DOCKETED			
Docket Number:	16-OIR-04		
Project Title:	Integrated Resource Plans (Publicly Owned Utilities)		
TN #:	214850		
Document Title:	Presentation - Putting Customers First By: James Barner		
Description:	Lead Commissioner Workshop Integrated Resource Plans - Renewable Energy, Pursuant to SB350, December 13, 2016		
Filer:	Le-Huy Nguyen		
Organization:	Los Angeles Department of Water and Power		
Submitter Role:	Public Agency		
Submission Date:	12/16/2016 3:15:20 PM		
Docketed Date:	12/16/2016		

E-Putting Customers First

Lead Commissioner Workshop Integrated Resource Plans – Renewable Energy, Pursuant to SB350

December 13, 2016

Energy Transformation

Over the next 15 years, LADWP will replace over 70% of its generation infrastructure used to reliably deliver power to its customers

Coal is eliminated and renewables increases

Transformation Elements

Eliminate Coal from LADWP's Power Supply

Reach 33% RPS by 2020 and 50% by 2030

Achieve 15% Energy Efficiency by 2020

Once-through Cooling Repowering

Invest in Power System Reliability Program (KPIs)

Support Electric Vehicle Expansion

2016 Major Accomplishments

Project/ Program	Accomplishment		
Renewable Portfolio Standard	25% RPS in 2016		
Sale of Navajo to Salt River Project	Sold 477 MW share of Navajo Generating Station to Salt River Project		
Moapa Southern Paiute Solar	250 MW in-service		
Springbok 1 and 2 Solar	105 MW and 155 MW solar in-service		
RE Cinco Solar	60 MW in-service		
Springbok 3 Solar	City Council approved 90 MW solar project (COD 2019)		
Electric Vehicle Charger Program for Home, Workplace, and Public Charging: "Charge-up LA!!!"	\$21.5 million budgeted program through June 30, 2018 for residential and commercial customers		
Barren Ridge Renewable Transmission Project	1,750 MW of added transmission capacity in-service		

2016 IRP Case Scenarios

Coal Cases

Intermountain Power Plant (IPP) 2027* (base)
 IPP 2025*

Renewable (RPS), Local Solar, Energy Storage and Electrification (EV) Cases 50% RPS, Low Local Solar, Low Storage, Low EV*
 50% RPS, Low Local Solar, Low Storage, High EV
 50% RPS, High Local Solar, Low Storage, High EV
 50% RPS, High Local Solar, High Storage, High EV
 65% RPS, High Local Solar, High Storage, High EV
 8LLS. 65% RPS, Low Local Solar, High Storage, High EV
 8MLS. 65% RPS, Med Local Solar, High Storage, High EV
 8SF. 65% Solar Focus RPS, High Local Solar, High Storage, High EV

*Expected, Low, and High Fuel Cost Sensitivity Analysis was performed Recommended Case

Resource Adequacy Methodology

Resource Assumptions

Resource Type	Levelized Cost (\$/MWh) ¹	Capacity Factor	Peak Load Dependable Capacity (3 to 5 PM)	Net Load Dependable Capacity ² (7 to 9 PM)
Solar Photovoltaic – PPA	\$67	28% - 35%	27% - 38%	0 - 2%
Solar Photovoltaic – LA Solar	\$176	19% - 23%	27%	3% - 5%
Solar Feed-in-Tariff	\$175	20%	27%	3% - 5%
Wind	\$106	24% - 33%	10%	0%
Wind Firmed and Shaped	\$106 to \$122	24% - 33%	45% - 100%	45% - 100%
Geothermal	\$81	91% - 95%	90%	90%
New Combined Cycle Gas	\$61-70	47-52%	96%	96%
New Simple Cycle Gas	\$400-500	3-5%	96%	96%
Castaic Improvement	\$53	25%	100%	100%
Valley Thermal	\$31	28%	100%	99%
Battery	\$554	5%	43-61%	21 to 100%
CAES	\$56	44%	92%	92%

¹Net Present Value (annual costs, 2016-2036) / NPV of Energy Produced

²Net Load represents the hour when the net energy for load minus variable energy resources is maximum

Resource Adequacy – 50% RPS

Resource Adequacy – 65% RPS

Achieving 50% RPS by 2030

Achieving 65% RPS by 2036

Electric Vehicle (EV) Charging Forecast

Base Case Transportation Electrification (IEPR)

High Case Transportation Electrification (Double IEPR Forecast)

GHG Emissions: 50% vs 65% RPS

Transmission Upgrade Challenges

- Increased capacity from 450 to 2,200 MW
- Renewable interconnection requests of 3,773 MW from wind and solar developers
- New Haskell Canyon Switching Station (SS)
- New double-circuit 230 kV transmission line from Barren Ridge SS to the new Haskell Canyon SS.
- New 230-kV circuit on existing structures from the new Haskell Canyon SS to the Castaic Power Plant.
- Reconductoring of existing 230 kV transmission line from Barren Ridge to the existing Rinaldi Receiving Station
- Expand the existing Barren Ridge SS

15

DER Integration Study

- Leverage DER program efforts and resources
- Minimize duplications and increase system efficiency
- Achieve optimal DER deployment
- Achieve a common objective

Energy Storage Plan for 50% RPS

GENERATION	TRANSMISSION	DISTRIBUTION	CUSTOMER	JFB ES
Gas Fired + Thermal Energy	Battery Energy Storage System	Battery Energy Storage System	Battery, Thermal Energy Storag	e Battery Energy Storage System
Location: Valley Generating Station	Location: Beacon & Springbok Area Solar	Location: Distributing and Receiving Stations	Location: Customers	Location: John Ferraro Building Parking lots
<u>Capacity</u> : 60 MW or greater	<u>Capacity</u> : 50 MW or greater	<u>Capacity</u> : 4 MW or greater	<u>Capacity</u> : 40 MW	<u>Capacity</u> :300KW/1MWh
Key Applications: • Increase CT output during hot weather 10%-20%	Key Applications: • Regulation Service (ramping up and down)	Key Applications: • Peak Shaving	Key Applications: • Permanent Load Shifting	Key Applications: • Demand Response
 Peak Shifting Ramping regulation capacity May eliminate need for added capacity 	 Solar Power Output Leveling Peak Shaving 	 Distributed PV Solar Integration Deferring Distribution Infrastructure Upgrades 	 Dispatchable Peak Shifting Deferring Distribution Infrastructure Upgrades Demand Response Energy Efficiency 	 Dispatchable Peak Shifting Energy Management System Research and Development
<u>Schedule</u> • Completion by December 2017	Schedule • Completion by September 2020	<u>Schedule</u> • Completion by March 2019 for DS and September 2020 for RS	Schedule • Completion by July 2020	Schedule • Completion by June 2016 16

Summary – Challenges

- Limited available Transmission Capacity for Renewable Projects Increased RPS Category 2 and 3 percentages may be needed
- Disposition of grandfathered RPS power purchase agreements at the end of the contract term or when purchased (Category 0 or 1?)
- Cap and Trade Allocations Post 2020, as currently proposed at 82% below 2020 levels by 2030 or double the 40% required by SB32, will divert a minimum of \$500 Million of revenue from LADWP over 10 years that could otherwise support EV charging and clean energy programs
- PV Solar and Wind adds little to no dependable capacity to effect the Net Peak Load without energy storage
- Residential TOU, CPP, RTP effectiveness at reducing Net Peak Load uncertain. Concerns about IT infrastructure and AMI having high cost and short life cycles.
- Local distributed generation deployment is challenging especially within a dense urban environment (i.e., permitting, safety, underground wiring).

Summary – Opportunities

- Improved coordination, cooperation, and flexibility among Agencies and POU's recognizing past and future investments and good faith efforts made by POU's to reach State goals.
- Continue to recognize existing grandfathered RPS projects beyond the original contract term to continue meeting 50% RPS
- CEC forecasts, especially electrification, can be very helpful for IRP planning
- Committed certification process timelines to assist development
- Increased research funding for new RPS and long term energy storage technologies (i.e., Enhanced Geothermal Systems, Hydrogen) to achieve AB32 emissions goals.
- Promote batteries to be included with net metered PV systems
- Energy Storage needs should be based on control area/utility operational requirements to integrate renewables (Optimization, not Prescription)

Appendix

Resource Adequacy Methodology

Typical Summer Day

y Oleo

Resource Adequacy Methodology

Case 8 LLS (Low Local Solar):

Case 8 (High Local Solar):

800 Megawatts (MW) by 2025 and 1,200 MW by 2035

1,200 Megawatts (MW) by 2025 and 1,800 MW by 2035