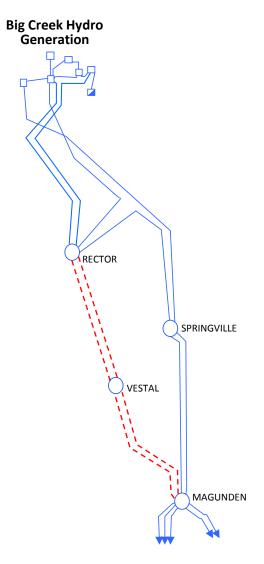
DOCKETED	
Docket Number:	17-IEPR-13
Project Title:	Strategic Transmission Investment Plan
TN #:	217687
Document Title:	Maximizing Corridors and Advanced Transmission Technologies
Description:	Presentation by Kevin Richardson with Southern California Edison
Filer:	Stephanie Bailey
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	5/22/2017 2:30:29 PM
Docketed Date:	5/22/2017

Maximizing Corridors and Advanced Transmission Technologies

Kevin Richardson May 24, 2017


Energy for What's Ahead[™]

Rector-Vestal and Magunden-Vestal 220 kV Lines

Structure samples from the Rector, Vestal, Magunden 220 kV Corridor

- Four lines, 137 total circuit miles, early 1900's original construction
- Corridor had a history of possible upgrades
 - 2008 Central California Clean Energy Transmission Project (C3ETP) Studies
 - 2015 San Joaquin Valley Solar Studies
 - 2015 Big Creek Corridor Long-Term Mitigation Plan
 - 2016 Big Creek Corridor Rating Increase
- High Temperature Low Sag (HTLS) conductors
 - Similar weight and diameter of existing wires
 - Higher ampacity
 - Lower losses
 - Lower sag = less new structures
 - Less environmental disturbance

Maximizing Corridors and Advanced Transmission Technology Considerations

- SCE Transmission Planning Philosophy
 - More of an art than a science
 - Flexibility and creative thinking vs. flowcharts and rigid internal standards
 - Transmission Planner vs. Management participation in policy and collaborative study efforts
- Utilities already experienced with maximizing corridors and existing facilities
 - 500 kV construction with 220 kV initial energization
 - Double-circuit construction with one circuit strung or both circuits strung in a box-loop configuration
 - Routing new lines near existing substations to facilitate the expansion of those substations in the future
 - Positioning new structures in an existing corridor to facilitate building addition lines at a later date
- Challenges to Maximizing Corridors and Advanced Technologies in:
 - Non-regulatory collaborative study efforts: Short timelines hinder quantity and quality. These study efforts should start
 with the end result in mind.
 - Generation Interconnection Studies: Right-sizing and Advanced Technologies may increase the cost of triggered upgrades in Phase 1 and Phase 2 studies.
 - FERC 1000: Unless directly specified in the project scope for bid, competitive bidding may discourage right-sizing due to cost issues.
 - Project Licensing: Regulating agencies should consider adopting supportive policies, similar to the low-cost design steps to reduce EMF levels, so project sponsors are not immediately disadvantaged from a cost/scope justification standpoint when they include right-sizing and/or advanced technologies in their proposed projects.