DOCKETED				
Docket Number:	16-IEPR-05			
Project Title:	Electricity Demand Forecast			
TN #:	211949			
Document Title:	Presentation - Analysis of Peak Shift			
Description:	Cary Garcia, Energy Commission Staff			
Filer:	Raquel Kravitz			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	6/22/2016 4:23:16 PM			
Docketed Date:	6/22/2016			

Analysis of Peak Shift

2016 Integrated Energy Policy Report Update Sacramento, CA 6/23/2016

Cary Garcia

Demand Analysis Office Energy Assessments Division

Cary.Garcia@energy.ca.gov / 916-653-2922

Background

- CEC utility/system peak demand based on outputs from sector forecasting models serving as inputs into HELM peak forecasting model
- Underlying assumption is that utility peak in forecast period will occur in similar period as in history
- If load modifiers affect shape of load curve, then the underlying methodology is not capturing potential changes to peak demand

What are the Consequences?

- The IEPR load forecast is used by CPUC and CAISO as inputs for their respective needs supporting procurement and transmission planning
- Not addressing issues related to shift in peak injects bias which then carries over into analyses using IEPR forecast
- This bias implies a higher impact from BTM PV which then translates to a lower utility peak
- Addressing these issues will require changes to how CEC forecasts peak demand

Other Issues

- Yes, BTM PV production but other load modifiers exist:
 - Electric vehicle charging profiles
 - Energy storage
 - TOU pricing
 - Hourly AAEE impacts

Modeling Shift in Peak Hour Data and Approach

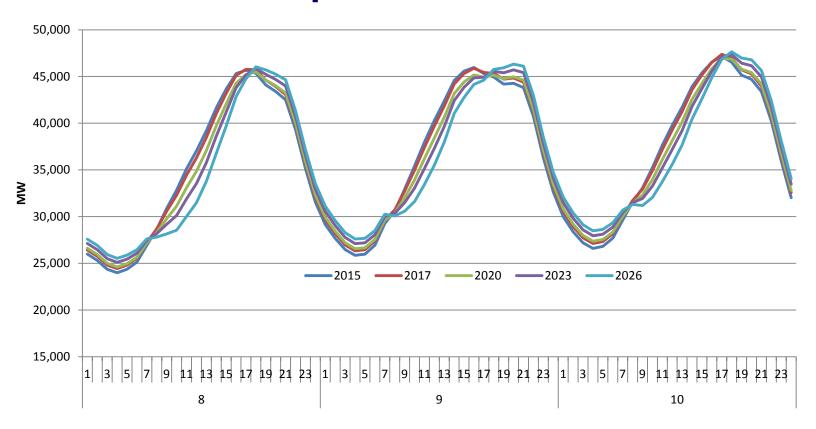
- Load data comes from ISO EMS
- Hourly AAEE savings and EV forecast derived from CED 2015 Revised
- EV forecast translated to average hourly load impacts
- PV data from CPUC NEM interconnection data (current through 12/31/2015)

Modeling Shift in Peak Hour Data and Approach...Continued

- Hourly EMS data and estimated PV production combined to recreate consumption for each day of 2015
- 2015 consumption scaled based on growth from CED 2015 Revised
- Re-estimate "metered load" by subtracting PV and AAEE impacts from the adopted forecast
- Observe metered load for shift in peak over the 10 year forecast horizon

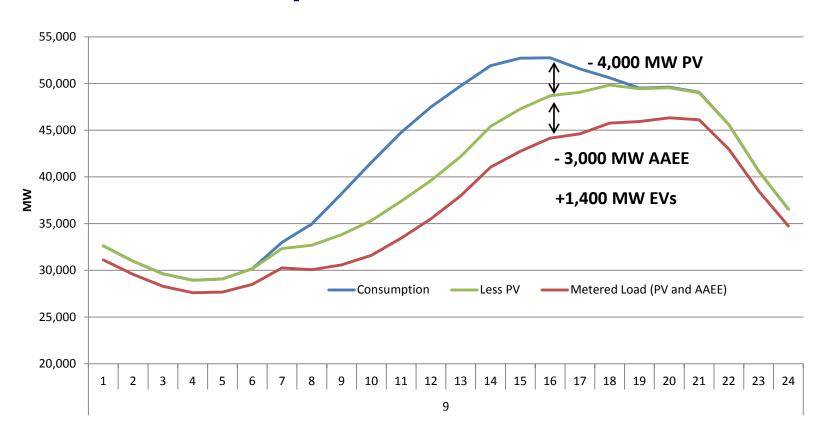
Findings

- Simplified projections including PV and AAEE effects, see shifts up to 4 hours as soon as 2017
- CAISO staff currently observing peak shifts in local areas
- Better idea of magnitude and timing but constant baseline shape is a limiting factor
- In addition to peak, off-peak loads and ramp may be of concern

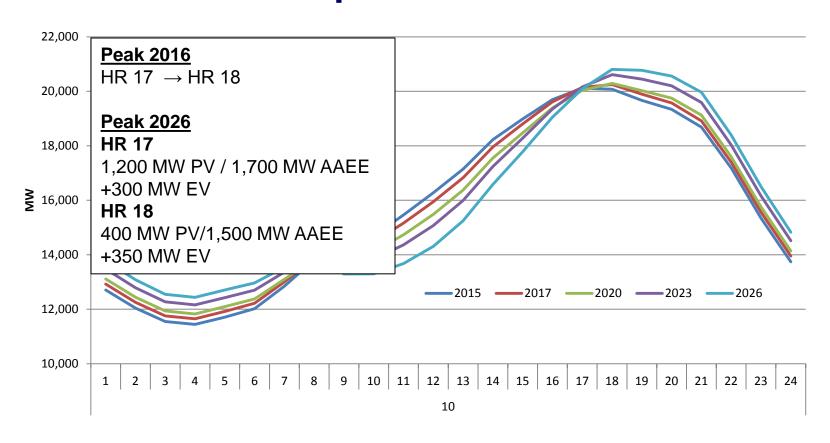


CAISO September - 8, 9,10

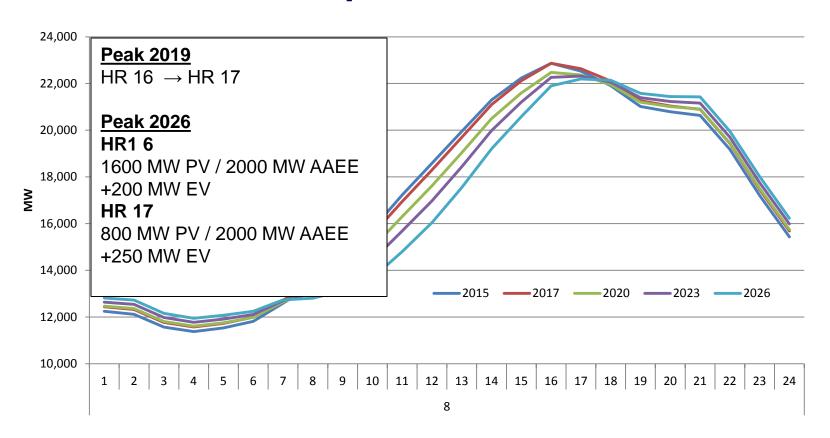
		HR	2017	2020	2023	2026
8-Sep	16	45128.42	44283.95	43816.3	42873.42	
		17	45764.04	45206.28	45137.65	44754.9
	18	45718.98	45496.21	45851.1	46035.44	
	19	44621.14	44632.96	45229.91	45716.07	
		20	43922.85	44019.4	44688.75	45255.36
CAISO 9-Sep	16	45878.36	45157.28	44861.82	44143.37	
	17	45437.93	44928.36	44921.01	44617.01	
	18	45330.27	45147.03	45541.62	45765.83	
	19	44721.76	44768.26	45403.38	45925.61	
		20	44842.13	44981.09	45704.47	46320.09
		16	46521.67	45832.26	45574.86	44891.76
	17	47371.31	46939.96	47039.44	46853.64	
	18	46989.44	46859.72	47330.76	47640.32	
		19	45714.64	45777.22	46437.19	46983.3
		20	45282.38	45425.55	46156.91	46780.34



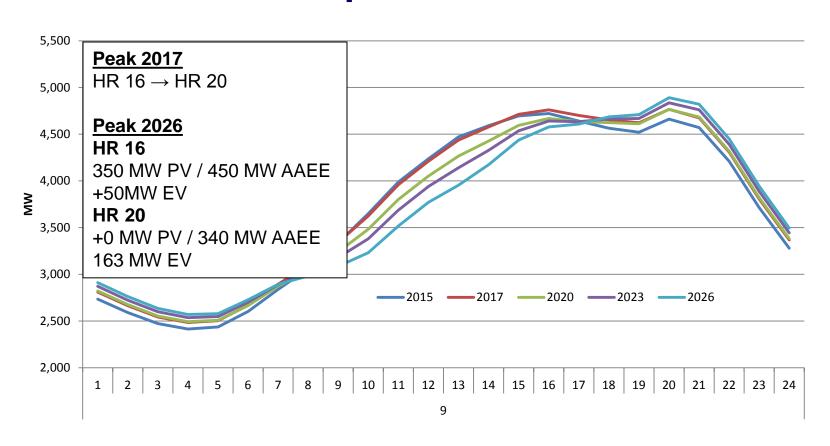
CAISO September 8-10



CAISO – PV, AAEE, and EVs September 9, 2026

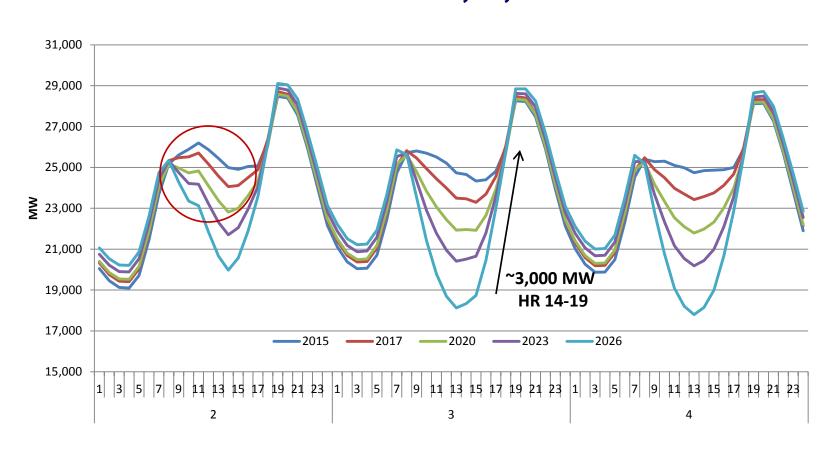


PG&E September 10



SCE September 8

SDG&E September 9



CAISO Off-Peak March 2-4

- Observing shoulder months revealed significant "belly" due to lower loads but continued BTM PV production and AAEE savings
- Solar production variability due to weather

CAISO Off-Peak March – 2, 3, 4

Conclusions

- Other future load modifiers to incorporate
 - EVs, storage, TOU
- Weather variation for hourly forecasts
 - Normalized based on history plus climate change impacts?
 - PV Production variation?

Conclusions

- We've assumed baseline consumption shapes do not change
- Full analysis requires projections of underlying baseline loads i.e., hourly forecasting