| DOCKETED               |                                                                                                                          |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Docket<br>Number:      | 17-HYD-01                                                                                                                |  |
| <b>Project Title:</b>  | Renewable Hydrogen Transportation Fuel Production                                                                        |  |
| TN #:                  | 215728                                                                                                                   |  |
| Document<br>Title:     | WestBiofuels - Pre-Solicitation Workshop on Implementation Strategies for Production of Renewable Hydrogen in California |  |
| <b>Description:</b>    | Powerpoint Presentation                                                                                                  |  |
| Filer:                 | Tami Haas                                                                                                                |  |
| Organization:          | West Biofuels                                                                                                            |  |
| <b>Submitter Role:</b> | Public Agency                                                                                                            |  |
| Submission Date:       | 2/1/2017 2:04:18 PM                                                                                                      |  |
| Docketed<br>Date:      | 2/1/2017                                                                                                                 |  |





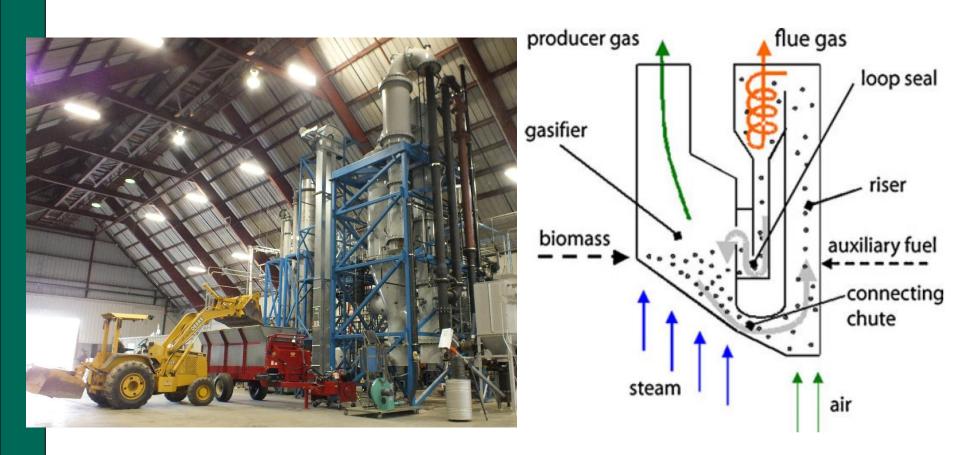
Pre-Solicitation Workshop on Implementation
Strategies for Production of Renewable Hydrogen
in California

Matt Hart
Director of Business Development

### **Company Profile**

- West Biofuels, LLC formed in 2007
- Primary Endeavors:
  - Commercialization of Gasification Systems
  - R&D Advancement for Syngas to Biofuels Conversion Technologies
- Strategic Technology Partnerships
  - UC Davis (US), UC San Diego (US)
  - Vienna University of Technology (AT), Paul Scherrer Institute (CH)
  - Bioenergy 2020+ (AT), INSER (IT), Albemarle (US)




#### **Feedstock**

#### Cellulosic Biomass

- Forest Sourced Wood Residue
- Agricultural Tree Removal & Pruning
- Walnut Shell
- Almond Shell
- Cotton Stalk
- Urban Construction & Demolition Wood



### **Technology Overview**



Fast Internally Circulating Fluidized Bed (FICFB)
Gasification System at West Biofuels

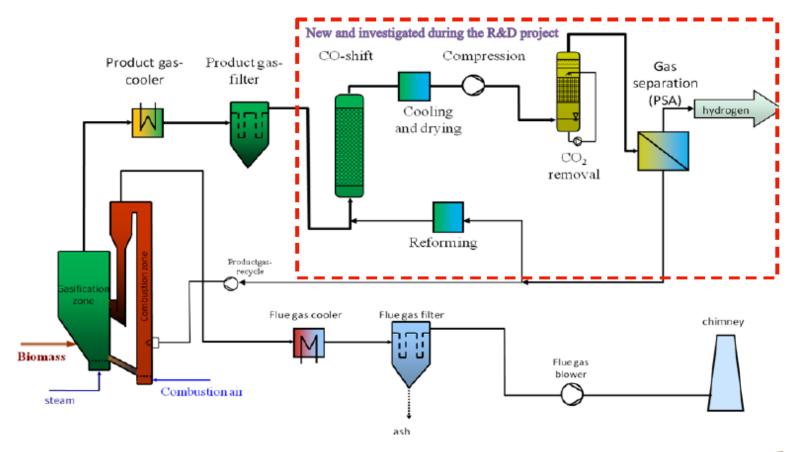


# **Technology Overview**

| Location               | Usage /<br>Product    | Fuel / Product<br>MW, MW                   | Start up | Status        |
|------------------------|-----------------------|--------------------------------------------|----------|---------------|
| Güssing,<br>Austria    | Gas engine            | 8.0 <sub>fuel</sub> / 2.0 <sub>el</sub>    | 2002     | Operational   |
| Oberwart,<br>Austria   | Gas engine/<br>ORC    | 8.5 <sub>fuel</sub> / 2.8 <sub>el</sub>    | 2008     | Operational   |
| Villach,<br>Austria    | Gas engine            | 15 <sub>fuel</sub> / 3.7 <sub>el</sub>     | 2010     | Operational   |
| Senden/Ulm,<br>Germany | Gas engine/<br>ORC    | 14 <sub>fuel</sub> / 5 <sub>el</sub>       | 2012     | Operational   |
| Göteborg,<br>Sweden    | BioSNG                | 32 <sub>fuel</sub> /20 <sub>BioSNG</sub>   | 2013     | Commissioning |
| Klagenfurt,<br>Austria | Gas engine,<br>BioSNG | 25 <sub>fuel</sub> / 5.5 <sub>el</sub>     | 2016     | Hold          |
| Vienna, OMV<br>Austria | Hydrogen              | 50 <sub>fuel</sub> /30 <sub>hydrogen</sub> | 2016     | Hold          |



The most common approach:


- Step 1: Gasification
- Step 2: Water Gas Shift
  - CO + H2O + Catalyst  $\rightarrow$  H2 + CO2 + heat
- Step 3: CO2 Removal
- Step 4: H2 Separation
  - Pressure Swing Adsorption (PSA)
- Step 5: Steam Reforming & Syngas Recycling
  - Convert high-hydrocarbon tail gas from PSA to CO, CO2, H2 for recycle into the water-gas shift reactor
  - Or send tail gas to onsite power generator



### bioenergy2020+



#### **Plant description**





**Excellent Technologies** 

• Step 1: Gasification

Step 2: Water Gas Shift

| Table I: Syngas composition after dust removal (wf) [5] |         |           |  |
|---------------------------------------------------------|---------|-----------|--|
| Component                                               | Range   | Dimension |  |
| hydrogen                                                | 35-45   | Vo1-%     |  |
| carbon monoxide                                         | 20-30   | Vol-%     |  |
| carbon dioxide                                          | 15-25   | Vo1-%     |  |
| methane                                                 | 8-12    | Vol-%     |  |
| nitrogen                                                | 1-3     | Vo1-%     |  |
| tar                                                     | 2-5     | g/Nm³     |  |
| hydrogen sulphide                                       | 150-300 | ppm       |  |
| H <sub>2</sub> O                                        | 40-60   | Vol-%     |  |

| Table IV: composition of   shift                      | t the syngas | after the water gas |  |
|-------------------------------------------------------|--------------|---------------------|--|
| Component                                             | composit     | ion [vol-%]         |  |
| hydrogen                                              | 47.35        | ± 2.53              |  |
| carbon monoxide                                       | 6.16         | ± 2.07              |  |
| carbon dioxide                                        | 32.17        | $\pm 2.41$          |  |
| methane                                               | 8.96         | $\pm 0.80$          |  |
| nitrogen                                              | 2.04         | ± 1.15              |  |
| hydrocarbons (C2, C3)*                                | 3.33         | $\pm 0.72$          |  |
| * minor gas components (C2H2, C2H4, C2H6, C3H6, C3H8) |              |                     |  |



Step 3: CO2 Removal

| Table V: composition of the syngas after CO2 removal |          |             |  |
|------------------------------------------------------|----------|-------------|--|
| Component                                            | composit | ion [vol-%] |  |
| hydrogen                                             | 66.81    | ± 1.12      |  |
| carbon monoxide                                      | 7.44     | ± 0.95      |  |
| carbon dioxide                                       | 4.21     | ± 3.18      |  |
| methane                                              | 12.21    | $\pm 2.12$  |  |
| nitrogen                                             | 3.10     | ± 1.78      |  |
| hydrocarbons (C2, C3)                                | 6.22     | ± 1.93      |  |

• Step 4: H2 Removal

| Component             | composition | Dimension |
|-----------------------|-------------|-----------|
| hydrogen              | 99,90       | Vol-%     |
| carbon monoxide       | b. d.       | ppm       |
| carbon dioxide        | 500         | ppm       |
| methane               | b. d.       | ppm       |
| nitrogen              | 520         | ppm       |
| hydrocarbons (C2, C3) | b. d.       | ppm       |



Step 5: Onsite Power
 Generation or Steam
 Reforming

| Table VII: composition of the PSA tail gas |          |             |  |
|--------------------------------------------|----------|-------------|--|
| Component                                  | composit | ion [vol-%] |  |
| hydrogen                                   | 22.95    | ± 2.64      |  |
| carbon monoxide                            | 16.89    | ± 2.79      |  |
| carbon dioxide                             | 11.34    | $\pm 3.55$  |  |
| methane                                    | 26.54    | ± 0.69      |  |
| nitrogen                                   | 13.22    | $\pm 4.41$  |  |
| hydrocarbons (C2, C3)                      | 9.06     | $\pm 3.03$  |  |
|                                            |          |             |  |

| Table VIII: composition | of the syngas after the steam |  |  |  |
|-------------------------|-------------------------------|--|--|--|
| reformer                |                               |  |  |  |
|                         |                               |  |  |  |
| Component               | composition [vol-%]           |  |  |  |
| hydrogen                | 60.30 ±3.06                   |  |  |  |
| carbon monoxide         | 15.49 ± 1.76                  |  |  |  |
| carbon dioxide          | $12.52 \pm 0.08$              |  |  |  |
| methane                 | $1.84 \pm 1.09$               |  |  |  |
| nitrogen                | $9.85 \pm 2.31$               |  |  |  |
| hydrocarbons (C2, C3)   | b.d.                          |  |  |  |



#### • Yield:

- 60% of feedstock energy is recovered as H2
- Requires approximately additional electricity, equal to approximately 10% of H2 production (by energy)

#### Commercial System:

- 500 TPD Biomass Plant (~50 MW of feedstock)
  - Comparable size to a 20MW biomass boiler (e.g. DTE Woodland)
- 460,000 Nm3/day H2 (~30 MW of energy equivalent)
- Uses 5.2 MW of electricity to operate
- Produces 2.4 MW of recoverable heat (e.g. district heating)



- Financial Criteria:
  - \$86 million USD capital investment for a 30MW facility (500 TPD)
    - (\$2.87/W of H2 production capacity)
- Critical Economic Drivers:
  - Cost of Natural Gas
  - Cost of Biomass
  - Cost of Electricity
  - Value of CO2 Offset
  - Opportunity for Heat Recovery



### **Opportunities for Improvement**

- Market Improvements
  - Renewable Gas Standard
  - High value for GHG reductions/LCFS
- Technical R&D Improvements:
  - Gasifier Improvements:
    - Prove with wide variety of California feedstock
    - Cost reductions in subsystems (e.g. syngas cleaning systems)
  - Conversion Improvements:
    - Long-term catalyst testing on syngas (resiliency, regeneration)
    - System integration and optimization (don't reinvent the PSA, look for innovative ways to integrate process steps)



#### **Thank You**

Matthew Hart

Director of Business Development

matt.hart@westbiofuels.com



#### References

- Select papers from our European partners, Bioenergy 2020+:
  - Loipersböck J., Rehling B., Rauch R., Hofbauer H., Aichernig C., "Production of high purity hydrogen from biomass-derived synthesis gas using a dual fluidised bed gasification technology", in: Proceedings of the 23rd Eurobean Biomass Conference and Exhibition, 02 June 04 June 2015, Vienna, Austria, Code 3BO.6.2
  - Chianese S., Loipersböck J., Malits M., Rauch R., Hofbauer H., Molino A., Musmarra D., 2015,
     "Hydrogen from the high temperature water gas shift reaction with an industrial Fe/Cr catalyst using biomass gasification tar rich synthesis gas", Fuel Processing Technology, Volume 132, April 2015, Pages 39–48; doi:10.1016/j.fuproc.2014.12.034
  - Loipersböck, J., Lenzi, M., Rauch, R., Hofbauer, H., 2016 "The behavior of impurities over a CO shift unit and a biodiesel scrubber used as gas treatment stage for hydrogen production", presentation at: 5th International Symposium on Gasification and its Applications (iSGA-5), 29.Nov.-01.Dec.2016, Busan, Korea
  - Müller, S., Stidl, M., Pröll, T., Rauch, R., Hofbauer, H., 2011, "Hydrogen from Biomass Large Scale Hydrogen Production Based on a Dual Fluidized Bed Steam Gasification System", Biomass Conversion and Biorefinery, (2011) 1, 55-61.
  - Müller, S., 2013, "Hydrogen from Biomass for Industry Industrial Application of Hydrogen Production Based on Dual Fluid Gasification", PhD thesis, Vienna University of Technology, ISBN: 978-3-9502754-5-2.