DOCKETED	
Docket Number:	17-HYD-01
Project Title:	Renewable Hydrogen Transportation Fuel Production
TN #:	215723
Document Title:	Presentation - Renewable H2 Fuel Plus - Electricity and Heat
Description:	By Pere Margalef, PhD
Filer:	Tami Haas
Organization:	FuelCell Energy
Submitter Role:	Public
Submission Date:	2/1/2017 1:39:42 PM
Docketed Date:	2/1/2017

Renewable H₂ Fuel PLUS - Electricity and Heat

Pre-Solicitation Workshop on Implementation Strategies for Production of Renewable Hydrogen in California California Energy Commission – Sacramento - January 30th, 2017

Ultra-Clean | Efficient | Reliable Energy

Integrated Fuel Cell Company

Research & Development

Design megawatt-class distributed power generation solutions

- Global fuel cell platform
- Robust intellectual property portfolio
- Developing hybrid applications of existing technology for new markets

Sales, Manufacture & Project Execution

Project development

- Direct sales Global manufacturing profile
 - North America
 - Asia via partner
- Europe Engineering, Procurement and Construction
 - Project Financing

Services

Operate & Maintain power plants

- Over 100 DFC[®] plants operating at more than 50 sites in 9 countries
- > 4.5 billion kWh ultraclean power produced

FuelCell Energy Operations

Danbury, CT – Corporate, Engineering, R&D

- Research Labs
- Design Center
- Operations and Service Support
- Stack Conditioning

Torrington, CT - Technology Manufacturing

- Stack Production
- Module Assembly
- 65,000 ft² facility opened in 2001
- 90,000 ft² facility expansion started in 2016

International Operations

Ottobrun, Germany Capacity for European market

Pohang, South Korea Capacity for Asian market

CO, USA/Calgary, Canada SOFC Research

Direct Fuel Cells (DFC)

Carbonate Fuel Cell Platform – Scale Enhances Economics

Four-Stack Module 1.4 megawatts

Completed Module 1.4 megawatts

1.4 MW DFC1500[®]

- Utilizes one module
- Adequate to power 1,400 homes

2.8 MW DFC3000[®]

- Utilizes two modules
- Adequate to power 2,800 homes

59 MW FC Park Utilizes 21 DFC3000 plants

FuelCellEnergy Ultra-Clean, Efficient, Reliable Power Renewable H₂ Generation with DFC

Technology Readiness

3-year demo at Orange County Sanitation District (OCSD)

Improves Fuel Cell Performance

- Lower cell losses
- Higher overall efficiency

Improves Economics

- H₂ is a more valuable product
- LCFS

Market Growth Renewable H₂

- Transportation, FCEV (CA SB1505)
- Refineries

Modified DFC to generate H₂

Standard System:

- CH₄-rich fuel is converted to H₂ inside Direct FuelCell stack
- Most H₂ used to produce power
- Excess H₂ used to pre-heat air

Tri-Gen System:

- Excess H₂ is extracted and purified for external use.
- H₂ is produced very efficiently, using waste heat and water produced by anode reactions.
- Air pre-heating is done by heat exchange with exhaust gas and residual H₂

Tri-Gen Plant

Economies of Scale allow Lower Price of Power and Hydrogen

Standard Output

Tri-Gen Output

Hydrogen Production

2,800 kW

2,350 kW

1,270 kg/day

Enough H_2 for a fleet of ~1800 passenger vehicles

Plant layout is ~ 100' x 100', with flexibility for equipment location

Tri-Gen Roll-out:

- 5,000-6,000 kg/day of renewable H₂ generation infrastructure with 4-5 Tri-Gen plants (i.e., 1,200 kg/day each)
 - Two/three in Los Angeles Basin
 - One/two in the Bay Area
- First unit available in early 2019
- Next units online starting in mid 2019, bringing renewable H₂ production capacity to 5,000-6,000 kg/day

Looking for commercial opportunities with:

Onsite Biogas

- Wastewater treatment plants
- Dairy farms
- Landfills
- Organic and municipal waste gasifiers
- Directed Biogas
- Industrial and Commercial

FuelCell Energy provides:

- 100% financed turnkey installation including biogas conditioning
- Energy savings under Power Purchase Agreements (PPA) and Hydrogen Purchase Agreements (HPA)

Thank you!

Pere Margalef, PhD Director Advanced Technology <u>pmargalef@fce.com</u> +1 (949) 599 8637

