DOCKETED	
Docket Number:	16-IEPR-02
Project Title:	Natural Gas
TN #:	211775
Document Title:	Presentation - Geospatial Data Analytics to Project Energy Infrastrucure
Description:	San Gunawardana of Enview
Filer:	Raquel Kravitz
Organization:	Enview
Submitter Role:	Public
Submission Date:	6/9/2016 1:00:59 PM
Docketed Date:	6/9/2016

Geospatial Data Analytics to Protect Energy Infrastructure

Enview turns massive datasets into operational insights to support pipeline operational safety and reliability

Computer Vision See the Invisible

Machine Learning Predictive Insights

Data Visualization Actionable Results

Pipeline Capabilities

Vegetative Obscuration 49 CFR 192.701 & 705 NERC FAC-003-3

3rd Party Dig-Ins 49 CFR 192.614

Depth of Cover 49 CFR 192.620

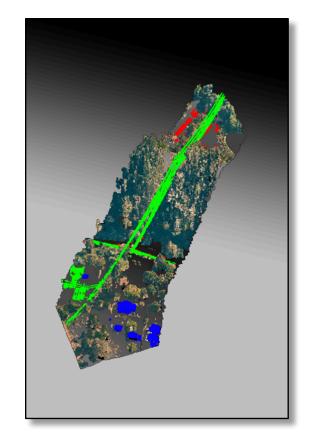
Structure Count 49 CFR 192.5,613 & 905

ROW Encroachment CPUC GO 112-F (143.6)

Predictive Analytics

2003 Northeast Blackout

Outcomes


- Regulations
 - NERC FAC-003-3 Yearly vegetation-related inspections
 - NERC FAC-008 Thermal rating of powerlines
- Previous manual solutions did not scale to new regulations
- Industry turned to powerful new technology: LiDAR

Big Data Consequences

- LiDAR data is massive (GB per mile, PB per operator)
- Response pushed entire ecosystem into big data:
 - Regulators
 - Electric transmission operators
 - LiDAR surveyors
 - LiDAR sensor vendors
- Many painful operational lessons

1 mile. 19M points. 5 GB.

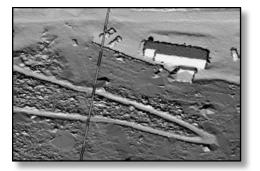
Methane and Big Data

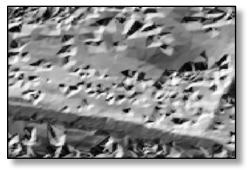
- Methane leak assessment will have same impact on pipeline operators
- Methane big data challenge is enormous
 - Area: 303k mi transmission, 1.26M mi distribution
 - Frequency: Continuous time history vs one-time surveys
 - Complexity: Gas dispersion, fluid dynamics, environmental factors, etc.
 - Quantity: To be fully determined...
- Methane remote sensing big data is the future for the industry
- Pipeline operators can benefit from electric transmission experiences

Lesson 1: Data Rights

• Problem

- Inability to process big data led electric co's to depend on 3rd party vendors for analysis
- Many vendors use proprietary data formats to lock operators into their platform
- Operators can't get access to their own data


- Lesson: Don't get locked out of your own data
 - Make sure deliverables include results AND raw data in open format


Lesson 2: Data Retention

• Problem

- Vendors were unprepared for massive amounts of data
- Vendors stored big data like "small data" (~\$2,000/TB/yr)
- Threw out "non-essential" data to ease storage
- Caused major loss of value for future compliance activities
- Lesson: Don't throw out your own data
 - Data collection is expensive; retain ALL raw data as a baseline and for future analyses
 - Store big data using modern techniques (<\$400/TB/yr)

Original LiDAR Data

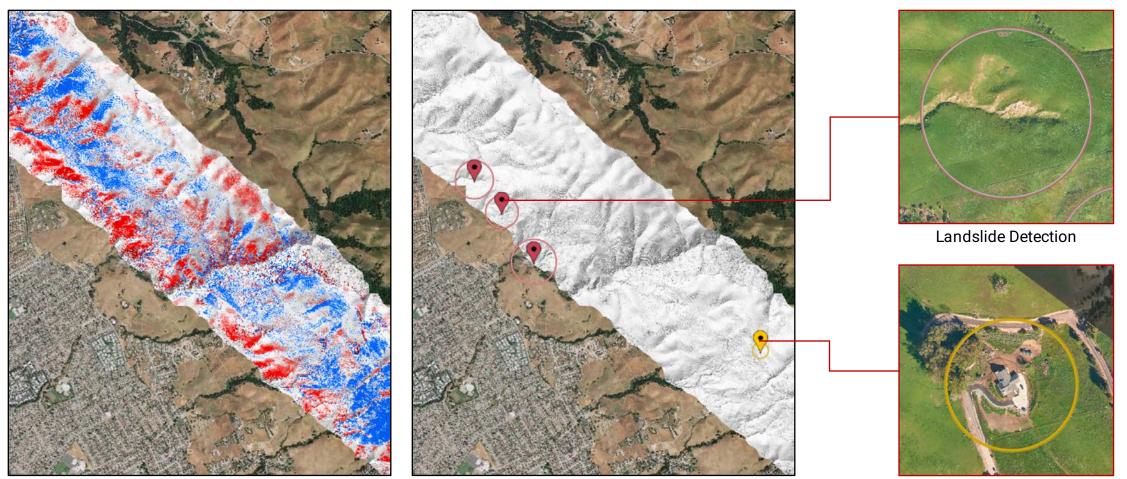
Decimated LiDAR Data

Lesson 3: Insight Generation

- Problem
 - Extracting insight from remote sensing data is a multidisciplinary effort

- Lesson: Ensure solution covers all components, including big data
 - Develop novel sensor tech - Sensor experts:
 - Inform operationalization of new tech - Gas ops teams:
 - Data collectors:
 - Big data firms:

- - Obtain properly georegistered & open data
 - Analyze and store big data, deliver results


Lesson 4: Big Data Analysis

- Problem
 - Data science for its own sake doesn't benefit operations
 - Machine learning /big data analytics is a specialized skill set

- Lesson: Machine learning is not a magic cure-all
 - Solutions must be custom-tailored for the energy industry
 - Algorithms inform expert operators, does NOT replace people
 - Vet vendor for analytical AND operational capability

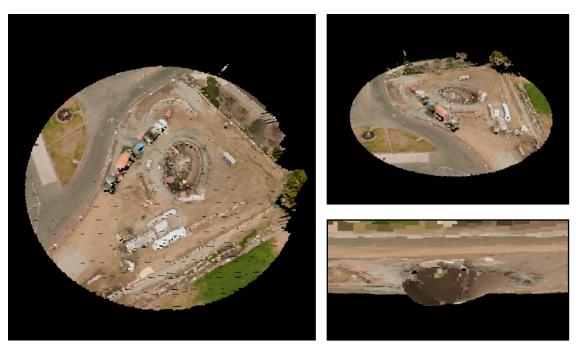
Meaningful Big Data Analysis

Raw change detection - not operationally useful

Automated anomaly detection - operationally useful

New Structure Detection

Lesson 5: Data Visualization


• Problem

- Big data analytics supports, not supplants, people
- Gas ops teams work in ArcGIS
- Also have non-Arc users that need to see results
- Data scientists abstract geospatial data away from GIS
- Lesson: Ensure big data results are easily accessible to everyone
 - Big data methods must accept your GIS as input
 - Arc Users: Big data outputs must integrate seamlessly with current workflow
 - Non-Arc Users: need intuitive, 4D data visualization tool

3D Data Visualization

Views of same excavation in an interactive, 3D data viewer

Excavation near pipeline ROW – Top View

San Gunawardana | san@enview.com

