DOCKETED	
Docket Number:	16-IEPR-02
Project Title:	Natural Gas
TN #:	211799
Document Title:	Current and future work at Stanford on natural gas and methane: NGI, leak, simulation, LCA
Description:	A.R. Brandt,1 C. Kemp,1 A. Ravikumar,1 J. Wang,2 J. Englander,1 D. Cooley,3 G.A. Heath4, R. Jackson5, and others of Stanford Natural Gas Initiative-Presentation for June 5th and 6th Methane Symposium
Filer:	Raquel Kravitz
Organization:	Various agencies
Submitter Role:	Public Agency
Submission Date:	6/13/2016 3:23:49 PM
Docketed Date:	6/13/2016

Current and future work at Stanford on natural gas and methane: NGI, leak simulation, LCA

A.R. Brandt,¹ C. Kemp,¹ A. Ravikumar,¹ J. Wang,² J. Englander,¹ D. Cooley,³ G.A. Heath^{4,} R. Jackson⁵, and others.

¹ Department of Energy Resources Engineering, Stanford University
 ² Department of Civil and Environmental Engineering, Stanford University
 ³ Department of Statistics, Colorado State University
 ⁴ National Renewable Energy Laboratory, Golden CO

⁵ Department of Earth Systems Science, Stanford University

ARB Methane Symposium, June 6th, 2016, Sacramento, CA

The Natural Gas Initiative

- Interdisciplinary effort at Stanford
- Aims to foster research across all aspects of natural gas
- All Stanford Schools involved
 - Law, Earth
 Sciences,
 Engineering

Areas of NGI research

RESOURCE DEVELOPMENT

Resource Development Production optimization Long-term resource management CO₂ capture and storage

Environmental Benefits Bridge to a decarbonized energy future **Reduced GHG emissions** Reduced air pollution

ENVIRONMENTAL IMPACTS

AND CLIMATE CHANGE

USES OF NATURAL GAS **Electrical Power**

Industrial Fertilizer Petrochemicals

Three near-term focus areas:

- 1. Methane leakage: technologies and policies
- 2. GTL technology for stranded gas
- 3. Gas and energy poverty

Macroeconomics Growth

Trade balance Productivity

Exports Global gas markets & prices Infrastructure Transport risk

Trade Policy Liquid natural gas Exports

Fuel Switching Subsidies and incentives

Research & Development Funding

What have we learned about natural gas leaks?

- US methane emissions have increased over last 10 years and are higher than EPA inventories
- 2. Some (but not all) excess methane is likely from natural gas sources
- 3. New studies give insight into sources
 - Lower: Wellpads, G&P, distribution
 - Higher: Pneum., comp., super-emitters
- 4. Challenging to align top-down results with bottom-up inventories
 - Barnett shale & "super-emitting" sources
- 5. Attention needed on liquids-rich plays
 - Recent work in Bakken shows high leakage rate

(Turner et al. 2016) (Brandt et al. 2014)

(Miller et al. 2013)

(Allen et al. 2013) (Mitchell et al. 2015) (Lamb et al. 2015) (Allen et al. 2014) (Zavala-Araiza 2015) (Subramanian 2015)

(Zavala-Araiza 2015)

(Lyon 2016, Peischl 2016, Kort 2016)

Which questions remain?

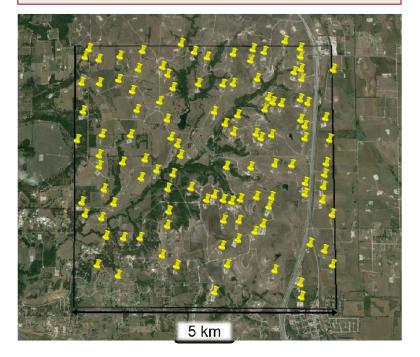
- Which technologies will most effectively detect emissions?
- 2. How can we include super-emitters in existing life cycle estimates?

Simulation to compare technology options

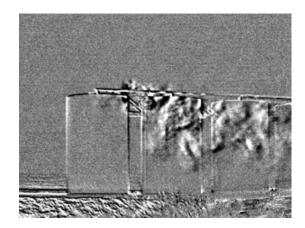
Simulation and experimentation to evaluate proposed regulations

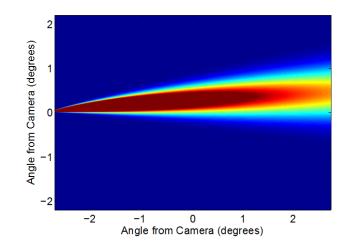
How to compare detection technologies?

FEAST:


Fugitive Emissions Abatement Simulation Toolkit

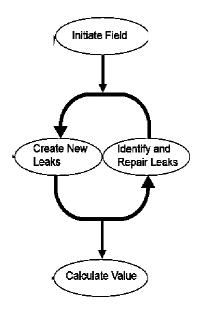
- Many detection technologies exist...many more are proposed
- How can we rigorously, fairly, and cheaply compare different ideas?
- We have developed a "virtual training ground" for technologies
- FEAST model is open-source and modular: Anyone can model or update as desired


Simulating technologies in FEAST

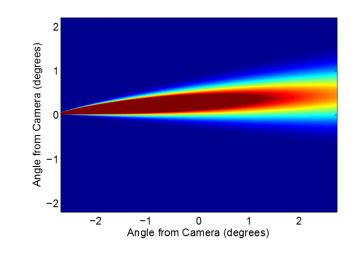

Step 1: Initialize artificial gas field

- Well counts
- Distances
- Equipment counts and components

Step 2: Initialize leaks

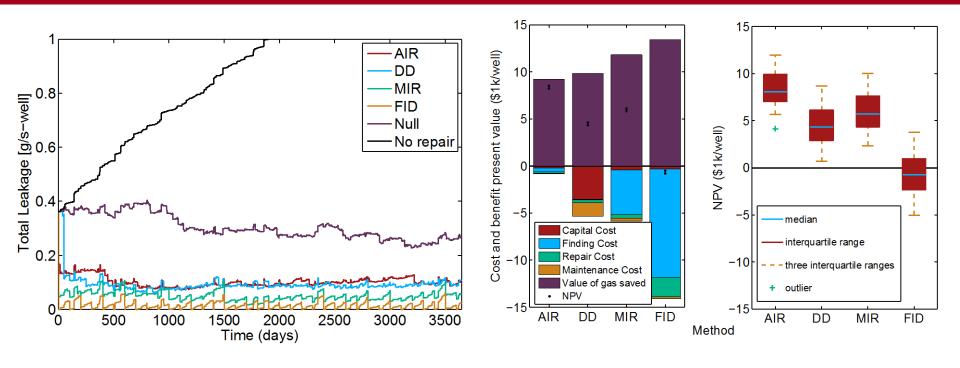


Source: Kemp, Ravikumar, Brandt (2016). Video Englander 2015.


Probabilities of leak generation

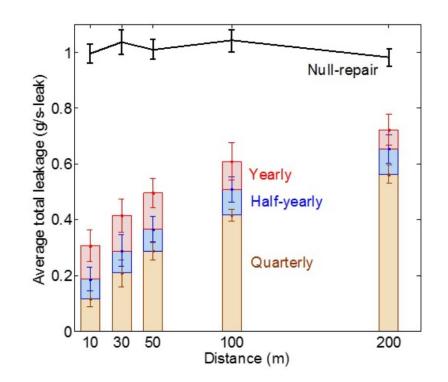
Step 3: Add and subtract leaks

- Two-state Markov model
- Probabilities of leaks forming on a given day
- Include background repair rate



Step 4: Simulate detection tech.

- Which leaks will be detected, given parameters of detection tech?
- Frequency of surveys
- Sensitivity
- Leak size distributions

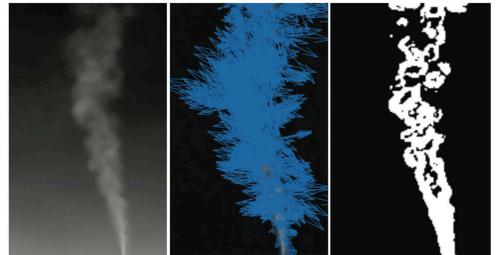

Comparing technologies

Step 5. Compute net benefits from each tech. (NPV)

Simulation and experiments to inform regulation

- Can we study the effectiveness of proposed regulation?
- EPA proposed methane rule (Aug 2015):
 - Optical gas imaging (semiannual)
 - Fix leaks within 15 days
 - Frequency of surveys changes based on performance
- How well does this regulatory format perform against an artificial (but statistically representative) gas field?

Illustrative results


Experimental model verification

- Experimental verification of IR camera simulator
- Collaborated on controlled releases
- Measure environmental conditions
- Compare processed video readings to simulation

Source: Ravikumar et al. 2016

Plume (left); Optical flow velocity field (middle); Binary image

generated using velocity threshold (right)

Moving forward: Building super-emitters in LCA

- Beginning new project with ARB: building super-emitters into life cycle analysis tools
- Current LCA tools (including those used in transport models such as GREET and OPGEE) do not account for recent experimental results
- Much better datasets now available on fugitive emissions
- How do these affect life cycle choices such as EV or CNG/LNG vehicles?
- How does associated or shale gas differ from conventional gas fields?