DOCKETE	ED
Docket Number:	17-IEPR-03
Project Title:	Electricity and Natural Gas Demand Forecast
TN #:	216176
Document Title:	Presentation - Turning the World Upside Down:How Renewable Energy Will Impact Western Power Markets
Description:	Mid-C Seminar July 27, 2016 Wenatchee, Washington
Filer:	Raquel Kravitz
Organization:	Energy+Environmental Economics
Submitter Role:	Public
Submission Date:	2/22/2017 12:47:04 PM
Docketed Date:	2/22/2017

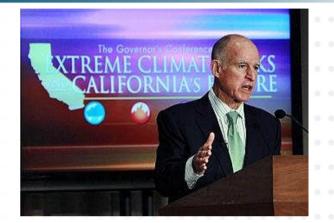
Energy+Environmental Economics

 Turning the World Upside Down:
 How Renewable Energy Will Impact Western Power Markets
 Mid-C Seminar

July 27, 2016 Wenatchee, Washington

Arne Olson, Partner

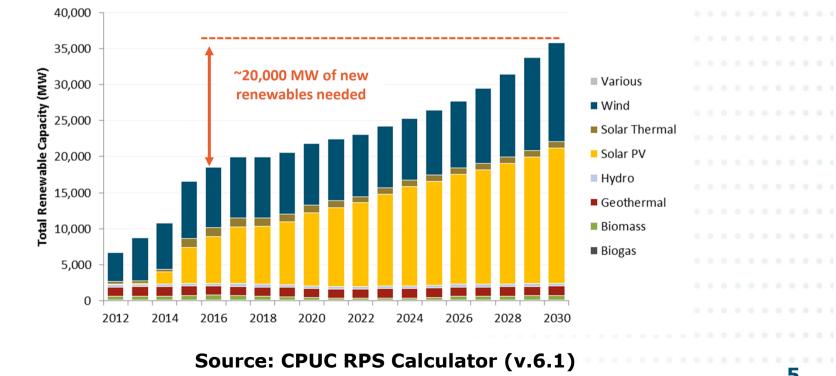
- San Francisco-based consultancy with 40 professionals focusing on electricity sector economics, regulation, planning and technical analysis
- Leading consultant to California agencies governing renewables, energy efficiency, demand response, and distributed generation programs
- Consultant to many of the world's largest utilities and leading renewable developers
- Our experience has placed us at the nexus of planning, policy and markets



CALIFORNIA'S COMING SOLAR BINGE

California policy is driving significant renewable adoption

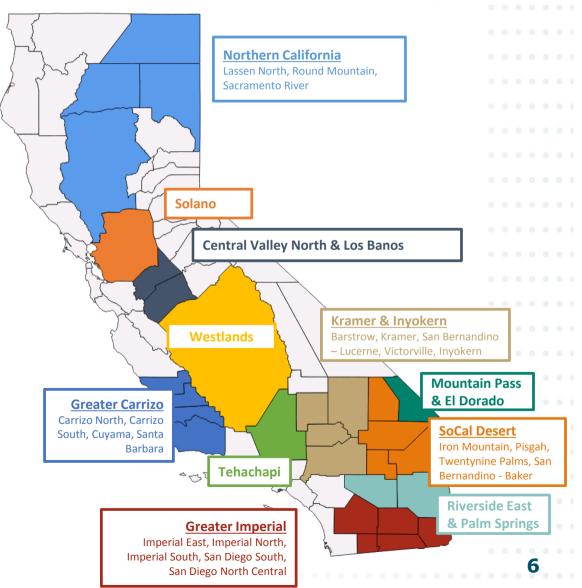
- Gov. Brown's GHG goals: 40% reduction in economy-wide emissions, relative to 1990 levels, to be accomplished with:
 - 50% renewable electricity


- Up to 50% reduction in petroleum use in cars and trucks
- Doubling of energy efficiency savings in existing buildings
- Net energy metering decision will drive significantly more adoption of rooftop PV

+ In 2015, California is achieving ≈25% RPS

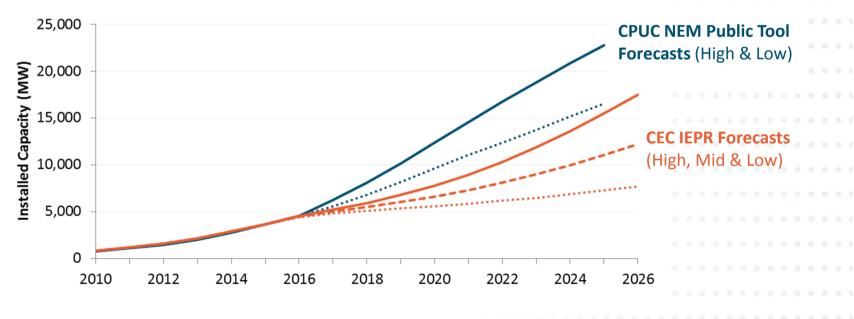
- Some resources out of state
- California resources will need to double by 2030 to reach a 50% RPS

Energy+Environmental Economics


In-state resource potential is largely solar

- Must interconnect to or be dynamically scheduled to a California BA
- Applies to LSEs, CCAs

+ Developable in-state potential:


- Geothermal: 1800 MW
- Wind: < 3000 MW
- Solar: 100,000+ MW

Predicted Growth of Customer-Adopted Solar PV

- Recent CPUC decision on NEM successor tariff ensures a significant rooftop solar market in California
- Future adoption is highly uncertain, but most projections suggest <u>10-20 GW</u> of customer PV by 2025

40 GW of solar expected in California by 2030

- + Unless procurement practices are changed, total solar installations in **IOU** service areas could reach 35-39 GW by 2030
 - 15-20 GW utility scale
 - 15-20 GW customer-owned
 - Additional 2-5 GW from muni service areas (SMUD, LADWP)

+ Non-solar renewables will add another 15-20 GW

Source: CPUC's NFM 2.0 Public Tool

40,000

30,000

20,000

10,000

3

https://www.ethree.com/public projects/cpucPublicTool.php

2015

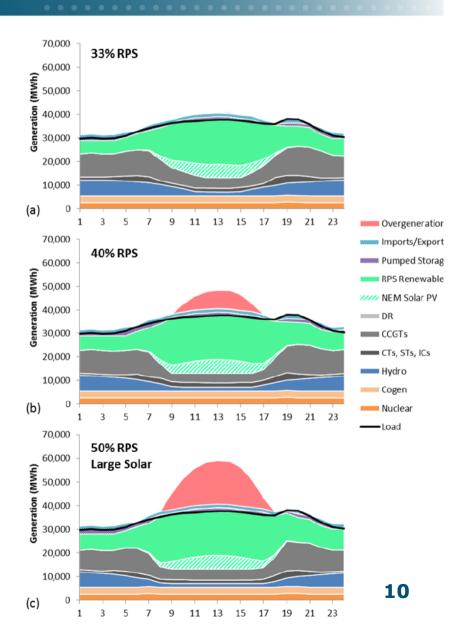
California (CAISO) Installed

Solar PV Capacity

2030

Solar PV BTM

Solar PV


Utility

WHAT WILL THIS MEAN FOR THE MARKET?

California is going to have more solar energy than it can use

- Studies show that the potential for overgeneration becomes significant at higher renewable penetrations
- Renewable energy production is concentrated during relatively few hours of the year
- California will need to figure out what to do with a large surplus of renewable energy during many hours of the year

Energy+Environmental Economics

What do you do when you have too much energy?

+ Try to sell some to your neighbors!

- Construction of California-Oregon interties has led to mutually beneficial exchanges
- Benefits are due to load and resource diversity between the regions
- Surplus energy flows south during most of the year
- Surplus capacity available for S-N flow during wintertime

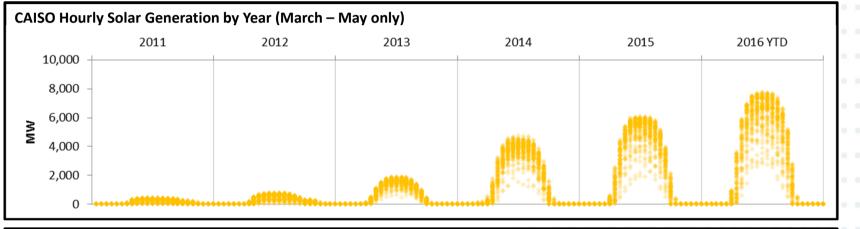
Try to sell some to your neighbors!

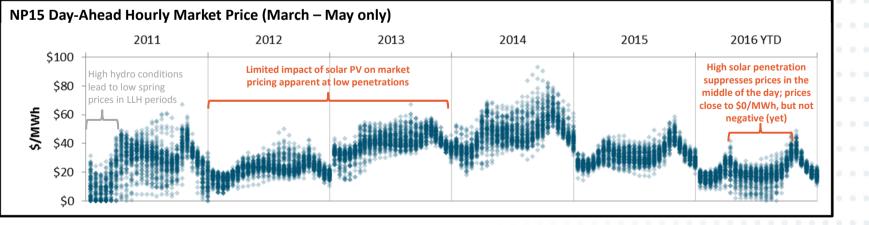
2

Surplus solar for sale! All you can eat!

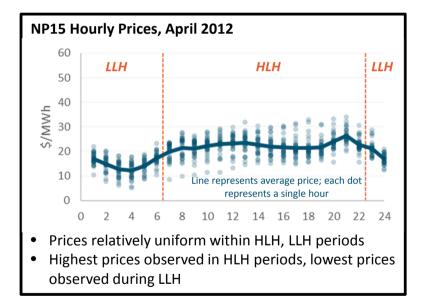
What do you do if you <u>still</u> have too much energy?

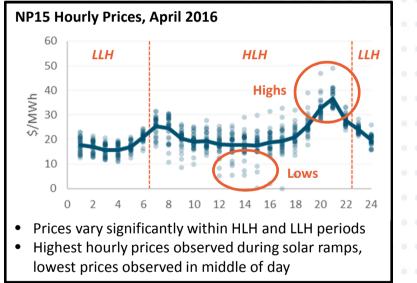
- + Hydro spill is a reality at every hydroelectric facility
- It is not cost-effective to build the power system to absorb all of the available hydropower
- + Curtailment of solar will become routine and commonplace




+ E3 market simulations show overgeneration, and negative pricing, in over 20% of hours by 2030

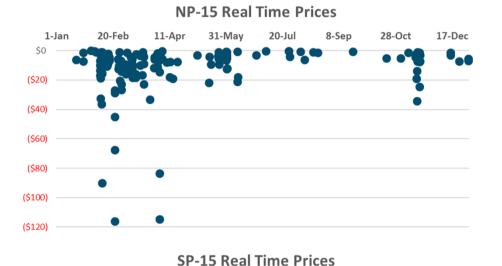
Solar generation is already suppressing market prices

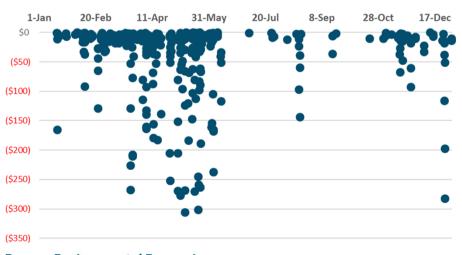

 Rapid increase in solar buildout has clearly begun to suppress daytime market prices—but negative pricing has not yet been observed in the day-ahead market



Daytime prices now frequently lower than nighttime prices

 Changes in market dynamics driven by solar buildout may require a reevaluation of the standard HLH/LLH trading product



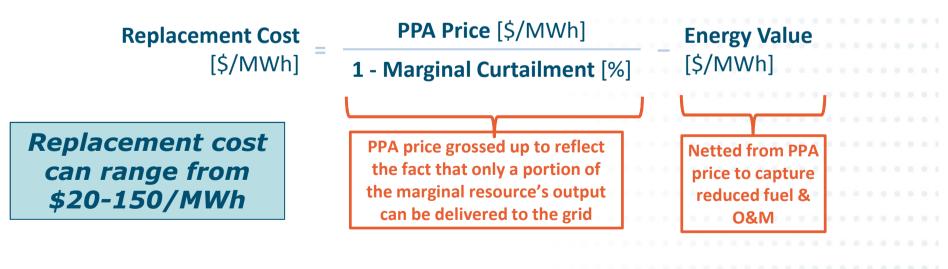


 Disconnect between hourly market prices and standard trading products will become more exaggerated with increasing solar buildout

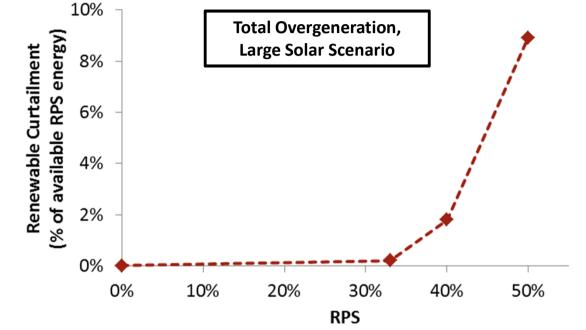
Negative prices observed in real-time market

Negative prices have been observed in the real-time market in 2015

Negative prices seen more frequently in spring


- Combination of low loads and high solar generation resulting in negative net loads may be a key driver
- Negative price magnitudes and frequency are higher in SP-15
 - Day ahead markets have still not experienced negative prices
 - We anticipate the real time and day ahead markets will both have considerable number of hours with negative prices with increasing solar

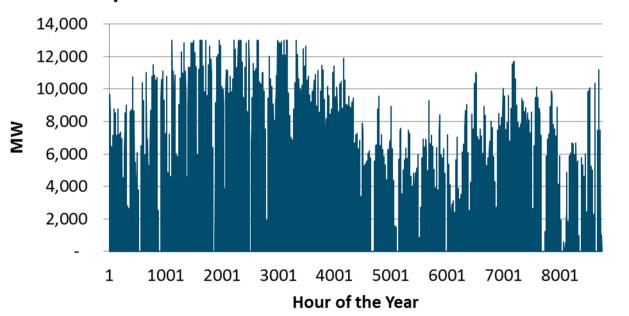
How low can negative prices go?


- Market should clear at the renewable "replacement cost"

 the net cost of procuring additional renewable resources to ensure compliance with RPS targets
- Price that California LSEs should be willing to pay to deliver their resources to the market
 - Can also be described as the "marginal cost of RPS compliance" or the long-run REC value

Marginal curtailment increases quickly once saturation is reached

- + Marginal solar curtailment may exceed 65% in 2030
- Marginal solar cost may exceed \$100/MWh
 - \$50/MWh PPA price
 - ÷ (1-65%) curtailment
 - \$40/MWh energy value

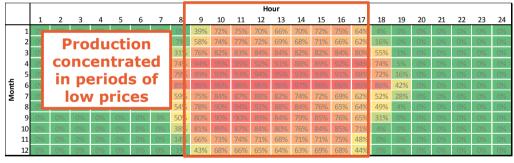


Marginal Overgeneration	33% RPS	40% RPS	50% RPS	•
Solar PV	5%	26%	65%	Ŀ
Wind & Geothermal	2%	12%	22%	

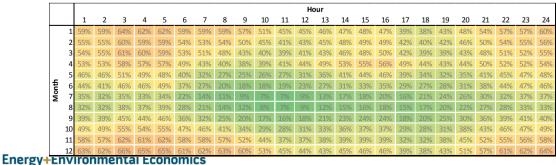
Source: E3, Investigating a Higher Renewables Portfolio Standard for California

SW case study: California becomes significant exporter

- 2030 case study market simulations shows average exports of several thousand MW to the Desert Southwest under high solar cases
 - Concentrated during springtime hours


Exports from California to Desert SW in 2030

SW case study: negative prices spill out from California


2030 PV Prices under Low Price Scenario

												Ho	our											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	34	34	33	34	35	38	48	46	39	20	-35	-44	-47	-42	-16	36	43	52	50	49	50	47	37	34
2	34	34	34	34	35	38	48	44	35	-21	-44	-47	-47	-44	-35	22	39	52	53	52	50	48	38	3
3	31	31	31	32	33	37	45	37	15	-45	-47	-47	-47	-47	-45	-18	33	46	52	52	48	45	33	3
4	31	30	30	31	32	35	39	28	-25	-45	-45	-45	-47	-43	-31	8	31	43	48	48	47	44	34	3
5	31	30	30	31	33	33	30	28	-11	-43	-50	-50	-45	-33	-7	30	39	48	52	53	50	47	35	3
6 7	32	31	31	32	34	32	31	29	26	-6	-27	-32	-24	8	30	36	45	52	57	55	55	53	36	3
7	39	38	37	39	41	32	36	33	31	29	22	20	24	32	38	45	50	54	60	59	56	52	44	4
8	38	37	37	37	40	40	45	35	32	31	29	27	32	39	45	51	53	56	62	59	56	52	41	3
9	34	34	33	34	36	40	44	35	30	18	0	3	8	30	40	47	49	59	62	60	53	49	37	3
10	34	33	33	34	36	40	44	35	16	-45	-50	-50	-41	-20	28	42	47	53	52	49	47	47	37	3
11	35	34	33	33	35	38	45	40	31	-34	-37	-45	-45	-32	20	37	49	49	48	46	47	47	39	3
12	41	41	40	40	42	45	52	48	41	10	-26		-26	-14	19	42	54	57	54	54	55	55	46	4

Arizona Solar Profile

New Mexico Wind Profile

- Many hours of negative prices at Palo Verde in 2030
- Depends of flexibility of coal fleet to ramp down
 - Affects economics of new and existing resources
 - E.g., Arizona solar may have very little energy value in 2030
 - NM wind has a complementary profile and much higher energy value

Charts show average hourly prices by month in the indicated years

3)	Key Questions	
		•••••••
+	Will California policymakers procurement of out-of-state	
	 Studies show significant benefit 	from WY, NM wind
+	How much solar surplus can California in the absence of a	
	 How many more coal plants will 	retire by 2030?
	 How flexibly can the remaining 	plants be operated?
	• How much can be stored in NW	reservoirs?
+	Will California and other stat regional ISO, and how large	

21

Energy+Environmental Economics

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 www.ethree.com

Arne Olson, Partner (arne@ethree.com)