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Dynamically Downscaled CMIP5 Climate Projections Over California 

Alex Hall, Fengpeng Sun, Daniel B. Walton, Marla Schwartz, Neil Berg, and Katharine Reich 

University of California, Los Angeles 
Department of Atmospheric and Oceanic Sciences 

Math Sciences Building 7127 
Los Angeles, CA 90095-1565 

 

UCLA is making available to researchers participating in California’s 4th Climate Change Assessment a 
high-resolution climate data set comprising 1) a simulation of historical climate from 1981–2014 and 2) 
projections of future climate from 2091–2101. The five future projections represent dynamically 
downscaled output from five global climate models from the Coupled Model Intercomparison Project, 
Phase 5 (CMIP5; Taylor et al. 2012), the latest generation of global climate model experiments used in 
the Intergovernmental Panel on Climate Change’s 5th Assessment Report. 

This document describes the UCLA dynamically downscaled data set, explains the methodology 
employed to create it, and provides caveats for its use. 

Data set description 

Available in the UCLA data set are six simulations of present and future climate: 

1)   “Baseline” simulation of historical climate, covering October 1981 through September 2014 
2)   Projection of future climate, covering October 2091 through September 2101, created with the 

climate change signal from CNRM-CM5 global climate model 
3)   Projection of future climate, covering October 2091 through September 2101, created with the 

climate change signal from GFDL-CM3 global climate model 
4)   Projection of future climate, covering October 2091 through September 2101, created with the 

climate change signal from inmcm4 global climate model 
5)   Projection of future climate, covering October 2091 through September 2101, created with the 

climate change signal from IPSL-CM5A-LR global climate model 
6)   Projection of future climate, covering October 2091 through September 2101, created with the 

climate change signal from MPI-ESM-LR global climate model 

All simulations were created using the Weather Research and Forecasting (WRF) model version 3.5 
(Skamarock et al. 2008). For the baseline simulation, WRF was forced at the study domain’s boundaries 
by data from the North American Regional Reanalysis (NARR; Mesinger et al. 2006). For each future 
projection, historical NARR data were perturbed by the climate change signal given by the global climate 
model in use, then used to drive the WRF model. For a more detailed description of our methods, 
including the rationale for the selection of global climate models used in the future projections, see the 
“Methodology” section below.  

Greenhouse gas concentration scenario: The five future simulations correspond to the IPCC 
Representative Concentration Pathway 8.5 (RCP8.5). This pathway represents a “business as usual” 
scenario in which greenhouse gas concentrations continue to increase throughout the 21st century. For 
more information, a “Beginner’s Guide to the Representative Concentration Pathways” is available at  
http://www.skepticalscience.com/docs/RCP_Guide.pdf.  

Spatial resolution: 9-km resolution over California (Figure 1, “D2”); 3-km resolution over the Sierra 
Nevada range (Figure 1, “D3”) 
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Temporal resolution: 30-minute resolution for surface air temperature; 6-hourly resolution for all other 
variables. 

Available variables: All six historical and future simulations include the complete set of variables 
outputted by the WRF model. A partial list is provided here. For the full list, visit 
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.5/users_guide_chap5.htm#fields  

2-Dimensional Surface Variables 

Temperature at 2 meters 
Precipitation 
Humidity 
Surface pressure 
Surface heat fluxes 
Surface moisture flux 
Surface runoff 
Soil temperature 
Soil moisture 
Snow cover 
Snow density 
Snow depth 
Snow water equivalent 

3-Dimensional Variables 

Temperature 
Humidity 
Zonal wind 
Meridional wind 
Geopotential 

 

 

 

 

Context for data set creation 

Because California’s Sierra Nevada is a critical source of the state’s freshwater, the UCLA team designed 
a downscaling study with this region as the focus. California's Sierra Nevada is a high-elevation mountain 
range with complex topography and significant seasonal snow cover. Anthropogenic warming in the 
region is expected to cause large reductions in snowpack by the end of the 21st century (Pierce et al. 
2013a). Areas experiencing snow cover loss are subject to extra warming due to snow albedo feedback. 
The disappearance of snow reveals lower albedo surfaces, which causes an increase in absorbed solar 
radiation and further warming. Snow albedo feedback is a critical feature of climate change in snow 
covered regions that leads to elevation dependent outcomes (Giorgi et al. 1997; Kim 2001; Rangwala and 
Miller 2012; Pepin et al. 2015; Letcher and Minder et al. 2015). Although snow albedo feedback is a 
feature of climate change present in global climate models (Qu and Hall, 2014), global climate models 
largely miss its effect in areas of intense topography due to their low resolution (~100–200 km). In the 
case of the Sierra Nevada, their resolution is generally too low to resolve this mountain complex and the 
structure of snow cover therein. To provide future projections that capture the effect of snow albedo 
feedback on the warming in the Sierra Nevada, much higher resolution is necessary. 
 
A variety of approaches are available for downscaling global climate model output to higher resolution 
(Wilby and Wigley 1997; Benestad et al. 2008; Maraun et al. 2010). One approach, dynamical 
downscaling, explicitly simulates the complex physical processes that underlie the local climate response 
using a regional climate model (RCM) forced at its boundaries by global climate model output. 
Dynamical downscaling may be an advantageous approach to downscaling global climate models over the 
Sierra Nevada as it directly simulates both snow albedo feedback and the inhibition of mixing of air 
masses due to the high peaks. While dynamical downscaling can simulate critical mechanisms associated 
with regional climate change, it also introduces additional errors and uncertainty. An RCM may drift 
towards a climate different than its driving global climate model and may produce widely varying results 
depending on the choice of parameterizations and resolution. Furthermore, dynamically downscaling a 
large ensemble of global climate models—critical for computing ensemble-mean outcomes and 
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characterizing uncertainty associated with global climate model spread—is usually impractical because of 
its high computational cost.  
 
A second approach, statistical downscaling, employs statistical relationships from the historical period to 
transform low-resolution predictors into high-resolution predictands (Benestad et al. 2008). Statistical 
downscaling generally has a much lower computational cost, making it a valuable tool for downscaling 
multi-model ensembles and producing more robust estimates of likely outcomes and uncertainty (Giorgi 
et al. 2001; Tebaldi et al. 2005; Pierce et al. 2013a,b). However, the empirical relationships between large 
and fine scales employed in statistical downscaling can break down under climate change (Gutierrez et al. 
2013; Dayon et al. 2015; Dixon et al. 2016). 
 
A third approach, hybrid dynamical-statistical downscaling (Walton et al. 2015), uses a statistical model 
to extend the results of dynamical downscaling to multiple global climate models. Under this approach, 
dynamical downscaling is applied to a small subset of global climate models. Then the output is used to 
build a simple statistical model to mimic the behavior of the dynamical model and downscale the results 
for the remaining global climate models in the ensemble. This approach adds a layer of complexity to the 
downscaling process, but it also provides valuable gains. It can capture important features of the warming 
pattern that may be present only in dynamical downscaling, but a fraction of dynamical downscaling’s 
computational cost (Berg et al. 2015; Sun et al. 2015; Walton et al. 2015).  
 
The dynamically downscaled projections created by UCLA form the basis of a hybrid dynamical-
statistical downscaling study over the Sierra Nevada. Results from that study are described in Walton et 
al. 2016. 
 
In the following sections, we describe how we perform dynamical downscaling to generate historical and 
future high-resolution simulations. Then, we evaluate the realism of the historical simulation by 
comparing to observationally based gridded datasets. Finally, we examine the climate change patterns 
generated by differencing the future and historical simulations. 
 
Methodology: Dynamical downscaling with WRF 

Dynamically downscaled simulations are performed using the Weather Research and Forecasting (WRF) 
model version 3.5 (Skamarock et al. 2008). WRF is coupled to the community Noah land surface model 
with multiparameterization options (Noah-MP; Niu et al. 2011). Three one-way nested domains (27, 9, 
and 3 km resolution, going from the outermost to innermost domain) are used (Figure 1a). In each 
domain, all variables within five grid cells from the horizontal lateral boundary are relaxed towards the 
corresponding values at the boundaries. To provide a better representation of surface and boundary layer 
processes, the model’s vertical resolution is enhanced near the surface, with 30 out of 43 total sigma 
levels below 3 km. The package of physical parameterizations consists of the New Thompson 
microphysics scheme (Thompson et al. 2008), Dudhia shortwave radiation scheme (Dudhia 1989), Rapid 
Radiative Transfer Model longwave (RRTM) longwave radiation scheme (Mlawer et al. 1997), MYNN 
Level 2.5 surface/boundary layer scheme (Nakanishi and Niino 2006, and Old Kain-Fritsch cumulus 
convection scheme (Kain and Fritsch 1990). Spectral nudging of temperature, zonal and meridional winds 
and geopotential height above the boundary layer (roughly at 850 hPa) is employed over the outermost 
domain. In this study we focus only on climate information from the innermost domain, which goes from 
the eastern edge of the Central Valley to the leeside of the California Sierra Nevada (Figure 1b).  
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Figure 1: (a) Topography (meters) and model setup with three one-way nested WRF domains (D1, D2, and D3) at resolutions of 27, 9, and 3 
km. (b) Innermost domain (D3) topography. 

Climatic changes are projected using a single baseline simulation and five future simulations, following 
the pseudo-global warming method (Schär et al. 1996; Sato et al. 2007; Kawase et al. 2009; Rasmussen et 
al. 2011). The baseline simulation spans the 1981–20061 period and is forced at the surface and along the 
outermost boundary with 6-hourly North American Regional Reanalysis (NARR; Mesinger et al. 2006). 
The baseline simulation is used to evaluate WRF’s ability to simulate regional climate through 
comparison with the observational record (Section 2b). The 1991–2000 sub-period is used to compare 
with the future simulations. The five future simulations represent how the weather and climate of the 
1991–2000 historical sub-period would have unfolded if the mean climate were altered to reflect the 
climate change signals found in five CMIP5 global climate models run under the RCP 8.5 scenario. The 
five global climate models used here (CNRM-CM5, GFDL-CM3, inmcm4, IPSL-CM5A-LR, and MPI-
ESM-LR) were selected to span the approximate range of temperature and precipitation changes over 
California of the full CMIP5 ensemble (Figure 2). Each future simulation is forced with boundary 
conditions created by adding the difference in global climate model monthly climatology (2081–2100 
minus 1981–2000) to the 1991–2000 NARR data. This process was applied to temperature, humidity, 
zonal and meridional winds, and geopotential height. The future WRF simulations are then differenced 
with the 1991–2000 portion of the baseline WRF simulation to determine the regional climate change 
signals. Because each future year has the same climatological perturbation added to the boundary 
conditions, only a few downscaled future years are necessary to determine the regionalized climate 
change signals. Thus, a 10-year sub-period is used for future simulations to conserve scarce computational 
resources.  
 

                                                
1 Note that the time periods in this section of the document differ slightly from those specified on page 1. Time periods in this 
section reflect data availability at the time the methodology was developed and initial analysis was conducted. Since then, 
additional years have been added to our simulations. 



 5 

 
Figure 2: Changes in annual-mean precipitation (mm day-1) versus annual-mean changes in surface air temperature (K) averaged over 
California in 35 CMIP5 global climate models (GCMs) run under the RCP8.5 scenario. The five GCMs selected for dynamical downscaling 
are highlighted (colors). The black dots represent GCMs that are downscaled with the hybrid statistical model. The ensemble mean (all 
GCMs) is indicated with a red star. 

There are several noteworthy advantages and disadvantages of the pseudo-global warming method. First, 
forcing the baseline simulation with reanalysis allows for direct comparison of the baseline simulation to 
historical observations. If raw global climate model output were used as forcing instead, then only 
statistical properties could be compared. Furthermore, by using reanalysis for the baseline simulation (and 
perturbed reanalysis for the future simulations), we avoid subjecting the simulations to potentially large 
biases in mean state often found in global climate models. This may be particularly important in regions 
where snow albedo feedback plays an important role in warming. For example, significant temperature 
biases in the mean state would lead to unrealistic snow cover, and hence unrealistic amplification of 
warming due to snow albedo feedback when the climate state is perturbed. A downside to the pseudo-
global warming method is that the future simulations are driven by mean climatological perturbations to 
the historical boundary conditions, so no changes in large-scale interannual variability are downscaled. 
(However, changes in the mean state may affect how variability develops inside the WRF domain.) The 
benefit of this approach is that the historical variability captured in the reanalysis is much more realistic 
than what is simulated in global climate models. For example, many global climate models struggle to 
realistically simulate El Niño / Southern Oscillation (Guilyardi et al. 2009), a key source of variability in 
California’s climate. So we would not have a high level of trust in the changes in variability predicted by 
global climate models, even if they were included. Still, because our methodology excludes global climate 
model-driven variability changes, we must limit the scope of this study to changes in mean climate. 
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Evaluation of the WRF baseline simulation 

An evaluation of surface air temperature and snow cover output from the WRF baseline simulation is 
presented in Figures 3 and 4, respectively. WRF temperature output (3-km resolution) is compared to 
output from the Parameter-elevation Relationships on Independent Slopes Model (PRISM; Daly et al. 
2008), an observationally-based gridded product at 4 km resolution. The PRISM dataset is not strictly 
speaking an observational data set, as it incorporates assumptions about how climate fields vary in the 
many areas where observations are unavailable. However, it is independently-derived from the WRF 
baseline simulation, and in this sense provides a check on its realism. PRISM data is stored in monthly 
averages of daily maximum and minimum temperatures, which we averaged to generate monthly mean 
temperatures. For comparison purposes, PRISM data has been linearly interpolated to 3 km resolution, 
matching the WRF grid. The linearly interpolated PRISM data is also adjusted to account for the 
difference in elevation between the interpolated PRISM grid and the WRF grid, using a lapse rate of 6.5 
°C km-1. 
 
Differences between WRF and PRISM in climatological annual-mean temperatures for the 1981–2000 
period are generally small (Figure 3a-c), averaging out over the domain to only -0.1 °C. However, WRF 
tends to be colder (-1.2 °C) at higher elevations (> 2500 m), especially in the northern Sierra Nevada. 
WRF and PRISM report similar composite seasonal cycles, which are calculated by averaging the 
temperature for each calendar month over the 1981–2000 period. The mean absolute error (MAE) 
between the twelve monthly values making up the seasonal cycle (Figure 3d) has a domain average of 1.0 
°C, with slightly larger errors (1.5 °C) at higher elevations (> 2500m).  
 
The temporal variability of surface air temperature also shows strong agreement between WRF and 
PRISM. A comparison of monthly-mean temperature anomalies in WRF and PRISM is shown in Figure 
3e. The WRF and PRISM anomalies are highly correlated (Figure 3e), with an average correlation of 0.95 
over the domain. Moreover, the mean absolute error (MAE) in monthly anomalies is also generally small, 
with the largest errors again found at higher elevations (Figure 3f). Taken as a whole, Figure 3 shows that 
WRF accurately simulates the baseline temperature climatology and temporal variability, albeit with a 
slight cold bias at higher elevations.  
 

 
. 

Figure 3: Comparison of WRF 
and PRISM temperatures 
(1981–2000). PRISM 
temperatures are interpolated to 
the WRF 3 km grid and adjusted 
based on a lapse rate of 6.5 
K/km to correct for the 
mismatch between WRF 
elevations and the interpolated 
PRISM elevations. Shown are 
the annual Tavg climatologies 
for (a) WRF, (b) PRISM, (c) 
WRF minus PRISM. (d) Mean 
absolute error between the 
composite seasonal cycles 
(twelve monthly values of Tavg) 
of WRF and elevation-corrected 
PRISM. (e) Correlations of 
monthly temperature anomalies 
(relative to composite 1981–
2001 seasonal cycle). (f) Mean 
absolute error of monthly 
temperature anomalies. 
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Figure 4: Monthly snow covered fraction climatology (April 2000–December 2006) for WRF resampled to the MODIS/Terra 0.05 degree 
grid (top row), MODIS/Terra (middle row), and WRF minus MODIS/Terra (bottom row). 

Because snow albedo feedback ends up being such an important factor shaping Sierra Nevada warming 
patterns, we evaluate WRF’s simulation of snow cover. We define snow cover (abbreviated SCF) as the 
fraction of a grid cell covered by snow. For comparison, we use satellite data from MODIS/Terra Snow 
Cover Monthly L3 Global 0.05-Degree CMG Version 5 (Hall et al. 2006). MODIS/Terra Coverage begins 
in April 2000, providing some overlap with the baseline WRF simulation (which extends from 1981–
2006). We compare monthly composite MODIS/Terra and WRF SCF patterns for April 2000 – December 
2006 (Figure 4). WRF is linearly interpolated from 3-km resolution to 0.05-degree resolution to match 
MODIS/Terra. Overall, the patterns resemble one another closely, though a similar bias emerges in each 
month: WRF tends to produce slightly higher SCF than MODIS/Terra along the windward side of the 
Sierra Nevada and slightly lower SCF on the leeside. Similar windward and leeward biases have occurred 
in previous WRF simulations (Wrzesien et al. 2014) and were attributed to underlying precipitation biases 
(Caldwell et al., 2009, Rögnvaldsson et al., 2011). In our simulation, these biases largely offset over the 
domain and total snow covered area (SCA; Figure 5) is similar. The high correlation of the monthly totals 
(r = 0.94) combined with their positioning along the line y = x (red) indicates that WRF simulates the 
seasonal cycle and interannual variability of SCA with a high degree of accuracy. One exception is that 
WRF tends to overestimate SCA relative to MODIS/Terra in October and June—months at the beginning 
and end of the snow season with little snow. Generally, WRF captures the observed effects of temperature 
variability on snow cover over the course of the seasonal cycle, which provides some evidence that WRF 
will also be able to realistically capture the most important effects of large-scale and sustained 
temperature anomalies on snow cover in the future climate simulations performed here. In other words, 
WRF simulates SCF with some degree of accuracy. Although WRF is not perfect, it is most likely 
realistic enough to capture the major features of the climate change signals in the region, including the 
effect of snow albedo feedback. 
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WRF climate changes 

Downscaled climate changes are calculated by differencing the climates of the five future simulations and 
the climate of the 1991–2000 sub-period of the historical simulation. Note that these changes represent a 
downscaling of the differences in global climate model climate between the 2081–2100 and 1981–2000 
periods. The dynamically downscaled warming patterns are compared to those produced by two 
commonly used statistical downscaling methods: Bias Correction and Constructed Analogs (BCCA; 
Hidalgo et al. 2008; Maurer and Hidalgo 2008) and Bias Correction with Spatial Disaggregation (BCSD; 
Wood et al. 2002; Wood et al. 2004; Maurer 2007). The BCCA and BCSD projections presented here 
were obtained online from the archive of Downscaled CMIP3 and CMIP5 Climate and Hydrology 
Projections (Reclamation 2013). BCCA projections are available for daily maximum (Tmax) and 
minimum (Tmin) with native resolution of 1/8th degree, which are averaged together to produce monthly 
average temperatures and linearly interpolated to the 3 km WRF grid. Similar processing was applied to 
BCSD Tmax and Tmin data (which are available as monthly averages). Linear interpolation is also 
included as the simplest and most naïve possible method for downscaling global climate model output, 
representing a standard measure of minimal downscaling skill against which the other methods can be 
compared.  
 
All downscaling methods produce climate change patterns exhibiting reduced warming closer to the coast 
and higher warming inland of the Sierra Nevada (Figure 6). This gradient is a common large-scale feature 
of global climate model warming patterns. It arises from the contrast in warming over the continental 
inland interior and coastal areas subject to marine influence (Manabe et al. 1991; Cubasch et al. 2001; 
Braganza et al. 2003, 2004; Sutton et al. 2007; Joshi et al. 2008; Dong et al. 2009; Fasullo et al. 2010). 

Figure 5: Monthly snow covered area 
(km2) in the innermost domain for the 
period April 2000 – December 2006 for 
the MODIS/Terra satellite versus WRF 
(blue circles). The line y = x is drawn for 
reference (red). A Pearson correlation 
coefficient of 0.94 was calculated 
excluding months where both the WRF and 
satellite show virtually no snow (defined 
as total snow cover less than 0.2 · 104 
km2). 
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However, dynamical downscaling produces a sharper gradient than the other methods. We hypothesize 
that the high-resolution WRF configuration we use resolves the narrow width and high peaks of the Sierra 
Nevada, which act as a barrier preventing mixing of marine and high desert air masses and their 
accompanying properties. This effect is most apparent in the summer months, when the global climate 
models’ land-sea contrast in warming is greatest.  
 
Dynamical downscaling also exhibits significant warming amplification due to snow albedo feedback. 
Locations with baseline temperatures near the freezing point are vulnerable to snow cover loss in a 
warmer climate due to less snowfall as a fraction of precipitation (S/P) and earlier snowmelt. From 
December through April, only the lower and middle elevations (~1000–3000 m) are vulnerable to snow 
cover loss and enhanced warming, while high elevations (> 3000 m) are relatively unaffected (Figure 6, 
bottom row). At the beginning of the snow season (October–November) and the end (May–July), baseline 
temperatures are high enough that snow cover at all elevations is vulnerable to loss. The strength of snow 
albedo feedback is greatest in the spring and early summer, when higher insolation levels cause the same 
albedo reduction to result in more absorbed solar radiation at the surface. The strength of the feedback 
also varies spatially in some months. From November to May, higher insolation in the eastern and 
southern Sierra Nevada causes the warming enhancement per SCF change to be equal or larger than in the 
northern and western Sierra Nevada.  
 

 
 

Figure 6: Changes in selected 
monthly temperature 
climatologies averaged over 
five GCMs downscaled 
multiple ways: (first row) 
linear interpolation, (second 
row) BCSD, (third row) BCCA, 
(fourth row) the hybrid 
statistical model, (fifth row) 
WRF. Decreases in WRF SCF 
are also shown (bottom row). 
The innermost WRF domain is 
outlined in black. 
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Snow albedo feedback is a critical feature of the warming’s elevational profile for many months (Figure 
7). The linearly interpolated global climate model warming (red lines), BCSD-downscaled warming 
(magenta lines), and BCCA-downscaled warming (green lines) all mostly lack this elevation-dependent 
signal evident in WRF (black lines). It is not surprising that global climate models do not have high 
enough resolution to capture the snow-albedo feedback enhancement of the warming in the Sierra 
Nevada. However, when interpolated, the global climate models do show a smoothly varying contrast 
between the low-elevation Central Valley and the mid-elevation interior on the leeside of the Sierra 
Nevada (visible in Figure 7 top row), which leads to an apparent elevational gradient (Figure 7, red lines). 
This gradient is relatively weak, restricted to below about 2000 m, and the snow albedo feedback 
enhancement band is missed entirely. BCSD produces very similar patterns to the interpolated global 
climate model warming (Figure 6 second row). In fact, BCSD warming patterns are, by construction, 
those of the interpolated bias-corrected global climate model, and therefore have similar shortcomings. 
BCCA should, in theory, better capture the elevational gradients in the warming, given that it uses 
relatively high-resolution (1/8th degree) historical analogs. These analogs could conceivably capture 
spatial variations leading to the elevational gradients. However, warming pattern patterns produced by 
BCCA show no apparent effects of snow-albedo feedback (Figure 6, third row). BCCA produces weaker 
elevational gradients than the interpolated global climate model patterns and consistently produces less 
warming than the others at nearly all elevations in our domain (Figure 7, green lines). We argue that snow 
albedo feedback is a key process shaping warming patterns in the Sierra Nevada, and therefore the 
warming patterns produced by these statistical downscaling techniques lack a vital element of physical 
realism. This motivated us to develop a hybrid dynamical-statistical downscaling method that could 
capture such important features (Figure 7, blue lines). 
 

 
Figure 7: Comparison of monthly-mean elevational profiles of warming (top) and SCF loss (bottom) averaged over the five dynamically 
downscaled GCMs. The warming signal is downscaled using five methods: dynamical downscaling with WRF (black), hybrid downscaling 
(blue), interpolation of the GCM warming pattern (red), BCCA (green), and BCSD (magenta). Snow cover changes can only be generated 
with dynamical and hybrid statistical downscaling. The patterns produced by each downscaling method are interpolated to the WRF grid and 
then binned by elevation using WRF elevation. A bin size of 200 meters is used.  

 
Discussion 

The results of this study should be viewed with the following caveats in mind. First, results depend on the 
ability of WRF and the land surface model Noah-MP to realistically simulate snow albedo feedback. 
WRF simulates slightly more baseline snow cover than the MODIS/Terra satellite along the western 
slopes of the Sierra Nevada and less on the eastern slopes (Figure 4). Therefore, actual losses in absolute 
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snow cover and the resulting warming enhancements are likely to be smaller along the western slopes and 
larger on the eastern slopes than projected here. In June and July, WRF simulates a historical climatology 
of snow cover that is systematically higher than that shown by MODIS/Terra. So, actual snow cover 
losses and the resulting warming enhancements for June and July are likely to be smaller than those 
projected by WRF. Other factors also influence the strength of snow albedo feedback. The vegetation 
masking effect and treatment of snow albedo processes have been shown to affect snow albedo feedback 
(Qu and Hall 2007). Future work could explore the sensitivity of snow albedo feedback strength to key 
parameters in the land surface model. 
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Table 1. Details of the 5 CMIP5 global climate models dynamically downscaled. For a particular global climate 
model, averages were taken over all available realizations in order to damp out internal variability. Realizations 
used for each global climate model are noted in the rightmost column.  
 

Model Country Institute Realization(s) 

CNRM-CM5 France Centre National de Recherches 

Meteorologiques 

r1i1p1, r2i1p1, 

r4i1p1, r6i1p1 

GFDL-CM3 USA NOAA Geophysical Fluid Dynamics 

Laboratory 

r1i1p1 

inmcm4 Russia Institute for Numerical Mathematics r1i1p1 

IPSL-CM5A-LR France Institut Pierre Simon Laplace r1i1p1, r2i1p1, 

r3i1p1, r4i1p1 

MPI-ESM-LR Germany Max Planck Institute for Meteorology r1i1p1, r2i1p1, 

r3i1p1 
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