say, pairs of 
height and period from each of three directions, with each pair thought to represent the 1% 
annual chance threat from that direction, and with each direction thought to be associated with 
independent storm events. Each such combination would then be simulated as a selected “event”, 
with the largest flood determined at a particular site being chosen as the 100-year flood. The 
probable result of this procedure would be to seriously underestimate the true 1% annual chance 
level by an unknown amount. This can be seen easily in the hypothetical case that all three 
directional wave height and period pairs resulted in about the same flood level. Rather than 
providing reassurance that the computed level were a good approximation of the 100-year level, 
such a result would show the opposite – the computed flood would not be at the 100-year level, 
but would instead approximate the 33-year level, having been found to result once in 100 years 
from each of three independent sources, for a total of three times in 100 years. It is not possible 
to salvage this general scheme in any rigorous way – say by choosing three, 300-year height and 
period combinations, or any other finite set based on the relative magnitudes of their associated 
floods – because there always remain other combinations of the multiple parameters that will 
contribute to the total rate of occurrence of a given flood level at a given point, by an unknown 
amount. 

D.4.3.2.2 Response-based Approach 

With the advent of powerful and economical computers, a preferred approach that considers all 
(or most) of the contributing processes has become practical; this is the response-based 
approach. In the response-based approach, one attempts to simulate the full complexity of the 
physical processes controlling flooding, and to derive flood statistics from the results (the local 
response) of that complex simulation. For example, given a time history of offshore waves in 
terms of height, period, and direction, one might compute the runup response of the entire time 
series, using all of the data and not pre-judging which waves in the record might be most 
important. With knowledge of the astronomic tide, this entire process could be repeated with 
different assumptions regarding tidal amplitude and phase. Further, with knowledge of the 
erosion process, storm-by-storm erosion of the beach profile might also be considered, so its 
feedback effect on wave behavior could be taken into account.  

At the end of this process, one would have a long-term simulated record of runup at the site, 
which could then be analyzed to determine the 1% level. Clearly, successful application of such 
a response-based approach requires a tremendous effort to characterize the individual component 
processes and their interrelationships, and a great deal of computational power to carry out the 
intensive calculations.  
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The response-based approach is preferred for all Pacific Coast FISs.  

D.4.3.2.3 Hybrid Method 

Circumstances may arise for which the Mapping Partner can adopt a hybrid method between the 
event-selection and response-based extremes; this hybrid method may substantially reduce the 
time required for repeated calculations. The Mapping Partner must use careful judgment in 
applying this method to accurately estimate the flood response (e.g., runup); detailed guidance 
and examples of the method can be found in PWA (2004). 

The hybrid method uses the results of a response-based analysis to guide the selection of a 
limited number of forcing parameters (e.g., water level and wave parameter combinations) likely 
to approximate the 1% annual chance flood response (e.g., runup). A set of baseline response-
based analyses are performed for transects that are representative of typical geometries found at 
the study site (e.g., beach transects with similar slopes; coastal structures with similar toe and 
crest elevations, structure slopes, and foreshore slopes). The results obtained for these 
representative transects are then used to guide selection of parameters for other similar transects 
within the near vicinity. The Mapping Partner may need to consider a range of forcing 
parameters to account for variations in the response caused by differences in transect geometry; a 
greater range of forcing parameters will need to be considered for greater differences between 
transect geometries. 

The hybrid method simply postulates that if a set of wave properties can be found that 
reproduces the 1% annual chance flood established by a response-based analysis at a certain 
transect, then the same set of parameters should give a reasonable estimate at other transects that 
are both similar and nearby. 

D.4.3.3 General Statistical Methods 

D.4.3.3.1 Overview 

This section summarizes the statistical methods that will be most commonly needed in the course 
of an FIS to establish the 1% annual chance flood elevation. Two general approaches can be 
taken depending upon the availability of observed flood data for the site. The first, preferred, 
approach is used when a reasonably long observational record is available, say 30 years or more 
of flood or other data. In this extreme value analysis approach, the data are used to establish a 
probability distribution that is assumed to describe the flooding process, and that can be 
evaluated using the data to determine the flood elevation at any frequency. This approach can be 
used for the analysis of wind and tide gage data, for example, or for a sufficiently long record of 
a computed parameter such as wave runup. 

The second approach is used when an adequate observational record of flood levels does not 
exist. In this case, it may be possible to simulate the flood process using hydrodynamic models 
driven by meteorological or other processes for which adequate data exist. That is, the 
hydrodynamic model (perhaps describing waves, tsunamis, or surge) provides the link between 
the known statistics of the generating forces, and the desired statistics of flood levels. These 
simulation methods are relatively complex and will be used only when no acceptable, more 
economical alternative exists. Only a general description of these methods is provided here; full 
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documentation of the methods can be found in the user’s manuals provided with the individual 
simulation models. The manner in which the 1% annual chance level is derived from a 
simulation will depend upon the manner in which the input forcing disturbance is defined. If the 
input is a long time series, then the 1% level might be obtained using an extreme value analysis 
of the simulated process. If the input is a set of empirical storm parameter distributions, then the 
1% level might be obtained by a method such as joint probability or Monte Carlo, as discussed 
later in this section. 

The present discussion begins with basic ideas of probability theory and introduces the concept 
of a continuous probability distribution. Distributions important in practice are summarized, 
including, especially, the extreme value family. Methods to fit a distribution to an observed data 
sample are discussed, with specific recommendations for FIS applications. A list of suggested 
additional information resources is included at the end of the section. 

D.4.3.3.2 Elementary Probability Theory 

Probability theory deals with the characterization of random events and, in particular, with the 
likelihood of occurrence of particular outcomes. The word “probability” has many meanings, 
and there are conceptual difficulties with all of them in practical applications such as flood 
studies. The common frequency notion is assumed here: the probability of an event is equal to 
the fraction of times it would occur during the repetition of a large number of identical trials. For 
example, if one considers an annual storm season to represent a trial, and if the event under 
consideration is occurrence of a flood’s exceeding a given elevation, then the annual probability 
of that event is the fraction of years in which it occurs, in the limit of an infinite period of 
observation. Clearly, this notion is entirely conceptual, and cannot truly be the source of a 
probability estimate. 

An alternate measure of the likelihood of an event is its expected rate of occurrence, which 
differs from its probability in an important way. Whereas probability is a pure number and must 
lie between zero and one, rate of occurrence is a measure with physical dimensions (reciprocal of 
time) that can take on any value, including values greater than one. In many cases, when one 
speaks of the probability of a particular flood level, one actually means its rate of occurrence; 
thinking in terms of physical rate can help clarify an analysis. 

To begin, a number of elementary probability rules are recalled. If an event occurs with 
probability P in some trial, then it fails to occur with probability Q = 1 – P. This is a 
consequence of the fact that the sum of the probabilities of all possible results must equal unity, 
by the definition of total probability: 
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in which the summation is over all possible outcomes of the trial. 

If A and B are two events, the probability that either A or B occurs is given by:  

 )()()()( BandAPBPAPBorAP −+=   (D.4.3-2) 
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If A and B are mutually exclusive, then the third term on the right-hand side is zero and the 
probability of obtaining either outcome is the sum of the two individual probabilities. 

If the probability of A is contingent on the prior occurrence of B, then the conditional probability 
of A given the occurrence of B is defined to be:  
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in which P(AB) denotes the probability of both A and B occurring. 

If A and B are stochastically independent, P(A|B) must equal P(A), then the definition of 
conditional probability just stated gives the probability of occurrence of both A and B as: 

 )()()( BPAPABP =  (D.4.3-4) 

This expression generalizes for the joint probability of any number of independent events, as: 

 )...()()(...)( CPBPAPABCP =  (D.4.3-5) 

As a simple application of this rule, consider the chance of experiencing at least one 1% annual 
chance flood (P = 0.01) in 100 years. This is 1 minus the chance of experiencing no such flood in 
100 years. The chance of experiencing no such flood in 1 year is 0.99, and if it is granted that 
floods from different years are independent, then the chance of not experiencing such a flood in 
100 years is 0.99100 according Equation D.4.3-5 or 0.366. Consequently, the chance of 
experiencing at least one 100-year flood in 100 years is 1 – 0.366 = 0.634, or only about 63%. 

D.4.3.3.3 Distributions of Continuous Random Variables 

A continuous random variable can take on any value from a continuous range, not just a discrete 
set of values. The instantaneous ocean surface elevation at a point is an example of a continuous 
random variable; so, too, is the annual maximum water level at a point. If such a variable is 
observed a number of times, a set of differing values distributed in some manner over a range is 
found; this fact suggests the idea of a probability distribution. The observed values are a data 
sample.  

We define the probability density function, PDF, of x to be f(x), such that the probability of 
observing the continuous random variable x to fall between x and x + dx is f(x) dx. Then, in 
accordance with the definition of total probability stated above: 
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If we take the upper limit of integration to be the level L, then we have the definition of the 
cumulative distribution function, CDF, denoted by F(x), which specifies the probability of 
obtaining a value of L or less: 
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It is assumed that the observed set of values, the sample, is derived by random sampling from a 
parent distribution. That is, there exists some unknown function, f(x), from which the observed 
sample is obtained by random selection. No two samples taken from the same distribution will be 
exactly the same. Furthermore, random variables of interest in engineering cannot assume values 
over an unbounded range as suggested by the integration limits in the expressions shown above. 
In particular, the lower bound for flood elevation at a point can be no less than ground level, 
wind speed cannot be less than zero, and so forth. Upper bounds also exist, but cannot be 
precisely specified; whatever occurs can be exceeded, if only slightly. Consequently, the usual 
approximation is that the upper bound of a distribution is taken to be infinity, while a lower 
bound might be specified. 

If the nature of the parent distribution can be inferred from the properties of a sample, then the 
distribution provides the complete statistics of the variable. If, for example, one has 30 years of 
annual peak flood data, and if these data can be used to specify the underlying distribution, then 
one could easily obtain the 10-, 50-, 100-, and 500-year flood levels by computing x such that F 
is 0.90, 0.98, 0.99, and 0.998, respectively.  

The entirety of the information contained in the PDF can be represented by its moments. The 
mean, µ, specifies the location of the distribution, and is the first moment about the origin: 
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Two other common measures of the location of the distribution are the mode, which is the value 
of x for which f is maximum, and the median, which is the value of x for which F is 0.5. 

The spread of the distribution is measured by its variance, σ2, which is the second moment about 
the mean: 
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The standard deviation, σ, is the square root of the variance. 

The third and fourth moments are called the skew and the kurtosis, respectively; still higher 
moments fill in more details of the distribution shape, but are seldom encountered in practice. If 
the variable is measured about the mean and is normalized by the standard deviation, then the 
coefficient of skewness, measuring the asymmetry of the distribution about the mean, is:  
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and the coefficient of kurtosis, measuring the peakedness of the distribution, is:  
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These four parameters are properties of the unknown distribution, not of the data sample. 
However, the sample has its own set of corresponding parameters. For example, the sample 
mean is: 
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which is the average of the sample values. The sample variance is: 
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while the sample skew and kurtosis are:  
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Note that in some literature the kurtosis is reduced by 3, so the kurtosis of the normal distribution 
becomes zero; it is then called the excess kurtosis. 

D.4.3.3.4 Stationarity 

Roughly speaking, a random process is said to be stationary if it is not changing over time, or if 
its statistical measures remain constant. Many statistical tests can be performed to help determine 
whether a record displays a significant trend that might indicate non-stationarity. A simple test 
that is very easily performed is the Spearman Rank Order Test. This is a non-parametric test 
operating on the ranks of the individual values sorted in both magnitude and time. The Spearman 
R statistic is defined as: 
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in which d is the difference between the magnitude rank and the sequence rank of a given value. 
The statistical significance of R computed from Equation D.4.3-16 can be found in published 
tables of Spearman’s R for n — 2 degrees of freedom.  
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D.4.3.3.5 Correlation Between Series 

Two random variables may be statistically independent of one another, or some degree of 
interdependence may exist. Dependence means that knowing the value of one of the variables 
permits a degree of inference regarding the value of the other. Whether paired data (x,y), such as 
simultaneous measurements of wave height and period, are interdependent or correlated is 
usually measured by their linear correlation coefficient: 
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This correlation coefficient indicates the strength of the correlation. An r value of +1 or -1 
indicates perfect correlation, so a cross-plot of y versus x would lie on a straight line with 
positive or negative slope, respectively. If the correlation coefficient is near zero, then such a plot 
would show random scatter with no apparent trend.  

D.4.3.3.6 Convolution of Two Distributions 

If a random variable, z, is the simple direct sum of the two random variables x and y, then the 
distribution of z is given by the convolution integral: 
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in which subscripts specify the appropriate distribution function. This equation can be used, for 
example, to determine the distribution of the sum of wind surge and tide under the assumptions 
that surge and tide are independent and they add linearly without any nonlinear hydrodynamic 
interaction. 

D.4.3.3.7 Important Distributions 

Many statistical distributions are used in engineering practice. Perhaps the most familiar is the 
normal or Gaussian distribution. We discuss only a small number of distributions, selected 
according to probable utility in an FIS. Although the normal distribution is the most familiar, the 
most fundamental is the uniform distribution. 

D.4.3.3.7.1 Uniform Distribution 

The uniform distribution is defined as constant over a range, and zero outside that range. If the 
range is from a to b, then the PDF is:  
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which, within its range, is a constant independent of x; this is also called a top-hat distribution. 
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The uniform distribution is especially important because it is used in drawing random samples 
from all other distributions. A random sample drawn from a given distribution can be obtained 
by first drawing a random sample from the uniform distribution defined over the range from 0 to 
1. Set F(x) equal to this value, where F is the cumulative distribution to be sampled. The desired 
value of x is then obtained by inverting the expression for F.  

Sampling from the uniform distribution is generally done with a random number generator 
returning values on the interval from 0 to 1. Most programming languages have such a function 
built in, as do many calculators. However, not all such standard routines are satisfactory. While 
adequate for drawing a small number of samples, many widely used standard routines fail 
statistical tests of uniformity. If an application requires a large number of samples, as might be 
the case when performing a large Monte Carlo simulation (see Subsection D.4.3.6.3), these 
simple standard routines may be inadequate. A good discussion of this matter, including lists of 
high-quality routines, can be found in the book Numerical Recipes, included in Subsection 
D.4.3.7, Additional Resources. 

D.4.3.3.7.2 Normal or Gaussian Distribution 

The normal or Gaussian distribution, sometimes called the bell-curve, has a special place among 
probability distributions. Consider a large number of large samples drawn from some unknown 
distribution. For each large sample, compute the sample mean. Then, the distribution of those 
means tends to follow the normal distribution, a consequence of the central limit theorem. 
Despite this, the normal distribution does not play a central role in hydrologic frequency 
analysis. The standard form of the normal distribution is: 
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D.4.3.3.7.3 Rayleigh Distribution 

The Rayleigh distribution is important in the theory of random wind waves. Unlike many 
distributions, it has some basis in theory; Longuet-Higgins (1952) showed that with reasonable 
assumptions for a narrow banded wave spectrum, the distribution of wave height will be 
Rayleigh. The standard form of the distribution is: 
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The range of x is positive, and the scale parameter b > 0. In water wave applications, 2b2 equals 
the mean square wave height. The mean and variance of the distribution are given by: 

πµ = b
2

 (D.4.3-22)
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The skew and kurtosis of the Rayleigh distribution are constants (approximately 0.63 and 3.25, 
respectively) but are of little interest in applications here. 

D.4.3.3.7.4 Extreme Value Distributions 

Many distributions are in common use in engineering applications. For example, the log-Pearson 
Type III distribution is widely used in hydrology to describe the statistics of precipitation and 
stream flow. For many such distributions, there is no underlying justification for use other than 
flexibility in mimicking the shapes of empirical distributions. However, there is a particular 
family of distributions that are recognized as most appropriate for extreme value analyses, and 
that have some theoretical justification. These are the so-called extreme value distributions. 

Among the well-known extreme value distributions are the Gumbel distribution and the Weibull 
distribution. Both of these are candidates for FIS applications, and have been widely used with 
success in similar applications. Significantly, these distributions are subsumed under a more 
general distribution, the GEV distribution, given by:  
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The cumulative distribution is given by the expressions: 
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In these expressions, a, b, and c are the location, scale, and shape factors, respectively. This 
distribution includes the Frechet (Type 2) distribution for c > 0 and the Weibull (Type 3) 
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distribution for c < 0. If the limit of the exponent of the exponential in the first forms of these 
distributions is taken as c goes to 0, then the simpler second forms are obtained, corresponding to 
the Gumbel (Type 1) distribution. Note that the Rayleigh distribution is a special case of the 
Weibull distribution, and so is also encompassed by the GEV distribution. 

The special significance of the members of the extreme value family is that they describe the 
distributions of the extremes drawn from other distributions. That is, given a large number of 
samples drawn from an unknown distribution, the extremes of those samples tend to follow one 
of the three types of extreme value distributions, all incorporated in the GEV distribution. This is 
analogous to the important property of the normal distribution that the means of samples drawn 
from other distributions tend to follow the normal distribution. If a year of water levels is 
considered to be a sample, then the annual maximum, as the largest value in the sample, may 
tend to be distributed according to the statistics of extremes. 

D.4.3.3.7.5 Pareto Distribution 

If for some unknown distribution the sample extremes are distributed according to the GEV 
distribution, then the set of sample values exceeding some high threshold tends to follow the 
Pareto distribution. Consequently, the GEV and Pareto distributions are closely related in a dual 
manner. The Pareto distribution is given by: 

 

1/

( ) 1 1    for         
ccyF y y x - u

b

−
⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

                                    with      ( )b b u a= + −
 (D.4.3-25) 

where u is the selected threshold. In the limit as c goes to zero, this reduces to the simple 
expression: 
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 (D.4.3-26) 

D.4.3.4 Data Sample and Estimation of Parameters 

Knowing the distribution that describes the random process, one can directly evaluate its inverse 
to give an estimate of the variable at any recurrence rate; that is, at any value of 1-F. If the 
sample consists of annual maxima (see the discussion in Subsection D.4.3.5), then the 1% annual 
chance value of the variable is that value for which F equals 0.99, and similarly for other 
recurrence intervals. To specify the distribution, two things are needed. First, an appropriate 
form of the distribution must be selected from among the large number of candidate forms found 
in wide use. Second, each such distribution contains a number of free parameters (generally from 
one to five, with most common distributions having two or three parameters) that must be 
determined. 

It is recommended that the Mapping Partner adopt the GEV distribution for FIS applications for 
reasons outlined earlier: extremes drawn from other distributions (including the unknown parent 
distributions of flood processes) may be best represented by one member of the extreme value 
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distribution family or another. The remaining problem, then, is determination of the three free 
parameters of the GEV distribution, a, b, and c.  

Several methods of estimating the best values of these parameters have been widely used, 
including, most frequently, the methods of plotting positions, moments, and maximum 
likelihood. The methods discussed here are limited to point-site estimates. If statistically similar 
data are available from other sites, then it may be possible to improve the parameter estimate 
through the method of regional frequency analysis; see Hosking and Wallis (1997) for 
information on this method. Note that this sense of the word regional is unrelated to what is 
meant by regional studies discussed elsewhere in these guidelines. 

D.4.3.4.1 Plotting Positions 

Widely used in older hydrologic applications, the method of plotting positions is based on first 
creating a visualization of the sample distribution and then performing a curve-fit between the 
chosen distribution and the sample. However, the sample consists only of the process variable; 
there are no associated quantiles, and so it is not clear how a plot of the sample distribution is to 
be constructed. The simplest approach is to rank order the sample values from smallest to largest, 
and to assume that the value of F appropriate to a value is equal to its fractional position in this 
ranked list, R/N where R is the value’s rank from 1 to N. Then, the smallest observation is 
assigned plotting position 1/N and the largest is assigned N/N=1. This is clearly unsatisfactory at 
the upper end because instances larger than the largest observed in the sample can occur. A more 
satisfactory, and widely used, plotting position expression is R/(N+1), which leaves some room 
above the largest observation for still larger elevations. A number of such plotting position 
formulas are encountered in practice, most involving the addition of constants to the numerator 
and denominator, (R+a)/(N+b), in an effort to produce improved estimates at the tails of the 
distributions. 

Given a plot produced in this way, one might simply draw a smooth curve through the points, 
and usually extend it to the recurrence intervals of interest. This constitutes an entirely empirical 
approach and is sometimes made easier by constructing the plot using a transformed scale for the 
cumulative frequency. The simplest such transformation is to plot the logarithm of the 
cumulative frequency, which flattens the curve and makes extrapolation easier. 

A second approach would be to choose a distribution type, and adjust its free parameters, so a 
plot of the distribution matches the plot of the sample. This is commonly done by least squares 
fitting. Fitting by eye is also possible if an appropriate probability paper is adopted, on which the 
transformed axis is not logarithmic, but is transformed in such a way that the corresponding 
distribution plots as a straight line; however, this cannot be done for all distributions. 

These simple methods based on plotting positions, although widely used, are not recommended. 
Two fundamental problems with the methods are seldom addressed. First, it is inherent in the 
methods that each of N quantile bins of the distribution is occupied by one and only one sample 
point, an extremely unlikely outcome. Second, when a least squares fit is made for an analytical 
distribution form, the error being minimized is taken as the difference between the sample value 
and the distribution value, whereas the true error is not in the value but in its frequency position.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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D.4.3.4.2 Method of Moments: Conventional Moments 

An alternate method that does not rely upon visualization of the empirical distribution is the 
method of moments, of which there are several forms. This is an extremely simple method that 
generally performs well. The methodology is to equate the sample moments and the distribution 
moments, and to solve the resulting equations for the distribution parameters. That is, the sample 
moments are simple functions of the sample points, as defined earlier. Similarly, it may be 
possible to express the corresponding moments of an analytical distribution as functions of the 
several parameters of the distribution. If this can be done, then those parameters can be obtained 
by equating the expressions to the sample values. 

D.4.3.4.3 Method of Moments: Probability-weighted Moments and Linear Moments 

Ramified versions of the method of moments overcome certain difficulties inherent in 
conventional methods of moments. For example, simple moments may not exist for a given 
distribution form or may not exist for all values of the parameters. Higher sample moments 
cannot adopt the full range of possible values; for example, the sample kurtosis is constrained 
algebraically by the sample size.  

Alternate moment-based approaches have been developed including probability-weighted 
moments and the newer method of linear moments, or L-moments. L-moments consist of simple 
linear combinations of the sample values that convey the same information as true moments: 
location, scale, shape, and so forth. However, being linear combinations rather than powers, they 
have certain desirable properties that make them preferable to normal moments. The theory of 
L-moments and their application to frequency analysis has been developed by Hosking; see, for 
example, Hosking and Wallis (1997).  

D.4.3.4.4 Maximum Likelihood Method 

A method based on an entirely different idea is the method of maximum likelihood. Consider an 
observation, x, obtained from the density distribution f(x). The probability of obtaining a value 
close to x, say within the small range dx around x, is f(x) dx, which is proportional to f(x). Then, 
the posterior probability of having obtained the entire sample of N points is assumed to be 
proportional to the product of the individual probabilities estimated in this way, in consequence 
of Equation D.4.3-5. This product is called the likelihood of the sample, given the assumed 
distribution: 
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It is more common to work with the logarithm of this equation, which is the log-likelihood, LL, 
given by: 
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

 D.4.3-15 Section D.4.3 

The simple idea of the maximum likelihood method is to determine the distribution parameters 
that maximize the likelihood of the given sample. Because the logarithm is a monotonic function, 
this is equivalent to maximizing the log-likelihood. Note that because f(x) is always less than 
one, all terms of the sum for LL are negative; consequently, larger log-likelihoods are associated 
with smaller numerical values. 

Because maximum likelihood estimates generally show less bias than other methods, they are 
preferred. However, they usually require iterative calculations to locate the optimum parameters, 
and a maximum likelihood estimate may not exist for all distributions or for all values of the 
parameters. If the Mapping Partner considers alternate distributions or fitting methods, the 
likelihood of each fit can still be computed using the equations given above even if the fit was 
not determined using the maximum likelihood method. The distribution with the greatest 
likelihood of having produced the sample should be chosen. 

D.4.3.5 Extreme Value Analysis in an FIS 

For FIS extreme value analysis, the Mapping Partner may adopt the annual maxima of the data 
series (runup, SWL, and so forth) as the appropriate data sample, and then fit the GEV 
distribution to the data sample using the method of maximum likelihood. Also acceptable is the 
peak-over-threshold (POT) approach, fitting all observations that exceed an appropriately high 
threshold to the generalized Pareto distribution. The POT approach is generally more complex 
than the annual maxima approach, and need only be considered if the Mapping Partner believes 
that the annual series does not adequately characterize the process statistics. Further discussion 
of the POT approach can be found in references such as Coles (2001). The Mapping Partner can 
also consider distributions other than the GEV for use with the annual series. However, the final 
distribution selected to estimate the 1% annual chance flood level should be based on the total 
estimated likelihood of the sample. In the event that methods involve different numbers of points 
(e.g., POT vs. annual maxima), the comparison should be made on the basis of average 
likelihood per sample point because larger samples will always have lower likelihood function 
values. 

As an example of this process, consider extraction of a surge estimate from tide data. As 
discussed in Section D.4.4, the tide record includes both the astronomic component and a 
number of other components such as storm surge. For this example, all available hourly tide 
observations for the tide gage at La Jolla, California, were obtained from the National Oceanic 
and Atmospheric Administration (NOAA) tide data website. These observations cover the years 
from 1924 to the present. To work with full-year data sets, the period from 1924 to 2003 was 
chosen for analysis. 

The corresponding hourly tide predictions were also obtained. These predictions represent only 
the astronomic component of the observations based on summation of the 37 local tidal 
constituents, so departure of the observations from the predictions represents the anomaly or 
residual. A simple utility program was written to determine the difference between 
corresponding high waters (observed minus predicted) and to extract the maximum such 
difference found in each year. Only levels at corresponding peaks should be considered in the 
analysis because small-phase displacements between the predicted and observed data will cause 
spurious apparent amplitude differences.  
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The resulting data array consisted of 80 annual maxima. Inspection of this file showed that the 
values were generally consistent except for the 1924 entry, which had a peak anomaly of over 12 
feet. Inspection of the file of observed data showed that a large portion of the file was incorrect, 
with reported observations consistently above 15 feet for long periods. Although the NOAA file 
structure includes flags intended to indicate data outside the expected range, these points were 
not flagged. Nevertheless they were clearly incorrect, and so were eliminated from consideration. 
The abridged file for 1924 was judged to be too short to be reliable, and so the entire year was 
eliminated from further consideration. 

Data inspection is critical for any such frequency analysis. Data are often corrupted in subtle 
ways, and missing values are common. Years with missing data may be acceptable if the fraction 
of missing data is not excessive, say not greater than one quarter of the record, and if there is no 
reason to believe that the missing data are missing precisely because of the occurrence of an 
extreme event, which is not an uncommon situation. Gages may fail during extreme conditions 
and the remaining data may not be representative and so should be discarded, truncating the total 
period. 

The remaining 79 data points in the La Jolla sample were used to fit the parameters of a GEV 
distribution using the maximum likelihood method. The results of the fit are shown in Figure 
D.4.3-1 for the cumulative and the density distributions. Also shown are the empirical sample 
CDF, displayed according to a plotting position formula, and the sample density histogram. 
Neither of these empirical curves was used in the analysis; they are shown only to provide a 
qualitative idea of the goodness-of-fit. 

Figure D.4.3-1. Cumulative and Density Distributions for the La Jolla Tide Residual 

The GEV estimate of the 1% annual chance residual for this example was 1.74 feet with a log-
likelihood of -19.7. The estimate includes the contributions from all non-astronomic processes, 
including wind and barometric surge, El Niño superelevation, and wave setup to the degree that 
it might be incorporated in the record at the gage location. Owing to the open ocean location of 
the gage, rainfall runoff is not a contributor in this case. Note that this example is shown for 
descriptive purposes only, and is not to be interpreted as a definitive estimate of the tide 
residual statistics for this location for use in any application. In particular, the predictions were 
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obtained from the NOAA website and so were made using the currently-adopted values of the 
tidal constituents. While this may be acceptable for an open ocean site such as La Jolla where 
dredging, silting, construction, and such are not likely to have caused the local tide behavior to 
change significantly over time, this may not be the case for other sites; the residual data should 
be estimated using the best estimates of the past astronomic components. Nevertheless, this 
example illustrates the recommended general procedure for performing an extremal analysis 
using annual maximum observations, the GEV distribution, and the method of maximum 
likelihood. 

D.4.3.6 Simulation Methods 

In some cases, flood levels must be determined by numerical modeling of the physical processes, 
simulating a number of storms or a long period of record, and then deriving flood statistics from 
that simulation. Flood statistics have been derived using simulation methods in FIS using four 
methods. Three of these methods involve storm parameterization and random selection: the Joint 
Probability Method (JPM), the Empirical Simulation Technique (EST), and the Monte Carlo 
method. These methods are described briefly below. In addition, a direct simulation method may 
be used in some cases. This method requires the availability of a long, continuous record 
describing the forcing functions needed by the model (such as wind speed and direction in the 
case of surge simulation using the one-dimensional [1-D] BATHYS model). The model is used 
to simulate the entire record, and flood statistics are derived in the manner described previously.  

D.4.3.6.1 JPM 

JPM has been applied to flood studies in two distinct forms. First, as discussed in a supporting 
case study document (PWA, 2004), joint probability has been used in the context of an event 
selection approach to flood analysis. In this form, JPM refers to the joint probability of the 
parameters that define a particular event, for example, the joint probability of wave height and 
water level. In this approach, one seeks to select a small number of such events thought to 
produce flooding approximating the 1% annual chance level. This method usually requires a 
great deal of engineering judgment, and should only be used with permission of the Federal 
Emergency Management Agency (FEMA) study representative. 

FEMA has adopted a second sort of JPM approach for hurricane surge modeling on the Atlantic 
and Gulf coasts, which is generally acceptable for any site or process for which the forcing 
function can be parameterized by a small number of variables (such as storm size, intensity, and 
kinematics). If this can be done, one estimates cumulative probability distribution functions for 
each of the several parameters using storm data obtained from a sample region surrounding the 
study site. Each of these distributions is approximated by a small number of discrete values, and 
all combinations of these discrete parameter values representing all possible storms are simulated 
with the chosen model. The rate of occurrence of each storm simulated in this way is the total 
rate of storm occurrence at the site, estimated from the record, multiplied by each of the discrete 
parameter probabilities. If the parameters are not independent, then a suitable computational 
adjustment must be made to account for this dependence.  

The peak flood elevations for each storm are saved for subsequent determination of the flood 
statistics. This is done by establishing a histogram for each point at which data have been saved, 
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using a small bin size of, say, about 0.1 foot. The rate contribution of each storm, determined as 
described above, is summed into the appropriate elevation bin at each site. When this is done for 
all storms, the result is that the histograms approximate the density function of flood elevation at 
that site. The cumulative distribution is obtained by summing across the histogram from top 
down; the 1% elevation is found at the point where this sum equals 0.01. Full details of this 
procedure are provided in the user’s manual accompanying the FEMA storm surge model 
(FEMA, 1987). 

D.4.3.6.2 EST 

The U.S. Army Corps of Engineers has developed a newer technique, EST, that FEMA approved 
for FIS; a full discussion can be found in Scheffner et al. (1999). The technique is based on 
bootstrap resampling-with-replacement, random-neighbor walk, and subsequent smoothing 
techniques in which a random sampling of a finite length historical-event database is used to 
generate a larger long-period database. The only assumption is that future events will be 
statistically similar in magnitude and frequency to past events.  

The EST begins with an analysis of historical storms that have affected the study area. The 
selected events are then parameterized to define relevant input parameters that are used to define 
the dynamics of the storms (the components of the so-called input vectors) and factors that may 
contribute to the total response of the storm such as tidal amplitude and phase. Associated with 
the storms are the response vectors that define the storm-generated effects. Input vectors are sets 
of selected parameters that define the total storm; response vectors are sets of values that 
summarize the effects. Basic response vectors are determined numerically by simulating the 
historical storms using the selected hydrodynamic model.  

These sets of input and response vectors are used subsequently as the basis for the long-term 
surge history estimations. These are made by repeatedly sampling the space spanned by the input 
vectors in a random fashion and estimating the corresponding response vectors. By repeating this 
step many thousands of times, an extremely long period of simulated record is obtained. The 
final step of the procedure is to extract statistics from the simulated long record by performing an 
extremal analysis on the simulated record as though it were a physical record.  

D.4.3.6.3 Monte Carlo Method 

As discussed above for the JPM approach, the Monte Carlo method is based on probability 
distributions established for the parameters needed to characterize a storm. Unlike JPM, 
however, these probability distributions are not discretized. Instead, storms are constructed by 
randomly choosing a value for each parameter by generating a random value uniformly 
distributed between 0 and 1, and then entering the cumulative distribution at this value and 
selecting the corresponding parameter value. Each storm selected by this Monte Carlo procedure 
is simulated with the hydrodynamic model, and shoreline elevations are recorded. Simulating a 
large number of storms in this way is equivalent to simulating a long period of history, with the 
frequency connection established through the rate of storm occurrence estimated from a local 
storm sample. The Monte Carlo method has been used extensively in concert with a 1D surge 
model by the State of Florida to determine coastal flood levels; see the 1D surge discussion in 
Section D.4.4 for additional information. An example of a Monte Carlo approach to the statistics of 
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wave runup in sheltered waters is shown in a supporting case study document (PWA, 2004). In that 
example, distributions were first developed for the forcing functions (winds, waves, water levels), 
and from them a long simulated time series was derived by Monte Carlo random sampling. Another 
example of a Monte Carlo analysis is shown in the context of event-based erosion in Section D.4.6; 
in that example, a Monte Carlo approach was used to relate bluff failure to bluff toe erosion. 

D.4.3.7 Additional Resources 

The foregoing discussion has been necessarily brief; however, the Mapping Partner may consult 
a large amount of literature on probability, statistics, and statistical hydrology. Most elementary 
hydrology textbooks provide a good introduction. For additional guidance, the following works 
might also be consulted: 

Probability Theory:   
An Introduction to Probability Theory and Its Applications, Third Edition, William Feller, 1968 
(two volumes). This is a classic reference for probability theory, with a large number of 
examples drawn from science and engineering. 

The Art of Probability for Scientists and Engineers, Richard Hamming, 1991. Less 
comprehensive than Feller, but provides clear insight into the conceptual basis of probability 
theory. 

Statistical Distributions: 
Statistics of Extremes, E.J. Gumbel, 1958. A cornerstone reference for the theory of extreme 
value distributions. 

Extreme Value Distributions, Theory and Applications, Samuel Kotz and Saralees Nadarajah, 
2000. A more modern and exhaustive exposition. 

Statistical Distributions, Second Edition, Merran Evans, Nicholas Hastings, and Brian Peacock, 
1993. A useful compendium of distributions, but lacking discussion of applications; a formulary. 

An Introduction to Statistical Modeling of Extreme Values, Stuart Coles, 2001. A practical 
exposition of the art of modeling extremes, including numerous examples. Provides a good 
discussion of POT methods that can be consulted to supplement the annual maxima method. 

Statistical Hydrology: 
Applied Hydrology, Ven Te Chow, David Maidment, and Larry Hays, 1988. One of several 
standard texts with excellent chapters on hydrologic statistics and frequency analysis. 

Probability and Statistics in Hydrology, Vujica Yevjevich, 1972. A specialized text with a lot of 
pertinent information for hydrologic applications. 

General: 
Numerical Recipes, Second Edition, William Press, Saul Teukolsky, William Vetterling, and 
Brian Flannery, 1992. A valuable and wide ranging survey of numerical methods and the ideas 
behind them. Excellent discussions of random numbers, the statistical description of data, and 
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modeling of data, among much else. Includes well-crafted program subroutines; the book is 
available in separate editions presenting routines in FORTRAN and C/C++. 

Software:  
Several open-source and commercial software packages provide tools to assist in the sorts of 
analyses discussed in this section. In particular, the S, S-PLUS, and R programming languages 
(commercial and open-source versions of a high-level statistical programming language) include 
comprehensive statistical tools. The R language package is available for free from the web site 
http://www.r-project.org/; several books discussing the use of R and S are available. Other well-
known software packages include Mathematica, Matlab, SPSS, and SYSTAT. 
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D.4.4 Waves and Water Levels 

This section provides guidance for two study components: the definition of offshore waves and 
their transformation to the surf zone; and the determination of water levels, including tide and 
wind setup.  Guidance on special considerations in sheltered waters is provided for both of these 
components.  This section also includes guidance on water level during El Niños, 1% still water 
levels (SWLs), combined effects of surge and riverine runoff, and consideration of non-
stationary processes. 
 
D.4.4.1 Waves 

Section D.4.2 defines the analysis steps of a typical Flood Insurance Study (FIS) in terms of 
zones moving from the offshore zone to the shoaling zone to the surf zone to the backshore. The 
characteristics of waves at the surf zone must be defined to estimate runup, setup, and 
overtopping (see Section D.4.5), erosion (see Section D.4.6), and effects on coastal structures 
(see Section D.4.7) at the shore.  Wave characteristics at the surf zone are seldom available 
directly from measurements.  Therefore, typical steps in the wave analysis for a FIS include 
defining wave characteristics in the offshore zone, transforming the waves to the surf zone, and 
then creating equivalent deepwater water characteristics (back-transforming), so the transformed 
characteristics can be easily used in subsequent analyses. 

The primary source of offshore wave information consists of predictions from wave hindcasting 
models, supported by limited measurements. The hindcast databases have been extended to cover 
relatively long periods (30 years or more), while measurements are generally available for only a 
few years and are sparsely spaced. Hindcasts and observations commonly represent conditions at 
a point offshore, usually in deep water. Because waves in the surf zone are strongly influenced 
by local bathymetry and shoreline configuration, hindcast or measured wave data must be 
modified to account for wave transformations between the reference station and the study area.  

The guidance provided below on wave analysis includes the following:  

• Definition of wave spectra (D.4.4.1.1), which represent the distribution of wave 
energy over frequencies and directions, and are used in some wave transformations; 

• Discussion of deepwater wave data (D.4.4.1.2), which may be used where available 
to define offshore wave characteristics; 

• Discussion of hindcast offshore wave data (D.4.4.1.3), which are considered the most 
likely sources of wave characteristics for FISs on the open coast; 

• Description of wave transformations (D.4.4.1.4), with emphasis on spectral 
transformation methods and a discussion of potential regional approaches to spectral 
transformations; and 

• Description of special considerations in sheltered waters (D.4.4.1.5), where wave 
generation is dependent on local winds, and offshore waves are typically determined 
using wave hindcasts, which are often fetch-limited. 
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Because it typically occurs in the backshore zone, wave overland propagation and dissipation is 
treated in Section D.4.5, Wave Setup, Runup, and Overtopping.   

Several general methods of defining offshore waves and transforming them to the surf zone with 
varying complexity are described here; the methods selected in a particular study area will 
depend on the availability of information and the complexity of shoaling zone and surf zone 
characteristics.  It is difficult to define a single method for a given setting – judgment is required 
by the Mapping Partner to select the type and level of analysis appropriate to the setting and 
study needs. A general consideration is that the level of wave analysis should be appropriate to 
support the methods to be used in subsequent analysis of wave effects at the shoreline.    

D.4.4.1.1 Wave Spectra 

The characterization of random waves by spectra is summarized here. Wave spectra represent 
the distribution of wave energy over frequency and direction. Wave spectra can be either 
continuous or discrete and can be expressed either one-dimensionally or two-dimensionally. 

A one-dimensional (1-D) continuous spectrum, S f( ) , specifies the distribution of the wave 
energy over frequency, f, as shown schematically in Figure D.4.4-1a.  

 

 
The energy density contained in a small frequency interval, ∆f, is approximately S(f)∆f; the 
integral over all frequencies is the total energy density of the waves, E, where: 
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is the mean square of the fluctuations of the water surface η about the mean level. The spectrum 
can also be two-dimensional (2-D), with the wave energy distributed over both wave direction 
and frequency as shown in Figure D.4.4-1b. A 2-D (or directional) wave energy spectrum is 
denoted as S f( ,θ )  in which θ  is the direction from which the waves are arriving; that is, 
according to the usual convention, a north wind generates north waves. In this case, the energy 
density is the double integral over both direction and frequency: 
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such that the total energy at any frequency is the integral of the energy spectral density over 
direction at that frequency. 

Wave spectra can also be discrete, and analogues exist between the expressions for discrete and 
continuous spectra. Figure D.4.4-2a shows an example of a 1-D discrete spectrum in which the 
total energy density is now given by a summation over a set of N discrete frequency components: 
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Similarly, the 2-D discrete spectrum, Figure D.4.4-2b, is denoted as S f( n m,θ ) , such that the total 
energy density, E, is given by the double summation over N frequencies and M(n) directions:  
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n m
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As can be seen from these equations, the essential difference between continuous and discrete 
spectra is that, for continuous spectra, energy is contributed by all frequencies and directions (for 
2-D continuous spectra), whereas for discrete spectra, the wave energy contribution is non-zero 
only at particular frequencies (and at particular directions for 2-D discrete spectra). In the 
guidance below, discrete spectra are assumed to be used unless otherwise stated. 

D.4.4.1.2 Measured Deepwater Wave Data 

Ideally, long-term wave data measurement programs could replace the use of deepwater wave 
hindcasts and transformation modeling to shallow water. However, wave gages are expensive to 
install and maintain, and are often temporarily out of service for maintenance or repair. 
Nevertheless, wave measurements are extremely important for confirmation and verification of 
the results of hindcast modeling. For the Pacific Coast, the principal sources of wave 
measurements are the National Data Buoy Center (NDBC) and the Coastal Data Information 
Program (CDIP), which is supported by the State of California and the U.S. Army Corps of 
Engineers (USACE). There are also “records of opportunity” that may be obtained from oil 
company platforms, local agencies, and numerous engineering studies performed along the coast. 

D.4.4.1.2.1 National Data Buoy Center 

The NDBC (<http://www.ndbc.noaa.gov/>) is a branch of the National Oceanic and 
Atmospheric Administration (NOAA). NDBC has installed and maintained offshore 
meteorological and oceanographic buoys since the late 1960s. Many of these buoys have been in 
place at specific locations for a sufficiently long period such that reasonably accurate wave 
height statistics can be derived. (Federal Emergency Management Agency [FEMA] studies 
typically require a minimum of 30 years of data to achieve acceptable predictions.) Many other 
buoy locations are available with limited record periods and are not suitable for direct statistical 
prediction of extremes. However, the data from any wave sensor might still be very useful to 
check wave hindcast models. 

Figure D.4.4-3 shows locations of the NDBC Met-Ocean buoys in the Southern California area; 
Figure D.4.4-4 shows locations in the North Pacific. Not all of the buoys that are shown on the 
maps are always present, and often those shown are temporarily removed for maintenance and 
may be replaced in slightly different locations. Data inventories (locations, dates of installation, 
and records) are available at the website noted above. Most wave data are in the form of 1-D 
spectra with summaries of wave height and periods (spectral peak and average); very few have 
wave directional information. 
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Figure D.4.4-3. NDBC Buoy Locations near Southern California 

 

Figure D.4.4-4. NDBC Buoy Locations in the North Pacific 

The NDBC buoys record wave amplitudes by sensing the vertical heave acceleration. To obtain 
wave direction estimates, the sensors include two horizontal accelerometers. The moorings are 
designed to minimize the restraints on the buoy motions, but it should be recognized that this is 
not a perfect decoupling; in particular, the response to longer waves (periods greater than 20 
seconds) may be affected. In the most recent buoy configuration, wave data are recorded for 20 
minutes each hour. For directional spectra buoys, the outputs from the horizontal accelerometer 
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sensors are used to derive a mean wave direction and an angular spreading. The estimates of 
angular spreading are inherently poor, as only two coefficients can be determined to represent 
what should commonly be a narrow directional distributional function associated with swells. 

D.4.4.1.2.2 Coastal Data Information Program 

The CDIP employs a number of nearshore buoys that record directional wave spectra. They are 
installed and maintained by Scripps Institution of Oceanography under the sponsorship of 
USACE, Office of Naval Research, the State of California, and others. The program has been 
expanded recently to include installations on the Atlantic Coast, the Great Lakes, Hawaii, and 
other areas of the Pacific Ocean (<http://cdip.ucsd.edu/dbase/web_stations/public_station_ 
directory.shtml>). Some older data include measurements by pressure sensors rather than buoys. 

Data from the CDIP buoys are analyzed to give wave heights and estimates of wave directions. 
The basic sensors are accelerometers that sense vertical acceleration and two orthogonal 
horizontal accelerations. These exhibit limitations similar to those discussed above for NDBC 
directional wave buoys. The “apparent” horizontal accelerations may be contaminated by the 
buoy responses in “tilting” (pitch and roll). The relative magnitudes of the two components 
provide a good approximation to mean wave direction at each frequency band within the 
spectrum, but directional spread estimates are inherently limited because only two components 
are available to define what might be a relatively narrow directional distribution in shallow 
waters. 

D.4.4.1.3 Hindcast Wave Data 

Hindcast wave data consist of estimates of wave parameters derived from weather data, rather 
than actual wave observations, through application of wave generation models. Some earlier 
flood studies used hindcast wave data developed by the Navy’s Fleet Numerical Weather 
Central, which was analyzed and published by Meteorology International Inc. (MII, 1977). The 
Wave Information Studies (WIS) developed by the USACE Waterways Experiment Station at 
Vicksburg have also been used. The WIS data include statistical summaries of wave conditions 
and time series for the period from 1956 to 1975 for the Pacific Coast (WIS Report 17 by Jensen 
et al., 1989), with a separate report (WIS Report 20 by Jensen et al., 1992) for Southern 
California. An important limitation of these older studies is that they did not include swells from 
the Southern hemisphere or from Northeast Pacific tropical storms. The WIS period also 
corresponded to a time when satellite meteorological measurements were not available or were 
very limited, and the number of data buoys was much smaller than it is now. 

Significant improvements in the analysis of historical meteorology have been made in recent 
years. Wind fields have been re-analyzed and have been used with so-called third- and fourth-
generation wave hindcast models to yield improvements in wave hindcasts over periods of 20-30 
years. The advent of very economical high speed computing capabilities has enabled directional 
wave spectral modeling to be performed on the entire Pacific Ocean, and even globally. These 
newer models have been calibrated and verified by comparison with measured data at offshore 
buoys and with satellite scatterometer measurements. 
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Wave hindcast databases that can be considered for use in an FIS include: 

• WAVEWATCH III by Fleet Numerical Meteorology and Oceanography Center 
(FNMOC); 

• WIS by the USACE; and 

• Global Reanalysis of Ocean Waves (GROW) by Ocean Weather Inc. 

D.4.4.1.3.1 WAVEWATCH III 

The U.S. Navy FNMOC prepares weather and wave forecasting for all oceans of the world 
(<https://www.fnmoc.navy.mil/PUBLIC/>). The basic model, known as WAVEWATCH III, 
computes directional wave spectra using 25 frequency and 24 direction bins. Products include 
sea wave heights, periods, and directions; swell wave heights, periods, and directions; and 
several other meteorological parameters. The emphasis of the available data is forecasting. There 
is an historical database dating back to July 1997 that can be downloaded (with permission) from 
the FNMOC site. This database is too short for estimating extreme waves. However, given that 
the model is readily available and can be downloaded from the WAVEWATCH site, the 
hindcasting model could conceivably be extended by a user as long as the analyzed wind fields 
for earlier years are prepared or available. WAVEWATCH III is a third-generation deepwater 
wave prediction model (WAMDIG, 1933; Komen et a1., 1994). 

D.4.4.1.3.2 Wave Information System 

The WIS was developed by the Waterways Experiment Station of the USACE 
(<ftp://wisftp.wes.army.mil/pub/outgoing/wisftp/>). WIS reports cover both the U.S. coasts and 
the Great Lakes. Wave hindcast data include separate values for sea and swell wave heights, 
periods, and directions. Many stations are located close to shore and include some portion of the 
shallow water transformations. For the Pacific Coast, the period of hindcasting is 1956 through 
1975. Figures D.4.4-5 and D.4.4-6 illustrate examples of locations for which WIS data can be 
downloaded from the referenced website. 

WIS is currently being updated to add coverage for a more recent time period. It has been 
suggested that WIS may overestimate wave heights along the Pacific Coast. Consequently, if 
WIS data are to be used in a study, the Mapping Partner must review them to assess their 
accuracy by comparison with other data available for the area. 

D.4.4.1.3.3 Global Reanalysis of Ocean Waves 

GROW data are available from Ocean Weather Inc. at <www.oceanweather.com/metocean/ 
grow/index.html>. These data include the results of a hindcast modeling system that covers the 
entire Pacific Ocean. The data are continually updated after comparisons with buoy 
measurements and scatterometer satellite observations. The data include a total of 23 parameters 
including heights, periods and directions for seas and swells.  Also included are wind speed and 
direction, directional spreading of wave energy, and spectral moments (first and second). The 
hindcasts are based on directional spectral modeling using 23 frequency bands by 24 direction  
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Figure D.4.4-5.  WIS Stations in Central California 

bands. GROW data are available at 3-hour intervals beginning January 1, 1970 through present, 
on grid points at every 0.625 degrees latitude and 1.25 degrees longitude. Figure D.4.4-7 shows 
some of the grid points that are available along the Pacific Coast. 

The wave data files can be purchased in ASCII format. Standard output includes 23 parameters 
(19 meteorological and wave parameters) every 3 hours for the period of the hindcast (1970 to 
the present). The data include: 

• Sea heights (energy), periods, and directions 
• Swell heights (energy), periods, and directions 
• Significant wave height, dominant period, and dominant direction (from sea or swell) 
• Spectral moments (m1 and m2) 
• Angular spreading parameter (related to the exponent n in cosn(θ – θ0)). 
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Figure D.4.4-6.  WIS Stations in Southern California 

From this data, directional spectral inputs for application to shallow water wave transformations 
can be specified. The directional spreading is available, but it is necessary to adopt a spectral 
peakedness factor in a Joint North Sea Wave Project (JONSWAP) type spectral formulation. The 
spectral form should be taken (after Goda, 1985) as: 
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in which the directional spectrum is assumed to be separable into frequency and direction terms. 
Directional information is contained in the function G; subscript p denotes peak; α, γ, and σ are 
parameters with  γ = 1 for sea and 9 for swell; σa = 0.07; and σb = 0.09. 
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Figure D.4.4-7.  Example of GROW Station Locations Along the Pacific Coast 

Directional spreading is modeled using the following cosine power function: 

 G(θ) = G0 cosn (θ- θ main) (D.4.4-7) 

in which θmain is the main wave direction (MWD) and n is the directional spreading index. The 
relationship between the angular spreading parameter in the GROW hindcast (ANGSPR) and n 
is as follows: 
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where Γ is the gamma function. Goda suggests that G0 should be treated as a function of 
frequency relative to the peak frequency. This refinement may not be essential; sensitivity tests 
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have shown that the practical difference in results after wave transformation routing to shallow 
water is negligible. 

GROW assumes deepwater (depth > 3,200 feet) at the hindcast point. The reference GROW 
point should be taken offshore of this depth and clear of all headlands, islands, and shoals that 
may cause wave directions to be modified. Wherever possible, wave data should be evaluated by 
comparison with measurements that may be available in the study area.  

D.4.4.1.3.4 Hindcast Wave Data Comparisons 

In the future, alternative sources of wave data such as longer records of direct measurements 
from offshore buoys, improved wave modeling from WIS or WAVEWATCH III may be 
available and may be advantageous for use. The principal restriction of these alternative sources 
at present is that the WAVEWATCH III data cover a limited period, and the WIS data for the 
Pacific Coast are thought to give wave heights that are somewhat too large. It has also been 
noted that the wave periods reported by offshore buoys may be too low. Comparisons between 
data sources can be made where they overlap. Specifically, the GROW data overlap with the 
WIS data between 1970 and 1975, and with buoy data where available. There are generally no 
overlaps between the NOAA buoy data and the currently available WIS data ending in 1975. 

Normally, GROW data are provided at 3-hour intervals, which should be adequate for any FIS. 
This yields 2,920 records per year (2,928 in a leap year). The GROW data include 23 parameters 
(19 meteorological and oceanographic parameters) at each time step, so a complete 30-year file 
would contain about 90,000 data lines. This may exceed the capacity of some common software, 
although many specialized packages are available for manipulation of data sets of this 
magnitude. The NOAA data are stored in annual blocks on the NOAA website. The WIS data are 
stored at 3-hour time steps with 15 parameters that include the separation of sea and swell. WIS 
II (Pacific Coast) provides a record from 1956 through 1975 in text format, in addition to 
statistical summaries. 

At the present time, the GROW hindcasts may provide the most comprehensive and current data 
set for FIS use in most open coast locations. 

D.4.4.1.4 Wave Transformations 

D.4.4.1.4.1 Overview 

The primary wave data used in a Pacific Coast FIS are obtained from offshore deepwater 
hindcasts and observations as described above. However, the deepwater wave characteristics 
cannot be used directly to describe flood processes onshore. During propagation from deep water 
to the shallow water at the study site, the waves undergo major transformations in amplitude and 
direction, which depend upon the bathymetry over which they travel. To determine the ultimate 
onshore wave effects and flood levels (erosion, runup, setup, overtopping, and so forth) the 
Mapping Partner must account for these changes in the wave characteristics by determining the 
wave transformations, for a particular study area and coastal setting.  

The major transformation processes are refraction, diffraction, and shoaling, all of which alter 
the waves’ heights, while refraction and diffraction also affect their paths. For more information 
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on these fundamental wave processes, the Mapping Partner should consult either the Shore 
Protection Manual (USACE, 1984) or the Coastal Engineering Manual (CEM) (USACE, 2003). 
Other processes that may be important include local wave growth because of winds, wave-wave 
interactions, wave-current interactions, and reflection. The Mapping Partner shall consider and 
document these processes when appropriate. 

The level of complexity of the Mapping Partner’s wave transformation effort depends upon two 
major considerations. First is the complexity of the bathymetry in the site vicinity. If the site lies 
in an area that can be adequately characterized by straight and parallel depth contours, relatively 
simple wave transformation procedures may be entirely acceptable. If, however, the site is 
fronted by rapidly varying bathymetry, such as a steep, narrow canyon, or by islands or shoals, 
then the wave propagation behavior is correspondingly complex, and complex procedures are 
required. 

The second consideration is the manner in which the transformed wave parameters will be used 
in subsequent surf zone and shoreline computations.  Section D.4.5 includes three potential 
methods for wave setup computations that may be used depending on complexity of the surf 
zone, setting, and overall study methodology.  These are: 1) a parameterized version of the 
Direct Integration Method (DIM); 2) a DIM numerical model; and 3) Boussinesq modeling.  The 
parameterized DIM approach requires only the deepwater equivalent significant wave height, 
peak period, and peak enhancement parameter.   The numerical DIM approach requires an 
equivalent deepwater wave frequency spectrum, and the Boussinesq approach requires a full 
directional spectrum or wave time series.  The selection of transformation methods must 
therefore consider the input required in this subsequent analysis step. 

The complexity of the analysis depends on the complexity of the site characteristics and 
dominant transformation processes that must be represented.  In some study areas, both the 
shoaling zone and surf zone bathymetry may be relatively simple, and the offshore waves 
relatively uniform.  In this case, complex transformation methods may not be required.    For the 
case of simple bathymetry with straight and parallel contours, this may be accomplished with 
shoaling and Snell’s Law for refraction. This approach may be applied to a single wave or to a 
wave spectrum.  For more complex bathymetries and to account for other transformation 
processes (e.g., diffraction), transformation determinations based on 2-D hydrodynamic 
modeling, such as Boussinesq models, are needed.  These models may be used to develop 
spectral transformations, or if the wave transformations are nonlinear, to transform the times 
series of the wave surface elevations. In sheltered waters or other areas where significant wave 
generation occurs in the shoaling zone, a 2-D spectral wave model that also accounts for wave 
generation may be desirable.  The guidance below provides background primarily on the spectral 
transformation methods.    

As shown in the accompanying flow chart (Figure D.4.4-8), the determination of wave 
transformations for a typical Pacific Coast FIS includes four major steps: 

1. Review site conditions and available wave information. 
2. Develop a transformation approach. 
3. Perform the transformation from deepwater to nearshore. 
4. Convert nearshore results to equivalent deepwater conditions. 
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If the study site lies in an area of extremely complex bathymetry, a high resolution 
transformation model might be required to resolve local refraction and diffraction behavior. 
Rather than perform the entire analysis using a highly detailed model in offshore areas where 
conditions do not require it, the Mapping Partner can establish the wave transformations using a 
two-step process, first bringing the waves close to shore with a model of normal resolution, and 
then performing a second nearshore transformation of those waves using a fine grid in the more 
local area of complex bathymetry. 

The spectral method of wave transformation relates shallow water spectra with offshore spectra 
through multiplication by an array of wave transformation coefficients. The transformation array 
is developed by application of a 2-D hydrodynamic wave transformation model applied over the 
bathymetry between the site and the deepwater data source points. It is recognized that there may 
be situations where alternative methods may be more appropriate. For example, wave 
transformations in sheltered waters may be better determined using a spectral wave model that 
also considers wind wave generation (see Subsection D.4.4.1.5). 

The Mapping Partner must perform a thorough and detailed review of site conditions as part of 
this wave transformation analysis. A comprehensive summary of the site should include the 
following items: 

• Bathymetry sets for the offshore and nearshore regions. 

• Locations for several cross-shore transects in the nearshore region that encapsulate 
the local character of the coastline and the seabed steepness. 

• 

• Identification of special processes (such as diffraction, reflection, or the presence of 
strong currents or local winds) that might influence wave transformation. 

• A specific definition of the site boundary for the analysis. 

• The location of the source offshore spectral wave data. 

• Appropriate tide level. In most cases a single tide level on the order of mean higher 
high water (MHHW) is sufficient for flood studies. However, higher water levels or a 
range of levels may be considered as appropriate. 

The Mapping Partner shall select nearshore points that act as output locations for the 
transformation of the offshore wave spectra. It is recommended that the Mapping Partner shall 
select nearshore points just outside the surf zone as defined by the large waves breaking during 
extreme events. Engineering judgment shall be used to determine transect spacing. It is 
recommended that transects extend far enough in the seaward direction, so the most seaward 
point is outside of the surf zone. An example approach to selecting a nearshore point and a series 
of cross-shore transects is shown in Figure D.4.4-9. The shore transects are located to represent 
reaches of shoreline with similar wave exposure and beach characteristics including man-made 
features such as coastal structures. 
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Figure D.4.4-8.  Flow Chart for Wave Transformation Analysis 

As a necessary part of quality control, the Mapping Partner is responsible for ensuring that 
numerical transformation results adequately represent site behavior. If numerical methods that 
have not been validated are used, the Mapping Partner shall consider the need to obtain field data 
measurements to validate the wave transformation procedures. 

D.4.4.1.4.2 Spectral Transformation Methods 

In the spectral method, the offshore wave spectrum is converted to a nearshore wave spectrum 
using an array (or arrays) of wave transformation coefficients for discrete wave frequency and 
offshore direction intervals. A conceptual diagram of the spectral method using an array of 
transformation coefficients is shown in Figure D.4.4-10.  
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Figure D.4.4-9.  Example Placement of Nearshore Point and  
Location of Cross-Shore Transects 

Figure D.4.4-10.  Conceptual Diagram of Spectral Transformation 

This transformation process should incorporate all important transformation processes in the 
study area, including shoaling, refraction, sheltering, diffraction, island blocking, and so forth. In 
this process, the discrete frequencies remain the same as they were in deepwater; however, the 
discrete directions change owing to wave refraction. At the nearshore location, the spectrum is 
consolidated to a single direction per frequency, and stored for later use. This consolidated 
spectrum is also transformed back to deepwater for a different set of applications. The back-
transformation allows the Mapping Partner to work with equivalent deepwater conditions; the 
back-transformed deepwater spectrum is characterized by one direction per frequency. 

Spectral transformations are often based on application of a 2-D hydrodynamic model to develop 
the array of transformation coefficients, and this level of analysis will be appropriate in most 
situations on the Pacific Coast.    
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Transformation of the Deepwater Spectrum to a Nearshore Location 

The array of transformation coefficients can take several forms depending on the methods used 
to calculate them; more complex site conditions require more complex calculations to achieve 
adequate accuracy. A representative conceptual form of the transformation relationship is:  

' 2 2
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in which subscripts o and ns denote offshore and nearshore conditions, and m and n denote the 
discrete direction and frequency components, respectively; the prime denotes the transformed 
nearshore direction. Ks is the shoaling coefficient, Kr is the refraction coefficient, 
and accounts for the change of direction between offshore and nearshore (not 
modifying the energy level of the spectral element); taken together, K

( , ,,n o n mG fθ θ

r and G represent the 
effects of refraction.  

In studies where the DIM approach will be used for setup and runup, calculation of the full 
nearshore directional spectrum is unnecessary because the subsequent setup and runup 
calculations require only the frequency spectrum (no direction information is required after the 
wave transformation calculations). Then the spectral transformation becomes: 

( )
2 2

, , , ,
1

( ) ( ) ( , ) ( , )
M n

ns n s n r n o n m o n o n m
m

S f K f K f S fθ θ
=

= ∑
  (D.4.4-11) 

where M(n) is the number of direction components for the nth frequency component. 

If the nearshore directional spectrum is desired, the direction transformations must be 
determined. For straight and parallel depth contours, Snell’s Law gives a simple relationship 
based on offshore angle of wave approach, nearshore depth, and wave frequency. Otherwise, the 
directional transformation can be complex owing to converging and diverging zones of wave 
energy; the Mapping Partner shall develop the directional transformation with care. One 
approach is to develop smoothed directional distributions at the shallow water location for each 
frequency. This approach lends itself to the application of discrete back-refraction models and is 
used by CDIP. An alternative method is to establish an array of mean wave directions at the 
shallow water location based on transformation of directional distributions from each offshore 
direction and selected frequency; this approach lends itself to application of contemporary 2-D 
spectral wave transformation models. 

In areas where the bottom contours are reasonably straight and parallel, the Mapping Partner 
may choose instead to carry out the transformation using simplified methods for straight and 
parallel contours. In this case, the necessary linear wave transformation coefficients are given by: 
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where CG is the group velocity and the subscript o denotes the deepwater location; the 
unsubscripted variables are at the nearshore site. The refracted wave directions are given by 
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The wave celerity, or phase velocity, is given by C L= T  where T is the wave period and L is 
the wave length, related by the implicit dispersion equation: 
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The water depth is denoted by h and the gravitational acceleration by g. 

Consolidation of the Nearshore Spectrum 

After the nearshore spectrum S fns ( ,n θ '
n,m )  is established, it is consolidated into a discrete 

spectrum with a single direction for each frequency. The requirements for the consolidated 
nearshore spectrum are: (1) that total energy be preserved, and (2) that the longshore component 
of momentum be preserved.  

The total energy of the nearshore spectrum for each frequency, fn: 
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The effective direction, θ '
eff ,n , for each frequency is determined from 
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in which CG and C are the group and phase velocities, respectively.  

Transformation of the Consolidated Nearshore Spectrum to Deepwater Equivalent 

After the equivalent nearshore spectrum has been determined, it can be back-transformed to 
deepwater by applying the shoaling or refraction coefficients previously found. The equivalent 
deepwater spectrum is the nearshore spectrum de-shoaled to deepwater, but retaining the 
influence of refraction. Therefore, the equivalent deepwater spectrum is the spectral version of 
the equivalent deepwater wave height, H ′

0 ; traditionally used for coastal analyses. The 
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equivalent deepwater spectrum, S '
o ( )fn ; can be calculated from either the nearshore spectrum or 

the incident deepwater spectrum. In the first case, the nearshore spectral elements are divided by 
the appropriate shoaling coefficients: 
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In the second case, the deepwater equivalent spectrum is calculated directly from the incident 
deepwater spectrum by incorporating the effect of refraction: 
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Spectral Transformation Output 

Output from the spectral transformation approach should consist of the following items: 

• A wave frequency spectrum outside the breaker line at one or more nearshore point(s); 
• An equivalent deepwater wave spectrum; 
• An equivalent deepwater significant wave and a peak period; 
• Three spectral moments (m0, m1, and m2) for the equivalent deepwater wave spectrum; 

and  
• Directional information, if required, for the equivalent offshore spectrum. 

Wave spectra for each transect in the nearshore are converted to deepwater conditions and 
equivalent deepwater wave parameters are calculated from the spectra. The necessary spectral 
moments can be calculated from the following equation: 
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where mi is the ith spectral moment and (a,b) are suitable cutoff frequencies. The spectral 
moments are used to calculate the spectral width (or narrowness of the peak of the frequency 
spectrum), which is important for the setup calculations discussed in Section D.4.5. The spectral 
moments should be calculated by summing the spectral terms from the low frequency cutoff, a, 
to the high frequency cutoff, b. The low frequency cutoff is typically assumed to be 0.0 Hz, but it 
is often as high as 0.03 Hz, depending on the analysis methods employed to generate the offshore 
spectrum. For the purposes of calculating the spectral width only, the high frequency cutoff 
should be limited to about 1.8 fp, where fp is the peak frequency (Goda, 1983). This cutoff is 
recommended so that the higher frequency wind waves do not dilute the calculated “peakedness” 
of the spectrum. 

4.4.1.4.3  Regional Transformation and CDIP 

Accurate prediction of waves in the nearshore region requires modeling the evolution of the 
deepwater wave spectrum across the continental shelf. In some regions such as Southern 
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California, offshore islands must also be taken into account. As a result, predicting waves at a 
single nearshore location generally requires setting up a relative large bathymetry grid, or a 
series of nested grids, to adequately address the sheltering and shallow water transformation of 
the incident waves. 

Given the relatively large time and computational investment required to set up such a model for 
a single coastal site or short reach of coast, government agencies (NOAA, USACE, U.S. 
Geological Survey [USGS], U.S. Navy) are frequently adopting a broad regional wave modeling 
approach. There are several commercial and public domain spectral wave models that can be 
used for regional shallow water wave problems, and relatively large-scale regional wave 
modeling has become computationally and economically tractable with present computer 
technology. Wave model domains are prepared to provide predictions for relatively long sections 
of coastline (e.g., the entire Southern California Bight), and sheltering and shallow water effects 
are pre-computed to the extent permitted by the model resolution. Where such data are already 
available, Mapping Partners should adopt them if possible, and focus study resources more 
efficiently on specific localized environment factors (e.g., an ebb shoal at an inlet, or nearby 
reflective coastal structures) that may influence flood levels. As noted before, a second high-
resolution nearshore transformation step may be needed. 

Should a Mapping Partner be required to undertake development of a regional numerical 
transformation model, significant considerations include not only which of the available spectral 
wave models should be used, but especially the choice and implementation of the model’s 
various tools and variables (such as grid characteristics, boundary conditions, and parameterized 
wave physics) to achieve sufficiently accurate results. Perhaps the most important of these model 
factors is whether any nonlinear aspects of the wave spectrum evolution from the shelf break to a 
location outside the surf zone need to be included. In most cases, these nonlinear effects can be 
neglected, and the Mapping Partner can use a fully linear approach in which the regional 
modeling only has to be performed once. Linear wave transformation coefficients are produced 
by the model in this instance, and can be used repeatedly to transform any deepwater wave 
spectrum to the coastline.  

An independent regional transformation modeling effort is only undertaken by the Mapping 
Partner with concurrence of the FEMA study representative. In many instances, the Mapping 
Partner will adopt transformation data developed by others, such as the CDIP program described 
in the subsections below. 

CDIP Coastal Wave Transformation Database 

The CDIP at Scripps Institution of Oceanography has implemented a spectral refraction 
modeling method to derive regional coastline wave predictions just seaward of the surfzone 
(O'Reilly and Guza, 1991). The model accounts for island blocking, wave refraction, and wave 
shoaling. Spectral refraction back-refracts wave rays from the site of interest to unsheltered 
deepwater over the entire range of possible wave frequencies and wave directions. The retained 
starting and ending ray angles are then used to map a deepwater directional spectrum to a 
sheltered or shallow water spectrum at the back-refraction site. The resulting solutions are more 
realistic than those obtained using an assumption of unidirectional monochromatic deepwater 
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waves. The Mapping Partner should consult technical documents from CDIP (2004a and 2004b) 
for a complete description of model validation and user’s documentation. 

When available, the Mapping Partner shall adopt CDIP transformation data to carry out the 
deepwater to nearshore wave transformation. An overview of the general steps to be followed by 
the Mapping Partner in cooperation and coordination with CDIP for the development of 
nearshore wave information is shown in Figure D.4.4-11. The primary steps to be taken include: 

1. 

2. Validate coefficients with local wave data if available, and assess the need for additional 
validation measurements. 

3. Transform selected deepwater (unsheltered) wave hindcast spectra to the nearshore model 
sites using the reviewed transformation coefficients. 

These steps are discussed below. 

Local Bathymetry Assessment 

CDIP maintains regional wave model bathymetric grids, and software to create and modify them, 
for the coast of California. The water depths in the grids extend from approximately 15-foot 
depth out to the continental shelf break. The grids are derived primarily from digital 
hydrographic survey data collected by the National Ocean Survey (NOS) and distributed by the 
National Geophysical Data Center (NGDC). The coastal coverage of the NOS is particularly 
dense in Southern California and generally adequate for the remaining portions of the West 
Coast with either sizable population or frequently navigated coastal waters. 

Each regional grid is produced from a very large number of NOS survey points. The data are 
screened for outliers and the resulting grids are plotted and visually inspected for errors.  

Nevertheless, the local bathymetry at a study area remains a potential source of modeling error. 
Bathymetric errors may be the result of old or sparse surveys that fail to resolve a shallow water 
feature, or from changes in the local bathymetry owing to nearshore processes or dredging. As an 
initial task in the wave hindcast process, the Mapping Partner shall obtain and review local 
bathymetric information. This may include review of available survey maps for the area, a 
datasearch for bathymetric surveys performed by agencies other than NOS, and discussions with 
local authorities and local mariners. The Mapping Partner should then meet with CDIP and 
FEMA representatives to review this information and assess whether changes to the existing 
regional model grid and the model transformation coefficient database are needed. In addition, 
the need for new field measurements for model validation should be determined at this time. 

Transformation Coefficient Validation 

CDIP has validated the spectral refraction wave model predictions at numerous locations 
throughout Southern California over the past 15 years. This has provided some assurance that  
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1. Local Bathymetry Assessment
a. Review local bathymetry

b. Modify (CDIP) bathymetry grid, if 
necessary

2. Validate Transformation Coefficients
a. Run linear regional wave model

b. Validate with existing coastal wave data 
where possible

c. Evaluate need for additional validation 
data

3. Transform Deepwater Wave Hindcast
Spectra

a. Select deepwater wave hindcast events

b. Use CDIP linear transformation 
coefficient database

c. Perform nearshore wave predictions

 

Figure D.4.4-11.  Flow Chart of Tasks to Derive Nearshore Wave Hindcast  
Information for a FEMA Study Area 

refraction and shoaling are the dominant transformation processes on narrow continental shelves 
such as those found on the West Coast. The various validation studies have also shown that 
significant model prediction errors can occur owing to model boundary condition errors (errors 
in the deepwater directional wave spectra and/or local bathymetry) or a neglected physical 
process such as wave reflection from a cliff-lined coastline. 

Therefore, the second task in developing wave hindcasts for a FEMA study area is to assess the 
need for additional wave model validation. Mapping Partners will meet with FEMA and CDIP 
representatives to discuss the local geographic setting and determine if there are specific 
bathymetric or topographic features that might require modeling of additional physical processes. 
CDIP can also provide information on existing wave measurements in or near the study region 
that could be used for validation purposes. 

The collection of wave measurements for model validation is an expensive and time-consuming 
task because both deepwater directional data and nearshore wave data are required, and data 
must be collected for a long enough period of time to observe a variety of wave events. The 
decision on whether to attempt additional model validation should be based in part on overall 
FEMA regional wave model information needs, and must be approved by the FEMA study 
representative. 

The final task is to transform deepwater wave hindcast spectra to the nearshore using the 
reviewed, and possibly updated, spectral transformation coefficients from the CDIP database.  
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D.4.4.1.4.4 Local Seas 

Local winds can affect waves during propagation; the regional transformation method described 
above does not include consideration of the effects of local winds. If local seas are considered 
important to the events being modeled, it is recommended that they be superimposed as a 
separate wave train, and integrated into the nearshore spectra. This can be accomplished by 
taking the estimated directional sea state, in spectral form, and applying the transformation 
coefficient array, as if it were generated offshore at the same or similar directions. If islands or 
shoals offshore of the wind field affect the transformation coefficients such that the site is 
artificially sheltered, an additional transformation is needed to refract the seas to the site.  

D.4.4.1.4.5 High-resolution Nearshore Transformation 

Once the primary transformation of waves to the nearshore point(s) is complete, it may be 
necessary to perform a secondary transformation to account for the effects of local complex 
bathymetry. For this, the Mapping Partner may use a spectral wave model with the ability to 
propagate the wave components from the nearshore point(s) to the local transects.  

A number of such models are in wide use; the Mapping Partner should review FEMA’s list of 
approved models for candidates. Should a model that is not on the approved list be deemed 
advantageous for the study, the Mapping Partner should coordinate with the FEMA study 
representative.  

Specific model user’s manuals and documentation must be relied upon for guidance in modeling 
considerations. In any case, model grids should be constructed with appropriate resolution to 
simulate irregular bottom contours and any special bathymetric features. The grids should also be 
constructed, so the transect locations are not close to the grid boundaries. The Mapping Partner 
shall locate output points on the model grids corresponding to the locations of the local transects. 
A sufficient number of modeling runs shall be performed so that a 2-dimensional (frequency and 
direction) energy transfer coefficient array can be constructed for each local transect. These 
coefficients are similar to those developed for the primary deepwater to nearshore 
transformation. Once the transfer coefficients have been determined, the Mapping Partner shall 
convert the wave spectra at the nearshore point(s) to wave spectra at the location of each transect 
using methods discussed earlier. 

D.4.4.1.5 Waves in Sheltered Waters 

D.4.4.1.5.1  Storm Wind Fields 

The ocean wave data discussed above may not be available for sheltered waters. In this case, 
local wave generation modeling may need to be undertaken. A first step in this effort is the 
acquisition of necessary wind data. In sheltered waters, transitions between land topography and 
open water areas affect the characteristics of the wind field. The wind fetch is the open water 
area over which wind waves are generated, and storm seas in sheltered waters are limited by the 
size and shape of the water body (“fetch-limited” seas). Wind speed, wind duration, fetch length, 
and water depth are the main parameters that determine the heights and periods of locally 
generated wind waves. (See USACE, 2003 and 1984 for details.) 
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Time series of 2-D (surface) wind fields are the most realistic representations of storm 
conditions. Several numerical wave models have the capability to incorporate 2-D time-varying 
wind fields, but adequate wind field data are not typically available. Instead, point wind data are 
most commonly measured by anemometers or wind gages operated by government agencies or 
airports. To use such point data, the Mapping Partner may follow a procedure in which: 

• Extreme wind speeds are estimated from wind gage measurements at a point (extremal 
analysis is discussed in Section D.4.3); 

• The wind speed duration is adjusted to optimize for the fetch-limited wave condition; and 

• The fetch-limited wind condition is applied as a steady-state boundary forcing function in 
a 2-D numerical model. 

A wind gage might not be located at the study site, but several gages may be located within the 
vicinity of the site. The selection of wind data from a particular gage should be based on data 
availability, proximity of the gage to the site, the length of the data record, and the type of data 
recorded. The goal is to obtain the longest record of quality data that is representative of wind 
conditions at the study site. 

Anemometer measurements of wind data are recorded in various ways. Average wind speed and 
direction over a given interval (i.e., 2 minutes or 1 second) are typically recorded at regular 
intervals (i.e., every hour). Peak gust wind speed and direction of the “fastest mile” wind speed 
may also be reported. Wind roses that show the percent occurrence of wind speeds for compass 
directions may also be available, and are useful for understanding wind conditions but may not 
be suitable for estimating extreme wind conditions associated with the 1% annual chance flood. 

Various adjustments to wind data recorded by wind gages may be necessary. The USACE CEM 
(2003) and SPM (1984) contain detailed procedures for adjusting wind data. It may be necessary 
to adjust wind data for the following: 

• Level, if the wind speed is observed at a level other than the standard anemometer height 
of 10 meters; 

• Duration, to obtain the appropriate fetch-limited wind speed for wave hindcasts 
corresponding to the averaging interval; 

• Overwater, if winds measured over land are used to hindcast waves over water; and 

• Stability of the atmospheric boundary layer for fetches longer than 16 km. 

See the CEM (USACE, 2003) or the SPM (USACE, 1984) for a detailed discussion of these 
adjustments. 

The statistical methods described in Section D.4.3 should be used to estimate extreme wind 
speeds associated with the 1% annual chance flood. The Mapping Partner shall consider wind 
direction when estimating extreme wind speeds to include only winds that generate waves 
affecting the site. That is, the wind data should first be segregated into directional sectors 
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corresponding to distinct meteorological events (i.e., storms occurring during different seasons 
that arrive from different directions). 

Storm duration is also an important parameter for the characterization of the 1% annual chance 
flood and for use in estimating event-based-erosion (Subsection D.4.6.1). As discussed in 
Subsection D.4.2.4, the preferred approach is to consider storm episodes as they have occurred in 
nature, so duration is effectively bundled with intensity and direction information. If this cannot 
be done owing to lack of data, duration may be estimated by analyzing the persistence of high 
winds above a threshold. 

D.4.4.1.5.2  Wave Generation Modeling in Sheltered Waters 

Two-Dimensional Models 

Subject to FEMA approval, spectral wave models can be used to calculate 2-D wind-wave 
generation. Such models are based on an energy balance equation that accounts for wave 
propagation processes and processes that add or remove energy from individual frequency and 
direction bands. The wind input to the models can be steady and uniform, spatially variable, or 
non-steady. The model depth grid shall encompass the entire fetch area of interest. Wind setup 
(surge) within the basin can be calculated by linking the models to 1- or 2-D surge models; the 
depth change caused by wind setup can significantly affect wind-wave generation in shallow 
waters. 

Two-dimensional wind-wave generation models can be found on the FEMA-approved models 
list. A Mapping Partner shall review 2-D models available at the time of the study. Although 
steady-state modeling (time-constant wind, wave, and water level conditions) with a uniform 
wind field is common and is adequate for most flood studies, 2-D models may allow 
consideration of a spatially variable wind speed, possibly resulting in more accurate results. 
Similarly, a time-dependent approach can be considered if the time-variation of the winds is 
known, or if tidal excursions are important to either the wind-wave generation process itself, or 
to depth dependent wave transformations occurring in the generation area. Application of models 
in a time-dependant mode entails additional effort to determine appropriate parameters and to 
document the more complex calculations, but may provide more accurate results. Specific 
guidance for use of any model shall be obtained from the corresponding user’s manual; model 
results shall be verified against observed data, whenever possible, to confirm validity of the 
model implementation. 

Two-dimensional wave model output shall include nearshore frequency and direction spectra at 
specific locations, as well as wave height, period, and depth for model grid points. Wave spectral 
output shall be determined at a nearshore point and/or several transect points; the output 
directional and frequency spectra for most spectral models can be selected for specific grid 
points. Some models provide parameterized spectra rather than 2-D spectra. In such a case, the 
parameterized spectra can be converted to complete spectra by fitting a JONSWAP spectrum to 
the parameters as explained in the CEM (2003).  
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Parametric Methods 

In some situations, such as when studying a small embayment, simplified parametric methods 
are appropriate. When using parametric methods, the Mapping Partner shall consult the latest 
version of the CEM (2003) for specific guidance. Depending on the site conditions and other 
study factors, straight-line, composite, or representative fetch methods may be used (CEM, 2003; 
PWA, 2004). 

Selection of Wind Input 

In sheltered waters, the small area of the water body often results in the hindcast waves being 
fetch limited. For these conditions, the averaging time used for the wind speed determination 
may have to be adjusted to correspond to the fetch-limited duration. For example, if the 
minimum wind duration corresponding to the fetch conditions is 30 minutes and the wind speed 
data are given as 10-minute averages, then the 10-minute averaged wind speed should be 
adjusted to a 30-minute averaged wind speed for use in the wave generation model; this 
adjustment may be done using methods described in the CEM. The computation is iterative 
because the minimum duration depends on the wind speed.  

Such an adjustment is recommended when waves are determined by parametric methods. If 2-D 
numerical methods are used, then the appropriate user’s manual for the numerical model should 
be consulted for specific guidance; an adjustment may not be needed in all cases. 

D.4.4.1.6  Data Requirements 

The Mapping Partner shall carefully choose the source and the location of the reference 
hindcast/observation point for the basic input wave data. This must be near the study site but far 
enough removed, so there is no interference from offshore islands and shoals. It is recommended 
that GROW data be given primary consideration, but alternative sources such as WIS data and 
measurements should always be considered and compared. Additional sources of offshore wave 
hindcast data continue to become available. The Mapping Partner should attempt to identify such 
newer data, which, if available, shall be approved by the FEMA study representative before use 
in a study. 

D.4.4.1.7  Documentation 

Documentation shall include details of the sources of wave and wind data. It should also include 
comparisons between alternate sources (where several may be available) and with any local 
measurements. Documentation of the incident deepwater waves used for routing to shallow 
water should include periods, directions, and directional spreading. The selection of coefficients 
for angular spreading and spectral peakedness parameters shall be clearly stated and justified. 

Methods of extrapolation of hindcast and/or measured data to 1% annual chance values should 
be documented, including comparisons between alternate procedures if appropriate. 

The Mapping Partner shall document all wave generation assumptions used in modeling and 
parametric approaches, including the nature of data used to define winds (speeds, directions, 
duration) and bathymetry (including the 100-year water-level determination). The documentation 

 D.4.4-25 Section D.4.4 
All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 

However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

shall include any approximations or assumptions used in the analysis. When observational data, 
such as wave buoy data, are available, the wave height, period, and spectral parameters should be 
compared to the model output. 

The Mapping Partner shall document the assumptions, methods, and results of all analyses of 
wave transformation conducted for the FIS. This documentation should include selection of 
offshore and nearshore points, source of transformation coefficients, any special assumptions 
regarding local transformation processes such as sheltering and reflection, and so forth. If a 
spectral wave model is applied for nearshore transformation determination, all modeling factors 
should be sufficiently documented, so the modeling effort could be reproduced if necessary. If a 
field effort is undertaken to validate transformation models, the field work shall be summarized 
in detail, including times and locations of all observations, general conditions at the time of the 
work, a full description of all equipment and procedures, and a summary of all data in archival 
form. All study output should be documented and summarized in a format suitable for 
subsequent flooding analyses including setup, runup, overtopping, and erosion. 

D.4.4.2 Water Levels 

D.4.4.2.1 Overview 

The two fundamental components of the Base Flood Elevation (BFE) are water levels, discussed 
in this subsection, and waves, discussed in the previous subsection. The still water level (SWL) 
is the base elevation upon which the waves ride. It consists of several parts including mean sea 
level (MSL), the astronomic tide that fluctuates around MSL, the El Niño fluctuation, and storm 
surge. All storm wave contributions are excluded; static wave setup (Section D.4.5) contributes 
to the mean water level (MWL), somewhat higher than the SWL. 

The following subsections discuss each of the still water components in turn, including an 
outline of methods to determine water-level statistics. Also included is a discussion of non-
stationarity in the processes that control water levels. 

D.4.4.2.2 Astronomic Tide 

D.4.4.2.2.1 Tides and Tidal Datums 

The astronomic tide is the regular rise and fall of the ocean surface in response to the 
gravitational influence of the moon, the sun, and the Earth. Because the astronomic processes are 
entirely regular, the tides, too, behave in an entirely regular, though complex, manner. A useful 
overview of tidal physics is presented in a small booklet published by NOAA’s NOS, Our 
Restless Tides, now out of print, but available in electronic form from the NOAA website 
(<http://www.co-ops.nos.noaa.gov/pub.html>) where many other documents of related interest 
can be found. 

The tides along the Pacific Coast are mixed and semi-diurnal, meaning that there are two highs 
and two lows each day; conventionally, mixed tides are semi-diurnal tides for which the 
magnitudes of successive highs or successive lows have large variation. The average of all the 
highs is denoted as mean high water, MHW, while the average of all the lows is mean low water 
(MLW). Averages are taken over the entire tidal datum epoch, which is a particular 19-year 
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period explicitly specified for the definition of the datums; a full astronomic tidal cycle covers a 
period of 18.6 years. The average of all hourly tides over the epoch is the MSL. 

The daily highs are generally unequal, as are the lows, so one speaks of the higher-high water, 
lower-high, higher-low, and lower-low. At a given coastal location, each of these has a mean 
value denoted by mean higher high water (MHHW), mean lower high water (MLHW), mean 
higher low water (MHLW), and mean lower low water (MLLW) respectively, with an obvious 
convention. In addition to these, one speaks of the mean tide level, MTL, which is the average of 
MHW and MLW, and is also called the half-tide level. 

These several levels are important because they constitute the datums to which tide data have 
traditionally been referred. Local charts and recorded tide gage data are generally referenced to 
local MLLW. This introduces some ambiguity because MLLW varies from place to place and 
from epoch to epoch. For use in FISs, then, these tidal datums are insufficient in themselves, and 
must be related to a standard vertical datum, North American Vertical Datum (NAVD) or 
National Geodetic Vertical Datum (NGVD); it is not always straightforward to make this 
connection. However, NOAA maintains tidal benchmarks for many stations that are now tied to 
a standard vertical datum. Benchmark sheets are available at NOAA’s site, <http://co-
ops.nos.noaa.gov/bench.html>. The following example is extracted directly from the Los 
Angeles benchmark sheet: 

Tidal datums at LOS ANGELES, OUTER HARBOR based on: 
     
     
     
     

LENGTH OF SERIES:      19 Years 
TIME PERIOD:           January 1983 - December 2001 
TIDAL EPOCH:           1983-2001 
CONTROL TIDE STATION:    

 
Elevations of tidal datums referred to Mean Lower Low Water (MLLW), in 
METERS: 
     
     
     
     
     
     
     
     
     

HIGHEST OBSERVED WATER LEVEL (01/27/1983)    =  2.384 
MEAN HIGHER HIGH WATER (MHHW)                =  1.674 
MEAN HIGH WATER (MHW)                        =  1.449 
MEAN TIDE LEVEL (MTL)                        =  0.868 
MEAN SEA LEVEL (MSL)                         =  0.861 
MEAN LOW WATER (MLW)                         =  0.287 
NORTH AMERICAN VERTICAL DATUM-1988 (NAVD)    =  0.062 
MEAN LOWER LOW WATER (MLLW)                  =  0.000 
LOWEST  OBSERVED WATER LEVEL (12/17/1933)    = -0.832 

 
Bench Mark Elevation Information           In METERS above: 
     
     
     
     
     
     
     
     
     
     

Stamping or Designation               MLLW        MHW 
8-14 FT ABOVE MLLW                     4.194    2.746 
WILMINGTON D9A 1954                    2.967    1.518 
WILMINGTON D10B 1954                   2.832    1.383 
11 1935 RESET 1967                     4.711    3.263 
NO 13 1971                             4.147    2.698 
A 1296 1977                            3.167    1.718 
0660 N 1977                            3.553    2.104 
10 1930 RESET 1985                     3.101    1.653 
NO 14 1971                             4.068    2.619 

     0660 P 2000                            4.252    2.803 
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In this example, NAVD is shown to be at 0.062 meters above MLLW for the specified 1983-
2001 epoch, fixing the tidal datums. Not all benchmark sheets include NAVD (or NGVD) as this 
example does, but most include surveyor’s benchmark information as shown above, through 
which the tidal datums can usually be tied to a standard vertical datum as needed in FISs; these 
benchmark sheets include full descriptions of the benchmarks and exact locations. 

D.4.4.2.2.2 Tide Observations 

The tide is recorded at a large number of gages maintained by NOAA, with records dating back 
over 100 years in some cases. Much of these data are available at NOAA’s website, 
<http://www.co-ops.nos.noaa.gov/data_res.html>, as either six-minute or hourly time series over 
the particular site’s entire period of record. Additional data may be available from NOAA, 
USACE, or others. 

The tide observations record the total water level at the gage, suitably filtered to suppress high 
frequency wave components, leaving the long period components associated not only with 
astronomic tide, but also with sea-level fluctuations caused by atmospheric pressure fluctuations 
(sea level can change by about 1 foot for each 1 inch of change in barometric pressure), El Niño 
variations, wind setup (storm surge), riverine rainfall runoff into a relatively confined tide gage 
site, low frequency tsunami elevation, and wave setup to the degree that it exists at the gage site. 
In general, little wave setup is reflected in tide gage data because gages may be located in 
protected areas not subject to much setup, or in open areas outside the surf zone, and so seaward 
of the largest setup values (see Subsection D.4.5.1 for discussion of the physics of setup). 

The fact that the tide gage record includes all of these non-astronomic low frequency 
components makes it possible to extract total still water statistics from gage data, subject to the 
setup proviso noted. A general method to extract still water statistics from gage data is discussed 
below. 

D.4.4.2.2.3 Tide Predictions 

The astronomic component of the observed tide gage record is considered to be well-known in 
principle, consisting of the summation of 37 tidal constituents that are simply sinusoidal 
components with established periods, and with site-dependent amplitudes and phases. These 
constituents are available for most gage locations from the NOAA site, <http://www.co-
ops.nos.noaa.gov/data_res.html>.  

The NOAA website also provides tide predictions for any date in the past or future, limited 
however to one year of predictions at a time. Note that these predictions are computed using the 
currently adopted values of the 37 tidal constituents for the site. 

The Mapping Partner should obtain NOAA’s tide prediction computer program, NTP4, and 
generate tide predictions as needed. The advantages include not only convenience, but more 
importantly, the ability to use other constituent values than those currently adopted. This is 
important because the local tide depends not only on the astronomic forcing, but also on the 
response of the local basins. The response can, and does, change with time owing to siltation and 
dredging, construction of coastal structures such as breakwaters, changes in inlet geometry, and 
so forth. Consequently, the astronomic tide observed at a fixed location may not be stationary, 
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but may have changed over the period of record. NOAA can provide previous estimates of the 
tidal constituents for a site, and these should be used with the NOAA computer program to 
produce more realistic predictions than would be achieved using only the current data for a prior 
period. 

NOAA’s tide prediction program, NTP4, is not available online, but can be purchased from 
NOAA at nominal cost, including both source code, an executable file (a DOS console program), 
and two manuals that thoroughly document the theory and practice of tide prediction: U.S. 
Department of Commerce Special Publication 98, Manual of Harmonic Analysis and Prediction 
of Tides (1940, 1958), and a 1982 supplement updating certain numerical factors to 21st century 
values. 

Finally, there may be some ambiguity or uncertainty in tide prediction associated with El Niño 
fluctuations. As discussed elsewhere, the El Niño effect causes periodic rise and fall of coastal 
sea levels, and these are inevitably incorporated in the data from which the tidal constituents are 
determined. The same is true for sea-level fluctuations associated with barometric fluctuations, 
although El Niño effects are more persistent. It is expected, then, that to some degree the 
determination of tidal constituents has been confounded by El Niños. The affected constituents 
would be those with periods comparable to characteristic El Niño fluctuation periods. The 
phasing of the El Niño fluctuation and the selected tidal epoch would influence the manner and 
extent to which these processes would then appear intermingled; estimates of tidal constituents 
obtained from short duration observations might be especially vulnerable in this regard because a 
long period of observation may effectively smooth the El Niño contribution toward a null 
average. Nevertheless, for FIS applications, the Mapping Partner shall assume that the tidal 
constituents do not include non-astronomic components. 

D.4.4.2.2.4 Extraction of Non-astronomic Still Water from Gage Records 

As discussed above, both observed data and a method to predict the purely astronomic 
component of those observations are available. By subtracting the predictions from the 
observations, one arrives at a time series of the non-astronomic contribution to the measured still 
water, including surge and meteorological effects, El Niño levels, rainfall runoff, and tsunamis – 
in fact, all non-astronomic components termed still water. As a practical matter, the static setup 
will not usually be present in the record to a significant degree, for reasons already mentioned. 
Figure D.4.4-12 shows measured and predicted tides at Crescent City for a five-day period in 
1983. As shown, superimposed on the fluctuating astronomic tide is a slowly varying residual 
component approximately 2 feet in amplitude. 

The recommended procedure to extract still water statistics from the difference between the 
observed and predicted data is extremely simple in concept, assuming that the period of record is 
significant (30 years or more) and that the older predictions were made using the appropriate set 
of tidal constituents, not necessarily those in current use. One first determines the differences 
between the observed and predicted elevations of the highs and lows, and then scans these to 
locate the annual peaks. These annual peaks are used to fit an extreme value distribution, from 
which the 1% annual chance elevation can be found. 
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Figure D.4.4-12. Predicted and Observed Tides at Crescent City, California 

As discussed in Subsection D.4.3.3, an acceptable approach is to adopt the Generalized Extreme 
Value (GEV) Distribution, and to determine the distribution parameters by the method of 
maximum likelihood. An example is shown in Section D.4.3. The Mapping Partner may consider 
other distributions and other fitting techniques although the particular result with the greatest 
likelihood value among all of the considered distribution types should be adopted, unless 
otherwise approved by the FEMA study representative. 

This recommended procedure is based upon the annual maxima of the residual rather than the 
annual maxima of the raw data because the underlying astronomic tide is not a random variable, 
but is deterministic and is limited to a known maximum (less than or equal to the sum of the 37 
tidal constituent amplitudes). For these reasons, it is not appropriate to extrapolate the bounded 
and deterministic portion of the record out to the upper tail of an unbounded distribution. 
Subsequent consideration of the combined effects of the separated tide and the residual still 
water can be made as discussed elsewhere. 

Finally, it is emphasized that although this procedure is straightforward in concept, it can be 
complicated in practice. One complicating factor – changes in the tidal constituents over time – 
has already been mentioned. Another is the fact that tidal predictions are made with respect to 
tidal datums, and these may have changed over time, even when referenced to a fixed standard 
such as NAVD. Changes in the constituents are one source of datum shift, while changes in 
relative sea level (including sea-level rise and land subsidence) are another. The Mapping Partner 
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should carefully review the history of the tide gage, the history of the tidal datums, the history of 
the published constituents, and the local history of relative sea level to ensure that at each step, 
the residual is properly defined. 

D.4.4.2.3 Surge 

D.4.4.2.3.1 General Considerations 

Storm surge is the rise of the ocean surface that occurs in response to barometric pressure 
variations (the inverse barometer effect) and to the stress of the wind acting over the water 
surface (the wind setup component). Wave setup is excluded by this definition. Setup is not 
incorporated in the established procedures for storm surge modeling, nor is it present to a 
significant degree in tide gage data owing to the typical configuration of gages with respect to 
the zone of large setup; consequently, it must be taken into account separately as discussed in 
Subsection D.4.5.1. 

Storm simulation models must be capable of adequately prescribing and implementing wind, 
pressure, and tidal boundary conditions into the physics of the model if the model-generated 
spatial and temporal distribution of surge and circulation are to be physically realistic. Models of 
differing complexity are in wide use, including 1-D and 2-D models. The Mapping Partner 
should consult FEMA’s list of approved models to select an appropriate model for a given study. 
Should a model that is not on the list appear advantageous, the Mapping Partner shall discuss the 
possibility of its use with the FEMA study representative.  

Guidance for complex 2-D modeling is best obtained from the user’s manual for a particular 
model. However, to aid the Mapping Partner in model selection, a supporting document (Surge 
Modeling Overview) has been prepared as a supplement to these guidelines. It briefly addresses 
storm surge modeling from a numerical hydrodynamic perspective, so a Mapping Partner can 
evaluate the adequacy of candidate storm surge models. The discussion can help the Mapping 
Partner assess strengths and weaknesses of programs and assist in the selection of an appropriate 
model by identifying important model features and capabilities. 

It is recognized, however, that surge on the Pacific Coast is relatively small compared to wave 
effects and to surge on the Atlantic and Gulf coasts. Consequently, a complex and expensive 2-D 
modeling effort should seldom be necessary, and should be considered only after discussion with 
the FEMA study representative. The simpler 1-D surge modeling method discussed in the 
following section is usually adequate for the Pacific Coast. 

D.4.4.2.3.2 Simplified 1-D Surge Modeling 

The generally narrow continental shelf and the lower winds that prevail on the Pacific Coast 
result in a lesser wind-induced surge than on the Atlantic and Gulf of Mexico coastlines, which 
are attacked by hurricanes. Consequently, satisfactory estimates of open coast surge on the 
Pacific can usually be obtained using methods far simpler than the full 2-D approach. There are 
several reasons a Mapping Partner might wish to make such estimates: the Mapping Partner may 
wish to determine SWL in regions where an absence of tide gage data makes it impractical to 
extract still water data from the tide residual; the Mapping Partner might wish to compare the 
surge level from a wind of a certain magnitude with the 1% annual chance wave event; or the 1% 
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annual chance wave event might be accompanied by strong onshore winds and the Mapping 
Partner might wish to include this contribution or to evaluate the significance of neglecting it. 

For such purposes, a computer program (BATHYS) has been developed based on the so-called 
Bathystrophic Storm Tide (BST) theory formulated originally by Freeman, Baer, and Jung 
(1954). The BST theory accounts for the onshore component of wind stress and the Coriolis 
force associated with the Earth’s rotation. The assumptions of the model are that the onshore 
forces are in static balance; however, the longshore component includes inertia and requires 
some time to achieve a balance. A user’s manual describing the program and its use in much 
greater detail is available separately. 

The System of Interest and Governing Equations 

The system of interest is shown in Figure D.4.4-13. A wind with speed W is directed at an angle, 
θ , to the x-axis that is parallel to the shoreline. The surge distribution is η ( )y , where y is the 
cross-shore direction. The wind obliquity induces a mean current, U(y,t), which varies with time, 
t.  

 
 

Figure D.4.4-13. Definition Sketch for the BST Formulation 

The governing equations are: 
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In these equations, n ( ≈ 1.05 to 1.1) is a factor that augments the onshore component of the wind 
stress, τ y , to account for the bottom frictional effect because of return flow; τ x  is the longshore 
component of wind stress; ρ is the mass density of water ( ≈ 1.99 slugs/ft3); and fc  is the 
Coriolis coefficient (= 2Ω sinϕ) where Ω and ϕ are the rotational speed of the Earth in radians 
per second and latitude, respectively. The quantity f is the Weisbach Darcy friction factor 
( ≈ 0.08 to 0.16).  

The longshore and onshore components of the wind stress are specified in terms of a wind stress 
coefficient, k, and the wind direction, θ , relative to a shore normal 
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where the wind stress coefficient, k, is that developed by Van Dorn (1953): 
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Program Input and Output 

The input quantities to the program are the bathymetry along the shore normal transect, h(y), and 
the wind speed and direction , W(t) and θ (t), which can be specified so as to vary linearly with 
time between specified pairs of wind speeds and directions at selected times. The output of the 
program is the wind surge at the shore, ηs , as a function of time. To incorporate the effects of 
astronomic tide, the program permits specification of a time-dependent condition at the seaward 
boundary of the transect.  

Because the longshore current varies as a function of time, the surge, ηs , also varies with time. 
This reflects the contribution of the Coriolis force; for fixed wind conditions, the surge 
approaches a constant value as the longshore current approaches its constant equilibrium value 
for a given wind speed and direction.  

The program is extremely efficient and easy to use, with minimal input requirements. The 
necessary bathymetric data can be obtained from available charts, and wind data can usually be 
extracted from the GROW database, which includes wind speed and direction over a GROW cell 
at 3-hour intervals for the duration of the record. The wind values are representative of the entire 
cell; if finer resolution is thought to be needed (for example, to account for sheltering), then the 
Mapping Partner should attempt to obtain supplementary wind data from the National Weather 
Service (NWS), local airports and agencies, and so forth. Tide boundary condition data can be 
obtained from tide tables, from the NOAA website, or using the NOAA prediction program, 
NTP4. 
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A second simplified tool, the DIM program discussed in Section D.4.5, is also available. It was 
developed especially for the computation of setup over a shore normal transect similar to that 
used here by BATHYS. DIM requires additional input, however, because its primary purpose is 
wave setup simulation. The user’s manuals for these programs should be consulted for additional 
details and examples of use. 

D.4.4.2.3.3 Surge Estimation from Tide Data 

A procedure was outlined in Subsection D.4.4.2.2.4, to extract the total still water, exclusive of 
astronomic tide, from a tide gage record. It is in general difficult or impossible to distinguish 
among the several components of the residual, including surge, and there is usually no need to do 
so. Consequently, the tide residual methodology can be considered equivalent to the estimation 
of surge from tide data, for all practical purposes. What one generally wants is the 1% annual 
chance level of the total flood, irrespective of mechanism. 

D.4.4.2.4 Water Levels in Sheltered Waters 

D.4.4.2.4.1 Overview 

Water levels and wave propagation in sheltered waters may be influenced by a variety of factors 
that can alter coastal flood characteristics. Incoming storm surge and the resulting extreme still 
water elevations along the shorelines of sheltered waters may achieve higher elevations than at 
adjacent open coast locations owing to channelization and tidal amplification controlled by the 
orientation, geometry, and bathymetry of the basin; lower elevations may occur if restrictive tidal 
inlets impede the incoming tide. Small basins may also experience higher water levels from the 
contributions of direct precipitation and runoff, or from resonant basin oscillations called seiche. 

Recorded tide elevations may require transposition from the tide gage to a flood study site within 
sheltered waters, to better represent the local still water elevation during the 1% annual chance 
flood event. Guidance for evaluating and applying tide gage data to ungaged locations is 
provided in this subsection. 

As waves propagate into sheltered water from the open coast, additional wave transformations 
may occur. Tidal inlets are a significant feature that controls the entry and propagation of waves 
into inland waters; guidance is provided on inlet characteristics and effects. Other characteristics 
of sheltered waters that may lead to additional wave transformations include, but are not limited 
to, the presence of tidal and fluvial currents, channel shoaling, navigation structures, and 
vegetation.  

In general, detailed numerical modeling may be the most appropriate method for estimating 
water levels and wave transformations in these complex coastal settings. However, simpler 
techniques may be used if small-scale localized effects do not lend themselves to large-scale 
modeling, or if the Mapping Partner wishes to make preliminary estimates of the relative 
importance of processes before proceeding to more detailed evaluations. 
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D.4.4.2.4.2  Variability of Tide and Surge in Sheltered Waters 

As a very long wave such as surge or tide propagates though a varying geometry, its amplitude 
changes in response to reflection, frictional damping, variations in depth causing shoaling, and 
variations in channel width causing convergence or divergence of the wave energy. In general, 
these changes are best investigated through application of 2-D long wave models. However, it 
may be possible to adopt simpler procedures that can provide sufficient accuracy for much less 
time and cost. 

In some cases, tide data may be have to be transposed from a gaged site to an ungaged site. If a 
sheltered water study site is located in the immediate vicinity of a tide gage, the Mapping Partner 
can use data from the gage without adjustments, but if the study site is distant from the tide gage, 
the tide data may need to be adjusted so as to reasonably represent the site. It is emphasized that 
“Considerable care must be exercised in transposing the adjusted observed [tide] data to a nearby 
site since large discrepancies may result” (USACE, 1986). Although transposition of historic tide 
data from a nearshore tide gage out to an open coast location is much simpler and so preferable 
to its transposition farther inland, there remains a need for reasonable methods to estimate the 
variation of inland tidal elevations in ungaged regions of sheltered waters. 

Some simple empirical evidence may permit an approximate evaluation of these variations: 

• Established tidal datums from multiple gages in the sheltered area reflect the natural 
variation of tide elevations; interpolation between gages gives a first-order estimate of 
spatial variation. 

• The normal vegetation line may provide additional information between gages, insofar as 
it mirrors the general variation of the normal tidal elevation. 

• 

Tides and storm surges propagating into sheltered water areas undergo changes controlled by 
frictional effects and basin geometry. The Mapping Partner must evaluate the differences 
between the physical settings of the nearest tide gage(s) and the study site, and the distance and 
hydraulic characteristics of the intervening waterways between these locations to establish a 
qualitative understanding of the potential differences in tidal elevations between the gaged and 
ungaged locations. If flood high water marks are available in the vicinity of the ungaged 
sheltered water study site, these elevations shall be compared to recorded tide elevations to 
correlate surge components of the tidal still water between locations. In general, surge data are of 
more limited availability than tide data. It may sometimes be reasonable to assume similarity 
between surge and tide, and so infer surge variation from known tide variation. The validity of 
such inference is limited, however, by differences in amplitude and duration of high water from 
the two processes, and by the fact that tide is cyclic and so may not vary in the same manner as a 
single surge wave. 

Both empirical equations and numerical models can be used to describe the variation of tides and 
surges propagating into sheltered water areas. The Mapping Partner shall select the most 
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appropriate approach for the study, with consideration for the location of the study site within the 
sheltered water body, the complexity of the physical processes, and the cost of a particular 
approach. Appropriate numerical models can range from simple 1-D models to complex 2-D 
models. The Mapping Partner shall thoroughly evaluate the limitations and capabilities of 
appropriate models in view of the site-specific issues that need to be resolved to obtain reliable 
estimates of tidal flood elevations. 

For simple tidal inlet settings, or as a first approximation before detailed numerical modeling, 
Mapping Partners may use analytical methods provided in the CEM (Chapter II-6-2(b)) to 
estimate bay tide amplitudes. Guidance for estimating the associated inlet parameters is also 
provided in the CEM. Examples provided in the CEM are limited to estimating the predicted 
astronomical tide amplitude in a small bay based on an adjacent open coast tide range obtained 
from tide tables. These CEM methods may also be applied in a two-step process to transpose 
recorded tide gage data (still water elevations) from one bay to another nearby ungaged sheltered 
water body as follows:  

1. Apply the CEM methods and nomograms in reverse to estimate the adjacent open coast 
annual maximum still water elevations (astronomical tide elevation plus storm surge 
height) based on recorded still water elevations from a primary tide gage in the sheltered 
water body closest to the flood study site. The physical setting of a primary tide gage may 
be such that recorded tide elevations are representative of open coast tide elevations; 
however, this condition should not be assumed.  

2. Using the estimated open coast tide elevation, reapply the CEM methods and nomograms 
(in forward mode) to estimate the associated annual maximum still water elevations in 
the ungaged sheltered water body where the study site is located. Use of the same open 
coast still water elevation between the gaged and ungaged sheltered water areas is 
acceptable if it can be assumed that the annual extreme still water elevations are 
generated from regional storm systems large enough in spatial extent to encompass the 
two locations. 

When tidal elevations are to be established in an ungaged sheltered water body, it is 
recommended that a limited tidal monitoring program be undertaken to estimate tidal datums 
near the study site. NOAA (2003) provides guidance on methods and computational techniques 
for establishing tidal datums from a short series of record. The accuracy of the resulting datums 
on the West Coast can range from 0.13 foot for a one-month series of data to 0.06 foot for a 12-
month series (NOAA, 2003); a short-term effort will usually be entirely adequate for use in a 
FEMA FIS.  

The complex shorelines and bathymetry of sheltered waters may lead to significant changes in 
tide characteristics. The objective of short-term monitoring should be to provide observed data 
from which tidal datums may be estimated to check the accuracy of subsequent higher elevation 
estimates of extremal still water elevations in ungaged sheltered water areas and, in turn, to 
increase the level of confidence in the resulting flood hazard elevations. 

Irrespective of the approach taken, the Mapping Partner shall evaluate the physical setting of the 
tide gage(s) from which data are used. Observation of the gage setting may provide insight to the 
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relative degree of sheltering or other characteristics of a given tide gage. Information on NOAA 
tide gages can be obtained from the Internet at <http://www.co-ops.nos.noaa.gov/usmap.html>. 
Mapping Partners shall also determine if a tidal benchmark has been established near the flood 
study site (<http://www.co-ops.nos.noaa.gov/bench.html>). Tidal benchmarks are elevation 
reference points near a tide gage to which tidal datums are referenced. Some tidal benchmarks 
are now tied to the NAVD88, or to the earlier NGVD29, providing an appropriate vertical 
elevation reference. Benchmark elevations may become invalid over time if changes occur in 
local tide conditions because of dredging, erosion, or other factors (NOAA, 2000a); the Mapping 
Partner shall review the publication date of the data together with information concerning any 
recent changes in the vicinity of the tide gage setting to ensure the data are accurate. 

If the physical setting and tidal processes of a coastal flood study site are particularly complex 
and the application of the simple methods described in the CEM are questionable, the Mapping 
Partner is encouraged to consult with the NOAA NOS <http://co-ops.nos.noaa.gov/index.html> 
for further guidance on estimating tidal and surge elevations at ungaged sites (USACE, 1986). 

Tidal Inlets 

Tidal inlets control the movement of water between the open coast and adjacent sheltered waters. 
Inlets may be broadly classified as unimproved (natural) or improved (maintained). The physical 
opening of a tidal inlet, whether natural or maintained, has a direct and often significant effect on 
the propagation of tides, surge, and waves into sheltered waters and on subsequent coastal flood 
conditions. The Mapping Partner shall review the CEM Section II-6-2 on inlet hydrodynamics 
for comprehensive guidance on data, methods, and example problems related to the behavior of 
tidal inlets. 

Seiching 

Seiche is a standing wave oscillation occurring in enclosed or semi-enclosed basins, which may 
be generated by low frequency incident waves or atmospheric pressure fluctuations; seiching 
may also be called harbor oscillation, harbor resonance, surging, sloshing, and resonant 
oscillation. It is usually characterized by wave periods ranging from 30 seconds to 10 minutes, 
determined by the characteristic dimensions and depth of the basin (CEM, 2003). 

The amplitude of seiche is usually small; the primary concern is often with the associated 
currents that can cause large excursions and damage to moored vessels if resonance occurs. 
However, surface elevations and boundary flooding in an enclosed basin may become 
pronounced if the incoming wave excitation contains significant energy at the basin’s natural 
seiche periods. The Mapping Partner shall investigate the likelihood of seiche under extreme 
water-level and wave conditions. Bathymetry, basin dimensions, and incoming wave 
characteristics should be reviewed to determine the potential for seiching; the CEM (Section II-
5-6) provides background and guidance for estimating the natural periods of open and closed 
basins. Numerical models are most appropriate for evaluating the effects of long waves in 
enclosed basins and shall be considered for use in a sheltered water study if seiching is believed 
to have the potential to contribute significantly to boundary flooding during the 1% annual 
chance flood condition. 
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D.4.4.2.4.3 Documentation  

The Mapping Partner shall document the characteristics of all gages located within or near the 
study area. Methods adopted to infer the variation of tidal datums between gages shall be 
documented, as shall procedures used to transpose data from one site to another. If a brief field 
effort is undertaken to determine the variation of tidal datums within ungaged regions, the 
Mapping Partner shall fully document that effort, including: locations of observations; 
observation methods and instrumentation; dates and times of all observations; meteorological 
and oceanographic conditions during and preceding the period of observation; and other factors 
that may have had an influence on water levels, or may affect interpretation of the results. If 
surge variation is inferred from tide variation, the Mapping Partner shall document the basis for 
similarity assumptions, and the manner in which the inferences were made. Inlet analyses should 
be documented including all procedures, methodological assumptions, field surveys (dates, 
times, procedures, instrumentation, and findings), and all inlet data adopted from other sources. 

D.4.4.2.5 Water Levels During El Niños 

The El Niño/La Niña process produces substantial variation in SWLs along the Pacific Coast, 
with anomalies persisting for long periods. These variations are the result of large-scale 
oceanographic changes associated with changes in the equatorial trade wind patterns. The result 
of interest here is the creation of very large-scale non-tidal sea-level fluctuations extending over 
oceanic distances. 

As summarized in a supporting document for these guidelines prepared by Komar and Allen 
(2004), El Niño conditions begin with the periodic cessation of the Pacific trade winds, allowing 
the sea surface slope to change, and producing an eastward flow of warm water along the 
equator. Upon reaching the South American coast, this flow splits into components traveling 
both north and south, affecting the entire Pacific Coast as far north as Alaska. Eventually, 
tradewind conditions reestablish in the Pacific and conditions reverse, initiating the La Niña 
phase. 

The time scale of these processes is indicated in Figure D.4.4-14 in which the Multivariate 
ENSO Index (MEI) is a derived unit incorporating multiple meteorological parameters related to 
El Niño variation; the shaded band represents the threshold for event identification.  

The significant El Niños of 1982 and 1997 are evident; these events raised water levels along the 
Pacific Coast by 1 to 2 feet in some areas, persisted for long periods, and contributed to extreme 
erosion at many sites (see Komar and Allen, 2004, for a survey of those effects). 

The contribution of the El Niño process to the statistics of still water is thought to be fully 
reflected in tide gage data, and so forms a portion of the tide residual discussed earlier. Still 
water estimates derived from tide gage data can be assumed to properly reflect this process, 
although it has been pointed out that tide predictions may contain a portion of El Niño effect 
because the tidal constituents are determined empirically. Nevertheless, the Mapping Partner 
shall consider how specific El Niño/La Niña episodes might affect interpretation of the historical 
record, and how particular data observed during the El Niño/La Niña extremes should be 
interpreted. 
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Figure D.4.4-14. El Niño Fluctuations since 1970 (Komar and Allen, 2004)  

D.4.4.2.6 1% Annual Chance Still Water Levels 

The 1% annual chance flood on the Pacific Coast is seldom the result of still water alone; other 
processes such as wave runup or tsunamis ride atop the still water, which serves as a base. The 
exception might be well-sheltered areas, protected from waves and affected only by the high 
SWLs associated with tide, surge, and El Niño fluctuations; even in such areas, however, the 
total 1% flood level may include a physically independent contribution from rainfall runoff. 

Consequently, there are two aspects of still water statistics for a Mapping Partner to consider: 
What is the 1% annual chance SWL at a site? How does still water contribute to the total 1% 
level? Even if it is known that the BFE at the study site is determined by wave runup, for 
example, the former question may not be irrelevant, and the Mapping Partner may need to 
estimate the 1% SWL separately from the higher BFE. 

Three distinct still water components can be identified: astronomic tide, El Niño fluctuations, 
and storm surge (wind and pressure setup). A fourth still water component is important, but is 
not the result of coastal processes as are the others. This is the superelevation of tidal waters 
associated with rainfall runoff. The riverine 1% flood profile along a tidal river typically begins 
near MHW or MHHW at the mouth, and rises as one proceeds upstream. Although the riverine 
flood level along the lower reaches of the tidal river is considered to be physically unrelated to 
coastal flood processes, the final flood mapping must represent the contributions of both 
mechanisms. Consequently, the rainfall runoff excess elevation may be considered a fourth type 
of coastal still water elevation. 

The following subsections address methods by which the statistics of each still water type may 
be determined, and also give an overview of the ways in which the statistics of combined 
processes can be addressed. 
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D.4.4.2.6.1 Tide Statistics 

The astronomic tide is a deterministic process. Consequently, tide statistics can be generated 
directly from the local tidal constituents. One simple way to do this is to sample the predicted 
tide at random times throughout the tidal epoch. Alternatively, predictions can be used to obtain 
highs and lows, from which corresponding statistics can be derived. It is noted that the maximum 
possible tide is given simply by the sum of the amplitudes of the 37 tidal constituents. 

D.4.4.2.6.2 Surge Statistics 

The development of surge statistics can be approached in two general ways. First, if sufficient 
data are available from tide gage records, then an extremal analysis of the residual after 
subtraction of the astronomic tide can be performed. As noted above, this requires determination 
of the annual peak residuals for the period of record, and a fit to a GEV distribution using the 
method of maximum likelihood (or an alternate method if appropriate). The Mapping Partner 
should keep in mind that the 1% level determined in this way will include the contributions of all 
mean water components affecting the gage, including the El Niño fluctuation, static wave setup 
to the degree it exists at the gage site, and riverine rainfall runoff. 

The second way in which surge 1% levels are determined is through numerical modeling of 
surge elevation using 1-D or 2-D models, as discussed above, combined with a statistical model 
relating the surge simulations to storm frequency and storm parameter distributions. Three ways 
of doing this have been used: the Joint Probability Method (JPM), which has been used in many 
FISs on the Atlantic and Gulf coasts in combination with the FEMA Storm Surge Model; the 
more recent Empirical Simulation Technique (EST), which has been used in combination with 
the ADCIRC model for recent studies; and a Monte Carlo approach, which has been used for 
coastal setback determinations in the State of Florida, and which is particularly suited for use 
with the 1-D surge model, BATHYS, described previously. Because the surge levels on the 
Pacific Coast are generally small compared to the Atlantic and Gulf coasts, it is not expected that 
JPM and EST studies with large 2-D surge models are often necessary. The 1-D BATHYS model 
with Monte Carlo simulation, or – more directly – with direct simulation of the wind record 
using, say, GROW data, should be adequate in most cases. Brief descriptions of the JPM, EST, 
and Monte Carlo methods are given in Section D.4.3. 

For Pacific Coast applications, an alternate method of 1% surge estimation may be considered; it 
is the most straightforward and simplest method of all. This is to perform a direct simulation of 
the local wind record using available wind data, such as the GROW data, for example, which 
specifies wind speed and direction at 3-hour intervals over the entire record of more than 30 
years. This is a feasible task owing to the efficiency of the 1-D BATHYS model (or the 
alternative DIM model discussed in Section D.4.5). 

Tide can be very simply accounted for by adopting the predicted tide as the offshore boundary 
condition. For each year of simulation, the peak surge should be stored; an extremal analysis 
using these annual peaks then gives the required surge statistics. 

Use of this approach should be first approved by the FEMA study representative. Some small 
revision of the 1-D model could be made to read both wind and tide (for arbitrarily long 
durations) from separate input data files, and to automatically store annual peaks for the 
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frequency analysis. As with the storm-by-storm simulation, the Mapping Partner shall make a 
critical assessment of the wind data before considering this approach. GROW data are 
representative of a relatively large cell and may not reflect important local factors such as 
sheltering by islands; other, more local, data may be required. 

D.4.4.2.6.3 El Niño Statistics 

No separate account of El Niño statistics is suggested. The pertinent El Niño effects are 
embedded in available data, such as tide gage still water data (incorporating the effect of El 
Niños on ocean level) and GROW wave data (incorporating the meteorological effects) , and so 
will be automatically taken into account for in any analyses made using those data resources. For 
most purposes, the El Niño contribution may be assumed to be part of the surge estimate 
obtained from the tide gage residuals. 

D.4.4.2.6.4 Combined Effects: Surge Plus Tide 

The simulation of storm surge is usually performed over water depths representing mean 
conditions, or some other fixed level. The 1-D Monte Carlo approach in which tide is 
incorporated as a time-dependent boundary condition is an exception.  

Because tide is ubiquitous, the flood level associated with storm surge must be based on the 
combined surge-plus-tide levels. Four approaches of differing complexity are mentioned here. 

First, if the surge and tide can be assumed to combine linearly (that is, neither is physically 
altered by the presence of the other), then the simplest method is to simply add them in some 
manner. If a surge episode is relatively long compared with a tidal cycle, then high tide will be 
certain to occur at some time for which the surge is near its peak, and a simple sum of amplitudes 
may be sufficiently accurate. 

However, if the surge duration is short, this approximation is inadequate. The next simplest 
assumption, still assuming linear superposition, is based on the fact that the probability density 
function for a sinusoid is largest at its extrema – tide is generally near a local high water, or near 
a local low water, and spends more time near those values than in between. It may be reasonable, 
then, to assume that the peak surge occurs with equal probability near a high tide or near a low 
tide, taking mean high and mean low as representative values. Each of the corresponding 
elevation sums would be assigned 50% of the rate associated with the particular storm (as if each 
storm were to occur twice, once at high tide and once at low tide), and the frequency analysis 
would proceed with these divided rates. 

A third, slightly more accurate approach but still assuming physical independence, is based on 
the convolution method mentioned in Section D.4.3. In this method, the probability density 
functions for both tide and surge without tide are used. Previous discussion has shown how both 
of these may be established. If the probability density of the tide level Z is denoted by pT(Z) and 
the probability density of the surge level is pS(Z), then the probability density of the sum of the 
two is given by: 
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where the indicated integrations are over all tide and surge levels.  

In some cases, however, the essential assumption that the tide and surge can be linearly added is 
not satisfied. In shallow water areas extending a large distance inland, the enhanced depth 
associated with tide (or surge) affects the propagation and transformation of the surge (or tide). 
That is, there is a nonlinear hydrodynamic interaction between the two. In such a case, more 
complex methods are required because the nonlinear interaction can only be taken into account 
by hydrodynamic considerations, not by any amount of purely statistical effort. Two approaches 
to this issue have been adopted in study methods already identified. The FEMA storm surge 
methodology adopts a procedure in which a small number of storms are simulated around a set of 
tide assumptions with differing amplitudes and phases. These additional simulations are used to 
provide guidance for simple adjustments that are made to the large set of computations 
performed on MSL. The EST approach treats astronomic tide (amplitude and phase) as 
additional input vector components, which are incorporated into the hydrodynamic model as part 
of the boundary conditions. The 1-D Monte Carlo approach includes tide as part of the surge 
simulation and so does not require a separate step to combine the two. 

Should the Mapping Partner be required to perform 2-D surge modeling (for example, in 
sheltered waters), it will be necessary to consult the user’s manuals or other documentation of the 
adopted models to obtain additional guidance on this topic. 

D.4.4.2.6.5 Combined Effects: Surge Plus Riverine Runoff 

The final instance of combined still water frequency to be described concerns the determination 
of the 1% SWL in a tidal location subject to flooding by both coastal and riverine mechanisms. 
This is the case in the lower reaches of all tidal rivers. 

The simplest assumption is that the extreme levels from coastal and riverine processes are 
independent, or at least widely separated in time. This assumption is generally acceptable 
because the storms that produce extreme rainfall and runoff may not be from the same set as the 
storms that produce the greatest storm surge. Furthermore, if a single storm produces both large 
surge and large runoff, the runoff may be significantly delayed by the time required by overland 
flow, causing the runoff elevation to peak after the storm surge. Clearly, there may be particular 
storms and locations for which these assumptions are not true, but even so they are not expected 
to be so common as to strongly influence the final statistics. If, for a steep terrain area of the 
Pacific Coast, it is thought that peak runoff and peak surge may commonly coincide owing to 
local conditions, then the Mapping Partner must consider the likely correlation between the two, 
and discuss with the FEMA study representative whether a departure from the method given here 
should be used. 

The procedure is straightforward, beginning with development of curves or tables for rate of 
occurrence vs. flood level for each flood source (riverine and coastal). Rate of occurrence can be 
assumed equal to the reciprocal of the recurrence interval, so the 100-year flood has a rate of 
occurrence of 0.01 times per year. This is numerically equal to what is more loosely called the 
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flood elevation probability. Then one proceeds as follows at each point of interest, P, within the 
mixed surge/runoff tidal reach. 

1. Select a flood level Z within the elevation range of interest at point P. 

2. Determine the rates of occurrence RP,R (Z) and RP,S (Z) of rainfall runoff and storm surge 
exceeding Z at site P (number of events per year). 

3. Find the total rate RP,T (Z) = R P,R (Z) + RP,S (Z) at which Z is exceeded at point P, 
irrespective of flood source. 

4. Repeat steps (1) through (3) for the necessary range of flood elevations. 

5. Plot the combined rates RP,T (Z) vs Z and find ZP,100 by interpolation at RP,T ≈  0.01. 

6. Repeat steps (1) through (5) for a range of sites covering the mixed tidal reach. 

7. Construct the 100 year composite profile passing through the several combined 100-year 
elevation points, and blending smoothly into the pure-riverine and pure-surge 100-year 
profiles at the ends of the mixed reach. 

The procedure is shown schematically in Figure D.4.4-15, in which the combined curve has been 
constructed by addition of the rates at elevations of 6, 8, 10, and 12 feet. The entire procedure 
can be implemented in a simple calculator program, with the input at point P being the 10-, 50-, 
100-, and 500-year levels for both runoff and surge, as obtained from standard FIS tables. 

 
Figure D.4.4-15. Schematic Illustration of Riverine and Surge Rate Combination 
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D.4.4.2.7 Non-Stationary Processes 

Conceptually, a stationary process may be thought of as one that does not change in its essential 
characteristics over time; its descriptors are fixed or stationary. For example, a stationary random 
process would be one for which its mean, standard deviation, and other moments are unchanging 
over time. A non-stationary process is one for which these measures do change. Whether a 
fluctuating process is thought to be, or appears to be, non-stationary can depend upon the time 
window through which it is viewed. Processes that appear to display definite non-stationary 
trends when viewed at a short scale, may be seen to fluctuate around an unchanging mean when 
viewed from a more distant perspective. For example, the tide appears non-stationary when 
viewed over a period of one hour, but appears entirely stationary when viewed over an entire 
tidal epoch. 

The appropriate time window for FISs is established by the period of record covered by the 
available hydrologic data on the one hand, and the probable lifetime of a particular study, on the 
other. Consider El Niños, discussed above. Viewed for a period of a small number of months or 
years, the El Niño phenomenon appears to be a decidedly unsteady process during which ocean 
levels rise, and other environmental changes occur. However, when seen at a scale of about 15 
years or more, the El Niño variations appear to be more or less steady fluctuations, mirrored by 
the opposite La Niña phases, and showing no evident non-stationary trends. Examining 
observations over a short interval, say 5 years or less, may require recognition of a temporary 
lack of stationarity, whereas a record covering multiple cycles of El Niño, such as long-term tide 
gage data and the GROW wave data, may properly reflect the effects of the fluctuation, without 
requiring any special consideration of non-stationarity. This is characteristic of time series: it is 
difficult or impossible to discern whether an observed change is the result of a trend or is merely 
a temporary fluctuation. 

For practical FIS considerations, two sorts of non-stationarity seem significant. The first is the 
apparent change of sea level, which has been observed on all coasts. Because it is sea level 
relative to land that is most significant, an apparent change of sea level can be the result of either 
sea-level rise, or land subsidence. 

The second type of non-stationarity that is important for coastal studies is the long-term change 
in tidal datums, which may occur as basins evolve through silting, dredging, migration and 
evolution of inlets, human construction including harbor improvements and breakwaters, and so 
forth. Both types are discussed below. 

D.4.4.2.7.1 Relative Sea Level – Sea-level Rise 

Sea level rise appears to be a real, long-term effect observed all along the U.S. coastline. For the 
majority of the Pacific Coast, the rate of rise is between 0 and 3 millimeters per year, or up to 
about 1 feet per century; see, for example, data available from NOAA at its website 
<http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml>. The Philadelphia District of the 
USACE maintains a useful collection of sea-level rise links at their website 
<http://www.nap.usace.army.mil/cenap-en/slr_links.htm>. There is also a very large set of sea-
level trend data for individual stations along the Pacific Coast, which can be obtained from the 
referenced NOAA site.  

 D.4.4-44 Section D.4.4 
All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 

However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

The significance of such data is two-fold. First, the Mapping Partner must be aware of these 
changes to properly interpret historical data upon which new studies might be partly based. This 
has been discussed, for example, in a prior section on tides. Second, the likely continuation of 
these trends into the future will have some impact, although usually small, on the interpretation 
of today’s Flood Insurance Rate Maps (FIRMs) at a future date. In particular, the Mapping 
Partner should consider the likely impact of sea-level rise on flood delineation, and document 
any unusual changes that might be anticipated. 

D.4.4.2.7.2 Relative Sea Level – Land Subsidence 

Land subsidence produces the same sort of effect as sea-level change – a rise in the apparent sea 
level – but subsidence might be much the more significant factor in a local area. For example, 
portions of the Sacramento-San Joaquin Delta have subsided by more than 15 feet since 
reclamation for agriculture began in the 19th century. Many areas in Southern California have 
subsided by several feet as a result of gas, oil, or water extraction over the past few decades. 

Such large displacements make it imperative that historical data be interpreted with caution. The 
Mapping Partner must ensure that gage datums have been properly adjusted over time so that 
water-level records, benchmarks, observed highwater marks, and all similar data are properly 
interpreted. 

The USGS is a primary repository of land subsidence data for the United States, and should be 
consulted to obtain local site information covering the entire period of study data that might be 
compromised by unrecognized subsidence. The USGS web pages may be searched for local 
subsidence information at <http://search.usgs.gov/>.  

Other data sources may be more helpful in some cases. The Mapping Partner should consult with 
local city and county engineering departments, and with the local professional surveying 
community, which may be aware of isolated subsidence issues not reflected in national 
programs. 

D.4.4.2.7.3 Astronomic Tide Variation 

Tide datums and tidal constituents may change over time owing to changes in the geometry of a 
tidal basin, so tide may also constitute a non-stationary process. This makes it imperative that 
tide predictions for prior years be made using tidal constituents appropriate to that time, and that 
tidal data be adjusted as necessary for shifts in tidal datums with respect to a fixed datum such as 
NAVD or NGVD. The NOAA website can provide predictions for past times, but all such 
predictions are made using the current default set of constituents, and so may inaccurately 
portray past tide levels and datums. Archived copies of tidal constituents can be obtained from 
NOAA by special request. Flexibility in applications such as these makes it wise to use a tide 
prediction program such as NOAA’s own program, NTP4. 
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D.4.5 Wave Setup, Runup, and Overtopping 

This section provides methodology for establishing the static and fluctuating water-level 
characteristics in the nearshore including wave setup, runup, and overtopping of sandy beaches 
and natural or constructed barriers. Additionally, procedures for calculating attenuation of waves 
propagating over flooded areas, including dissipative bottoms and through vegetation, are 
presented. 
 
D.4.5.1 Wave Setup and Runup 

D.4.5.1.1 Introduction 

The wave, meteorological, and bathymetric characteristics for the Pacific Coast are quite 
different from those on the Atlantic and Gulf coasts for which methodology to quantify the 1% 
chance water levels has been developed previously. The wave differences are due to the longer 
period waves and generally distant generation locations for the Pacific Coast whereas the 
meteorological differences are fewer hurricanes and thus lower winds. The major bathymetric 
differences are due to the relatively narrow Pacific Coast continental shelf widths. There are two 
major consequences of these differences for the 1% annual chance Pacific Coast hazards: (1) the 
wind surge component is relatively small due to the lower wind velocities coupled with the 
narrow shelf widths, and (2) the narrow spectra result in a substantial oscillating component of 
the wave setup with periods of tens to hundreds of seconds. Thus, the oscillating wave setup is a 
significant component of the total wave runup and a major contributor to coastal hazards on the 
Pacific Coast. 

Wave setup and runup recommendations presented are based on a literature review, new 
developments, and comparison of available methods for quantifying these processes. Where 
possible, the most physics-based approaches have been identified and recommended. 

D.4.5.1.2 Background, Definitions, and Approaches 

Wave setup and runup contribute significantly to the damage potential of severe waves along the 
Pacific Coast. The total runup, R , includes three components: (1) static wave setup, η , (2) 

dynamic wave setup,η , and (3) incident wave runup, Rinc , i.e., conceptually: 

 
incR Rη η= + +  (D.4.5-1) 

in which η  and η  are the magnitudes of the mean and oscillating wave setup components and 
Rinc the runup component due to the incident waves. In application, the two oscillating 
components (η  and Rinc) are combined statistically to determine exceedance levels. Unless stated 
differently in this document, R refers to 2% runup conditions. The oscillating component of wave 
setup is a type of infragravity wave and is referred to here as dynamic wave setup. Each of the 
three components of total runup is defined and discussed below.  
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Wave setup is the additional elevation of the water level due to the effects of transferring wave-
related momentum to the surf zone. Momentum is transferred from winds to waves in the wave-
generating area (usually in deep water for the Pacific Coast) and then is conveyed to shore by the 
waves similar to the manner that waves transport energy from the generating area to shore; see 
Figure D.4.5-1. A main difference between energy and momentum is that energy is dissipated in 
the surf zone whereas momentum is transferred to the water column. This transfer is equivalent 
to a shoreward-directed “push” on the water column that causes a tilt of the water surface; see 
Figure D.4.5-2. The wave setup is small and negative seaward of the surf zone (setdown) and 
begins to rise in the surf zone due to the transfer of momentum; see Figure D.4.5-3. If only one 
wave of a constant height and period were present, the wave setup would be steady.  

 

 
 
 

Figure D.4.5-1.  Schematic of Energy and Momentum Transfer from Winds to Waves 
within the Wave-generating Area, and to the Surf Zone and Related Processes 
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Wind Direction 

Figure D.4.5-2.  Wave Setup Due to Transfer of Momentum 

 

 

Wind Direction 

Figure D.4.5-3.  Static Wave Setup Definitions at Still Water Level, ηo ,  

and Maximum Setup, ηmax  

For a single wave component, the static setup, η (h), at any water depth, h, can be expressed as: 
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where κ is the ratio (assumed a constant) of the breaking wave height to water depth within the 
surf zone and h is the still water depth, i.e., the depth in the absence of waves or wave effects. 
The wave setup at the still water line, ηo , and the maximum wave setup, ηmax , can be expressed 
from Equation D.4.5-2 in terms of the breaking wave height, Hb : 
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The equivalent expression for the maximum wave setup, ηmax , is: 

 
2

max 2

2

(3 / 8)( )
16 1 (3/ 8)

(3 / 8)(1 )
1 (3 / 8)

bH

κ κ
κη

κ
κ

⎧ ⎫
− +⎪ ⎪+⎪ ⎪= ⎨ ⎬

⎪ ⎪−
⎪ ⎪+⎩ ⎭

 (D.4.5-4)

For the usual value of κ  = 0.78, the following relations result: 

 ( ) 0.189 0.186bh Hη = − h  (D.4.5-5) 

 0.189o Hη = b  (D.4.5-6) 

 max 0.232 bHη =  (D.4.5-7) 

More realistic wave-breaking models that account for the actual profile will usually reduce the 
wave setup for the relatively mild profile slopes of the Pacific Coast. For a wave system 
consisting of more than one wave component (i.e., a wave spectrum), the breaking wave height 
in the above expressions is replaced by the root mean square breaking wave height, ( )Hb rms

. Of 
significance on the Pacific Coast is that for wave systems consisting of more than one wave 
component, the setup is oscillating consisting of a steady and a so-called dynamic component; 
see Figure D.4.5-4. The dynamic wave setup component is larger for narrower wave spectra and 
is substantial on the Pacific Coast during extreme storms and thus will require quantification for  
 

 

 
Figure D.4.5-4. Definitions of Static and Dynamic Wave Setup  

and Incident Wave Runup 
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flood mapping purposes. In addition to contributing to the total wave runup and thus the 
shoreward reach of the waves, dynamic wave setup can carry floating debris such as logs at high 
velocities and thus increase the hazards and damage potential in coastal areas. Figure D.4.5-4 
illustrates the three components that define the upper limit of wave effects. 

Incident wave runup on natural beaches or barriers is usually expressed in a form originally due 
to Hunt (1959) in terms of the so-called Iribarren number, ξ , as follows: 

 m
H L

ξ =  (D.4.5-8) 

in which m is a representative profile slope and is defined, depending on the application, as the 
beach slope or the slope of a barrier that could be either a dune or constructed element such as a 
breakwater or revetment. H and L are wave height and length, respectively. The wave 
characteristics in the Iribarren number can be expressed in terms of breaking or deep water 
characteristics. For purposes here, two wave characteristics in the Iribarren number are used 
including that based on the significant deep water wave height, Ho , and peak or other wave 
period, T, of the deep water spectrum, and that based on the significant wave height at the toe of 
a barrier. The first definition for a sandy beach is as follows: 

 
o

o o

m
H L

ξ =
 (D.4.5-9) 

where Lo is the deep water wave length: 

 
2

2o
gL T
π

=
 (D.4.5-10) 

and g is the gravitational constant. The beach profile slope is the average slope out to the 
breaking depth associated with the significant wave height. Other definitions of the Iribarren 
number are defined later in this section as needed. 

The 2% incident wave runup on natural beaches, Rinc , is expressed in terms of the Iribarren 
number as: 

 0.6inc o
o o

mR H
H L

=  (D.4.5-11) 

Several definitions are relevant to the determination of runup and overtopping considered later in 
this section. The term still water level (SWL) has an accepted definition in coastal engineering as 
the water level in the absence of wind waves and their effects and thus would include the 
astronomical tide, El Niño, and surge due to wind effects, but would not include either of the 
wave setup components. However, the wave setup components are included in the base water 
level for calculating wave runup and overtopping. Thus, the term static water level (STWL) is 
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defined here as the sum of the SWL and the static wave setup, η . Terminology is also useful to 
describe the sum of the static water level and a X% dynamic wave setup component. For 
purposes here, this will be defined as the dynamic water level X% (DWLX%). For example, the 
elevation corresponding to a 2% Dynamic Water Level would be the sum of the SWL (including 
astronomical tide, El Niño, and wind surge if present), the static wave setup, and the 2% dynamic 
wave setup. The term reference water level (RWL) is used as general terminology to refer to the 
water level that is appropriate for the particular application being discussed. As defined in 
Section D.4.2, the total water level (TWL) is the sum of the SWL, the wave setup, and wave 
runup.  

D.4.5.1.3 General Input Requirements 

The wave transformation element of the Guidelines and Specifications (Section D.4.4) produces 
a nearshore shallow water wave spectrum outside the breaking zone and an equivalent deep 
water wave spectrum. The approaches detailed in the following subsections base the total wave 
runup on the equivalent deep water wave spectrum for the case of natural beaches or for the case 
of runup on a barrier, the significant wave height at the toe of the barrier. To apply some of these 
methods, a parameterized (Joint North Sea Wave Project [JONSWAP]) spectrum is developed. 
The following wave characteristics are quantified: (1) equivalent deep water significant wave 
height, (2) peak wave period, and (3) spectral width (here spelled out as Gamma to avoid 
confusion with the Greek letter γ  used to denote other parameters in this subsection). Large 
values of Gamma are associated with narrow spectra. Additionally, in some of the methods, an 
approximate uniform nearshore slope of the profile, m, must be established.  

The deep water significant wave height and the peak period can be determined using the 
information provided from the wave transformation output. The recommended basis for 
determination of the spectral peakedness parameter (Gamma) is described below.  

A parameter defined by Longuet-Higgins to quantify the spectrum narrowness (or peakedness) is 
based on the moments of the frequency spectrum, mi, defined previously as Equation D.4.4-21 in 
Section D.4.4 and refined below as Equation D.4.5-12: 

   
1

( )
N

i
i n

n

m f S f
=

= ∑ n (D.4.5-12)

where S(fn) is the wave energy at the discrete frequency, fn . The Longuet-Higgins definition of 
the spectral narrowness, υ , is expressed in terms of the spectral moments: 

 

1/ 2

2
2
1

1om m
m

υ
⎡ ⎤

= −⎢ ⎥
⎣ ⎦  (D.4.5-13) 

such that for an infinitely narrow spectrum, υ  = 0. For purposes here, the two spectral 
peakedness parameters, υ  and Gamma, have been plotted for JONSWAP spectra and the results 
are presented in Figure D.4.5-5. The spectral moments, m0, m1, and m2, for the actual equivalent 
deep water spectrum are provided from the wave transformation analysis effort (Section D.4.4), 
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and υ  is determined from Equation D.4.5-13 and then Gamma determined from Figure D.4.5-5 
as input into the total wave runup methodology for the case of natural beaches. 

 
Figure D.4.5-5.  Spectral Width Parameter Versus Gamma for JONSWAP Spectra 

D.4.5.1.4 Setup and Runup on Beaches: Descriptions and Recommendations 

A basic difficulty exists in applying the usual total runup equations to Pacific Coast conditions. 
The total runup shall include wave setup; however, when these equations are applied to 
approximate 1% annual chance Pacific Coast wave conditions, the total wave runup can be less 
than predicted for static and dynamic wave setup alone. This apparent paradox stems from the 
fact that most laboratory experiments on which these equations are based were conducted under 
conditions much different than those of concern on the Pacific Coast and the equations governing 
wave setup and incident wave runup have different dependencies on the variables (beach slope 
and wave characteristics) and thus the methods based on available experimental data cannot be 
extended outside the range of variables for which the experiments were conducted. Thus, it is 
necessary to account for this limitation of the usual equations for total wave runup in developing 
recommendations for the Pacific Coast.  

The Direct Integration Method (DIM) was developed for calculating static and dynamic 
(infragravity) components of wave setup accounting for as much of the physics as possible. This 
one-dimensional method accounts for the spectral shape, the detailed bathymetry, and is based 
on integration of the governing equations from deep to shallow water. DIM can be applied by a 
simple set of empirical equations and by full implementation of the numerical model. 

Three general approaches to address the wave setup components of the total wave runup on 
natural beaches are available: (1) empirical methods, (2) DIM developed in conjunction with this 
effort, and (3) advanced wave models, primarily the Boussinesq type. Because the dynamic wave 
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setup is considered to be very significant on Pacific Coast shorelines and depends on the spectral 
width and DIM is the only method (other than the Boussinesq models) that can account for 
variable spectral width, DIM is the preferred method for application.  

D.4.5.1.4.1 Direct Integration Method  

Because the DIM approach does not include the effects of incident wave runup, it is 
recommended that the 2% incident runup be incorporated and added statistically as discussed in 
more detail later. The recommended formulation is: 

 inc R o oR F Hξ=  (D.4.5-14) 

The coefficient FR  in the above equation will differ for sandy beaches and barriers as discussed 
in the following subsections. The DIM approach allows the wave and bathymetric characteristics 
to be taken into consideration. Specifically, the spectral shape and actual bathymetry can be 
represented. A detailed discussion of the DIM program is presented in a User’s Manual in the 
supporting documentation to these Guidelines and Specifications. Two applications of DIM are 
available to the Mapping Partner: the computer program and a set of equations. The equations 
available are based on parameterized spectra (the JONSWAP spectrum that allows various 
spectral widths to be considered) and uniform profile slopes. The program DIM calculates the 
total wave setup and provides as output the static (average) wave setup, η , and the root mean 
square (rms), ηrms , of the fluctuating wave setup around the average. Static and dynamic wave 
setup increase with wave period and the rms of the fluctuating setup component has been found 
to increase with the narrower spectra. The static setup component, η , and rms of the dynamic 
setup component, ηrms , can be determined using the DIM program or the following equations: 

 4.0 H T Gamma SlopeF F F Fη =  (D.4.5-15) 

and  

 2.7rms H T Gamma SlopeG G G Gη =  (D.4.5-16) 

where the units of η  and ηrms  are in feet and the factors are for wave height (FH and GH), wave 
period , (FT and GT), JONSWAP spectrum narrowness factor (FGamma and GGamma), and nearshore 
slope (FSlope and GSlope). These factors are defined in Table D.4.5-1. With the exception of the 
spectral narrowness factors, the F and G factors are the same. The nearshore slope is the average 
slope between the runup limit and twice the break point of the significant wave height with the 
depth, h κb , at this point defined as hb = Hb / . For purposes here, κ can be taken as 0.78. 
Because the wave setup components vary with the 0.2 power of this effective slope, these values 
are not overly sensitive to the value of effective slope. 
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Table D.4.5-1.  Summary of Factors to Be Applied with DIM  

Factor for 

Variable Wave Height Wave Period 
Spectral 

Narrowness 
Nearshore Profile 

Slope 
η  (H 26.2 0.8

o  ) (T 20.0 0.4  ) 1.0 (m 0.01 0.2  )
ηrms  (H 26.2 0.8

o  ) (T 20.0 0.4  ) ( )0.16Gamma  (m 0.01 0.2  )

In applying the DIM method (whether from the program DIM or from the equations and Table 
D.4.5-1), it is necessary to develop the statistics of the oscillating wave setup and incident wave 
runup. This combination is based on the rms values (or standard deviations, σ ) of each 
component. The standard deviation of setup fluctuations, σ1(≡ηrms ) , is determined from the 
program or from the guidance provided in Table D.4.5-1. The recommended standard deviation 
for the incident wave oscillations, σ 2 , on natural beaches is given by: 

 2 0.3 o oHσ ξ=  (D.4.5-17) 

and the standard deviation associated with the relatively steep barriers is addressed later. With 
the two standard deviations (σ1  and σ 2 ) available, the total oscillating contribution to the 2% 

total wave runup, ηT , is determined as the combination of the two standard deviations of the 
fluctuating components, σ1 2and σ : 

  2
12.0T

2
2η σ σ= +  (D.4.5-18) 

The results of the computations using DIM suggest that the fluctuating component of the wave 
setup is normally distributed and that the maxima of the fluctuating component of wave setup are 
Rayleigh-distributed, similar to the general behavior found by Hedges and Mase (2004) in 
laboratory experiments of wave setup and wave runup. 

D.4.5.1.4.2 Advanced Wave Models 

Wave models are becoming more sophisticated and able to account for the complexities of water 
waves. A rapidly developing class of these is the so-called Boussinesq models, which are both 
commercially and publicly available with the commercial models generally being the more user 
friendly. In addition to wave setup, Boussinesq models can calculate wave runup. In conjunction 
with the development of these Guidelines and Specifications, one-dimensional Boussinesq 
models have been applied to calculate total wave runup and the average and oscillating 
components were calculated separately. The comments below are based on an assessment of 
these Boussinesq results. 

Based on comparison with other methods, Boussinesq models yield generally realistic results. 
The main concern with Boussinesq modeling is the “learning curve” required to carry out these 
types of computations with confidence. Additionally, it was difficult to carry out calculations for 
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deep water waves with a small directional dependency. The reason for this difficulty lies in the 
associated substantial longshore wave lengths and the need for them to be represented by a two-
dimensional model. One possible Federal Emergency Management Agency (FEMA) application 
that would avoid the repeated learning curve requirement would be to carry out computations on 
a regional basis using Boussinesq models. The rate of improvement/development of Boussinesq 
models is moderate at present; however, it is likely that this type of model will be much more 
capable in 10 to 20 years than at present. Thus, at this stage, a Mapping Partner may elect to 
apply Boussinesq models; however, for application on a regional basis, it is preferable to wait for 
further developments and improvements. If a Boussinesq model is applied, the Mapping Partner 
shall obtain FEMA approval and it is suggested that calculations also be carried out using the 
DIM methodology for comparison of results. 

D.4.5.1.5 Runup on Barriers 

D.4.5.1.5.1 Special Considerations Due to Dynamic Wave Setup 

Previous discussions have emphasized that a large wave runup event on the Pacific Coast is 
anticipated to have a more substantial dynamic wave setup than is present in the database on 
which available runup methods are based. Thus, special consideration is required in the 
calculation of wave runup and wave overtopping, which is the subject of a later subsection. The 
issues are to include the dynamic wave setup appropriately without double inclusion of the static 
and dynamic wave setup components that are inherent in the empirical database from which the 
runup and overtopping methodology were based. Table D.4.5-2 describes the recommended 
methodology for both open coast and sheltered water settings. This methodology is illustrated 
through example calculations and separate supporting documentation. 

Table D.4.5-2. Recommended Procedure to Avoid  
Double Inclusion of Wave Setup Components 

Case Procedure 
Open Coast, Sandy Beach Apply DIM for wave setup with statistically combined incident 

runup, Equations D.4.5-17 and D.4.5-18 
Open Coast, Coastal Barrier Present Apply DIM for wave setup and reduce dynamic wave setup by 

amount considered to be most likely present in laboratory tests 
on which runup equations are based  

Sheltered Waters, Sandy Beach Same as open coast, sandy beach 
Sheltered Waters, Coastal Barrier 
Present 

Same as open coast, coastal barrier present 

 

D.4.5.1.5.2 Methodology for Calculating Wave Runup on Barriers 

In this subsection, barriers include steep dune features and coastal armoring structures such as 
revetments. Runup elevations on barriers depend not only on the height and steepness of the 
incident wave (and its interaction with the preceding wave), but also on the geometry (and 
construction) of the structure. Runup on structures can also be affected by antecedent conditions 
resulting from the previous waves and structure composition. Due to these complexities, runup 
on structures is best calculated using equations developed with tests on similar structures with 
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similar wave characteristics. Runup equations generally take the form of Equation D.4.5-14, with 
coefficients developed from laboratory or field experiments. Following Equation D.4.5-1, the 
incident wave runup (Rinc) for structures is added to the wave setup values (η and η ) statistically 
based on application of DIM. Also, DIM is applied to estimate the setup water surface at the toe 
of the structure, as appropriate, in most cases where the structure toe will be within the surf zone.  

The recommended approach to calculating wave runup on structures is based on the Iribarren 
number (ξ) and reduction factors developed by Battjes (1974), van der Meer (1988), de Waal & 
van der Meer (1992), and described in the Coastal Engineering Manual (CEM) (USACE, 2003). 
The approach is referred to as the TAW (Technical Advisory Committee for Water Retaining 
Structures) method and is clearly articulated in van der Meer (2002) and includes reduction 
factors for surface roughness, the influence of a berm, structure porosity, and oblique wave 
incidence. The TAW method is useful as it covers a wide range of wave conditions for 
calculating wave runup on both smooth and rough slopes. In addition to being well documented, 
the TAW method agrees well with both small- and large-scale experiments. 

It is important to note that other runup methods and equations for structures of similar form may 
provide more accurate results for a particular structure. The Mapping Partner shall carefully 
evaluate the applicability of any runup method to verify its appropriateness. Figure D.4.5-6 
shows a general cross-section of a coastal structure, a conceptual diagram of wave runup on a 
structure, and definitions of parameters.  

SWL + η η+  
= DWL2% Total Runup 

Still Water Level  (SWL) 

Total Water Level 

Armor Layer 

 

Figure D.4.5-6. Runup on Coastal Structures, Definition Sketch 

Most of the wave runup research and literature shows a clear relationship between the vertical 
runup elevation and the Iribarren number. Figure D.4.5-7 shows the relative runup (R/Hmo) 
plotted against the Iribarren number for two different methods: (1) van der Meer (2002), and (2) 
Hedges & Mase (2004). In Figure D.4.5-7, both runup equations are derived from laboratory 
experimental data and are plotted within their respective domains of applicability for the 
Iribarren number. Each equation shows a consistent linear relationship between the relative 
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runup and ξom for values of ξom below approximately 2. For values of ξom above approximately 2, 
only the van der Meer method is applicable. Moreover, due to its long period of availability and 
wide international acceptance, the van der Meer relationship (also referred to as the TAW runup 
methodology) is recommended here. The Mapping Partner shall characterize the wave conditions 
in terms of ξom and be aware of the runup predictions provided by the various methods available 
in the general literature.  
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Figure D.4.5-7.  Non-dimensional Total Runup vs. Iribarren Number 

The general form of the wave runup equation recommended for use is (modified from van der 
Meer, 2002): 
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 (D.4.5-19) 

where:  

 R is the 2% runup = 2σ 2  
Hmo = spectral significant wave height at the structure toe 
γ r  = reduction factor for influence of surface roughness 
γ b  = reduction factor for influence of berm 
γβ = reduction factor for influence of angled wave attack 
γP = reduction factor for influence of structure permeability 
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Equations for quantifying the γ parameters are presented in Table D.4.5-3. The reference water 
level at the toe of the barrier for runup calculations is DWL2%. Additionally, because some 
wave setup influence is present in the laboratory tests that led to Equation D.4.5-19, the 
following adjustments are made to the calculation procedure for cases of runup on barriers. 
 

Table D.4.5-3.  Summary of γ  Runup Reduction Factors 

Runup Reduction 
Factor Characteristic/Condition Value of γ  for Runup 

Roughness 
Reduction Factor, 

γ r  

Smooth Concrete, Asphalt 
and Smooth Block 

Revetment 
1 Layer of Rock With 

Diameter, D.  
H Ds /  = 1 to 3. 

2 or More Layers of Rock. 
H Ds /  = 1.5 to 6. 
Quadratic Blocks 

γ r  = 1.0 

γ r  = 0.55 to 0.60 

γ r  = 0.5 to 0.55 

 
 

 
 

γ r  = 0.70 to 0.95. See Table V-5-3 
in CEM for greater detail 

 
 
 
 

(D.4.5-20)

Berm Section in 
Breakwater, 
γ b , B = Berm 

Width, 
hd

x
π⎛ ⎞
⎜
⎝ ⎠

 in radians ⎟

 
 Berm Present in Structure 

Cross-section. See Figure 
D.4.5-8 for Definitions of 

B, Lberm, and Other 
Parameters 

B ⎡ ⎤⎛ ⎞πdγ γb B= −1 1+ cos⎜ ⎟
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−⎧ ≤ ≤⎪⎪= ⎨
⎪ ≤ ≤
⎪⎩

Minimum and maximum values of 
γ b  = 0.6 and 1.0, respectively 

(D.4.5-21) 
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Wave Direction 
Factor, γ β , 
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Short-Crested Waves 

1 0.0022 , 80

1 0.0022 80 , 80

o

o

β β

β
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− ≥
 (D.4.5-23)

Porosity Factor, γ P   
 

Permeable Structure Core 
Pγ  = 1.0, omξ < 3.3; Pγ  = 0.46

2.0
1.17( )omξ

, omξ > 3.3 

and porosity = 0.5. for smaller porosities, 
proportion Pγ  according to porosity . 
See Figure D.4.5-9 for definition of porosity 

(D.4.5-24)
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Hmodh 

Hmo

Lberm

B

 
 

Figure D.4.5-8.  Berm Parameters for Wave Runup Calculations 

 
 

               
 

Figure D.4.5-9.  Structure Porosity Definition 

The steps below are based on the consideration of laboratory tests conducted with a JONSWAP 
Gamma equal to 3.3, which is the average of the spectra entering into the development of the 
JONSWAP spectrum. Also, see Table D.4.5-2. 

1. Calculate, using DIM methodology, η rms (= σ1 ) for: (1) Gamma equal to 3.3, and (2) the 
Gamma value of interest for the 1% percent chance conditions. 

2. Reduce the dynamic wave setup at the toe of the structure by the difference between the 
2% dynamic wave setup values associated with the Gamma of interest and Gamma = 3.3, 
i.e., σ1 (Gamma > 3.3) = σ1 (Gamma of interest) - σ1 (Gamma = 3.3). For cases in which 
the Gamma of interest is less than 3.3, set the value of σ1  = 0 (Equations D.4.5-17 and 
D.4.5-18). 
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For a smooth impermeable structure of uniform slope with normally incident waves, each of the 
γ  runup reduction factors is 1.0.  

In calculating the Iribarren number to apply in Equation D.4.5-19, the Mapping Partner shall use 
Equation D.4.5-9 and replace Ho with Hmo and replace T with Tm-1.0 (the spectral wave period) in 
Equation D.4.5-10. Hmo and Tm-1.0 are calculated as: 

 

 

omo mH 0.4=  (D.4.5-25) 

1.10.1
p

m

T
T =−  (D.4.5-26) 

where Hmo is the spectral significant wave height at the toe of the structure and Tp is the peak 
wave period. In deep water, Hmo is approximately the same as Hs, but in shallow water, Hmo is 
10-15% smaller than the Hs obtained by zero up crossings (van der Meer, 2002). In many cases, 
waves are depth-limited at the toe of the structure and Hb can be substituted for Hmo, with Hb 
calculated using a breaker index of 0.78 unless the Mapping Partner can justify a different value. 
The breaker index can be calculated based on the bottom slope and wave steepness by several 
methods, as discussed in the CEM (USACE, 2003). As noted, the water depth at the toe of the 
structure shall include the static wave setup and the 2% dynamic wave setup, calculated with 
DIM. In terms of the Iribarren number, the TAW method is valid in the range of 0.5 < ξom < 8-
10, and in terms of structure slope, the TAW method is valid between values of 1:8 to 1:1. The 
Iribarren number as described above is denoted ξom  as indicated in Equation D.4.5-19. 

Runup on structures is very dependent on the characteristics of the nearshore and structure 
geometries. Hence, better runup estimates may be possible with other runup equations for 
particular conditions. The Mapping Partner may use other runup methods based on an 
assessment that the selected equations are derived from data that better represent the actual 
profile geometry or wave conditions. See CEM (USACE, 2003) for a list of presently available 
methods and their ranges of applicability. 

D.4.5.1.5.3 Special Cases—Runup from Smaller Waves 

In some special cases, neither of the previously described methods (Subsection D.4.5.1.4, Setup 
and Runup Beaches: Description and Recommendations, or Subsection D.4.5.1.5 Runup on 
Barriers) is applicable. These special cases include steep slopes in the nearshore with large 
Iribarren numbers or conditions otherwise outside the range of data used to develop the total 
runup for natural beach methods. Also, use of the TAW method is questionable where the toe of 
a structure, or naturally steep profile such as a rocky bluff, is high relative to the water levels, 
limiting the local wave height and calculated runups to small values. In these cases, it is 
necessary to calculate runup with equations of the form of Equation D.4.5.1-19 and to avoid 
double inclusion of the setup as discussed in Subsections D.4.5.1.5.1 and D.4.5.1.5.2 and Table 
D.4.5-2 and to carry out the calculations at several locations across the surf zone using the 
average slope in the Iribarren number. With this approach, it is possible that calculations with the 
largest waves in a given sea condition may not produce the highest runup, but that the highest 
runup will be the result of waves breaking at an intermediate location within the breaking zone.  
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The recommended procedure is to consider a range of (smaller) wave heights inside the surf zone 
in runup calculations. For this approach, for all depths considered, the dynamic setup is reduced 
if the Gamma of interest exceeds 3.3 as described in Subsections D.4.5.1.5.1 and D.4.5.1.5.2 and 
Table D.4.5-2. For each depth considered, the static setup is calculated with Equation D.4.5-5 
with the water level including the 2% dynamic wave setup replacing the depth, h, in that 
equation. With the 2% dynamic water level available, methods of calculating wave runup on 
barriers is applied and are described in greater detail below.  

The concept of a range of calculated runup values is depicted schematically in Figure D.4.5-10 
where an example transect and setup water surface profile are shown. Figure D.4.5-10 also 
shows the corresponding range of depth-limited breaking wave heights calculated based on a 
breaker index and plotted by breaker location on the shore transect. The Iribarren number was 
also calculated and plotted by breaker location in Figure D.4.5-10. The calculation of ξ at each 
location uses the deshoaled deepwater wave height corresponding to the breaker height, the 
deepwater wave length and the average slope calculated from the breaker point to the 
approximate runup limit. Note that this average slope (also called composite slope, as defined in 
the CEM [USACE, 2003] and SPM [USACE, 1984] increases with smaller waves because the 
breaker location approaches the steeper part of the transect near the shoreline. This increases the 
numerator in the ξ equation. Also, the wave height decreases with shallower depths, reducing the 
wave steepness in the denominator of the ξ equation. Hence, as plotted in Figure D.4.5-10, ξ 
increases as smaller waves closer to shore are examined, increasing the relative runup (R/H). 
However, because the wave height decreases, the runup value, R, reaches a maximum and then 
decreases. 

The following specific steps are used to determine the highest wave runup caused by a range of 
wave heights in the surf zone: 

1. Calculate, using DIM, the reduced 2% dynamic wave setup based on the Gamma of 
interest and Subsections D.4.5.1.5.1 and D.4.5.1.5.2 and Table D.4.5-2. Calculate the 
static wave setup based on Equation D.4.5-5 for the cross-shore location considered. 
Replace h in that equation with the sum of the still water depth at the location and the 2% 
dynamic wave setup. 

2. Calculate the runup using the methods described earlier for runup on a barrier. This 
requires iteration for this location to determine the average slope based on the differences 
between the runup elevation and the profile elevation at the location and the associated 
cross-shore locations. Iterate until the runup converges for this location. 

3. Repeat the runup calculations at different cross-shore locations until a maximum runup is 
determined. 
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Figure D.4.5-10. Example Plot Showing the Variation of Surf Zone Parameters 
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D.4.5.1.6 Example Computations of Total Runup 

Four examples corresponding to the four settings in Table D.4.5-2 are examined and total runup 
values presented. The conditions for the four examples are presented in Table D.4.5-4. These 
examples have been selected to illustrate application of the methodology for several settings. The 
supporting documents provide a detailed step-by-step presentation of the calculations associated 
with these four examples and seven additional examples.. 

Table D.4.5-4.  Example Characteristics 

Example Water Level and  
Wave Conditions 

Profile 
Conditions Barrier Characteristics 

1. Open Coast,  
Sandy Beach  

Astronomical tide = 3 feet 
above NAVD* and wind 
surge = 2 feet. Hmo  = 26.2 
feet; T = 20 sec; Gamma = 
30 in JONSWAP spectrum 

Slope = 1:60 No barrier 

2. Open Coast With 
Structure Present 

Same as Example 1  Slope = 1:60 Slope = 1:1.5, 1 layer rock of 
3 feet diameter, toe depth = 2 
feet below NAVD. porosity 
considered to be 0.2 

3. Sheltered Water, 
Sandy Beach  

Astronomical tide = 3 feet, 
above NAVD and wind 
surge = 1 foot. Hmo  = 6.0 
feet; T = 5 sec; Gamma = 1 
in JONSWAP spectrum 

Slope = 1:60 No barrier 

4. Sheltered Water With 
Structure Present 

Same as Example 3 Slope = 1:60 Same as Example 2 

* NAVD = North American Vertical Datum 
 
Example 1: Open Coast, Sandy Beach 

The actual bathymetry for this example is presented in Figure D.4.5-11 and is approximated here 
as a uniformly sloping profile with slope of 1:60 out to twice the approximate significant wave 
height breaking point. The deep water Iribarren number, ξo , for this case is calculated to be 
0.147. 

Table D.4.5-5 presents the 2% exceedance results based on the DIM program and coefficients in 
Table D.4.5-1 with a nearshore slope of 1:60 as well as the results from the Boussinesq model 
calculations. To illustrate the role of the spectral width, the results for a Gamma of unity based 
on the equations have been presented as a footnote to Table D.4.5-5.  
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Figure D.4.5-11.  Offshore Profile for Example Problem 

 
Table D.4.5-5.  Comparison of Results from Various Methods of  

Calculating 2% Total Runup for Examples 

Example Method 

Static 
Setup 

(ft) 

2% Total Runup (ft) 
Combined Dynamic Setup 
and Incident Wave Runup 

(ft) 

Total 
Runup 

(ft) 
1 Boussinesq Equations 5.33 8.71  14.04
1 DIM Program 4.89 10.11  15.53*

1 
Equations (Table D.4.5-1) 

Based on DIM 4.43 10.58  15.01

2 
Equations (Table D.4.5-1) Based 
on DIM and Equation D.4.5-19 4.43 23.44  27.87

3 
Equations (Table D.4.5-1) 

(Based on DIM) 0.78 1.10  1.88

4 
Equations (Table D.4.5-1) Based 
on DIM and Equation D.4.5-19 0.78 

9.20 (Incident Wave Runup) 
(Dynamic Setup = 0.0) 9.98

* Note: For a Gamma (JONSWAP spectral peakedness) value of 1.0, the 2% total runup by the DIM method is 10.85 feet. The 
total runup for all examples is above SWL. 
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Example 2: Open Coast with Structure Present 

The runup reduction factors determined for this example from Table D.4.5-3 are: γ r  = 0.6, γ b  = 
1.0, γ β  = 1.0, andγ P  = 0.86. Values of the runup were based on the DIM methodology and 
Equation D.4.5-19 with adjustment for the dynamic setup considered to occur in the model tests 
that led to Equation D.4.5-19. The total 2% dynamic water depth at the toe of the structure was 
found to be 14.49 feet, which yielded an approximate significant wave height at the structure toe 
of 11.30 feet for use in Equation D-4.5-19. The value of ξom  is 8.16. The total runup above SWL 
was determined to be 27.87 feet. 

Example 3: Sheltered Waters, Natural Beach 

The deep water Iribarren number based on the conditions in this example is: ξo  = 0.077. The 
total 2% runup above SWL was determined to be 1.88 feet. 

Example 4: Sheltered Waters with Structure Present 

The runup reduction factors determined for this example were obtained from Table D.4.5-3 and 
are the same as for Example 2: γ r  = 0.6, γ b  = 1.0, γ β  = 1.0, and γ P  = 0.86. The total runup 
value was based on the DIM methodology and Equation D.4.5-19 with adjustment for the 
dynamic setup considered to occur in the model tests that led to Equation D.4.5-19. This resulted 
in a dynamic setup, ηrms  = 0. The total 2% dynamic water depth at the toe of the structure was 
found to be 6.78 feet resulting in Hmo =5.29 feet. The relevant Iribarren number at the breakwater 
toe is: ξom  = 2.95. The total runup elevation above SWL was determined to be 9.98 feet. 

D.4.5.1.7 Documentation 

The Mapping Partner shall document the procedures and values of parameters employed to 
establish the 1% chance total wave runup on the various transects on natural beaches and barriers 
that could include steep dunes and structures. In particular, the basis for establishing the runup 
reduction factors and their values shall be documented. The documentation shall be especially 
detailed in case the methodology deviates from that described herein and/or in the 
recommendations in the supporting documentation. Any measurements and/or observations shall 
be recorded as well as documented or anecdotal information regarding previous major storm- 
induced runup. Any notable difficulties encountered and the approaches to addressing them shall 
be described clearly. 

D.4.5.2 Overtopping 

D.4.5.2.1 Overview 

Wave overtopping occurs when the barrier crest height is lower than the potential runup level; 
waves running up the face of a barrier reach and pass over the barrier crest. If the total runup 
elevation (calculated in Subsection D.4.5.1) exceeds the crest elevation, zc, then the overtopping 
of the structure is potentially significant and requires evaluation to define hazard zones. 
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There are three physical forms of overtopping: 

1. Green water overtopping occurs when waves break onto or over the barrier and the 
overtopping volume is relatively continuous. 

2. Splash overtopping occurs when waves break seaward of the face of the structure, or 
where the barrier is high in relation to the wave height, and overtopping is a stream of 
droplets. Splash overtopping can be carried over the barrier under its own momentum or 
may be driven by onshore wind. 

3. Spray overtopping is generated by the action of wind on the wave crests immediately 
offshore of the barrier. Without the influence of a strong onshore wind, this spray does 
not contribute to significant overtopping volume. 

Mapping hazard zones due to green water and splash overtopping requires an estimate of the 
velocity or discharge of the water that is propelled over the crest, and the envelope of the water 
surface, defined by the water depth, landward of the crest. Ideally: 

 

● Base Flood Elevations (BFEs) are determined based on the water surface envelope 
landward of the barrier crest. 

● Hazard zones are determined based on the inland extent of greenwater and splash 
overtopping, and on the depth and force of flow in any sheet flow areas. 

The calculation methods for the hazard zones landward of the barrier crest differ for green water 
overtopping and splash overtopping and depend on the ratio R '/ zc '  as illustrated in Figure 
D.4.5-12. For 1 < R '/ zc '  < 2, splash overtopping dominates and for R '/ zc '  > 2, bore 
propagation dominates. Each of these types results in the occurrence of a hazard zone, although 
the calculations quantifying the hazard zones differ as described later in this subsection. Note 
that R '  and zc '  are relative to the DWL2%. 

Figure D.4.5-13 shows the parameters that may be available for use in mapping BFEs and flood 
hazard zones and are listed in Table D.4.5-6 (availability depends on the runup and overtopping 
methods employed). Again, the reference water level for overtopping calculations is the 
DWL2%. The remainder of this subsection is organized as follows. First the methodology for 
calculating overtopping rates is reviewed. Secondly, methods are presented for calculating the 
hazard zones landward of the crest of the barrier for the two types of overtopping discussed 
above and illustrated in Figure D.4.5-12. 
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Figure D.4.5-12. Definition Sketch for Two Types of Overtopping 
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Figure D.4.5-13.  Parameters Available for Mapping BFEs and Flood Hazard Zones 

Table D.4.5-6. Overtopping Parameters Used in Hazard Zone Mapping 

Parameter Variable Units
Total potential runup elevation  R ft 
Mean overtopping rate q cfs/ft 
Landward extent of green water and splash overtopping yG,Outer ft 
Depth of overtopping water at a distance y landward of crest h(y) ft 

 
Due to the complexity of overtopping processes and the wide variety of structures over which 
overtopping can occur, wave overtopping is highly empirical and generally based on laboratory 
experimental results and on relatively few field investigations. 

D.4.5.2.2 Background 

Overtopping calculations are subject to more uncertainty than runup calculations. While runup 
models may replicate observed runup values with errors of about 20%, predicted overtopping 
rates are often in error by a factor of 2 or more (Kobayashi, 1999). Some overtopping predictions 
may be even less accurate, given the fact that subtle changes in wave conditions, water level, 
structure geometry and characteristics can have a very large effect on overtopping rates. 

D.4.5.2.2.1 Empirical Equations  

Wave overtopping may be predicted by a number of different methods, but chiefly by semi- 
empirical equations that have been fitted to hydraulic model tests using irregular waves for 
specific structure geometries. These empirical equations have the general form: 

 
( )'bFQ a e−

=  or 
'( ) bQ a F −=  (D.4.5-27) 
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where Q is a dimensionless average discharge per unit length of structure and F’ is a 
dimensionless freeboard. It is noted that these two dimensionless quantities are defined 
differently depending on the researcher and the structure characteristics. Overtopping rates 
predicted by these formulae generally include green water and splash overtopping because both 
parameters are recorded during the model tests. 

Section VI-5-2b of the CEM (USACE, 2003) describes several different methods that have been 
developed for particular geometries. The choice of method depends upon the form of wave 
behavior at or on the structure, and the nature of the structure. 

D.4.5.2.2.2 Types of Wave Behavior 

Any discussion on wave-structure interaction requires that the key wave processes be 
categorized, so these different processes may be separated. Four key terms, non-breaking or 
breaking on normally sloped structures and reflecting or impacting on steeper structures, are 
defined below to describe breaking and overtopping processes. 

For beaches and normally sloping structures, the simplest division is to separate breaking 
conditions where waves break on the structure from non-breaking waves. These conditions can 
be identified using the surf similarity parameter (or Iribarren number) defined in terms of beach 
or structure slope (tan α), and wave steepness (Hmo/Lo): 

 tan tan
op

mo op

o

H S
L

α αξ = =  (D.4.5-28) 

where Sop is wave steepness as defined above.Breaking on normally sloped (1:1.5 to 1:20) 
surfaces generally occurs where ξop ≤  1.8, and non-breaking conditions when ξop > 1.8. 

On very steep slopes or vertical walls, reflecting overtopping occurs when waves are relatively 
small in relation to the local water depth and of lower wave steepness. The structure toe or 
approach slope does not critically influence these waves. Waves run up and down the wall, 
giving rise to relatively smoothly varying loads. In contrast, impacting breaking on steep slopes 
occurs when waves are larger in relation to local water depths, perhaps shoaling up over the 
approach bathymetry or structure toe itself.  

For simple vertical walls, the division between reflecting and impacting conditions is made using 
the parameter h* . 

 * 2

2

mo m

h hh
H gT

π⎛ ⎞
= ⎜

⎝ ⎠
⎟  (D.4.5-29) 

Reflecting conditions can generally be said to occur where h*  ≥  0.3, and impacting conditions 
when h*  < 0.3. 
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D.4.5.2.2.3 Nature of the Structure 

The relative freeboard, Fc/Hs, is a very important parameter for predicting overtopping. 
Increasing wave height or period increases overtopping discharges as does reducing the crest 
freeboard, either by lowering the crest or raising the water level.  

For structures with small relative freeboards, various prediction methods of overtopping 
discharge converge, indicating that the slope of the structure no longer has much influence in 
controlling overtopping. Over the normal range of freeboards, the characteristics for slope of 1:1 
to 1:2 are similar, but overtopping reduces significantly for slopes flatter than 1:2. Empirical 
methods for sloping structures are applicable over specific slope ranges – structures tested 
usually lie between 1:1 and 1:8 with occasional tests at 1:15 or lower. Vertical and very steep 
walls (1:1 or steeper) have different prediction tools due to their distinct physical overtopping 
regimes as noted in the preceding section. 

Most empirical methods were developed initially for smooth slopes and have been subsequently 
extended and modified for rough slopes. This is often accomplished by the inclusion of a 
reduction factor for surface roughness, γr, and other features as discussed previously in 
Subsection D.4.5.1.5.2 and summarized in Table D.4.5-3.  

Increasing permeability of the structure decreases runup and overtopping as a larger proportion 
of the flow takes place inside the structure. Increasing porosity also reduces runup and 
overtopping because a larger volume of water can be stored in the voids. These differences in 
response characteristics make it convenient to distinguish between impermeable and permeable 
structures through a porosity reduction factor, γ P . 

Berms can also have a considerable impact on the runup and overtopping. van der Meer (2002) 
defines a reduction factor for berms, γb, that takes into account both the depth of water over the 
berm and its width. Berms are most effective in reducing runup and overtopping if the horizontal 
surface is close to SWL. Their effectiveness decreases with depth and can be neglected when the 
depth of water over the berm is greater than 2Hmo. 

D.4.5.2.2.4 Selection of Empirical Methods 

The Mapping Partner is responsible for selecting and applying a suitable method to predict 
overtopping. Because the methods available for predicting overtopping are empirically based, the 
choice of method is substantially influenced by the characteristics of the transect that is being 
analyzed. Section VI-5-2b of the CEM (USACE, 2003) shall be reviewed to determine if a 
similar structure geometry has been tested. Care shall be taken to determine whether the transect 
being analyzed falls within the range of conditions for the model tests. Table D.4.5-7 presents 
overtopping relationships for various types of structures and conditions. The conditions 
associated with these different situations are discussed below. 

If the structure to be analyzed has not been tested, generalized methods for predicting wave 
overtopping on sloping and vertical structures are available and can be applied. 
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• Normally sloping structures (slopes milder than 1:1.5 vertical to horizontal): For the 
majority of structures with impermeable smooth or rough slopes and with straight or 
bermed slopes, the formulation developed progressively by de Waal and van der Meer 
(1992), van der Meer and Janssen (1995), and van der Meer et al. (1998) is suitable. This 
is shown in Table VI-5-11 of the CEM (USACE, 2003) and the method is fully 
articulated in van der Meer (2002). 

• Steep and vertical walls: For this case, the formulation developed by Besley et al. (1998), 
Besley (1999), Besley and Allsop (2000), as extended by Allsop et al. (2004) is suitable. 

These general methods are described in more detail in the following subsections and the 
recommended equations are summarized in Table D.4.5-7. 

Table D.4.5-7. Equations for Wave Overtopping 

Quantity and General 
Conditions 

Characteristic/ 
Condition Relationships 

Non-Dimensional (Q) 
and Dimensional (q) 

Mean Overtopping Rates 

Breaking Waves 
ξop ≤1.8  

'
3

4.7tan , 0.06 Fmo

op

gHq Q Q e
S

α −= =

' 1
tan

opc

mo r B P

SFF
H βα γ γ γ γ

=

Note: If the overtopping rate (q) from this 
equation exceeds that for non-breaking waves 
below, use the result for non-breaking waves 
below 

(D.4.5-30) 
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Table D.4.5-7. Equations for Wave Overtopping 
(cont.) 

Quantity and General 
Conditions 

Characteristic/ 
Condition Relationships 

Non-Dimensional (Q) 
and Dimensional (q) 

Mean Overtopping Rates 

Structure Toe Below 
DWL2% Water Level 

*3.24( / )40.27 10 c moF H h

q Q= gh3 2h*

Q x e−−=
valid for *( / ) 0.03c moF H h ≤        (D.4.5-34)

 

Steeply Sloping  or 
Vertical Structures (at or 
steeper than 1:1.5). All 
Approaching Waves 
Broken 

Structure Toe Above 
DWL2% Water Level 

q Q= gh3 2h*

Q e= 0.06 −4.7F S−0.17
c oP

 (D.4.5-35)          

Shallow Foreshore 
Slopes 

Foreshore Slope < 1:2.5 
ξoP > 7  

q Q= gh3 2h*

Q g= 0.21 3 −F '

moH
FcF ' =

Hγ r mγ β o (0.33+ 0.022 oP )ξ
 (D.4.5-36)

e
 

      

Note: Hmo  is the spectral significant wave height at the toe of the structure. 

 
D.4.5.2.3 Data Requirements 

Overtopping is a function of both hydraulic and structure parameters: 

 ( ), , , , ,mo p c sq f H T F h geometryβ=  (D.4.5-37) 

where Hmo is the significant wave height at the toe of the structure, Tp is the peak period, β is the 
angle of wave attack, Fc is the freeboard as shown in Figure D.4.5-13, and hs is the 2% depth of 
water at the toe of the structure. The Mapping Partner shall take care to follow the specification 
for the hydraulic parameters as described in the chosen method. In most methods, the wave 
conditions is specified at the toe of the structure. 

In addition to a description of the waves and water levels, a description of the structure geometry 
is required. Depending on the method used, the geometry of the structure, especially complex 
geometries such as berms, may be specified in particular ways. The Mapping Partner shall ensure 
that the specification for the structure geometry are followed as described in the chosen method. 

D.4.5.2.4 Mean Overtopping Rate at the Crest 

D.4.5.2.4.1 Sloping Structures (van der Meer, 2002) 

The prediction method for simple smooth and armored slopes, as described in van der Meer 
(2002), distinguishes between breaking and non-breaking waves on the basis of ξop and use 
different definitions of dimensionless discharge and dimensionless freeboard. Influence factors, 
γb, γp, γf, γβ, have been described previously in Subsection D.4.5.1.5.2. There is one difference in 
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the definitions of the runup reduction factors (γ parameters), which is for the direction of wave 
approach β . For this case, 

  
1.0 0.0033 , (0 80 )
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For breaking waves ξop ≤  1.8, the overtopping rate, is calculated as defined in Table D.4.5-7, 
Equation D.4.5-30 in which Q is a dimensionless overtopping discharge for plunging breaking 
waves and F’ is the dimensionless freeboard for breaking waves (see Figure D.4.5-13). 

Similar relationships are available for non-breaking waves when ξop > 1.8, using different 
dimensionless parameters as defined in Table D.4.5-7, Equation D.4.5-31. 

D.4.5.2.4.2 Steep and Vertical Walls (Besley and Allsop, 2000) 

The calculation procedure for steep and vertical walls described by Besley and Allsop (2000) 
distinguishes between plunging and surging waves on the basis of h*  (see Equations D.4.5-32 
and D.4.5-33) and use different definitions of dimensionless discharge and dimensionless 
freeboard. 

For h*  ≥  0.3, reflecting waves predominate and a dimensionless discharge can be calculated 
with Equation D.4.5-32 in Table D.4.5-7. 

For impacting conditions, h*  < 0.3, mean overtopping is given by Equation D.4.5-33 in Table 
D.4.5-7. 

For conditions under which waves reaching the wall are all broken, two formulae are suggested 
depending upon whether the toe of the structure is above or below the DWL2% level. 

For structures with the toe below the DWL2% level, refer to Equation D.4.5-34 in Table D.4.5-7. 

For structures with the toe above the DWL2%, refer to Equation D.4.5-35 in Table D.4.5-7. 

D.4.5.2.4.3 Shallow Foreshore Slope 

For a shallow foreshore slope (m<1:2.5), apply Equation D.4.5-36 in Table D.4.5-7. 

D.4.5.2.5 Limits of Overtopping and Hazard Zones Landward of the Barrier Crest 

As discussed previously and illustrated in Figure D.4.5-12, hazard zones landward of the barrier 
crest can be a result of splash overtopping, which occurs for  1< R '/ zc '  < 2, or for bore 
overtopping, which occurs for R '/ zc '  > 2. The methodologies to calculate the limits of the 
hazard zones for each of these cases is described below. These methodologies are approximate 
and both consider the Froude number to be 1.8 as found by Ramsden and Raichlen (1990). 
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D.4.5.2.5.1 Overtopping by Splash 

Figure D.4.5-14 presents a detailed view of the associated variables for this type of overtopping. 

,Gz Negative as Shown  

cV  

ch  

,G Outery  

,G Innery
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z 

Potential Wave Runup 

R∆

Figure D.4.5-14. Definition Sketch for Wave Overtopping by Splash 

First, the calculation steps are presented and then the associated calculations discussed in greater 
detail. The following steps define the approach to establishing the splashdown distance for the 
1% annual event and the landward limit of the hazard zone defined as: hV 2 = 200  ft3/sec2. 

1. Calculate the excess potential runup, ∆R = −R zc , Vc cosα  and hc . V gc = ∆1.1 R  and 
hc = ∆0.38 R . In the case of a vertical seawall, apply Equations D.4.5-9 and D.4.5-19 
replacing the numerator: tanα  by 1.0 for calculation of the excess runup, ∆R . 

2. Estimate, based on data, the associated onshore wind component, Wy . Use Wy  = 44 ft/sec 
as a minimum. 

3. Calculate an enhanced onshore water velocity component (denoted by prime): 
(V Vc ccosα ) ' = +cosα 0.3(Wy −Vc cosα ) . In the case of a vertical seawall, this simplifies 

to ( cV Wc yosα )' = 0.3 . 

4. Determine an effective angle, αeff  , where tanαeff =V Vc sinα ( c cos )’. α

5. Apply Figure D.4.5-15 for the particular geometry to quantify the outer limit of the splash 
region, y V Vc c[( ' 2

G O, uter , where = +cosα ) ] [V sin ]2
c α .  
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6. Calculate the total energy, E, of the splashdown: E R= ∆ − G , z where both variables are 
relative to the barrier crest elevation. 

7. Calculate the initial splashdown Vo and ho according to: Vo =1.1  and g h Eo = 0.19E  

8. Calculate the landward limit of hV 2  = 200 ft3/sec2, where h is the water depth given by 
the Cox-Machemehl method (discussed below) and V is considered to be uniform, i.e., 
V V= o . 

Splashdown Limits 

The landward splashdown limit is based on consideration of the trajectory of the splash as shown 
schematically in Figure D.4.5-14. This landward splashdown limit is determined by use of Figure 
D.4.5-15 where the horizontal axis is ( )z z /[ 2 2

G c− Vc sin αeff / 2g] , where Vc  includes the wind 
effect (Steps 3 and 4 above) and the vertical axis is the non-dimensional distance, yG O, uter . Note 
that in most cases, the horizontal axis is negative. 

 
Figure D.4.5-15. Solution of Trajectory Equations for Splashdown Distances 
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The Cox-Machemehl Method 

The Cox-Machemehl (C-M) method is applied to both the splash case and the bore propagation 
case of wave overtopping. The form recommended here is modified slightly from that developed 
by C-M. Given the initial depth, ho , the depth decays with distance as: 

 

2

2

5( )( ) o
o

y yh y h
A gT
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= −⎢ ⎥
⎢ ⎥⎣ ⎦  (D.4.5-39) 

where ho  is determined from Step 6 and for an initial approximation, the non-dimensional 
parameter A may be taken as unity. For non-zero slopes landward of the barrier, mLW , the A 
value in the denominator of the above equation shall be modified by A Am L= (1− 2.0m W ) , where 
Am  includes the effect of the landward slope and the value in the parentheses is limited to the 
range 0.5 to 2.0. Note that mLW is positive sloping upwards in the landward direction. If the 
maximum distance of bore propagation does not appear reasonable or match observations, the 
Mapping Partner shall carefully examine the results to determine if a factor A different than 
described above is warranted to increase or decrease inland wave transmission distance as 
appropriate. 

D.4.5.2.5.2 Bore Propagation  

For this case, the Mapping Partner shall apply the C-M method considering a Froude number = 
1.8 as for the case shown in Figure D.4.5-12 and refined below as Figure D.4.5-16. 

Bore 

'cz

ho V
o

DWL2% 

'R

Potential Runup  

'/ 'cR z   > 2 

 
Figure D.4.5-16. Overtopping Resulting in Bore Propagation 
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The steps required to calculate the distance to hV 2 = 200  ft3/sec2are described below. 
 

1. Calculate the initial velocity, Vo , and initial depth, ho , as: Vo =1.1 g∆R  and 
h Ro = ∆0.38 . 

2. Calculate the landward limit of hV 2  = 200 ft3/sec2, where h is the water depth given by 
the C-M method, including the effect of landward slope, mLW , as appropriate and V is 
considered to be uniform, i.e., V V= o . 

D.4.5.2.6 Documentation 

The methods and results obtained in quantifying the 1% annual chance overtopping values shall 
be described in detail. The following shall be provided for the overtopped transects: (1) profiles, 
(2) assumptions and considerations including runup reduction factors, (3) overtopping values 
associated with the 1% chance event, and (4) basis for establishing the 1% splash zones landward 
of the barrier including any assumptions made. Any measurements and/or observations and 
documented or anecdotal information from previous major storm-induced overtopping and 
damage shall be recorded. Any notable difficulties encountered and the approaches to addressing 
them shall be described clearly. 

D.4.5.3  Wave Dissipation and Overland Wave Propagation 

This subsection provides guidance for estimating wave dissipation over broad, shallow areas, and 
quantifying wave height decrease during overland propagation. Due to the relatively steep 
nearshore on most of the Pacific Coast, coastal flooding is typically governed by total runup and 
overtopping. Therefore, consideration of wave dissipation and overland propagation is usually 
not required. In the paragraphs below, enhanced wave dissipation refers to dissipation by the 
mechanisms discussed in this subsection. 

Wave energy is dissipated when propagating over relatively broad, shallow areas due to 
increased bottom friction, percolation in sandy seabeds, movement of cohesive seabeds, and drag 
induced by vegetation; see Figure D.4.5-17 for a conceptual definition sketch. Dissipation 
mechanisms can result in smaller wave heights than predicted by typical shoaling and depth-
induced breaking relationships. Available analysis methods rely on parameters that have a wide 
range of values that can be difficult to quantify reliably. Therefore, the overall approach required 
to quantify dissipation may entail use of empirical data, possibly collected by the Mapping 
Partner at the study site or available from a similar site. In most situations, the amount of 
dissipation is small when compared to the effort required to analyze the dissipation processes. In 
addition, the risk of overestimating wave dissipation with available tools, resulting in an 
underestimation of flood risk, can be significant. 

On the Pacific Coast, enhanced wave dissipation in excess of depth-induced breaking is most 
likely to occur when high tidal waters cause overland wave propagation in low-lying coastal 
areas. The Wave Height Analysis for Flood Insurance Studies (WHAFIS) computer program has  
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Figure D.4.5-17. Schematic of Wave Attenuation Processes 

been developed to address overland wave propagation and is recommended for use on the Pacific 
Coast. Because WHAFIS was developed for the Atlantic and Gulf coasts, minor modifications 
are required for use on the Pacific Coast, hence the Mapping Partner shall obtain approval from 
FEMA. 

D.4.5.3.1 Assessment of Enhanced Wave Dissipation 

Damping of waves occurs due to the effects of bottom friction, percolation in sandy seabeds, 
viscous damping by cohesive bed movements, and drag imparted on the wave motions by 
vegetation. These processes are influenced by water depth, the distance waves travel over a 
sandflat, mudflat or through vegetation. Other important factors include vegetation type and 
whether wave regeneration occurs due to winds. 

The Mapping Partner shall consider the attenuation of wave height and energy. Initial 
considerations shall be based on whether the wave attenuation is of sufficient magnitude to 
warrant including in a Flood Insurance Study (FIS). In general, enhanced wave dissipation shall 
not be considered unless calculations indicate wave heights are attenuated by more than 20% 
and/or the reduction in wave heights has a significant effect on total runup or the wave input to 
the overland propagation analysis. 

If waves are propagating in the presence of an onshore wind field, enhanced dissipation shall be 
considered only within a scheme that allows additional wind-wave generation. This can be 
accomplished with wind-wave generation and transformation models (see Section D.4.4) and 
WHAFIS (Subsection D.4.5.3.3). However, if the site is sheltered and wave height regeneration 
is unlikely, wave attenuation by sandflats, mudflats, or vegetation can be considered in an 
independent calculation. Initial considerations for the Mapping Partner are: 

• What are the physical site characteristics? 
• Is the area within the prevailing wind field? 
• Are there sheltered areas where wind regeneration does not occur? 
• Will the effect of the sandflat, mudflat, or vegetation be significant? 
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where E is the wave energy density, CG is the wave group velocity, ε is the energy dissipation 
rate per unit bottom area, and y is the direction of wave propagation. Dissipation can occur at the 
surface, the bottom of the water column, and within the water column due to wave breaking. One 
may consider ε as the sum of energy dissipations due to wave breaking and bottom and internal 
effects. Dissipation due to bottom and internal effects dominates in areas of non-breaking waves 
whereas dissipation due to breaking dominates within the breaking zone. Equations discussed in 
Subsections D.4.5.3.2.1 and D.4.5.3.2.2 and summarized in Table D.4.5-8 can be used to develop 
an initial assessment of the magnitude of enhanced wave dissipation due to bottom effects and 
vegetation. If this dissipation is considered significant, the Mapping Partner may elect to use 
equations within these subsections to calibrate a method. Calibration could be based on pairs of 
measured wave heights and distances over approximately uniform depth conditions, and 
collected at a location similar to the study site, i.e., similar site geometry and similar wave 
conditions. Data used to calibrate the method shall be collected along the direction of wave 
propagation showing changes in wave height and period across the site. The following 
subsections present methodology for calculating wave dissipation resulting from various 
mechanisms. Table D.4.5-8 summarizes the equations governing wave attenuation by various 
processes and recommends ranges of required parameters to calculate attenuation. 

For a rough bottom, Dean and Dalrymple (1991) express energy dissipation due to bottom 
friction as shown in Table D.4.5-8, Equation D.4.5-41. In addition to the equation for ε , this 
table presents the approximate range of the unknown friction factor, f, the equation governing 
attenuation, and the expression for the unknown friction factor if the wave heights at two 
locations are known. The variables appearing in the expressions are defined as a table footnote. 

At this time, available information on the Pacific Coast is insufficient to provide site-specific 
data and results for the Mapping Partner. Therefore, calculations involving a range of relevant 
parameters are required. If the attenuation is deemed to be potentially significant, site-specific 
data, calibration, and verification may be necessary for FIS applications. 

For a porous bottom, Dean and Dalrymple (1991) express energy dissipation due to bottom 
percolation as shown in Table D.4.5-8, Equation D.4.5-42. 

Wave Attenuation Due to Percolation  

Wave Attenuation Due to Bottom Friction 

D.4.5.3.2.1 Wave Attenuation by Bottom Interactions 

 

D.4.5.3.2 Wave Attenuation by Bottom and Vegetation Interactions 

If attenuation is significant, the following methodology can be employed to perform an initial 
assessment to determine if more detailed calculations are necessary. Bottom dissipation 
mechanisms can be mathematically expressed as a negative forcing term in the conservation of 
wave energy equation for steady-state, longshore uniform conditions as follows: 

GdEC
dy

ε= −
  (D.4.5-40)
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Table D.4.5-8.  Summary of Equations for Overland Propagation (Over Uniform Depth) 
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Definitions: f = Bottom friction coefficient; σ  and k  = Wave angular frequency and wave number, respectively; ν  and ν 2  = Water and mud kinematic viscosity, respectively; ρ  and 

2ρ  = Water and mud mass density, respectively; CD  and CP  = Stem and plant drag coefficients, respectively; S is plant stem spacing. 
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Wave Attenuation Due to a Viscous Bottom 

Mudflats are common Pacific Coast features within lagoons and bays. Waves are damped when 
traveling across mudflats, due to the movement of sediment-rich water column and bed. The 
viscous, plastic nature of mud-rich sediments allows the soft bottom to deform in response to 
wave forces, resulting in the absorption of some of the wave energy. There are several methods 
for developing a preliminary estimate of wave dissipation due to viscous damping. 

Dean and Dalrymple (1991) and Lee (1995) express energy dissipation due to a viscous bottom 
as shown in Table D.4.5-8, Equation D.4.5-43. If the Mapping Partner determines that wave 
attenuation over mudflats is important, additional methods are provided in Massel (1996); 
however, any method to determine wave attenuation by mudflats shall be used with care. Ranges 
of values of ρ2  are 3 to 4.5 slugs/ft3 and ν 2  ranges from 0.1 to 1.0 ft2/s. 

D.4.5.3.2.2 Wave Attenuation by Vegetation 

Investigators have shown that vegetation damps wave energy, e.g., Dean (1978, 1979), Knutson 
(1982, 1988), Moeller et al. (1996, 1999, 2002), and Hansen (2002). Vegetation reduces 
incoming wave heights by imparting resistance (drag) on incoming waves, thereby causing a 
reduction in wave height and steepness, which results in a decrease in wave height and energy. 

Mapping Partners working in areas where extensive marsh vegetation exists shall determine if 
the reduction in wave height by vegetation is significant. Applying Equation D.4.5-44 in Table 
D.4.5-8 by Knutson (1988) provides a method to determine whether further quantification of 
wave attenuation by vegetation is required.  

Methods for calculating wave damping by vegetation that are included within the Guidelines and 
Specifications Appendix D (2003) may be employed in the Pacific Coast region. Important 
variables include drag coefficient, plant drag coefficient, stem diameter, spacing, water depth, 
stand width, and bottom slope. 

It shall be noted that marsh vegetation differs from region to region and with salinity levels. 
Cordgrass (shown in Figures D.4.5-18 and D.4.5-19), although present on both coasts, varies in 
stature, with Pacific cordgrass (Spartina foliosa) being less substantial than Atlantic cordgrass 
(Spartina alterniflora). 

However, the effects of these differing vegetation types on attenuating incoming wave energy for 
site-specific cases requires verification. 

To account for wave attenuation by vegetation, the following is required: 

• Determine the initial wave height seaward of vegetation; 
• Determine the distance waves will travel through marsh vegetation; 
• Quantify plant characteristics, i.e., stem diameter and spacing; 
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Figure D.4.5-18. Native Pacific Cordgrass Meadow at Blackie’s Pasture, Marin County 

 

 
 
Figure D.4.5-19. Tall Stand of Atlantic Smooth Cordgrass Hybrids Invading a Native Patch 

of Pacific Cordgrass Meadow near Tiburon, California 

• Apply plant drag coefficients (CD = original drag coefficient approximately 1.0, CP = 
plant drag coefficient approximately 5.0); and 

• Calculate wave attenuation for the site in question (Equation D.4.5-44). 

The Mapping Partner may choose to perform a field study to determine the amount of wave 
attenuation by vegetation. Relatively simple survey and data acquisition techniques can be 
performed to measure wave attenuation by vegetation. Using pressure sensors and/or current 
meters, wave characteristics in the study area can be determined. Surveying instruments can be 
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used to characterize the site. The procedures include: installing instrumentation to measure wave 
heights offshore of the area with vegetation, using survey techniques to measure the distance that 
the waves will travel through the vegetation and site characteristics (i.e., water depth, bed slope, 
etc.), and measurement of plant characteristics (i.e., stem diameter, height, spacing, density). 
Application of field results obtained to Equation D.4.5-44 will provide guidance on the 
significance of wave dissipation for a particular site. 

If calculations predict greater than 20% reduction, the Mapping Partner shall include the effects 
in the FIS. If results are not significant, the Mapping Partner may ignore attenuation by 
vegetation. 

D.4.5.3.3 Overland Wave Propagation (WHAFIS) 

The Guidelines and Specifications, Appendix D (2003) consider water wave transformations by 
marsh vegetation (pages D-67 to D-87). The fundamental analysis of wave effects for a flood 
map project is conducted with the WHAFIS computer program, which estimates the changes in 
wave height due to interactions with vegetation. WHAFIS simulates the vegetation effects on 
wave height and energy dissipation by both rigid and flexible vegetation. Consistent with other 
coastal analyses, the WHAFIS model considers the study area by representative transects. For 
WHAFIS, transects are selected with consideration given to major topographic, vegetative, and 
cultural features. The ground profile is defined by elevations referenced to an appropriate vertical 
datum (typically National Geodetic Vertical Datum [NGVD] or NAVD). The profile usually 
begins at elevation 0.0 and proceeds landward until either the wave crest elevation remains less 
than 0.5 feet above the mean water elevation for the 1% annual chance flood or another flooding 
source is encountered. Currently, WHAFIS in its entirety is only approved for use on the Atlantic 
and Gulf coasts. 

Use of the model is explained in detail in the Guidelines and Specifications Appendix D. 
Mapping Partners wishing to use the WHAFIS model to estimate wave attenuation by Pacific 
Coast marshes must use care with preparation and input of required site data. 

Several factors must be addressed before application of the WHAFIS model to the Pacific Coast. 
First, local marsh vegetation must be characterized. Default values within the model are coded 
for Atlantic and Gulf coast vegetations only. To use the model with Pacific Coast vegetation, 
vegetation parameters must be input manually into the model. Second, wind velocity parameters 
within the currently approved model are based on Atlantic and Gulf coast storms associated with 
hurricane conditions. These wind speeds are too high for most Pacific Coast conditions.  

D.4.5.3.3.1 Characterization of Pacific Coast Vegetation 

Application of WHAFIS to Pacific Coast vegetation has been partially confirmed. Certain types 
of vegetation are common to the Atlantic Coast, Gulf Coast, and Pacific Coast regions and 
described in more detail in Table D.4.5-9. WHAFIS can be used for limited Pacific Coast 
vegetation types that are the same or similar to those already represented in WHAFIS, but test 
cases are needed to verify the validity of the model for use with most Pacific Coast vegetation 
types. 
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Table D.4.5-9.  Common Vegetation Types on Atlantic, Gulf, and Pacific Coasts 

Species Common Name 
New 

England Southeast
Gulf 

Coast
Southern 
California 

Northern 
California 

Pacific 
Northwest

Batis maritime Saltwort  x x
Distichlis spicata Salt Grass x x x x 
Scirpus americanus Olney's Bulrush x x 
Scirpus olneyi Olney Three square x x 
Scirpus robustus Salt Marsh Bulrush x x x 
Scirpus validus Soft Stemmed Bulrush x x x 
Spartina alterniflora Smooth Cord Grass x x x x 

D.4.5.3.3.2 Use of WHAFIS for Dissipation Only 

Although WHAFIS is not approved for use in Pacific Coast regions, certain features are 
appropriate. The program can be used to determine whether a vegetation type in a specific area 
will attenuate wave heights regardless of wind speed. This is taken into account in the model by 
using the Vegetation Elevation card (using equivalent rigid vertical cylinders) only. For this case, 
there is only damping; no energy input from wind is included even though the wind might be 
strong and the vegetation might be sparse. The Mapping Partner shall choose vegetation values 
for stem diameter, height, spacing, and a drag coefficient. The wind speed, implicitly, will be 
zero. 

D.4.5.3.3.3 Use of WHAFIS for Dissipation and Wind Wave Generation 

The Marsh Grass card provides more flexibility with the vegetation parameters. This is the only 
WHAFIS card type that considers both energy input and energy dissipation. This card accounts 
for energy input by wind over the free surface, which is especially important if the vegetation is 
fully submerged and damping by the vegetation occurs; however, this card will impose a wind 
speed of 60 mph. Care must be taken with use of the Marsh Grass card because wind speeds are 
based on Atlantic and Gulf Coast (hurricane) conditions.  

A modified version, P-WHAFIS, has been written that allows for variation of wind speed and 
therefore can be used in a generation wind field. This recently modified version has been tested 
but has not been approved by FEMA for unrestricted use. If the Mapping Partner chooses to use 
P-WHAFIS, prior approval from FEMA is required. 

D.4.5.3.4 Documentation 

Areas where wave attenuation was examined and the results obtained shall be described. The 
characteristics of these areas that led to the consideration of wave attenuation and the values of 
the attenuation parameters used in the analysis shall be quantified. Results of interest include the 
potential effect of wave attenuation on the hazard zones and the decisions reached as to whether 
to further include wave attenuation in the analysis leading to hazard zone delineation. Any field 
measurements and/or observations shall be recorded as well as documented or anecdotal 
information regarding previous overland damping during major storms, perhaps by runup events 
less than expected in the lee of attenuation features as discussed in this subsection. Any notable 
difficulties encountered and the approaches to addressing them shall be clearly described. 

D.4.5-39 Section D.4.5 
All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 

However, the document contains useful guidance to support implementation of the new standards.
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D.4.6 Coastal Erosion  

This section provides methods for Mapping Partners to define the shape and location of eroded 
beach profiles, upon which the 1% flood conditions (waves and water levels) will act and from 
which flood hazard zones and Base Flood Elevations (BFEs) will be mapped.  
 

D.4.6.1 Overview  

Erosion processes and consequences of erosion can either be “episodic” or “chronic.” These two 
descriptors assign a very important temporal component to erosion processes and their results. 
Episodic erosion is the shore and backshore adjustment that results from short duration, high 
intensity meteorologic and oceanic storm events. This type of event response results in shore 
adjustment and occurs during a single storm or during a series of closely spaced storm events 
within a storm season. Shore and backshore profile changes during intense storms and hurricanes 
can result in dramatic beach and dune erosion, retreat, breaching, or removal of backshore dunes; 
cause retreat and collapse of bluff and cliff formations; and culminate in greater landward 
encroachment of waves and flooding from the ocean. Chronic erosion is associated with slow, 
long-term processes such as gradual shoreline adjustment associated with: (1) sea level rise, (2) 
land subsidence, (3) changes in sediment supply due to watershed modifications or dam building, 
and (4) decadal adjustments in rainfall, runoff, and wave climate associated with global 
warming.  

Current Federal Emergency Management Agency (FEMA) regulations are limited to risks and 
losses occurring as the direct result of a storm event. The National Flood Insurance Program 
(NFIP) does not address long-term gradual chronic erosion but focuses on flood-related erosion, 
episodic erosion, due to storm events1. FEMA does not currently map long-term erosion hazard 
areas as some local or state agencies do. FEMA Flood Insurance Rate Maps (FIRMs) do not 
inform property owners of erosion risks. FIRMs only indicate risks from flooding hazards in the 
form of BFEs and flood hazard zones. Therefore, flood assessment guidelines in this section only 
include methods for estimating eroded shore and backshore profiles during single large storm 
events, so runup and overtopping computations can be made to determine flood risks associated 
with those events. Section D.4.9 discusses how results from event-based erosion assessments are 
to be used by Mapping Partners to determine flood risks and delineate hazard zones.  

D.4.6.2 Pacific Coast Characteristics Related to Storm-induced Erosion 

Pacific storms track from the Pacific Ocean toward the coasts of California, Oregon, and 
Washington. Unlike hurricanes that occur along the Atlantic and Gulf coasts, Pacific Coast 
storms are frontal storms. These storms have smaller peak force wind speeds and surges than 
hurricanes, but have much longer durations (often on the order of several days). Intense Pacific 
storms are capable of generating 40- to 60-foot waves, and Pacific storms often “line up” in a 
series of back-to-back events that track thousands of miles across the Pacific Ocean to attack the 
West Coast of the United States for weeks with elevated tides and high surf. A series of storms 
                                                 
1 Discussions of long-term erosion and the potential consequences of chronic erosion are found in materials listed in 
the reference section of this document and in many of the support documents referenced herein.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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with only short periods of time between their peaks are capable of causing significant beach 
profile recession. One, two, or more storms may occur in a winter season before a severe storm 
event occurs. The periodic occurrence of El Niño oceanic conditions significantly amplifies the 
effects of Pacific storms with increased sea level and wave heights. This change in oceanic 
temperature, weather, and wave climate during El Niño periods is unique to the Pacific and 
usually represents meteorological and oceanic conditions when wind, waves, total water levels, 
and coastal erosion are the greatest. 

Pacific Coast beaches undergo typical seasonal changes in profile and location from summer to 
winter conditions. During winter months, increased total water levels along with high-energy, 
steep waves tend to move sand offshore, adjusting the beach profile and its cross shore location. 
By the end of the summer or early fall after months of calm seas, the beach has recovered and the 
berms and back beach dunes may be well developed again. Figure D.4.6-1 provides a sketch of 
generalized seasonal profile changes that occur on sand beaches of the Pacific Coast.  

 
Figure D.4.6-1. Typical Pacific Coast Summer and Winter Beach Profiles 

(after Bascom, 1964) 

D.4.6.3 Background and Definitions 

By their nature, coastlines are extremely complex and dynamic environments. The type and 
magnitude of coastal erosion are closely related to general coastal exposure and beach setting.  

D.4.6.3.1 Coastal Exposure  

Coastal exposure refers to: (1) whether the coastline and beach are situated on the open coast, 
e.g., exposed to the undiminished waves, water levels, tides, winds, and currents associated with 
the open coast, or (2) whether the coastline is located within a sheltered area that is fully or 
partially protected from the direct action of ocean waves, winds, tides, water levels, and currents. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The latter condition is referred to as a sheltered water area. Beach erosion processes resulting 
from changes in total water level and wave action are similar along the open coast and within 
sheltered water areas; however, the magnitude, rate, and ultimate beach response may be quite 
different for sheltered water areas due to dramatic differences in total water-level changes and 
wave energy during large storms.  Sheltered water areas typically have reduced wave energy and 
smaller runup. Some sheltered water areas found in confined embayments or estuaries may, 
however, experience higher still water elevations resulting from the combined effects of 
astronomical tides and fresh water runoff from streams and rivers and modified tidal and surge 
conditions.  

The primary differences in estimating coastal erosion for these two types of beach exposures 
relate to how waves and water levels are determined for the 1% response storm condition. Refer 
to Section D.4.2 for guidance on how the 1% annual chance storm is determined and to Sections 
D.4.4 and D.4.5 for guidance on how waves and water levels are estimated for these two coastal 
exposures. 

D.4.6.3.2 Beach Setting  

Beach setting refers to localized geomorphic characteristics of the shore and backshore zone 
related to site-specific geology, profile shape, material composition, and material erodibility; 
proximity to other dominant features such as coastal inlets, storm outfalls, streams, and creeks; 
harbors and coastal structures; littoral sediment supply; and pocket beaches; and seasonal 
changes in beach width due to changes in wave direction. Six common beach settings 
representative of those along the California, Oregon, and Washington coastlines are addressed in 
these guidelines: 

1. Sandy beach backed by a low sand berm or high sand dune formation 
2. Sandy beach backed by shore protection structures 
3. Cobble, gravel, shingle, or mixed grain sized beach and berms 
4. Erodible coastal bluffs 
5. Non-erodible coastal bluffs or cliffs 
6. Tidal flats and wetlands 

Figures D.4.6-2 through D.4.6-7 provide sketches and define terms for these six common beach 
settings found along the Pacific Coast. Table D.4.6-1 describes these settings, and lists 
recommended methods and data necessary for estimating beach profiles for use during runup 
computations. For the most part, these six settings are found in both open coast and sheltered 
water areas. However, the magnitude and net effects of tides, waves, currents, and erosion often 
differ between open coasts and sheltered areas. Policy and criteria for evaluating the stability and 
performance of costal beach nourishment projects are not yet developed, and only basic guidance 
is provided in Section D.4.1, Pacific Coast Guidelines Overview. 

Beach settings (1) and (2) are likely to be the most important coastal settings from a hazards 
mapping perspective. These two settings tend to experience the most erosion and flooding during 
large storm events. The following sections describe procedures for estimating storm-induced 
erosion for all six Pacific Coast beach settings listed in Table D.4.6-1. Two different  
 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-2a. Sand Beach Backed by High Sand Dune  
(Beach Setting No. 1) (after Griggs, 1985) 

 
 
 
 
 
 
 

 
Figure D.4.6-2b. Sand Beach Backed by Low Sand Berm  

(Beach Setting No. 1) (after Bascom, 1964) 

 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-3. Sand Beach Backed by Shore Protection Structures  

(Beach Setting No. 2) 

 
 
 

 
Figure D.4.6-4. Cobble, Gravel, Shingle, or Mixed Grain Sized Beach and Berms  

(Beach Setting No. 3)  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-5. Erodible Coastal Bluffs  
(Beach Setting No. 4) (after Griggs, 1985)  

 
Figure D.4.6-6. Non-Erodible Coastal Bluffs and Cliffs  

(Beach Setting No. 5)  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

 D.4.6-7 Section D.4.6 

Figure D.4.6-7. Tidal Flats and Wetlands  
(Beach Setting No. 6)  

 
Table D.4.6-1. Common Beach Settings Found Along the California,  

Oregon, and Washington Coastlines 

Beach 
Setting 

Reference to 
Sketch or 
Photo of 
Beach 
Setting Materials 

Recommended 
MLWP Methods 

Recommended 
Eroded Profile 

Methods 
Data 

Requirements 
1. Sandy beach 
backed by low 
sand berm or high 
sand dune 
formation 

Figures D.4.6-1, 
D.4.6-2a, D.4.6-2b 
D.4.6-8, D.4.6-9, 

D.4.6-10, D.4.6-11, 
D.4.6-12, D.4.6-13, 
D.4.6-14, D.4.6-15, 
D.4.6-16, D.4.6-17, 
D.4.6-18, D.4.6-19 

Fine to coarse 
beach and dune 
sands 

See Subsection D.4.6.4 

1. Begin with (surveyed) 
existing beach profiles. 
2. Develop MLWP and overlay 
on existing beach profile:  
2.a. If have good post-large 
storm eroded beach profile 
data: Use those data as initial 
winter beach profile, e.g., the 
MLWP. 
2.b. If not: Use MLWP 
methods listed in Subsections 
D.4.6.5 and D.4.6.5.2 if using 
MK&A geometric erosion 
model, or use methods listed in 
Subsections D.4.6.5 and 
D.4.6.5.5 if using the K&D 
geometric erosion model. 

See Subsection D.4.6.5 

1. Begin with the 
MLWP. 
2. Select the MK&A or 
K&D method for 
computing beach 
erosion/recession that 
occurs to the MLWP 
during the 1% storm. 
3. Apply the (a) MK&A 
model (Subsection 
D.4.6.5) primarily for 
open coast OR and WA 
beaches backed by high 
dunes, and (b) the K&D 
model (Subsection 
D.4.6.5) for CA Open 
Coasts or Sheltered 
Waters. 

- Local wave and water-
level information 
- Local geology and 
beach and dune material 
characteristics 
- Historical beach profile 
data. 
- Recent data for project 
study area 
- LIDAR or surveyed 
profile data 

2. Sandy beach 
backed by shore 
protection 
structures 
 

Figures D.4.6-3, 
D.4.6-20, D.4.6-21 

-Fine to coarse 
beach sands 
-Need 
characteristics 
of other fill or 
revetment 
materials 

See Subsections D.4.6.4 and 
D.4.6.6 

1. Estimate beach slope m from 
beach profile measurements 
immediately following winter 
storms, or  
2. Estimate m from median 
grain size and beach exposure 
relationships (see Fig. D.4.6-9). 

See Subsections 
D.4.6.6 and D.4.7 

1. Use post large-storm 
beach profile data. 
2. Compute local scour 
depths at toe in front of 
structures, (see CEM). 
3. Determine whether 
structure fails or is 
overtopped (D.4.7). 
4. Adjust profile from 
step 1 to account for 
effects computed in 
steps 2 and 3. 

- Local wave and water-
level information 
- Local geology and 
beach and dune material 
characteristics 
- Historical beach profile 
data 
- Recent data for project 
study area 
- LIDAR or surveyed 
profile data  
- Characteristics and 
dimensions of 
foundations and 
structures  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Table D.4.6-1. Common Beach Settings Found Along the California,  
Oregon, and Washington Coastlines 

(cont.) 

Beach 
Setting 

Reference to 
Sketch or 
Photo of 
Beach 
Setting Materials 

Recommended 
MLWP Methods 

Recommended 
Eroded Profile 

Methods 
Data 

Requirements 
3. Cobble, gravel, 
shingle or mixed 
grain size beach 
and berms 

Figures D.4.6-4, 
D.4.6-22, D.4.6-23, 
D.4.6-24, D.4.6-25, 

D.4.6-26 
 

Medium gravel 
to large cobble 
and small 
boulders 

See Subsection D.4.6.7 

Assume cobble beach and 
berm profile is stable; 
however, fronting beach sands 
may erode during winter 
storms (see Figs. D.4.6-15 and 
16) 
Therefore, assume MLWP is 
same as eroded winter storm 
profile. 

See Subsection D.4.6.7 

 

 

Determine eroded winter 
storm profile from 
measured historical 
beach profiles, 
supplemented by probing 
or trenching to cobble 
bottom 

-Local wave and water-
level information 
-Local geology and beach 
and cobble berm material 
characteristics 
-Historical beach profile 
data 
-Recent data for project 
study area 
- LIDAR or surveyed 
profile data  
 

4. Erodible 
coastal bluff 
fronted by narrow 
sandy beach 

Figures D.4.6-5, 
D.4.6-27, D.4.6-28, 
D.4.6-29, D.4.6-30, 

D.4.6-31 
 

Bluff materials: 
Loosely 
cemented sands 
and gravels 
 
Beach 
materials: 
Fine to coarse 
sands, some 
small gravels, 
cobbles 

See Subsection D.4.6.8 

-Develop MLWP from 
measured historical beach 
profiles following large storm 
events; seek historical profiles 
during El Niño years if 
possible.  
-Supplement profile data with 
probing or trenching to 
confirm seasonal depth of 
scour. 
- If available, use historic 
eroded winter profile 
measured right after large 
storm. 

See Subsection D.4.6.8 

-Develop eroded beach 
profile from measured 
historical beach profiles 
following large storm 
events during El Niño 
years if possible.  
-Supplement profile data 
with probing or 
trenching to confirm 
seasonal depth of scour. 
-If bluff is erodible, 
apply Noble Engineers 
Bluff Erosion Method 
for bluffs (USACE, 
2003) using estimate 
beach slope and 
elevations from eroded 
beach profile, above. 
 

-Local wave and water-
level information 
-Beach and bluff material 
characteristics and 
erodibility information 
-Perform field inspections 
and sampling to 
determine geotechnical 
bluff erosion parameters 
-Historical beach profile 
and bluff retreat data 
-Recent data for project 
study area 

5. Non-erodible 
coastal bluffs or 
cliffs  
 
(Note: This 
setting is often 
fronted by a rocky 
beach or rock 
platform capped 
with a thin layer 
of sand) 

Figures D.4.6-6, 
D.4.6-32, D.4.6-33 
 

Bluff materials: 
Erosion-
resistant rock or 
cemented sands 
and gravels 
 
Beach 
materials: 
Thin layer of 
fine to coarse 
sands with 
some small 
gravels, over 
rocky bottom or 
rock platform 

See Subsection D.4.6.9 

Assume the winter beach 
profile is stable and is 
estimated from measured 
historical beach profiles, 
supplemented by probing to 
rocky bottom 

See Subsection D.4.6.9 

-Verify that bluff or cliff 
setting is non-erodible. 
-Determine winter beach 
profile from measured 
profile information and 
probing in March-April. 

-Local wave and water-
level information 
-Geologic information for 
study area 
-Historical beach, bluff 
and cliff profile data 
-Recent data for project 
study area 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Table D.4.6-1. Common Beach Settings Found Along the California,  
Oregon, and Washington Coastlines 

(cont.) 

Beach 
Setting 

Reference to 
Sketch or 
Photo of 
Beach 
Setting Materials 

Recommended 
MLWP Methods 

Recommended 
Eroded Profile 

Methods 
Data 

Requirements 
6. Tidal flats and 
wetlands 

Figures D.4.6-7, 
D.4.6-34, D.4.6-35 

Tidal Flats:  
Cohesive 
sediment and 
organic 
materials; 
cohesive clays 
and silts;  

Wetlands: 
cohesive clays, 
silts and 
organic 
materials often 
capped with 
marsh 
vegetation 

See Subsection D.4.6.10 

-Assume tidal flats and 
wetland profiles are stable 
during single storm events. 
-Examine historical site 
information to determine 
whether profiles are stable, 
receding or accreting. 
-Determine winter profiles 
from LIDAR and/or other 
measured historical profiles. 

See Subsection D.4.6.10 

Tidal flats and wetland 
surfaces typically do not 
erode during storm 
events; check local 
history of site; use 
LIDAR surveys or 
measured profiles to 
develop final winter 
profiles. 

-Local wave and water-
level information 
-Sediment & geologic 
information for study area 
-Historical profile data 
-Recent data for project 
study area 
-RU, OT and wave 
propagation computations 
will require estimates of 
vegetation density and 
roughness  

methods are proposed for Beach Setting No. 1, depending on whether the backshore is a berm or 
dune and if there is overtopping during the 1% storm event. 

D.4.6.3.3 Data Sources 

Estimation of coastal erosion during storm events typically requires the following types of site-
specific beach information and data:  

1. Summaries and photos of historical coastal erosion
2. Aerial photos of study area
3. Local geology and shore and backshore material characteristics
4. Previous Flood Insurance Study (FIS) mapping and reporting
5. Historic and recent beach survey data: Light Detection and Ranging (LIDAR) topography

and profile data

The following list provides references and websites where pertinent data may be obtained for use 
in event-based erosion analyses: 

• Allan, J. C. and P. D. Komar. August 2004. Morphologies of Beaches and Dunes on the
Oregon Coast, with Tests of the Geometric Dune-Erosion Model. Technical Memo.
August 2004, 43 pp.

• Barton, C. C. 2004. U.S. National Coastal Assessment, USGS, Geologic Division, St.
Petersburg, FL, website: <http://coastal.er.usgs.gov/national_assessment/>.

• Beach Morphology Monitoring Program Beach Profiles, 2004: 
<http//wwwecy.wa.gov/programs/sea/swces/research/change/monitoring/beach_profiles.
htm>.

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• California Coastal Zone Conservation Commission. 1975. California Coastal Plan. 
Prepared by the California Coastal Zone Conservation Commission, State of California, 
San Francisco, CA. 443 pp. 

• Carr, E. E. 2002. Database of Federal Inlets and Entrances. U.S. Army Corps of 
Engineers, Coastal Inlets Research Program. <http://cirp.wes.army.mil/cirp/inletsdb/ 
inletsdbinfo.html>. June 19.  

• Coastal Natural Hazards Policy Working Group. 1994. Improving Natural Hazards 
Management on the Oregon Coast, Oregon Sea Grant, Oregon State University, 
Publication No. ORESU-T-94-002, 128 pp. 

• Department of Navigation and Oceanic Development. 1977. Assessment and Atlas of 
Shoreline Erosion Along the California Coast, State of California Resources Agency, 
Department of Navigation and Ocean Development, Sacramento, CA, 305 pp. 

• Elliott, D. L., C. G. Holladay, W. R. Barchet, H. P. Foote, and W. F. Sandusky. 1986. 
Wind Energy Resource Atlas of the United States, DOE/CH 10093-4, DE86004442. 
Prepared by Pacific Northwest Laboratory, Richland, WA. Prepared for the U.S. 
Department of Energy, Assistant Secretary, Conservation and Renewable Energy, Office 
of Solar Electric Technologies, Wind/Ocean Technologies Division. Published by the 
Solar Technical Information Program, Solar Energy Research Institute [now the National 
Renewable Energy Laboratory], Golden, CO. October. <http://rredc.nrel.gov/wind/pubs/ 
atlas/atlas_index.html>. 

• Flick, R. E. (ed.). 1994. Shoreline Erosion Assessment and Atlas of the San Diego 
Region, Volume II. California Department of Boating and Waterways, Sacramento, CA. 

• Gerstel, W. J., M. J. Brunengo, W. S. Lingley, Jr., R. L. Logan, H. Shipman, and T. L. 
Walsh. 1997. Puget Sound Bluffs: The Where, Why, and When of Landslides Following 
the Holiday 1996/97 Storms. Washington Geology, vol. 25, no. 1. March. 
<http://www.dnr.wa.gov/geology/pugetls.htm>. 

• Good, J. W. (ed.). 1992. Coastal Natural Hazards, Science, Engineering and Public 
Policy. Oregon Sea Grant, Oregon State University, Publication No. ORESU-B-92-001, 
162 pages. 

• Gornitz, V., Beaty, T., and R. Daniels. 1997. A Coastal Hazards Data Base for the U.S. 
West Coast. ORNL/CDIAC-81, NDP-043C, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee. <http://cdiac.ornl.gov/epubs/ndp/ndp043c/43c.htm>. 

• Komar, P.D. 1997. The Pacific Northwest Coast: Living with the Shores of Oregon and 
Washington. Duke University Press.  

• Nichols, M. D., 2003. Draft Review of California Coastal Erosion Planning and 
Response: A Strategy for Action. California Resources Agency, Ocean Resources 
Management Program, Sacramento, CA. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• NOAA. 2000a. Tidal Datums and Their Applications. NOAA Special Publication NOS 
CO-OPS 1, Silver Spring, MD. June. <http://www.co-ops.nos.noaa.gov/publications/ 
tidal_datums_and_their_applications.pdf>. 

• NOAA. 2000b. Nautical Chart Symbols, Abbreviations and Terms, Chart No. 1, Eleventh 
Edition. Lighthouse Press, Annapolis, MD. 99 pp. NOAA Nautical Chart Users Manual. 
<http://chartmaker.ncd.noaa.gov/staff/ncum/ncum.htm>. 

• NOAA. 2003. Computational Techniques for Tidal Datums Handbook, NOAA Special 
Publication NOS CO-OPS 2, Silver Spring, MD. September. <http://www.co-
ops.nos.noaa.gov/publications/Computational_Techniques_for_Tidal_Datums_handbook.
pdf>. 

• Peterson, C. D, M. E. Darienzo, D. Hamilton, D. J. Pettit, R. K. Yeager, P. L. Jackson, C. 
L. Rosenfeld, and T. A. Terich. 1994. Cascadia Beach-Shoreline Database, Pacific 
Northwest Region, USA. State of Oregon, Department of Geology and Mineral Industries, 
Open File Report 0-94-2, Portland, OR. 

• Southwest Washington Coastal Erosion Study, 1996: <http://www.ecy.wa.gov/programs/ 
sea/swces/overview.htm>. 

• U.S. Army Corps of Engineers (USACE-LAD). 2003. Encinitas and Solana Beach 
Shoreline Feasibility Study, San Diego County, California - Coastal Engineering 
Appendix Without Project Conditions, Los Angeles District Corps of Engineers. August 
2003. 

• ———. 1998. Coastal Erosion Along the U.S. West Coast During the 1997-98 El Nino: 
Expectations and Observations. USGS, Center of Coastal Geology. <http://coastal.er. 
usgs.gov/lidar/AGU_fall98/>. 

• Important Links to Other Information Sites Regarding California Coastal Zone 
Management Topics: <http://www.coastal.ca.gov/web/sites.html>. 

• <http://coastal.er.usgs.gov/lidar/AGU_fall98/>: Coastal Erosion (NOAA). 

• <http://geodesy.noaa.gov/RSD/coastal/cscap.shtml>: Remote Sensing (NOAA). 

• <http://gis.ca.gov/catalog/BrowseRecord.epl?id=1468>: Assessment and Atlas of 
Shoreline Erosion along the California Coast (Calif. Dept. of Boating & Waterways). 

• <http://gis.sfsu.edu/data.htm>: Listing of GIS Data Bases for Various Types of Data. 

• <http://www.californiacoastline.org/>: California Coastal Records Project-Aerial 
Photographic Survey of the California Coastline. 

• <http://www.csc.noaa.gov/shoreline/>: Shoreline Data (NOAA). 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• <http://www.csc.noaa.gov/crs/tcm/missions.html>: Topographic Data (NOAA). 

D.4.6.4 Estimating Eroded Beach Profiles  

D.4.6.4.1 The Concept of the Most Likely Winter Profile 

To estimate beach erosion and profile changes for a specific coastal setting that occurs during a 
particular winter storm event, it is important to first estimate the initial beach profile conditions 
that exist just before the occurrence of the storm (see Figure D.4.6-8). This initial beach profile 
represents the likely winter profile conditions for a particular coastal setting, defined as the Most 
Likely Winter Profile (MLWP). These initial conditions must be estimated before determining 
beach profile changes for a particular storm event. Once determined by the Mapping Partner, the 
MLWP is then modified according to the amount of erosion that occurs during a specified storm 
event as a result of increased water levels and wave action. Figure D.4.6-9 provides a generalized 
definition sketch of the MLWP for a typical sand beach backed by high sand dunes. 

D.4.6.4.2 General Approach for Estimating Eroded Beach Profiles from Single 
Storms 

The first step is to locate the site on a large-scale map. Next, determine the coastal exposure, open 
coast, or sheltered water area. Next, obtain and review mapping and published information 
regarding the site and its geologic, morphologic, seasonal water levels and wave climate, coastal 
processes, and erosional characteristics (e.g., refer to Subsection D.4.6.3.3 for references to sources 
for these types of information). Next, review historic summer and winter beach profile data if 
available, then determine the type of coastal setting(s) and the seasonal erosion characteristics that 
best represent the study area. Select from the six common beach settings applicable to coastlines of 
California, Oregon, and Washington that are described in Subsection D.4.6.3 and listed in Table 
D.4.6-1. Several different setting types may exist within the same study area depending on the 
aerial size and complexity of the study area. Therefore, a large project area with more than one 
type of beach setting, a variety of coastal exposures, and spatially varying material composition 
may require different data and the application of different procedures to estimate the MLWP or 
eroded profile for each representative setting. Mapping Partners should always establish 
subreaches within the larger study area that typify representative shore and backshore conditions 
within a particular subreach. If a series of cross-shore profiles is used to represent the shore and 
backshore for the study area, profiles must be carefully located to best capture the morphologic and 
potential erosional, runup, and overtopping aspects of each subreach.  

After the study area is divided into representative subreaches, Mapping Partners must estimate the 
initial pre-storm event beach profile (MLWP) for each cross-shore profile in the subreaches. 
Methods for establishing the MLWP for each of the six primary settings defined above are 
presented in Subsections D.4.6.5 through D.4.6.10. Once determined by the Mapping Partner, the 
MLWP is then modified according to the amount of erosion that may occur for a particular setting 
and profile location during a specified storm event. Beach Setting No. 1 will always 
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Figure D.4.6-8. Evolution of the Initial Beach Profile Before  

Occurrence of Large Storm Event (after SPM, 1984) 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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Figure D.4.6-9. Definition Sketch of MLWP for  

Sand Beach Backed by Sand Dunes (Beach Setting No. 1) (after Bascom, 1964) 

require development of the MLWP, followed by computation of the amount of additional profile 
adjustment (erosion) that may occur to the MLWP during any specified storm event. Depending 
on beach material properties and width of the beach, Beach Setting No. 2 may require a similar 
two-step process to determine the eroded beach profile in front of shore protection structures. 
Beach Setting Nos. 3 and 4 should be checked for erosion potential, but they are less likely to 
experience significant erosion beyond what one would estimate as the MLWP for those settings. 
Beach Setting Nos. 5 and 6 are typically stable and erosion-resistant, so once the Mapping 
Partner establishes the winter profiles, analyses of further erosion is not required. The amount of 
erosion and profile adjustment that occurs for Beach Setting Nos. 1 and 2 depends on the 
magnitude and duration of the event and is related to the total water level and wave 
characteristics. Methods and procedures for estimating beach profile changes for each of the six 
primary settings are presented next. 

D.4.6.5 Estimating Profile Changes for Sand Beaches Backed by Low Sand 
Berms or High Dunes (Beach Setting No. 1) 

The main erosion-related factors affecting beach profiles during storms are: (1) antecedent 
conditions of the beach and back beach (profiles and beach-dune juncture elevation) before the 
occurrence of the specified storm event (this issue of initial beach conditions is addressed by the 
MLWP); (2) forcing processes that include the duration and time histories of the wave 
characteristics, water levels, and runup; and (3) response elements that include the beach setting 
and the dune/bluff characteristics, including material erodibility. Mapping Partners need methods 
that account for the general effects of these processes for estimating the change in profile that the 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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beach and back beach dunes will experience during the event in order to compute runup and 
overtopping and set BFEs, and establish depth and velocity hazard zones. 

For Beach Setting No.1, a sandy beach backed by a low sand berm provides some buffer against 
storm wave attack. These beaches typically exhibit a very significant change in beach profile due 
to seasonal changes. The range of the seasonal change in berm width can vary from 50 to 250 
feet as an extreme. Figures D.4.6-10 and D.4.6-11 show broad sandy beaches backed by low 
sand berms. Figure D.4.6-2b provides a sketch of a typical beach profile for broad sandy beaches 
backed by low sand berms (Beach Setting No. 1). 

 
 

Figure D.4.6-10. Sandy Beach Backed by Low Berm, Newport Beach, CA 
(Source: Noble Consultants, Inc.) 

 
 

Figure D.4.6-11. Sandy Beach Backed by Low Berm, Huntington Beach, CA 
(Source: Noble Consultants, Inc.) 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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Several event-based erosion assessment models are available, including simplified geometric 
models, simple process-based numerical simulation models, and more complex process-based 
simulation models. At the present time, process-based models have not been refined or calibrated 
for general application to Pacific Coast conditions. Therefore, use of process-based models is not 
recommended unless Mapping Partners have site-specific model calibration and validation data. 
Otherwise, Mapping Partners shall use the simplified geometric models discussed below.  

The long-standing 540 ft3/ft criterion previously adopted by FEMA for estimating Atlantic and 
Gulf coast dune erosion should not be used on the Pacific Coast. The Technical Working Group 
(2004) determined that general application of the 540 criterion is not applicable for the Pacific 
Coast and found that there are simple geometric models that are more reliable and applicable for 
assessing dune and berm erosion on the Pacific Coast. Two geometric models are recommended: 
the K&D model developed by Kriebel and Dean (1993) and the MK&A model that was 
developed by Komar et al. (2002) and further modified by McDougal and MacArthur (2004). 
The MK&A model was developed and tested for the Oregon and Washington coast, so it is most 
applicable to Type 1 beach settings found in Oregon and Washington. The K&D model is more 
generalized and has been regularly applied to Type 1 beach settings in California, with 
successful test applications in Oregon and Washington. 

D.4.6.5.1 General K&D and MK&A Model Characteristics and Applicability 

Regardless of the simplicity of these geometric models, both the K&D and the MK&A models 
produce reasonable estimations of sand beach and dune recession during single storm events. 
Both models were tested using measured beach profile and wave data in southern California and 
in Oregon. Model results agreed well with observed conditions. However, the determination of 
reliable input parameters is crucial to the accuracy of model results. 

The erosion potential in the MK&A model is determined entirely by the change in the total water 
level and the beach slope, and is very sensitive to the slope. For the K&D model, the wave setup, 
event duration, D50 of the beach material, and profile characteristics (beach face slope and surf 
zone profile) determine the maximum beach erosion potential. The K&D model considers the 
conservation of sand volume between the erosion from the upper portion of the beach and its 
deposition offshore. For both models, the storm duration directly affects the maximum beach 
erosion and must be determined carefully. 

The K&D model (Kriebel and Dean, 1993) was developed for four different beach profiles: (1) a 
square berm, (2) a sloping backshore, (3) a sand beach backed by high dunes (15 to 50 feet high), 
and (4) a sand beach backed by a low berm with a wide backshore. Therefore, the K&D model is 
applicable to a wider variety of beach conditions and settings. For the purposes of these 
guidelines, we only consider one of the typical equilibrium beach conditions (Beach Setting No. 
1) available with the K&D model. 

Southern California has many broad sand beaches backed by relatively low sand berms and 
broad back beach terraces. Beaches backed by high sand dunes are more common in northern 
California, Oregon, and Washington. The crest elevations of the low sand berms generally range 
between +5 to +15 feet high. If wave runup is included in the total water level, as is done in the 
MK&A model, the water level can easily exceed the low berm crest during moderate to large 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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storms. The MK&A geometric model was developed primarily for applications along the Oregon 
and Washington coasts and is most appropriate for application to high dunes that are unlikely to 
be overtopped during a storm event. The K&D model is recommended for either case, where low 
berms can be easily overtopped during the storm event, or for high dunes that are unlikely to be 
overtopped. Figure D.4.6-12 shows a typical section of open Oregon coastline fronted by a long 
broad sand beach backed by high dunes where the MK&A model was successfully applied. All 
model results should be checked against observed post-storm data for reasonableness. 

 
Figure D.4.6-12. Photograph of Netarts Bay, Oregon  

(Photo Provided by Jonathan Allan) 

D.4.6.5.2 MK&A and Its Application to Beach Setting No. 1 

A geometric model for foredune erosion has been employed by Komar et al., (2002) on the 
Oregon and Washington coast to establish coastal setback distances for sandy beaches backed by 
dunes. This model was modified by McDougal and MacArthur (2004) to provide estimates of 
beach profile recession due to large storm events. The model is based on the underlying 
assumptions of an MLWP and the characteristic shape of shoreline recession that will result 
during a large wave and water-level event. The shoreline recession profile is characterized by the 
beach face slope, m, the beach-dune juncture elevation, Ej, and cross-shore location of the beach-
dune juncture, yj. These are shown in Figure D.4.6-13A. The juncture elevation is taken to occur 
at the maximum extent of the total runup plus the measured tide. The measured tide includes all 
processes that influence the water surface elevation such as surge and El Niño. The total runup is 
defined to include static and dynamic wave setup. The sum of the total runup plus the tide 
(including surge and El Niño) is referred to as the total water level (TWL). The sum of the 
astronomical tide, El Niño, and surge is the still water level (SWL) and is typically obtained from 
measurements. The setup and runup are calculated using methods described in Section D.4.5. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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D.4.6.5.2.1 MK&A Methods for Estimating the MLWP  

The first step for determining eroded beach profiles is to estimate the MLWP for each cross-
shore profile. When using the MK&A method, the upper profile is specified by the beach face 
slope in the swash zone, m and the beach-dune juncture elevation and cross-shore location, Ej 

MLWP and yj MLWP as shown in Figure D.4.6-13A. Because both the elevation and location of the 
juncture may be associated with different magnitudes of TWL events, the notation ()MLWP is used 
to denote the MLWP case. The juncture elevation in the MK&A model is taken to occur at the 
maximum extent of the still water plus the total runup. The measured tide includes all processes 
that influence the water surface elevation such as the astronomical tide, surge, and El Niño. The 
runup is defined to include wave setup. The beach face slope is determined in the swash zone at 
high water levels. For the MLWP, m and Ej MLWP are determined from beach profile 
measurements following a significant storm or at the end of the winter season, or they may be 
determined from typical winter wave and water-level conditions (as explained below). 

The MLWP should be determined from profile data immediately following a significant storm or 
series of winter storms. The greater the time between the end of the storm conditions and the 
measurement of the profile, the less reliable the estimates of the MLWP. During this time, 
aeolian transport, sloughing of the dune face scarp, and re-construction of the upper profile all 
tend to mask the MLWP beach face (swash zone) slope and in particular, the beach-dune 
juncture. As these processes proceed, the elevation of the beach-dune juncture actually increases. 
Profiles taken during the summer and fall should not be used. Profiles measured later in the 
winter season are preferred as they should represent the maximum beach response due to the 
seasonal cycle. 

D.4.6.5.2.2 Estimating Ej MLWP and m from Profile Data 

Komar and Allan (2004) suggest that Ej MLWP can be determined from LIDAR data and field 
verification. Unfortunately, this requires data collected immediately following significant storm 
events in order to capture the most likely eroded profile before other processes occur that may 
mask Ej MLWP or adjust its location. This procedure is also best supported by detailed site 
inspections immediately following storm events in order to survey and photo document beach 
profile conditions. McDougal and MacArthur (2004) discuss sensitivities and difficulties 
estimating the MLWP based solely on survey data. 

D.4.6.5.2.3 Estimating m from Median Diameter of Beach Sands 

Bascom (1964), Wiegel (1964), and others have shown that there are strong correlations between 
the beach face slope and the median diameter of the beach sands as shown in Figure D.4.6-14. 
These types of relationships can be used to estimate the beach face slope. The user must select 
the curve that best matches the coastal exposure, beach material characteristics, and settings 
represented by the curves prepared by the original authors. Open coasts along Oregon and 
Washington experience beach slopes approximately two times as steep as one would estimate 
using Wiegel’s regional relationship as shown in Figure D.4.6-14, or approximately 1:25-30 
(v:h). Therefore, Mapping Partners shall check estimated slope values from Figure D.4.6-14 with 
observed data. It is recommend that regional relationships similar to these be developed and 
tested for the different coastal exposures and settings found in California, Oregon, and 
Washington for estimating winter beach face slope.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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Figure D.4.6-13. Definition Sketches for Terms and Dimensions  

Required by the Modified Komar & Allan Geometric Model  
(after Komar et al., 2002, and McDougal and MacArthur, 2004) 
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Figure D.4.6-14. Relationships Between Beach Slope and Median  
Diameter of Beach Sands (from Wiegel, 1964)  

D.4.6.5.2.4 Ej MLWP from Wave and Water Levels  

Given the difficulty in identifying a single value to select for Ej MLWP based on beach profile data 
alone, it may be possible to supplement the estimate with information about the waves and water 
levels that are typically responsible for producing the dune-beach juncture elevation, Ej . The 
juncture elevation can be estimated for the typical winter wave conditions as: 

   Ej = (R + ET)winter storm average (D.4.6-1)

where the runup includes the setup and the tide includes surge and El Niño (see Figure D.4.6-
13A). In Equation D.4.6-1, Ej represents the average of the sum of R and ET from 10 to 20 largest 
storms per year, averaged over the storm duration for the entire wave data record.  

The following subsection provides detailed procedures for estimating beach profile changes for 
sandy beaches backed by berms and sand dunes (Beach Setting No. 1, Table 4.6-1) using the 
MK&A model. 

D.4.6.5.2.5 MK&A Model for Estimating Beach Profile Changes  

The key assumption in the MK&A model is that when a large storm event occurs, the upper 
beach face slope remains constant but the beach-dune juncture adjusts in response to the higher 
level of waves and tides. This is shown in Figure D.4.6-13B. A typical winter pre-storm 
(MLWP) condition is shown as the solid line. This is taken as the initial condition (the MLWP) 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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to establish m and EjMLWP. If a storm event elevates the TWL, then the shoreline erodes and 
retreats. The beach-dune juncture location associated with this retreat (point B in Figure D.4.6-
13B) is estimated as the projection along the beach face slope onshore to the elevation of the 
storm’s TWL. Above this elevation, the sand is assumed to remain at the angle of repose 
(approximately 30o) up to the surface elevation of the dune. The recession in the MK&A model 
due to Ej Storm is calculated as the recession in excess of the MLWP. The maximum potential 
recession is given by: 

 
m
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R jMLWPjStorm

Storm

−
=∞  (D.4.6-2) 

where EjStorm and EjMLWP correspond to Equation D.4.6-1 beach-dune juncture elevations 
evaluated at the storm conditions and for the MLWP. The MK&A method gives the maximum 
potential equilibrium cross-shore change in shoreline position landward from the MLWP 
resulting from a storm event. However, the actual amount of beach erosion and dune recession 
depends on wave conditions, TWL, and storm duration. Therefore, the amount of beach erosion 
and dune recession for a particular storm event is less than the maximum potential cross-shore 
change represented by R∞Storm by a factor referred to as the storm duration recession reduction 
factor, α, as discussed in Subsection D.4.6.5.3. Figure D.4.6-13D shows a sketch of this where 
the profile ACBD represents the maximum potential equilibrium cross-shore change in shoreline 
position, R∞ Storm and ACE is the actual eroded profile for the storm related to its duration. This is 
discussed further in Subsection D.4.6.5.3. 

The cross-shore location of the juncture point, yj is the initial location for the MLWP and may 
change with time (Figure D.4.6-13A). This can be in response to chronic erosion, sea-level 
changes, or other long-term effects. It may be necessary to adjust yj for the MLWP if the time 
between the MLWP determination and the analysis of the recession is significant or if chronic 
shoreline position changes are significant. 

If a beach consists of a thin layer of sand capping a wave-cut terrace or other erosion-resistant 
materials, then the MLWP occurs at the location and profile of the erosion-resistant layer. 

Figure D.4.6-13C shows a second beach-dune juncture at point D. This additional recession is 
associated with other processes such as chronic erosion or local hot spots. Hot spots may develop 
when the profile is located in a rip current embayment or in the lee of a littoral barrier. Following 
Komar et al. (2002), where an adjustment was allowed for hot spots, the recession may be 
written as: 
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where EHotSpot is the localized lowering of the profile due to shoreline recession during a 
significant storm event due to local hot spots. Effects of site-specific hot spots and the amount of 
local beach lowering at that location is estimated from seasonal monitoring data from past large 
storm events.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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D.4.6.5.2.6 Dune Overtopping with the MK&A Model 

If Ej Storm exceeds the dune crest elevation, then the dune will be overtopped. This occurs 
independently of the storm duration or profile recession. The overtopping volumes may be 
estimated using the excess runup, which is the height that the predicated runup exceeds the dune 
elevation. If Ej Storm is less than the dune crest elevation, the dune crest may still be removed as 
shown by profile ACD in Figure D.4.6-15.  

Note that the MK&A method is best applied to sand beaches with high dunes where overtopping 
is not expected to occur. The K&D method (discussed in Subsection D.4.6.5.5) will 
accommodate some overtopping, and therefore is more suitable for sand beaches with dunes and 
lower berms. However, neither model addresses the changes in the berm nor dune shape when 
overtopping occurs. Breaching typically results in a significant lowering of the dune profile and 
development of an overwash fan. The present methodologies do not provide a direct mechanism 
to address this breaching process. When overtopping occurs, the dune profile is adjusted by 
extending the MLWP slope m to the backside of the dune. Figure D.4.6-15B shows this scenario 
as profile ACE continuing seaward from the heel of the dune. Relationships like those shown in 
Figure D.4.6-14 by Wiegel (1964) can be used to estimate the ultimate beach face slope 
following significant dune breaching. If this approach is used, Mapping Partners should check 
the reliability of their results with observed information and data. 

The following subsection describes how the effects of storm duration and seasonal responses are 
considered by the two recommended geometric models (MK&A and K&D). 

 
Figure D.4.6-15. Schematics of Dune Overtopping with the MK&A Model 
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D.4.6.5.3 Time Dependency of Profile Response (Within the MK&A and K&D Models) 

The geometric models (MK&A and K&D) provide an estimate of the maximum potential cross-
shore displacement of the profile. The wave and water levels must persist long enough to achieve 
this maximum. This is often not the case because a single storm event may have a shorter 
duration than is required to achieve the maximum potential cross-shore recession. Kriebel and 
Dean (1993) proposed a method to include the duration effects of a storm with respect to the 
response time scale of a beach profile.  

The time scale for the beach profile was estimated from numerical model results to be: 
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in which Ts is the time scale, C1 is an empirical constant (=320), Hb is the breaker height, hb is 
the breaker depth, g is the acceleration due to gravity, B is the berm elevation, m is the beach 
face slope, Wb is the surf zone width, and A is the beach profile parameter that defines an 
equilibrium profile according to Equation D.4.6-5. 

 h = A y2/3 (D.4.6-5)

The beach profile parameter, A, depends primarily upon sediment grain size, D50. Table D.4.6-2 
summarizes A over a range of sediment sizes. The values in Table D.4.6-2 are well approximated 
by the equations: 
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in which D50 is the sand diameter in mm and A is in m1/3 or ft1/3. Table D.4.6-3 gives estimates of 
the time scale for several representative conditions. It is seen that typical times are on the order 
of 10 to 100 hours. As the surf zone width increases, the response time also increases. Properties 
that increase the surf zone width include larger wave height, smaller sand size, and a milder 
slope. The response time also increases as the berm height increases. The longer profile response 
time associated with larger wave heights has the interesting result that the largest wave height 
may not yield the largest recession because it takes longer for the larger waves to achieve the 
maximum potential recession. Consider the first two waves in Table D.4.6-3, which only differ 
in wave height and the associated breaker depths. Assuming the period in both cases is 13 s and 
the storm duration is 24 hours and employing methods discussed below, the 10-foot wave height 
has a recession of 70 feet and the 20-foot wave has a recession of 55 feet. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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Table D.4.6-2. Equilibrium Beach Profile Coefficients  
(Dean and Dalrymple, 2002) 

D50 (mm) A (m1/3) A (ft1/3) 
0.1 0.063 0.0936
0.2 0.100 0.1486
0.3 0.125 0.1857
0.4 0.145 0.2155
0.5 0.161 0.2392
0.6 0.173 0.2571
0.7 0.185 0.2749
0.8 0.194 0.2883
0.9 0.202 0.2987
1.0 0.210 0.3120

 
 
 
 
 
 
 
 
 
 

 
 

Table D.4.6-3. Estimates of the Beach Profile Time Response 

Hb (ft) hb (ft) D50 (mm) A (ft1/3) m B (ft) Wb (ft) Ts (hrs) 
10 13 0.2 0.1486 0.05 10 801 28 
20 25 0.2 0.1486 0.05 10 2267 53 
30 38 0.2 0.1486 0.05 10 4164 77 
20 25 0.2 0.1486 0.05 1 2267 14 
20 25 0.2 0.1486 0.05 10 2267 53 
20 25 0.2 0.1486 0.05 20 2267 64 
20 25 0.2 0.1486 0.01 10 2267 96 
20 25 0.2 0.1486 0.02 10 2267 80 
20 25 0.2 0.1486 0.10 10 2267 34 
20 25 0.1 0.0936 0.05 10 4533 138 
20 25 0.2 0.1486 0.05 10 2267 53 
20 25 0.5 0.2392 0.05 10 1110 18 

The beach profile response is determined by a convolution integral. It is assumed that the time 
dependency of the storm hydrograph may be approximated as:  
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where t is time from the start of the storm and TD is the storm duration. The convolution integral 
is: 
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which integrates to: 
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where 2β = πT TS D/  and R∞  is the maximum potential recession that would occur if the storm 
duration was infinite as yielded by Equations D.4.6-2 and D.4.6-3 (Figure D.4.6-13D) for the 
MK&A method. If the storm duration is long with respect to the profile time scale, then a 
significant portion of the maximum potential shoreline response will occur. As the ratio of  
TS / TD decreases, less of the maximum shoreline change will be realized. The time of the 
maximum recession is determined by setting the derivative of Equation D.4.6-9 equal to zero and 
solving for the time. This yields: 
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in which tm is the time that the maximum occurs with respect to the start of the storm. 
Unfortunately, this is a transcendental equation and must be solved by approximation or 
numerical methods. The maximum recession that occurs as the result of a single storm or 
duration limited response is: 
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where α is the storm duration recession reduction factor, Rm is the maximum recession that 
occurs for the given storm duration that occurs at time tm. Figure D.4.6-16 gives the solution to 
Equation D.4.6-11 in graphical form. Therefore, duration limited recession is: 

 Rm = α R∞  (D.4.6-12) 

Multiple Storm Responses 

The maximum recession observed on the Pacific Coast often results from the occurrence of 
several storms in succession. Unless there is site-specific information or guidance for using 
multiple storms, it is recommended that a single storm analysis be used. If multiple storms are to 
be considered, then the cumulative recession may be estimated by summing the contribution of 
each storm to the recession beyond the previous profile. McDougal and MacArthur (2004b) 
discuss methods for conducting cumulative recession analyses in their report entitled EBE 
MLWP Discussion. Before initiating a seasonal response investigation, Mapping Partners should 
check with the FEMA study representative to confirm that this level of analysis is necessary and 
that there are sufficient historical data to confirm the results. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-16. Storm Duration Recession Reduction Factor 

D.4.6.5.4 Summary of the MK&A Geometric Modeling Approach for Sand Beaches 
Backed by Sand Berms and Dunes (Beach Setting No. 1)   

Mapping Partners evaluating sand beaches backed by sand berms and dunes (Beach Setting 
No. 1) using the MK&A model approach shall complete the following steps to estimate the 
beach erosion and recession associated with storm events. Figure D.4.6-17 shows the sequence 
of key activities and computational considerations required to determine storm-induced beach 
profile changes for Beach Setting No. 1. 

 
               Figure D.4.6-17. Key Activities to Determine Beach Profile Changes for Beach 

Setting No. 1 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Develop Data: 

1. Obtain wave and water-level data necessary to define the waves and water levels for the 
10-20 largest storms each year. 

2. Determine existing shoreline location and conditions. 

3. Define reaches alongshore in which wave, beach, and backshore conditions are nearly 
uniform. Data and calculations must be conducted for at least each subreach. 

4. 

5. Determine median sand diameter, D50, on the beach face for each subreach. 

6. Obtain historical beach profile data required to estimate the magnitude of local hot spot 
erosion and site-specific beach lowering with each subreach being evaluated within the 
study area. 

7. 

Determine MLWP: 

1. Estimate beach slope m from measured post-storm winter profile data as discussed in 
Subsection D.4.6.5.2 or use a relationship such as Wiegel’s (1964) (Figure D.4.6-14) to 
relate median beach sand diameter to beach slope, m. 

2. Estimate Ej MLWP based on measured winter profile data following the occurrence of large 
storms or make estimates using winter wave and water-level conditions as outlined in 
Subsection D.4.6.5.2. 

3. Estimate the cross-shore location for the MLWP, yj, related to existing beach profile 
conditions. 

Determine Beach Recession for Each Storm Event:  

1. 

2. Determine storm duration recession reduction factor for the storm, α (Figure D.4.6-16). 

3. Determine duration limited recession for storm, Rstorm, and if the berm/dune is breached, 
modify beach and berm/dune profile to account for breaching or local hot spot erosion if 
necessary according to Subsection D.4.6.5.3. 

4. If runup is different on the modified profile, re-compute runup. 

Obtain beach profile data required to establish the MLWP or the annual winter wave and 
water-level conditions to develop an MLWP for each subreach. 

Seek historical data for use in validating results from the application of the simple 
geometric models. 

Determine static setup and/or TWL as required for the geometric recession model to 
calculate the potential recession for the storm, R∞ storm. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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5. If runup results in overtopping, then compute overtopping. Save the maximim 
overtopping value. Also compute the overtopping volume as V = integral Q dt over 
duration of storm. 

6. For each year, save conditions corresponding to the largest annual TWL storm event: 
TWL, Q, V, α, H, T, D, γ, Rstorm , etc. 

Use Measured Profiles to Validate Results: 

Mapping Partners shall always locate the best and most reliable measured data for their project 
site. They should also use measured beach profile data wherever possible: (1) to aid in estimating 
the MLWP, and (2) to determine, calibrate, and validate the eroded beach profile for a specified 
storm event. The eroded beach profile estimated for a particular storm event is the profile 
required for computing runup and overtopping associated for that event. 

Determine the 1% Storm Event: 

Mapping Partners shall follow procedures outlined in Section D.4.2 for determining the 1% 
percent storm conditions for use in determining flood hazards. 

D.4.6.5.5 K&D Geometric Modeling Approach for Sand Beaches Backed by Sand 
Berms and Dunes (Beach Setting No. 1)   

Kriebel and Dean developed an analytical solution to approximate the temporal beach-profile 
response to a single storm (Kriebel and Dean, 1993). The maximum potential recession of a sand 
beach profile, R∞, was established based on the equilibrium principle proposed by Bruun (1962) 
for erosion due to long-term, sea-level rise. Kriebel and Dean assumed an equilibrium beach 
profile with respect to the prevailing water level and wave climate. Typically, the prevailing 
water level is referred to the mean sea level (MSL). The eroded profile is then shifted upwards 
by an elevation equal to the water-level rise caused by storm surge and wave setup, and landward 
by an amount of beach recession potential (R∞) until a volume balance is achieved between sand 
eroded from the upper portion of the beach and sand deposited offshore. Based on this 
conservation of sand volume, the maximum erosion potential (R∞) can be defined as a function 
of the water-level rise (S) during a storm, breaking wave depth (hb), surf zone width (Wb), berm 
or dune height (B or D), and the slope (m) of the upper foreshore beach face. Along the Pacific 
Coast, the water-level rise during a storm event is mostly influence by wave setup, as the storm-
induced surge tends to have a minor effect.  

Kriebel and Dean presented analytical solutions to estimate the maximum erosion potential R∞ 
for four different beach settings. The solution for one of the four settings that is typically 
observed on the Pacific Coast, as shown in Figures D.4.6-18 and D.4.6-19, is presented as 
follows:  

● Maximum erosion potential for a beach backed by a low sand berm: 
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-18. Definition Sketch for K&D Geometric Model 

 

 

 

 

Figure D.4.6-19. Sketch for K&D Geometric Model for Case Where Historical Beach 
Profile Data Are Available to Prepare the MLWP 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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● Maximum erosion potential for a beach backed by a high sand dune: 
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where S is the water-level rise representing the sum of the peak storm surge (wind effects and 
barometric pressure effects) and the wave setup, hb is the breaking water depth, Wb is the surf 
zone width, m is the slope of the foreshore fronting face, and B and D are the berm and dune 
heights above the prevailing water level, respectively. Equations D.4.6-13 and D.4.6-14 estimate 
the maximum recession potential, assuming that the storm event lasts indefinitely. The actual 
storm-induced recession (Rm), which depends strongly on the duration of each storm event, must 
be multiplied by a storm duration recession reduction factor, α, as stated in Subsection D.4.6.5.3. 
For backshore profiles that are not well approximated by the analytical solutions given in Kriebel 
and Dean (1993), a conservation of sand volume equation (i.e., a simple balance of cuts and fills) 
may be solved numerically. Further discussion of this computational procedure is provided in the 
following guidelines. 

Because the elevated storm water level is based on the magnitude of wave setup and storm surge 
only to a small extent on the Pacific Coast, it is likely that the storm water level is below the 
berm or dune height. In the event that the elevated storm water level is higher than the crest of 
the berm or dune, the K&D model may no longer be applied and the profile must be adjusted for 
overtopping. When the K&D model is applied to estimate the storm-induced erosion, various 
model input parameters are required. The calculation of storm-induced erosion, using the K&D 
convolution method, is delineated as follows: 

Acquire Wave and Water-level Data: 

1. Obtain hindcasted wave data (e.g., Global Reanalysis of Ocean Waves [GROW] data) 
and measured historical water levels necessary to define the oceanographic conditions 
including waves and water levels for 10-20 largest storm events for every hindcasted 
year. 

2. Acquire historical beach profiles to establish the MLWP (i.e., pre-storm beach profile 
conditions). 

3. Seek historical pre- and post-storm profiles to validate the application of the simple K&D 
geometric models. 

Determine MLWP for K&D Method: 

First, determine existing shoreline location and conditions. Then, establish representative reaches 
within the shoreline area being analyzed that are similar in coastal morphology (average 
offshore/nearshore bathymetry, wave exposure, onshore beach slope, beach materials, etc.). This 
may consist of only one typical reach or several different typical reaches for the shoreline area 
being analyzed. Following are procedures for establishing the MLWP for a sandy beach backed 
by either a low sand berm or a high sand dune for application with the K&D geometric model. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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1. Procedure for a Study Site Without Previously Surveyed Historical Profiles 

a. Determine existing shoreline location and conditions. 

b. Always use measured historical post-storm winter beach profile data when available 
to establish the MLWP. However, if there are no historical post-storm winter beach 
profile data, conduct a basic wading survey from the crest of the berm or dune to the 
approximate mean low low water (MLLW) line (see National Oceanic and 
Atmospheric Administration [NOAA] tidal datum) following a series of winter 
storms in March or April to prepare a surveyed beach profile from the berm crest to 
approximately MLLW. 

c. Collect sediment samples, preferably in late March or early April to determine the 
median sand diameter (D50) for use in Equations D.4.6-5 and D.4.6-6.  

d. Determine the MSL from NOAA’s tidal datum, and identify the MSL location across 
the beach profile. This location divides the beach profile into an upper foreshore 
berm/dune section and the surf zone section.  

e. Plot the measured upper foreshore profile section above the MSL line based on the 
basic wading survey, site photographs, and available historical information (see 
Figure D.4.6-18).  

f. Determine the berm or dune height (B or D) above the MSL line and foreshore slope 
(m) from the estimated upper foreshore section (see Figure D.4.6-18). 

g. Approximate the surf zone section of the MLWP from Kriebel and Dean’s 
equilibrium beach profile, based on the measured D50 and the application of Table 
D.4.6-2 and Eqs. D.4.6-5 and D.4.6-6. 

h. Assemble the entire MLWP based on the surveyed upper foreshore and surf zone 
sections linked at the MSL, as illustrated in Figure D.4.6-18. 

i. Document data sources, assumptions, and conversions. 

2. Procedure for a Study Site With Previously Surveyed Historical Profiles: 

a. 

b. 

c. Determine the MSL from NOAA’s tidal datum, and identify the MSL location across 
the beach profile. This location divides the beach profile into an upper foreshore 
berm/dune section and the surf zone section.  

Determine existing shoreline location and conditions. 

Select a representative surveyed winter profile (see Figure D.4.6-19) from historical 
post-storm beach profile data, which was surveyed during the end of the winter 
season (March-April) and represents the typical winter beach profile conditions. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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d. Determine the berm or dune height (B or D) above the MSL line and compute the 
foreshore slope (m) through linear curve fitting to the upper foreshore section. 

e. Determine the surf zone section of the MLWP by curve-fitting Kriebel and Dean’s 
equilibrium profile from Eqs. D.4.6-5 and D.4.6-6 to the surf zone section of the 
surveyed beach profile below the MSL line (see Figure D.4.6-19). 

f. Assemble the entire MLWP based on the approximated upper foreshore and surf zone 
sections linked at the MSL, as illustrated in Figure D.4.6-19. 

g. After the MLWP is defined, determine the K&D model input parameters including 
the berm or dune height (B or D) and the foreshore slope (m) (see Figures D.4.6-18 
and D.4.6-19).  

Quantify Peak Storm Conditions of a Selected Storm Event: 

The peak storm conditions for a selected storm event shall be used to determine the storm surge 
including the wave setup, wave breaking, and storm duration. Storm surge resulting from the 
fluctuations in the wind speed and atmospheric pressure is usually small in the Pacific Coast, and 
thus the wave setup is the primary parameter to determine the water-level rise. The increase in 
water level induced by El Niño events should also be included, if applicable (see Section D.4.4, 
Waves and Water Levels). The peak storm conditions include wave height, period, and incoming 
direction at the peak of the storm, as well as the storm duration that is characterized in Section 
D.4.4. These wave conditions are used to determine the wave setup (S), water depth of breaking 
wave (hb), and the surf zone width (Wb) needed by the K&D geometric model. The MSL water 
depth can be used as a representative water depth to calculate wave transformation. The 
procedures are listed as follows: 

1. Determine the breaking water depth (hb) and the surf zone width (Wb), based on the 
MLWP and the selected wave event. 

2. Estimate the wave setup using the formula presented in Subsection D.4.5.1. 

3. Based on the procedures described in Section D.4.4, calculate the storm surge induced by 
wind effects and barometric pressure effects, if applicable. 

4. Estimate the increase in water level induced by the El Niño Southern Oscillation (ENSO) 
events in accordance with the procedures stated in Section D.4.4, if applicable. 

5. 

Calculate Storm-induced Beach Erosion: 

1. Calculate the maximum beach erosion potential R∞ using Equation D.4.6-13, if the 
subject beach is backed by sand berms with height B. 

Determine the total increase in water level (S) induced by the storm (see Figures D.4.6-18 
and D.4.6-19).  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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2. Calculate the maximum beach erosion potential R∞ using Equation D.4.6-14, if the 
subject beach is backed by sand dunes with height D.  

3. Calculate the time scale (TS) from Equation D.4.6-4. 

4. Determine the storm duration (TD) from Subsection D.4.4.1, and compute the storm 
duration recession reduction factor, α, from Figure D.4.6-16 for the given value of TD/TS. 

5. Multiply the maximum recession potential (R∞ ) by the storm duration recession reduction 
factor to estimate the storm-induced beach erosion and recession distance (Rm). 

Prepare Eroded Post-Storm Beach Profile: 

1. Set back the upper foreshore profile above the elevated storm wave level (see Figures 
D.4.6-18 and D.4.6-19) landward by the calculated berm or dune recession distance Rm 
with the same fronting-face slope (m). 

2. Place the new link point between the upper foreshore section and the surf zone section at 
the elevated storm water level (see Figures D.4.6-18 and D.4.6-19). 

3. Shift the surf zone section of the MLWP below the MSL landwards and upwards to the 
link point (see dashed curve below the MSL line in Figures D.4.6-18 and D.4.6-19). 

4. 

5. Document results and assumptions. 

D.4.6.5.6 Potential Future Use of Process-based Models 

Process-based models are typically more complex and have greater data input requirements than 
simplified geometric models, but are formulated to include the effects of more of the physical 
processes affecting beach erosion and coastal sediment transport. While conserving sand 
volumes, as done by the K&D geometric model, process-based models also compute the cross-
shore transport of beach sand induced by nearshore storm waves, and determine the change in 
beach profile based on material grain size, wave energy, and the variation in sand transport rate. 
Two simple process-based models, SBEACH (Larson and Kraus, 1989, 1998; Larson et al., 
1990) and EBEACH (Kriebel, 1984a, 1984b; Kriebel and Dean, 1985), have been widely used in 
the eastern United States to calculate storm-induced beach erosion. Other, more complex 
process-based models, such as the COSMOS model (Southgate and Nairn, 1993) developed in 
England, have also been used to calculate storm-induced beach erosion. More complex models 
can be data-intensive, time-consuming, and costly to use. However, for certain settings, 
application of simple or complex process-based models presents a significant opportunity to 
improve how beach profile changes are depicted over simplified geometric-based models. 

The adjusted profile from Steps 1 to 3 produces the “eroded storm profile” for a specified 
location and beach profile. Mapping Partners shall perform these steps for all beach 
profiles needed to describe the spatial adjustments to the beach and dune system being 
evaluated. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Both SBEACH and EBEACH have been calibrated to the large-scale laboratory wave-tank 
experiments and field data on the Atlantic and Gulf coasts. They have been applied to numerous 
field case studies on the Atlantic and Gulf coasts, and to a lesser degree in the Great Lakes, 
environments that more closely fit the conditions for which they were developed and calibrated. 
However, several less-successful experiences using SBEACH, EBEACH, and COSMOS have 
occurred on the coasts of California (Noble Consultants, 1994) and Oregon (Komar et al., 1999; 
Komar, 2004). Documentation of these attempted applications indicates that these process-based 
models may underpredict the erosion during storms on the Pacific Coast, where the beach 
morphology and storm characteristics differ from the beach settings that were used in developing 
these models.  

In August 2004, the U.S. Army Corps of Engineers (USACE) officially recognized the limitation 
of SBEACH to predict erosion on Pacific Coast beaches and funded a research program to 
explore the causes of the model’s underprediction of erosion on the Pacific Coast so as to 
improve its applicability for the Pacific Coast region. The Coastal and Hydraulics Laboratory 
(CHL) is currently modifying the SBEACH model, so it can be applied to the specific site 
characteristics and wave climate of the Pacific Coast region. Noble Consultants has provided the 
identical database to CHL for the four southern California shoreline locations that were used for 
field verification of the K&D (Kriebel and Dean, 1993) and MK&A (McDougal and MacArthur, 
2004) simplified geometric models discussed above.  

Eventually, simple and complex process-based models will become more reliable and will 
ultimately provide additional means for estimating event-based erosion along the Pacific Coast. 
However, further reformulation and validation are required before they can be used in FEMA 
coastal flood hazard assessments. At this time, without accurate calibration to local conditions, 
process-based models are not recommended for general use. 

D.4.6.6 Estimating Profile Changes for Sandy Beaches Backed by Protective 
Structures (Beach Setting No. 2) 

Figure D.4.6-20 shows a photograph of a typical sand beach backed by coastal development and 
protective structures in Southern California. This setting is often subject to dramatic beach 
erosion and profile adjustment during single events. Figure D.4.6-3 shows a typical beach profile 
for this setting, while Figure D.4.6-21 shows the sequence of key activities and computational 
considerations required to determine storm-induced beach profile changes for Beach Setting 
No. 2. 

The Mapping Partner shall perform the following steps to develop the MLWP for this type of 
setting: 

1. Review the references listed in the support documents and literature on assessing 
performance and erosion at coastal structures; review Section D.4.7. 

2. Determine existing shoreline location and condition of structures. 

3. Examine photos and historical pre- and post-storm event LIDAR and beach profile data 
for the study area and develop a MLWP for the beach by examining the envelope of 
seasonal post-storm event beach profile data. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-20. Sand Beach Backed by Shore Protection Structures,  
Crystal Cove, California (Source: Noble Consultants) 

 
 

Figure D.4.6-21. Key Activities to Determine Beach Profile Changes for Beach 
Setting No. 2 

4. The toe of a structure often becomes buried beneath sand deposits during calm sea 
conditions. Try to determine whether the MLWP profile is formed by the structure at its 
toe by probing through the sand along the toe of the structure to measure the depth of 
sand at the toe. Inspection trenches can also be dug and profiled by an experienced 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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coastal geologist (here profiling means identifying and mapping the vertical location and 
thickness of distinct sediment lenses along the cut face of an inspection trench). Results 
from this activity should provide information on the historical depth of scour that has 
occurred in front of the structure. 

5. If a relatively broad sandy beach is located in front of the coastal structure, the MLWP 
for the sand beach portion must be estimated from historical winter beach profile data, 
supplemented with probing or inspection trench data down to an elevation of 
approximately MLLW.  

6. Survey the elevation of the top of structures and back-beach profile. Depending on 
available data, some types of LIDAR data may be suitable for this purpose. 

7. Next, splice the structural profile, average winter sand beach profile, and back beach 
profiles together to create a continuous beach profile that represents the complete MLWP 
for the beach, structure profile, and back beach areas. 

8. Next, determine if the MLWP can experience additional erosion during a selected storm 
event. 

9. If further erosion is possible during a large storm, determine likely depth of local scour in 
front of structures and compare to the scour depths determined from probing or trenching 
and smooth MLWP to reflect this local change; refer to Section D.4.7 and to the CEM 
(USACE, 2003). 

10. Use this continuous beach profile for subsequent runup computations. 

11. Determine whether the structures are overtopped, damaged, or removed during the storm 
event being evaluated according to methods prescribed in Section D.4.7. 

12. Try to validate assumptions and results using observed data from previous large storm 
events. 

13. Document assumptions, data that were used, and results.  

D.4.6.7 Estimating Profile Changes for Gravel and Cobble Beaches (Beach 
Setting No. 3) 

Explicit procedures for determining beach and back beach profile changes on gravel and cobble 
beaches are not as well developed or documented as for sand beaches. Figures D.4.6-22 and 
D.4.6-23 show typical Pacific Coast cobble berm-backed beaches. Figure D.4.6-4 provides a 
sketch of a typical cobble beach profile (Beach Setting No. 3) and shows the different material 
layering and composition present for these settings. Cobble beaches and berms are often quite 
stable features as indicated by the measured cross-beach profiles shown in Figures D.4.6-24 and 
D.4.6-25. The Mapping Partner shall assume that the cobble beach and cobble berms are stable 
features during storms and act like natural shoreline protection features, but that the toe and 
apron become partially covered with sands during summer months and mild winter seasons.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-22. Sand Beach Backed by Cobble Berm and Bluffs, South Carlsbad, 
California (Photo by Noble Consultants) 

 

 
 

Figure D.4.6-23. Sand Beach Backed by Cobble and Shingle Berm and Sandy Terrace, 
Batiquitos Lagoon, California (Photo by Noble Consultants) 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-24. Measured Beach Profile Change Due to January 1988 Storm,  

Batiquitos Lagoon, California 

 
Figure D.4.6-25. Measured Beach Profile Change Before and After January 1988 Storm, 

Batiquitos Lagoon, California 

Perform local probing and inspection trenching from the berm face out onto the beach to validate 
this assumption and to determine the typical eroded winter profile. If it is determined from other 
measured data from past storm events that the eroded winter profile underestimates the amount 
of cobble beach retreat during large storm events, then use the observed data for the eroded 
beach profile for runup and overtopping. Otherwise, use the eroded winter profile for subsequent 
runup and overtopping computations. 

Figure D.4.6-26 shows the sequence of key activities and computational considerations required 
to determine storm-induced beach profile changes for Beach Setting No. 3. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-26. Key Activities to Determine Beach Profile Changes for Beach 

Setting No. 3 

Mapping Partners shall use the following procedure to establish the typical eroded winter profile 
for Beach Setting No. 3, Cobble, gravel or shingle beaches and berms: 

1. Review the references listed in the support documents and literature on the design of and 
construction of dynamic revetments and cobble berms. 

2. Examine photos and historical pre- and post-storm event LIDAR and beach profile data 
for the study area and develop a typical winter profile from observed data (refer to Figure 
D.4.6-25 for an example of historical profiles). 

3. Verify this profile by probing or trenching through the sand along the toe of a cobble 
berm to measure the profile of the cobble berm left by the previous period of high wave 
conditions. (See Figures D.4.6-4 and D.4.6-25 that show how the toe of a cobble berm 
often becomes buried beneath sand deposits during calm sea conditions.) The eroded 
profile (circles) was surveyed only a few days following a major storm event in January 
1988. 

4. If a relatively broad sandy beach is located in front of the cobble berm, determine 
whether there is a history of significant erosion of the sand beach portion and include that 
information in the beach profile data.  

5. Survey the top of berm and back-beach profile. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

 D.4.6-40 Section D.4.6 

 

6. Splice the cobble berm profile, winter sand beach profile, and top-of-berm and back 
beach profiles together to create a continuous beach profile that represents the complete 
profile for the beach, cobble berm, and back beach areas.  

7. Use this eroded beach profile for subsequent runup computations during the selected 
storm event, unless other information indicates the profile may need further adjustment 
during large storm events.  

8. Check results and try to validate them with observed information. 

9. Document assumptions and results. 

D.4.6.8 Estimating Profiles for Beaches Backed by Erodible Bluffs or Cliffs 
(Beach Setting No. 4)  

Significant portions of the California coast have narrow to nonexistent beaches backed by high, 
steep, erodible coastal bluffs and cliffs, as shown in Figures D.4.6-27, D.4.6-28, and D.4.6-29 
and illustrated in Figure D.4.6-5. The evolution of this bluff-type shoreline is significantly 
different from that of the sandy beaches backed by either dunes or low-lying berms. A thin sand 
lens often overlays a rocky beach or bedrock platform fronting the bluff. These thin deposits of 
sand are removed each winter storm season. If storm water levels reach sufficient elevations to 
intersect the toe of the bluffs, storm waves can directly impinge upon the bluff face causing bluff 
toe erosion. If enough material is eroded from the toe during a storm, the upper portion of the 
bluff can fail, resulting in bluff retreat (Figures D.4.6-28 and D.4.6-29). This type of bluff failure 
and retreat is common along the Pacific Coast, and is particularly important in the highly 
developed coastal communities of central and southern California. It should be noted that 
significant bluff failure may not occur during all storm events. However, if the bluff materials 
are erodible, toe erosion and bluff failure is possible during single storm events. The rate and 
extent of bluff erosion and failure depends on the site-specific bluff profile conditions at the time 
of the event (toe elevation and setback distance from the surf zone) and on the erodibility of the 
bluff materials. In some locations, it may take several storms to cause sufficient toe erosion to 
lead to bluff failure, or only one significant event with sufficient TWL, duration, and wave 
orientation to result in significant storm erosion.  

Previous estimates for coastal bluff retreat have typically resorted to temporally averaged rates 
over a long period. Though the average annual rate of coastal cliff erosion is a reasonable 
indicator of the gradual retreat of the bluff top, it does not adequately predict the episodic nature 
of bluff failure that can result in 3 to 50 feet of retreat during a single storm event. The average 
annual retreat rate provides a misleading indication of the hazards of coastal bluff or cliff erosion 
because the occurrence of storms of sufficient magnitude and duration to cause significant buff 
retreat are episodic. At some locations, coastal bluffs have fairly low elevations and may be 
overtopped by large wave events. Therefore, assessment of coastal flood and erosion hazards in 
coastal settings (Beach Setting No. 4) with erodible bluffs requires special methods and data. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-27. Wave Cut Coastal Bluff, Encinitas, California  
(Source: USACE, Los Angeles District) 

 

 
 

Figure D.4.6-28. Bluff Failure and Retreat During 1998 El Niño Storms, Pacifica, California  
(Photo by Kevin Coulton) 

 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-29. Bluff Failure and Retreat, Encinitas, California  
(Photo by Noble Consultants, Inc.) 

During the reconnaissance phase of a coastal flood assessment, Mapping Partners shall 
determine whether the study area includes erodible coastal bluffs and cliffs (Beach Setting No. 4) 
and whether the bluff elevations are low enough for overtopping.  

D.4.6.8.1 General Approach for Beach Setting No. 4 

Figure D.4.6-30 shows the sequence of key activities and computational considerations required 
to determine storm-induced beach profile changes for Beach Setting No. 4.  

Determine the coastal setting and history of episodic and chronic bluff erosion for the study area; 
then: 

1. Obtain reliable beach and bluff profile data (surveyed cross-shore profiles or LIDAR) for 
existing conditions. Try to obtain these data near the end of the winter season in March or 
April.  

2. Determine whether bluff erosion and failure monitoring data are available for the study 
area. Obtain and examine that information to determine the magnitude of episodic toe 
erosion and bluff retreat. 

3. Estimate top-of-bluff elevations and compare to potential significant storm TWL and 
whether the bluff is subject to overtopping or frequent wave attach or toe erosion. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-30. Key Activities to Determine Beach Profile Changes for Beach 
Setting No. 4 

4. Perform a site inspection to confirm general historical information related to episodic 
erosion or overtopping hazards associated with the site. Determine relative erodibility of 
the bluff materials using standard geologic/geotechnical field procedures (Sunamura 
1983; USACE-LAD, 2003; and Williams et al., 2004).  

5. If potential damage to structures or public safety are determined not to be significant, the 
Mapping Partner shall document those results and whether further analyses are 
recommended.  

6. If further analysis of bluff erosion or overtopping is not recommended, or the site is 
determined to be non-eroding, assume the bluff or cliff is classified as Beach Setting No. 
5 (and document why) and that the bluff or cliff is non-eroding during large events. Then 
apply methods listed in Subsection D.4.6.9 for analyses of non-erodible bluffs. 

7. Perform all further runup and overtopping analyses on the surveyed existing winter 
conditions beach and bluff profiles for the site. 

8. Document results, and summarize the data, methods used, and assumptions associated 
with the analyses. 

If it is determined that the study site experiences significant erosion and retreat during large 
storm events, then the Mapping Partner shall document those findings and discuss with the 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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FEMA study representative whether there are sufficient data, time, and budget to perform a more 
detailed bluff erosion analysis. Depending on the site-specific characteristics of the setting and 
bluff materials, a detailed bluff erosion analysis is likely to require detailed geologic sampling, 
bluff erosion monitoring data, and bluff erosion simulation analyses. Data requirements and 
procedures for conducting detailed bluff erosion analyses are presented in the next subsection. 

D.4.6.8.2 Detailed Bluff Erosion Analyses 

As part of the effort for the USACE feasibility study along the Encinitas/Solana Beach shoreline, 
Noble Consultants, Inc., developed a statistical modeling procedure to characterize the bluff 
failure induced by storm wave attacks (USACE-LAD, 2003). The approach and statistical model 
have been certified by the USACE, Coastal Engineering Research Center as the preferred 
method to statistically quantify the random bluff failure for shoreline studies that include a bluff 
failure component. Information on this approach is available from USACE Los Angeles District 
and has been published in the Journal of the American Shore & Beach Preservation Association 
(Williams, Lu, and Qin, 2004). 

Given wave and TWL characteristics and the erodibility of buff materials, the statistical bluff 
failure model estimates bluff toe erosion induced by impinging waves and predicts random 
episodic bluff failures for varying storm conditions. A semi-empirical formulation developed by 
Sunamura (1982, 1983) is used to quantify the short-term bluff toe erosion rate as a function of 
the intensity of impinging waves and the site-specific erosion resistance of bluff materials: 
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where X is the accumulated bluff toe erosion depth from N waves acting on the bluff toe, Xi is the 
individual erosion by the i-th wave with height of Hi and duration of ∆ti, Sc is the compressive 
strength of the bluff material, ρ is the density of water, g is the gravitational acceleration, C is a 
non-dimensional constant, k is a constant with dimensions of length over time [L/T], and 
subscript j is the group number of the critical wave height Hj to initiate the toe erosion, which is 
given by H S e−c

j = c / ρg .  

This procedure requires regional and site-specific data. A statistical Monte Carlo simulation 
approach is used to characterize the correlation between bluff toe erosion and bluff failure for 
temporally varying wave conditions. If the cumulative depth of the bluff toe notch induced by 
storm waves exceeds a locally determined threshold value for triggering a bluff failure, the 
individual upper bluff retreat is determined by a randomly selected retreat value from an historic 
database for the site. The threshold value is empirically determined from historical bluff failure 
events. It may vary from one coastal bluff region to another. In the Encinitas/Solana Beach 
region, the threshold value of the cumulative toe erosion at which a bluff failure is likely to occur 
is approximately 8 feet.  

The methodology may be applied in any situation where undermining of the bluff toe triggers 
upper bluff block failure; however, substantial field data are required to determine several of the 
required parameters and for proper calibration of the bluff failure model. Therefore, if the 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Mapping Partner determines that a detailed bluff erosion study is necessary, he/she must provide 
the following field data, at a minimum: 

1. The type of rock formation and/or bluff soil materials from which stability and the 
erosion-resistant force of the bluff material can be quantified. 

2. Field measurements of bluff toe erosion in response to cumulative wave energy 
associated with past storm events for determining and calibrating empirical coefficients 
required by the Sunamura formula used by the model. 

3. Historical data of upper bluff failures, indicating approximate horizontal length and 
transverse width of bluff top land loss during past storm events for formulating the 
probability distribution of the severity of bluff failure.  

Two sets of field data are required to establish and calibrate the wave-induced toe erosion and to 
establish the statistical representation of bluff failure events. To calibrate the toe erosion 
produced by the statistical model, the depth of the toe erosion shall be measured before and after 
significant storm events and correlated to the cumulative wave energy during those events at the 
bluff toe. At least two full years of data are required to capture seasonal variability of toe 
erosion, and up to five years of data may be needed to calibrate the correlation between the 
impinging waves and the resultant toe erosion. Longer monitoring periods are desirable and will 
include more storm events and more cumulative wave energy statistics, and thus result in higher 
accuracy in model calibration.  

To assemble the representative statistics of random occurrences, adequate observations of upper 
bluff failures are required. At least two to five years of monitoring data are required to provide a 
reasonable representation of the size distribution of the failures. The larger the database, the less 
uncertainty there is in the predicting toe failure. There are no known analytical methods for 
forecasting bluff toe erosion and failure; therefore, a statistical approach is the only means of 
forecasting bluff failure and retreat due to the random temporal wave action during large storms. 
To capture any seasonal variability, at least 5 years of data are required, and to ensure a 
statistically valid database, up to 10 years of data may be needed if failures are uncommon. This 
is likely to limit the applicability of this approach for traditional FEMA coastal flood studies, 
unless these data are readily available at the beginning of the project. If it is determined that data 
are available and that the application of the statistical bluff failure model is necessary, use the 
following procedures: 

Characterize Fronting Beach Conditions 

The Mapping Partner shall perform Steps 1 through 6 under general approach, above. Assess 
whether the potential damage to the bluff-top developments resulting from bluff failure is highly 
probable. If a subject bluff is fronted by either a sand berm or dune with a sufficient width to 
separate the bluff from direct wave impingement during the winter months, the storm-induced 
erosion to the berm and dune, as stated in Subsection D.4.6.4, should be applied. If the protective 
sand berm or dune is removed during the winter months, use this eroded condition as the winter 
beach profile and apply the bluff failure model for that beach condition. If eroded winter profile 
data are not available, then the profile should be developed by probing down to erosion-resistant 
materials along beach transects to establish the bedrock profile. A typical eroded winter profile 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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should be developed from surveyed and probing data of the underlying bedrock layer for each 
typical reach of shoreline area being analyzed. A sketch of a typical erodible bluff fronted by a 
rock platform capped with a thin sand layer is shown in Figure D.4.6-31. If the fronting beach is 
a broad sandy beach with berms or dunes, apply beach erosion methods prescribed in Subsection 
D.4.6.5. 

 
Figure D.4.6-31. Typical Erodible Bluff Profile Fronted by Narrow Sand-capped Beach 

 
Apply Bluff Failure Model 

Following are procedures for applying the statistical bluff failure model: 

1. Collect field data for each setting and subreach along the study area. 

a. Measure bluff toe erosion during at least two separate periods. 

b. Conduct field probing to determine the bedrock layer across the beach area. 

c. Determine the elevation of the bluff toe and bedrock layer intercept and cross-shore 
slope. 

2. Assemble historical bluff failure events.  

a. Determine bluff failure characteristics in terms of the length along the bluff crest-line 
and the transverse recession dimensions. 

b. Formulate probability distribution of the magnitude of various bluff failure events. 

c. Determine the threshold value of toe notch depth when the upper bluff failure occurs 
(see USACE, 2003; Williams et al., 2004). 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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3. Calibrate Sunamura’s empirical equation. 

a. Determine the wave histogram including storm events within the two separate 
historical wave and erosion periods. 

b. Estimate the temporal histogram of wave heights at the bluff base for each of the 
selected periods with synchronized tide levels. 

c. Determine the bluff resistance force for the type of bluff material at the site. 

d. Calibrate Sunamura’s empirical equation (i.e., Equation D.4.6-15) from the 
cumulative toe erosion measured in these two separate periods and quantify the total 
impinging wave energy during each period from hindcast data. 

4. Calibrate bluff retreat model by simulating past bluff failure events. 

a. Assemble historical wave characteristics at the bluff base and synchronize with 
measured tide levels. 

b. Determine the probability distribution of wave characteristics at the bluff base. 

c. Apply the Monte Carlo sampling technique to randomly select the histogram of wave 
characteristics at the bluff base. 

d. Estimate the cumulative notch depth at the bluff toe using the calibrated toe erosion 
equation (Equation D.4.6-15). 

e. Apply the same Monte Carlo sampling technique to randomly select a bluff failure 
event if the accumulative notch depth is deeper than the prescribed threshold value 
deduced from Step 2. Assemble historical bluff failure events. 

f. Perform multiple simulations for a required long-term duration (e.g., 10 years) until a 
statistical representation regarding the occurrence of bluff failure is achieved. 

g. Derive the statistical mean and other pertinent properties, such as the exceeding 
probability of a cumulative bluff retreat distance at the end the modeled duration.  

h. Compare results with observed data from the site and adjust coefficients as necessary. 

5. Apply calibrated model for 1% annual storm event. 

a. Determine winter profiles for fronting beach conditions and elevation of bluff-beach 
intercept. 

b. Apply calibrated model for entire 1% annual storm.  

c. Determine amount of toe erosion and bluff crest line recession for the 1% storm. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

 D.4.6-48 Section D.4.6 

d. Use this adjusted profile for all further runup and overtopping analyses associated 
with the 1% annual storm. 

6. Document results, data, and assumptions. 

D.4.6.9 Estimating Beach Profiles for Beaches Backed by Erosion-Resistant 
Bluffs or Cliffs (Beach Setting No. 5) 

Erosion-resistant bluffs and cliffs are often fronted by rock terraces, rocky beaches, or narrow 
rock platforms capped with thin layers of sand or gravel. Once the thin sand cap is eroded from 
the rocky beach, this beach setting is stable; see Figure D.4.6-6 and Figure D.4.6-32. Therefore, 
Mapping Partners shall assume the sand cap is removed from the beach profile before a 
significant storm event and use the adjusted rocky beach profile along with measured profiles for 
the non-erodible bluffs or cliffs for all subsequent runup and overtopping computations. 
Document assumptions, methods, data resources, and results. Figure D.4.6-33 shows the 
sequence of key activities and computational considerations required to determine storm-induced 
beach profile changes for Beach Setting No. 5.  

D.4.6.10 Profiles in Tidal Flats and Wetlands (Beach Setting No. 6) 

Tidal flats and wetlands are low-gradient coastal features, usually found in sheltered water areas 
and comprised of fine cohesive silts and clays; see Figures D.4.6-7 and D.4.6-34. Figure D.4.6-
35 shows the sequence of key activities and computational considerations required to determine 
storm-induced beach profile changes for Beach Setting No. 6.  

 
 

Figure D.4.6-32. Photo of Erosion-resistant Cliff  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-33. Key Activities to Determine Beach Profile Changes for Beach 
Setting No. 5 

Sedimentation processes in this beach setting are typically depositional. Over time, these coastal 
landforms may become capped with wetland vegetation and detrital deposits and debris from 
overland wave propagation during storm events. Therefore, Mapping Partners may assume that 
tidal mudflats and wetland profiles do not erode over the time-scale of single storm event. 
Mapping Partners should compare existing tidal flat and wetland profiles with recent post-storm 
profiles to verify this assumption. If it is determined that no measurable erosion occurs during 
single storm events, then the Mapping Partner shall use the existing profile information to 
determine runup, overtopping, and overland propagation. However, if it is found that measurable 
changes can occur during a single storm, the Mapping Partner should document the observed 
changes experienced at the site and propose to the FEMA study representative a procedure for 
using that information to adjust the existing profiles before determining runup, overtopping, and 
overland propagation. The Mapping Partner shall document assumptions, data used, and methods 
implemented to prepare the final profiles, and summarize the results. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.6-34. Photograph of Tidal Flats and Wetlands Complex  
(Photo by Northwest Hydraulic Consultants, Inc.)  

 

 

 
 

                      Figure D.4.6-35. Key Activities to Determine Beach Profile Changes for 
Beach Setting No. 6 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.7 Coastal Structures 

D.4.7.1 Purpose and Overview 

This section outlines methods for analyzing the stability and effects of coastal structures during 
1% annual chance flood conditions. 
 
Coastal structures can significantly affect local topography and flood hazards, and the evaluation 
of coastal structures is a necessary part of any flood hazard study. The evaluation should, where 
possible, determine whether a coastal structure will survive (and provide protection to upland 
areas from) the 1% annual chance flood. 

• If a particular structure is expected to remain intact through the 1% annual chance flood, 
the structure geometry shall be used in all ensuing Flood Insurance Study (FIS) analyses 
that accompany the flood event (e.g., event-based erosion, wave runup and overtopping, 
and determination of wave crest elevations). 

• If a particular structure is expected to fail during the 1% annual chance flood, the coastal 
structure shall either be removed entirely before ensuing analyses, or be replaced by an 
appropriate failed configuration before ensuing analyses.  

• If the performance of a particular structure is uncertain, both intact and failed 
configurations should be analyzed, and the most hazardous flood conditions should be 
mapped.  

For the purposes of these guidelines and specifications, coastal structures are classified as 
follows: 

• Coastal Armoring Structures: Generally shore-parallel structures constructed to 
prevent erosion of uplands and mitigate coastal flood effects (e.g., seawalls, revetments, 
bulkheads, and levees). Note that coastal levees are classified as armoring structures here, 
but are often referred to as flood control structures.  

• Beach Stabilization Structures: Structures intended to stabilize or reduce erosion of the 
beach, and by so doing, to afford some protection to upland areas (e.g., groins, 
breakwaters, sills, and reefs). 

• Miscellaneous Structures: Structures not included above that can affect flood hazards, 
especially in sheltered waters (e.g., piers, port and navigation structures, bridges, culverts, 
and tide gates). 

Criteria for evaluating the stability and performance of coastal armoring structures for FIS 
purposes are well-developed, and are discussed in detail. Criteria for evaluating beach 
stabilization structures are not yet developed, and only basic guidance is provided. Criteria for 
evaluating miscellaneous structures are not standardized, and only basic guidance is provided. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.7.2 Evaluation Criteria 

Mapping Partners are not required to perform detailed engineering evaluations of all coastal 
structures within the study area, and in fact, rarely do so. However, when such an evaluation is 
performed, there are specific evaluation criteria that must be applied. 

D.4.7.2.1 Detailed Engineering Evaluation of Coastal Armoring Structures 

Specific criteria for evaluating coastal armoring structures are contained in an April 23, 1990 
Federal Emergency Management Agency (FEMA) memorandum (FEMA, 1990), “Criteria for 
Evaluating Coastal Flood Protection Structures for National Flood Insurance Program 
Purposes.”1 

The evaluation criteria applicable to coastal armoring structures include the following: 

• Design Criteria 
— Water levels and wave (height and period) conditions 
— Minimum freeboard 
— Toe protection 
— Backfill protection 
— Structure alignment and terminations 

• Structural Stability 
— Flood-induced erosion and toe scour analyses 
— Geotechnical analysis  
— Structure sliding, rotation, and overturning 
— Stability of riprap, armor stone, and filters 
— Breaking wave forces 
— Material adequacy (suitability and durability) 
— Ice and impact forces 

• Adverse Impact Evaluation 

                                                 
1 The criteria discussed in this memorandum are based in large part on Technical Report 89-15 prepared by the U.S. Army Corps 
of Engineers, Coastal Engineering Research Center (USACE CERC) for FEMA, Criteria for Evaluating Coastal Flood-Protection 
Structures (Walton et al., 1989). The criteria in the memorandum have been adopted as the basis for NFIP accreditation of new or 
proposed coastal structures to reduce the flood hazard areas and elevations designated on NFIP maps, but can be applied to 
existing coastal structures. 

Where a Mapping Partner chooses to perform a detailed engineering evaluation of an existing coastal armoring structure during 
an FIS, FEMA requires the evaluation to be based upon the criteria outlined in the April 23, 1990 FEMA memorandum, and upon 
as-built documentation. When as-built documents are not available, the evaluation should be based upon best available data, 
standard design and engineering assumptions, and conservative estimates of material properties. The evaluation should be 
confirmed and documented by past performance during severe storm events. The underlying requirement is that the evaluation 
must yield an accurate assessment of coastal structure performance during the 1% annual chance flood, based upon available 
evidence. 

It should be noted, however, that the state of the art of coastal structure evaluation is constantly evolving. Thus, the Mapping 
Partner may choose to propose evaluation criteria that differ from those contained in the April 23, 1990 FEMA memorandum 
(e.g., from the Coastal Engineering Manual [CEM] [USACE, 2003], or from other authoritative and accepted references). 
However, alternate evaluation procedures and criteria should not be used in an FIS without permission from the FEMA study 
representative. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Community and/or State Review 

• Maintenance Plan 

• Certification 

D.4.7.2.2 Coastal Armoring Structure Evaluation Based on Limited Data and 
Engineering Judgment 

For the purposes of an FIS, the Mapping Partner may not have sufficient resources and time to 
conduct a detailed evaluation of each coastal armoring structure within the study area. In such 
cases, the Mapping Partner can apply engineering judgment (albeit, guided by the FEMA 
memorandum and Technical Report 89-15 criteria) to determine likely stability of each structure 
during the 1% annual chance flood. These conclusions may largely be based upon available 
archive information and local observations. Note that any data and procedures used in the 
evaluations shall be documented (see Subsections D.4.7.6 and D.4.7.7), and communities and 
property owners shall be made aware that these evaluations are for mapping purposes only. 

If the available information does not clearly point to survival or failure of a coastal structure, the 
Mapping Partner may either:  

a) Conduct a detailed evaluation based on the FEMA criteria (April 23, 1990), or 

b) Perform the erosion and wave analyses for both the intact and failed structure cases, and 
map the flood hazards associated with the more hazardous case. 

If option b) is selected, the Mapping Partner shall clearly document the results of all cases 
investigated and specify which case is used for mapping purposes. It should be noted that a failed 
coastal structure may or may not yield the greatest flood hazards. Therefore, coastal flood 
analyses for the intact and failed conditions should be performed, with the greatest resulting 
flood hazard being mapped. Maintaining results of all analyses may be useful in the event map 
revisions are requested by property owners based upon certified structures2. 

D.4.7.2.3 Evaluation of Beach Stabilization Structures 

Guidance on how to predict the survival or failure of groins, which usually fail by loss of profile 
(through settlement, displacement, or deterioration) and/or by becoming detached at their 
landward ends, is not readily available. Likewise, guidance on how to predict the failure of 
breakwaters, sills, and reefs (usually through loss of profile) is not readily available. Some 
information on failure modes may be available in technical or historical literature, and should be 
consulted by the Mapping Partner. 

                                                 
2 Often, property owners request revisions to the Flood Insurance Rate Map (FIRM) based upon existing, new, or 
proposed coastal structures. Map revisions based upon coastal structures require a detailed evaluation and 
certification by a professional engineer registered in the subject state. FEMA has distributed the Coastal Structure 
Form (MT-2, Form 5, available at <http://www.fema.gov/pdf/fhm/mt2_f5.pdf>) to evaluate coastal structures as the 
basis for map revisions. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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If a Mapping Partner chooses to evaluate beach stabilization structures during an FIS, the 
proposed evaluation methods and procedures should be discussed with the FEMA study 
representative, in advance, and approval by FEMA must be obtained before the evaluations can 
be carried out. 

D.4.7.3 FIS Treatment of Coastal Armoring Structures 

Technical Report 89-15 identifies four primary functional types of coastal flood protection 
structures: gravity seawalls, pile-supported seawalls, anchored bulkheads, and dikes or levees. A 
fifth type, revetment, is added here (see Figure D.4.7-1).  

Technical Report 89-15 recommends as a general policy that “FEMA not consider anchored 
bulkheads [as providing flood protection] during large storms”. Thus, the default assessment for 
open coast anchored bulkheads should be that they are assumed to fail during the 1% annual 
chance flood. Mapping Partners may choose to treat some anchored bulkheads as surviving the 
flood and/or providing some degree of flood protection, but those instances may be limited (e.g., 
in sheltered waters, when the bulkhead is stable during the 1% annual chance flood conditions).  

Many seawalls, revetments, and (some) bulkheads may be recognized on flood hazard maps if 
they remain intact during the 1% annual chance storm (in some cases, even if overtopped). These 
structures may provide total or limited protection against flooding, erosion, and waves, 
depending upon their location, strength, and dimensions.  

D.4.7.3.1 Failure and Removal of Coastal Armoring Structures 

In the event that a coastal structure is determined to fail, the Mapping Partner shall remove the 
structure entirely from the analysis transect, or estimate the partial collapse of the structures 
where appropriate (see Subsection D.4.7.3.2). If the failed structure is removed entirely, the 
remaining soil profile should be altered to achieve its likely slope immediately after structure 
failure. Information on slopes behind failed structures is limited. These slopes may vary from 1 
on 100 (v:h) for unconsolidated sands to 1:1 or steeper for consolidated material landward of the 
failed structure. 

This post-failure slope for this analysis should be in the range of 1:1 to 1:1.5 (v:h). Note that the 
post-failure slope may not necessarily match the long-term stable slope, but will serve as the 
basis for subsequent site-specific, event-based erosion wave height, wave runup, and wave 
overtopping analyses. 

D.4.7.3.2 Partial Failure of Coastal Armoring Structures 

Frequently, coastal structures are constructed of either concrete or large individual armor units. 
Consequently, it is improbable that the structural components will be completely destroyed or 
removed from the vicinity during the 1% annual chance flood. It may be appropriate to assume 
partial failure of such structures and to model accordingly. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.7-1a. General Classification of Coastal Armoring Structures 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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Figure D.4.7-1b. General Classification of Coastal Armoring Structures 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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A recommended simple geometric approach for approximating partial failure of a vertical or 
near-vertical coastal armoring structure is as follows (see Figure D.4.7-2): 

1. Estimate toe scour at the subject structure based upon the methods described in the CEM 
(USACE, 2003). 

2. Assume the structure fails and falls into a rough, porous slope at 1:1.5 (v:h). 

3. Extend the 1:1.5 failure slope from the depth of scour at the structure toe landward to the 
point where it intersects the existing grade. 

 
Figure D.4.7-2. Partial Failure of Vertical Coastal Structure 

A recommended approach for approximating partial failure of a sloping revetment (due to 
undermining at the toe, or to collapse at the top due to erosion behind the structure) is as follows 
(see Figure D.4.7-3): 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.7-3. Partial Failure of a Sloping Revetment 

1. Assume the structure will collapse in place into a triangular section throughout the 
structure footprint, with side slopes equal to the original structure slope. 

2. Assume the landward side of the failed configuration will be half exposed and half 
buried. Approximate the soil slope landward from the failed structure at a slope in the 
range of 1:1 to 1:1.5 (v:h). 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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After determining an appropriate failure configuration, the Mapping Partner shall conduct wave 
height and wave runup analyses upon the failed structure, as discussed in preceding sections. The 
Mapping Partner shall select an appropriate roughness factor when conducting runup and 
overtopping analyses on the failed structure. 

In some cases, the assumed failed slope may result in the undermining of buildings located 
landward of the coastal structure. If this occurs, the building shall be removed from the analysis 
transect and not considered during subsequent wave effects modeling. 

D.4.7.3.3 Buried Coastal Structures 

In some instances, coastal structures may be covered or buried by sediments, and not readily 
observable during FIS site reconnaissance. For example, Figure D.4.7-4 shows two photographs 
in the Pacific City, Oregon, area taken approximately 10 years apart (courtesy of Paul Komar). 
The top photo was taken in 1978, and shows a revetment that was constructed to protect 
development from El Niño-related erosion. The bottom photo, taken in 1988, shows the same 
site once the El Niño had subsided and large quantities of sediment had moved back onto the 
beach. This is one example where a buried structure is of a size and construction to possibly 
affect coastal flood hazards, and should—like exposed structures—be considered during the FIS. 

The Mapping Partner is responsible for inquiring as to whether buried coastal structures exist 
within the study area during the preliminary investigation phase of the FIS, and should include 
input from the community. The Mapping Partner should also carefully review aerial photographs 
of the study area to locate buried structures. 

Once the Mapping Partner has determined that a coastal structure is likely buried at a site, the 
next steps are to collect information about the structure and follow the study process outlined in 
Figure D.4.7-5. Conducting the erosion analysis outlined in Section D.4.6 is part of the process, 
and may result in two outcomes: 1) the buried structure will remain buried during the 1% annual 
chance flood (see Figure D.4.7-6), or 2) the buried structure will be exposed by the 1% annual 
chance flood (see Figure D.4.7-7). 

Note that the buried structure study process need not be followed unless the presence of buried 
structures is known or is highly likely, and that the Guidelines and Specifications do not require 
field investigations to identify buried coastal structures. There may be some instances where 
limited field work (such as soil probes to locate the structure) might be useful, but this should be 
limited to cases where large buried structures are known to exist. 

D.4.7.3.4 Coastal Levees 

Levees are man-made structures (usually earthen embankments that may or may not have their 
slopes and crest armored) that prevent flooding of low-lying areas. A levee system consists of a 
levee, or levees, and associated structures, such as closure and drainage devices, that are 
constructed and operated to prevent flooding of interior areas. 

For any protective effects of coastal levees or levee systems to be recognized by the National 
Flood Insurance Program (NFIP) and incorporated into flood hazard maps, they must be 
designed, constructed, operated, and maintained to resist erosion and prevent any flooding or  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.7-4. Example of a Buried Coastal Structure  
that Could Affect Flood Hazard Zones and BFEs  

(top photo taken in 1978, bottom photo taken in 1988 – courtesy of Paul Komar) 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.7-5. Methodology for Evaluating Buried Coastal Structures  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.7-6. Buried Structure Remains Buried During 1% Annual Chance Flood 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.7-7. Buried Structure Exposed During 1% Annual Chance Flood 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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wave overtopping landward of the levee crest during 1% annual chance flood conditions; also, 
the levee or levee system must be certified as providing that level of protection. NFIP regulations 
(44 CFR Part 65.10) detail the requirements for a levee to be recognized as providing protection 
from flooding, including a freeboard requirement specific to coastal levees — the crest elevation 
of the levee must be elevated at least 2 feet above the 1% annual chance still water elevation, and 
1 foot above the 1% annual chance wave height or the maximum wave runup elevation 
(whichever is greater)3. Additional guidance for evaluating levees can be found in Appendix H 
of the Guidelines and Specifications. 

For consideration of a coastal levee as the basis of a map revision, the “Riverine Structure Form” 
(MT-2, Form 3, available at <http://www.fema.gov/pdf/fhm/mt2_f3.pdf>) must be completed in 
addition to the “Coastal Structure Form”. 

For consideration of levees that are subject to both coastal and riverine conditions, the Mapping 
Partner shall determine freeboard requirements using water levels determined using the methods 
contained in Section D.4.4 and Section D.4.5. Because Base Flood Elevations (BFEs) are 
required to be mapped to within a 0.5-foot tolerance (Guidelines and Specifications Appendix 
C.6.3), the combined still water and riverine flood profile shall be adjusted to an inland extent 
where the effects of waves and/or runup diminish to 0.5 foot or less. The resulting flood profile 
shall be compared to the crest elevations of flood protection along the combined tidal-river reach 
to determine if interior areas are sufficiently protected.  

D.4.7.3.4.1 Levee Failure and Removal 

Current FEMA policy states that in instances where levees cannot meet the requirements for 
recognition by the NFIP, the levees shall be “removed” from the analysis. Two scenarios are 
considered here: 1) a single levee on an analysis transect, and 2) multiple levees along an 
analysis transect.   

Single Levee Case: If a community cannot provide the Mapping Partner with evidence that a 
levee is certified as meeting FEMA’s requirements in 44 CFR 65.10, then the Mapping Partner 
shall remove the levee from subsequent analyses. In such a case, the Mapping Partner shall:  

1. Modify the topography along the transect by erasing the levee cross-section and joining 
the ground elevations on each side of the levee with a straight line.  

2. If the Mapping Partner determines that the failed levee provides substantial (but not 
complete) protection against incident wave action during 1% annual flood conditions, the 
Mapping Partner shall assume no wave action penetrates beyond the failed levee, and that 
only still water flooding (tide + wind setup) and locally generated waves (i.e., waves 
generated in the region behind the levee) shall affect the flooded area behind the levee.  

                                                 
3 To be recognized by the NFIP, riverine levees require a minimum of 3 feet of freeboard above the 1% annual 
chance flood elevation and a minimum of 4 feet of freeboard within 100 feet of locations where the flow is 
constricted (e.g., a bridge); in addition, the upstream end of the levee must provide an additional 0.5 foot of 
freeboard added to the minimum.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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3. If the Mapping Partner determines that the failed levee provides minimal protection 
against incident wave action during 1% annual flood conditions, the Mapping Partner 
shall consult with the FEMA study representative to determine whether subsequent 
analyses should assume incident wave action penetrates beyond the failed levee. 

Multiple Levee Case: If a community cannot provide the Mapping Partner with evidence that the 
outer levee is certified as meeting FEMA’s requirements in 44 CFR 65.10, then the Mapping 
Partner shall remove the outer levee from subsequent analyses. In such a case, the Mapping 
Partner shall:  

1. Modify the topography along the transect by erasing the outer levee cross-section and 
joining the ground elevations on each side of the levee with a straight line.  

2. If the Mapping Partner determines that the failed outer levee provides substantial (but not 
complete) protection against incident wave action during 1% annual flood conditions, the 
Mapping Partner shall assume no wave action penetrates beyond the outer levee, and that 
only still water flooding (tide + wind setup) and locally generated waves (i.e., waves 
generated in the region behind the levee) shall affect the next landward levee (see Figure 
D.4.7-8).  
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Figure D.4.7-8. Levee Removal, Multiple Levee Situation 
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3. If the Mapping Partner determines that the failed outer levee provides minimal protection 
against incident wave action during 1% annual flood conditions, the Mapping Partner 
shall consult with the FEMA study representative to determine whether subsequent 
analyses should assume incident wave action penetrates beyond the failed outer levee. 

4. The Mapping Partner shall repeat steps 1 through 3 for each additional levee along the 
transect, for which certification cannot be supplied by the community. 

D.4.7.3.5 Operation and Maintenance 

Both the FEMA memorandum (April 23, 1990) and the NFIP regulations indicate that an 
operation and maintenance plan is required as part of certification that a coastal structure will 
withstand the 1% annual chance flood. At a minimum, the plan must document the formal 
procedure to maintain the stability, height, and overall integrity of the structure and its associated 
structures and systems. 

NFIP regulations, 44 CFR Part 65.10, require that all maintenance activities must be under the 
jurisdiction of a federal or state agency, an agency created by federal or state law, or an agency 
of the community participating in the NFIP that must assume ultimate responsibility for 
maintenance. Often, the aforementioned government entities are unable to take responsibility for 
maintenance of private structures. However, a government agency can recognize private property 
owners as the responsible party for maintenance of an existing structure.  

For the purposes of an FIS, the Mapping Partner shall ascertain (through discussions with the 
community and property owners) whether operation and maintenance plans exist for coastal 
structures that are expected to remain intact during 1% annual chance flood conditions. Mapping 
Partners may not have sufficient resources and time to conduct detailed evaluations of the 
operation and maintenance of each coastal structure within the study area. In such cases, the 
Mapping Partner shall make an engineering judgment about the adequacy of structure operation 
and maintenance. The Mapping Partner must document data, materials and assumptions 
associated with the flood hazard determinations related to structure operation and maintenance. 
Communities and property owners should be made aware that these evaluations are for mapping 
purposes only. 

D.4.7.4 FIS Treatment of Beach Stabilization Structures 

If a Mapping Partner chooses to evaluate beach stabilization structures (e.g., groins, jetties, sills, 
or similar structures) during an FIS, the following approach is recommended: 

• Identify any beach stabilization structures during the FIS reconnaissance phase.  

• Use historical evidence and engineering judgment to determine whether the structures (or 
similar structures nearby) have been damaged or detached (during prior storms or 
gradually over time). 

• Document prior damage to the stabilization structures and any resulting shoreline 
recession attributable to the structural damage.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Notify the FEMA study representative if the Mapping Partner intends to remove beach 
stabilization structures or reduce their effects during the FIS analyses. Obtain FEMA 
concurrence before proceeding with the following steps. 

• Use historical evidence and engineering judgment to predict the likely shoreline 
configuration (in plan view and elevation) if the structures fail during 1% annual chance 
flood conditions. 

• Subject the modified shoreline and profile to typical FIS analyses (e.g., event-based 
erosion analysis, wave runup and overtopping analysis, and wave height analysis).  

• Note that in the case of some stabilization structures, it is unlikely that their failure will 
require “removal” from analysis transects; the effects of the structure failure on the 
shoreline configuration, however, should be considered by the analyses. 

D.4.7.5 FIS Treatment of Miscellaneous Structures 

Current FEMA guidance does not address the effects of miscellaneous structures (e.g., piers, port 
and navigation structures, bridges, culverts, tide gates, etc.) on coastal flood hazard analysis and 
mapping. This section provides general guidance for identifying and analyzing the effects of 
miscellaneous structures on flooding in sheltered water areas as follows:  

• The Mapping Partner shall identify structures – in addition to the coastal armoring and 
beach stabilization structures addressed above – that could exert a significant influence 
on nearshore waves and currents, coastal sediment transport, or ponding in backshore 
areas, during 1% annual flood conditions, particularly in sheltered waters. This should be 
done during the FIS reconnaissance phase.  

• Once identified, the Mapping Partner shall use historical evidence, other readily available 
data, and engineering judgment to determine whether the miscellaneous structures are 
likely to survive the 1% annual flood conditions. If the structures are likely to fail, then 
they (and their effects on the shoreline and flooding) should be removed from subsequent 
analyses.  

• The Mapping Partner shall notify the FEMA study representative as to how he/she 
intends to address miscellaneous structures and their effects during the FIS analyses, and 
obtain FEMA concurrence before proceeding. 

D.4.7.5.1 Piers, Navigation Structures, and Port Facilities 

The Mapping Partner shall review navigation charts, aerial photographs, and other information 
relative to piers, navigation structures, and port facilities (including dredged channels) that may 
affect the propagation and transformation or dissipation of waves within a sheltered water body, 
or that may affect littoral sediment transport. The Mapping Partner shall consider the range of 
possible effects of these structures and facilities during 1% annual flood conditions, using readily 
available data and site characteristics as a guide.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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The Mapping Partner shall verify basic structure and facility information with local agencies and 
communities to determine the location, extent, and influence of these features. If there is any 
uncertainty concerning major features and their potential effects on upland flood hazards, limited 
field surveys or additional data collection shall be considered to augment existing data.  

D.4.7.5.2 Bridges, Culverts, and Tide Gates 

The shorelines of sheltered waters are often paralleled by roads and railroads in backshore areas. 
The effect of these structures on coastal flooding can be most pronounced where they intersect 
tidally influenced creeks, river channels, and floodplains. The Mapping Partner shall consider the 
presence and influence of roadways, railways, embankments and abutment fill, and bridge piers 
on flood hazards during 1% annual flood conditions.  

The Mapping Partner shall identify the location and condition of culverts, tide gates, and other 
flow control structures in the vicinity of the study site and evaluate their potential to affect 
interior flood elevations. Design calculations and reports for individual culverts and tide gates, 
and storm drainage master plans for larger drainage systems shall be obtained and reviewed by 
the Mapping Partner to understand design criteria and provide data for hydraulic calculations and 
hazard zone delineation. 

D.4.7.6 Data Requirements 

The Mapping Partner shall obtain documentation for each coastal structure that could provide 
protection during 1% annual chance flood conditions, or significantly affect flood hazards in the 
study area. That documentation should include, but not be limited to, the following:  

• Type, location, layout, dimensions, and crest elevation of structure;  

• Dominant site particulars (e.g., local water depth, tide, surge and wave conditions, 
erosion rate, sediment characteristics and geotechnical conditions, debris hazards, and ice 
climate);  

• Construction materials and present integrity;  

• Historical record for structure, including construction date, plans, and specifications; 
recent inspection reports and photographs; maintenance plan and responsible party; and 
dates and descriptions of damage, repairs, and modifications; and 

• Clear indications of effectiveness or ineffectiveness.  

The Mapping Partner shall develop much of this information through office activity, including a 
careful review of aerial and site photographs, reports and information provided by the 
community and property owners, and other readily available information. In the case of some 
major coastal structures, site inspection would be advisable to confirm preliminary judgments. 

Note that the level and detail of the structure and site data collected should be consistent with the 
level of analysis undertaken by the Mapping Partner. An analysis based on engineering 
judgment, or multiple analyses assuming different structure responses during 1% annual chance 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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flood conditions (e.g., structure survives intact, partial failure, complete failure), will require less 
detailed and precise information than a structural engineering and geotechnical evaluation of a 
coastal structure.  

D.4.7.7 Study Documentation 

If coastal structures are present in the study area, the Mapping Partner shall document the data 
(see Subsection D.4.7.2.1), methods, and procedures used to evaluate the adequacy of the 
structures to survive 1% annual chance flood conditions. This documentation shall include any 
assumptions or approximations used in the analyses. The same documentation shall be required 
in the event that coastal structures are indicated by information collected during the FIS, but are 
apparently buried and not visible during the study. 

The Mapping Partner shall document the results of all analyses of coastal structures conducted 
for the FIS. In cases where the study contractor could not determine whether a given structure 
would survive the 1% annual chance flood intact, and where multiple analyses were conducted 
for the structure (i.e., intact condition, failed condition, and removed from the analysis transect), 
the Mapping Partner shall document each analysis and record the structure condition that was 
used to map flood hazard zones and BFEs. This information will be useful in the event a map 
revision is requested based upon a structure condition different from that used as the basis for the 
FIRM. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
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D.4.9 Mapping of Flood Hazard Zones and Base Flood Elevations 

This section provides guidance to Mapping Partners on the delineation of coastal flood hazard 
zones and Base Flood Elevations (BFEs). 
 

D.4.9.1 Review and Evaluation of Basic Results 

Before mapping the flood elevations and flood hazard zones, the Mapping Partner shall review 
results from the models and assessments from a common-sense viewpoint and compare them to 
available observed historical flood data. When using models, there is the potential to forget that 
the transects represent real shorelines being subjected to high water, waves, and winds. 
Familiarity and experience with the coastal area being modeled or similar areas should provide 
an idea of what is a “reasonable” result.  

The main point to be emphasized is that the results should not be blindly accepted. There are 
many uncertainties and variables in coastal processes during an extreme flood and many possible 
adjustments to methodologies for treating such an event. The validity of any model is 
demonstrated by its success in reproducing recorded events. Therefore, the model results must be 
in basic agreement with past flooding patterns, and historical data must be used to evaluate these 
results.  

It would be very convenient if data from a storm closely approximating the 1% annual chance 
flood were available, but this is seldom the case. Although most historical flood data are for 
storms less intense than a 1% annual chance flood, these data will still indicate, at a minimum, 
the areas that should be within the flood zones.  For instance, if a storm that produced a flood 
below the 1% annual chance flood elevation generally caused structural damage to houses 100 
feet from the shoreline, a “reasonable” VE Zone width must be at least 100 feet. Similarly, 
houses that collected flood insurance claims for the same storm (without building foundation or 
structural damages) should be at least be located in an AE, AH, or AO Zone.  If the analyses of 
the 1% annual chance flood produce flood zones and elevations indicating lesser hazards than 
those recorded for a more common storm, the analyses should be reevaluated. One possible 
explanation for change in flood patterns since the historical flood event, might be a new coastal 
structure acting to reduce flood hazards in the local area.  

If there are indications that a reevaluation is needed, the Mapping Partner shall determine 
whether the results of the assessment are appropriate. The Mapping Partner shall attempt to 
compare all aspects of the coastal hazard assessment to past effects, whether in the form of data, 
profiles, photographs, or anecdotal descriptions. The Mapping Partner shall examine other data 
input to the assessments for wave effects (wave setup, wave height, wave runup, and wave 
overtopping). This includes checking that the still water levels (SWLs) and dynamic water levels 
are correct and that the results of wave analyses are consistent with the historical data. The 
Mapping Partner shall use judgment and experience to project previous storm effects to the 1% 
annual chance conditions and to ensure that the coastal assessment results are consistent with 
previous observed events.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.9.2 Identification of Flood Insurance Risk Zones 

The Mapping Partner shall identify the flood insurance risk zones and BFEs, including the wave 
effects to be identified on each transect plot, before delineating the flood insurance risk zones on 
the work maps. The existing topography, eroded topography, coastal structure effects, combined 
wave analyses (wave runup, overtopping and overland propagation) are all important to the 
proper identification of flood insurance risk zones, and coastal study technical documentation.  
The total water level (TWL) is the sum of SWL, wave setup, and wave runup. Hazard zones that 
are generally mapped in coastal areas include: VE, AE, AH, AO and X.1 

D.4.9.2.1 VE Zone 

VE Zones are coastal high hazard areas where wave action and/or high-velocity water can cause 
structural damage during the 1% annual chance flood. VE Zones are identified using one or more 
of the following criteria for the 1% flood conditions:  

1. The wave runup zone occurs where the (eroded) ground profile is 3.0 feet or more below 
the TWL.  

2. The wave overtopping splash zone is the area landward of the crest of an overtopped 
barrier, in cases where the potential wave runup exceeds the barrier crest elevation by 3.0 
feet or more(∆R>3.0 feet). The landward extent is defined by yG,outer (Section D.4.5.2) 

3. The high-velocity flow zone is landward of the overtopping splash zone (or area on a 
sloping beach or other shore type), where the product of depth of flow times the flow 
velocity squared (hv2) is greater than or equal to 200 ft3/sec2.  

4. The breaking wave height zone occurs where 3-foot or greater wave heights could occur 
(this is the area where the wave crest profile is 2.1 feet or more above the static water 
elevation). 

5. The primary frontal dune zone, as defined in 44 CFR Section 59.1 of the National Flood 
Insurance Program (NFIP) regulations. 

The actual VE Zone boundary shown on the Flood Insurance Rate Map (FIRM) is defined as the 
furthest inland extent of the five criteria. VE Zones are subdivided into elevation zones, and 
whole-foot BFEs shall be assigned. Four of the VE Zone mapping criteria (all except the high-
velocity zone) were previously incorporated into the Atlantic and Gulf of Mexico sections of 
Appendix D, and can also be applied in Pacific coastal areas.  In one case – wave overtopping 
splash zone – the applicability of the VE criterion has been expanded to include sloping barriers 
(the Atlantic and Gulf of Mexico sections of Appendix D presently limit use of the overtopping 
splash VE Zone to vertical walls). 

The high-velocity flow zone mapping criterion was developed for these Pacific Coast Guidelines 
and Specifications, based on new knowledge of high-velocity flows caused by wave overtopping 
                                                 
1 For a complete list of flood insurance risk zones, refer to Volume 1, Subsection 1.4.2.7 of the Guidelines and 
Specifications.  

 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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and overland flow in coastal areas, and can also be applied to Atlantic and Gulf of Mexico areas.  
This criterion can be applied on beaches, and on the seaward and landward sides of coastal 
dunes, structures, and barriers (see Figure D.4.9-1). Landward transitions from this VE Zone will 
normally be to the AO Zone, but this may vary depending upon the site and the conditions being 
mapped.   
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Zone VE where hv2 > 200 ft3/sec2 
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AO or AE 

a. Flowing Upslope 

b. Flowing Downslope 

Figure D.4.9-1.  Example Designation of High-velocity Flow  
VE Zones Based on Flood Depth and Velocity 

It should be noted that other mapping differences exist between these guidelines and the Atlantic 
and Gulf of Mexico sections of Appendix D.  In these guidelines, the VE runup elevation is not 
limited to 3.0 feet above the barrier crest, and the Atlantic and Gulf of Mexico sections of 
Appendix D simplified runup procedure (AO Zone) shown in Figure D-15 of Appendix D has 
been modified to delineate a VE Zone landward of the barrier when the potential runup is at least 
3.0 feet above the barrier crest, as shown in Figure D.4.9-2. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.9-2. Simplified Mapping Procedure for Overtopped Barrier 

n D.4.9 
All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 

However, the document contains useful guidance to support implementation of the new standards.
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D.4.9.2.2 AE Zone 

AE Zones are areas of inundation by the 1% annual chance flood, including areas with TWL less 
than 3.0 feet above the ground, or areas with wave heights less than 3.0 feet. These areas are also 
subdivided into elevation zones with BFEs assigned. The AE Zone generally will extend inland 
to the limit of the 1% annual chance flood still water elevation or TWL, whichever dominates. 

D.4.9.2.3 AH Zone 

AH Zones are areas of shallow flooding or ponding with water depths generally limited to 1.0 to 
3.0 feet. These areas are usually not subdivided, and a BFE is assigned. 

D.4.9.2.4 AO Zone 

AO Zones are areas of sheet-flow shallow flooding where the product of hv2 is less than 200 
ft3/sec2, or where the potential runup is less than 3.0 feet above an overtopped barrier crest 
(∆R<3.0 feet). Sheet flow in these areas will either flow into another flooding source (AE Zone), 
result in ponding (AH Zone), or deteriorate because of ground friction and energy losses to 
merge into the X Zone. AO areas are designated with 1-, 2-, or 3-foot depths of flooding.  

D.4.9.2.5 X Zone 

X Zones are areas above the 1% annual chance flood level. On the FIRM, a shaded X Zone area 
is inundated by the 0.2% annual chance flood, and an unshaded X Zone area is above the 0.2% 
annual chance flood. 

D.4.9.3 Wave Envelope 

The seaward portion of the wave envelope is a combination of the potential wave runup 
elevation with the controlling wave crest elevation profile. The wave crest elevation profile is 
plotted along a transect (from the 0.0 map datum elevation landward) based on results of the 
Wave Height Analysis for Flood Insurance Studies (WHAFIS) model or other methodology 
output. A horizontal line is extended seaward from the potential wave runup elevation to its 
intersection with the wave crest profile to obtain the wave envelope, as shown in Figure D.4.9-3. 
If the runup elevation is greater than the maximum wave crest elevation, the wave envelope will 
be represented as a horizontal line (extending to the elevation 0.0 location on the transect) at the 
runup elevation, and the BFE for mapping purposes will be based on that elevation. Conversely, 
if the wave runup is negligible, the wave crest elevation profile becomes the wave envelope.   

The landward portion of the wave envelope (landward of the bluff edge, crest of eroded dune, or 
seaward edge of a coastal structure) will be a combination of an overtopping bore or splash area 
and sheet flow. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Figure D.4.9-3.  Seaward Portion of Wave Envelope based on Total Water Level 
and Wave Crest Elevation 

D.4.9.4 Criteria for Flood Boundary and Hazard Zone Mapping 

The first step in identifying the flood insurance risk zones along a transect is locating the inland 
extent of the VE Zone, also known as the VE/AE boundary.  The mapped VE/AE Zone boundary 
is based on the most landward limit of the five criteria outlined in Subsection D.4.9.2.1.  The 
Mapping Partner shall extend the AE Zone from the VE/AE boundary to the inland limit of the 
1% annual chance inundation, which is a ground elevation equal to the potential runup elevation, 
or the 1% annual chance SWL or static water level (still water plus static wave setup) if runup is 
negligible. The Mapping Partner may designate additional areas of 1% annual chance flooding 
because of wave overtopping sheet flow and shallow flooding or ponding as the AH Zone or the 
AO Zone. The Mapping Partner shall label all areas above the 1% annual chance inundation as 
the X Zone (shaded for the 0.2% annual chance flood or unshaded for areas outside of all 
flooding effects).  

The Mapping Partner shall then subdivide the VE and AE Zone areas into elevation zones with 
whole-foot BFEs assigned according to the wave envelope. Generally, the VE Zone is 
subdivided first. Initially, the Mapping Partner shall mark the location of all elevation zone 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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boundaries on a transect. Because whole-foot BFEs are being used, these should always be 
mapped at the location of the half-foot elevation on the wave envelope. However, the Mapping 
Partner shall not subdivide the horizontal runup portion of the seaward wave envelope (see 
Figure D.4.9-3), if any; the BFE shall be the runup elevation, rounded to the nearest whole foot.  

Ideally, the Mapping Partner would establish an elevation zone for every BFE in the wave 
envelope; however, because these zones are mapped on the FIRM, so buildings or property can 
be located in a flood insurance risk zone, the Mapping Partner shall use a minimum width for the 
mapped zone to provide a usable FIRM. For coastal areas, the general guidance is to have a 
minimum zone width of 0.2 inch on the FIRM.  The mapping criteria and ability to map all 
coastal BFEs and hazard zones changes is dependent upon the map scale of the FIRM.  Because 
digital FIRM data can be easily enlarged, the map scale limitations should be reviewed by the 
Mapping Partner with the FEMA study representative and community officials.  

The Mapping Partner shall combine elevation zones that do not meet the minimum width with an 
adjacent zone or zones to yield an elevation zone equal to or wider than the minimum width. The 
BFE for this combined zone is a weighted average of the combined zones. When combining VE 
Zones, the Mapping Partner shall not reduce the maximum BFE at the shoreline, by averaging. 

The AE Zone, if wide enough, shall be subdivided in the same manner. If the total AE Zone 
width is less than the minimum width, the lowest elevation VE Zone is usually assigned to that 
area. This situation typically occurs for steep or rapidly rising ground profiles, and it is not 
unreasonable to designate the entire inundated area as a VE Zone. In some cases, however, it 
may be appropriate for the Mapping Partner to extend the AE Zone slightly into the next zone 
seaward to satisfy the minimum width requirement.  

Relatively low areas landward of zones subject to wave effects may be subject to shallow 
flooding or ponding of flood water; the Mapping Partner shall designate these areas as AH or AO 
Zones. Such designations can be relatively common landward of coastal structures, bluffs, 
ridges, and dunes, where wave overtopping occurs.  

Identifying appropriate zones and elevations may require particular care for dunes, given that the 
entire primary frontal dune is defined as coastal high hazard area. Although the analyses may 
have determined a dune will not completely erode and wave action should stop at the retreated 
duneface with only overtopping possibly propagating inland, the Mapping Partner shall designate 
the entire dune as a VE Zone as defined in the NFIP regulations. The Mapping Partner shall 
assign the last calculated BFE at the open coast duneface (whether VE or AE Zone) to be the 
dominant VE Zone BFE for the entire primary frontal dune and extended to the landward limit of 
the primary frontal dune. It may seem unusual to use a BFE that is lower than the ground 
elevation, although this is fairly common. Most of the BFEs for areas where the dune was 
assumed to be eroded are also below existing ground elevations. In these cases, it is the VE Zone 
designation that is most important to the NFIP where, under current regulations, structures in VE 
Zones must be built on pilings and alterations to the dunes are prohibited.   

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.9.5 Transect Examples 

Settings occurring along the open coastlines and sheltered waters of California, Oregon, and 
Washington include the following: 

1. Sandy beach backed by a low sand berm or high sand dune formation. 
2. Sandy beach backed by shore protection structures. 
3. Cobble, gravel, shingle, or mixed grain sized beach and berms. 
4. Erodible coastal bluffs. 
5. Non-erodible coastal bluffs or cliffs. 
6. Tidal flats and wetlands. 

The examples discussed below depict idealized transects for these beach settings, where erosion, 
wave runup, and overtopping are the dominant coastal processes, to illustrate common flood 
hazard zonations in a quantitative way.  BFEs shown are arbitrary and included for illustrative 
purposes only.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Example 1. Figures D.4.9-4a and D.4.9-4b illustrate flood hazard mapping for a non-
erodible coastal bluff which is high enough to prevent overtopping during 1% flood 
conditions.  The area seaward of the bluff will be mapped as the VE Zone, with a BFE set 
at the potential runup elevation.  The area landward of the bluff face will be mapped as X 
Zone (unshaded).  
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Figure D.4.9-4a.  Non-erodible High Coastal Bluff with VE Zone Controlled 
by Wave Runup (No Overtopping) 
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Figure D.4.9-4b.  Plan View of Flood Hazard Zones and BFEs, Non-erodible 
High Coastal Bluff with VE Zone Controlled by Wave Runup (No Overtopping) 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Example 2. Figures D.4.9-5a and D.4.9-5b illustrate flood hazard mapping for an 
erodible coastal bluff that is not high enough to prevent overtopping and where the 
potential runup reaches higher than 3.0 feet above the crest.  In the example shown, the 
eroded profile is calculated first using procedures described in Section D.4.6, then wave 
runup and overtopping are mapped against the eroded profile. The area seaward of the 
bluff will be mapped as the VE Zone, with a BFE set at the potential runup elevation.  
The area immediately landward of the eroded bluff face will be mapped as VE Zone 
based on the calculated splash zone width. The area landward of the splash zone will be 
mapped as a high-velocity flow VE Zone where hv2 > 200 ft3/sec2 and as AO Zone where 
hv2 < 200 ft3/sec2.  BFEs in the VE splash zone and VE high-velocity flow zone will be 
based on the calculated water surface profile decay (see Subsection D.4.5.2.5). 
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Figure D.4.9-5a.  Erodible Low Coastal Bluff with VE Zone Controlled by Wave Runup, 
Overtopping Splash, and High-velocity Flow 
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Figure D.4.9-5b.  Erodible Low Coastal Bluff with VE Zone Controlled by Wave Runup, 
Overtopping Splash, and High-velocity Flow 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Example 3. Figures D.4.9-6a and D.4.9-6b illustrate flood hazard mapping for a primary 
frontal dune (PFD) that is large enough (in cross-section) to prevent removal and high 
enough to prevent overtopping during 1% flood conditions.  In the example shown, the 
eroded profile is calculated first (see Section D.4.6), then wave runup is mapped against 
the eroded profile The area seaward of the eroded dune face would, except for the PFD 
designation, be mapped as the AE Zone (where the runup depth < 3.0 feet) and the VE 
Zone (where the runup depth > 3.0 feet). The area landward of the eroded dune face 
would, except for the PFD designation, be mapped as X Zone. However, given the PFD 
designation, the area between the shoreline and the landward heel of the dune will be 
mapped as VE Zone; the BFE at the dune face (EL 13) will be continued landward to the 
PFD landward limit. Note that this is the only mapping scenario where the hazard zone 
(landward of the dune face) is based on coastal morphology, not on actual flood hazards 
during the 1% flood.  Likewise, the BFE landward of the dune face is an extension of the 
BFE at the dune face, not representative of the actual flood profile. 
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Figure D.4.9-6a.  Sandy Beach Backed by High Sand Dune 
with PFD Controlling the VE Zone 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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If the dune in Figure D.4.9-6.a was not high enough to prevent overtopping and the 
potential runup extended more than 3.0 feet above the crest, an overtopping splash VE 
Zone would be indicated on the landward side of the eroded crest, and a high-velocity 
flow VE Zone would lie farther landward (if hv2 > 200 ft3/sec2).  If the high-velocity flow 
VE Zone terminates seaward of the PFD limit, the PFD designation would determine the 
VE/AE boundary. If the high-velocity flow zone extends landward of the PFD limit, the 
high-velocity flow VE Zone would determine the VE/AO boundary.  If no high-velocity 
flow VE Zone exists in the example (if hv2 < 200 ft3/sec2), then the VE/AO boundary 
would be set at the PFD limit or the overtopping splash limit, whichever is farther 
landward.  In all cases, the BFEs landward of the eroded dune crest would be mapped at 
the higher of the PFD BFE, the splash zone BFE, and the high-velocity flow BFE at any 
given point along the transect. 
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Figure D.4.9-6b.  Sandy Beach Backed by High Sand Dune 
with PFD Controlling the VE Zone  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Example 4. Figures D.4.9-7a and D.4.9-7b illustrate flood hazard mapping for a low 
coastal dune where the dune cross-section is insufficient to prevent removal by the 1% 
flood.  The eroded profile is calculated and adjusted (see Section D.4.6), then the 
resulting profile is checked for inundation, overland wave propagation, wave runup, and 
overtopping. In the example shown, the remnant dune crest is not inundated, so overland 
wave propagation is not mapped. Instead, hazard zones are mapped based on the 
combined effects of wave runup, overtopping splash (runup extends more than 3.0 feet 
above the crest in this example), high-velocity flow and PFD.  The width of and BFE for 
the VE splash zone are calculated using the procedures described in Subsection D.4.5.2.5.  
In this example, the overtopping splash zone extends farther landward than the PFD, and 
determines the VE/AO boundary.  
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Figure D.4.9-7a.  Sandy Beach Backed by Low Sand Dune 
with Overtopping Splash Controlling VE Zone 
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Figure D.4.9-7b.  Sandy Beach Backed by Low Sand Dune 
with Overtopping Splash Controlling VE Zone 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Example 5. Figures D.4.9-8a and D.4.9-8b illustrate flood hazard mapping for an 
overtopped coastal structure that remains intact during the 1% flood (see Section D.4.7 
for a discussion of structure failure and local scour considerations).  In this example, the 
potential runup reaches an elevation greater than 3.0 feet above the crest of the structure 
therefore, an overtopping splash VE Zone is mapped landward of the structure; crest. 
(Note: If the potential runup was less than 3.0 feet above the crest, no VE overtopping 
splash zone would be mapped, and an AO sheet flow zone would be mapped instead.)  
The width of and BFE for the VE splash zone are calculated using the procedures 
described in Subsection D.4.5.2.5.  The flow velocity and water surface profile landward 
of the structure are used to calculate hv2 values landward of the crest, and a high-velocity 
flow VE Zone is mapped where hv2 > 200 ft3/sec2, while AO Zone is mapped where hv2 
< 200 ft3/sec2. Note that the same basic procedure is used for vertical and sloping 
structures, the principal difference being the equations used to calculate wave runup and 
splash distances. Thus, if this particular structure was assumed to sustain total or partial 
failure during the 1% flood, a similar procedure would be applied, but with sloping 
structure equations rather than vertical structure equations.   
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Figure D.4.9-8a.  Sandy Beach Backed by Shore Protection Structure with VE Zone 
Controlled by the Splash Zone and High-velocity Flow from Wave Overtopping 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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With shore structures having steep slopes, runup elevations are relatively high and a wide 
range of wave hazards can occur, including erosion or scour near the structure. These 
circumstances may result in a variety of distinct and compact situations, where 
appreciable engineering judgment can be required for appropriate assessment of flood 
hazards.  
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Figure D.4.9-8b. Sandy Beach Backed by Shore Protection Structure with VE Zone 
Controlled by the Splash Zone and High-velocity Flow from Wave Overtopping 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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• Example 6. Figures D.4.9-9a and D.4.9-9b illustrate flood hazard mapping for a beach 
profile composed of gravel, cobble, or mixed grain sizes.  In this example, the Most 
Likely Winter Profile (MLWP) configuration should be determined in accordance with 
Section D.4.6, and the wave hazards should be modeled using the eroded profile. There 
will be no PFD designation for a gravel, cobble, or mixed grain size profile, so the 
mapped hazard zones and BFEs will reflect calculated flood hazards only.  
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Figure D.4.9-9a.  Cobble, Gravel, Shingle, or Mixed Grain Sized Beach with VE Zone 
Controlled by Wave Runup, Overtopping, and High-velocity Flow 
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In this example, the potential runup is assumed to reach more than 3.0 feet above the 
crest, so an overtopping splash zone is mapped landward of the profile crest, with a high-
velocity flow VE Zone and AE Zone to the rear.  The AE Zone is mapped instead of the 
AO Zones shown in Examples 2, 4, and 5 because the overtopping ponds in the area 
behind the crest in this case. The mean overtopping rate calculations (see Section 
D.4.5.2) shall be used to determine the volume of water overtopping the barrier during 
the 1% flood conditions, and the BFE in AE Zone shall be determined based on the 
overtopping volume and the local topography. 
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Figure D.4.9-9b. Cobble, Gravel, Shingle or Mixed Grain Sized Beach with VE Zone 
Controlled By Wave Runup, Overtopping and High Velocity Flow 

• Example 7 (no figure).  For the case where a profile is inundated by the static water 
level during the 1% flood – such as a tidal wetland, low sand beach or other flooded low-
lying area – wave runup and overtopping need not be calculated and mapped.  Instead, 
the hazard zones and BFEs shall be mapped based on the results of the WHAFIS model, 
as modified for use on the Pacific coast (see Section D.4.5.3), or other similar analysis, or 
similar analysis.  The VE Zone shall be mapped where the vertical difference between the 
wave crest elevation and the static water level is equal to or greater than 2.1 feet; the AE 
Zone shall be mapped where the difference is less than 2.1 feet.  BFEs shall be mapped at 
even-foot increments, in a stair-step fashion, following the wave crest profile. 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.9.6 Mapping Procedures 

Properly integrated delineation of the results of flooding analyses involves judgment and skill in 
reading topographic and land cover maps. The time and effort put forth to determine the flood 
elevations and extents will be negated if the results of these analyses are not properly delineated 
on the FIRM. The FIRM is usually produced from the work maps. Therefore, the Mapping 
Partner shall transfer the flood zones and elevations identified on the transects to the work maps 
and interpolate boundaries between transects. The Mapping Partner shall set up the work maps 
with contour lines, buildings, structures, vegetation, and transect lines clearly located. Because 
roads are often the only fixed physical features shown on the FIRM, the Mapping Partner shall 
ensure that other features and the flood zone boundaries are properly located on the work maps 
in relation to the centerline of the roads as they will appear on the FIRM.  The starting point (0 
Station) for each transect should be clearly annotated on the work maps. 

For each transect, the Mapping Partner shall transfer the identified elevation zones from the 
transect to the work maps, marking the location of the boundaries along the transect line, so 
boundary lines can be interpolated between transects. The Mapping Partner shall ensure that 
boundaries are marked at the correct location. Because of erosion assumptions, the location of 
the 0.0 foot elevation at the shoreline can change on the transect but the 0 Station will not change 
on the work map.  

Using the transect profile, the Mapping Partner shall determine the location of the zone change in 
relation to a physical feature (e.g., ground contour, back side of a row of houses, 50 feet into a 
vegetated area) and delineate the boundary line for the area represented by that transect along 
this feature. The Mapping Partner shall measure the widths of the zones carefully; zones that 
narrow to less than 0.2 inch must be tapered to an end. Likewise, if the zone becomes much 
wider, it may be possible to break an averaged elevation zone into two mapped elevation zones.    

One of the more difficult steps in delineating coastal flood zones and elevations is the transition 
between transect areas. Good judgment and an understanding of typical flooding patterns are the 
best tools for this job. Initially, the Mapping Partner shall locate the area of transition (an area 
not exactly represented by either transect) on the work maps. The Mapping Partner shall then 
delineate the floodplain boundaries for each transect up to this area. The Mapping Partner shall 
examine how a transition can be made across this area to connect matching zones and still have 
the boundaries follow logical physical features. Other transects similar to this area could give an 
indication of flooding. Sometimes the elevation zones for the two contiguous transects are not 
the same; in such cases, the Mapping Partner may have to taper the zones to an end or enlarge 
the zones and subdivide them in the transition area.  

Transition zones may be necessary between areas with high runup elevations to avoid large 
differences in BFEs and to smooth the change in flood boundaries. These zones are to be fairly 
short and cover the shore segment with a slope not exactly typical of either area. The Mapping 
Partner shall determine the transition elevation using judgment in examining runup transects with 
similar slopes. The Mapping Partner shall not use transition zones if there is a very abrupt 
change in topography, such as the end of a structure.  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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Lastly, the Mapping Partner shall map the X Zone areas. The Mapping Partner shall show areas 
below the 0.2% annual chance TWL that are not covered by any other flood zone as the X Zone 
(shaded) on the FIRM. Often, the maximum runup elevation is higher than the 0.2% annual 
chance TWL; in such cases, the X Zone (shaded) designation will not be used in that area. All 
other areas are designated X Zone without shading.  

Because flood elevations are rounded to the nearest whole foot, the Mapping Partner does not 
need to spend hours resolving a minor elevation difference. Also, because coastal structures must 
be located on the FIRM, the Mapping Partner shall attempt whenever possible to smooth the 
boundary lines and to follow a fixed feature such as a road. In preparing the FIRM, the Mapping 
Partner shall ensure that the mapped results are technically correct and that the FIRM is easy for 
the community official, engineer or surveyor, and insurance agent to use. 

 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.
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D.4.10 Study Documentation 

This section summarizes the reporting requirements for coastal Flood Insurance Studies (FISs) 
on the Pacific Coast, with emphasis on the intermediate data submissions that document the basis 
and results of coastal flooding analyses during the course of the FIS.  
 

Reporting requirements for coastal FISs shall follow guidance provided in Appendix M for the 
preparation of a Technical Support Data Notebook (TSDN). The TSDN shall consist of the 
following four major sections, which are more specifically described in Appendix M:  

• General Documentation; 
• Engineering Analyses; 
• Mapping Information; and 
• Miscellaneous Reference Materials.  

The material compiled for these sections of a coastal FIS TSDN will be similar to a riverine 
study, with the exception of the Engineering Analyses section. The Engineering Analyses section 
of a TSDN for a coastal study shall be formatted to reflect the intermediate data submissions 
required for a coastal study.  

D.4.10.1 General Documentation 

This portion of the TSDN incorporates background information compiled by the Mapping 
Partner related to changes in scope; special problem reports (SPRs); minutes of meetings held 
with the Federal Emergency Management Agency (FEMA), communities, and other Mapping 
Partners; and all correspondence for the study effort (email and hard copy). A complete list of 
TSDN reporting requirements for General Documentation is provided in Appendix M. 

D.4.10.2 Engineering Analyses  

Due to the complexity of coastal studies, intermediate data submissions are required from the 
Mapping Partner. Intermediate data submissions provide defined milestones in the coastal flood 
study process for review of study approach and results. The Mapping Partner shall submit the 
data to FEMA in accordance with the sequence discussed below.  

The following intermediate data submissions are required from Mapping Partners, who perform 
coastal FISs unless otherwise specified by FEMA:  

• Intermediate Submission No. 1 – Scoping and Data Review  
• Intermediate Submission No. 2 – Offshore Water Levels and Waves  
• Intermediate Submission No. 3 – Nearshore Hydraulics  
• Intermediate Submission No. 4 – Draft Flood Hazard Mapping  

The Mapping Partner shall receive review comments within 30 days of the receipt of each data 
submission. The Mapping Partner performing the study shall establish a work plan, so the 
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interim review does not cause any delay in the submission of the draft FIS report and Flood 
Insurance Route Map (FIRM) reflecting the results of the coastal study. 

D.4.10.2.1 Intermediate Submission No. 1 – Scoping and Data Review 

In this phase of reporting, the Mapping Partner provides the background information on the 
study setting and available data relevant to the study area. Any new data needed for the detailed 
coastal analyses in the following phases (i.e., Offshore Waves and Water Levels; Nearshore 
Hydraulics) shall be identified in this phase. Unless otherwise agreed upon with FEMA, the 
study shall not proceed until all of the information is available and incorporated in the scoping 
document for approval.  

• Topographic and Bathymetric Data: If available at this stage, this submission shall 
include survey control data, topographic data from aerial photography, Light Detection 
and Ranging (LIDAR), field surveys, and bathymetric survey data. If survey work is still 
in progress, the submission shall include available data at the time of submission and a 
detailed description of the planned survey data collection. Information shall be submitted 
on the extent of topographic and bathymetric mapping, key mapping parameters (e.g., 
contour intervals and accuracy standards), horizontal and vertical datums, location and 
extent of transects, and other pertinent information describing the extent and quality of 
survey information to be used in the study. If existing community mapping data will be 
used to supplement survey efforts for the study, the Mapping Partner shall submit 
information on the date, accuracy standards, datums, extent, and any limitations of the 
mapping.  

• Tide, Wind, Wave, Current, and Flooding Data: This submission shall include a 
description of available tidal elevation, wind speed, and wave data that relate to study 
analysis requirements. The submission shall include an evaluation of local and regional 
tide gage records recognizing that these include astronomical tide, surge, El Niño, and 
possibly other influences (e.g., river flows, wave setup); residuals based on astronomical 
tide predictions shall be included where relevant to the study analysis. The submission 
shall include review and selection of wind stations in the vicinity of the study area that 
can provide reasonable length of record, hourly values, and peak gusts to help estimate 
extreme wind statistics; evaluation of available wave or wave hindcast data; evaluation of 
available current data and evaluation of the influence of currents on coastal flooding, if 
any; and evaluation of available historical data (measured and anecdotal) on past coastal 
flood events.  

• Site Reconnaissance: Results of the site reconnaissance shall be summarized to 
characterize exposure and coastal morphology by shoreline segment or reach; provide an 
inventory of existing coastal structures and levees; characterize coastal vegetation where 
it may influence coastal flooding analyses and mapping; identify transect locations to be 
field surveyed; describe the rationale for selection of transects to represent shoreline 
segments and reaches in subsequent water-level and wave calculations; and describe any 
unusual study area characteristics (e.g., floodborne debris, tsunami, beach nourishment, 
multiple levees, etc.) that may require special consideration in the study or further 
guidance from FEMA.  

 D.4.10-2 Section D.4.10 
All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 

However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

• Technical Approach: The submission shall describe the technical approach to analysis 
of coastal processes and mapping flood hazards in the various settings and shoreline 
morphologies present in the study area.  

D.4.10.2.2 Intermediate Submission No. 2 – Offshore Water Levels and Waves  

Documentation of this phase shall describe the primary analyses of water-level and wave 
conditions to be applied during the detailed analyses in the nearshore hydraulics phase. Where 
applicable, the submission shall include: 

• Wave Data and Hindcasts: The submission shall describe data and analyses used to 
select and define storm events for use in response-based analysis of nearshore processes 
and subsequent statistical analysis of 1% and 0.2% annual chance flood conditions. 
Documentation shall include details of the sources of wave and wind data. It shall also 
include comparisons between alternate sources (where more than one is available and 
feasible for use in the FIS) and comparison with local measurements. Documentation of 
incident deepwater waves should include period, direction, and directional spreading 
parameters. The selection of coefficients for angular spreading and spectral peakedness 
parameters shall be clearly stated and justified.  

• Estimation of the 1% and 0.2% Annual Chance Flood: Documentation shall be 
provided on the methods to be used to estimate the 1% and 0.2% annual chance coastal 
flooding conditions. These may include response-based and joint probability methods, 
depending on study setting. Methods of extrapolation of hindcast and/or measured data to 
1% and 0.2% annual chance values should be documented, including comparisons 
between alternate procedures if appropriate. Where extremal analyses of wave, wind, 
water level, and residual tides are used, the submission shall include documentation of 
the analyses to develop frequency relationships, including a description of the data sets 
and analysis assumptions.  

• Sheltered Waters – Hindcast Waves: Documentation shall be provided on fetch length 
determination and corresponding wind speeds, directions, and durations for use in 
hindcast analyses. This shall include documentation of wind speed adjustments and wind 
field hindcast methods.  

• Sheltered Waters – Water Levels: The Mapping Partner shall document the 
characteristics of tide gages located within or near the study area that will potentially be 
used in study analyses or validation. Methods adopted to infer the variation of tidal 
datums between gages shall be documented, as shall procedures used to transpose data 
from one site to another. If a field effort is undertaken to determine the variation of tidal 
datums within ungaged regions, the Mapping Partner shall fully document that effort, 
including: locations of observations; observation methods and instrumentation; dates and 
times of all observations; meteorological and oceanographic conditions during and 
preceding the period of observation; and other factors that may have influenced water 
levels, or that may affect interpretation of the results. If surge variation is inferred from 
tide variation, the Mapping Partner shall document the basis for similarity assumptions, 
and the manner in which the inferences were made. Inlet analyses shall be documented, 
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including all procedures, methodological assumptions, field surveys (dates, times, 
procedures, instrumentation, and findings), and all inlet data adopted from other sources. 

D.4.10.2.3 Intermediate Submission No. 3 – Nearshore Hydraulics  

The nearshore hydraulics phase provides documentation of methods applied and detailed 
analyses conducted before the hazard zone mapping phase. 

Wave Information: The Mapping Partner shall document all assumptions used to define waves. 
In sheltered waters, this shall include a summary of fetch determination, winds (speeds, 
directions, duration), and bathymetry used in hindcasts. The documentation shall include the 
approximations or assumptions used in the analysis. When observational data, such as wave 
buoy data, are available, the wave height, period, and spectral parameters should be compared to 
the predicted waves. 

• Wave Transformation: The Mapping Partner shall document the assumptions, methods, 
and results of all analyses of wave transformations conducted for the FIS. This 
documentation shall include selection of offshore and nearshore points, source of 
transformation coefficients, and any special assumptions regarding local transformation 
processes such as sheltering and reflection. If a spectral wave model is applied for 
nearshore transformation, all modeling factors shall be sufficiently documented, so the 
modeling effort can be reproduced if necessary. If a field effort is undertaken to validate 
transformation models, the field work shall be summarized in detail, including times and 
locations of all observations, general conditions at the time of the work, a full description 
of all equipment and procedures, and a summary of all data in archival form. A 
description of the bathymetric data used in the transformation calculations shall be 
provided.  

• Runup, Setup, and Overtopping Analyses: The Mapping Partner shall document the 
runup, setup, and overtopping analysis assumptions, methods, input data, and results. 
This shall include a description of overtopping cases for the annual maxima data, 
determination of total water level (TWL), and determination of flood hazard zone 
parameters (1% and 0.2% flood depths, overtopping splash penetration and overtopping 
rate, and overland flow velocity) at each transect. This shall include a description of 
profiles used, runup reduction factors, and basis for splash zones to be used in hazard 
mapping. The documentation shall include a description of any observations or 
measurements used to validate or adjust analysis results, any deviations from 
recommended procedures in Section D.4.5, any difficulties encountered in the analyses, 
and the technical decisions or approaches taken in their resolution.  

• Wave Dissipation and Overland Propagation: The Mapping Partner shall describe the 
areas where wave attenuation was investigated, and document the analysis assumptions, 
methods, input data, and results. This shall include documentation of any field 
observations or measurements, as well as available historical or anecdotal information 
regarding wave attenuation during flooding events.  

• Coastal Armoring Structures: The Mapping Partner shall describe assumptions and 
investigations of the various coastal armoring structures (e.g., seawalls, revetments, 
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bulkheads, levees, etc.) in the study area relevant to stability and capability to withstand 
1% annual chance water-level and wave conditions. This documentation shall include any 
assumptions or approximations used in the analyses. The same documentation shall be 
required in the event that coastal structures are apparently buried and not visible, but are 
indicated by information collected during the FIS. In cases where the Mapping Partner 
could not determine whether a given structure would survive the 1% annual chance flood 
intact, and where multiple analyses were conducted for the structure (i.e., intact 
condition, failed condition/removed from the analysis transect), the Mapping Partner 
shall document each analysis and record the structure condition that was used to map 
flood hazard zones and Base Flood Elevations (BFEs). This information will be useful in 
the event a map revision is requested based upon a structure condition different from that 
used as the basis for the FIRM. The Mapping Partner shall consult with the FEMA study 
representative regarding the treatment of levees (single levees or multiple levee systems) 
during the FIS. 

• Beach Stabilization Structures: The Mapping Partner shall document the treatment of 
beach stabilization structures (e.g., groins, offshore breakwaters, sills, etc.) during the 
FIS. If the Mapping Partner proposes removal or modification of beach stabilization 
structures (or their shoreline effects) during the 1% annual chance flood, the Mapping 
Partner shall document the existence, history of, and shoreline response to beach 
stabilization structures, and consult with the FEMA study representative.  

Miscellaneous Structures: If miscellaneous structures (e.g., piers, port and navigation 
structures, bridges, culverts, tide gates, etc.) are present in the study area and could exert a 
significant influence on nearshore waves, currents, sediment transport, or backshore ponding, the 
Mapping Partner shall document the data, methods, and procedures used to evaluate the stability 
of these structures during the 1% annual chance flood and their effects on coastal flooding. This 
documentation shall include any assumptions or approximations used in the analyses.  

Erosion Analyses: The Mapping Partner shall document the erosion analysis assumptions, 
methods, input data, and results. A description shall be provided of the data used to determine 
Most Likely Winter Profile (MLWP) and Eroded Profile conditions, and the methods used to 
estimate profile adjustments as a function of annual maxima data and 1% TWL conditions. 
Where applicable, the potential recession and recession reduction factor shall be reported at each 
transect. 

• Verification to an Observed Coastal Flood Event: Where available, background 
information shall be provided for measured and anecdotal historical coastal flood data at 
or near the study area that are used in verification of the FIS analyses. This shall include a 
description of the method used (if any) to reconstruct wind and water-level data during 
the flood event, observed flood conditions, elevations, and areas of inundation. Where 
possible, the recurrence interval of the observed event should be estimated. 

• Special Study Considerations: The Mapping Partner shall document any unusual 
conditions in the study area and the methods proposed to map hazard zones based on 
these conditions. These may include tsunami-related hazards, effects of beach 
nourishment, effects of floodborne debris, special hydrodynamic considerations in tidal 
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inlets and passages, effects of riverine inflows, unusual erosion or other sedimentation 
characteristics, unusual structure effects, effects of multiple levees, and any other factors 
that the Mapping Partner considers relevant to mapping flood hazards accurately.  

D.4.10.2.4 Intermediate Submission No. 4 – Draft Flood Hazard Mapping  

The draft flood hazard mapping phase provides documentation of the methods used to convert 
the results of the detailed hydraulic analyses to flood hazard zones. 

• Flood Hazard Zone Limit Identification: The Mapping Partner shall document the 
analysis results used in the determination of hazard zone limits and BFEs. This shall 
include a summary table by transect of results for 1% TWL, 1% SWL, and determination 
of flood hazard zone parameters (1% and 0.2% flood depths, overtopping splash 
penetration and overtopping rate, overland flow velocity, overland wave propagation, and 
primary frontal dune location), as appropriate. In addition, the summary shall include a 
description of the basis for erosion and coastal structure conditions (e.g., overtopping 
cases, method of profile determination, failed and buried coastal structure cases, etc.) 
used in the determination of the hazard zones.  

• Flood Hazard Zone Map Boundary Delineation: The Mapping Partner shall provide 
draft work maps for the study area showing all flood hazard zone limits identified along 
the transects resulting from the detailed analyses and transferred to the topographic work 
maps. This submission shall describe the engineering judgment used to interpolate and 
delineate hazard zones in between transects, including land features that might affect 
flood hazards, changes in contours, and the lateral extent of coastal structures. It shall 
also provide detailed documentation and technical justification of adjustments in the 
hazard zone mapping that were made due to observed historical flood data and/or 
damages in the study area. 

The Mapping Partner shall incorporate all intermediate submissions and modifications based on 
review comments in each phase into the Engineering Analyses section of the TSDN.  
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D.4.12 Notation

Typical Units

 

Symbol Description 
 

Units 
  

English  SI
A Equilibrium beach profile coefficient L⅓ ft⅓ m⅓ 
B Berm height  L ft m 
C Wave phase velocity or celerity L/T ft/s m/s 
CG Wave group velocity L/T ft/s m/s 
Ck Sample kurtosis -- -- -- 
Cp Plant drag coefficient -- -- -- 
Cs Sample skewness -- -- -- 
C0 Deepwater wave celerity, gT / 2π L/T ft/s m/s 
D Quarrystone diameter L ft m 

Dune height L ft m 
D50 Size of 50th percentile of sediment L mm mm 
dh Depth over berm L ft m 
E Wave energy LF/L ft-lb/ft N-m/m 

Crest elevation of structure L ft m 
EHotSpot Extra profile lowering at a hot spot L ft m 
Ej Beach-dune juncture elevation L ft m 
EjMLWP Beach-dune juncture elevation for the 

MLWP 
L ft m 

EjStorm Beach dune juncture elevation during 
a storm 

L ft m 

ET Total still water elevation L ft m 
e Base of natural logarithms (=2.718) -- -- -- 
F Cumulative probability function 

 
-- -- -- 

Fc Freeboard L ft m
F′ Dimensionless freeboard -- -- -- 
FH, FT, Fgamma, Static setup coefficients in DIM -- -- -- 
Fslope model 
Fn Discrete spectral frequency 1/T hz hz 
FR Wind wave runup coefficient -- -- -- 
f Wave frequency 1/T hz hz 

Darcy-Weisbach resistance 
coefficient 

-- -- -- 
   

Probability density function -- -- -- 
fe Coriolis coefficient 1/T 1/S 1/S 
fp Spectral peak frequency, 1/Tp 1/T hz hz 
GH,GT, Ggamma, Dynamic setup coefficients in DIM -- -- -- 
Gslope model 

G0 Normalizing function for directional 
spectrum spreading function 

-- -- -- 

  

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

 D.4.12-2 Section D.4.12 

Typical Units
Symbol Description 

Units 
 

  
 

English SI
G(θ) Directional spectrum spreading 

function 
-- -- --

G(f,θ) Directional spreading function -- -- -- 
g Gravitational acceleration L/T2 ft/s2 2 m/s
H Wave height L ft m 
H ′o  Unrefracted deep water wave height  L ft m 
Hb Breaking wave height L ft m 
Hm0 Spectral significant wave height L ft m
Ho Deep water wave height L ft m 
Hs Significant wave height L Ft m 
Hx Wave height at x location in surf 

zone 
L ft m

h* Wave structure parameter -- -- -- 
h Water depth L ft m 
hb Breaker depth L ft m 
hc Depth over crest L ft m 
hm Height of the land barrier L ft m 
ho Depth over crest L ft m 
Ks Shoaling coefficient -- -- -- 
Ks(fn) Spectral shoaling coefficient -- -- -- 
Kr(fn, θo,n,m) Spectral refraction coefficient -- -- -- 
k Wave number, 2π / L rad/T rad/ft rad/m 

Bluff erosion parameter -- -- -- 
L Likelihood -- -- --
LL Log-likelihood -- -- --
Lberm Berm width L ft m 
Lom Spectral deep water wave length L ft m 
L0 Deep water wave length, gT2 / 2π L ft m
M(n) Number of direction components in 

spectrum at fn 
-- -- --

m Beach slope (rise/run) L/L -- -- 
mn thn  moment of spectral density, 

∫ nf S ( )f df   
1

f2

f

L2/Tn ft2/sn m2/sn 

Ν Degrees of freedom of a chi-squared 
distribution 

-- -- -- 
   

Number of waves -- -- -- 
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Typical Units
Symbol Description 

Units 
  

  English SI
P Average porosity of rubble structure 

cover layer 
   

-- -- -- 
Precipitation rate L/T in./hr mm/hr 
Probability -- -- -- 

Q Dimensionless overtopping -- -- -- 
q Mean overtopping rate per unit 

length 
L2/T ft2/s m2/s 

R Total wave runup L ft m 
Spearman statistic -- -- -- 

Riuc Incident wind wave runup L ft m 
Rm Reduced recession due to storm 

duration 
L ft m

RTotal Total runup (static setup plus 
dynamic setup plus incident wave 
runup.) 

-- -- --

R2% Runup exceeded by 2% of the runup 
crest  

L ft m

R∞ Maximum potential profile recession L ft m 
R∞HotSpot Potential recession at a hot spot L ft m 
R∞storm Potential recession for storm L ft m 
r Linear correlation coefficient    
S Water level change L ft m 
Sc Compressive strength of bluff 

material 
F/L2 lb/ft2 2 N/m

S(f) Spectral density L2-T2 ft2/hz m2/hz 
S(f,θ) Directional spectral density L2T/deg (ft2/hz)/deg (m2/hz)/deg
S0 (fn, θo,n,m) Discrete directional spectrum in deep 

water 

 
L2-T2

  
 

 ft2/hz m2/hz 

Sns (fn, θo,n,m) Discrete directional spectrum in 
nearshore 

L2-T2  ft2/hz m2/hz 

s Sample standard deviation -- -- -- 
S(f) Continuous spectrum L2T ft2/hz m2/hz 
T Wave period T s s 
TD Storm duration T hr hr 

Tp Spectral peak period, 1/fp T s s

Ts Significant wave period T S S 
Time scale for beach profile response -- -- -- 

t Time T s s
Vc Velocity at crest L/T ft/s m/s 
Vf Fall velocity L/T ft/s m/s 

 

 

 

 

 

  

 

All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 
However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004] 

 D.4.12-4 Section D.4.12 

Typical Units
Symbol Description 

Units 
   

English SI 
Vmax Maximum overtopping volume per 

wave per unit length 
L2/wave ft2/wave m2/wave 

v Horizontal (y) component of local L/T ft/s m/s 
fluid velocity (water particle 
velocity) 

   
L/T ft/s m/s 

W Wind speed L/T mi/hr m/s 
Wb Surf zone width to breaker line L ft m 
Wc Wind stress coefficient term L/T mph kph 
Wx x component of wind speed L/T mi/hr m/s 
Wy y component of wind speed L/T mi/hr m/s 
X Accumulated bluff to erosion L ft m 

x  Sample mean -- -- -- 
x,y,z Right-handed Cartesian coordinates L ft m 
yG,inner Seaward extent of overtopping L ft m 
yG,outer Landward extent of overtopping L ft m 
y0 Cross-shore location of structure 

crest 
L ft m 

zc Structure crest elevation L ft m 
zG Elevation behind crest L ft m 
( )b Term evaluated at the breaker line -- -- -- 
( )o Term evaluated in deep water -- -- -- 
tan α Structure slope -- -- -- 
α Storm duration recession reduction 

factor 
-- -- -- 
   

JONSWAP Spectrum term L2T ft2/hz m2/hz 
αc Structure crest slope -- -- -- 
β Storm profile response coefficient -- -- -- 

Wave angle at structure deg deg deg 
γ Specific gravity of a fluid F/L3 lb/ft3 3 N/m
 Peak enhancement factor used in the 

JONSWAP spectrum  
-- -- -- 

γb Breaker depth index -- -- -- 
Runup berm coefficient -- -- -- 

γr γp γb γf, γβ Runup reduction coefficients -- -- -- 
∆f Frequency increment 1/T hz hz 
∆R Potential excess runup L ft m 
ε Energy dissipation rate F/LT lb/s-ft n/m-s 
^

η  
Dynamic or oscillating setup L ft m 

η  Mean or static wave setup L ft m 

η b Static setdown at the breaker point L ft m 
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Typical Units
Symbol Description 

Units 
  

English SI 

η max Maximum static wave setup L ft m 

η min Minimum static wave setup L ft m 

η o Static setup at the shoreline L ft m 
η(x,t) Displacement of water surface 

relative to SWL 
L ft m

η 2  Mean square of water surface 
fluctuations 

L2 ft2 m2  

η3 Coefficient of skewness -- -- -- 
η4 Coefficient of kurtosis -- -- -- 
ηi Water surface displacement by 

incident wave 
L ft m

ηrms rms value of free surface elevation L ft m 
θ  Overall mean wave direction  deg deg deg 
θ Direction of wave propagation deg deg deg 

θmain Main wave direction in a directional 
spectrum 

deg deg deg

θm Discrete wave direction deg deg deg 
θm(f) Mean wave direction as a function of 

frequency. 

deg deg deg

κ Breaker index -- -- -- 
Wind stress factor -- -- -- 

µ Population Mean  -- -- -- 
ν Spectral narrowness parameter -- -- -- 
ξ Surf similarity parameter or Iribarren 

number 
-- -- --

 
ξom Spectral deep water ξ -- -- --
ξ0 Deep water ξ -- -- --
π Constant = 3.14159 -- -- -- 
ρ Mass density of water M/L3 slug/ft3 kg/m3 
ρa Mass density of air M/L3 slug/ft3 kg/m3 
ρfw Mass density of fresh water  M/L3 slug/ft3 kg/m3 
ρs Mass density of sediment M/L3

 
 
 
 slug/ft3

 
 
 
 kg/m3 

Ω Rotational speed of the earth rad/T rad/S rad/S 
φ Latitude deg deg deg
τx,τy Wind stress 

  
F/L2 lb/ft2 N/m2 

σ Population standard deviation L ft m 
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D.4.13 Acronyms 

The Federal Emergency Management Agency (FEMA) has an extensive list of acronyms posted 
on the FEMA website at <http://www.fema.gov/fhm/dl_cgs.shtm>, Acronyms and 
Abbreviations. The acronyms below are specific to this document and include some of the 
acronyms given in the FEMA list.  

1-D One-Dimensional 
2-D Two-Dimensional 
BFE Base Flood Elevation 
BST Bathystrophic Storm Tide 
CDF Cumulative Distribution Function 
CDIP Coastal Data Information Program 
CEM Coastal Engineering Manual 
CERC Coastal Engineering Research Center 
CFR Code of Federal Regulations 
CHL Coastal and Hydraulics Laboratory 
DFIRM Digital Flood Insurance Rate Map
DIM Direct Integration Method 
DWLX% Dynamic water levelX% 
ENSO El Niño, Southern Oscillation 
EST Empirical Simulation Technique 
FEMA Federal Emergency Management Agency 
FIRM Flood Insurance Rate Map 
FIS Flood Insurance Study 
FNMOC Fleet Numerical Meteorology and Oceanography Center 
G&S FEMA Guidelines and Specifications 
GEV Generalized extreme value 
GIS Geographic Information Systems 
GROW Global Reanalysis of Ocean Waves 
JONSWAP Joint North Sea Wave Project 
JPM Joint Probability Method 
LIDAR Light Detection and Ranging (System) 
MHHW Mean higher high water 
MHLW Mean higher low water 
MHW Mean high water 
MII Meteorology International Inc. 
MLHW Mean lower high water 
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MLLW Mean lower low water 
MLW Mean low water 
MLWP Most Likely Winter Profile 
MSL Mean Sea Level 
MTL Mean tide level 
MWD Main wave direction 
MWL Mean water level 
NAVD North American Vertical Datum 
NDBC National Data Buoy Center 
NFIP National Flood Insurance Program 
NGDC National Geophysical Data Center 
NGVD National Geodetic Vertical Datum 
NOAA National Oceanic and Atmospheric Administration 
NOS National Ocean Survey 
NWS National Weather Service 
PDF Probability Density Function 
PFD Primary Frontal Dune 
POT Peak-over-threshold 
rms Root mean square 
RWL Reference water level 
SOEN Southern Oscillation El Niño 
SPM Shore Protection Manual 
SPR Special problem report 
STWL Static water level 
SWL Still water level 
TAW Technical Advisory Committee for Water Retaining Structures 
TSDN Technical Support Data Notebook 
TWG Technical Working Group 
TWL Total water level 
USACE U.S. Army Corps of Engineers 
USGS U.S. Geological Survey 
WHAFIS Wave Height Analysis for Flood Insurance Studies 
WIS Wave Information Studies 
WISE® Watershed Information SystEm, a registered trademark of Watershed Solutions, 

Inc. 
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D.4.14 Glossary 

Most of the coastal engineering terms in this glossary are from the Shore Protection Manual 
(USACE, 1984) and Coastal Engineering Manual (USACE, 2002) and are supplemented with 
additional terms relevant to hazard mapping. FEMA has an extensive glossary posted on the 
FEMA website at <http://www.fema.gov/fhm/dl_cgs.shtm> Glossary. 

 
 
---------- A ---------- 

 
 
ACCRETION  May be either natural or artificial.  Natural accretion is the buildup of land, solely 

by the action of the forces of nature, on a beach by deposition of water- or airborne 
material.  Artificial accretion is a similar buildup of land by reason of an act of man, such 
as the accretion formed by a GROIN, BREAKWATER, or beach fill deposited by 
mechanical means.  Also AGGRADATION. 

ADJUSTABLE GROIN  A GROIN whose permeability can be changed, usually with gates or 
removable sections. 

ADVANCE (of a beach)  (1) A continuing seaward movement of the shoreline.  (2) A net 
seaward movement of the shoreline over a specified time.  Also PROGRESSION. 

AEOLIAN  See EOLIAN. 
ALIGNMENT  The course along which the center line of a channel, canal or drain is located. 
ALLUVIAL DEPOSITS  Detrital material which is transported by a river and deposited B 

usually temporarily B at points along the flood plain of a river.  Commonly composed of 
sands and gravels. 

ALLUVIAL PLANE  A plain bordering a river, formed by the deposition of material eroded 
from areas of higher elevation. 

ALLUVIUM  Soil (sand, mud, or similar detritial material) deposited by streams, or the deposits 
formed. 

ALONGSHORE  Parallel to and near the shoreline;  LONGSHORE. 
AMPLITUDE, WAVE  (1) The magnitude of the displacement of a wave from a mean value.  

An ocean wave has an amplitude equal to the vertical distance from still-water level to 
wave crest.  For a sinusoidal wave, the amplitude is one-half the wave height.  (2) The 
semirange of a constituent tide. 

ANGLE OF REPOSE  The maximum slope (measured from the horizontal) at which soils and 
loose materials on the banks of canals, rivers or embankments will stay stable. 

ANISOTROPIC  Having properties that change with changing directions. 
ANOXIC  Refers to an environment that contain little or no dissolved oxygen and hence little or 

no benthic marine life. These conditions arise in some basins or fjords where physical 
circulation of seawater is limited. 

ANTIDUNES  BED FORMS that occur in trains and are in phase with, and strongly interact 
with, gravity water-surface waves. 

APRON  Layer of stone, concrete or other material to protect the toe of a structure. 
AQUIFER  A geologic formation that is water-bearing, and which transmits water from one 

point in the formation to another. 
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ARCHIPELAGO  A sea that contains numerous islands;  also the island group itself. 
ARMOR LAYER  Protective layer on a BREAKWATER or SEAWALL composed of armor 

units. 
ARMOR UNIT  A relatively large quarrystone or concrete shape that is selected to fit specified 

geometric characteristics and density.  It is usually of nearly uniform size and usually 
large enough to require individual placement.  In normal cases it is used as primary wave 
protection and is placed in thicknesses of at least two units. 

ARTIFICIAL NOURISHMENT  The process of replenishing a beach with material (usually 
sand) obtained from another location. 

ASTRONOMICAL TIDE  The tidal levels and character which would result from gravitational 
effects, e.g. of the Earth, Sun and Moon, without any atmospheric influences. 

ATTENUATION  (1) A lessening of the amplitude of a wave with distance from the origin.  (2) 
The decrease of water-particle motion with increasing depth.  Particle motion resulting 
from surface oscillatory waves attenuates rapidly with depth, and practically disappears at 
a depth equal to a surface wavelength. 

 
 
---------- B ---------- 

 
 
BACKRUSH  The seaward return of the water following the uprush of the waves.  For any given 

tide stage the point of farthest return seaward of the backrush is known as the Limit of 
backrush or limit backwash. 

BACKSHORE  That zone of the shore or beach lying behind the upper swash zone. 
BACKWASH RIPPLES  Low amplitude ripple marks formed on fine sand beaches by the 

Backwash of the waves. 
BANK  (1) The rising ground bordering a lake, river, or sea; or of a river or channel, for which it 

is designated as right or left as the observer is facing downstream.  (2) An elevation of the 
sea floor or large area, located on a continental (or island) shelf and over which the depth 
is relatively shallow but sufficient for safe surface navigation (e.g., Georges Bank);  a 
group of shoals.  (3) In its secondary sense, used only with a qualifying word such as 
"sand bank" or "gravel bank," a shallow area consisting of shifting forms of silt, sand, 
mud, and gravel. 

BAR  A submerged or emerged embankment of sand, gravel, or other unconsolidated material 
built on the sea floor in shallow water by waves and currents.  

BARRIER SPIT  Similar to a barrier island, but connected to the mainland. 
BASIN  A depressed area with no surface outlet, such as a lake basin or an enclosed sea. 
BASIN, BOAT  A naturally or artificially enclosed or nearly enclosed harbor area for small 

craft. 
BATHMETRIC CHART  A topographic map of the bed of the ocean, with depths indicated by 

contours (isobaths) drawn at regular intervals. 
BATHYMETRY  The measurement of depths of water in oceans, seas, and lakes; also 

information derived from such measurements. 
BAY  A recess in the shore or an inlet of a sea between two capes or headlands, not as large as a 

gulf but larger than a cove.  
BAYMOUTH BAR  A bar extending partly or entirely across the mouth of a bay. 
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BEACH  The zone of unconsolidated material that extends landward from the low water line to 
the place where there is marked change in material or physiographic form, or to the line 
of permanent vegetation (usually the effective limit of storm waves).  The seaward limit 
of a beach--unless otherwise specified--is the mean low water line.  A beach includes 
foreshore and backshore.  See also SHORE, SUSTAINABLE BEACH, AND SELF-
SUSTAINING BEACH. 

BEACH BERM  A nearly horizontal part of the beach or backshore formed by the deposit of 
material by wave action.  Some beaches have no berms, others have one or several. 

BEACH CREST  The point representing the limit of normal high tide wave run-up (see BERM 
CREST). 

 BEACH EROSION  The carrying away of beach materials by wave action, tidal currents, 
littoral currents, or wind. 

 BEACH FACE  The section of the beach normally exposed to the action of the wave uprush.  
The FORESHORE of a BEACH.  (Not synonymous with SHOREFACE.) 

 BEACH FILL  Material placed on a beach to renourish eroding shores. 
 BEACH HEAD  The cliff, dune or sea wall looming above the land ward limit of the active 

beach. 
 BEACH MATERIAL  Granular sediments, usually sand or shingle moved by the sea. 
 BEACH PLAN SHAPE  The shape of the beach in plan;  usually shown as a contour line, 

combination of contour lines or recognizable  features such as beach crest and/or the still 
water line. 

 BEACH PROFILE  A cross-section taken perpendicular to a given beach contour; the profile 
may include the face of a dune or sea wall, extend over the backshore, across the 
foreshore, and seaward underwater into the nearshore zone. 

 BEACH RIDGE  See RIDGE, BEACH. 
 BEACH SCARP  See SCARP, BEACH. 
 BEACH WIDTH  The horizontal dimension of the beach measured normal to the shoreline and 

landward of the higher-high tide line (on oceanic coasts) or from the still water level (on 
lake coasts). 

 BED  The bottom of a watercourse, or any body of water. 
 BED FORMS  Any deviation from a flat bed that is readily detectable by eye and higher than 

the largest sediment size present in the parent bed material;  generated on the bed of an 
alluvial channel by the flow. 

 BED LOAD  Sediment transport mode in which individual particles either roll or slide along the 
bed as a shallow, mobile layer a few particle diameters deep, the part of the load that is 
not continuously in suspension. 

 BED PROTECTION  A (rock) structure on the bed in order to protect the underlying bed 
against erosion due to current and/or wave action. 

 BED SHEAR STRESS  The way in which waves (or currents) transfer energy to the sea bed. 
 BEDDING PLANE  A surface parallel to the surface of deposition, which may or may not have 

a physical expression. The original attitude of a bedding plane should not be assumed to 
have been horizontal. 

 BEDROCK  The solid rock that underlies gravel, soil, and other superficial material.  Bedrock 
may be exposed at the surface (an outcrop) or it may be buried under a few centimeters to 
thousands of meters of unconsolidated material. 
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 BENCH  (1) A level or gently sloping erosion plane inclined seaward.  (2) A nearly horizontal 
area at about the level of maximum high water on the sea side of a dike. 

 BENCH MARK, TIDAL  A bench mark whose elevation has been determined with respect to 
mean sea level at a nearby tide gauge; the tidal bench mark is used as reference for that 
tide gauge. 

 BENCH MARK  A permanently fixed point of known elevation.  A primary bench mark is one 
close to a tide station to which the tide staff and tidal datum originally are referenced. 

 BENEFITS  The asset value of a scheme, usually measured in terms of the cost of damages 
avoided by the scheme, or the valuation of perceived amenity or environmental 
improvements  

 BENTHIC  Pertaining to the sub-aquatic bottom. 
 BENTHOS  Those animals who live on the sediments of the sea floor, including both mobile 

and non-mobile forms. 
 BERM  (1) On a beach: a nearly horizontal plateau on the beach face or backshore, formed by 

the deposition of beach material by wave action or by means of a mechanical plant as part 
of a beach renourishment scheme.  Some natural beaches have no berm, others have 
several.  (2) On a structure: a nearly horizontal area, often built to support or key-in an 
armor layer. 

 BERM, BEACH  See BEACH BERM. 
 BERM BREAKWATER  Rubble mound structure with horizontal berm of armor stones at about 

sea level, which is allowed to be (re)shaped by the waves. 
 BERM CREST  The seaward limit of a BERM.  Also called BERM EDGE. 
 BIFURCATION  Location where a river separates in two or more reaches or branches (the 

opposite of a confluence). 
 BIGHT  A bend in a coastline forming an open bay.  A bay formed by such a bend. 
 BIOTURBATION  The disturbance of sediment bedding by the activities of burrowing 

organisms. 
 BIRDFOOT DELTA  A river delta formed by many levee-bordered distributaries extending 

seaward and resembling in plan the outstretched claws of a bird.  Example:  Mississippi 
River delta. 

 BLANKET (FOUNDATION or BEDDING)  A layer or layers of graded fine stones underlying 
a BREAKWATER, GROIN or rock embankment to prevent the natural bed material 
from being washed away. 

 BLOWOUT  A depression on the land surface caused by wind erosion. 
 BLUFF A high, steep bank or cliff. 
 BOG  A wet, spongy, poorly drained area which is usually rich in very specialized plants, 

contains a high percentage of organic remnants and residues and frequently is associated 
with a spring, seepage area, or other subsurface water source.  A bog sometimes 
represents the final stage of the natural processes of eutrophication by which lakes and 
other bodies of water are very slowly transformed into land areas. 

 BOIL  An upward flow of water in a sandy formation due to an unbalanced hydrostatic pressure 
resulting from a rise in a nearby stream, or from removing the overburden in making 
excavations. 

 BOLD COAST  A prominent landmass that rises steeply from the sea. 
 BORE  A very rapid rise of the tide in which the advancing water presents an abrupt front of 

considerable height.  In shallow estuaries where the range of tide is large, the high water 

 D.4.14-4 Section D.4.14 
All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 

However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004]  

is propagated inward faster than the low water because of the greater depth at high water.  
If the high water overtakes the low water, an abrupt front is presented, with the high-
water crest finally falling forward as the tide continues to advance.  Also EAGER. 

 BOTTOM (nature of)  The composition or character of the bed of an ocean or other body of 
water (e.g., clay, coral, gravel, mud, ooze, pebbles, rock, shell, shingle, hard, or soft). 

BOTTOM BOUNDARY LAYER  The lower portion of the water flow that experiences 
frictional retardation based on its proximity to the bed. 

 BOTTOMSET  One of the horizontal or gently inclined sediment layers deposited in front of the 
advancing forest beds of a delta. 

 BOULDER  A rounded rock more than 256 mm (10 inch) in diameter; larger than a 
cobblestone.  See SOIL CLASSIFICATION. 

 BOUNDARY CONDITIONS  Environmental conditions, e.g. waves, currents, drifts, etc. used 
as boundary input to physical or numerical models. 

 BRAIDED RIVER  A river type with multiple channels separated by shoals, bars and islands. 
 BREACHING  Failure of the beach head or a dike allowing flooding by tidal action. 
 BREAKER  A wave breaking on a shore, over a REEF, etc.  Breakers may be classified into 

four types: COLLAPSING--breaking occurs over lower half of wave, with minimal air 
pocket and usually no splash-up.  Bubbles and foam present. PLUNGING--crest curls 
over air pocket; breaking is usually with a crash.  Smooth splash-up usually follows. 
SPILLING--bubbles and turbulent water spill down front face of wave.  The upper 25 
percent of the front face may become vertical before breaking.  Breaking generally occurs 
over quite a distance. SURGING--wave peaks up, but bottom rushes forward from under 
wave, and wave slides up beach face with little or no bubble production.  Water surface 
remains almost plane except where ripples may be produced on the beachface during 
runback. 

 BREAKER DEPTH  The still-water depth at the point where a wave breaks.  Also called 
BREAKING DEPTH. 

 BREAKER INDEX  Ratio of breaking wave height to deepwater wave height. 
 BREAKER ZONE  The zone within which waves approaching the coastline commence 

breaking, typically in water depths of between 5 and 10 meters. 
 BREAKING  Reduction in wave energy and height in the surf zone due to limited water depth. 
 BREAKWATER  A structure protecting a shore area, harbor, anchorage, or basin from waves. 
 BUFFER AREA  A parcel or strip of land that is designed and designated to permanently 

remain vegetated in an undisturbed and natural condition to protect an adjacent aquatic or 
wetland site from upland impacts, to provide habitat for wildlife and to afford limited 
public access. 

 BULKHEAD  A structure or partition to retain or prevent sliding of the land.  A secondary 
purpose is to protect the upland against damage from wave action. 

 BUOY A float;  especially a floating object moored to the bottom, to mark a channel, anchor, 
shoal rock, etc.  Some common types include:  a nun or nut buoy is conical in shape;  a 
can buoy is squat and cylindrical above water and conical below water;  a spar buoy is a 
vertical, slender spar anchored at one end;  a bell buoy, bearing a bell, runs mechanically 
or by the action of waves, usually marks shoals or rocks;  a whistling buoy, similarly 
operated, marks shoals or channel entrances;  a dan buoy carries a pole with a flag or 
light on it. 

 D.4.14-5 Section D.4.14 
All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 

However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004]  

 BUOYANCY  The resultant of upward forces, exerted by the water on a submerged or floating 
body, equal to the weight of the water displaced by this body. 

 BYPASSING, SAND  Hydraulic or mechanical movement of sand from the accreting updrift 
side to the eroding downdrift side of an inlet or harbor entrance.  The hydraulic 
movement may include natural movement as well as movement caused by man. 

 
 
---------- C ---------- 

 
 
 CAISSON  Concrete box-type structure. 
 CALIFORNIA CURRENT  A deep-ocean boundary current that flows south-southeasterly 

along the U.S. west coast. The current is shallow, broad and slow moving carrying cold, 
nutrient poor waters toward the equator. 

 CALCAREOUS  Containing calcium carbonate (CaCO3), chiefly as the minerals calcite and 
aragonite.  When applied to rock, it implies that as much as 50 percent of the rock is 
carbonate (e.g., calcareous sand). 

 CALM  The condition of the water surface when there is no wind waves or swell. 
 CANAL  An artificial watercourse cut through a land area for such uses as navigation and 

irrigation. 

 CANYON  A relatively narrow, deep depression with steep slopes, the bottom of which grades 
continuously downward.  May be underwater (submarine) or on land (SUBAERIAL). 

 CAPE  A land area jutting seaward from a continent or large island which prominently marks a 
change in, or interrupts notably, the coastal trend;  a prominent feature.  Examples: Cape 
Cod, Massachusetts; Cape Hatteras, North Carolina. 

 CAPILLARY WAVE  A wave whose velocity of propagation is controlled primarily by the 
surface tension of the liquid in which the wave is traveling.  Water waves of length less 
than about 1 inch are considered capillary waves.  Waves longer than 1 inch and shorter 
than 2 inches are in an indeterminate zone between capillary and gravity waves. 

 CARTOGRAPHY  The science and art of making maps. 
 CATCHMENT AREA  The area which drains naturally to a particular point on a river, thus 

contributing to its natural discharge. 
 CAUSEWAY  A raised road across wet or marshy ground, or across water. 
 CAUSTIC  In refraction of waves, the name given to the curve to which adjacent orthogonals of 

waves refracted by a bottom whose contour lines are curved, are tangents.  The 
occurrence of a caustic always marks a region of crossed orthogonals and high wave 
convergence. 

 CELERITY  Wave speed. 
 CHANNEL  (1) A natural or artificial waterway of perceptible extent which either periodically 

or continuously contains moving water, or which forms a connecting link between two 
bodies of water.  (2) The part of a body of water deep enough to be used for navigation 
through an area otherwise too shallow for navigation.  (3) A large strait, as the English 
Channel.  (4) The deepest part of a stream, bay, or strait through which the main volume 
or current of water flows. 
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 CHANNEL CAPACITY  The maximum flow which a channel is capable of transmitting 
without its banks being overtopped. 

 CHANNEL-MOUTH BAR  A bar built where a stream enters a body of standing water, 
resulting from decreased flow velocity. 

 CHART A  special-purpose map, esp. one designed for navigation such as a bathymetric chart. 
 CHART DATUM  The plane or level to which soundings (or elevations) or tide heights are 

referenced (usually LOW WATER DATUM).  The surface is called a tidal datum when 
referred to a certain phase of tide.  To provide a safety factor for navigation, some level 
lower than MEAN SEA LEVEL is generally selected for hydrographic charts, such as 
MEAN LOW WATER or MEAN LOWER LOW WATER.  See DATUM PLANE. 

 CHEMICAL WEATHERING  Disintegration of rocks and sediments by chemical alteration of 
the constituent minerals or of the cementing matrix.  It is caused by exposure, oxidation, 
temperature changes, and biological processes. 

 CHOP  The short-crested waves that may spring up quickly in a moderate breeze, and which 
break easily at the crest.  Also WIND CHOP. 

 CHOPPY SEA  Short, rough waves tumbling with a short and quick motion. Short-crested 
waves that may spring up quickly in a moderate breeze, and break easily at the crest. 

 CLAPOTIS  The French equivalent for a type of STANDING WAVE.  In American usage it is 
usually associated with the standing wave phenomenon caused by the reflection of a 
nonbreaking wave train from a structure with a face that is vertical or nearly vertical.  
Full clapotis is one with 100 percent reflection of the incident wave; partial clapotis is 
one with less than 100 percent reflection. 

 CLASTIC ROCKS  Rocks built up of fragments which have been produced by weathering and 
erosion of pre-existing rocks and minerals and, typically, transported mechanically to 
their point of deposition. 

 CLAY  A fine grained, plastic, sediment with a typical grain size less than 0.004 mm.  Possesses 
electromagnetic properties which bind the grains together to give a bulk strength or 
cohesion.  See SOIL CLASSIFICATION. 

 CLIFF  A high, steep face of rock;  a precipice.  See also SEA CLIFF. 
 CLIMATE  The characteristic weather of a region, particularly regarding temperature and 

precipitation, averaged over some significant internal of time (years). 
 CLOSURE DEPTH  The water depth beyond which repetitive profile surveys (collected over 

several years) do not detect vertical sea bed changes, generally considered the seaward 
limit of littoral transport.  The depth can be determined from repeated cross-shore profile 
surveys or estimated using formulas based on wave statistics.  Note that this does not 
imply the lack of sediment motion beyond this depth. 

 CNOIDAL WAVE  A type of wave in shallow water (i.e., where the depth of water is less than 
1/8 to 1/10 the wavelength).  The surface profile is expressed in terms of the Jacobian 
elliptic function cn u; hence the term cnoidal. 

 CO-TIDAL LINES  Lines which link all the points where the tide is at the same stage (or phase) 
of its cycle. 

 COAST  (1)  A strip of land of indefinite width (may be several kilometers) that extends from 
the shoreline inland to the first major change in terrain features.  (2) The part of a country 
regarded as near the coast. 

 COASTAL AREA  The land and sea area bordering the shoreline. 
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 COASTAL CURRENTS  (1) Those currents which flow roughly parallel to the shore and 
constitute a relatively uniform drift in the deeper water adjacent to the surf zone. These 
currents may be tidal currents, transient, wind-driven currents, or currents associated with 
the distribution of mass in local waters.  (2) For navigational purposes, the term is used to 
designate a current in coastwise shipping lanes where the tidal current is frequently 
rotary. 

 COASTAL DEFENSE  General term used to encompass both coast protection against erosion 
and sea defense against flooding. 

 COASTAL FORCING  The natural processes which drive coastal hydro- and morphodynamics 
(e.g. winds, waves, tides, etc). 

 COASTAL PLAIN  The plain composed of horizontal or gently sloping strata of clastic 
materials, generally representing a strip of sea bottom that has emerged from the sea in 
recent geologic time. 

 COASTAL PROCESSES  Collective term covering the action of natural forces on the shoreline, 
and near shore seabed. 

 COASTAL STRIP  A zone directly adjacent to the waterline, where only coast related activities 
take place. Usually this is a strip of some 100 m wide.  In this strip the coastal defense 
activities take place.  In this strip often there are restrictions to land use. 

 COASTAL ZONE  The transition zone where the land meets water, the region that is directly 
influenced by marine and lacustrine hydrodynamic processes.  Extends offshore to the 
continental shelf break and onshore to the first major change in topography above the 
reach of major storm waves.  On barrier coasts, includes the bays and lagoons between 
the barrier and the mainland. 

 COASTAL ZONE MANAGEMENT  The integrated and general development of the coastal 
zone. Coastal Zone Management is not restricted to coastal defense works, but includes 
also a development in economical, ecological and social terms. Coastline Management is 
a part of Coastal Zone Management. 

 COASTLINE  (1) Technically, the line that forms the boundary between the coast and the shore.  
(2) Commonly, the line that forms the boundary between the land and the water, esp. the 
water of a sea or ocean. 

 COBBLE  A rock fragment between 64 and 256 mm in diameter, usually rounded.  See SOIL 
CLASSIFICATION. 

 COFFERDAM  A temporary watertight structure enclosing all or part of the construction area 
so that construction can proceed in the dry. 

 COHESIVE SEDIMENT  Sediment containing significant proportion of clays, the 
electromagnetic properties of which cause the sediment to bind together. 

 COLLOID  As a size term refers to particles smaller than 0.00024 mm, smaller than clay size. 
 COMBER  (1) A deepwater wave whose crest is pushed forward by a strong wind; much larger 

than a whitecap.  (2) A long-period breaker. 
 COMPETENCE  The ability of a wind or water current to transport detritus, in terms of particle 

size rather than amount, measured as the diameter of the largest particles. 
 COMPLEX SPIT  A large RECURVED SPIT with secondary spits developed at its end.  

Example: Sandy Hook, New Jersey. 
 CONFLUENCE  The junction of two or more river reaches or branches (the opposite of a 

bifurcation). 
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 CONSOLIDATION  The gradual, slow compression of a cohesive soil due to weight acting on 
it, which occurs as water is driven out of the voids in the soil.  Consolidation only occurs 
in clays or other soils of low permeability. 

 CONTINENTAL SHELF  (1) The zone bordering a continent extending from the line of 
permanent immersion to the depth, usually about 100 m to 200 m, where there is a 
marked or rather steep descent toward the great depths of the ocean.  (2) The area under 
active littoral processes during the HOLOCENE period.  (3) The region of the oceanic 
bottom that extends outward from the shoreline with an average slope of less than 1:100, 
to a line where the gradient begins to exceed 1:40 (the CONTINENTAL SLOPE). 

 CONTINENTAL SLOPE  The declivity from the offshore border of the CONTINENTAL 
SHELF to oceanic depths.  It is characterized by a marked increase in slope. 

 CONTOUR  A line on a map or chart representing points of equal elevation with relation to a 
DATUM.  It is called an ISOBATH when connecting points of equal depth below a 
datum.  Also called DEPTH CONTOUR. 

 CONTROLLING DEPTH  The least depth in the navigable parts of a waterway, governing the 
maximum draft of vessels that can enter. 

 CONVERGENCE  (1) In refraction phenomena, the decreasing of the distance between 
orthogonals in the direction of wave travel.  Denotes an area of increasing wave height 
and energy concentration.  (2) In wind-setup phenomena, the increase in setup observed 
over that which would occur in an equivalent rectangular basin of uniform depth, caused 
by changes in planform or depth; also the decrease in basin width or depth causing such 
increase in setup. 

 CORE  (1) A cylindrical sample extracted from a beach or seabed to investigate the types and 
depths of sediment layers.  (2) An inner, often much less permeable portion of a 
BREAKWATER or BARRIER BEACH. 

 CORIOLIS EFFECT  Force due to the Earth's rotation, capable of generating currents.  It causes 
moving bodies to be deflected to the right in the Northern Hemisphere and to the left in 
the Southern Hemisphere.  The "force" is proportional to the speed and latitude of the 
moving object.  It is zero at the equator and maximum at the poles. 

 COVE  A small, sheltered recess in a coast, often inside a larger embayment. 
 COVER LAYER  The outer layer used in a rubble system as protection against external 

hydraulic loads. 
 CREEK  (1) A stream, less predominant than a river, and generally tributary to a river.  (2) A 

small tidal Channel through a coastal MARSH. 
 CREEP  Very slow, continuous downslope movement of soil or debris. 
 CRENULATE  An indented or wavy shoreline beach form, with the regular seaward- pointing 

parts rounded rather than sharp, as in the cuspate type. 
 CREST  Highest point on a beach face, BREAKWATER, or sea wall. 
 CREST LENGTH, WAVE  The length of a wave along its crest.  Sometimes called CREST 

WIDTH. 
 CREST OF WAVE  (1) the highest part of a wave.  (2) That part of the wave above still-water 

level. 
 CREST OF BERM  The seaward limit of a berm.  Also called BERM EDGE. 
 CROSS-BEDDING  An arrangement of relatively thin layers of rock inclined at an angle to the 

more nearly horizontal BEDDING PLANES of the larger rock unit.  Also referred to as 
cross-stratification. 
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 CROSS-SHORE  Perpendicular to the shoreline. 
 CROWN WALL  Concrete superstructure on a rubble mound. 
 CURRENT  (1) The flowing of water, or other liquid or gas.  (2) That portion of a stream of 

water which is moving with a velocity much greater than the average or in which the 
progress of the water is principally concentrated.  (3) Ocean currents can be classified in 
a number of different ways.  Some important types include the following:  (1) Periodic - 
due to the effect of the tides; such Currents may be rotating rather than having a simple 
back and forth motion.  The currents accompanying tides are known as tidal currents; (2) 
Temporary - due to seasonal winds; (3) Permanent or ocean - constitute a part of the 
general ocean circulation.  The term DRIFT CURRENT is often applied to a slow broad 
movement of the oceanic water; (4) Nearshore - caused principally by waves breaking 
along a shore. 

 CURRENT, COASTAL  One of the offshore currents flowing generally parallel to the shoreline 
in the deeper water beyond and near the surf zone;  these are not related genetically to 
waves and resulting surf, but may be related to tides, winds, or distribution of mass. 

 CURRENT, DRIFT  A broad, shallow, slow-moving ocean or lake current.  Opposite of 
CURRENT, STREAM. 

 CURRENT, EBB  The tidal current away from shore or down a tidal stream.  Usually associated 
with the decrease in the height of the tide. 

 CURRENT, EDDY  See EDDY. 
 CURRENT, FEEDER  Any of the parts of the nearshore current system that flow parallel to 

shore before converging and forming the neck of the RIP CURRENT. 
 CURRENT, FLOOD  The tidal current toward shore or up a tidal stream.  Usually associated 

with the increase in the height of the tide. 
 CURRENT, INSHORE  See INSHORE CURRENT. 
 CURRENT, LITTORAL  Any current in the littoral zone caused primarily by wave action; e.g., 

LONGSHORE CURRENT, RIP CURRENT.  See also CURRENT, NEARSHORE. 
 CURRENT, LONGSHORE  The littoral current in the breaker zone moving essentially parallel 

to the shore, usually generated by waves breaking at an angle to the shoreline. 
 CURRENT METER  An instrument for measuring the velocity of a current. 
 CURRENT, NEARSHORE  A current in the NEARSHORE ZONE. 
 CURRENT, OFFSHORE  See OFFSHORE CURRENT. 
 CURRENT, PERIODIC  See CURRENT, TIDAL. 
 CURRENT, PERMANENT  See PERMANENT CURRENT. 
 CURRENT, RIP  See RIP CURRENT. 
 CURRENT, STREAM  A narrow, deep, and swift ocean current, as the Gulf Stream.  

CURRENT, DRIFT. 
 CURRENT SYSTEM, NEARSHORE  See NEARSHORE CURRENT SYSTEM. 
 CURRENT, TIDAL  The alternating horizontal movement of water associated with the rise and 

fall of the tide caused by the astronomical tide-producing forces.  Also CURRENT, 
PERIODIC.  See also CURRENT, FLOOD and CURRENT, EBB. 

 CURRENT-REFRACTION  Process by which wave velocity, height, and direction are affected 
by a current. 

 CUSP  One of a series of short ridges on the FORESHORE separated by crescent-shaped 
troughs spaced at more or less regular intervals.  Between these cusps are hollows.  The 
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cusps are spaced at somewhat uniform distances along beaches.  They represent a 
combination of constructive and destructive processes.  Also BEACH CUSP. 

CUSPATE BAR  A crescent-shaped bar uniting with the shore at each end.  It may be formed by 
a single spit growing from shore and then turning back to again meet the shore, or by two 
spits growing from the shore and uniting to form a bar of sharply cuspate form. 

 CUSPATE SPIT  The spit that forms in the lee of a shoal or offshore feature (BREAKWATER, 
island, rock outcrop) by waves that are refracted and/or diffracted around the offshore 
feature.  It may eventually grow into a TOMBOLO linking the feature to the mainland. 

 CYCLOIDAL WAVE  A steep, symmetrical wave whose crest forms an angle of 120 degrees 
and whose form is that of a cycloid.  A trochoidal wave of maximum steepness.  See also 
TROCHOIDAL WAVE. 

 CYCLONE  A system of winds that rotates about a center of low atmospheric pressure.  
Rotation is clockwise in the Southern Hemisphere and anti-clockwise in the Northern 
Hemisphere.  In the Indian Ocean, the term refers to the powerful storms called 
HURRICANES in the Atlantic. 

 
 
---------- D ---------- 

 
 
 DAM  Structure built in rivers or estuaries, basically to separate water at both sides and/or to 

retain water at one side. 
 DATUM  Any permanent line, plane or surface used as a reference datum to which elevations 

are referred. 
 DATUM, CHART  See CHART DATUM. 
 DATUM, PLANE  The horizontal plane to which soundings, ground elevations, or water 

surface elevations are referred.  Also REFERENCE PLANE.  The plane is called a 
TIDAL DATUM when defined by a certain phase of the tide.  The following datums are 
ordinarily used on hydrographic charts: MEAN LOW WATER--Atlantic coast (U. S.), 
Argentina, Sweden, and Norway. MEAN LOWER LOW WATER--Pacific coast (U. S.). 
LOW WATER DATUM--Great Lakes (U. S. and Canada). A common datum used on 
United States topographic maps is MEAN SEA LEVEL.  See also BENCH MARK. 

 DAVIDSON CURRENT  Deep-ocean boundary current off the west coast of the U.S. which 
brings warmer, saltier, low oxygen, high phosphate equatorial type water from low to 
high latitudes. 

 DEBRIS LINE  A line near the limit of storm wave uprush marking the landward limit of debris 
deposits. 

 DECAY AREA  Area of relative CALM through which waves travel after emerging from the 
generating area. 

 DECAY DISTANCE  The distance waves travel after leaving the generating area (FETCH). 
 DECAY OF WAVES  The change waves undergo after they leave a generating area (FETCH) 

and pass through a calm, or region of lighter winds.  In the process of decay, the 
significant wave height decreases and the significant wavelength increases. 

 DEEP WATER  Water so deep that surface waves are little affected by the ocean bottom.  
Generally, water deeper than one-half the surface wavelength is considered deep water.  
Compare SHALLOW WATER. 
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 DEEP WATER WAVES  A wave in water the depth of which is greater than one-half the 
WAVE LENGTH. 

 DEFLATION  The removal of loose material from a beach or other land surface by wind action. 
 DEGRADATION  The geologic process by means of which various parts of the surface of the 

earth are worn away and their general level lowered, by the action of wind and water. 
 DELTA  (1) An ALLUVIAL DEPOSIT, usually triangular or semi-circular, at the mouth of a 

river or stream.  The delta is normally built up only where there is no tidal or current 
action capable of removing the sediment at the same rate as it is deposited, and hence the 
delta builds forward from the coastline.  (2) A TIDAL DELTA is a similar deposit at the 
mouth of a tidal INLET, put there by TIDAL CURRENTS. 

 DELTA PLAIN  The nearly-level surface composing the landward portion of a large DELTA. 
 DENSITY  Mass (in kg) per unit of volume of a substance;  kg/m3.  For pure water, the density 

is 1,000 kg/m3, for seawater the density is usually more.  Density increases with 
increasing salinity, and decreases with increasing temperature.  More information can be 
found in "properties of seawater".  For stone and sand, usually a density of 2,600 kg/m3 is 
assumed.  Concrete is less dense, in the order of 2,400 kg/m3. Some types of basalt may 
reach 2,800 kg/m3. For sand, including the voids, one may use 1,600 kg/m3, while mud 
often has a density of 1,100 – 1,200 kg/m3. 

 DENSITY CURRENT  Phenomenon of relative flow within water due to difference in density.  
For example, the salt-water wedge is a density current, as is a volcanic nuée ardente. 

 DENSITY STRATIFICATION  The lateral expansion of a sediment plume as it moves out of 
the distributary mouth, where salt and fresh water mix.  This is most likely to occur 
where the speed of the river flow is moderate to low and the distributary mouth is 
relatively deep. 

 DENSITY-DRIVEN CIRCULATION  Variations in salinity create variations in density in 
estuaries.  These variations in density create horizontal pressure gradients, which drive 
estuarine circulation. 

 DEPRESSION  A general term signifying any depressed or lower area in the ocean floor. 
 DEPTH  The vertical distance from a specified datum to the sea floor. 
 DEPTH CONTOUR  See CONTOUR., also isobath. 
 DEPTH, CONTROLLING  See CONTROLLING DEPTH. 
 DEPTH FACTOR  See SHOALING COEFFICIENT. 
 DEPTH OF BREAKING  The still-water depth at the point where the wave breaks.  Also 

BREAKER DEPTH. 
 DERRICK STONE  See STONE, DERRICK. 
 DESIGN HURRICANE  See HYPOTHETICAL HURRICANE. 
 DESIGN STORM  A hypothetical extreme storm whose waves coastal protection structures will 

often be designed to withstand.  The severity of the storm (i.e. return period) is chosen in 
view of the acceptable level of risk of damage or failure.  A DESIGN STORM consists of 
a DESIGN WAVE condition, a design water level and a duration. 

 DESIGN WAVE  In the design of HARBORS, harbor works, etc., the type or types of waves 
selected as having the characteristics against which protection is desired. 

 DESIGN WAVE CONDITION  Usually an extreme wave condition with a specified return 
period used in the design of coastal works. 

 DETACHED BREAKWATER  A BREAKWATER without any SUBAERIAL connection to 
the shore. 
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 DETRITUS  Small fragments of rock which have been worn or broken away from a mass by the 
action of water or waves. 

 DIFFERENTIAL EROSION / WEATHERING  These features develop in rocks which have 
varying resistance to the agencies of erosion and/or weathering so that parts of the rock 
are removed at greater rates than others.  A typical example is the removal of soft beds 
from between harder beds in a series of sedimentary rocks.  The term may be applied to 
any size of feature, from small-scale etching to the regional development of hills and 
valleys controlled by hard and soft rocks. 

 DIFFRACTION (of water waves)  The phenomenon by which energy is transmitted laterally 
along a wave crest.  When a part of a train of waves is interrupted by a barrier, such as a 
BREAKWATER, the effect of diffraction is manifested by propagation of waves into the 
sheltered region within the barrier's geometric shadow. 

 DIFFRACTION COEFFICIENT  Ratio of diffracted wave height to deep water wave height. 
 DIKE  Earth structure along sea or river in order to protect low lands from flooding by high 

water; dikes along rivers are sometimes called levees.  Sometimes written as DYKE. 
 DISCHARGE  The volume of water per unit of time flowing along a pipe or channel. 
 DITCH  A channel to convey water for irrigation or drainage. 
 DIURNAL  Having a period or cycle of approximately one TIDAL DAY. 
 DIURNAL CURRENT  The type of tidal current having only one flood and one ebb period in 

the tidal day.  A ROTARY CURRENT is diurnal if it changes its direction through all 
points of the compass once each tidal day. 

 DIURNAL INEQUALITY  The difference in height of the two high waters or of the two low 
waters of each day.  Also, the difference in velocity between the two daily flood or EBB 
CURRENTS of each day. 

 DIURNAL TIDE  A tide with one high water and one low water in a tidal day. 
 DIVERGENCE  (1) In refraction phenomena, the increasing of distance between orthogonals in 

the direction of wave travel.  Denotes an area of decreasing wave height and energy 
concentration.  (2) In wind-setup phenomena, the decrease in setup observed under that 
which would occur in an equivalent rectangular basin of uniform depth, caused by 
changes in planform or depth.  Also the increase in basin width or depth causing such 
decrease in setup. 

DIVERGING WAVE  Waves that move obliquely out from a vessel’s sailing line. 
DIVERSION CHANNEL  A waterway used to divert water from its natural course.  The term is 

generally applied to a temporary arrangement e.g. to by-pass water around a dam site 
during construction. 

 DOCK  The slip or waterway between two piers, or cut into the land, for the reception of ships. 
 DOLPHIN  A cluster of piles. 
 DOWNDRIFT  The direction of predominant movement of littoral materials. 
 DOWNSTREAM  Along coasts with obliquely approaching waves there is a longshore (wave-

driven) current.  For this current, one can define an upstream and a DOWNSTREAM 
direction.  For example, on a beach with an orientation west-east, the sea is to the north.  
Suppose the waves come from NW, then the current flows from West to East.  Here, 
UPSTREAM is west of the observer, and east is downstream of the observer. 

 DOWNWELLING  A downward movement (sinking) of surface water caused by onshore 
Ekman transport, converging CURRENTS, or when a water mass becomes more dense 
than the surrounding water. 
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 DRAINAGE BASIN  Total area drained by a stream and its tributaries. 
 DREDGING  Excavation or displacement of the bottom or shoreline of a water body.  Dredging 

can be accomplished with mechanical or hydraulic machines.  Most is done to maintain 
channel depths or berths for navigational purposes; other dredging is for shellfish 
harvesting, for cleanup of polluted sediments, and for placement of sand on beaches. 

 DRIFT (noun)  (1) Sometimes used as a short form for LITTORAL DRIFT.  (2) The speed at 
which a current runs.  (3) Floating material deposited on a beach (driftwood).  (4) A 
deposit of a continental ice sheet;  e.g., a DRUMLIN. 

 DRIFT CURRENT  A broad, shallow, slow-moving ocean or lake current. 
 DRIFT SECTOR  A particular reach of marine shore in which LITTORAL DRIFT may occur 

without significant interruption, and which contain any and all natural sources of such 
drift, and also any accretion shore forms accreted by such drift. 

 DROMOND  A large medieval fast-sailing galley or cutter. 
 DROWNED COAST  A shore with long, narrow channels, implying that subsidence of the 

coast has transformed the lower portions of river valleys into tidal estuaries. 
 DRUMLIN  A low, smoothly-rounded, elongate hill of compact glacial till built under the 

margin of the ice and shaped by its flow. 
 DRYING BEACH  That part of the beach which is uncovered by water (e.g. at low tide).  

Sometimes referred to as 'SUBAERIAL' beach. 
 DUNES  (1) Ridges or mounds of loose, wind-blown material, usually sand.  (2) Bed forms 

smaller than bars but larger than ripples that are out of phase with any water-surface 
gravity waves associated with them. 

 DURABILITY  The ability of a rock to retain its physical and mechanical properties (i.e. resist 
degradation) in engineering service.  

 DURATION  In wave forecasting, the length of time the wind blows in nearly the same 
direction over the FETCH (generating area). 

 DURATION, MINIMUM  The time necessary for steady-state wave conditions to develop for a 
given wind velocity over a given fetch length. 

 DURATION OF EBB  The interval of time in which a tidal current is ebbing, determined from 
the middle of the slack waters. 

 DURATION OF FALL  The interval from high water to low water. 
 DURATION OF FLOOD  The interval of time in which a tidal current is flooding, determined 

from the middle of slack waters. 
 DURATION OF RISE  The interval from low water to high water. 
 DYNAMIC EQUILIBRIUM  Short term morphological changes that do not affect the 

morphology over a long period. 
 DYNAMIC VISCOSITY  In fluid dynamics, the ratio between the shear stress acting along any 

plane between neighboring fluid elements and the rate of deformation of the velocity 
gradient perpendicular to this plane. 

 
 
---------- E ---------- 

 
 
 EAGER  See BORE. 
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 EBB  Period when tide level is falling;  often taken to mean the ebb current which occurs during 
this period. 

 EBB CURRENT  The movement of a tidal current away from shore or down a tidal stream.  In 
the semidiurnal type of reversing current, the terms greater ebb and lesser ebb are applied 
respectively to the ebb currents of greater and lesser velocity of each day.  The terms of 
maximum ebb and minimum ebb are applied to the maximum and minimum velocities of 
a continuously running ebb current, the velocity alternately increasing and decreasing 
without coming to a slack or reversing.  The expression maximum ebb is also applicable 
to any ebb current at the time of greatest velocity. 

 EBB INTERVAL  The interval between the transit of the moon over the meridian of a place and 
the time of the following strength of ebb. 

 EBB SHIELD  High, landward margin of a flood-tidal shoal that helps divert ebb-tide currents 
around the shoal. 

 EBB STRENGTH  The EBB CURRENT at the time of maximum velocity. 
 EBB TIDAL DELTA  The bulge of sand formed at the seaward mouth of TIDAL INLETS as a 

result of interaction between tidal currents and waves.  Also called inlet-associated bars 
and estuary entrance shoals. 

 EBB TIDE  The period of tide between high water and the succeeding low water; a falling tide. 
 ECHO SOUNDER  An electronic instrument used to determine the depth of water by measuring 

the time interval between the emission of a sonic or ultrasonic signal and the return of its 
echo from the bottom. 

 ECOSYSTEM  The living organisms and the nonliving environment interacting in a given area, 
encompassing the relationships between biological, geochemical, and geophysical 
systems. 

 EDDY  A circular movement of water formed on the side of a main current.  Eddies may be 
created at points where the main stream passes projecting obstructions or where two 
adjacent currents flow counter to each other. 

 EDDY CURRENT  See EDDY. 
 EDGE WAVE  An ocean wave parallel to a coast, with crests normal to the shoreline.  An edge 

wave may be STANDING or PROGRESSIVE.  Its height diminishes rapidly seaward 
and is negligible at a distance of one wavelength offshore. 

 EKMAN TRANSPORT  Resultant flow at right angles to and to the right of the wind direction 
(in the northern hemisphere) referred to as UPWELLING and DOWNWELLING. 

 ELEVATION  The vertical distance from mean sea level or other established datum plane to a 
point on the earth’s surface;  height above sea level.  Although sea floor elevation below 
msl should be marked as a negative value, many charts show positive numerals for water 
depth. 

 EL NIÑO  Warm equatorial water which flows southward along the coast of Peru and Ecuador 
during February and March of certain years.  It is caused by poleward motions of air and 
unusual water temperature patterns in the Pacific Ocean, which cause coastal 
downwelling, leading to the reversal in the normal north-flowing cold coastal currents.  
During many El Niño years, storms, rainfall, and other meteorological phenomena in the 
Western Hemisphere are measurably different than during non-El Niño years.  (See La 
Niña). 

 ELUTRIATION  The process by which a granular material can be sorted into its constituent 
particle sizes by means of a moving stream of fluid (usually air or water).  Elutriators are 
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extensively used in studies of sediments for determining Particle size distribution.  Under 
certain circumstances wind, rivers and streams may act as elutriating agents. 

 EMBANKMENT  Fill material, usually earth or rock, placed with sloping sides and with a 
length greater than its height.  Usually an embankment is wider than a dike. 

 EMBAYMENT  An indentation in the shoreline forming an open bay. 
 EMERGENT COAST  A coast in which land formerly under water has recently been exposed 

above sea level, either by uplift of the land or by a drop in sea level. 
 ENDEMIC  Native or confined to a specific geographic area. 
 ENERGY COEFFICIENT  The ratio of the energy in a wave per unit crest length transmitted 

forward with the wave at a point in shallow water to the energy in a wave per unit crest 
length transmitted forward with the wave in deep water.  On refraction diagrams this is 
equal to the ratio of the distance between a pair of orthogonals at a selected shallow-
water point to the distance between the same pair of orthogonals in deep water.  Also the 
square of the REFRACTION COEFFICIENT. 

 ENTRANCE  The avenue of access or opening to a navigable channel or inlet. 
 EOLIAN (also AEOLIAN)  Pertaining to the wind, esp. used with deposits such as loess and 

dune sand, and sedimentary structures like wind-formed ripple marks. 
 EOLIAN SANDS  Sediments of sand size or smaller which have been transported by winds.  

They may be recognized in marine deposits off desert coasts by the greater angularity of 
the grains compared with waterborne particles. 

 EQUATORIAL CURRENTS  (1) Ocean currents flowing westerly near the equator.  There are 
two such currents in both the Atlantic and Pacific Oceans.  The one to the north of the 
equator is called the North Equatorial Current and the one to the south is called the South 
Equatorial Current.  Between these two currents there is an easterly flowing stream 
known as the Equatorial Countercurrent.  (2) Tidal currents occurring semimonthly as a 
result of the moon being over the equator.  At these times the tendency of the moon to 
produce DIURNAL INEQUALITY in the current is at a minimum. 

 EQUATORIAL TIDES  Tides occurring semimonthly as the result of the moon being over the 
equator.  At these times the tendency of the moon to produce a DIURNAL 
INEQUALITY in the tide is at a minimum. 

EROSION  The wearing away of land by the action of natural forces.  On a beach, the carrying 
away of beach material by wave action, tidal currents, littoral currents, or by deflation. 

ESCARPMENT  A more or less continuous line of cliffs or steep slopes facing in one general 
direction which are caused by erosion or faulting.  Also SCARP. 

ESTUARY  (1) The part of a river that is affected by tides.  (2) The region near a river mouth in 
which the fresh water of the river mixes with the salt water of the sea and which received 
both fluvial and littoral sediment influx. 

 EUSTATIC SEA LEVEL CHANGE  Change in the relative volume of the world=s ocean 
basins and the total amount of ocean water. 

EYE  In meteorology, usually the "eye of the storm" (hurricane): the roughly circular area of 
comparatively light winds and fair weather found at the center of a severe tropical 
cyclone. 
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 FAIRWAY  The parts of a waterway that are open and unobstructed for navigation.  The main 

traveled part of a waterway; a marine thoroughfare. 
 FAR-INFRAGRAVITY  The frequency band (nominally 0.001 - 0.02 Hz) occupied by SHEAR 

INSTABILITIES of the longshore current. This band falls both below and in the lower 
part of the Infragravity band occupied by Infragravity waves. 

 FATHOM  A unit of measurement used for soundings equal to 1.83 meters (6 feet). 
 FATHOMETER  The copyrighted trademark for a type of ECHO SOUNDER. 
 FAULT A fracture in rock along which there has been an observable amount of displacement.  

Faults are rarely single planar units; normally they occur as parallel to sub-parallel sets of 
planes along which movement has taken place to a greater or lesser extent.  Such sets are 
called fault or fracture-zones. 

 FAUNA  The entire group of animals found in an area. 
 FEEDER BEACH  An artificially widened beach serving to nourish downdrift beaches by 

natural littoral currents or forces. 
 FEEDER CURRENT  The currents which flow parallel to shore before converging and forming 

the neck of a RIP CURRENT. 
 FEEDER CURRENT  See CURRENT, FEEDER. 
 FEELING BOTTOM  The initial action of a deepwater wave, in response to the bottom, upon 

running into shoal water. 
 FETCH  The area in which SEAS are generated by a wind having a fairly constant direction and 

speed.  Sometimes used synonymously with FETCH LENGTH.  Also GENERATING 
AREA. 

 FETCH LENGTH  The horizontal distance (in the direction of the wind) over which a wind 
generates seas or creates a WIND SETUP. 

 FETCH-LIMITED  Situation in which wave energy (or wave height) is limited by the size of the 
wave generation area (fetch). 

 FILTER  Intermediate layer, preventing fine materials of an underlayer from being washed 
through the voids of an upper layer. 

 FIORD (FJORD)  A narrow, deep, steep-walled inlet of the sea, usually formed by entrance of 
the sea into a deep glacial trough. 

 FIRTH  A narrow arm of the sea;  also, the opening of a river into the sea. 
 FLOOD  (1) Period when tide level is rising; often taken to mean the flood current which occurs 

during this period  (2) A flow beyond the carrying capacity of a channel. 
 FLOOD CHANNEL  Channel located on ebb-tidal shoal that carries the flood tide over the tidal 

flat into the back bay or lagoon. 
 FLOOD CURRENT  The movement of a tidal current toward the shore or up a tidal stream.  In 

the semidiurnal type of reversing current, the terms greater flood and lesser flood are 
applied respectively to the flood currents of greater and lesser velocity each day.  The 
terms maximum flood and minimum flood are applied to the maximum and minimum 
velocities of a flood current the velocity of which alternately increases and decreases 
without coming to slack or reversing.  The expression maximum flood is also applicable 
to any flood current at the time of greatest velocity. 
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 FLOOD GATE  A gravity outlet fitted with vertically-hinged doors, opening if the inner water 
level is higher than the outer water level, so that drainage takes place during low water. 

 FLOOD INTERVAL  The interval between the transit of the moon over the meridian of a place 
and the time of the following flood. 

 FLOOD MARK  Proof of any kind on the shoreline, or on structures like bridge abutments, used 
to determine the highest level attained by the water surface during the flood (note: the 
height of the flood mark usually includes the wave run-up). 

 FLOOD PLAIN  (1) A flat tract of land bordering a river, mainly in its lower reaches, and 
consisting of ALLUVIUM deposited by the river.  It is formed by the sweeping of the 
meander belts downstream, thus widening the valley, the sides of which may become 
some kilometers apart.  In time of flood, when the river overflows its banks, sediment is 
deposited along the valley banks and plains.  (2) Synonymous with 100-year floodplain.  
The land area susceptible to being inundated by stream derived waters with a 1 percent 
chance of being equaled or exceeded in any given year. 

 FLOOD RAMP  Seaward-dipping sand platform dominated by flood-tidal currents, located on 
ebb-tidal shoal near the opening to the inlet. 

 FLOOD ROUTING  The determination of the attenuating effect of storage on a river-flood 
passing through a valley by reason of a feature acting as control (e.g. a reservoir with a 
spillway capacity less than the flood inflow, or the widening or narrowing of a valley). 

 FLOOD TIDAL DELTA  The bulge of sand formed at the landward mouth of TIDAL INLETS 
as a result of flow expansion. 

 FLOOD TIDE  The period of tide between low water and the succeeding high water; a rising 
tide. 

 FLOOD WALL, SPLASH WALL  Wall, retired from the seaward edge of the seawall crest, to 
prevent water from flowing onto the land behind. 

 FLORA  The entire group of plants found in an area. 
 FLUVIAL  Of or pertaining to rivers; produced by the action of a river or stream (e.g., fluvial 

sediment). 
 FLUSHING TIME  The time required to replace all the water in an ESTUARY, HARBOR, etc., 

by action of current and tide. 
 FOAM LINE  (1) The front of a wave as it advances shoreward, after it has broken.  (2) Lines of 

foam such as those which move around the head of a RIP. 
 FOLLOWING WIND  Generally, the same as a tailwind; in wave forecasting, wind blowing in 

the direction of ocean-wave advance. 
 FOREDUNE  The front DUNE immediately behind the backshore. 
 FORERUNNER  Low, long-period ocean SWELL which commonly precedes the main swell 

from a distant storm, especially a tropical cyclone. 
 FORESHORE  The part of the shore, lying between the crest of the seaward berm (or upper 

limit of wave wash at high tide) and the ordinary low-water mark, that is ordinarily 
traversed by the uprush and backrush of the waves as the tides rise and fall.  See BEACH 
FACE. 

 FORE REEF  The seaward side of a REEF (usually coral);  in places a steep slope covered with 
reef talus. 

 FORWARD SPEED  (hurricane)Rate of movement (propagation) of the hurricane eye in meters 
per second, knots, or miles per hour. 
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 FREEBOARD  At a given time, the vertical distance between the water level and the top of the 
structure.  On a ship, the distance from the waterline to main deck or gunwale. 

 FRINGING REEF  A coral REEF attached directly to an insular or continental shore.  There 
may be a shallow channel or lagoon between the reef and the adjacent mainland. 

 FRONT OF THE FETCH  In wave forecasting, the end of the generating area toward which the 
wind is blowing. 

 FROUDE NUMBER  The dimensionless ratio of the inertial force to the force of gravity for a 
given fluid flow.  It may be given as Fr = V /Lg where V is a characteristic velocity,   is a 
characteristic length, and g the acceleration of gravity - or as the square root of this 
number. 

 FULLY-DEVELOPED SEA  The waves that form when wind blows for a sufficient period of 
time across the open ocean.  The waves of a fully developed sea have the maximum 
height possible for a given wind speed, FETCH and duration of wind. 

 
 
---------- G ---------- 

 
 
 GABION  (1) Steel wire-mesh basket to hold stones or crushed rock to protect a bank or bottom 

from erosion.  (2) Structures composed of masses of rocks, rubble or masonry held tightly 
together usually by wire mesh so as to form blocks or walls.  Sometimes used on heavy 
erosion areas to retard wave action or as a foundation for BREAKWATERS or JETTIES. 

 GALE  A wind between a strong breeze and a storm.  A continuous wind blowing in degrees of 
moderate, fresh, strong, or whole gale and varying in velocity from 28 to 47 nautical 
miles per hour (see BEAUFORT SCALE). 

 GAUGE (GAGE)  Instrument for measuring the water level relative to a datum. 
 GENERATING AREA  In wave forecasting, the continuous area of water surface over which 

the wind blows in nearly a constant direction.  Sometimes used synonymously with 
FETCH LENGTH.  Also FETCH. 

 GEOGRAPHICAL INFORMATION SYSTEM (GIS)  Database of information which is 
geographically referenced, usually with an associated visualization system. 

 GEOMETRIC MEAN DIAMETER  The diameter equivalent of the arithmetic mean of the 
logarithmic frequency distribution.  In the analysis of beach sands, it is taken as that grain 
diameter determined graphically by the intersection of a straight line through selected 
boundary sizes, (generally points on the distribution curve where 16 and 84 percent of the 
sample is coarser by weight) and a vertical line through the median diameter of the 
sample. 

 GEOMETRIC SHADOW  In wave diffraction theory, the area outlined by drawing straight 
lines paralleling the direction of wave approach through the extremities of a protective 
structure.  It differs from the actual protected area to the extent that the diffraction and 
refraction effects modify the wave pattern. 

 GEOMORPHOLOGY  (1) That branch of physical geography which deals with the form of the 
Earth, the general configuration of its surface, the distribution of the land, water, etc.  (2) 
The investigation of the history of geologic changes through the interpretation of 
topographic forms. 
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 GEOPHYSICS  The study of the physical characteristics and properties of the earth, usually 
employing quantitative physical methods. 

 GEOTEXTILE  A synthetic fabric which may be woven or non-woven used as a filter. 
 GLACIER  A large body of ice moving slowly down a slope of valley or spreading outward on 

a land surface (e.g., Greenland, Antarctica) and surviving from year to year. 
 GLACIO-ISOSTACY  The state of hydrostatic equilibrium of the earth=s crust as influenced by 

the weight of glacier ice. 
 GLOBAL POSITIONING SYSTEM (GPS)  A navigational and positioning system developed 

by the U.S. Department of Defense, by which the location of a position on or above the 
Earth can be determined by a special receiver at that point interpreting signals received 
simultaneously from several of a constellation of special satellites. 

 GORGE  (1) The deepest portion of an inlet, the THROAT.  (2) A narrow, deep valley with 
nearly vertical rock walls. 

 GRADED BEDDING  An arrangement of particle sizes within a single bed, with coarse grains 
at the bottom of the bed and progressively finer grains toward the top of the bed. 

 GRADIENT  (1) A measure of slope (soil- or water-surface) in meters of rise or fall per meter 
of horizontal distance.  (2) More general, a change of a value per unit of distance, e.g. the 
gradient in longshore transport causes erosion or accretion.  (3) With reference to winds 
or currents, the rate of increase or decrease in speed, usually in the vertical; or the curve 
that represents this rate. 

 GRADING  Distribution with regard to size or weight, of individual stones within a bulk 
volume; heavy, light and fine grading are distinguished. 

 GRADUAL CLOSURE METHOD  Method in which the final closure gap in a dam is closed 
gradually either by the vertical or horizontal closure method; this in contradiction with a 
sudden closure. 

 GRANULAR FILTER  A layer of granular material which is incorporated in an embankment, 
dam, dike, or bottom protection and is graded so as to allow seepage to flow across or 
down the filter zone without causing the migration of the material adjacent to the filter. 

 GRAVEL  Unconsolidated natural accumulation of rounded rock fragments coarser than sand 
but finer than pebbles (2-4 mm diameter). 

 GRAVITY WAVE  A wave whose velocity of propagation is controlled primarily by gravity.  
Water waves more than 5 cm long are considered gravity waves.  Waves longer than 2.5 
cm and shorter than 5 cm are in an indeterminate zone between CAPILLARY and 
GRAVITY WAVES.  See RIPPLE. 

 GROIN (British, GROYNE)  Narrow, roughly shore-normal structure built to reduce longshore 
currents, and/or to trap and retain littoral material.  Most groins are of timber or rock and 
extend from a SEAWALL, or the backshore, well onto the foreshore and rarely even 
further offshore.  See T-GROIN, PERMEABLE GROIN, IMPERMEABLE GROIN. 

 GROIN BAY  The beach compartment between two groins. 
 GROIN SYSTEM  A series of groins acting together to protect a section of beach.  Commonly 

called a GROIN field. 
 GULF  A relatively large portion of the ocean or sea extending far into land; the largest of 

various forms of inlets of the sea (e.g., Gulf of Mexico, Gulf of Aqaba). 
 GUT  A tidal stream connecting two larger waterways. 
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---------- H ---------- 

 
 
 HALCOCLINE  A zone in which salinity changes rapidly.  
 HALF-TIDE LEVEL  A plane midway between MEAN HIGH WATER and MEAN LOW 

WATER, also called MEAN TIDE LEVEL. 
 HARBOR (British, HARBOUR)  Any protected water area affording a place of safety for 

vessels.  See also PORT. 

 HARBOR OSCILLATION (HARBOR SURGING)  The nontidal vertical water movement in a 
harbor or bay.  Usually the vertical motions are low; but when oscillations are excited by 
a tsunami or storm surge, they may be quite large.  Variable winds, air oscillations, or 
surf beat also may cause oscillations.  See SEICHE. 

 HARD DEFENSES  General term applied to impermeable coastal defense structures of 
concrete, timber, steel, masonry, etc, which reflect a high proportion of incident wave 
energy. 

 HEAD OF RIP  The part of a rip current that has widened out seaward of the breakers.  See also 
CURRENT, RIP; CURRENT, FEEDER; and NECK (RIP). 

 HEADLAND (HEAD)  (1) A comparatively high promontory with either a CLIFF or steep face 
extending out into a body of water, such as a sea or lake.  An unnamed HEAD is usually 
called a headland.  (2) The section of RIP CURRENT which has widened out seaward of 
the BREAKERS, also called HEAD OF RIP.  (3) Seaward end of BREAKWATER or 
dam. 

 HEADWATER LEVEL  The level of water in the reservoir. 
 HEAVE  (1) The vertical rise or fall of the waves or the sea.  (2) The translational movement of 

a craft parallel to its vertical axis.  (3) The net transport of a floating body resulting from 
wave action. 

 HIGH SEAS  This term, in municipal and international law, denotes the continuous body of salt 
water in the world that is navigable in its character and that lies outside territorial waters 
and maritime belts of the various countries. 

 HIGH TIDE, HIGH WATER (HW)  The maximum elevation reached by each rising tide.  See 
TIDE. 

 HIGH WATER (HW)  Maximum height reached by a rising tide.  The height may be solely due 
to the periodic tidal forces or it may have superimposed upon it the effects of prevailing 
meteorological conditions.  Nontechnically, also called the HIGH TIDE. 

 HIGH WATER LINE  In strictness, the intersection of the plane of mean high water with the 
shore.  The shoreline delineated on the nautical charts of the National Ocean Service is an 
approximation of the high water line.  For specific occurrences, the highest elevation on 
the shore reached during a storm or rising tide, including meteorological effects. 

 HIGH WATER MARK  A reference mark on a structure or natural object, indicating the 
maximum stage of tide or flood. 

 HIGH WATER OF ORDINARY SPRING TIDES (HWOST)  A tidal datum appearing in some 
British publications, based on high water of ordinary spring tides. 

 HIGHER HIGH WATER (HHW)  The higher of the two high waters of any tidal day.  The 
single high water occurring daily during periods when the tide is diurnal is considered to 
be a higher high water. 
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 HIGHER LOW WATER (HLW)  The higher of two low waters of any tidal day. 
 HINDCASTING  In wave prediction, the retrospective forecasting of waves using measured 

wind information. 
 HINTERLAND  The region lying inland from the coast.  Also the inland area served by a port. 
 HISTORIC EVENT ANALYSIS  Extreme analysis based on hindcasting typically ten events 

over a period of 100 years. 
 HOLOCENE  An epoch of the QUATERNARY period, from the end of the PLEISTOCENE, 

about 8,000 years ago, to the present time. 
HOMOPYCNAL FLOW  A condition in which the outflow jet from a river or coastal inlet and 

the water in the receiving basin are of the same density or are vertically mixed. 
 HOOK  A spit or narrow cape of sand or gravel which turns landward at the outer end;  a 

RECURVED SPIT. 

 HORIZONTAL CLOSURE METHOD  Construction of a dam by dumping the materials from 
one or both banks, thus constricting the channel progressively laterally until the dam is 
closed.  This method is also known as end dumping and point tipping. 

 HURRICANE  An intense tropical cyclone in which winds tend to spiral inward toward a core 
of low pressure, with maximum surface wind velocities that equal or exceed 33.5 m/sec 
(75 mph or 65 knots) for several minutes or longer at some points.  TROPICAL STORM 
is the term applied if maximum winds are less than 33.5 m/sec but greater than a whole 
gale (63 mph or 55 knots).  Term is used in the Atlantic, Gulf of Mexico, and eastern 
Pacific. 

 HURRICANE PATH or TRACK  Line of movement (propagation) of the eye through an area. 
 HURRICANE STAGE HYDROGRAPH  A continuous graph representing water level stages 

that would be recorded in a gage well located at a specified point of interest during the 
passage of a particular hurricane, assuming that effects of relatively short-period waves 
are eliminated from the record by damping features of the gage well.  Unless specifically 
excluded and separately accounted for, hurricane surge hydrographs are assumed to 
include effects of astronomical tides, barometric pressure differences, and all other 
factors that influence water level stages within a properly designed gage well located at a 
specified point. 

 HURRICANE WIND PATTERN or ISOVEL PATTERN  An actual or graphical representation 
of near-surface wind velocities covering the entire area of a hurricane at a particular 
instant.  Isovels are lines connecting points of simultaneous equal wind velocities, usually 
referenced 9 meters (30 feet) above the surface, in meters per second, knots, or meters per 
hour; wind directions at various points are indicated by arrows or deflection angles on the 
isovel charts.  Isovel charts are usually prepared at each hour during a hurricane, but for 
each half hour during critical periods. 

 HYDRAULIC RADIUS  Quotient of the wetted cross-sectional area and the wetted perimeter. 
 HYDRAULICALLY EQUIVALENT GRAINS  Sedimentary particles that settle at the same 

rate under the same conditions. 
 HYDROGRAPHY  (1) The description and study of seas, lakes, rivers and other waters.  (2) 

The science of locating aids and dangers to navigation.  (3) The description of physical 
properties of the waters of a region. 

 HYDROGRAPHIC PRESSURE  The pressure exerted by water at any given point in a body of 
water at rest. 
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 HYPOPYCNAL FLOW  Outflow from a river or coastal inlet in which a wedge of less dense 
water flows over the denser sea water. 

 HYPOTHETICAL HURRICANE ("HYPOHURRICANE")  A representation of a hurricane, 
with specified characteristics, that is assumed to occur in a particular study area, 
following a specified path and timing sequence. TRANSPOSED--A hypohurricane based 
on the storm transposition principle, assumed to have wind patterns and other 
characteristics basically comparable to a specified hurricane of record, but transposed to 
follow a new path to serve as a basis for computing a hurricane surge hydrograph that 
would be expected at a selected point.  Moderate adjustments in timing or rate of forward 
movement may also be made, if these are compatible with meteorological considerations 
and study objectives. HYPOHURRICANE BASED ON GENERALIZED 
PARAMETERS--Hypohurricane estimates based on various logical combinations of 
hurricane characteristics used in estimating hurricane surge magnitudes corresponding to 
a range of probabilities and potentialities.  The STANDARD PROJECT HURRICANE is 
most commonly used for this purpose, but estimates corresponding to more severe or less 
severe assumptions are important in some project investigations. STANDARD PROJECT 
HURRICANE (SPH)--A hypothetical hurricane intended to represent the most severe 
combination of hurricane parameters that is reasonably characteristic of a specified 
region, excluding extremely rare combinations.  It is further assumed that the SPH would 
approach a given project site from such direction, and at such rate of movement, to 
produce the highest HURRICANE SURGE HYDROGRAPH, considering pertinent 
hydraulic characteristics of the area.  Based on this concept, and on extensive 
meteorological studies and probability analyses, a tabulation of "Standard Project 
Hurricane Index Characteristics" mutually agreed upon by representatives of the U. S. 
Weather Service and the Corps of Engineers, is available. PROBABLE MAXIMUM 
HURRICANE--A hypohurricane that might result from the most severe combination of 
hurricane parameters that is considered reasonably possible in the region involved, if the 
hurricane should approach the point under study along a critical path and at optimum rate 
of movement.  This estimate is substantially more severe than the SPH criteria. DESIGN 
HURRICANE--A representation of a hurricane with specified characteristics that would 
produce HURRICANE SURGE HYDROGRAPHS and coincident wave effects at 
various key locations along a proposed project alignment.  It governs the project design 
after economics and other factors have been duly considered.  The design hurricane may 
be more or less severe than the SPH, depending on economics, risk, and local 
considerations. 

 
 
---------- I ---------- 

 
 
 ICE AGE  A loosely-used synonym of glacial epoch, or time of extensive glacial activity; 

specifically of the latest period of widespread continental glaciers, the PLEISTOCENE 
Epoch. 

 ICE FRONT  The floating vertical cliff forming the seaward edge of an ICE SHELF or other 
glacier that enters the sea. 

 D.4.14-23 Section D.4.14 
All policy and standards in this document have been superseded by the FEMA Policy for Flood Risk Analysis and Mapping. 

However, the document contains useful guidance to support implementation of the new standards.



Guidelines and Specifications for Flood Hazard Mapping Partners [November 2004]  

 ICE SHELF  A extensive sheet of ice which is attached to the land along one side but most of 
which is afloat and bounded on the seaward side by a steep cliff (ICE FRONT) rising 2 tp 
50+ m above sea level.  Common along polar coasts (Antarctica, Greenland), and 
generally of great breadth and sometimes extending tens or hundreds of km seaward from 
the continental coastline. 

 IMPERMEABLE GROIN  A GROIN constructed such that sand cannot pass through the 
structure (but sand may still move over or around it). 

 INCIDENT WAVE  Wave moving landward. 
 INFRAGRAVITY WAVE  Long waves with periods of 30 seconds to several minutes. 
 INLET  (1) A short, narrow waterway connecting a bay, lagoon, or similar body of water with a 

large parent body of water.  (2) An arm of the sea (or other body of water) that is long 
compared to its width and may extend a considerable distance inland.  See also TIDAL 
INLET. 

 INLET GORGE  Generally, the deepest region of an inlet channel. 
 INSHORE (ZONE)  In beach terminology, the zone of variable width extending from the low 

water line through the breaker zone.  Also SHOREFACE. 
 INSHORE CURRENT  Any current in or landward of the breaker zone. 
 INSULAR SHELF  The zone surrounding an island extending from the low water line to the 

depth (usually about 183 m; 100 fathoms) where there is a marked or rather steep descent 
toward the great depths. 

 INTERNAL WAVES  Waves that occur within a fluid whose density changes with depth, either 
abruptly at a sharp surface of discontinuity (an interface), or gradually.  Their amplitude 
is greatest at the density discontinuity or, in the case of a gradual density change, 
somewhere in the interior of the fluid and not at the free upper surface where the surface 
waves have their maximum amplitude. 

 INTERTIDAL  The zone between the high and low water tides. 
 IRREGULAR WAVES  Waves with random wave periods (and in practice, also heights), which 

are typical for natural wind-induced waves. 
 IRROTATIONAL WAVE  A wave with fluid particles that do not revolve around an axis 

through their centers, although the particles themselves may travel in circular or nearly 
circular orbits.  Irrotational waves may be PROGRESSIVE, STANDING, 
OSCILLATORY, or TRANSLATORY.  For example, the Airy, Stokes, cnoidal, and 
solitary wave theories describe irrotational waves.  Compare TROCHOIDAL WAVE. 

 ISOBATH  A contour line connecting points of equal water depths on a chart. 
 ISOPACHYTE  Line connecting points on the seabed with an equal depth of sediment. 
 ISOVEL PATTERN  See HURRICANE WIND PATTERN. 
 ISTHMUS  A narrow strip of land, bordered on both sides by water, that connects two larger 

bodies of land. 
 
 
--------- J ---------- 

 
 
 JET  To place (a pile, slab, or pipe) in the ground by means of a jet of water acting at the lower 

end. 
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 JETTY  On open seacoasts, a structure extending into a body of water, which is designed to 
prevent shoaling of a channel by littoral materials and to direct and confine the stream or 
tidal flow.  Jetties are built at the mouths of rivers or tidal inlets to help deepen and 
stabilize a channel. 

 JOINT PROBABILITY  The probability of two (or more) things occurring together. 
 JOINT PROBABILITY DENSITY  Function specifying the joint distribution of two (or more) 

variables. 
 JOINT RETURN PERIOD  Average period of time between occurrences of a given joint 

probability event. 
 JONSWAP SPECTRUM  Wave spectrum typical of growing deep water waves developed from 

field experiments and measurements of waves and wave spectra in the Joint North Sea 
Wave Project 

 
 

 
 

---------- K ---------- 

 KATABATIC WIND  Wind caused by cold air flowing down slopes due to gravitational 
acceleration. 

 KEY  A cay, esp. one of the low, insular banks of sand, coral, and limestone off the southern 
coast of Florida. 

 KINEMATIC VISCOSITY  The dynamic viscosity divided by the fluid density. 
 KINETIC ENERGY (OF WAVES)  In a progressive oscillatory wave, a summation of the 

energy of motion of the particles within the wave. 
 KNOLL  A submerged elevation of rounded shape rising less than 1000 meters from the ocean 

floor and of limited extent across the summit.  Compare SEAMOUNT. 
 KNOT  The unit of speed used in navigation equal to 1 nautical mile (6,076.115 ft or 1,852 m) 

per hour. 
 
 

 
 

---------- L ---------- 

 LAGGING OF TIDE  The periodic retardation in the time of occurrence of high and low water 
due to changes in the relative positions of the moon and sun. 

 LAGOON  A shallow body of water, like a pond or sound, partly or completely separated from 
the sea by a barrier island or REEF.  Sometimes connected to the sea via an INLET. 

 LAMINAR FLOW  Slow, smooth flow, with each drop of water traveling a smooth path parallel 
to its neighboring drops.  Laminar flow is characteristic of low velocities, and particles of 
sediment in the flow zones are moved by rolling or SALTATION. 

 LAND BREEZE  A light wind blowing from the land to the sea, caused by unequal cooling of 
land and water masses. 

 LAND-SEA BREEZE  The combination of a land breeze and a sea breeze as a diurnal 
phenomenon. 
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 LANDLOCKED  Enclosed, or nearly enclosed, by land--thus protected from the sea, as a bay or 
a harbor. 

 LANDMARK  A conspicuous object, natural or artificial, located near or on land, which aids in 
fixing the position of an observer. 

 LEAD LINE  A line, wire, or cord used in sounding (to obtain water depth).  It is weighted at 
one end with a plummet (sounding lead).  Also SOUNDING LINE. 

 LEDGE  A rocky formation forming a ridge or REEF, especially one underwater or near shore. 
 LEE  (1) Shelter, or the part or side sheltered or turned away from the wind or waves.  (2) 

(Chiefly nautical) the quarter or region toward which the wind blows. 
 LEEWARD  The direction toward which the wind is blowing; the direction toward which waves 

are traveling. 
 LENGTH OF WAVE  The horizontal distance between similar points on two successive waves 

measured perpendicularly to the crest. 
 LEVEE  (1) A ridge or EMBANKMENT of sand and silt, built up by a stream on its flood plain 

along both banks of its channel.  (2) A large DIKE or artificial EMBANKMENT, often 
having an access road along the top, which is designed as part of a system to protect land 
from floods. 

 LIGHT BREEZE  A wind with velocity from 4 to 6 KNOTS. 
 LIMIT OF BACKRUSH (LIMIT OF BACKWASH)  See BACKRUSH, BACKWASH. 
 LITTORAL  Of or pertaining to a shore, especially of the sea. 
 LITTORAL CELL  A reach of the coast that is isolated sedimentologically from adjacent 

coastal reaches and that features its own sources and sinks.  Isolation is typically caused 
by protruding headlands, submarine canyons, inlets, and some river mouths that prevent 
littoral sediment from one cell to pass into the next.  Cells may range in size from a 
multi-hundred meter POCKET BEACH in a rocky coast to a BARRIER ISLAND many 
tens of kilometers long. 

 LITTORAL CURRENT  See CURRENT, LITTORAL. 
 LITTORAL DEPOSITS  Deposits of littoral drift. 
 LITTORAL DRIFT, LITTORAL TRANSPORT  The movement of beach material in the littoral 

zone by waves and currents.  Includes movement parallel (long shore drift) and 
sometimes also perpendicular (cross-shore transport) to the shore. 

 LITTORAL TRANSPORT RATE  Rate of transport of sedimentary material parallel or 
perpendicular to the shore in the littoral zone.  Usually expressed in cubic meters (cubic 
yards) per year.  Commonly synonymous with LONGSHORE TRANSPORT RATE. 

 LITTORAL ZONE  In beach terminology, an indefinite zone extending seaward from the 
shoreline to just beyond the breaker zone. 

 LOAD  The quantity of sediment transported by a current.  It includes the suspended load of 
small particles and the bedload of large particles that move along the bottom. 

 LONG WAVES  Waves with periods above about 30 seconds; can be generated by wave groups 
breaking in the surf zone.  See also INFRAGRAVITY WAVES. 

 LONGSHORE  Parallel to and near the shoreline; ALONGSHORE. 
 LONGSHORE BAR  A sand ridge or ridges, running roughly parallel to the shoreline and  

extending along the shore outside the trough, that may be exposed at low tide or may 
occur below the water level in the offshore. 

 LONGSHORE CURRENT  See CURRENT, LONGSHORE. 
 LONGSHORE DRIFT  Movement of (beach) sediments approximately parallel to the coastline. 
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 LONGSHORE TRANSPORT RATE  See LITTORAL TRANSPORT RATE. 
 LONGSHORE TROUGH  An elongate DEPRESSION or series of depressions extending along 

the lower BEACH or in the offshore zone inside the BREAKERS. 
 LOOP  That part of a STANDING WAVE where the vertical motion is greatest and the 

horizontal velocities are least.   Loops (sometimes called ANTINODES) are associated 
with CLAPOTIS and with SEICHE action resulting from wave reflections.  Compare 
NODE. 

 LOW TIDE (LOW WATER, LW)  The minimum elevation reached by each falling tide.  See 
TIDE. 

 LOW TIDE TERRACE  A flat zone of the beach near the low water level. 
 LOW WATER (LW)  The minimum height reached by each falling tide.  Nontechnically, also 

called LOW TIDE. 
 LOW WATER DATUM  An approximation to the plane of mean low water that has been 

adopted as a standard reference plane.  See also DATUM, PLANE and CHART 
DATUM. 

 LOW WATER LINE  The line where the established LOW WATER DATUM intersects the 
shore.  The plane of reference that constitutes the LOW WATER DATUM differs in 
different regions. 

 LOW WATER OF ORDINARY SPRING TIDES (LWOST)  A tidal datum appearing in some 
British publications, based on low water of ordinary spring tides. 

 LOWER HIGH WATER (LHW)  The lower of the two high waters of any tidal day. 
 LOWER LOW WATER DATUM  An approximation to the plane of MEAN LOWER LOW 

WATER that has been adopted as a standard reference plane for a limited area and is 
retained for an indefinite period regardless of the fact that it may differ slightly from a 
better determination of MEAN LOWER LOW WATER from a subsequent series of 
observations. 

 LOWER LOW WATER (LLW)  The lower of the two low waters of any tidal day.  The single 
low water occurring daily during periods when the tide is diurnal is considered to be a 
lower low water. 

 LUNAR DAY  The time of rotation of the Earth with respect to the moon, or the interval 
between two successive upper transits of the moon over the meridian of a place.  The 
mean lunar day is approximately 24.84 solar hours in length, or 1.035 times as great as 
the mean solar day.  Also called TIDAL DAY. 

 LUNAR TIDE  The portion of the tide that can be attributed directly to attraction to the moon. 
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 MACH-STEM WAVE  Higher-than-normal wave generated when waves strike a structure at an 
oblique angle. 

 MACRO-TIDAL  Tidal range greater than 4 m. 
 MANAGED RETREAT  The deliberate setting back (moving landward) of the existing line of 

sea defense in order to obtain engineering or environmental advantages - also referred to 
as managed landward realignment.  Sometimes refers to moving roads and utilities 
landward in the face of shore retreat. 
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 MANGROVE  A tropical tree with interlacing prop roots, confined to low-lying brackish areas. 
 MARGIN, CONTINENTAL  A zone separating a continent from the deep-sea bottom. 
 MARGINAL PROBABILITY  The probability of a single variable in the context of a joint 

probability analysis. 
 MARGINAL RETURN PERIOD  The return period of a single variable in the context of a joint 

probability analysis. 
 MARIGRAM  A graphic record of the rise and fall of the tide.  The record is in the form of a 

curve in which time is represented by abscissas and the height of the tide by ordinates. 
 MARKER, REFERENCE  A mark of permanent character close to a survey station, to which it 

is related by an accurately measured distance and azimuth (or bearing). 
 MARKER, SURVEY  An object placed at the site of a station to identify the surveyed location 

of that station. 
 MARSH  (1) A tract of soft, wet land, usually vegetated by reeds, grasses and occasionally 

small shrubs.  (2) Soft, wet area periodically or continuously flooded to a shallow depth, 
usually characterized by a particular subclass of grasses, cattails and other low plants. 

 MARSH, DIKED  A former salt marsh which has been protected by a DIKE. 
 MARSH, SALT  A marsh periodically flooded by salt water. 
 MASS TRANSPORT, SHOREWARD  The movement of water due to wave motion, which 

carries water through the BREAKER ZONE in the direction of wave propagation.  Part 
of the NEARSHORE CURRENT SYSTEM. 

 MATTRESS  A blanket of brushwood or bamboo, poles, geotextile and reed lashed together to 
protect a shoreline, embankment or river/sea bed against erosion.  Sometimes placed on 
the sea bed during JETTY construction to prevent stone from settling into soft bottom. 

 MEAN DEPTH  The average DEPTH of the water area between the still water level and the 
SHOREFACE profile from the waterline to any chosen distance seaward. 

 MEAN DIAMETER, GEOMETRIC  See GEOMETRIC MEAN DIAMETER. 
 MEAN HIGH WATER SPRINGS (MHWS)  The average height of the high water occurring at 

the time of spring tides. 
 MEAN HIGH WATER (MHW)  The average height of the high waters over a 19-year period.  

For shorter periods of observations, corrections are applied to eliminate known variations 
and reduce the results to the equivalent of a mean 19-year value.  All high water heights 
are included in the average where the type of tide is either semidiurnal or mixed.  Only 
the higher high water heights are included in the average where the type of tide is diurnal.  
So determined, mean high water in the latter case is the same as mean higher high water. 

 MEAN HIGHER HIGH WATER (MHHW)  The average height of the higher high waters over 
a 19-year period.  For shorter periods of observation, corrections are applied to eliminate 
known variations and reduce the result to the equivalent of a mean 19-year value. 

 MEAN LOW WATER (MLW)  The average height of the low waters over a 19-year period.  
For shorter periods of observations, corrections are applied to eliminate known variations 
and reduce the results to the equivalent of a mean 19-year value.  All low water heights 
are included in the average where the type of tide is either semidiurnal or mixed.  Only 
lower low water heights are included in the average where the type of tide is diurnal.  So 
determined, mean low water in the latter case is the same as mean lower low water. 

 MEAN LOW WATER SPRINGS  The average height of low waters occurring at the time of the 
spring tides.  It is usually derived by taking a plane depressed below the half-tide level by 
an amount equal to one-half the spring range of tide, necessary corrections being applied 
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to reduce the result to a mean value.  This plane is used to a considerable extent for 
hydrographic work outside of the United States and is the plane of reference for the 
Pacific approaches to the Panama Canal.  Frequently abbreviated to LOW WATER 
SPRINGS. 

 MEAN LOWER LOW WATER (MLLW)  The average height of the lower low waters over a 
19-year period.  For shorter periods of observations, corrections are applied to eliminate 
known variations and reduce the results to the equivalent of a mean 19-year value.  
Frequently abbreviated to LOWER LOW WATER. 

 MEAN RANGE OF TIDE  The difference in height between MEAN HIGH WATER and 
MEAN LOW WATER. 

 MEAN RISE OF THE TIDE  The height of MEAN HIGH WATER above the plane of 
reference or DATUM of chart. 

 MEAN SEA LEVEL  The average height of the surface of the sea for all stages of the tide over 
a 19-year period, usually determined from hourly height readings.  Not necessarily equal 
to MEAN TIDE LEVEL. 

 MEAN STEEPNESS  The ratio of the MEAN DEPTH to the horizontal distance over which the 
MEAN DEPTH was determined. 

 MEAN TIDE LEVEL  A plane midway between MEAN HIGH WATER and MEAN LOW 
WATER.  Not necessarily equal to MEAN SEA LEVEL.  Also HALF-TIDE LEVEL. 

 MEAN WATER LEVEL  The mean surface level as determined by averaging the heights of the 
water at equal intervals of time, usually at hourly intervals. 

 MEAN WAVE HEIGHT  The mean of all individual waves in an observation interval of 
approximately half an hour. In case of a Rayleigh distribution 63% of the significant 
wave height. 

 MEANDERING  A single channel having a pattern of successive deviations in alignment which 
results in a more or less sinusoidal course. 

 MEDIAN DIAMETER  The diameter which marks the division of a given sand sample into two 
equal parts by weight, one part containing all grains larger than that diameter and the 
other part containing all grains smaller. 

 MEGARIPPLE  See SAND WAVE. 
 MESO-TIDAL  Tidal range between 2 m and 4 m. 
 METEOROLOGICAL TIDES  Tidal constituents having their origin in the daily or seasonal 

variation in weather conditions which may occur with some degree of periodicity. 
 MICRO-TIDAL  Tidal range less than 2 m. 
 MID-EXTREME TIDE  A plane midway between the extreme high water and the extreme 

LOW WATER occurring in any locality. 
 MIDDLE-GROUND SHOAL  A shoal formed by ebb and flood tides in the middle of the 

channel of the LAGOON or estuary end of an inlet. 
 MINERAL  A naturally occurring, inorganic, crystalline solid that has a definite chemical 

composition and possesses characteristic physical properties. 
 MINIMUM DURATION  See DURATION, MINIMUM. 
 MINIMUM FETCH  The least distance in which steady-state wave conditions will develop for a 

wind of given speed blowing a given duration of time. 
 MIST  Water vapor suspended in the air in very small drops finer than rain, larger than fog. 
 MIXED CURRENT  Type of tidal current characterized by a conspicuous velocity difference 

between the two floods or two ebbs usually occurring each tidal day. 
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 MIXED TIDE  A type of tide in which the presence of a diurnal wave is conspicuous by a large 
inequality in either the high or low water heights, with two high waters and two low 
waters usually occurring each tidal day.  In strictness, all tides are mixed, but the name is 
usually applied without definite limits to the tide intermediate to those predominantly 
semidiurnal and those predominantly diurnal. 

 MOLE  In coastal terminology, a massive land-connected, solid-fill structure of earth (generally 
revetted), masonry, or large stone, which may serve as a breakwater or pier. 

 MONOCHROMATIC WAVES  A series of waves generated in a laboratory, each of which has 
the same length and period. 

 MONOLITHIC  Like a single stone or block.  In coastal structures, the type of construction in 
which the structure's component parts are bound together to act as one. 

 MORAINE  An accumulation of earth, stones, etc., deposited by a glacier, usually in the form of 
a mound, ridge or other prominence on the terrain. 

 MORPHODYNAMICS  (1) The mutual interaction and adjustment of the seafloor topography 
and fluid dynamics involving the motion of sediment.  (2) The coupled suite of mutually 
interdependent hydrodynamic processes, seafloor morphologies, and sequences of 
change. 

 MORPHOLOGICALLY AVERAGED  Single wave condition producing the same net 
longshore drift as a given proportion of the annual wave climate. 

 MORPHOLOGY  River/estuary/lake/seabed form and its change with time. 
 MUD  A fluid-to-plastic mixture of finely divided particles of solid material and water. 
 MUD FLAT  A level area of fine silt and clay along a shore alternately covered or uncovered by 

the tide or covered by shallow water. 
 
 

 
 

---------- N ---------- 

 NATIONAL TIDAL DATUM EPOCH (NTDE)  A period of 19 years adopted by the National 
Ocean Service as the period over which observations of tides are to be taken and reduced 
to average values for tidal datums. 

 NATURAL TRACER  A component of a sediment deposit that is unique to a particular source 
and can be used to identify the source and transport routes to a place of deposition. 

 NAUTICAL MILE  The length of a minute of arc, 1/21,600 of an average great circle of the 
Earth.  Generally one minute of latitude is considered equal to one nautical mile.  The 
accepted United States value as of 1 July 1959 is 1,852 meters (6,076.115 feet), 
approximately 1.15 times as long as the U.S. statute mile of 5,280 feet.  Also 
geographical mile. 

 NEAP HIGH WATER  See NEAP TIDE. 
 NEAP LOW WATER  See NEAP TIDE. 
 NEAP RANGE  See NEAP TIDE. 
 NEAP TIDAL CURRENT  Tidal current of decreased velocity occurring semimonthly as the 

result of the moon being in quadrature. 
 NEAP TIDE  Tide of decreased range occurring semimonthly as the result of the moon being in 

quadrature.  The NEAP RANGE of the tide is the average semidiurnal range occurring at 
the time of neap tides and is most conveniently computed from the harmonic constants.  
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The NEAP RANGE is typically 10 to 30 percent smaller than the mean range where the 
type of tide is either semidiurnal or mixed and is of no practical significance where the 
type of tide is DIURNAL.  The average height of the high waters of the neap tide is 
called NEAP HIGH WATER or HIGH WATER NEAPS (MHWN), and the average 
height of the corresponding LOW WATER is called NEAP LOW WATER or LOW 
WATER NEAPS (MLWN). 

 NEARSHORE  (1) In beach terminology an indefinite zone extending seaward from the 
SHORELINE well beyond the BREAKER ZONE.  (2) The zone which extends from the 
swash zone to the position marking the start of the offshore zone, typically at water 
depths of the order of 20 m. 

 NEARSHORE CIRCULATION  The ocean circulation pattern composed of the NEARSHORE 
CURRENTS and the COASTAL CURRENTS. 

 NEARSHORE CURRENT SYSTEM  The current system caused primarily by wave action in 
and near the breaker zone, and which consists of four parts: the shoreward mass transport 
of water; longshore currents; seaward return flow, including rip currents; and the 
longshore movement of the expanding heads of rip currents.  See also NEARSHORE 
CIRCULATION. 

 NECK  (1) The narrow strip of land which connects a peninsula with the mainland, or connects 
two ridges.  (2) The narrow band (rip) of water flowing seaward through the surf.  See 
also RIP CURRENT. 

 NESS  Roughly triangular promontory of land jutting into the sea, often consisting of mobile 
material, i.e. a beach form. 

 NETWORK  A set consisting of:  (a) stations for which geometric relationships have been 
determined and which are so related that removal of one station from the set will affect 
the relationships (distances, directions, coordinates, etc.) between the other stations;  and 
(b) lines connecting the stations to show this interdependence. 

 NIP  The cut made by waves in a shoreline of emergence. 
 NODAL ZONE  An area in which the predominant direction of the LONGSHORE 

TRANSPORT changes. 
 NODE  That part of a STANDING WAVE where the vertical motion is least and the horizontal 

velocities are greatest.  Nodes are associated with CLAPOTIS and with SEICHE action 
resulting from wave reflections.  Compare LOOP. 

 NOURISHMENTT  he process of replenishing a beach.  It may occur naturally by longshore 
transport, or be brought about artificially by the deposition of dredged materials or of 
materials trucked in from upland sites. 

 NUMERICAL MODELING  Refers to analysis of coastal processes using computational 
models. 

 
 

 
 

---------- O ---------- 

 OCEANOGRAPHY  The study of the sea, embracing and indicating all knowledge pertaining to 
the sea's physical boundaries, the chemistry and physics of seawater, marine biology, and 
marine geology. 
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 OFFSHORE  (1) In beach terminology, the comparatively flat zone of variable width, extending 
from the SHOREFACE to the edge of the CONTINENTAL SHELF.  It is continually 
submerged.  (2) The direction seaward from the shore.  (3) The zone beyond the 
nearshore zone where sediment motion induced by waves alone effectively ceases and 
where the influence of the sea bed on wave action is small in comparison with the effect 
of wind.  (4) The breaker zone directly seaward of the low tide line. 

 OFFSHORE BARRIER  See BARRIER BEACH. 
 OFFSHORE BREAKWATER  A BREAKWATER built towards the seaward limit of the 

littoral zone, parallel (or nearly parallel) to the shore. 
 OFFSHORE CURRENT  (1) Any current in the offshore zone.  (2) Any current flowing away 

from shore. 
 OFFSHORE WIND  A wind blowing seaward from the land in the coastal area. 
 ONSHORE  A direction landward from the sea. 
 ONSHORE WIND  A wind blowing landward from the sea in the coastal area. 
 OPPOSING WIND  In wave forecasting, a wind blowing in a direction opposite to the ocean-

wave advance; generally, a headwind. 
 ORBIT  In water waves, the path of a water particle affected by the wave motion.  In deepwater 

waves the orbit is nearly circular, and in shallow-water waves the orbit is nearly elliptical.  
In general, the orbits are slightly open in the direction of wave motion, giving rise to 
MASS TRANSPORT. 

 ORBITAL CURRENT  The flow of water accompanying the orbital movement of the water 
particles in a wave.  Not to be confused with wave-generated LITTORAL CURRENTS. 

 ORDINARY HIGH WATER MARK (OHWM)  That mark that will be found by examining the 
bed and banks and ascertaining where the presence and action of waters are so common 
and usual, and so long continued in all ordinary years, as to mark upon the soil a 
character distinct from that of the abutting upland, in respect to vegetation as that 
condition exists on June 1, 1971, as it may naturally change thereafter, or as it may 
change thereafter in accordance with permits issued by a local government.  Also defined 
as MEAN HIGH WATER LINE. 

 ORDINARY TIDE  This expression is not used in a technical sense by the U.S. Coast and 
Geodetic Survey, but the word "ordinary" when applied to tides, may be taken as the 
equivalent of the word "mean".  Thus "ordinary HIGH WATER LINE" may be assumed 
to be the same as "mean high water line". 

 ORTHOGONAL  On a wave-refraction diagram, a line drawn perpendicularly to the wave 
crests.  Also called WAVE RAY. 

 OSCILLATION  (1) A periodic motion backward and forward.  (2) Vibration or variance above 
and below a mean value. 

 OSCILLATORY WAVE  A wave in which each individual particle oscillates about a point with 
little or no permanent change in mean position.  The term is commonly applied to 
progressive oscillatory waves in which only the form advances, the individual particles 
moving in closed or nearly closed orbits.  Compare WAVE OF TRANSLATION.  See 
also ORBIT. 

 OUTCROP  A surface exposure of bare rock, not covered by soil or vegetation. 
 OUTFALL  A structure extending into a body of water for the purpose of discharging sewage, 

storm runoff, or cooling water. 
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 OUTFLANKING  EROSION behind or around the land-based end of a GROIN, JETTY, or 
BREAKWATER or the terminus of a BULKHEAD, REVETMENT, or SEAWALL, 
usually causing failure of the structure or its function 

 OVERSPLASH  The water that splashes over the top of a BREAKWATER, SEAWALL, etc. 
 OVERTOPPING  Passing of water over the top of a structure as a result of wave runup or surge 

action. 
 OVERWASH  (1) The part of the UPRUSH that runs over the crest of a BERM or structure and 

does not flow directly back to the ocean or lake.  (2) The effect of waves overtopping a 
COASTAL DEFENSE, often carrying sediment landwards which is then lost to the beach 
system. 

 
 

 
 

---------- P ---------- 

 PARAPET  A low wall built along the edge of a structure such as a SEAWALL or QUAY. 
 PARTICLE VELOCITY  The velocity induced by wave motion with which a specific water 

particle moves within a wave. 
 PATCH REEF  A moundlike or flat-topped organic REEF, generally less than 1 km across, 

frequently forming part of a larger reef complex. 
 PASS  In hydrographic usage, a navigable channel through a bar, REEF, or shoal, or between 

closely adjacent islands.  On the Gulf of Mexico coast, inlets are often known as passes 
(e.g., Sabine Pass). 

 PEAK PERIOD  The wave period determined by the inverse of the frequency at which the wave 
energy spectrum reaches its maximum. 

 PEBBLES  Beach material usually well-rounded and between about 4 mm to 64 mm diameter.  
See SOIL CLASSIFICATION. 

 PENINSULA  An elongated body of land nearly surrounded by water and connected to a larger 
body of land by a neck or isthmus. 

 PERCHED BEACH  A beach or fillet of sand retained above the otherwise normal profile level 
by a submerged dike. 

 PERCOLATION  The process by which water flows through the interstices of a sediment.  
Specifically, in wave phenomena, the process by which wave action forces water through 
the interstices of the bottom sediment and which tends to reduce wave heights. 

 PERIGEAN RANGE  The average semidiurnal range occurring at the time of the PERIGEAN 
TIDES and most conveniently computed from the harmonic constants.  It is larger than 
the mean range where the type of tide is either semidiurnal or mixed and is of no practical 
significance where the type of tide is diurnal. 

 PERIGEAN TIDAL CURRENTS  Tidal currents of increased velocity occurring monthly as the 
result of the moon being in perigee (i.e., at the point in its orbit nearest the Earth). 

 PERIGEAN TIDES  Tides of increased range occurring monthly as the result of the moon being 
in perigee. 

 PERIODIC CURRENT  A current caused by the tide-producing forces of the moon and the sun; 
a part of the same general movement of the sea that is manifested in the vertical rise and 
fall of the tides.  See also CURRENT, FLOOD and CURRENT, EBB. 
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 PERMANENT CURRENT  A current that runs continuously, independent of the tides and 
temporary causes.  Permanent currents include the freshwater discharge of a river and the 
currents that form the general circulatory systems of the oceans. 

 PERMEABILITY  The property of bulk material (sand, crushed rock, soft rock in situ) which 
permit movement of water through its pores. 

 PERMEABLE GROIN  A GROIN with openings or voids large enough to permit passage of 
appreciable quantities of LITTORAL DRIFT through the structure. 

 PETROGRAPHY  The systematic description and classification of rocks. 
 PETROLOGY  That branch of geology which treats the scientific study of rocks. 
 PHASE  In surface wave motion, a point in the period to which the wave motion has advanced 

with respect to a given initial reference point. 
 PHASE INEQUALITY  Variations in the tides or tidal currents associated with changes in the 

phase of the Moon in relation to the Sun. 
 PHASE VELOCITY  Propagation velocity of an individual wave as opposed to the velocity of a 

wave group. 
 PHI GRADE SCALE  A logarithmic transformation of the Wentworth grade scale for size 

classifications of sediment grains based on the negative logarithm to the base 2 of the 
particle diameter:  = -log2d.  See SOIL CLASSIFICATION. 

 PHOTIC ZONE  The zone extending downward from the ocean surface within which the light is 
sufficient to sustain photosynthesis.  The depth of this layer varies with water clarity, 
time of year and cloud cover, but is about 100 m in the open ocean.  It may be considered 
the Depth to which all light is filtered out except for about one percent and may be 
calculated as about two and one-half times the depth of a SECCHI DISK reading. 

 PHOTOGRAMMETRY  The science of deducing the physical dimensions of objects from 
measurements on images (usually photographs) of the objects. 

 PHOTOMOSAIC  An assemblage of photographs, each of which shows part of a region, put 
together in such a way that each point in the region appears once and only once in the 
assemblage, and scale variation is minimized. 

 PHREATIC LEVEL  Upper surface of an unconfined aquifer (e.g. the top sand layer in a dike) 
at which the pressure in the groundwater is equal to atmospheric pressure. 

 PHYSICAL GEOLOGYA large division of Geology concerned with earth materials, changes of 
the surface and interior of the earth, and the forces that cause those changes. 

 PHYSICAL MODELING  Refers to the investigation of coastal or riverine processes using a 
scaled model. 

 PIER  A structure, usually of open construction, extending out into the water from the shore, to 
serve as a landing place, recreational facility, etc., rather than to afford coastal protection.  
In the Great Lakes, a term sometimes improperly applied to jetties. 

 PIERSON-MOSKOWITZ SPECTRUM  Wave spectrum typical of fully-developed deep water 
waves. 

 PIEZOMETRIC SURFACE  The level at which the hydrostatic water pressure in an aquifer will 
stand if it is free to seek equilibrium with the atmosphere.  For artesian wells, this is 
above the ground surface. 

 PILE  A long, heavy timber or section of concrete or metal that is driven or jetted into the earth 
or seabed to serve as a support or protection. 

 PILING  A group of piles. 
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 PIPING  Erosion of closed flow channels (tunnels) by the passage of water through soil; flow 
underneath structures, carrying away particles, may endanger the stability of the 
structure. 

 PLACER DEPOSITS  Mineral deposits consisting of dense, resistant and often economically 
valuable minerals which have been weathered from TERRIGENOUS rocks, transported 
to the sea and concentrated in marine sediments by wave or current action. 

 PLACER MINE  Surface mines in which valuable mineral grains are extracted from stream bar 
or beach deposits. 

 PLAIN, COASTAL  See COASTAL PLAIN. 
 PLANFORM  The outline or shape of a body of water as determined by the still-water line. 
 PLATEAU  A land area (usually extensive) having a relatively level surface raised sharply 

above adjacent land on at least one side; table land.  A similar undersea feature. 
 PLEISTOCENE  An epoch of the Quaternary Period characterized by several glacial ages. 
 PLUNGE POINT  (1) For a plunging wave, the point at which the wave curls over and falls.  (2) 

The final breaking point of the waves just before they rush up on the beach. 
 PLUNGING BREAKER  See BREAKER. 
 POCKET BEACH  A beach, usually small, in a coastal reentrant or between two littoral 

barriers. 
 POINT  (1) The extreme end of a CAPE, or the outer end of any land area protruding into the 

water, usually less prominent than a CAPE.  (2) A low profile shoreline promontory of 
more or less triangular shape, the top of which extends seaward. 

 POORLY-SORTED (POORLY-GRADED)  Said of a clastic sediment or rock that consists of 
particles of many sizes mixed together in an unsystematic manner so that no one size 
class predominates. 

 PORE PRESSURE  The interstitial pressure of water within a mass of soil or rock. 
 POROSITY  Percentage of the total volume of a soil not occupied by solid particles but by air 

and water. 
 PORT  A place where vessels may discharge or receive cargo; it may be the entire harbor 

including its approaches and anchorages, or only the commercial part of a harbor where 
the QUAYS, WHARVES, facilities for transfer of cargo, docks, and repair shops are 
situated. 

 POTENTIAL ENERGY OF WAVES  In a progressive oscillatory wave, the energy resulting 
from the elevation or depression of the water surface from the undisturbed level. 

 PRISM  See TIDAL PRISM. 
 PROBABILITY  The chance that a prescribed event will occur, represented by a number (p) in 

the range 0 - 1.  It can be estimated empirically from the relative frequency (i.e. the 
number of times the particular event occurs, divided by the total count of all events in the 
class considered). 

 PROBABILITY DENSITY  Function specifying the distribution of a variable. 
 PROBABLE MAXIMUM WATER LEVEL  A hypothetical water level (exclusive of wave 

runup from normal wind-generated waves) that might result from the most severe 
combination of hydrometeorological, geoseismic, and other geophysical factors and that 
is considered reasonably possible in the region involved, with each of these factors 
considered as affecting the locality in a maximum manner.  This level represents the 
physical response of a body of water to maximum applied phenomena such as hurricanes, 
moving squall lines, other cyclonic meteorological events, tsunamis, and astronomical 
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tide combined with maximum probable ambient hydrological conditions such as wave 
setup, rainfall, runoff, and river flow.  It is a water level with virtually no risk of being 
exceeded. 

 PRODELTA  The part of a DELTA that is below the effective depth of wave erosion, lying 
beyond the delta front and sloping down into the basin into which the delta is advancing. 

 PROFILE, BEACH  The intersection of the ground surface with a vertical plane; may extend 
from the behind the DUNE line or the top of a bluff to well seaward of the breaker zone. 

 PROGRESSION (of a beach)  See ADVANCE. 
 PROGRESSIVE WAVE  A wave that moves relative to a fixed coordinate system in a fluid.  

The direction in which it moves is termed the direction of wave propagation. 
 PROMONTORY  A high point of land projecting into a body of water; a HEADLAND. 

 PROPAGATION OF WAVES  The transmission of waves through water. 
 PROTOTYPE  In laboratory usage, the full-scale structure, concept, or phenomenon used as a 

basis for constructing a scale model or copy. 
 
 
---------- Q ---------- 

 
 
 QUARRY RUN  Waste of generally small material, in a quarry, left after selection of larger 

grading. 
 QUARRYSTONE  Any stone processed from a quarry. 
 QUATERNARY  (1) The youngest geologic period;  includes the present time.  (2) The latest 

period of time in the stratigraphic column, 0 B 2 million years, represented by local 
accumulations of glacial (PLEISTOCENE) and post-glacial (HOLOCENE) deposits 
which continue, without change of fauna, from the top of the Pliocene (Tertiary).  The 
quaternary appears to be an artificial division of time to separate pre-human from post-
human sedimentation.  As thus defined, the quaternary is increasing in duration as man’s 
ancestry becomes better understood. 

 QUAY (pronounced KEY)  A stretch of paved bank, or a solid artificial landing place parallel to 
the navigable waterway, for use in loading and unloading vessels. 

 QUICKSAND  Loose, yielding, wet sand which offers no support to heavy objects.  The upward 
flow of the water has a velocity that eliminates contact pressures between the sand grains 
and causes the sand-water mass to behave like a fluid that yields easily to pressure and 
tends to suck down heavy objects. 

 
 
---------- R ---------- 

 
 
 RADAR  An instrument for determining the distance and direction to an object by measuring 

the time needed for radio signals to travel from the instrument to the object and back, and 
by measuring the angle through which the instrument’s antenna has traveled. 
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 RADIOACTIVE DATING (RADIOMETRIC DATING)  Calculating an age in years for 
geologic materials by measuring the presence of a short-life radioactive element (e.g., 
carbon-14) or a long-life element (e.g., potassium-40/argon-40).  The term applies to all 
methods of age determination based on nuclear decay of naturally-occurring radioactive 
isotopes.  Carbon-14 methods are often used to determine the age of peat or wood found 
in BARRIER ISLANDS. 

 RADIUS OF MAXIMUM WINDS  Distance from the eye of a hurricane, where surface and 
wind velocities are zero, to the place where surface wind speeds are maximum. 

 RAISED BEACH  A wave-cut platform, with or without a covering of beach materials, which is 
now raised above the present sea-level. 

 RANDOM WAVES  The laboratory simulation of irregular sea states that occur in nature. 
 RANGE OF TIDE  The difference in height between consecutive high and low waters.  The 

MEAN RANGE is the difference between MEAN HIGH WATER and MEAN LOW 
WATER.  The GREAT DIURNAL RANGE or DIURNAL RANGE is the difference in 
height between MEAN HIGHER HIGH WATER (MHHW) and MEAN LOWER LOW 
WATER (MLLW).  Where the type of tide is diurnal, the mean range is the same as the 
diurnal range. 

 RAY, WAVE  See ORTHOGONAL. 
 RAYLEIGH DISTRIBUTION  A model probability distribution, commonly used in analysis of 

waves. 
 REACH  (1) An arm of the ocean extending into the land, e.g., an ESTUARY.  (2) A straight 

section of restricted waterway that is uniform with respect to discharge, slope, and cross-
section. 

 RECENT(Geological)  A synonym of HOLOCENE.  See also QUATERNARY. 
 RECESSION  (1) A continuing landward movement of the shoreline.  (2) A net landward 

movement of the shoreline over a specified time. 
 RECHARGE  The addition of new water to an AQUIFER or to the zone of saturation. 
 RECTIFICATION  The process of producing, from a tilted or oblique photograph, a photograph 

from which displacement caused by tilt has been removed. 
 RECURVED SPIT  A spit whose outer end in turned landward by current deflection, by the 

opposing action of two or more currents, or by WAVE REFRACTION; a HOOK. 
 RED TIDE  Discoloration of surface waters, most frequently in COASTAL ZONES, caused by 

large concentrations of microorganisms. 
 REEF  An offshore consolidated rock hazard to navigation, with a least depth of about 20 meters 

(10 fathoms) or less.  Often refers to coral FRINGING REEFS in tropical waters. 

 REEF, ATOLL  See ATOLL. 
 REEF, BARRIER  See BARRIER REEF. 
 REEF BREAKWATER  Rubble mound of single-sized stones with a crest at or below sea level 

which is allowed to be (re)shaped by the waves. 
 REEF, FRINGING  See FRINGING REEF. 
 REFERENCE PLANE  The plane to which sounding and tidal data are referred.  See DATUM 

PLANE. 
 REFERENCE POINT  (1) A specified location (in plan elevation) to which measurements are 

referred.  (2) In beach material studies, a specified point within the REFERENCE ZONE. 
 REFERENCE STATION  A place for which tidal constants have previously been determined 

and which is used as a standard for the comparison of simultaneous observations at a 
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second station.  Also, a station for which independent daily predictions are given in the 
tide or current tables from which corresponding predictions are obtained for other stations 
by means of differences or factors. 

 REFERENCE ZONE  In regard to beach measuring procedure, the part of the FORESHORE 
subject to wave action (between the Limit of UPRUSH and the Limit of BACKWASH) 
at mid-tide stage.  In areas of great tidal range a more complex definition is needed. 

 REFLECTED WAVE  That part of an incident wave that is returned seaward when a wave 
impinges on a steep beach, barrier, or other reflecting surface. 

 REFLECTION  The process by which the energy of the wave is returned seaward. 
 REFRACTION (of water waves)  (1) The process by which the direction of a wave moving in 

shallow water at an angle to the contours is changed: the part of the wave advancing in 
shallower water moves more slowly than that part still advancing in deeper water, 
causing the wave crest to bend toward alignment with the underwater contours.  (2) The 
bending of wave crests by currents. 

REFRACTION COEFFICIENT  The square root of the ratio of the distance between adjacent 
orthogonals in deep water to their distance apart in shallow water at a selected point.  
When multiplied by the SHOALING FACTOR and a factor for friction and percolation, 
this becomes the WAVE HEIGHT COEFFICIENT or the ratio of the refracted wave 
height at any point to the deepwater wave height.  Also, the square root of the ENERGY 
COEFFICIENT. 

 REFRACTION DIAGRAM  A drawing showing positions of wave crests and/or orthogonals in 
a given area for a specific deepwater wave period and direction. 

 REGULAR WAVES  Waves with a single height, period, and direction. 
 RESERVOIR  An artificial lake, basin or tank in which a large quantity of water can be stored. 
 RESIDUAL (WATER LEVEL)  The components of water level not attributable to astronomical 

effects. 
 RESONANCE  The phenomenon of amplification of a free wave or oscillation of a system by a 

forced wave or oscillation of exactly equal period.  The forced wave may arise from an 
impressed force upon the system or from a boundary condition. 

 RETARDATION  The amount of time by which corresponding tidal phases grow later day by 
day (about 50 minutes). 

 RETROGRESSION (of a beach)  See RECESSION. 
 RETURN PERIOD  Average period of time between occurrences of a given event. 
 REVERSING TIDAL CURRENT  A tidal current that flows alternately in approximately 

opposite directions with a SLACK WATER at each reversal of direction.  Currents of this 
type usually occur in rivers and straits where the direction of flow is more or less 
restricted to certain channels.  When the movement is towards the shore, the current is 
said to be flooding, and when in the opposite direction it is said to be ebbing. 

 REVETMENT  (1) A facing of stone, concrete, etc., to protect an EMBANKMENT, or shore 
structure, against erosion by wave action or currents.  (2) A retaining wall.  (3) Facing of 
stone, concrete, etc., built to protect a SCARP, EMBANKMENT or shore structure 
against erosion by waves of currents. 

 REYNOLDS NUMBER  The dimensionless ratio of the inertial force to the viscous force in 
fluid motion, Re = VL/ν where L is a characteristic length, ν the kinematic viscosity, and 
V a characteristic velocity.  The Reynolds number is of importance in the theory of 
hydrodynamic stability and the origin of turbulence. 
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 RIA  A long, narrow inlet, with depth gradually diminishing inward.  Shorter and shallower than 
a FJORD. 

 RIDGE AND RUNNEL  Beach topography consisting of sand bars that have welded to the 
shore during the recovery stage after a storm.  At low tide, water ponds in the runnels and 
flows seaward through gaps in the ridge. 

 RIDGE, BEACH  A nearly continuous mound of beach material that has been shaped by wave 
or other action.  Ridges may occur singly or as a series of approximately parallel 
deposits. 

 RILL MARKS  Tiny drainage channels in a beach caused by the flow seaward of water left in 
the sands of the upper part of the beach after the retreat of the tide or after the dying 
down of storm waves. 

 RIP  A body of water made rough by waves meeting an opposing current, particularly a tidal 
current;  often found where tidal currents are converging and sinking. 

 RIP CHANNEL  A channel cut by seaward flow of RIP CURRENT, usually crosses a 
LONGSHORE BAR. 

 RIP CURRENT  A strong surface current flowing seaward from the shore.  It usually appears as 
a visible band of agitated water and is the return movement of water piled up on the shore 
by incoming waves and wind.  With the seaward movement concentrated in a limited 
band its velocity is somewhat accentuated.  A rip consists of three parts:  the FEEDER 
CURRENTS flowing parallel to the shore inside the breakers;  the NECK, where the 
feeder currents converge and flow through the breakers in a narrow band or "rip";  and 
the HEAD OF RIP, where the current widens and slackens outside the breaker line.  A rip 
current is often miscalled a rip tide.  Also called RIP SURF. 

 RIP SURF  See RIP CURRENT. 
 RIP TIDE  Incorrect term for RIP CURRENT. 
 RIPARIAN  (1) Pertaining to the banks of a body of water.  (2) Of, on or pertaining to the banks 

of a river. 
 RIPPLE  (1) The ruffling of the surface of water; hence, a little curling wave or undulation.  (2) 

A wave less than 0.05 meter (2 inches) long controlled to a significant degree by both 
surface tension and gravity.  See CAPILLARY WAVE and GRAVITY WAVE. 

 RIPPLE MARKS  Undulations produced by fluid movement over sediments.  Oscillatory 
currents produce symmetric ripples whereas a well-defined current direction produces 
asymmetrical ripples.  The crest line of ripples may be straight or sinuous.  The 
characteristic features of ripples depend upon current velocity, particle size, persistence 
of current direction and whether the fluid is air or water.  Sand DUNES may be regarded 
as a special kind of super-ripple. 

 RIPPLES (bed forms)  Small bed forms with wavelengths less than 0.3 m (1 foot) and heights 
less than 0.03 m (0.1 foot). 

 RIPRAP  A protective layer or facing of quarrystone, usually well graded within wide size limit, 
randomly placed to prevent erosion, scour, or sloughing of an embankment or bluff; also 
the stone so used.  The quarrystone is placed in a layer at least twice the thickness of the 
50 percent size, or 1.25 times the thickness of the largest size stone in the gradation. 

 RISK ANALYSIS  Assessment of the total risk due to all possible environmental inputs and all 
possible mechanisms. 

 ROCK WEATHERING  Physical and mineralogical decay processes in rock brought about by 
exposure to climatic conditions either at the present time or in the geological past. 
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 ROCK  (1) An aggregate of one or more minerals; or a body of undifferentiated mineral matter 
(e.g., obsidian).  The three classes of rocks are:  (a) Igneous B crystalline rocks formed 
from molten material. Examples are granite and basalt.  (b) Sedimentary B resulting from 
the consolidation of loose sediment that has accumulated in layers. Examples are 
sandstone, shale and limestone.  (c) Metamorphic B formed from preexisting rock as a 
result of burial, heat, and pressure.  (2) A rocky mass lying at or near the surface of the 
water or along a jagged coastline, especially where dangerous to shipping. 

 ROLLER  An indefinite term, sometimes considered to denote one of a series of long-crested, 
large waves which roll in on a shore, as after a storm. 

 ROTARY CURRENT, TIDAL  A tidal current that flows continually with the direction of flow 
changing through all points of the compass during the tidal period.  Rotary currents are 
usually found offshore where the direction of flow is not restricted by any barriers.  The 
tendency for the rotation in direction has its origin in the deflecting force of the earth’s 
rotation and, unless modified by local conditions, the change is clockwise in the Northern 
Hemisphere and counterclockwise in the Southern Hemisphere.  The velocity of the 
current usually varies throughout the tidal cycle, passing through two maxima in 
approximately opposite directions and two minima with the direction of the current at 
approximately ninety degrees from the direction at the time of maximum velocity. 

 RUBBLE  (1) Loose angular waterworn stones along a beach.  (2) Rough, irregular fragments of 
broken rock. 

 RUBBLE-MOUND STRUCTURE  A mound of random-shaped and random-placed stones 
protected with a cover layer of selected stones or specially shaped concrete armor units.  
(Armor units in a primary cover layer may be placed in an orderly manner or dumped at 
random.) 

 RUN-UP, RUN-DOWN  The upper and lower levels reached by a wave on a beach or coastal 
structure, relative to still-water level. 

 RUNNEL  A corrugation or trough formed in the foreshore or in the bottom just offshore by 
waves or tidal currents. 

 
 

 
 

---------- S ---------- 

 S-SLOPE BREAKWATER  Rubble mound with gentle slope around still-water level and 
steeper slopes above and below. 

 SALIENT  Coastal formation of beach material developed by WAVE REFRACTION and 
diffraction and long shore drift comprising of a bulge in the coastline towards an offshore 
island or breakwater, but not connected to it as in the case of a TOMBOLO - see also 
Ness and Cusp. 

 SALINITY  Number of grams of salt per thousand grams of sea water, usually expressed in 
parts per thousand (ppt). 

 SALINITY GRADIENT  Change in salinity with expressed in parts per thousand per foot. 
 SALT MARSH  A marsh periodically flooded by salt water (also tidal marsh;  sea marsh). 
 SALT-WEDGE ESTUARY  In this circulation type, the density-driven component dominates 

and two well-mixed layers are separated by a sharp HALOCLINE.  The seawater 
entering the channel appears as a tongue or wedge. 
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 SALTATION  That method of sand movement in a fluid in which individual particles leave the 
bed by bounding nearly vertically and, because the motion of the fluid is not strong or 
turbulent enough to retain them in suspension, return to the bed at some distance 
downstream.  The travel path of the particles is a series of hops and bounds. 

 SAND  Sediment particles, often largely composed of quartz, with a diameter of between 0.062 
mm and 2 mm, generally classified as fine, medium, coarse or very coarse.  Beach sand 
may sometimes be composed of organic sediments such as calcareous reef debris or shell 
fragments. 

 SAND BAR  (1) See BAR.  (2) In a river, a ridge of sand built to or near the surface by river 
currents. 

 SAND BYPASSING  See BYPASSING, SAND. 
 SAND DUNE  A DUNE formed of sand. 
 SAND REEF  See BAR. 
 SAND SPIT  A narrow sand EMBANKMENT, created by an excess of deposition at its seaward 

terminus, with its distal end (the end away from the point of origin) terminating in open 
water.  

 SAND WAVES  (1) Longshore sand waves are large-scale features that maintain form while 
migrating along the shore with speeds on the order of kilometers per year.  (2) Large-
scale asymmetrical bedforms in sandy river beds having high length to height ratios and 
continuous crestlines. 

 SCARP, BEACH  An almost vertical slope along the beach caused by erosion by wave action.  
It may vary in height from a few cm to a meter or so, depending on wave action and the 
nature and composition of the beach.  See also ESCARPMENT. 

 SCATTER DIAGRAM  A two-dimensional histogram showing the joint probability density of 
two variables within a data sample. 

 SCOUR  Removal of underwater material by waves and currents, especially at the base or toe of 
a shore structure. 

 SCOUR PROTECTION  Protection against erosion of the seabed in front of the toe. 
 SEA  (1) A large body of salt water, second in rank to an ocean, more or less landlocked and 

generally part of, or connected with, an ocean or a larger sea. Examples:  Mediterranean 
Sea;  South China Sea.  (2) Waves caused by wind at the place and time of observation.  
(3) State of the ocean or lake surface, in regard to waves. 

 SEA BREEZE  A light wind blowing from the sea toward the land caused by unequal heating of 
land and water masses. 

 SEA CHANGE  (1) A change wrought by the sea.  (2) A marked transformation. 
 SEA CLIFF  A cliff situated at the seaward edge of the coast. 
  SEA GRASS  Members of marine seed plants that grow chiefly on sand or sand-mud bottom.  

They are most abundant in water less than 9 m deep.  The common types are: Eel grass 
(Zostera), Turtle grass (Thallasia), and Manatee grass (Syringodium). 

 SEA LEVEL  See MEAN SEA LEVEL. 
 SEA LEVEL RISE  The long-term trend in MEAN SEA LEVEL. 
 SEA PUSS  A dangerous longshore current;  a rip current caused by return flow; loosely, the 

submerged channel or inlet through a bar caused by those currents. 
 SEA STATE  Description of the sea surface with regard to wave action.  Also called state of 

sea. 
 SEACOAST  The coast adjacent to the sea or ocean. 
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 SEAMOUNT  An elevation rising more than 1000 meters above the ocean floor, and of limited 
extent across the summit.  Compare KNOLL. 

 SEAS  Waves caused by wind at the place and time of observation. 
 SEASHORE  (1) (Law) All ground between the ordinary high-water and low-water mark.  (2) 

The shore of the sea or ocean, often used in a general sense (e.g., to visit the seashore). 
 SEAWALL  (1) A structure, often concrete or stone, built along a portion of a coast to prevent 

erosion and other damage by wave action.  Often it retains earth against its shoreward 
face.  (2) A structure separating land and water areas to alleviate the risk of flooding by 
the sea.  Generally shore-parallel, although some reclamation SEAWALLS may include 
lengths that are normal or oblique to the (original) shoreline.  A SEAWALL is typically 
more massive and capable of resisting greater wave forces than a BULKHEAD. 

 SECHHI DISK  Visibility disk (white and black, 30 cm diameter) used to measure the 
transparency of the water. 

 SEDIMENT  (1) Loose, fragments of rocks, minerals or organic material which are transported 
from their source for varying distances and deposited by air, wind, ice and water.  Other 
sediments are precipitated from the overlying water or form chemically, in place.  
Sediment includes all the unconsolidated materials on the sea floor.  (2) The fine grained 
material deposited by water or wind. 

 SEDIMENT CELL  In the context of a strategic approach to coastal management, a length of 
coastline in which interruptions to the movement of sand or shingle along the beaches or 
near shore sea bed do not significantly affect beaches in the adjacent lengths of coastline. 

 SEDIMENT SINK  Point or area at which beach material is irretrievably lost from a coastal cell, 
such as an estuary, or a deep channel in the seabed. 

 SEDIMENT SOURCE  Point or area on a coast from which beach material is supplied, such as 
an eroding cliff, or river mouth. 

 SEDIMENT TRANSPORT  The main agencies by which sedimentary materials are moved are: 
gravity (gravity transport); running water (rivers and streams); ice (glaciers); wind; the 
sea (currents and LONGSHORE DRIFT).  Running water and wind are the most 
widespread transporting agents.  In both cases, three mechanisms operate, although the 
particle size of the transported material involved is very different, owing to the 
differences in density and viscosity of air and water.  The three processes are: rolling or 
traction, in which the particle moves along the bed but is too heavy to be lifted from it; 
SALTATION; and suspension, in which particles remain permanently above the bed, 
sustained there by the turbulent flow of the air or water. 

 SEDIMENT TRANSPORT PATHS  The routes along which net sediment movement occurs. 
 SEEPAGE  The movement of water through small cracks, pores, interstices, out of a body of 

surface of subsurface water.  The loss of water by infiltration from a canal, reservoir or 
other body of water or from a field.  It is generally expressed as flow volume per unit of 
time. 

 SEICHE  (1) A standing wave oscillation of an enclosed waterbody that continues, pendulum 
fashion, after the cessation of the originating force, which may have been either seismic 
or atmospheric.  (2) An oscillation of a fluid body in response to a disturbing force 
having the same frequency as the natural frequency of the fluid system.  Tides are now 
considered to be seiches induced primarily by the periodic forces caused by the Sun and 
Moon.  (3) In the Great Lakes area, any sudden rise in the water of a harbor or a lake 
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whether or not it is oscillatory (although inaccurate in a strict sense, this usage is well 
established in the Great Lakes area). 

 SEISMIC REFLECTION  The return of part of the energy of seismic waves to the earth=s 
surface after the waves bounce off an acoustic boundary (typically rock or material of 
different density). 

 SEISMIC REFRACTION  The bending of seismic waves as they pass from one material to 
another. 

 SEISMIC SEA WAVE  See TSUNAMI. 
 SELECTIVE SORTING  A process occurring during sediment transport that tends to separate 

particles according to their size, density, and shape.  A well-sorted distribution contains a 
limited range of grain sizes and usually indicates that the depositional environment 
contains a narrow range of sediment sizes or a narrow band of depositional energy.  A 
poorly-sorted distribution contains a wide range of grain sizes indicating multiple sources 
of sediment or a wide range of deposition energies. 

 SELF-SUSTAINING BEACH  A BEACH that has either natural or engineered sand retention 
and that can be stable through the continued supply of natural sediment sources, without 
any mechanical nourishment over a long period.  Subsets include: Natural or 
Geomorphically Self-sustaining Beaches:  self-sustaining naturally without the 
construction of retaining structures and with no continued mechanical sand nourishment. 
Anthropogenically Self-sustaining Beaches:  self-sustaining by the construction of 
retaining structure(s) with or without initial beach fill but with no continued mechanical 
sand nourishment. 

 SEMIDIURNAL  Having a period or cycle of approximately one-half of a tidal day (12.4 
hours).  The predominating type of tide throughout the world is semidiurnal, with two 
high waters and two low waters each tidal day.  The tidal current is said to be semidiurnal 
when there are two flood and two ebb periods each day. 

 SENSING, REMOTE  The response of an instrument or organism to stimuli from a distant 
source. 

 SETBACK  A required open space, specified in shoreline master programs, measured 
horizontally upland from an perpendicular to the ordinary high water mark. 

 SETUP, WAVE  Superelevation of the water surface over normal surge elevation due to 
onshore mass transport of the water by wave action alone. 

 SETUP, WIND  See WIND SETUP. 
 SHALLOW WATER  (1) Commonly, water of such a depth that surface waves are noticeably 

affected by bottom topography.  It is customary to consider water of depths less than one-
half the surface wavelength as shallow water.  See TRANSITIONAL ZONE and DEEP 
WATER.  (2) More strictly, in hydrodynamics with regard to progressive gravity waves, 
water in which the depth is less than 1/25 the wavelength. 

 SHALLOW WATER WAVE  A PROGRESSIVE WAVE which is in water less than 1/25 the 
wave length in depth. 

 SHEAR INSTABILITIES  Instabilities of the surf zone longshore current commonly found on 
beaches with barred depth profiles.  These instabilities are vertical motions with little 
surface elevation expression.  Conservation of vorticity is the restoring mechanism. 

 SHEAR WAVES  See SHEAR INSTABILITIES 
 SHEET EROSION  The removal of a thin layer of surface material, usually topsoil, by a 

flowing sheet of water. 
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 SHEET FLOW  Sediment grains under high sheer stress moving as a layer that extends from the 
bed surface to some distance below (on the order of a few cm).  Grains are transported in 
the direction of fluid flow. 

 SHEET PILE  See PILE, SHEET. 
 SHEET, SMOOTH  A sheet on which field control and hydrographic data such as soundings, 

depth curves, and regions surveyed with a wire drag are finally plotted before being used 
in making a final chart. 

 SHELF, CONTINENTAL  See CONTINENTAL SHELF. 
 SHELF, INSULAR  See INSULAR SHELF. 
 SHINGLE  (1) Loosely and commonly, any beach material coarser than ordinary gravel, 

especially any having flat or flattish pebbles.  (2) Strictly and accurately, beach material 
of smooth, well-rounded pebbles that are roughly the same size.  The spaces between 
pebbles are not filled with finer materials.  Shingle often gives out a musical sound when 
stepped on.  The term is more widely used in Great Britain than in the U.S. 

 SHOAL  (1) (noun) A detached area of any material except rock or coral.  The depths over it are 
a danger to surface navigation.  Similar continental or insular shelf features of greater 
depths are usually termed BANKS.  (2) (verb) To become shallow gradually.  (3) To 
cause to become shallow.  (4) To proceed from a greater to a lesser depth of water. 

 SHOALING  Decrease in water depth.  The transformation of wave profile as they propagate 
inshore. 

 SHOALING COEFFICIENT  The ratio of the height of a wave in water of any depth to its 
height in deep water with the effects of refraction, friction, and percolation eliminated.  
Sometimes SHOALING FACTOR or DEPTH FACTOR.  See also ENERGY 
COEFFICIENT and REFRACTION COEFFICIENT. 

 SHOALING FACTOR  See SHOALING COEFFICIENT. 
 SHORE  The narrow strip of land in immediate contact with the sea, including the zone between 

high and low water lines.  A shore of unconsolidated material is usually called a BEACH.  
Also used in a general sense to mean the coastal area (e.g., to live at the shore). 

 SHORE NORMAL  A line at right-angles to the contours in the surf zone. 
 SHORE TERRACE  A terrace made along a COAST by the action of waves and shore currents; 

it may become dry land by the uplifting of the shore or the lowering of the water.  Also 
known as shore platform or wave-cut platform. 

 SHOREFACE  The narrow zone seaward from the low tide SHORELINE, covered by water, 
over which the beach sands and gravels actively oscillate with changing wave conditions.  
See INSHORE (ZONE). 

 SHORELINE  The intersection of a specified plane of water with the shore or beach (e.g., the 
high water shoreline would be the intersection of the plane of mean high water with the 
shore or beach).  The line delineating the shoreline on National Ocean Service nautical 
charts and surveys approximates the mean high water line. 

 SHORELINE MANAGEMENT  The development of strategic, long-term and sustainable 
Coastal defense and land-use policy within a sediment cell. 

 SHORT-CRESTED WAVE  A wave, the crest length of which is of the same order of 
magnitude as the wave length.  A system of short-crested waves has the appearance of 
hills being separated by troughs. 

 SIGNIFICANT WAVE  A statistical term relating to the one-third highest waves of a given 
wave group and defined by the average of their heights and periods.  The composition of 
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the higher waves depends upon the extent to which the lower waves are considered.  
Experience indicates that a careful observer who attempts to establish the character of the 
higher waves will record values which approximately fit the definition of the significant 
wave. 

 SIGNIFICANT WAVE HEIGHT  The average height of the one-third highest waves of a given 
wave group.  Note that the composition of the highest waves depends upon the extent to 
which the lower waves are considered.  In wave record analysis, the average height of the 
highest one-third of a selected number of waves, this number being determined by 
dividing the time of record by the significant period.  Also CHARACTERISTIC WAVE 
HEIGHT. 

 SIGNIFICANT WAVE PERIOD  An arbitrary period generally taken as the period of the one-
third highest waves within a given group.  Note that the composition of the highest waves 
depends upon the extent to which the lower waves are considered.  In wave record 
analysis, this is determined as the average period of the most frequently recurring of the 
larger well-defined waves in the record under study. 

 SILL  (1) A submerged structure across a river to control the water level upstream.  (2) The crest 
of a spillway. 

 SILT  Sediment particles with a grain size between 0.004 mm and 0.062 mm, i.e. coarser than 
clay particles but finer than sand.  See SOIL CLASSIFICATION. 

 SINUSOIDAL WAVE  An oscillatory wave having the form of a sinusoid. 
 SLACK TIDE (SLACK WATER)  The state of a tidal current when its velocity is near zero, 

especially the moment when a reversing current changes direction and its velocity is zero.  
Sometimes considered the intermediate period between ebb and flood currents during 
which the velocity of the currents is less than 0.05 meter per second (0.1 knot).  See 
STAND OF TIDE. 

 SLIDE  In mass wasting, movement of a descending mass along a plane approximately parallel 
to the slope of the surface. 

 SLIP  A berthing space between two piers. 
 SLIP FACE  The steep, downwind slope of a DUNE; formed from loose, cascading sand that 

generally keeps the slope at the ANGLE OF REPOSE (about 34 deg.). 
 SLOPE  The degree of inclination to the horizontal.  Usually expressed as a ratio, such as 1:25, 

indicating one unit rise in 25 units of horizontal distance; or in a decimal fraction (0.04).  
Also called GRADIENT. 

 SLOUGH  A small muddy marshland or tidal waterway which usually connects other tidal 
areas.  See BAYOU. 

 SLUICE  A structure containing a gate to control the flow of water from one area to another. 
 SLUMP  In mass wasting, movement along a curved surface in which the upper part moves 

vertically downward while the lower part moves outward. 
 SOFT DEFENSES  Usually refers to beaches (natural or designed) but may also relate to 

energy-absorbing beach-control structures, including those constructed of rock, where 
these are used to control or redirect coastal processes rather than opposing or preventing 
them. 

 SOIL  A layer of weathered, unconsolidated material on top of bed rock; in geologic usage, 
usually defined as containing organic matter and being capable of supporting plant 
growth. 
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 SOIL CLASSIFICATION (size)  An arbitrary division of a continuous scale of grain sizes such 
that each scale unit or grade may serve as a convenient class interval for conducting the 
analysis or for expressing the results of an analysis.  There are many classifications used. 

 SOLITARY WAVE  A wave consisting of a single elevation (above the original water surface), 
whose height is not necessarily small compared to the depth, and neither followed nor 
preceded by another elevation or depression of the water surfaces. 

 SORTING  Process of selection and separation of sediment grains according to their grain size 
(or grain shape or specific gravity). 

 SORTING COEFFICIENT  A coefficient used in describing the distribution of grain sizes in a 
sample of unconsolidated material.  It is defined as So = Q1/Q3, where Q1 is the diameter 
(in millimeters) which has 75 percent of the cumulative size-frequency (by weight) 
distribution smaller than itself and 25 percent larger than itself, and Q3 is that diameter 
having 25 percent smaller and 75 percent larger than itself. 

 SOUND  (1) (noun) a relatively long arm of the sea or ocean forming a channel between an 
island and a mainland or connecting two larger bodies, as a sea and the ocean, or two 
parts of the same body; usually wider and more extensive than a STRAIT. Example: 
Long Island Sound.  (2) (verb) To measure the depth of the water. 

 SOUNDING  A measured depth of water.  On hydrographic charts the soundings are adjusted to 
a specific plane of reference (SOUNDING DATUM). 

 SOUNDING DATUM  The plane to which soundings are referred.  See also CHART DATUM. 
 SOUNDING LINE  A line, wire, or cord used in sounding, which is weighted at one end with a 

plummet (sounding lead).  Also LEAD LINE. 
 SPILLING BREAKER  See BREAKER. 
 SPILLOVER LOBE  Linguoid, bar-like feature formed by ebb tidal current flow over a low area 

of an ebb shield. 
 SPILLWAY  A structure over or through a dam for discharging flood flows. 
 SPIT  A small point of land or a narrow shoal projecting into a body of water from the shore. 
 SPOIL  Overburden or other waste material removed in mining, dredging, and quarrying. 
 SPRING RANGE  The average SEMIDIURNAL range occurring at the time of SPRING 

TIDES and most conveniently computed from the harmonic constants.  It is larger than 
the MEAN RANGE where the type of tide is either SEMIDIURNAL or MIXED, and is 
of no practical significance where the type of tide is DIURNAL. 

 SPRING TIDAL CURRENTS  Tidal currents of increased velocity occurring semi-monthly as 
the result of the moon being new or full. 

 SPRING TIDE  A tide that occurs at or near the time of new or full moon (SYZYGY) and 
which rises highest and falls lowest from the mean sea level. 

 SPUR-DIKE  See GROIN. 
 STACK  An isolated, pillar-like rocky island isolated from a nearby headland by wave erosion; 

a needle or chimney rock. 
 STAND OF TIDE  A interval at high or low water when there is no sensible change in the 

height of the tide.  The water level is stationary at high and low water for only an instant, 
but the change in level near these times is so slow that it is not usually perceptible.  See 
SLACK TIDE. 

 STANDARD PROJECT HURRICANE  See HYPOTHETICAL HURRICANE. 
 STANDING WAVE  A type of wave in which the surface of the water oscillates vertically 

between fixed points, called nodes, without progression.  The points of maximum vertical 
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rise and fall are called antinodes or loops.  At the nodes, the underlying water particles 
exhibit no vertical motion, but maximum horizontal motion.  At the antinodes, the 
underlying water particles have no horizontal motion, but maximum vertical motion.  
They may be the result of two equal progressive wave trains traveling through each other 
in opposite directions.  Sometimes called CLAPOTIS or STATIONARY WAVE. 

 STATION, CONTROL  A point on the ground whose horizontal or vertical location is used as a 
basis for obtaining locations of other points. 

 STATIONARY WAVE  A wave of essentially stable form which does not move with respect to 
a selected reference point; a fixed swelling.  Sometimes called STANDING WAVE. 

 STEP  The nearly horizontal section which more or less divides the BEACH from the 
SHOREFACE. 

 STILLWATER LEVEL (SWL)  The surface of the water if all wave and wind action were to 
cease.  In deep water this level approximates the midpoint of the wave height.  In shallow 
water it is nearer to the trough than the crest.  Also called the UNDISTURBED WATER 
LEVEL. 

 STOCHASTIC  Having random variation in statistics. 
 STOCKPILE  Sand piled on a beach foreshore to nourish downdrift beaches by natural littoral 

currents or forces.  See FEEDER BEACH. 
 STONE  Quarried or artificially-broken rock for use in construction, either as aggregate or cut 

into shaped blocks as dimension stone. 
 STONE, DERRICK  Stone heavy enough to require handling individual pieces by mechanical 

means, generally weighing 900 kg (1 ton) and up. 
 STORM SURGE  A rise above normal water level on the open coast due to the action of wind 

stress on the water surface.  Storm surge resulting from a hurricane also includes that rise 
in level due to atmospheric pressure reduction as well as that due to wind stress.  See 
WIND SETUP. 

 STORM TIDE  See STORM SURGE. 
 STRAIT  A relatively narrow waterway between two larger bodies of water (e.g., Strait of 

Gibraltar).  See also SOUND. 

 STRAND  (1) The shore or beach of the ocean or a large lake.  The land bordering any large 
body of water, especially a sea or an arm of the ocean.  (2) WHARF, QUAY, or roadway 
along a water body, esp. in a city. 

 STRAND PLAIN  A prograded shore built seawards by waves and currents. 
 STRANDFLAT  A wave-cut platform;  an elevated wave-cut terrace 
 STRANDING  The running aground of a ship upon a STRAND, ROCK, or bottom so that it is 

fast for a time. 
 STRANDLINE  An accumulation of debris (e.g. seaweed, driftwood and litter) cast up onto a 

beach, and lying along the limit of wave up rush.  A shoreline above the present water 
level. 

 STRATIGRAPHY  (1) The study of stratified rocks (sediments and volcanics) especially their 
sequence in time.  (2) The character of the rocks and the correlation of beds in different 
localities. 

 STREAM  (1) A course of water flowing along a bed in the Earth.  (2) A current in the sea 
formed by wind action, water density differences, etc.; e.g. the Gulf Stream.  See also 
CURRENT, STREAM. 
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 STREAM CURRENT  A narrow, deep and swift ocean current, such as the Gulf Stream.  
Opposite of DRIFT CURRENT. 

 STRUCTURAL GEOLOGY  The branch of geology concerned with the internal structure of 
bed rock and the shapes, arrangement, and interrelationships of rock units. 

 SUBAERIAL  Situated or occurring on or adjacent to the surface of the earth, usually meaning 
above the water surface. 

 SUBAERIAL BEACH  That part of the beach which is uncovered by water (e.g. at low tide 
sometimes referred to as drying beach). 

 SUBAQUEOUS  Existing, formed, or taking place under water; submerged. 
 SUB-TIDAL BEACH  The part or the beach (where it exists) which extends from low water out 

to the approximate limit of storm erosion.  The latter is typically located at a maximum 
water depth of 8 to 10 meters and is often identifiable on surveys by a break in the slope 
of the bed. 

 SUBCRITICAL FLOW  Flow for which the Froude number is less than unity; surface 
disturbances can travel upstream. 

 SUBDUCTION ZONE  Elongate region in which the sea floor slides beneath a continent or 
island arc. 

 SUBMARINE CANYON  V-shaped valleys that run across the CONTINENTAL SHELF and 
down the CONTINENTAL SLOPE. 

 SUBMERGENT COAST  A COAST in which formerly dry land has been recently drowned, 
either by land subsidence or a rise in seal level. 

 SUBORDINATE STATION  A tide or current station at which a short series of observations has 
been obtained, which is to be reduced by comparison with simultaneous observations at 
another station having well-determined tidal or current constants. 

 SUBSIDENCE  Sinking or downwarping of a part of the earth’s surface. 
 SUBTIDAL  Below the low-water datum;  thus permanently. 
 SUPER-CRITICAL FLOW  Flow for which the Froude number is greater than unity; surface 

disturbances will not travel upstream. 
 SURF  (1) Collective term for BREAKERS.  (2) The wave activity in the area between the 

shoreline and the outermost limit of breakers.  (3) In literature, the term surf usually 
refers to the breaking waves on shore and on reefs when accompanied by a roaring noise 
caused by the larger waves breaking. 

 SURF BEAT  Irregular oscillations of the nearshore water level with periods on the order of 
several minutes. 

 SURF ZONE  The zone of wave action extending from the water line (which varies with tide, 
surge, set-up, etc.) out to the most seaward point of the zone (breaker zone) at which 
waves approaching the coastline commence breaking, typically in water depths of 
between 5 to 10 meters. 

 SURFACE GRAVITY WAVE (PROGRESSIVE)  (1) this is the term which applies to the 
WIND WAVES and SWELL of lakes and oceans, also called SURFACE WATER 
WAVE, SURFACE WAVE or DEEP WATER WAVE,  (2) a progressive GRAVITY 
WAVE in which the disturbance is confined to the upper limits of a body of water.  
Strictly speaking this term applies to those progressive GRAVITY WAVES whose 
celerity depends only upon the wave length. 

 SURFACE WATER WAVE  See SURFACE GRAVITY WAVE (PROGRESSIVE). 
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 SURGE  (1) The name applied to wave motion with a period intermediate between that of the 
ordinary wind wave and that of the tide, say from 2 to 60 min.  It is low height, usually 
less than 0.9 m (3 ft).  See also SEICHE.  (2) In fluid flow, long interval variations in 
velocity and pressure, not necessarily periodic, perhaps even transient in nature.  (3) see 
STORM SURGE. 

 SURGING BREAKER  See BREAKER. 
 SURVEY, CONTROL  A survey that provides coordinates (horizontal or vertical) of points to 

which supplementary surveys are adjusted. 
 SURVEY, HYDROGRAPHIC  A survey that has as its principal purpose the determination of 

geometric and dynamic characteristics of bodies of water. 
 SURVEY, PHOTOGRAMMETRIC  A survey in which monuments are placed at points that 

have been determined photogrammetrically. 
 SURVEY, TOPOGRAPHIC  A survey which has, for its major purpose, the determination of 

the configuration (relief) of the surface of the land and the location of natural and 
artificial objects thereon. 

 SUSPENDED LOAD  (1) The material moving in suspension in a fluid, kept up by the upward 
components of the turbulent currents or by colloidal suspension.  (2) The material 
collected in or computed from samples collected with a SUSPENDED LOAD 
SAMPLER.  Where it is necessary to distinguish between the two meanings given above, 
the first one may be called the "true suspended load." 

 SUSPENDED LOAD SAMPLER  A sampler which attempts to secure a sample of the water 
with its sediment load without separating the sediment from the water. 

 SUSTAINABLE BEACH  A beach area that is now and will continue to receive sufficient 
sediment input over a long period (years or decades) to remain stable.  Such sediment 
input can be through either natural supplies of sediment or various forms of mechanical 
beach nourishment (placement by hydraulic dredge, land haul of material, nearshore 
deposition, etc.) 

 SWALE  The depression between two beach ridges. 
 SWASH  The rush of water up onto the beach face following the breaking of a wave.  Also 

UPRUSH, RUNUP. 
 SWASH BARS  Low broad sandy bars formed by sediment in the surf and swash zones, 

separated by linear depressions, or RUNNELS, running parallel to the shore.  Sand 
bodies that form and migrate across ebb-tidal shoals because of currents generated by 
breaking waves. 

 SWASH CHANNEL  (1) On the open shore, a channel cut by flowing water in its return to the 
present body (e.g., a rip channel).  (2) A secondary channel passing through or shoreward 
of an inlet or river bar. 

 SWASH MARK  The thin wavy line of fine sand, mica scales, bits of seaweed, etc., left by the 
uprush when it recedes from its upward limit of movement on the beach face. 

 SWASH PLATFORM  Sand sheet located between the main ebb channel of a coastal inlet and 
an adjacent barrier island. 

 SWASH ZONE  The zone of wave action on the beach, which moves as water levels vary, 
extending from the limit of run-down to the limit of run-up. 

 SWELL  Wind-generated waves that have traveled out of their generating area.  Swell 
characteristically exhibits a more regular and longer period and has flatter crests than 
waves within their fetch (SEAS). 
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 SYNOPTIC CHART  A chart showing the distribution of meteorological conditions over a 
given area at a given time.  Popularly called a weather map. 

 SYZYGY  The two points in the Moon's orbit when the Moon is in conjunction or opposition to 
the Sun relative to the Earth; time of new or full Moon in the cycle of phases. 

 
 

 
 

---------- T ---------- 

 T-GROIN  A GROIN built in the shape of a letter T with the trunk section connected to land. 
 TECTONIC FORCES  Forces generated from within the earth that result in uplift, movement, or 

deformation of part of the earth’s crust. 
 TECTONICS  The study of the major structural features of the Earth’s crust or the broad 

structure of a region. 
 TERMINAL GROIN  A GROIN, often at the end of a barrier spit, intended to prevent sediment 

passage into the channel beyond. 
 TERRACE  A horizontal or nearly horizontal natural or artificial topographic feature 

interrupting a steeper slope, sometimes occurring in a series. 
 TERRIGENOUS SEDIMENTS  Literally land-formed sediment that has found its way to the 

sea floor.  The term is applied  (a) to sediments formed and deposited on land (e.g., soils, 
sand DUNES), and  (b) to material derived from the land when mixed in with purely 
marine material (e.g., sand or clay in a shelly limestone). 

 THALWEG  In hydraulics, the line joining the deepest points of an inlet or stream channel. 
 THRESHOLD OF MOTION  The point at which the forces imposed on a sediment particle 

overcome its inertia and it starts to move. 
 THRESHOLD VELOCITY  The maximum orbital velocity at which the sediment on the BED 

begins to move as waves approach shallow water. 
 TIDAL CREEK  A creek draining back-barrier areas with a current generated by the rise and 

fall of the tide. 
 TIDAL CURRENT  See CURRENT, TIDAL. 
 TIDAL DATUM  See CHART DATUM and DATUM PLANE. 
 TIDAL DAY  The time of the rotation of the Earth with respect to the Moon, or the interval 

between two successive upper transits of the Moon over the meridian of a place, 
approximately 24.84 solar hours (24 hours and 50 minutes) or 1.035 times the mean solar 
day.  Also called lunar day. 

 TIDAL DELTA  See DELTA. 
 TIDAL FLATS  (1) Marshy or muddy areas covered and uncovered by the rise and fall of the 

tide. A TIDAL MARSH.  (2) Marshy or muddy areas of the seabed which are covered 
and uncovered by the rise and fall of tidal water. 

 TIDAL INLET  (1) A natural inlet maintained by tidal flow.  (2) Loosely, any inlet in which the 
tide ebbs and flows.  Also TIDAL OUTLET. 

 TIDAL MARSH  Same as TIDAL FLATS. 
 TIDAL PERIOD  The interval of time between two consecutive, like phases of the tide.  
 TIDAL POOL  A pool of water remaining on a beach or reef after recession of the tide. 
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 TIDAL PRISM  (1) The total amount of water that flows into a harbor or out again with 
movement of the tide, excluding any fresh water flow.  (2) The volume of water present 
between MEAN LOW and MEAN HIGH TIDE. 

 TIDAL RANGE  The difference in height between consecutive high and low (or higher high 
and lower low) waters. 

 TIDAL RISE  The height of tide as referred to the datum of a chart. 
 TIDAL RIVER  That part of a river where the water level is influenced by the tide. 
 TIDAL SHOALS  Shoals that accumulate near inlets due to the transport of sediments by tidal 

currents associated with the inlet. 
 TIDAL STAND  An interval at high or low water when there is no observable change in the 

height of the tide.  The water level is stationary at high and Low water for only an instant, 
but the change in level near these times is so slow that it is not usually perceptible. 

 TIDAL WAVE  (1) The wave motion of the tides.  (2) In popular usage, any unusually high and 
destructive water level along a shore.  It usually refers to STORM SURGE or 
TSUNAMI. 

 TIDALLY DRIVEN CIRCULATION  The movement of fresh water and seawater that are 
mixed by the sloshing back and forth of the ESTUARY in response to ocean tides. 

 TIDE  The periodic rising and falling of the water that results from gravitational attraction of the 
Moon and Sun and other astronomical bodies acting upon the rotating Earth.  Although 
the accompanying horizontal movement of the water resulting from the same cause is 
also sometimes called the tide, it is preferable to designate the latter as TIDAL 
CURRENT, reserving the name TIDE for the vertical movement. 

 TIDE, DAILY RETARDATION OF  The amount of time by which corresponding tides grow 
later day by day (about 50 minutes).  Also LAGGING. 

 TIDE, DIURNAL  A tide with one high water and one low water in a day. 
 TIDE, EBB  See EBB TIDE. 
 TIDE, FLOOD  See FLOOD TIDE. 
 TIDE, MIXED  See MIXED TIDE. 
 TIDE, NEAP  See NEAP TIDE. 
 TIDE, SEMIDIURNAL  See SEMIDIURNAL TIDE. 
 TIDE, SLACK  See SLACK TIDE. 
 TIDE, SPRING  See SPRING TIDE. 
 TIDE STAFF  A tide gage consisting of a vertical graduated staff from which the height of the 

tide can be read directly.  It is called a fixed staff when it is secured in place so that it 
cannot be easily removed.  A portable staff is designed for removal from the water when 
not in use. 

 TIDE STATION  A place at which tide observations are being taken.  It is called a primary tide 
station when continuous observations are to be taken over a number of years to obtain 
basic tidal data for the locality.  A secondary tide station is one operated over a short 
period of time to obtain data for a specific purpose. 

 TIDE, STORM  See STORM SURGE. 
  TIDE TABLES  Tables which give daily predictions of the times and heights of the tide.  These 

predictions are usually supplemented by tidal differences and constants by means of 
which additional predictions can be obtained for numerous other places. 

 TIDE, WIND  See WIND TIDE. 
 TIDES, RIP  See RIP. 
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 TOE  Lowest part of sea- and portside BREAKWATER slope, generally forming the transition 
to the seabed. 

 TOMBOLO  A bar or spit that connects or "ties" an island to the mainland or to another island.  
See CUSPATE SPIT.  Also applied to sand accumulation between land and a 
DETACHED BREAKWATER. 

 TONGUE  A long narrow strip of land, projecting into a body of water. 
 TOPOGRAPHIC MAP  A map on which elevations are shown by means of contour lines. 
 TOPOGRAPHY  The configuration of a surface, including its relief and the positions of its 

streams, roads, building, etc. 
 TRAINING WALL  A wall or jetty to direct current flow. 
 TRANSGRESSION, MARINE  The invasion of a large area of land by the sea in a relatively 

short space of time (geologically speaking).  Although the observable result of a marine 
transgression may suggest an almost instantaneous process, it is probable that the time 
taken is in reality is thousands or millions of years.  The plane of marine transgression is 
a plane of UNCONFORMITY. 

 TRANSITIONAL ZONE (TRANSITIONAL WATER)  In regard to progressive gravity waves, 
water whose depth is less than 2 but more than 1/25 the wavelength.  Often called 
shallow water. 

 TRANSLATORY WAVE  See WAVE OF TRANSLATION. 
 TRANSPOSED HURRICANE  See HYPOTHETICAL HURRICANE. 
 TRANSVERSE BAR  A bar which extends approximately right angles to shorelines. 
 TRANSVERSE WAVE  Waves that propagate along a sailing line of a vessel. 
 TRENCH  A long narrow submarine depression with relatively steep sides. 
 TROCHOIDAL WAVE  A theoretical, progressive oscillatory wave first proposed by Gerstner 

in 1802 to describe the surface profile and particle orbits of finite amplitude, 
nonsinusoidal waves.  The wave form is that of a prolate cycloid or trochoid, and the 
fluid particle motion is rotational as opposed to the usual irrotational particle motion for 
waves generated by normal forces.  Compare IRROTATIONAL WAVE. 

 TROPICAL CYCLONE  See HURRICANE. 
 TROPICAL STORM  A tropical cyclone with maximum winds less than 34 m/sec (75 mile per 

hour).  Compare with HURRICANE or TYPHOON (winds greater than 34 m/sec). 
 TROUGH  A long and broad submarine DEPRESSION with gently sloping sides. 
 TROUGH OF WAVE  The lowest part of a waveform between successive crests.  Also, that 

part of a wave below still-water level. 
 TRUNCATED LANDFORM  A landform cut off, especially by EROSION, and forming a steep 

side or CLIFF. 
 TSUNAMI  A long-period wave caused by an underwater disturbance such as a volcanic 

eruption or earthquake.  Also SEISMIC SEA WAVE.  Commonly miscalled "tidal 
wave." 

 TURBIDITY  (1) A condition of a liquid due to fine visible material in suspension, which may 
not be of sufficient size to be seen as individual particles by the naked eye but which 
prevents the passage of light through the liquid.  (2) A measure of fine suspended matter 
in liquids. 

 TURBIDITY CURRENT  A flowing mass of sediment-laden water that is heavier than clear 
water and therefore flows downslope along the bottom of the sea or a lake. 
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 TURBULENT FLOW  Any flow which is not LAMINAR, i.e., the stream lines of the fluid, 
instead of remaining parallel, become confused and intermingled. 

 TYPHOON  See HURRICANE.  The term typhoon is applied to tropical cyclones in the 
western Pacific Ocean. 

 
 

 
 

---------- U ---------- 

 UNCONFORMITY  A surface that represents a break in the geologic record, with the rock unit 
immediately above it being considerably younger than the rock beneath.  There are three 
major aspects to consider:  (1) Time.  An unconformity develops during a period of time 
in which no sediment is deposited.  This concept equates deposition and time, and an 
unconformity represents unrecorded time.  (2) Deposition.  Any interruption of 
deposition, whether large or small in extent, is an unconformity.  This aspect of 
unconformity pre-supposes a standard scale of deposition which is complete. Major 
breaks in sedimentation can usually be demonstrated easily, but minor breaks may go 
unrecorded until highly detailed investigations are made.  (3) Structure.  Structurally, 
unconformity may be regarded as planar structures separating older rocks below from 
younger rocks above, representing the break as defined in (1) and (2) above.  A plane of 
unconformity may be a surface of weathering, Erosion or denudation, or a surface of non-
deposition, or possibly some combination of these factors.  It may be parallel to the upper 
strata, make an angle with the upper strata, or be irregular.  Subsequent Earth movements 
may have folded or faulted it. 

 UNCONSOLIDATED  In referring to sediment grains, loose, separate, or unattached to one 
another. 

 UNDERCUTTING  Erosion of material at the foot of a Cliff or bank, e.g., a sea cliff, or river 
bank on the outside of a meander.  Ultimately, the overhang collapses, and the process is 
repeated. 

UNDERTOW  (1) A current below water surface flowing seaward; the receding water below the 
surface from waves breaking on a shelving beach.  (2) Actually undertow is largely 
mythical.  As the BACKWASH of each wave flows down the BEACH, a current is 
formed which flows seaward.  However, it is a periodic phenomenon.  The most common 
phenomena expressed as undertow are actually RIP CURRENTS. 

UNDERWATER GRADIENT  The slope of the sea bottom.  See SLOPE. 
UNDEVELOPED COASTAL BARRIER A depositional geologic feature that is subject to wave, 

tidal, and wind energies, and protects landward aquatic habitats from direct wave attack, 
and all associated aquatic habitats, including adjacent wetlands, marshes, estuaries, inlets, 
and Nearshore waters, but only if there are few manmade structures and human activities 
do not significantly impede geomorphic and ecological processes. 

 UNDISTURBED WATER LEVEL  Same as STILL WATER LEVEL.  
 UNDULATION  A continuously propagated motion to and fro, in any fluid or elastic medium, 

with no permanent translation of the particles themselves. 
 UPCOAST  In United States usage, the coastal direction generally trending toward the north. 
 UPDRIFT  The direction opposite that of the predominant movement of littoral materials. 
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 UPLAND  Dry land area above and landward of the ORDINARY HIGH WATER MARK 
(OHWM).  Often used as a general term to mean high land far from the COAST and in 
the interior of the country. 

 UPLIFT  The upward water pressure on the base of a structure or pavement. 
 UPRUSH  The rush of water up the FORESHORE following the breaking of a wave, also called 

SWASH or RUNUP. 
 UPSTREAM  Along coasts with obliquely approaching waves there is a longshore (wave-

driven) current.  For this current one can define an upstream and a DOWNSTREAM 
direction.  For example, on a beach with an orientation west-east with the sea to the 
north, the waves come from NW.  Then the current flows from West to East.  Here, 
upstream is West of the observer, and East is DOWNSTREAM of the observer. 

 UPWELLING  The process by which water rises from a deeper to a shallower depth, usually as 
a result of offshore surface water flow.  It is most prominent where persistent wind blows 
parallel to a coastline so that the resultant Ekman transport moves surface water away 
from the coast. 

 
 

 
 

---------- V ---------- 

 VALLEY  An elongated depression, usually with an outlet, between BLUFFS or between 
ranges of hills or mountains. 

 VALLEY, SEA  A submarine depression of broad valley form without the steep side slopes 
which characterize a canyon. 

 VALLEY, SUBMARINE  A prolongation of a land valley into or across a continental or insular 
shelf, which generally gives evidence of having been formed by stream erosion. 

 VELOCITY OF WAVES  The speed at which an individual wave advances.  See WAVE 
CELERITY. 

 VELOCITY PROFILE  The velocity gradient within the BOTTOM BOUNDARY LAYER, 
displayed as a graph of height above the bed against the velocity of the flow. 

 VISCOSITY (or internal friction)  That molecular property of a fluid that enables it to support 
tangential stresses for a finite time and thus to resist deformation.  Resistance to flow. 

 
 

 
 

---------- W ---------- 

 WASH LOAD  Part of the suspended load with particle sizes smaller than found in the bed; it is 
in near-permanent suspension and transported without deposition; the amount of wash 
load transported through a reach does not depend on the transport capacity of the flow; 
the load is expressed in mass or volume per unit of time. 

 WASHOVER  Sediment deposited inland of a beach by overwash processes. 
 WATER DEPTH  Distance between the seabed and the still water level. 
 WATER LEVEL  Elevation of still water level relative to some datum. 
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 WATERLINE  A juncture of land and sea.  This line migrates, changing with the tide or other 
fluctuation in the water level.  Where waves are present on the beach, this line is also 
known as the limit of backrush (approximately, the intersection of the land with the still-
water level.) 

 WAVE  A ridge, deformation, or undulation of the surface of a liquid. 
 WAVE AGE  The ratio of wave speed to wind speed. 
 WAVE, CAPILLARY  See CAPILLARY WAVE. 
 WAVE CELERITY  The speed of wave propagation. 
 WAVE CLIMATE  The seasonal and annual distribution of wave height, period and direction. 
 WAVE CLIMATE ATLAS  Series of maps showing the variability of wave conditions over a 

long coastline. 
 WAVE CREST  See CREST OF WAVE. 
 WAVE CREST LENGTH  See CREST LENGTH, WAVE. 
 WAVE, CYCLOIDAL  See CYCLOIDAL WAVE. 
 WAVE DECAY  See DECAY OF WAVES. 
 WAVE DIRECTION  The direction from which a wave approaches. 
 WAVE DIRECTIONAL SPECTRUM  Distribution of wave energy as a function of wave 

frequency and direction. 
 WAVE FORECASTING  The theoretical determination of future wave characteristics, usually 

from observed or predicted meteorological phenomena. 
 WAVE FREQUENCY  The inverse of wave period. 
 WAVE FREQUENCY SPECTRUM  Distribution of wave energy as a function of frequency. 
 WAVE, GRAVITY  See GRAVITY WAVE. 
 WAVE GROUP  A series of waves in which the wave direction, wavelength, and wave height 

vary only slightly.  See also GROUP VELOCITY. 
 WAVE HEIGHT  The vertical distance between a crest and the preceding trough.  See also 

SIGNIFICANT WAVE HEIGHT. 
 WAVE HEIGHT COEFFICIENT  The ratio of the wave height at a selected point to the 

deepwater wave height.  The REFRACTION COEFFICIENT multiplied by the shoaling 
factor. 

 WAVE HINDCASTING  See HINDCASTING, WAVE. 
 WAVE, INFRAGRAVITY  See INFRAGRAVITY WAVE. 
 WAVE, IRROTATIONAL  See IRROTATIONAL WAVE. 
 WAVE, MONOCHROMATIC  See MONOCHROMATIC WAVES. 
 WAVE OF TRANSLATION  A wave in which the water particles are permanently displaced to 

a significant degree in the direction of wave travel.  Distinguished from an 
OSCILLATORY WAVE. 

 WAVE, OSCILLATORY  See OSCILLATORY WAVE. 
 WAVE PEAK FREQUENCY  The inverse of wave peak period. 
 WAVE PERIOD  The time for a wave crest to traverse a distance equal to one wavelength.  The 

time for two successive wave crests to pass a fixed point.  See also SIGNIFICANT 
WAVE PERIOD. 

 WAVE, PROGRESSIVE  See PROGRESSIVE WAVE. 
 WAVE PROPAGATION  The transmission of waves through water. 
 WAVE RAY  See ORTHOGONAL. 
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 WAVE, REFLECTED  That part of an incident wave that is returned seaward when a wave 
impinges on a steep beach, barrier, or other reflecting surface. 

 WAVE REFRACTION  See REFRACTION (of water waves). 
 WAVE ROSE  Diagram showing the long-term distribution of wave height and direction. 
 WAVE SETDOWN  Drop in water level outside of the breaker zone to conserve momentum as 

wave particle velocities and pressures change prior to wave breaking. 
 WAVE SETUP  See SETUP, WAVE. 
 WAVE, SINUSOIDAL  An oscillatory wave having the form of a sinusoid. 
 WAVE, SOLITARY  See SOLITARY WAVE. 
 WAVE SPECTRUM  In ocean wave studies, a graph, table, or mathematical equation showing 

the distribution of wave energy as a function of wave frequency.  The spectrum may be 
based on observations or theoretical considerations.  Several forms of graphical display 
are widely used. 

 WAVE, STANDING  See STANDING WAVE. 
 WAVE STEEPNESS  The ratio or wave height to wavelength also known as sea steepness. 
 WAVE TRAIN  A series of waves from the same direction. 
 WAVE TRANSFORMATION  Change in wave energy due to the action of physical processes. 
 WAVE, TROCHOIDAL  See TROCHOIDAL WAVE. 
 WAVE TROUGH  The lowest part of a wave form between successive crests.  Also that part of 

a wave below still-water level. 
 WAVE VELOCITY  The speed at which an individual wave advances. 
 WAVE, WIND  See WIND WAVES. 
 WAVELENGTH  The horizontal distance between similar points on two successive waves 

measured perpendicular to the crest. 
 WAVES, INTERNAL  See INTERNAL WAVES. 
 WEIBULL DISTRIBUTION  A model probability distribution, commonly used in wave 

analysis. 
 WEIR  A low dam or wall across a stream to raise the upstream water level. Termed fixed crest 

weir when uncontrolled. 
 WEIR JETTY  A jetty with a low section or weir over which littoral drift moves into a 

predredged deposition basin which is then dredged periodically. 
 WETLANDS  Lands whose saturation with water is the dominant factor determining the nature 

of soil development and the types of plant and animal communities that live in the soil 
and on its surface (e.g. Mangrove forests). 

 WELL-SORTED  Clastic sediment or rock that consists of particles all having approximately 
the same size.  Example: sand dunes. 

 WHARF  A structure built on the shore of a harbor, river, or canal, so that vessels may lie 
alongside to receive and discharge cargo and passengers. 

 WHITECAP  On the crest of a wave, the white froth caused by wind. 
 WICKER FAGGOT  Bundles of twigs or sticks, often willow, used in building earthworks or 

levees (traditional practice in Holland and China.).  Alternate term: fascine 
 WIND CHOP  See CHOP. 
 WIND, FOLLOWING  See FOLLOWING WIND. 
 WIND, KATABATIC  See KATABATIC WIND 
 WIND, OFFSHORE  A wind blowing seaward from the land in a coastal area. 
 WIND, ONSHORE  A wind blowing landward from the sea in a coastal area. 
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 WIND, OPPOSING  See OPPOSING WIND. 
 WIND ROSE  Diagram showing the long-term distribution of wind speed and direction. 
 WIND SEA  Wave conditions directly attributable to recent winds, as opposed to swell. 
 WIND SETDOWN  Drop in water level below the still water level on the windward ends of 

enclosed bodies of water and semi- enclosed bays. 
 WIND SETUP  On reservoirs and smaller bodies of water  (1) the vertical rise in the still-water 

level on the leeward side of a body of water caused by wind stresses on the surface of the 
water;  (2) the difference in still-water levels on the windward and the leeward sides of a 
body of water caused by wind stresses on the surface of the water.  STORM SURGE 
(usually reserved for use on the ocean and large bodies of water). 

 WIND STRESS  The way in which wind transfers energy to the sea surface. 
 WIND TIDE  See WIND SETUP, STORM SURGE. 
 WIND WAVES  (1) Waves being formed and built up by the wind.  (2) Loosely, any wave 

generated by wind. 
 WINDWARD  The direction from which the wind is blowing. 
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