| DOCKETE | DOCKETED | | | | | | |------------------------|---|--|--|--|--|--| | Docket Number: | 12-AFC-02C | | | | | | | Project Title: | Huntington Beach Energy Project - Compliance | | | | | | | TN #: | 211437 | | | | | | | Document Title: | South Coast Air Quality Management District Correspondance 05-06-16
Part 9 | | | | | | | Description: | N/A | | | | | | | Filer: | Patty Paul | | | | | | | Organization: | CH2M HILL | | | | | | | Submitter Role: | Applicant Consultant | | | | | | | Submission Date: | 5/10/2016 2:01:18 PM | | | | | | | Docketed Date: | 5/10/2016 | | | | | | #### TABLE 3-4. RELATIVE ACCURACY SUMMARY: CO CONCENTRATION Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Facility ID: 29110 Job No.: 9849 Test Date: 10/01/15 Test: RATA | | | Reference Method | | Facility | | Difference | |-----|-------------|------------------|----------|----------|----------|------------| | Run | Time | CO | Report | CO | Report | CO | | No. | (hh:mm) | ppm | Page No. | ppm | Page No. | ppm | | 1 | 7:43-8:12 | 591.37 | D1-1 | 644.87 | F1-1 | -53.50 | | 2 | 8:13-8:42 | 574.10 | D1-1 | 627.39 | F1-1 | -53.29 | | 3 | 8:43-9:12 | 580.31 | D1-1 | 632.74 | F1-1 | -52.43 | | 4 | 9:31-10:00 | 590.16 | D1-1 | 638.91 | F1-1 | -48.75 | | 5 | 10:01-10:30 | 578.80 | D1-1 | 629.02 | F1-1 | -50.22 | | 6 | 10:31-11:00 | 580.92 | D1-1 | 634.26 | F1-1 | -53.34 | | 7 | 11:16-11:45 | 579.05 | D1-1 | 629.08 | F1-1 | -50.03 | | 8 | 11:46-12:15 | 585.05 | D1-1 | 632.51 | F1-1 | -47.46 | | 9 | 12:16-12:45 | 573.98 | D1-1 | 623.82 | F1-1 | -49.84 | RM Average CEMS Average (d) 581.53 632.51 -50.98 Number of Valid Runs (n):9Standard Deviation (Sd):2.223t-value (0.975):2.306Confidence Coefficient (cc):1.709 Relative Accuracy Test Result: 9.06 % of RM SCAQMD RULE 218/218.1 CRITERIA: ≤ 20.0 % of RM #### TABLE 3-5. RELATIVE ACCURACY SUMMARY: CO CORRECTED CONCENTRATION Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Facility ID: 29110 Job No.: 9849 Test Date: 10/01/15 Test: RATA | | | Reference Method | | Facility | | Difference | |-----|-------------|------------------|----------|-----------|----------|------------| | Run | Time | CO | Report | CO | Report | CO | | No. | (hh:mm) | ppm@15%O2 | Page No. | ppm@15%O2 | Page No. | ppm@15%O2 | | 1 | 7:43-8:12 | 382.42 | D1-1 | 424.59 | F1-1 | -42.17 | | 2 | 8:13-8:42 | 371.35 | D1-1 | 410.59 | F1-1 | -39.24 | | 3 | 8:43-9:12 | 378.55 | D1-1 | 420.71 | F1-1 | -42.16 | | 4 | 9:31-10:00 | 382.75 | D1-1 | 419.45 | F1-1 | -36.70 | | 5 | 10:01-10:30 | 376.45 | D1-1 | 416.17 | F1-1 | -39.72 | | 6 | 10:31-11:00 | 380.88 | D1-1 | 419.98 | F1-1 | -39.10 | | 7 | 11:16-11:45 | 373.19 | D1-1 | 408.90 | F1-1 | -35.71 | | 8 | 11:46-12:15 | 380.64 | D1-1 | 419.20 | F1-1 | -38.56 | | 9 | 12:16-12:45 | 372.37 | D1-1 | 408.64 | F1-1 | -36.27 | RM Average CEMS Average (d) 377.62 416.47 -38.85 Number of Valid Runs (n):9Standard Deviation (Sd):2.348t-value (0.975):2.306Confidence Coefficient (cc):1.804 Relative Accuracy Test Result: 10.77 % of RM SCAQMD RULE 218/218.1 CRITERIA: ≤ 20.0 % of RM #### TABLE 3-6. RELATIVE ACCURACY SUMMARY: CO MASS EMISSION RATE Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Facility ID: 29110 Job No.: 9849 Test Date: 10/01/15 Test: RATA | | | Reference Method | | Facility | | Difference | |-----|-------------|------------------|----------|----------|----------|------------| | Run | Time | CO | Report | CO | Report | CO | | No. | (hh:mm) | lb/hr | Page No. | lb/hr | Page No. | lb/hr | | 1 | 7:43-8:12 | 25.151 | D1-1 | 28.030 | F1-1 | -2.879 | | 2 | 8:13-8:42 | 24.549 | D1-1 | 27.380 | F1-1 | -2.831 | | 3 | 8:43-9:12 | 24.882 | D1-1 | 28.440 | F1-1 | -3.558 | | 4 | 9:31-10:00 | 25.675 | D1-1 | 27.880 | F1-1 | -2.205 | | 5 | 10:01-10:30 | 25.161 | D1-1 | 27.730 | F1-1 | -2.569 | | 6 | 10:31-11:00 | 25.251 | D1-1 | 28.450 | F1-1 | -3.199 | | 7 | 11:16-11:45 | 24.577 | D1-1 | 27.160 | F1-1 | -2.583 | | 8 | 11:46-12:15 | 24.986 | D1-1 | 27.880 | F1-1 | -2.894 | | 9 | 12:16-12:45 | 24.566 | D1-1 | 27.160 | F1-1 | -2.594 | RM Average CEMS Average (d) 24.978 27.790 -2.812 Number of Valid Runs (n):9Standard Deviation (Sd):0.395t-value (0.975):2.306Confidence Coefficient (cc):0.303 Relative Accuracy Test Result: 12.47 % of RM SCAQMD RULE 218/218.1 CRITERIA ≤ 20.0 % of RM ## TABLE 3-7. RELATIVE ACCURACY SUMMARY: DRY VOLUMETRIC FLOW RATE Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Facility ID: 29110 Job No.: 9657 Test Date: 10/01/15 Test: RATA | | | Reference Method | | Facility | | Difference | |-----|-------------|------------------|----------|----------|----------|------------| | Run | Time | Dry Flow | Report | Dry Flow | Report | Dry Flow | | No. | (hh:mm) | dscfh | Page No. | dscfh | Page No. | dscfh | | 1 | 7:43-8:12 | 576,377 | D1-1 | 597,826 | F1-1 | -21,448 | | 2 | 8:13-8:42 | 579,502 | D1-1 | 600,191 | F1-1 | -20,689 | | 3 | 8:43-9:12 | 581,080 | D1-1 | 618,448 | F1-1 | -37,369 | | 4 | 9:31-10:00 | 589,604 | D1-1 | 600,512 | F1-1 | -10,908 | | 5 | 10:01-10:30 | 589,123 | D1-1 | 606,556 | F1-1 | -17,433 | | 6 | 10:31-11:00 | 589,078 | D1-1 | 617,090 | F1-1 | -28,012 | | 7 | 11:16-11:45 | 575,211 | D1-1 | 593,955 | F1-1 | -18,744 | | 8 | 11:46-12:15 | 578,771 | D1-1 | 606,370 | F1-1 | -27,599 | | 9 | 12:16-12:45 | 580,031 | D1-1 | 599,077 | F1-1 | -19,047 | Difference Average | RM Average | CEMS Average | (d) | |------------|--------------|---------| | 582,086 | 604,447 | -22,361 | Number of Valid Runs (n):9Standard Deviation (Sd):7,646t-value (0.975):2.306Confidence Coefficient (cc):5,878 Relative Accuracy Test Result: 4.85 % of RM ## **SCAQMD RULE 218/218.1 CRITERIA** RATA Allowable Limit ≤ 15.0 % of RM ## TABLE 3-8. RELATIVE ACCURACY SUMMARY: O2 CONCENTRATION Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Facility ID: 29110 Job No.: 9849 Test Date: 10/01/15 Test: RATA | | | Reference Method | | Facility | | Difference | |-----|-------------|------------------|----------|----------|----------|------------| | Run | Time | O2 | Report | O2 | Report | O2 | | No. | (hh:mm) | % | Page No. | % | Page No. | % | | 1 | 7:43-8:12 | 11.78 | D1-1 | 11.94 | F1-1 | -0.16 | | 2 | 8:13-8:42 | 11.78 | D1-1 | 11.88 | F1-1 | -0.10 | | 3 | 8:43-9:12 | 11.86 | D1-1 | 12.03 | F1-1 | -0.17 | | 4 | 9:31-10:00 | 11.80 | D1-1 | 11.91 | F1-1 | -0.11 | | 5 | 10:01-10:30 | 11.83 | D1-1 | 11.98 | F1-1 | -0.15 | | 6 | 10:31-11:00 | 11.90 | D1-1 | 11.99 | F1-1 | -0.09 | | 7 | 11:16-11:45 | 11.75 | D1-1 | 11.82 | F1-1 | -0.07 | | 8 | 11:46-12:15 | 11.83 | D1-1 | 12.00 | F1-1 | -0.17 | | 9 | 12:16-12:45 | 11.81 | D1-1 | 11.89 | F1-1 | -0.08 | RM Average CEMS Average (d) 11.81 11.94 -0.124 Number of Valid Runs (n):9Standard Deviation (Sd):0.040t-value (0.975):2.306Confidence Coefficienct (cc):0.031 Relative Accuracy Test Result: 1.31 % of RM ## SCAQMD RULE 218/218.1 CRITERIA RATA Allowable Limit ≤ 10.0 % of RM ## 4.0 EQUIPMENT AND PROCESS DESCRIPTION Orange County Sanitation District's wastewater treatment facility in Huntington Beach, California (Treatment Plant No. 2) operates a Central Power Generation System (CGS) to produce electrical power for the plant operations using five large digester gas-fired internal combustion (IC) engines fueled primarily by digester gas (a biogas) and supplemented by small amounts of natural gas. The process description and equipment tested are described below. ## 4.1 **Process Description** Resource Recovery System No. 5 consists of Engine No. 5 (CG5-HB), which is fired on a mixture of digester gas and natural gas, driving a 3000 kW electrical generator, with an exhaust Heat Recovery Steam Generator (HRSG) rated at 6,010,200 Btu/hr capacity. An extractive continuous emissions monitoring system (CEMS) monitors the engine exhaust. ## 4.1.1 Facility Continuous Emission Monitoring System, CEMS The CEMS is used to monitor stack gas concentrations for oxides of nitrogen (NO_X), carbon monoxide (CO) and oxygen (O_2). A continuous gas sample is extracted from the stack through a stainless steel probe, transported via a heated sample line to a conditioning system and analyzed by various parameter-specific analyzers. The CEMS includes the following analyzers: | Source | Parameter | Manufacturer | Model
Number | Method of
Detection | Analytical
Range | |-----------|------------------|--------------|-----------------|------------------------|---------------------| | ICE No. 5 | NOx ppmv | Thermo | 42i-LS | Chemiluminescent | 0-100 ppm | | (CG5-HB) | O ₂ % | Thermo | 42i-LS | Paramagnetic | 0-25% | | | CO ppmv | Thermo | 48i | Gas Filter Correlation | 0-1000 ppm | TABLE 4-1. FACILITY CEMS UNIT ANALYZERS The CEMS utilizes an electronic data acquisition system (DAS) to monitor, record and report emissions data. The CEMS operation, including periodic calibration checks, is controlled electronically. ## **4.2** Equipment Description The CEMS is installed on a Cooper Bessemer Model No. LSVB-16-SGC internal combustion engine, Engine No. 5, which is a four-stroke, 4166 HP, turbocharged, spark-ignited unit, utilizing pre-combustion chambers to minimize NOx emissions. The engine is directly coupled to a synchronous generator rated at 3000 kW. A schematic of the Treatment Plant No. 2 Resource Recovery System is shown in Figure 4-1. Figure 4-1. Treatment Plant No. 2 – Process Diagram ## **4.3** Operating Conditions During Test During RATA testing, the engine was operated at normal load while burning primarily digester gas fuel and supplemented with natural gas. The following operating parameters were observed during the test period. Supporting documentation of process conditions during the testing can be found in Appendix F. | Average Engine Operating Parameters During Testing | | | | | | |--|-------|----------|--|--|--|
| Engine Load | 83.4 | % | | | | | Natural Gas Usage | 14.9 | dscf/min | | | | | Digester Gas Usage | 740.0 | dscf/min | | | | ## 4.4 Sampling Locations The reference method sampling locations are located on the exhaust stack. A schematic of the stack with sampling locations is shown in Figure 4-2. The reference method sampling locations meet the following specifications: | Sampling Location Configuration for Reference Method CEMS Probe: | | | | | |--|--------------------------------------|--|--|--| | Upstream | 135 in. (4.5 duct diameters) | | | | | Downstream | 54 in. (1.8 duct diameters) | | | | | Port Length | 5.5 in. (measured from outside wall) | | | | | Port Inside Diameter | 4 in. | | | | | Number of Sampling ports | 2 (located at 90° intervals) | | | | | Stack Diameter | 30 in. (internal diameter) | | | | The sampling location complies with the requirements of SCAQMD Method 1.1. Figure 4-2. Stack Schematic #### 5.0 SAMPLING AND ANALYTICAL PROCEDURES Test measurements were performed according to sampling and analysis procedures promulgated by the South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB), or US Environmental Protection Agency (EPA). The sampling and analysis procedures used for this test program are summarized below. Any modifications or deviations not addressed herein are discussed in Section 3 of this report. - 5.1 SCAQMD Methods 1.1-4.1 Determination of Stack Gas Volumetric Flow Rate, Molecular Weight, and Moisture Content - 5.1.1 SCAQMD Method 1.1 Sampling Traverse Points - 5.1.2 SCAQMD Method 2.1 Stack Gas Flow Rate - 5.1.3 SCAQMD Method 3.1 Stack Gas Molecular Weight - 5.1.4 SCAQMD Method 4.1 Stack Gas Moisture Content - 5.2 SCAQMD Method 100.1 Continuous Monitoring of Gaseous Emissions, CEMS # 5.1 SCAQMD Methods 1.1-4.1 – Determination of Stack Gas Volumetric Flow Rate, Molecular Weight, and Moisture Content The flue gas flow characteristics (i.e. flow rate, molecular weight, and moisture content) were determined according to SCAQMD Methods 1.1 through 4.1. The testing was conducted as follows: #### 5.1.1 SAMPLING AND VELOCITY TRAVERSE POINTS The number and location of traverse points are determined according to SCAQMD Method 1 based on the physical dimensions of the sampling location and process parameters. In principle, the stack cross-section is divided into equal areas, each of which is represented by a "traverse point". Generally, the number of traverse points diminishes as the flow profile at the sampling location becomes uniform. In most cases, the maximum number of sampling points is 24 for particulate testing and 16 for velocity traverses. Fewer traverse points are permitted as described in the method. #### 5.1.2 STACK GAS VELOCITY AND FLOW RATE The velocity and volumetric flow rate of the stack gas was determined according to SCAQMD Method 2. In this method, the velocity head (differential pressure) and temperature are measured at the required traverse points. The stack gas differential pressure head was determined using an "S" type pitot tube and electronic micromanometer. The temperature was measured using a type "K" thermocouple and digital temperature readout. Prior to testing, the measurement system was set-up and leak-checked. Then the velocity head and temperature are recorded at predetermined traverse points. After the last traverse was completed, the system was again leak-checked. After completion of the traverse, the static pressure in the stack was determined in the centroid of the stack. The stack gas velocity was calculated using the velocity head, and stack gas temperature, pressure and molecular weight. QA/QC for the method included field performance checks, and periodic calibrations of test equipment including the pitot tube, differential pressure gauge, thermocouple (Tc) and Tc-readout. #### 5.1.3 STACK GAS MOLECULAR WEIGHT The stack gas molecular weight (MW) was calculated based on the fraction of its major constituents including: oxygen (O₂), carbon dioxide, (CO₂), nitrogen (N₂), carbon monoxide (CO), and water (H₂O). The dry MW was calculated based on the partial fractions of O₂, CO₂, N₂, and CO. Specifically, the O₂ and CO₂ fractions were determined by CEMS, integrated sampling, or grab sampling, and the balance was assumed to be N₂ and CO. The wet MW was calculated based on the fractions of dry gas and water vapor. The dry and wet MW were calculated according to the following equations: ``` MW_{DRY} = 0.32 \times \%O_2 + 0.44 \times \%CO_2 + 0.28 \times (\%N_2 + \%CO) MW_{WET} = 0.18 \text{ x } \%H_2O + MW_{DRY} \text{ x } (1 - \%H_2O/100) where: MW_{DRY} = stack gas molecular weight, dry-basis MW_{WET} = stack gas molecular weight, wet-basis 0.32 = molecular weight fraction for O₂ 0.44 = molecular weight fraction for CO₂ 0.28 = molecular weight fraction for N₂ and CO 0.18 = molecular weight fraction for H_2O (water vapor) %X = fraction of X in stack gas, dry basis, where X = O_2, CO_2, N_2, CO_3 \%H_2O = fraction of water vapor in stack gas, wet-basis ``` #### 5.1.4 SCAQMD METHOD 4.1- STACK GAS MOISTURE CONTENT The stack gas moisture content was determined according to SCAQMD Method 4.1. In this method, water vapor is collected in a condenser while the dry stack gas volume is measured using a dry gas meter. The volume of water vapor was calculated from the amount of water condensed and the total gas volume was the sum of water vapor plus dry stack gas. The moisture content was determined as a fraction of the total wet stack gas volume. The following calculations were used. $$B_{WS} = \frac{V_{W,Std}}{V_{M,Std} + V_{W,Std}}$$ $V_{W,Std} = K_1 \times V_{H2O}$ $V_{M,Std} = T_{Std}/P_{Std} x Y_M x V_M x P_M/T_M$ where: B_{WS} = Fraction of water vapor in stack gas $V_{W,Std}$ = Volume of water vapor (scf) $V_{M,Std}$ = Volume of stack gas sampled (dscf) K_1 = Unit volume of water vapor (0.04707 scf @68°F or 0.0464 scf @60°F) T_{Std} = Standard Temperature (528°R or 520°R) P_{Std} = Standard Pressure, 29.92 in. Hg Y_M = Dry gas meter calibration factor V_M = Measured volume of stack gas sampled P_M = Dry gas meter pressure (in. Hg) T_M = Dry gas meter temperature (°R) Sampling for moisture content was performed as follows: Moisture was collected in a sampling train consisting of a probe, TFE line, four impingers in an ice bath, a leak-free pump, a vacuum gauge and a dry gas meter. Figure 5-1 is a schematic of a typical moisture train. Initially, impingers #1 and #2 contain 100 ml of water, impinger #3 was empty, and impinger #4 contains a known amount (approximately 300 g) of desiccant (e.g. Silica Gel). Prior to sampling, a leak check of the sampling train was performed. Then, the sampling probe was inserted into the centroid of the stack, the initial meter readings (volume, temperatures, etc.) are recorded, the sample pump was started and the sampling rate was adjusted to the desired sampling rate (typically 0.75 dry cfm). Sampling was conducted until at least 63 dry cubic feet were collected per 90-minute moisture run (3 RATA runs). After sampling, the final meter readings were recorded and the impinger train was recovered. The change in volume and/or weight of the impinger train components was used to determine the amount of moisture condensed. The volume of water vapor and the corrected volume of dry gas sampled were used to calculate the moisture fraction as described above. Figure 5-1. Moisture Train ## 5.2 SCAQMD Method 100.1 - Continuous Monitoring of Gaseous Emissions, CEMS In this method, gaseous components of the stack gas (e.g. NO_X, SO₂, O₂, CO₂, CO) are measured continuously according to SCAQMD Method 100.1 using Almega's mobile continuous emissions monitoring system (CEMS). Figure 5-2 is a schematic of Almega's CEMS. The CEMS extracts and conditions a representative stack gas sample and analyzes the gas using one or more analytical instruments. Typical CEMS instrumentation is described in Table 5-1. The extraction and conditioning system consists of a stainless steel heated probe, a short heated TFE sample line, a conditioning system, a TFE-diaphragm pump and a TFE transport (sample) line. The sample conditioning system, consisting of water knockout impingers and/or a thermoelectric condenser, removes moisture before the gas is delivered to the analyzers. Sample flow and delivery are controlled using a flow control panel that includes valves, pressure gauges, and flow meters (rotameters). The flow control panel allows the user to deliver sample gas to any and all instruments. Instrument readings are recorded using a real-time strip chart and an electronic data acquisition system (DAS). Other pertinent data such as calibration gas cylinder numbers and concentrations, test location, dates, times, and operator identification are also recorded on the strip chart and on the field data form. Sampling included pretest and post-test calibration and bias checks for each sampling run. Raw concentration data were corrected for sampling system bias according to Method 100.1 using the following equation: $$C_{CORR} = C_{MA} \mathbf{x} \frac{(C_i - BIAS_{ZERO})}{(BIAS_{SPAN} - BIAS_{ZERO})}$$ Where: C_{CORR} = Concentration, corrected for drift and bias C_i = Average measured concentration (raw value) BIAS_{ZERO} = Average instrument response during zero bias check C_{MA} = Certified concentration of applicable span gas $BIAS_{SPAN}$ = Average instrument response during span bias check The following QA/QC activities were performed during testing. - Prior to testing, each individual analyzer was calibrated (adjusted) by introducing zero, highspan and mid-span gases directly into each analyzer and by making corresponding adjustments. - Prior to testing, calibration error, linearity and system bias checks were performed on each analyzer. Calibration error and linearity checks were performed by injecting known calibration gases directly to
each instrument. System bias checks were performed by injecting calibration gases at the sampling-probe/junction or at the sampling probe tip. - The system response time for each parameter was determined at the moment when the calibration gas for the bias check reaches 95% of its expected concentration value. - A leak check was conducted before sampling and periodically thereafter to ensure that no leakage occurs in the entire sampling apparatus. The leak check was performed on the vacuum side by sealing the probe tip and drawing vacuum to above 20 inches of mercury. After the vacuum stabilizes, it should hold constantly at about 20 in Hg with no loss of greater than 1 in Hg for about to 5 minutes. On the pressure side, the pressure gauge indicator should drop to zero and flow to each individual rotameter also should drop to zero to indicate a successful leak check. - Calibration gases used to span instrumentation conform to EPA Protocol 1. Certificates of analysis for calibration gases are included in the report (See Appendix E2). - The NO₂-to-NO conversion efficiency (CE) check was performed on the NO_x analyzer according to the procedure specified in Method 100.1. The result of the CE check is included in the report (See Appendix E3). Figure 5-2. Continuous Emissions Monitoring System TABLE 5-1. ALMEGA CEMS – GENERAL EQUIPMENT SPECIFICATIONS | ANALYZERS | | | | | | | |----------------------------------|------------------|------------------|--|---|--|--| | Specification | O2 | CO2 | NOx | CO | SO2 | | | Manufacturer | Teledyne | Servomex | T-API | Thermo Electron | Western Research | | | Model | 326RA | 1400B | 200AH | 48C | 921 | | | Analytical Principle | E-Chemical Cell | NDIR | Chemiluminescent | NDIR-GCC | NDUV | | | Ranges | %: 0-5, -10, -25 | %: 0-5, -10, -20 | ppmv: 0-2.5, -10, -25, -50, -100, -250, -1,000 | ppmv: 0-20, -50, -100, -200, -500, -1k, x10 | ppmv: 0-10, -25, -50, -100, -200, -300 | | | Accuracy, % of Full Scale | ± 1% | ± 1% | ± 1% | ± 1% | + 0.5% | | | Repeatability, % of Full Scale | 0.5% | 0.5% | 0.5% | 0.5% | 0.5% | | | Sensitivity, % of Full Scale | 0.5% | 0.5% | 0.5% | 0.5% | <2% of Range | | | Zero/Span Drift, % of Full Scale | ± 1%, in 24 Hrs | - | | | Response Time | 3 Seconds | <2 Seconds | 1.7 Seconds | <2.0 Seconds | 30 seconds | | | Linearity, % of Full Scale | < 1% | < 1% | < 1% | < 1% | < 1% | | | Output | 1V DC, 5V DC | 0.1V DC, 1V DC | 1V DC, 10V DC | 1V DC, 10V DC | 0-1V DC | | ## OTHER CEMS EQUIPMENT | Specification | Sample Co | nditioner | Stripchart | Recorder | |------------------------------|----------------|--------------------------------|-----------------|---------------------------| | System used | <u>Primary</u> | Back-up | System used | <u>Primary</u> | | Manufacturer | Almega | Universal | Manufacturer | Yokogawa | | Model | (in-house) | Model 1090 | Model | Model HR 2400 | | Principle | Refrigeration | Refrigeration | Pen Response | 3 sec. | | Max. Inlet Temperature | >700 F | 500 F | Input Voltage | user-selectable | | Max. Inlet Pressure | 50 psi | 50 psi | Chart Speed | user-selectable | | Max. Flow Rate | 10 SCFH | 7.0 Lpm | Chart Width | 10 inches | | Max. Water Concentration | 50% | 50% | Output | user-selectable | | Outlet Dew-Point Temperature | < 37 F | $35 \text{ F} \pm 2 \text{ F}$ | No. of Channels | 30 user-select. 30 calc'd | | Dew-Point Stability | | ± 0.5 F | Colors | 10 color, user-selectable | ## 6.0 QUALITY ASSURANCE AND QUALITY CONTROL Almega applies stringent quality assurance and quality control (QA/QC) procedures to ensure the validity of measurements for all test methods. The following section discusses general and project-specific QA/QC measures. ## 6.1 General QA/QC Almega's QA/QC procedures follow guidelines from the "Quality Assurance Handbook for Air Pollution Measurement Systems," Volume I through III. And, procedures for pretest preparation and calibration of sampling equipment are followed. Standardized written procedures, calculator programs, and computer spreadsheets are used for test planning, pre-survey, equipment checklist, preliminary calculations, testing, data analysis, and reporting. Typical pretest equipment preparation and maintenance include organization of the following equipment prior to testing: - Mobile RM CEM test van: Check fluids, fuel, mechanical conditions, verify operation of CEM instruments, sample lines and sample conditioner prior to the date of the source test. - Sampling Equipment: Check meter boxes, pitot tubes, manometers and thermocouples to ensure in good working conditions and in proper calibrations. Pre-clean sampling trains and seal all openings prior to use. Calibrations are performed in accordance with Chapter III of the SCAQMD Source Test Manual (March 1989). Table 6-1 shows the test equipment calibration schedules. Table 6-2 shows the test equipment maintenance schedules. ## 6.2 Project-Specific QA/QC This project included specific QA/QC activities required to validate the test results. These QA/QC activities are based on the test methods discussed in Section 5 and generally acceptable test procedures. Reference Methods used for source testing are promulgated by the South Coast Air Quality Management District (SCAQMD), the California Air Resource Board (CARB), or the US Environmental Protection Agency (EPA). Any deviations from published Methods are approved in advance by the regulatory agency (i.e. SCAQMD), prior to implementation if possible. Project-specific QA/QC activities and results that may impact test results are discussed in Section 3. TABLE 6-1. TEST EQUIPMENT CALIBRATION SCHEDULE | Equipment | Calibration Period | Standard or Method of Calibration | |------------------|-----------------------------------|--| | Thermocouples | 6 Months and 2 Months | Mercury Thermometer, three point (ice, boiling water, hot oil) | | Dry Gas Meters | 6 Months and 2 Months | Critical orifice | | Field Barometers | 6 Months,
Check prior to usage | Mercury Barometer | | S-Type Pitot | 6 Months
Check prior to usage | EPA Method 2, Measure physical configuration. Reshape pitot tips or calibrate if configuration does not meet the limits. | | Pressure gauges | 6 Months | Five-point calibration against manometer | | | 2 Months | Three-point check | | Temp. Meters | 6 Months | Precision Potentiometer | | CEM Systems | Bimonthly, or as needed | Specified by Manufacturer | TABLE 6-2. TEST EQUIPMENT MAINTENANCE | Equipment | Check For | Correction | Frequency | |----------------------|--|---|-------------------------------------| | CEM Systems | Absence of malfunction,
noise, drift, conversion
efficiency for NOx analyzer | As required by the manufacture, or depending on performance | Bimonthly | | Pumps | Absence of leakage, flow, proper vacuum | Replace parts, inspect, clean | 300 hours of usage | | Flow Devices | Levelling, zeroing, obstruction, deformation | Clean, replace, or re-
calibrate | 300 hours of usage | | Calibration
Gases | Expiration date, tank pressure | Re-certify, order new gases | 2 months and prior to field testing | | Regulators | Malfunction, Gauge precision | Repair or replace | 3 months and prior to field testing | | Gas Divider | Malfunction, precision | Repair or replace | Monthly and before field testing | | Condensers | Leakage, temperature | Repair or replace | Monthly and before field testing | | Heated lines | Leakage, temperature, cleanliness | Repair, replace, clean | Monthly and before field testing | ## **APPENDICES** ## APPENDIX A ## GENERAL CALCULATIONS AND FORMULAE #### **GENERAL CALCULATIONS** Standard conditions: 29.92 in. Hg, 60 °F Gas Moisture at standard conditions (scf): $V_{WTR} = K2*V_{COND}$ $K2 = 0.04707 \ \text{@} 68 \ \text{°F}, 0.0464 \ \text{@} 60 \ \text{°F}$ Sample volume at standard conditions (scf): Vmstd = K1*Vmacf*Ym*(Pbar+dH/13.6)/(Tm+460) K1 = 17.64 @ 68 °F, 17.38 @ 60 °F Percent of water: $\%H_2O = 100*Vmstd/(Vmstd+Vwtr)$ Dry molecular weight: $M_d = (44*\%CO_2+32*\%O_2+28*(\%N_2+\%CO))/100$ Wet molecular weight: $M_w = M_d*(1-\%H_2O/100)+18*(\%H_2O/100)$ Stack gas pressure (In. Hg): $P_{stk} = P_{bar} + P_{sta}/13.6$ Average velocity head: Ave. $dP = {SQRT (dP)}^2$ Stack gas velocity (fps): $V = 85.49 * C_p * SQRT(dP) * SQRT((T_S + 460)/(P_{STK} * M_w))$ Percent of excess air: $\%EXCA = 100*(\%O_2-0.5\%CO)/(0.264(\%N_2-(\%O_2-0.5\%CO)))$ Stack gas flow (dscfm): $Q_{STK} = 60(1-\%H_2O/100)*V*A*(528/(T_s+460))*P_{stk}/29.92$ Concentration at 3% O₂: PPM a 3% O₂ = PPM_{measured}*17.9/(20.9-%O₂) Emissions lb/MMBtu: lb/MMBtu = lb/hr /HI (heat input rate in MMBtu/hr) Emissions lb/hr: $lb/hr = PPM*10^{-6}*((MW lb/lb-mole)/SV)*dscfm*60$ MMBtu/hr = facility fuel usage (scfh)*HHV (1050 Btu/scf)* 10⁻⁶ **CALCULATIONS FOR METHOD 100.1**: Corrected PPM = $(PPM_{measured}-C_o)*C_{ma}/(C_m-C_o)$ Where: $C_0 = \text{Average of initial and final bias zeros}$ C_m = Average of initial and final bias calibrations C_{ma} = Certified gas value used for the bias calibration. ## **GENERAL CALCULATIONS** – continued ## CALCULATIONS FOR METHOD 100.1, continued Calibration Error= 100*(Certified value-Analyzer response)/Analyzer range Percent Bias= 100*(Direct Analyzer response-Bias response)/Analyzer range System Zero/Span Drifts= 100*(Final-Initial)/Analyzer range Linearity= 100*(Analyzer mid. gas response-Predicted value)/range Where the Predictive Value for the mid gas is found by a straight line drawn between the span gas and zero gas calibration points which can be calculated from the straight line equation, Y=mx+b where m is the slope of the line and b is the
Y-intercept. The calculation is done by a computer spreadsheet for Method 100.1. #### **DEFINITIONS** A: Stack cross area, square feet Cp: Pitot coefficient @H: Orifice pressure, in. H₂O MW: Molecular weight Md: Dry molecular weight of flue gas Mw: Wet molecular weight of flue gas Pbar: Barometric pressure, in. Hg Psta: Static pressure, in. H₂O Pstk: Stack pressure, in. Hg P: Stack differential pressure, in. H₂O Qstk: Stack gas flow, scfm Tm: Meter temperature, °F Ts: Stack gas temperature, °F Vcond: Volume of water condensation, ml Vm: Meter volume, acf Vmstd: Sample gas at standard conditions, scf Vwtr: Water vapor volume, scf Ym: Meter correction factor SV: Specific molar volume, 379.5 dscf/lb-mole at 60°F, or 385.3 dscf/lb-mole at 68°F FF: Fuel flow rate (scf/hr) Fd: Dry fuel factor, for natural gas Fd=8710 dscf/MMBtu at 68°F # APPENDIX B APPROVALS AND CERTIFICATIONS ## Appendix B1 ## **SCAQMD** and **CARB** Testing Approvals June 10, 2015 Mr. John W. Phillips Almega Environmental 10602 Walker Street Cypress, CA 90630 Subject: LAP Approval Notice Reference #93LA0827 (909) 396-2000 · www.aqmd.gov ### Dear Mr. Phillips: We completed our review of the renewal application you submitted for approval under the South Coast Air Quality Management District's Laboratory Approval Program (SCAQMD LAP). We are pleased to inform you that your firm is approved for the period beginning June 30, 2015, and ending June 30, 2016 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter: | SCAQMD Methods 1-4 | SCAQMD Method 7.1 | |-------------------------------|---| | SCAQMD Method 10.1 | SCAQMD Rule 1121/1146.2 Protocols | | SCAQMD Method 100.1 | SCAQMD Rule 1420/1420.1 – (Lead) Source Sampling | | SCAQMD Method 25.1 (Sampling) | SCAQMD Rule 1420/1420.1 – (Lead) Ambient Sampling | | SCAQMD Method 25.1 (Analysis) | SCAQMD Rule 462 Testing | | SCAQMD Method 25.3 (Analysis) | ASTM D6522-00/ USEPA CTM-030 | | SCAOMD Methods 5.1 and 6.1 | | Thank you for participating in the SCAQMD LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov. Sincere Rudy Eden, Senior Manager Laboratory Services & Source Test Engineering RE:GK/gk Dipankar Sarkar 150610 LapRenewal.doc #### ATTACHMENT ## Conditions For Almega Environmental's LAP Approval - 1) Almega shall adhere to the following requirements when conducting portable analyzer tests using CTM-030 or ASTM D6522: - a) Deviations to CTM-030 or ASTM D6522 shall be documented in the Test Critique section of the test report; - b) The test report shall be formatted and organized in a manner consistent with the example portable analyzer test report, dated September 24, 2011, and the District Source Test Manual, Chapter II; and, - c) NO₂ measurements may be quantified to 10% of the NO₂ span under the following conditions: - Calibrations shall be conducted per Sections 7.3 and 7.6 of CTM-030 at the span, mid-span (40-60% of span), low-span (10% of span), and zero level. The low-span calibration shall satisfy the requirements in Section 4.2 of CTM-030; - A linearity check shall be conducted once every five days using the lowspan calibration gas; and, - If the measured NO₂ emission is less than 10% of the NO₂ span, it shall be reported as less than 10% of the span, and added to the NO emission to determine the total NOx concentration. ## State of California Air Resources Board Approved Independent Contractor Almega Environmental & Technical Services This is to certify that the company isternations been approved by the Air Resource Beara to to the Company of the 17. Section 91207, until June 30, 2016 for those that ineffices, sted below: ARB Source Test Methods: 1, 2, 3, 4, 5, 8 100 (CO, CO₂, NO_X, O₂, SO₂) Dr. Michael T. Benjamin, Chief Monitoring and Laboratory Division # State of California Air Resources Board Approved Independent Contractor Almega Environmental & Technical Services This is to certify that the company is tend below has been approved by the Air Resource Board to Ford Compliance testing pursuant to California Code of Regulations. Title 17. Section 91207, until June 30, 2016, for the company is tend below: Visible Emissions Evaluation Dr. Michael T. Benjamin, Chief Monitoring and Laboratory Division ## Appendix B2 ## **Certification of No Conflict-of-Interest** ## **Certification of No Conflict-of-Interest** Almega Environmental & Technical Services 10602 Walker Street Cypress, CA 90630 I certify that I am responsible for the testing operations of Almega and am authorized to sign this certificate on the Company's behalf. Almega may conduct tests as an independent tester pursuant to SCAQMD Rule 304(k). I further certify that Almega has no conflict-of-interests, and is not related or owned in any way to the company being tested. | Company being tested: | Orange County Sanitation District | |--------------------------|-----------------------------------| | Facility ID No.: | 29110 | | Permit No.: | Permit G27398, A/N 540712 | | Signature: | at the | | Name (printed or typed): | Christopher Lovett | | Title: | Project Manager | | Date: | 10/15/15 | ## Appendix B3 ## **Non-RECLAIM CEMS Final Certification** March 2, 2010 S/T File:C06039 (Final Certification) Terry Ahn Orange County Sanitation District P.O. Box 8127 Fountain Valley, CA 92728-8127 Subject: Final Certification of Non-RECLAIM CEMS Serving IC Engine Unit 5 CG5-HB (A/N 414657) Dear Ms. Terry Ahn: I have completed the evaluation of your certification report (please refer to the accompanying attachments for specific information and conditions). The evaluation was made to determine if final certification could be granted based on the monitoring requirements of the applicable protocols found in <u>District Rules 218 and 218.1</u>, and <u>EPA 40CFR60 APPENDICES B and F.</u> This letter serves as an official notification of final certification for the CEMS at your facility serving the process equipment described in the accompanying attachment, "DISTRICT RULE 218-EPA 40CFR60 APPENDICES B and F, NON-RECLAIM CEMS FINAL CERTIFICATION: Specific Device-Based Information and Conditions". If the CEMS information in the accompanying attachments is not accurate, please notify me as soon as possible at (909) 396-2265. Also, please remember to notify the District for direction, prior to replacement or modification of the described CEMS or the device(s) that it serves, since such modifications may change the compliance status of the affected CEMS. Again, thank you for your continued cooperation and support. Sincerely, P. Eric Padilla, Air Quality Engineer Source Test Engineering Branch (909) 396-2265 FAX (909) 396-2099 epadilla@aqmd.gov@aqmd.gov Attachment MG:EP cc: Rudy Eden Mike Garibay 840CEMS_Cert - OCSD Plant 2 Unit 5 - C06039.doc # South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178 (909) 396-2000 • www.aqmd.gov Source Test I.D: C06039 Date: March 2, 2010 Facility I.D: 029110 Application/Permit No.: 414657 CEMS Certification Date: CEMS Rule/Regulation: Permit Condition 13 July 16, 2009 ## DISTRICT RULE 218 - EPA 40CFR60 APPENDICES B & F NON-RECLAIM CEMS FINAL CERTIFICATION: Specific Device-Based Information and Conditions (This document must be displayed on or near strip chart recorder or data handling system) Name of Facility: **Orange County Sanitation District** Certification Test Date: July 16, 2009 Test Operating Load: Equipment Description: Mid Operating Load (> 50% capacity) IC Engine Unit 5 - 4166 HP, 3000 kW Generator **Equipment Location:** Reclamation Plant 2, 22212 Brookhurst St, Huntington Beach, CA 92646 Mailing Address: P.O. Box 8127 Fountain Valley, CA 92728-8127 A. The components described below comprise the "CEMS" which has been granted Final Certification or Approval and they may not be changed or modified without prior District approval. (Unauthorized modification to the components shown below may void CEMS certification, and result in non-compliance with District Rule 218, EPA 40CFR60 APPENDIX B, and/or source specific rules pertaining to CEMS monitoring and recordkeeping. Be sure the information below is correct. Contact your District Source Testing representative if there are any questions): Gaseous Emission Measurement Analyzer: | Gaseous
Component
Monitored | Make | Model No. | Serial No. | Method of Detection | Certified Range(s): Instrument Range (Valid Reporting Range ¹) | |-----------------------------------|--------|-----------|------------|---|--| | CO (Dry) | Thermo | 48i | 09010029 | Gas Filter Correlation (GFC) | 0-1000 ppm | | NOx/O ₂
(Dry) | Thermo | 42i-LS | 0910435617 | NOx: Chemiluminescence
O ₂ : Paramagnetic | NOx: 0-100 ppm
O ₂ : 0-25% | ¹ The valid reporting range of a certified CEMS is normally 10-95% of the certified instrument range or ranges, unless additional QA testing is Facility I.D.: 029110 Identification: CG5-HB 414657 Source Test I.D.: C06039 Fuel or Flue Gas Flow Measurement Analyzer | Instrument Type | Manufacturer | Model No. | Serial No. | |--|---------------|----------------------------------|--| | Natural Gas:
Positive Displacement Meter | Dresser Roots | 11M175
(Range 0 – 11,000 cfh) | NA – renewed annually for calibration purposes | | Digester Gas:
Positive Displacement Meter | Dresser Roots | 16M175
(Range 0 – 16,000 cfh) | NA – renewed annually for calibration purposes | Page 2 Sample Condition and
Calibration System | Туре | Manufacturer | Model No. | Serial No. | |------------------------------|--------------|-----------|------------| | Gas Sample Conditioning Unit | M&C | ECM-2G | NA . | Supporting Equipment (Data Acquisition, Reduction, and Recording) Excluding RTU | | | 3/ | | |------|--------------|-----------|------------| | Туре | Manufacturer | Model No. | Serial No. | | DAS | Dell | | NA . | | PLC | Modicon | M340 | NA | DAHS, PLC Programming Formulas and Correction Factors | Parameter | Formula | |-------------------|---| | NOx Concentration | Uncorrected, and standard correction to 15% O ₂ for concentration compliance requirement (no additional factors, BAFs or constants are authorized). | | CO Concentration | Uncorrected, and std. correction to 15% O ₂ for concentration compliance requirement (no additional factors, BAFs or constants are authorized). | | Stack Flow Rate | Based on fuel usage & standard fuel F-Factor calculation using default HHV of 1050 Btu/scf and Fd $_{\rm O2}$ of 8710 dscf/mmBtu for natural gas and using analysis results for digester gas (no additional factors, BAFs or constants are authorized). | | NOx Emission Rate | Based on the product of uncorrected concentration and stack flow rate as described above (no additional factors, BAFs or constants are authorized). | Facility I.D.: 029110 Identification: CG5-HB 414657 Source Test I.D.: C06039 CG3-11D 41403 #### B. The CEMS described above is subject to the following conditions: #### 1. CEMS Operating Range The operating range(s) selected for each gas analyzer must be such that most all measurements fall within 10-95%² of range full-scale. With time, these ranges may not prove adequate and the analyzer(s) must be re-ranged, or more-than-one range must be used to maintain compliance. Always consult your AQMD CEMS Engineer before modifying the process monitored and/or the CEMS itself. Page 3 #### 2. CEMS Specific Operating Requirements This CEMS shall be operated pursuant to the requirements of District Rules 218/218.1 and/or 40CFR60 Appendices B & F, and be subject to the following specific monitoring, reporting, and recordkeeping requirements: #### PERMIT CONDITION 13: - Monitor/record/report raw NOx concentration (ppm) - Monitor/record/report raw O₂ concentration (%) - Calculate/record/report NOx concentration (ppm), corrected to 15% O2 - Calculate/record/report exceedances in the permitted limit of: 36 ppmv for NOx or 2000 ppmv for CO, both corrected to 15% O₂ The Data Acquisition & Handling System/Programmable Logic Controller (DAHS/PLC) shall perform the calculations necessary to meet the above emission reporting requirements, using accepted methods. #### 3. Periodic Testing, Record Keeping, Quality Assurance, and Reporting Orange County Sanitation District has elected to maintain this CEMS according to EPA 40CFR60 APPENDICES B & F. This includes periodic testing³, quality assurance, reporting, and recordkeeping. Designated personnel at Orange County Sanitation District shall be instructed and be responsible regarding periodic testing dates and requirements, scheduled and unscheduled breakdown and outage procedures, and CEMS and process modifications. A comprehensive Quality Assurance Plan describing the above procedures and other contingencies as described in EPA 40CFR60 APPENDIX F, must be compiled and stored on-site for review by authorized AQMD personnel. This Quality Assurance Plan must be regularly updated with CEMS, process, and responsibility changes. #### 4. On-Site Data Availability Orange County Sanitation District understands that CEMS emission measurements shall be available in realtime display and as a continuous record, on-site, upon request by authorized ² There are circumstances where analyzer measurements less than 10% of full-scale are acceptable. See your assigned Source Testing Engineer for details. Units must be tested annually at a minimum, or sooner if modifications to process and/or CEMS are performed, or as prescribed by the AQMD. Facility I.D.: 029110 Identification: CG5-HB 414657 Source Test I.D.: C06039 Dated: March 2, 2010 AQMD personnel. This also includes raw data and calculations used for realtime displays and records. Page 4 #### 5. RATA Protocol Orange County Sanitation District shall submit a periodic CEMS assessment/RATA protocol for approval if the RATA procedures differ from the previously approved CEMS certification test protocol. #### 6. Notification of RATA Schedule Orange County Sanitation District shall notify the District at least two weeks prior to conducting all subsequent periodic CEMS assessments/RATAs. Notification is to be made to Eric Padilla, either by phone at 909-296-2265, or via e-mail at epadilla@aqmd.gov. #### 7. Quality Assurance Program (QAP) The QAP shall automatically be updated as needed (e.g., as personnel are reassigned, or the process and/or the CEMS components are modified). Evaluated By: P. Eric Padilla, Air Quality Engineer Source Test Engineering Branch (909) 396-2265 FAX (909) 396-2099 epadilla@aqmd.gov@aqmd.gov 840CEMS_Cert - OCSD Plant 2 Unit 5 - C06039.doc # APPENDIX C SCAQMD METHOD 1.1-4.1 – STACK GAS FLOW RATE # Appendix C1 ## STACK GAS FLOW RATE – Results and Calculations #### STACK GAS MOISTURE AND FLOW RATE CALCULATIONS Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Test: RATA Test Date: 10/1/15 | DATA ENTRY | Symbols | Units | RUN 1.0 | RUN 2.0 | RUN 3.0 | RUN 4.0 | RUN 5.0 | RUN 6.0 | RUN 7.0 | RUN 8.0 | RUN 9.0 | | | |----------------------------|-----------|----------------|-----------------|--------------|---------|---------|-------------------|-----------|---------|---------|------------------|-------------------|------------| | Stack Diameter | D | in. | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | T i | | | Length | L | in. | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Width | W | in. | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Barometric Pressure | Pbar | in. Hg. | 29.91 | 29.91 | 29.91 | 29.91 | 29.91 | 29.91 | 29.91 | 29.91 | 29.91 | | | | Static Pressure | Ps | in. H2O | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | -0.25 | | | | Pitot Coefficient | Ср | none | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | | | | Meter Cal. Factor | Y | none | 0.9871 | 0.9871 | 0.9871 | 0.9871 | 0.9871 | 0.9871 | 0.9871 | 0.9871 | 0.9871 | | | | Standard Temperature | Tstd | deg. F | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | | | | Moisture Factor | KI | cu.ft./mL | .0464 | .0464 | .0464 | .0464 | .0464 | .0464 | .0464 | .0464 | .0464 | 1 | | | PT Factor | K2 | R/in.Hg | 17.38 | 17.38 | 17.38 | 17.38 | 17.38 | 17.38 | 17.38 | 17.38 | 17.38 | | | | Velocity Head (dP) | (dP) | (in. H2O) | 0.811 | 0.821 | 0.825 | 0.833 | 0.831 | 0.831 | 0.809 | 0.819 | 0.823 | 1 | | | Velocity Head (Sqrt dP) | Sqrt (dP) | Sqrt(in. H2O) | 0.899 | 0.905 | 0.907 | 0.912 | 0.911 | 0.911 | 0.899 | 0.905 | 0.907 | 1 | | | Average Delta H | dH | in. H2O | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 1 | | | Gas Volume Collected | Vm | cf | 68.105 | 68.105 | 68.105 | 68.144 | 68.144 | 68.144 | 68.117 | 68.117 | 68.117 | 1 | | | Stack Gas Temperature | Ts | deg. F | 539.8 | 540.4 | 540.3 | 541.0 | 541.3 | 540.6 | 541.3 | 541.4 | 540.9 | 1 | | | Meter Temperature | Tm | deg. F | 82.2 | 82.2 | 82.2 | 85.4 | 85.4 | 85.4 | 89.1 | 89.1 | 89.1 | 1 | | | %O2 in Stack Gas | %O2 | % | 11.78 | 11.78 | 11.86 | 11.80 | 11.83 | 11.90 | 11.75 | 11.83 | 11.81 | 1 | | | %CO2 in Stack Gas | %CO2 | % | 7.58 | 7.69 | 7.66 | 7.18 | 7.19 | 7.14 | 7.34 | 7.30 | 7.31 | | | | Total Impinger Water | Ww | g | 160.9 | 160.9 | 160.9 | 143.9 | 143.9 | 143.9 | 161.9 | 161.9 | 161.9 | | | | CALCULATIONS | Symbols | Units | RUN 1.0 | RUN 2.0 | RUN 3.0 | RUN 4.0 | RUN 5.0 | RUN 6.0 | RUN 7.0 | RUN 8.0 | RUN 9.0 | | | | Stack Area | As | sq. ft. | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 | | | | Stack Gas Temperature | Ts,r | deg. R | 1000 | 1000 | 1000 | 1001 | 1001 | 1001 | 1001 | 1001 | 1001 | | | | Meter Temperature | Tm,r | deg. R | 542 | 542 | 542 | 545 | 545 | 545 | 549 | 549 | 549 | | | | Abs Stk Pressure | Pabs | in, Hg, | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 | 29.89 | 1 | | | Gas Vol. @ STD | Vmstd | dscf | 64.77 | 64.77 | 64.77 | 64.43 | 64.43 | 64.43 | 63.97 | 63.97 | 63.97 | | | | Vol. of Water Vapor | Vwstd | dscf | 7.47 | 7.47 | 7.47 | 6.68 | 6.68 | 6.68 | 7.51 | 7.51 | 7.51 | | | | Dry Mol. Wt. | Md | lb/lb-mol. | 29.68 | 29.70 | 29.70 | 29.62 | 29.62 | 29.62 | 29.64 | 29.64 | 29.64 | | | | Wet Mol. Wt. | Ms | lb/lb-mol. | 28.48 | 28.49 | 28.49 | 28.53 | 28.53 | 28.53 | 28.42 | 28.42 | 28.42 | | | | Average Velocity | Vs | ft/s | 70.00 | 70.42 | 70.61 | 70.95 | 70.91 | 70.86 | 70.10 | 70.55 | 70.66 | - 1 | | | Moisture Content | Bws | % | 10.34 | 10.34 | 10.34 | 9.39 | 9.39 | 9.39 | 10.51 | 10.51 | 10.51 | | | | Actual Stack Gas Flow Rate | Qa | acfin | 20,618 | 20,741 | 20,795 | 20,896 | 20,885 | 20,870 | 20,647 | 20,778 | 20,813 | | | | Dry Stack Gas Flow Rate | Qds | dscfm | 9,606 | 9,658 | 9,685 | 9,827 | 9,819 | 9,818 | 9,587 | 9,646 | 9,667 | | | | Dry Stack Gas Flow Rate | Qds | dscfh | 576,377 | 579,502 | 581,080 | 589,604 | 589,123 | 589,078 | 575,211 | 578,771 | 580,031 | | | | Wet Stack Gas Flow Rate | Qws | wscfm | 10,714 | 10,772 | 10,801 | 10,845 | 10,836 | 10,835 | 10,713 | 10,779 | 10,802 | | | | CALCULATIONS | | | | | | | | 104- | | | | | | | Abs Stk Pressure | Pabs | Pabs=Pbar +(Ps | 5/13.6) | | | | Average Velocity | | | Vs | Vs = 85.49Cp Sqr | t(dp)[Sqrt(Ts,r/(| Pabs Ms))] | | Gas Vol. @ STD | Vmstd | Vmstd=17.64V | mY[Pbar+dH/13 | 6)]/Tm | | | Moisture Content | | | | Bws = 100 Vwstd | | | | Vol. of
Water Vapor | Vwstd | Vwstd=0.04707 | | | | 1 | Actual Stack Gas | Flow Rate | | | Qa = 60 Vs As | (| | | Dry Mol. Wt. | Md | | | 100-(%CO2+%O | 2)] | | Dry Stack Gas Flo | | | | Qds=17.64 Qa[1-(| Bws/100)](Pabs | (Ts.r) | | Wet Mol. Wt. | Ms | | s/100)]+18(Bws/ | | | | Wet Stack Gas Flo | | | | Qws= Qds(dscfm) | | | #### STACK GAS MOISTURE AND FLOW RATE CALCULATIONS Facility: OCSD, Plant No. 2 City: Huntington Beach, CA | ı | | RU | N 1.0 | | |-------|-----------------|---------------|--------------|----------------| | Point | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfm) | | Avg | 0.811 | 539.8 | .8995 | 9,606 | | 1 | 0.87 | 531 | .9327 | 10,006 | | 2 | 0.87 | 540 | .9327 | 9,960 | | 2 3 4 | 0.92 | 542 | .9592 | 10,232 | | 4 | 0.79 | 543 | .8888 | 9,477 | | 5 | 0.76 | 542 | .8718 | 9,300 | | 5 | 0.71 | 541 | .8426 | 8,994 | | 7 | 0.80 | 540 | .8944 | 9,551 | | 8 | 0.74 | 539 | .8602 | 9,191 | | 9 | 0.87 | 532 | .9327 | 10,000 | | 10 | 0.89 | 540 | .9434 | 10,074 | | 11 | 0.94 | 541 | .9695 | 10,348 | | 12 | 0.78 | 543 | .8832 | 9,417 | | 13 | 0.76 | 542 | .8718 | 9,300 | | 14 | 0.74 | 541 | .8602 | 9.182 | | 15 | 0.82 | 541 | .9055 | 9,665 | | 16 | 0.71 | 539 | .8426 | 9,003 | | 17 | | | | | | 18 | | | | | | 19 | | | | | | 20 | | | 1 | | | 21 | | | | | | 22 | | | | | | 23 | | | | | | 24 | | | | | | 25 | | | | | | Г | Orifice | Meter T | emp. | DGM | Moist.
Collect. | 1 | |-----|---------|---------|--------|----------|--------------------|---------| | - 1 | dH | Inlet | Outlet | Volume | | | | | 2.00 | Avg: | 82.2 | 68.105 | 160.9 | Net: | | 10 | 2.00 | 83 | 80 | 981.835 | 745.0 | Initial | | 20 | 2.00 | 83 | 80 | 1049.940 | 867.2 | Final | | 30 | 2.00 | 84 | 80 | | 685.3 | Initial | | 40 | 2.00 | 84 | 80 | - 1 | 700.4 | Final | | 50 | 2.00 | 84 | 18 | | 606.8 | Initial | | 60 | 2.00 | 84 | 81 | | 613.0 | Final | | 70 | 2.00 | 84 | 81 | | 804.5 | Initial | | 80 | 2.00 | 84 | 81 | | 821.9 | Final | | 90 | 2.00 | 85 | 81 | | | | Source: Engine 5 Test: RATA | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfm) | |-----------------|---------------|--------------|----------------| | 0.821 | 540.4 | .9048 | 9,658 | | 0.88 | 531 | .9381 | 10,060 | | 0.89 | 540 | .9434 | 10,071 | | 0.94 | 541 | .9695 | 10,345 | | 0.81 | 543 | .9000 | 9,594 | | 0.76 | 542 | .8718 | 9,298 | | 0.72 | 542 | .8485 | 9,050 | | 0.81 | 541 | .9000 | 9,603 | | 0.72 | 540 | .8485 | 9,059 | | 0.89 | 533 | .9434 | 10,107 | | 0.91 | 541 | .9539 | 10,179 | | 0.96 | 542 | .9798 | 10,450 | | 0.76 | 544 | .8718 | 9,288 | | 0.76 | 543 | .8718 | 9,293 | | 0.75 | 542 | .8660 | 9,236 | | 0.84 | 541 | .9165 | 9,780 | | 0.73 | 540 | .8544 | 9,121 | | | | | | | 1 | Moist. | DGM | emp. | Meter T | Orifice | | |--------|----------|----------|--------|---------|---------|--| | | Collect. | Volume | Outlet | Inlet | dH | | | Net: | 160.9 | 68.105 | 82.2 | Avg: | 2.00 | | | Initi | 745.0 | 981.835 | 80 | 83 | 2.00 | | | Fina | 867.2 | 1049.940 | 80 | 83 | 2.00 | | | Initi | 685.3 | | 80 | 84 | 2.00 | | | Fina | 700.4 | - 1 | 80 | 84 | 2.00 | | | Initia | 606.8 | | 81 | 84 | 2.00 | | | Fina | 613.0 | - 1 | 81 | 84 | 2.00 | | | Initia | 804.5 | | 81 | 84 | 2.00 | | | Fina | 821.9 | | 81 | 84 | 2.00 | | | _ | | | 81 | 85 | 2.00 | | Test Date: 10/1/15 | | RUI | N 3.0 | | |-----------------|---------------|--------------|-----------------| | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfin) | | 0.825 | 540.3 | .9072 | 9,685 | | 0.92 | 532 | .9592 | 10,281 | | 0.91 | 540 | .9539 | 10,184 | | 0.93 | 541 | .9644 | 10,290 | | 0.82 | 543 | .9055 | 9,653 | | 0.78 | 542 | .8832 | 9,419 | | 0.70 | 542 | .8367 | 8,923 | | 0.81 | 541 | .9000 | 9,604 | | 0.69 | 539 | .8307 | 8,873 | | 0.89 | 533 | .9434 | 10,107 | | 0.90 | 541 | .9487 | 10,123 | | 0.95 | 542 | .9747 | 10,395 | | 0.79 | 544 | .8888 | 9,470 | | 0.78 | 543 | .8832 | 9,415 | | 0.76 | 541 | .8718 | 9,303 | | 0.82 | 541 | .9055 | 9,663 | | 0.75 | 539 | .8660 | 9,250 | | | | | | | | | | | | Orifice | Meter 7 | Temp. | DGM | Moist. | 1 | | |---------|---------|--------|----------|----------|---------|--| | dH | Inlet | Outlet | Volume | Collect. | | | | 2.00 | Avg: | 82.2 | 68.105 | 160.9 | Net: | | | 2.00 | 83 | 80 | 981.835 | 745.0 | Initial | | | 2.00 | 83 | 80 | 1049.940 | 867.2 | Final | | | 2.00 | 84 | 80 | | 685.3 | Initial | | | 2.00 | 84 | 80 | - 1 | 700.4 | Final | | | 2.00 | 84 | 81 | | 606.8 | Initial | | | 2.00 | 84 | 81 | | 613.0 | Final | | | 2.00 | 84 | 81 | | 804.5 | Initial | | | 2.00 | 84 | 81 | | 821.9 | Final | | | 2.00 | 85 | 81 | | | | | 18 19 #### STACK GAS MOISTURE AND FLOW RATE CALCULATIONS Facility: OCSD, Plant No. 2 City: Huntington Beach, CA | - [| RUN 4.0 | | | | | | | |-------|-----------------|---------------|--------------|----------------|--|--|--| | Point | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfm) | | | | | Avg | 0.833 | 541.0 | .9119 | 9,827 | | | | | 1 | 0.84 | 533 | .9165 | 9,916 | | | | | 2 | 0.88 | 541 | .9381 | 10,109 | | | | | 3 | 0.94 | 542 | .9695 | 10,442 | | | | | 4 | 0.86 | 544 | .9274 | 9,978 | | | | | 5 | 0.82 | 543 | .9055 | 9,748 | | | | | 6 | 0.75 | 542 | .8660 | 9,328 | | | | | 7 | 0.81 | 541 | .9000 | 9,698 | | | | | 8 | 0.79 | 541 | .8888 | 9,578 | | | | | 9 | 0.84 | 533 | .9165 | 9,916 | | | | | 10 | 0.86 | 541 | .9274 | 9,993 | | | | | 11 | 0.93 | 543 | .9644 | 10,382 | | | | | 12 | 0.88 | 544 | .9381 | 10,094 | | | | | 13 | 0.81 | 543 | .9000 | 9,689 | | | | | 14 | 0.78 | 542 | .8832 | 9,512 | | | | | 15 | 0.77 | 542 | .8775 | 9,451 | | | | | 16 | 0.76 | 541 | .8718 | 9,394 | | | | | 17 | | | | | | | | | Γ | Orifice | Meter 7 | | DGM | Moist. | |----|---------|---------|--------|---------|----------| | L | dH | Inlet | Outlet | Volume | Collect. | | | 2.00 | Avg: | 85.4 | 68.144 | 143.9 N | | 0 | 2.00 | 86 | 83 | 50.644 | 766.2 I | | 0 | 2.00 | 87 | 83 | 118.788 | 887.6 F | | 0 | 2.00 | 87 | 83 | | 700.4 I | | 0 | 2.00 | 87 | 84 | | 710.9 F | | 0 | 2.00 | 87 | 84 | | 613.0 I | | 0 | 2.00 | 87 | 84 | | 615.1 F | | 0 | 2.00 | 87 | 84 | | 821.9 In | | 30 | 2.00 | 88 | 84 | | 831.8 F | | 0 | 2.00 | 88 | 84 | | | Source: Engine 5 Test: RATA | dP
(in, H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfm) | |-----------------|---------------|--------------|----------------| | 0.831 | 541.3 | .9113 | 9,819 | | 0.84 | 532 | .9165 | 9,920 | | 0.89 | 541 | .9434 | 10,165 | | 0.89 | 543 | .9434 | 10,155 | | 0.88 | 545 | .9381 | 10,088 | | 0.77 | 543 | .8775 | 9,446 | | 0.80 | 542 | .8944 | 9,633 | | 0.82 | 542 | .9055 | 9,753 | | 0.81 | 541 | .9000 | 9,698 | | 0.83 | 534 | .9110 | 9,851 | | 0.88 | 542 | .9381 | 10,103 | | 0.92 | 544 | .9592 | 10,320 | | 0.86 | 544 | .9274 | 9,978 | | 0.80 | 543 | .8944 | 9,628 | | 0.76 | 542 | .8718 | 9,389 | | 0.78 | 542 | .8832 | 9,512 | | 0.77 | 540 | .8775 | 9,460 | | | | | | | 1 | Moist. | DGM | Meter Temp. | | Orifice | |--------|----------|---------|-------------|-------|---------| | | Collect. | Volume | Outlet | Inlet | dH | | Net: | 143.9 | 68.144 | 85.4 | Avg: | 2.00 | | Initia | 766.2 | 50.644 | 83 | 86 | 2.00 | | Final | 887.6 | 118.788 | 83 | 87 | 2.00 | | Initia | 700.4 | | 83 | 87 | 2.00 | | Final | 710.9 | | 84 | 87 | 2.00 | | Initia | 613.0 | | 84 | 87 | 2.00 | | Final | 615.1 | | 84 | 87 | 2.00 | | Initia | 821.9 | | 84 | 87 | 2.00 | | Final | 831.8 | | 84 | 88 | 2.00 | | | | | 84 | 88 | 2.00 | Test Date: 10/1/15 | RUN 6.0 | | | | | | | |-----------------|---------------|--------------|----------------|--|--|--| | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfm) | | | | | 0.831 | 540.6 | .9109 | 9,818 | | | | | 0.83 | 532 | .9110 | 9,862 | | | | | 0.89 | 541 | .9434 | 10,166 | | | | | 0.91 | 542 | .9539 | 10,275 | | | | | 0.89 | 543 | .9434 | 10,156 | | | | | 0.78 | 542 | .8832 | 9,513 | | | | | 0.78 | 541 | .8832 | 9,517 | | | | | 0.80 | 540 | .8944 | 9,643 | | | | | 0.81 | 540 | .9000 | 9,704 | | | | | 0.82 | 533 | .9055 | 9,798 | | | | | 0.86 | 541 | .9274 | 9,994 | | | | | 0.94 | 542 | .9695 | 10,443 | | | | | 0.87 | 544 | .9327 | 10,036 | | | | | 0.81 | 543 | .9000 | 9,689 | | | | | 0.79 | 543 | .8888 | 9,569 | | | | | 0.75 | 542 | .8660 | 9,328 | | | | | 0.76 | 541 | .8718 | 9,395 | Ī | Orifice | Meter Temp. | | DGM | Moist. | | |---|---------|-------------|--------|---------|----------|---------| | | dH | Inlet | Outlet | Volume | Collect. | | | | 2.00 | Avg: | 85.4 | 68.144 | 143.9 | Net: | | Ī | 2.00 | 86 | 83 | 50.644 | 766.2 | Initial | | | 2.00 | 87 | 83 | 118.738 | 887.6 | Final | | | 2.00 | 87 | 83 | | 700.4 | Initial | | | 2.00 | 87 | 84 | | 710.9 | Final | | | 2.00 | 87 | 84 | | 613.0 | Initial | | | 2.00 | 87 | 84 | - 1 | 615.1 | Final | | | 2.00 | 87 | 84 | | 821.9 | Initial | | | 2.00 | 88 | 84 | | 831.8 | Final | | ì | 2.00 | 88 | 84 | | | | #### STACK GAS MOISTURE AND FLOW RATE CALCULATIONS Facility: OCSD, Plant No. 2 City: Huntington Beach, CA | - 1 | RUN 7.0 | | | | | | | | |------|-----------------|---------------|--------------|----------------|--|--|--|--| | oint | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfm) | | | | | | Avg | 0.809 | 541.3 | .8992 | 9,587 | | | | | | 1 | 0.82 | 534 | .9055 | 9,690 | | | | | | 2 | 0.82 | 541 | .9055 | 9,656 | | | | | | 2 3 | 0.88 | 543 | .9381 | 9,993 | | | | | | 4 | 0.75 | 545 | .8660 | 9,216 | | | | | | 5 | 0.75 | 543 | .8660 | 9,225 | | | | | | 6 | 0.75 | 543 | .8660 | 9,225 | | | | | | 7 | 0.79 | 542 | .8888 | 9,473 | | | | | | 8 | 0.79 | 542 | .8888 | 9,473 | | | | | | 9 | 0.84 | 533 | .9165 | 9,812 | | | | | | 10 | 0.84 | 541 | .9165 | 9,773 | | | | | | 11 | 0.93 | 542 | .9644 | 10,278 | | | | | | 12 | 0.88 | 544 | .9381 | 9,988 | | | | | | 13 | 0.81 | 543 | .9000 | 9,587 | | | | | | 14 | 0.78 | 542 | .8832 | 9,413 | | | | | | 15 | 0.77 | 542 | .8775 | 9,352 | | | | | | 16 | 0.75 | 541 | .8660 | 9,235 | | | | | | 17 | | | | | | | | | | 18 | | | | | | | | | | 19 | | | | | | | | | | 20 | | | | | | | | | | 21 |
| | | | | | | | | 22 | | | | | | | | | | - 1 | RUN 7.0 | | | | | | | | |----------------------|-----------------|---------------|--------------|----------------|--|--|--|--| | oint | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfm) | | | | | | vg | 0.809 | 541.3 | .8992 | 9,587 | | | | | | 1 | 0.82 | 534 | .9055 | 9,690 | | | | | | 2 | 0.82 | 541 | .9055 | 9,656 | | | | | | 2 3 | 0.88 | 543 | .9381 | 9,993 | | | | | | 4 | 0.75 | 545 | .8660 | 9,216 | | | | | | 5 | 0.75 | 543 | .8660 | 9,225 | | | | | | 6 | 0.75 | 543 | .8660 | 9,225 | | | | | | 7 | 0.79 | 542 | .8888 | 9.473 | | | | | | 8 | 0.79 | 542 | .8888 | 9,473 | | | | | | 9 | 0.84 | 533 | .9165 | 9,812 | | | | | | 10 | 0.84 | 541 | .9165 | 9,773 | | | | | | 11 | 0.93 | 542 | .9644 | 10,278 | | | | | | 12 | 0.88 | 544 | .9381 | 9,988 | | | | | | 13 | 0.81 | 543 | .9000 | 9,587 | | | | | | 14 | 0.78 | 542 | .8832 | 9,413 | | | | | | 15 | 0.77 | 542 | .8775 | 9,352 | | | | | | 16 | 0.75 | 541 | .8660 | 9,235 | | | | | | 17
18
19
20 | | | | | | | | | | 21
22
23 | | | | | | | | | | 24 | | | | | | | | | | Г | Orifice | Prifice Meter Temp. | | DGM | Moist. | | |-----|---------|---------------------|--------|---------|----------|---------| | - 1 | dH | Inlet | Outlet | Volume | Collect. | | | - 1 | 2.00 | Avg: | 89.1 | 68.117 | 161.9 | Net: | | 10 | 2.00 | 90 | 87 | 119.020 | 782.5 | Initial | | 20 | 2.00 | 90 | 87 | 187.137 | 912.3 | Final | | 30 | 2.00 | 90 | 87 | | 710.9 | Initial | | 40 | 2.00 | 91 | 87 | | 723.6 | Final | | 50 | 2.00 | 91 | 88 | | 615.1 | Initial | | 60 | 2.00 | 91 | 88 | | 619.5 | Final | | 70 | 2.00 | 91 | 88 | | 765.0 | Initial | | 80 | 2.00 | 91 | 88 | | 780.0 | Final | | 00 | 2.00 | 0.1 | 0.0 | | | - | Source: Engine 5 Test: RATA | | RUI | V 8.0 | | |-----------------|---------------|--------------|-----------------| | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfin) | | 0.819 | 541.4 | .9048 | 9,646 | | 0.86 | 533 | .9274 | 9,929 | | 0.83 | 541 | .9110 | 9,715 | | 0.89 | 542 | .9434 | 10,055 | | 0.75 | 544 | .8660 | 9,221 | | 0.76 | 544 | .8718 | 9,282 | | 0.76 | 542 | .8718 | 9,292 | | 0.80 | 542 | .8944 | 9,533 | | 0.79 | 541 | .8888 | 9,478 | | 0.85 | 534 | .9220 | 9,866 | | 0.86 | 542 | .9274 | 9,884 | | 0.92 | 544 | .9592 | 10,213 | | 0.88 | 545 | .9381 | 9,983 | | 0.81 | 543 | .9000 | 9,588 | | 0.79 | 543 | .8888 | 9,469 | | 0.78 | 542 | .8832 | 9,413 | | 0.78 | 541 | .8832 | 9,418 | | | | | | | Orifice | Meter T | Temp. | DGM | Moist. | |---------|---------|--------|---------|----------| | dH | Inlet | Outlet | Volume | Collect. | | 2.00 | Avg: | 89.1 | 68.117 | 161.9 | | 2.00 | 90 | 87 | 119.020 | 782.5 | | 2.00 | 90 | 87 | 187.137 | 912.3 | | 2.00 | 90 | 87 | | 710.9 | | 2.00 | 91 | 87 | | 723.6 | | 2.00 | 91 | 88 | | 615.1 | | 2.00 | 91 | 88 | | 619.5 | | 2.00 | 91 | 88 | | 765.0 | | 2.00 | 91 | 88 | | 780.0 | | 2.00 | 91 | 88 | | | Test Date: 10/01/15 | | RUN | V 9.0 | | |-----------------|---------------|--------------|----------------| | dP
(in. H2O) | Ts
(deg F) | SQRT
(dP) | Qds
(dscfm) | | 0.823 | 540.9 | .9065 | 9,667 | | 0.87 | 533 | .9327 | 9,986 | | 0.84 | 541 | .9165 | 9,773 | | 0.89 | 543 | .9434 | 10,050 | | 0.73 | 544 | .8544 | 9,097 | | 0.76 | 543 | .8718 | 9,287 | | 0.77 | 542 | .8775 | 9,352 | | 0.82 | 540 | .9055 | 9,661 | | 0.79 | 540 | .8888 | 9,483 | | 0.84 | 533 | .9165 | 9,813 | | 0.87 | 542 | .9327 | 9,941 | | 0.91 | 542 | .9539 | 10,167 | | 0.86 | 544 | .9274 | 9,874 | | 0.82 | 543 | .9055 | 9,647 | | 0.81 | 542 | .9000 | 9,592 | | 0.79 | 542 | .8888 | 9,473 | | 0.79 | 541 | .8888 | 9,478 | Orifice | | Meter Temp. | | DGM | Moist. | ĺ | |---------|------|-------------|--------|---------|----------|---------| | | dH | Inlet | Outlet | Volume | Collect. | | | | 2.00 | Avg: | 89.1 | 68.117 | 161.9 | Net: | | Т | 2.00 | 90 | 87 | 119.020 | 782.5 | Initial | | | 2.00 | 90 | 87 | 187.137 | 912.3 | Final | | | 2.00 | 90 | 87 | | 710.9 | Initial | | | 2.00 | 91 | 87 | | 723.6 | Final | | | 2.00 | 91 | 88 | | 615.1 | Initial | | | 2.00 | 91 | 88 | | 619.5 | Final | | | 2.00 | 91 | 88 | | 765.0 | Initial | | | 2.00 | 91 | 88 | | 780.0 | Final | | | 2.00 | 91 | 88 | | | | # Appendix C2 STACK GAS FLOW RATE – Field Data # SAMPLING AND VELOCITY TRAVERSE POINT DETERMINATION SCAQMD METHOD 1.2 DRAWING NOT TO SCALE ### SCAQMD METHODS 2-4 | LNATEONMENTAL | SCAQIVID | IVIL TITODO Z-4 | | |---------------------|--------------------|----------------------------|----------------------| | Run#: 1,213 | Pitot ID: STYPE | Impinger Initial Final Net | Pitot Leak Check | | Date: 16/1/15 | Pitot Coeff.: _84 | Water 1: 7450 867.2 | Initial: | | Client: OCSD | Meter Box #: 002 | Water 2: 685-3 780.4 | Final: | | Unit: ENGINES | Meter @ Dh : 1-987 | Blank: 66.8 613.0 | | | Operator: L. Barrow | Meter Y: 9871 | Sil. Gel: 804.57821.9 | Meter Box Leak Check | | Stack Dia: 300 | TC#: 83 | H2O Gain = | Rate "HG | | Amb. Press: 29.91 | Start Time: 7:43 | Pressure Type/Range | Initial: (200) 22 | | Static Press : | Stop Time : 9:13 | ADM SEOU - | Final: -600 22" | | | | | | | | | | | | | | Sample | Port 1: | | Port 2 : | | | | |------------------|-----------------------|-----------------------|------------------------|------------|------------------------|--|---------|-------------------|--------------------|-------------------|-----|-------------------------|------------------------| | Time
(Minute) | Meter Volume
(acf) | Pump Vac
(inch Hg) | Meter Ter
Inlet (F) | outlet (F) | Set Delta
(Inch H20 | The state of s | Point # | Delta P
("H2O) | Stack
Temp. (F) | Delta P
("H2O) | | Cyclonic Flow
("H2O) | TE Cooler
Temp. (F) | | 0 | 981.835 | | | | 2.0 | 2 | 1 | .87 | 531 | -87 | 532 | | 33 | | 10 | 989.42 | 5 | 83 | 80 | | 53 | 2 | .87 | 540 | -89 | 540 | | 33 | | 20 | 997.03 | | 83 | 80 | | 53 | .3 | .92 | 542 | 94 | 541 | | 33 | | 30 | 004-66 | | 84 | 80 | | 54 | 4 | .79 | 543 | .78 | 543 | | 34 | | 40 | 012.18 | | 84 | 80 | | 54 | 5 | .76 | 542 | .76 | 542 | | 34 | | 50 | 019.69 | | 84 | 81 | | 54 | 6 | .71 | 541 | .74 | 541 | | 74 | | 60 | 027.25 | | 84 | 81 | | 55 | 7 | .80 | 540 | .82 | 541 | | 34 | | 70 | 034.77 | | 84 | 81 | | 55 | 8 | -74 | 539 | .71 | 539 | | 34 | | 80 | 042.38 | V | 84 | 81 | 1 | 56 | 4 | | They | | | | 34 | | 90 | 049.94 | 5 | 85 | 81 | 2,0 | 56 | ĺ | .88 | 531 | .89 | 533 | | | | | | | | | | 1956 | 2 | .89 | 540 | .91 | 541 | | | | | | | | | | 1 | 3 | .94 | 541 | -96 | 542 | | | | | | | | | | 1676 | 4 | .81 | 543 | .76 | 544 | | | | | | | | | | | 5 | .760 | 542 | .76 | 543 | | | | | | | | | | 1000 | 6 | .72 | 542 | :75 | 542 | | | | | | | | | | E.A. | 7 | -81 | 541 | -84 | 541 | | | | | | | | | | | 8 | .72 | 540 | .73 | 540 | 1 | .92 | 532 | 89 | 533 | | | | | | 18.2 | Tun- | | | | 2 | 91 | 540 | .90 | 541 | | | | | | | | | | | 3 | -93 | 541 | .95 | 542 | | | | | | | | | | | 4 | .82 | 543 | .79 | 544 | | | | | | | | | | | 5 | .78 | 542 | .78 | 543 | | | | | | | | 14 | | | 6 | -70 | 542 | .76 | | | | | | | | | | | | 7 | -81 | 541 | . 82 | 541 | | | | | | | | | | | 8 | -89 | 539 | .75 | 539 | #### SCAQMD METHODS 2-4 | ENVIRONMENTAL | SCAQIVIL | METHODS 2-4 | | |---------------------|--------------------|------------------------|----------------------| | Run#: 4,5,6 | Pitot ID: 5 type | Impinger Initial Final | Net Pitot Keak Check | | Date: 10/1/15 | Pitot Coeff.: .84 | Water 1: 766.2887.6 | Initial: V / V/ | | Client: OCSD | Meter Box #: 002 | Water 2: 700,4 710.9 | Final: | | Unit: Engine 5 | Meter @ Dh : 1,987 | Blank: 6/3.0 615.1 | | | Operator: L. Barrov | J Meter Y: 19871 | Sil. Gel: 821,9 831.8 | Meter Box Leak Check | | Stack Dia: 30" | TC#: 83 | H2O Gain = | Rate "HG | | Amb. Press : 29.91 | Start Time: 9:31 | Pressure
Type/Rang | ge Initial: ,601 24" | | Static Press : 25 | Stop Time : //; 0/ | ADM 880 C | - Final: 1001 24" | | | | | | | | | Sample | Port 1: | | Port 2 : | | Pitot ID: | | |------------------|--------------|-----------------------|---------|--------------------------|---------------------------|-----------|--------|-------------------|-----------|----------|-------|-------------------------|-------| | Time
(Minute) | Meter Volume | Pump Vac
(inch Hg) | | nperatures
Outlet (F) | Set Delta H
(Inch H2O) | Impinger | Point# | Delta P
("H2O) | Stack | Delta P | Stack | Cyclonic Flow
("H2O) | | | (Minute) | 050,644 | (inch Hg) | met (F) | Juliet (F) | 2,0 | Temp. (F) | 1 | (H2O) | Temp. (F) | ("H2O) | 533 | (HZO) | 74 34 | | 10 | 058,22 | 6 | 86 | 83 | 1 | 53 | 2 | .88 | 541 | .86 | 541 | | 34 | | 20 | 0581 | 1 | 87 | 83 | | 54 | 3 | .94 | 542 | .93 | 543 | | 35 | | 30 | 003 44 | 1 | 87 | 83 | | 54 | 4 | .86 | 544 | .88 | 544 | | 35 | | 40 | 081.03 | | 87 | 84 | | 55 | 5 | .82 | 543 | 18. | 543 | | 35 | | 50 | 088.62 | - T | 87 | 84 | | 55 | 6 | .75 | 542 | 78 | 542 | | 35 | | 10 | 096 18 | | 87 | 84 | | 56 | 7 | .81 | 541 | : 97 | 542 | | 35 | | 70 | 103 /9 | | 87 | 84 | | 57 | 8 | 70 | 541 | 71 | 541 | | 35 | | 80 | 111.24 | V | 88 | 84 | V | 53 | - 0 | 1 | 2 (1 | 1,0 | / | 1 | 35 | | 90 | 118.788 | 6 | 88 | 84 | 20 | 53 | 1 | ,84 | 532 | .83 | 534 | | 36 | | | 110 | | 00 | | | | 2 | ,89 | 541 | .88 | 542 | | | | | | | | | | | 3 | ,89 | 543 | ,92 | 544 | | | | | | | | | | | 4 | . 88 | 545 | .86 | 544 | | | | | | | | | | | 5 | .77 | 543 | .80 | 543 | | | | | | | | | | | 6 | ,80 | 542 | .76 | 542 | | | | | | | | | | | 7 | ,82 | 542 | ,78 | 542 | | | | | | | | | | | 8 | ,81 | 541 | .77 | 540 | 1 | ,83 | 532 | ,82 | 533 | | | | | | | | | | | 2 | ,89 | 541 | .86 | 541 | | | | | | | | | | | 3 | ,91 | 542 | .94 | 542 | - / | | | | | | | | | | 4 | .89 | 543 | ,87 | 544 | | | | | | | | | | | 5 | .78 | 542 | ,81 | 343 | | | | | | | | | | | 6 | .78 | 541 | ,79 | 543 | | | | | | | | | | | 7 | ,80 | 540 | .75 | 542 | | | | | | | | | | | 8 | .81 | 540 | ,76 | 541 | | | | | | | | | | | | | | , | Almega #### SCAQMD METHODS 2-4 | EWALKON SHEST | 11 (- | | CHIGHNE | 111211102 | | | | | | , | | |----------------|------------|----------------|---------|-----------|----------|----------|-----|----------|-------------|-----------|--| | Run # : | 7,8,9 | Pitot ID : | stype | Impinger | Initial | Final | Net | | Pitot Lea | ak Check | | | Date : | 10/1/15 | Pitot Coeff. : | .84 | Water 1: | 7825 | 412.3 | | Initial: | / | 1/ | | | Client : | 0650 | Meter Box # : | 002 | Water 2: | 710.9 | 723.6 | | Final: | V | | | | Unit: | Engine 5 | Meter @ Dh: | 1.987 | Blank: | 615.1 | 619.5 | | | | | | | Operator : | L. Barrows | Meter Y: | .9871 | Sil. Gel: | 765.0 | 780,0 | | | Meter Box L | eak Check | | | Stack Dia : | .30'' | TC#: | 83 | | H2O Gair | 1 = | | | Rate | "HG | | | Amb. Press : | 29.91 | Start Time : | 11:16 | | Pressure | Type/Ran | ige | Initial: | .001 | 25" | | | Static Press : | 25 | Stop Time : | 12:46 | | HDM ? | 380 | _ | Final: | 1001 | 25" | the state of | | G-10-10-10-10-10-10-10-10-10-10-10-10-10- | | | | |------------------|-----------------------|-----------------------|---------|------------|---------------------------|-----------------------|---------|-------------------|--------------------|---|--------------------|-------------------------|------------------------| | | | | 1600- | | 0.15 | Lange Con- | Sample | Port 1: | | Port 2 : | | Pitot ID: | lee o | | Time
(Minute) | Meter Volume
(acf) | Pump Vac
(inch Hg) | | outlet (F) | Set Delta H
(Inch H2O) | Impinger
Temp. (F) | Point # | Delta P
("H2O) | Stack
Temp. (F) | Delta P
("H2O) | Stack
Temp. (F) | Cyclonic Flow
("H2O) | TE Cooler
Temp. (F) | | (Minute) | 119 120 | (inch hg) | met (F) | Outlet (F) | 20 | remp. (F) | 1 | .82 | 534 | 84 | 533 | (H2O) | 36 | | 10 | 12/14 | 6 | 90 | 87 | 1 | 53 | 2 | .82 | 541 | ,84 | 541 | | 36 | | 20 | 134 20 | 1 | 90 | 87 | | 53 | 3 | .88 | 543 | .93 | 542 | | 36 | | .30 | 141.81 | | 90 | 87 | | 54 | 4 | .75 | 545 | 88 | 544 | | 36 | | 40 | 149 43 | | 91 | 87 | | 54 | 5 | 75 | 543 | ,81 | 543 | | 36 | | 50 | 15/ 98 | | 91 | 88 | | 55 | 6 | 175 | 543 | 78 | 542 | | 36 | | 10 | 114 57 | | 91 | 88 | 1 | 56 | 7 | .79 | 542 | ,77 | 542 | | 36 | | 71 | 17711 | | 91 | 88 | | 57 | 8 | 79 | 542 | .73 | 541 | | 36 | | 80 | 179 65 | | 91 | SE | 1 | 53 | 0 | . / (| 5-10 | 1.7 | 211 | | 36 | | 90 | 187 137 | 1 | 91 | 88
88 | 2.0 | 53 | 1 | ,86 | 533 | .85 | 534 | | 36 | | 10 | 107.17 | 9 | _1.(| | 2.0 | 11 | 2 | .83 | 5211 | .86 | 542 | | | | | | | | | | | 3 | .89 | 5217 | 92 | 544 | | | | | | | | | | | 4 | 75 | 5414 | .88 | 545 | | | | | | | | | | | 5 | .76 | 540 | 181 | 543 | | | | | | | | | | | 6 | ,76 | 542 | 79 | 543 | | | | | | | | | | | 7 | .80 | 542 | .78 | 52/2 | - 1 | | | | | | | | | | 8 | .79 | 541 | 78 | 541 | | | | | | | | | | | | 4 [[| 2 (1 | | 211 | | | | | | | | | | | 1 | .87 | 533 | .84 | 533 | | | | | | | | | | | 2 | .84 | 541 | .87 | 542 | | | | | | | | | | 1 1 1 | 3 | .89 | 543 | 191 | 542 | | | | | | | | | | | 4 | ,73 | 544 | ,86 | 544 | | | | \ | | | | | | | 5 | 76 | 543 | 182 | 543 | | | | | | | | | | | 6 | ,77 | 542 | .81 | 542 | | | | | | | | | | | 7 | ,82 | 546 | .79 | 542 | | | | 191 | | | | | | | 8 | ,79 | 540 | 79 | 54) | | | | 7/ | | | | | | | | | - 10 | | | | | | | | | | | | | | | 7 = 1 | | 7 | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | #### ALMEGA ENVIRONMENTAL TECHNICAL SERVICES 10602 Walker Street Cypress, CA 90630 ## SAMPLE POINT LOCATION DATA SHEET - Round Stack | Facility: | OCSD #2 | |--|-----------| | Project Number: | 9849 | | Date: | 10/1/2015 | | Unit ID # | ENG 1->5 | | Inside of far wall to outside of port: | 35.5 | | Port Distance: | 5.5 | | Stack Diameter (D): | 30 " | | Upstream Distance (A): | 54* | | Equivalent Duct Diameter (A/D): | | | Downstream Distance (B): | 135" | | Equivalent Duct Diameter (B/D): | | | Total Number of Traverse Points : | 16 | | Number of Sampling Ports Used: | 2 | | Port Diameter: | 4' | | Sample
Point No. | % of Stack
Diameter | х | Stack
Diameter | = | Distance
from Wall | + | Port
Distance | = | Distance from
Sample Port | |---------------------|------------------------|---|-------------------|---|-----------------------|---|------------------|---|------------------------------| | 1 | 3.2 | х | 30 | = | .96 | + | 5.5 | = | 6.46 | | 2 | 10.5 | х | 1 | = | 3.15 | + | | n | 8.65 | | 3 | 19.4 | х | | = | 5.82 | + | | = | 11.32 | | 4 | 22.3 | x | | = | 9.69 | + | | = | 15.19 | | 5 | 67.7 | х | | = | 20.31 | + | | = | 25.81 | | 6 | 80,6 | х | | = | 24.18 | + | | = | 29.68 | | 7 | 89.5 | х | | = | 26.85 | + | 1 | = | 32.35 | | 8 | 96.8 | х | V | = | 29.04 | + | 0 | = | 34.54 | | | | х | | = | | + | | = | | | | | х | | = | | + | | = | | | | | х | | = | | + | | = | | | | | х | | = | | + | | п | | #### APPENDIX D SCAQMD METHOD 100.1 – CONTINUOUS MONITORING OF GASEOUS EMISSIONS # Appendix D1 **CEMS – Results and Calculations** ### REFERENCE METHOD DATA SUMMARY Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Test: RATA | Run | Time | NOx | NOx | NOx | СО | CO | СО | Dry Flow | O2 | CO2 | |-----|-------------|-------|-----------|-------|--------|-----------|--------|----------|-------|------| | No. | (hh:mm) | ppm | ppm@15%O2 | lb/hr | ppm | ppm@15%O2 | lb/hr | dscfh | % | % | | 1 | 7:43-8:12 | 34.05 | 22.02 | 2.38 | 591.37 | 382.4 | 25.151 | 576,377 | 11.78 | 7.58 | | 2 | 8:13-8:42 | 35.97 | 23.27 | 2.53 | 574.10 | 371.4 | 24.549 | 579,502 | 11.78 | 7.69 | | 3 | 8:43-9:12 | 36.47 | 23.79 | 2.57 | 580.31 | 378.6 | 24.882 | 581,080 | 11.86 | 7.66 | | 4 | 9:31-10:00 | 35.03 | 22.72 | 2.50 | 590.16 | 382.7 | 25.675 | 589,604 | 11.80 | 7.18 | | 5 | 10:01-10:30 | 35.63 | 23.17 | 2.54 | 578.80 | 376.5 | 25.161 | 589,123 | 11.83 | 7.19 | | 6 | 10:31-11:00 | 35.86 | 23.51 | 2.56 | 580.92 | 380.9 | 25.251 | 589,078 | 11.90 | 7.14 | | 7 | 11:16-11:45 | 36.38 | 23.44 | 2.54 | 579.05 | 373.2 | 24.577 | 575,211 | 11.75 | 7.34 | | 8 | 11:46-12:15 | 35.90 | 23.36 | 2.52 | 585.05 | 380.6 | 24.986 | 578,771 | 11.83 | 7.30 | | 9 | 12:16-12:45 | 36.55 | 23.71 | 2.57 | 573.98 | 372.4 | 24.566 | 580,031 | 11.81 | 7.31 | | | | 35.76 | 23.22 | 2.52 | 581.5 | 377.6 | 24.98 | 582,086 | 11.81 | 7.38 | #### Reference Method CEMS Summary Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Test: RATA | | | | | Flu | ie Gas Com | position | | | Pollutant 1: NOx (MW: 46 lb/lb-mole) | | Pollutant 2: CO (MW: 28 lb/lb-mole) | | | | |-----|-----------------|-------------|----------|----------|------------|----------|-------|-------|--------------------------------------|---------|-------------------------------------|---------|---------|--------| | | Run Information | on | Moisture | Flow | Rate: | O2 | C | 02 | dry | dry ppm | | dry | dry ppm | | | No. | Date | Time | % | dry scfm | dry scfh | dry % | dry % | wet % | ppm | @15%O2 | lbs/hr | ppm | @15%O2 | lbs/hr | | 1 | 10/01/15 | 7:43-8:12 | 10.34 | 9,606 | 576,377 | 11.78 | 7.58 | 6.80 | 34.05 | 22.02 | 2.379 | 591.367 | 382.424 | 25.151 | | 2 | 10/01/15 | 8:13-8:42 | 10.34 | 9,658 | 579,502 | 11.78 | 7.69 | 6.89 | 35.97 | 23.27 | 2.527 | 574.102 | 371.353 | 24.549 | | 3 | 10/01/15 | 8:43-9:12 | 10.34 | 9,685 | 581,080 | 11.86 | 7.66 | 6.87 | 36.47 | 23.79 | 2.569 | 580.305 | 378.551 | 24.882 | | 4 | 10/01/15 | 9:31-10:00 | 9.39 | 9,827 | 589,604 | 11.80 | 7.18 | 6.50 | 35.03 | 22.72 | 2.504 | 590.157 | 382.746 | 25.675 | | 5 | 10/01/15 | 10:01-10:30 | 9.39 | 9,819 | 589,123 | 11.83 | 7.19 | 6.51 | 35.63 | 23.17 | 2.545 | 578.799 | 376.453 | 25.161 | | 6 | 10/01/15 | 10:31-11:00
| 9.39 | 9,818 | 589,078 | 11.90 | 7.14 | 6.47 | 35.86 | 23.51 | 2.561 | 580.924 | 380.880 | 25.251 | | 7 | 10/01/15 | 11:16-11:45 | 10.51 | 9,587 | 575,211 | 11.75 | 7.34 | 6.57 | 36.38 | 23.44 | 2.536 | 579.049 | 373.185 | 24.577 | | 8 | 10/01/15 | 11:46-12:15 | 10.51 | 9,646 | 578,771 | 11.83 | 7.30 | 6.53 | 35.90 | 23.36 | 2.519 | 585.055 | 380.641 | 24.986 | | 9 | 10/01/15 | 12:16-12:45 | 10.51 | 9,667 | 580,031 | 11.81 | 7.31 | 6.54 | 36.55 | 23.71 | 2.570 | 573.981 | 372.370 | 24.566 | * Based on Standard Conditions of: 60 deg. F and 29.92 in. Hg OCSD, Plant No. 2 Facility: Run No.: City: Huntington Beach, CA Test Date: 10/01/15 Engine 5 Run Time: 7:43-8:12 Source: Test: RATA TEST DATA Pollutant 1 Pollutant 2 Diluent 1 Diluent 2 VARIABLE DESCRIPTION NOx CO 02 CO₂ ANALYTICAL RANGE 100 1000 25 A 10 % dry Unit of Measurement % dry ppmd ppmd CALIBRATION GAS INFORMATION В Zero Gas 0.00 0.00 0.00 0.00 Mid Gas Concentration 45.45 453.8 12.01 4.32 C Mid Gas Cylinder S/N: XC019657B CC39463 CC248731 CC248731 High Gas Concentration 89.91 899 21.99 D 8.749 High Gas Cylinder S/N: CC199782 CC259973 CC408131 CC408131 Primary Gas Cylinder S/N: UPSCALE CALIBRATION GAS USED 45.45 453.8 12.01 4.32 E L=Low, M=Mid, H=High M M M M INITIAL CALIBRATION ERROR TEST Zero Gas Response 0.00 0.70 0.03 0.00 Mid Gas Response 45,40 454.4 12.12 G 4.38 H High Gas Reponse 89.92 896.5 21.94 8.76 INITIAL SYSTEM CALIBRATION CHECK Zero Gas Response 0.27 0.80 0.03 0.00 Upscale Gas Response 45.38 450.2 12.11 4.31 FINAL SYSTEM CALIBRATION CHECK Zero Gas Response 0.48 0.20 0.04 -0.03K Upscale Gas Response 45.50 12.06 L 447.6 4.30 FINAL CALIBRATION ERROR CHECK M Zero Gas Response 0.38 0.40 0.03 -0.02Mid Gas Response 45.27 454.1 12.15 4.29 N 900.3 0 High Gas Reponse 89.88 21.94 8.75 AS MEASURED FLUE GAS CONCENTRATION 34.13 584.83 11.85 7.57 P CALCULATIONS **FORMULA** AVERAGE SYSTEM CALIBRATION (I+K)/2 Q Zero Response 0.38 0.50 0.04 -0.02448.90 12.09 R Upscale Response 45.44 4.31 (J+L)/2 34.05 591.37 11.78 CORRECTED CONC. 7.58 E*(P-Q)/(R-Q) QA/QC CALCULATIONS CALIBRATION GAS SELECTION, % of Range Low Gas C'*100/A Mid Gas 45.5 45.4 48.0 43.2 C*100/A High Gas 89.9 89.9 88.0 87.5 D*100/A CALIBRATION ERROR, % of Range Initial Zero Gas Error 0.00 0.07 0.12 0.00 (F-B)*100 A Initial Low Gas Error (G'-C')*100/A Initial Mid Gas Error -0.05 0.44 0.06 0.60 (G-C)*100/A Initial High Gas Error 0.01 -0.25-0.200.11 (H-D)*100/A Final Zero Gas Error 0.38 0.04 0.12 -0.20(M-B)*100'A Final Low Gas Error (N'-C')*100/A Final Mid Gas Error -0.180.03 0.56 -0.30 (N-C)*100:A Final High Gas Error -0.030.13 -0.200.01 (O-D)*100/A LINEARITY, % of Range -0.06 0.49 Initial 0.15 0.55 {(G-F)-[(H-F)*C]/D}*100/A -0.20 Final -0.35-0.060.61 {(N-M)-[(O-M)*C] D}*100 A SAMPLING SYSTEM BIAS, % of Range 0.27 Initial Zero Gas Bias 0.01 0.00 0.00 (I-F)*100'A Initial Upscale Gas Bias -0.02-0.42-0.04-0.70 (J-G[or G', or H]*100/A Final Zero Gas Bias 0.10 -0.020.04 -0.10 (K-M)*100/A Final Upscale Gas Bias 0.23 -0.65-0.360.10 (L-N[or N', or O]*100 A CALIBRATION DRIFT, % of Range 0.21 -0.06 0.04 -0.30(K-I)*100'A Zero Upscale 0.12 -0.20-0.10 (L-J) 100/A Facility: City: OCSD, Plant No. 2 Run No.: Huntington Beach, CA Engine 5 Test Date: 10/01/15 Run Time: 8:13-8:42 Source: | est: | RATA | | | Atum Timo. | 0.15-0.42 | | |----------|--|--------------|----------------|-------------|-------------|--| | | | | | | | | | EST DATA | | Pollutant 1 | Pollutant 2 | Diluent 1 | Diluent 2 | | | VARIABLE | DESCRIPTION | NOx | CO | <u>O2</u> | <u>CO2</u> | | | A | ANALYTICAL RANGE | 100 | 1000 | 25 | 10 | | | | Unit of Measurement | ppmd | ppmd | % dry | % dry | | | | CALIBRATION GAS INFORMATION | | | | | | | В | Zero Gas | 0.00 | 0.00 | 0.00 | 0.00 | | | C | Mid Gas Concentration | 45.45 | 453.8 | 12.01 | 4.32 | | | | Mid Gas Cylinder S/N: | XC019657B | CC39463 | CC248731 | CC248731 | | | D | High Gas Concentration | 89.91 | 899 | 21.99 | 8.75 | | | | High Gas Cylinder S/N: | CC199782 | CC259973 | CC408131 | CC408131 | | | | Primary Gas Cylinder S/N: | | | | | | | E | UPSCALE CALIBRATION GAS USED | 45.45 | 453.8 | 12.01 | 4.32 | | | - | L=Low, M=Mid, H=High | M | M | M | M | | | | INITIAL CALIBRATION ERROR TEST | 2000 | 925 | 106.0.1 | | | | F | Zero Gas Response | 0.00 | 0.70 | 0.03 | 0.00 | | | G | Mid Gas Response | 45.40 | 454.4 | 12.12 | 4.38 | | | | 50-13, 59 DDV 49, 55 | 89.92 | 896.5 | 21.94 | | | | Н | High Gas Reponse | 07.74 | 070,3 | 21.74 | 8.76 | | | ¥ | INITIAL SYSTEM CALIBRATION CHECK | 0.27 | 0.00 | 0.02 | 0.00 | | | I | Zero Gas Response | 0.27 | 0.80 | 0.03 | 0.00 | | | J | Upscale Gas Response | 45.38 | 450.2 | 12.11 | 4.31 | | | 100 | FINAL SYSTEM CALIBRATION CHECK | 0.40 | 0.00 | 0.04 | 0.00 | | | K | Zero Gas Response | 0.48 | 0.20 | 0.04 | -0.03 | | | L | Upscale Gas Response | 45.50 | 447.6 | 12.06 | 4.30 | | | | FINAL CALIBRATION ERROR CHECK | 9090270 | 324770000 | 9209282 | 0 6000 | | | M | Zero Gas Response | 0.38 | 0.40 | 0.03 | -0.02 | | | N | Mid Gas Response | 45.27 | 454.1 | 12.15 | 4.29 | | | O | High Gas Reponse | 89.88 | 900.3 | 21.94 | 8.75 | | | P | AS MEASURED FLUE GAS CONCENTRATION | 36.04 | 567.77 | 11.85 | 7.67 | | | LOTILAT | PIONE | | | | | and the same of th | | LCULAT | | | | | - W G | FORMULA | | ~ | AVERAGE SYSTEM CALIBRATION | 0.20 | 0.50 | 0.04 | 0.00 | No. protect | | Q | Zero Response | 0.38 | 0.50 | 0.04 | -0.02 | (I+K)/2 | | R | Upscale Response | 45.44 | 448.90 | 12.09 | 4.31 | _(J+L)/2 | | S | CORRECTED CONC. | 35.97 | 574.10 | 11.78 | 7.69 | E*(P-Q)/(R-Q) | | | CULATIONS | | | | 7.03 | 757. 47747 | | , V C C | CALIBRATION GAS SELECTION, % of Range | | | | | | | | Mid Gas | 45.5 | 45.4 | 48.0 | 43.2 | C*100/A | | | High Gas | 89.9 | 89.9 | 88.0 | 87.5 | D*100/A | | | CALIBRATION ERROR, % of Range | 32.22 | 07.7 | 00.0 | 07.3 | D 100/11 | | | Initial Zero Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A | | | Initial Mid Gas Error | -0.05 | 0.07 | 0.12 | 0.60 | | | | Initial High Gas Error | 0.03 | -0.25 | -0.20 | | (G-C)*100/A | | | minai riigii Gas Eitol | 0.01 | -0.23 | -0.20 | 0.11 | (H-D)*100/A | | | Final Zero Gas Error | 0.39 | 0.04 | 0.12 | 0.20 | (M. D)\$100 A | | | Final Zero Gas Error | 0.38 | 0.04 | 0.12 | -0.20 | (M-B)*100/A | | | Final Mid Gas Error | -0.18 | 0.03 | 0.56 | -0.30 | (N-C)*100/A | | | Final High Gas Error | -0.03 | 0.13 | -0.20 | 0.01 | (O-D)*100/A | | | LINEARITY, % of Range | 0.04 | 0.15 | 0.10 | 0 | Manager of the second s | | | Initial | -0.06 | 0.15 | 0.49 | 0.55 | {(G-F)-[(H-F)*C]/D}*100/A | | | Final | -0.35 | -0.06 | 0.61 | -0.20 | {(N-M)-[(O-M)*C]/D}*100/ | | | SAMPLING SYSTEM BIAS, % of Range | | | 100 | 4550 4 4 | | | | Initial Zero Gas Bias | 0.27 | 0.01 | 0.00 | 0.00 | (I-F)*100/A | | | Initial Upscale Gas Bias | -0.02 | -0.42 | -0.04 | -0.70 | (J-G[or G', or H]*100/A | | | | | 700000000 | 04445048073 | 2000 000000 | | | | Final Zero Gas Bias | 0.10 | -0.02 | 0.04 | -0.10 | (K-M)*100.'A | | | Final Upscale Gas Bias | 0.23 | -0.65 | -0.36 | 0.10 | (L-N[or N', or O]*100/A | | | | | | | | | | | CALIBRATION DRIFT, % of Range | | | | | | | | CALIBRATION DRIFT, % of Range Zero Upscale | 0.21
0.12 | -0.06
-0.26 | 0.04 | -0.30 | (K-I)*100/A | | | | | | | | Aimega | |-----------|--|--------------------|------------------|-------------------|------------------|---------------------------| | Facility: | OCSD, Plant No. 2 | | | Run No.: | 3 | ENVIRONMENTA | | City: | Huntington Beach, CA | | | Test Date: | 10/01/15 | | | Source: | Engine 5 | | | Run Time: | 8:43-9:12 | | | Test: | RATA | | | | | | | TEST DATA | <u>A</u> | Pollutant 1 | Pollutant 2 | Diluent 1 | Diluent 2 | | | VARIABLE | DESCRIPTION | NOx | CO | <u>O2</u> | CO2 | | | A | ANALYTICAL RANGE | 100 | 1000 | 25 | 10 | | | | Unit of Measurement | ppmd | ppmd | % dry | % dry | | | | CALIBRATION GAS INFORMATION | 0.00 | | 0.00 | | | | В | Zero Gas | 0.00 | 0.00 |
0.00 | 0.00 | | | C | Mid Gas Concentration | 45.45
XC019657B | 453.8
CC39463 | 12.01 | 4.32 | | | D | Mid Gas Cylinder S/N: High Gas Concentration | 89.91 | 899 | CC248731
21.99 | CC248731
8.75 | | | В | High Gas Cylinder S/N: | CC199782 | CC259973 | CC408131 | CC408131 | | | | Primary Gas Cylinder S/N: | | 0.0000000 | | 00.00.51 | | | E | UPSCALE CALIBRATION GAS USED | 45.45 | 453.8 | 12.01 | 4.32 | | | | L=Low, M=Mid, H=High | M | M | M | M | | | | INITIAL CALIBRATION ERROR TEST | | | | | | | F | Zero Gas Response | 0.00 | 0.70 | 0.03 | 0.00 | | | G | Mid Gas Response | 45.40 | 454.4 | 12.12 | 4.38 | | | Н | High Gas Reponse | 89.92 | 896.5 | 21.94 | 8.76 | | | | INITIAL SYSTEM CALIBRATION CHECK | 0.25 | 0.00 | 0.03 | 0.00 | | | I | Zero Gas Response | 0.27 | 0.80 | 0.03 | 0.00 | | | J | Upscale Gas Response FINAL SYSTEM CALIBRATION CHECK | 45.38 | 450.2 | 12.11 | 4.31 | | | ν | Zero Gas Response | 0.48 | 0.20 | 0.04 | -0.03 | | | K
L | Upscale Gas Response | 45.50 | 447.6 | 12.06 | 4.30 | | | L | FINAL CALIBRATION ERROR CHECK | 43.30 | 447.0 | 12.00 | 4.50 | | | M | Zero Gas Response | 0.38 | 0.40 | 0.03 | -0.02 | | | N | Mid Gas Response | 45.27 | 454.1 | 12.15 | 4.29 | | | 0 | High Gas Reponse | 89.88 | 900.3 | 21.94 | 8.75 | | | | and September 1970 And the 1987 S | | | | | | | P | AS MEASURED FLUE GAS CONCENTRATION | 36.54 | 573.90 | 11.93 | 7.64 | | | CALCINA | CIONE | | | | | non | | CALCULAT | AVERAGE SYSTEM CALIBRATION | | | | | FORMULA | | Q | Zero Response | 0.38 | 0.50 | 0.04 | -0.02 | (I+K)/2 | | R | Upscale Response | 45.44 | 448.90 | 12.09 | 4.31 | (J+L)/2 | | 10 | C pocule response | 13.11 | 110.50 | 12.07 | 1.51 | 10.00 | | S | CORRECTED CONC. | 36.47 | 580.31 | 11.86 | 7.66 | E*(P-Q)/(R-Q) | | QA/QC CAL | CULATIONS | | | | | 1 3 30 5 30 | | | CALIBRATION GAS SELECTION, % of Range | | | | | | | | Mid Gas | 45.5 | 45.4 | 48.0 | 43.2 | C*100/A | | | High Gas | 89.9 | 89.9 | 88.0 | 87.5 | D*100/A | | | CALIBRATION ERROR, % of Range | | | | 2.22 | | | | Initial Zero Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A | | | Initial Mid Gas Error | -0.05 | 0.06 | 0.44 | 0.60 | (G-C)*100/A | | | Initial High Gas Error | 0.01 | -0.25 | -0.20 | 0.11 | (H-D)*100/A | | | Final Zero Gas Error | 0.38 | 0.04 | 0.12 | -0.20 | (M-B)*100/A | | | Final Mid Gas Error | -0.18 | 0.03 | 0.56 | -0.30 | (N-C)*100/A | | | Final High Gas Error | -0.03 | 0.13 | -0.20 | 0.01 | (O-D)*100/A | | | LINEARITY, % of Range | | | | -100 | / | | | Initial | -0.06 | 0.15 | 0.49 | 0.55 | {(G-F)-[(H-F)*C]/D}*100/A | | | Final | -0.35 | -0.06 | 0.61 | -0.20 | {(N-M)-[(O-M)*C]/D}*100/A | | | | | | | | | | | SAMPLING SYSTEM BIAS, % of Range | grater | 2 22 | 4022 | 2 22 | | | | Initial Zero Gas Bias | 0.27 | 0.01 | 0.00 | 0.00 | (I-F)*100/A | | | Initial Upscale Gas Bias | -0.02 | -0.42 | -0.04 | -0.70 | (J-G[or G', or H]*100/A | | | Final Zana Car Bina | 0.10 | 0.00 | 0.04 | 0.10 | W. 3 404100'' | | | Final Upscale Gas Bias | 0.10 | -0.02 | 0.04 | -0.10 | (K-M)*100/A | | | Final Upscale Gas Bias CALIBRATION DRIFT, % of Range | 0.23 | -0.65 | -0.36 | 0.10 | (L-N[or N', or O]*100/A | | | Zero | 0.21 | -0.06 | 0.04 | -0.30 | (K-l)*100/A | | | Upscale | 0.12 | -0.26 | -0.20 | -0.30 | (L-J)*100/A | | | Opseure | 0.12 | 0.20 | 0.20 | 0.10 | (D3) TOUR | Facility: OCSD, Plant No. 2 Run No.: 4 City: Huntington Beach, CA Test Date: 10/01/15 Source: Engine 5 Run Time: 9:31-10:00 | Source: | Engine 5 | | | Run Time: | 9:31-10:00 | | |-----------|--|--|------------------|-----------------------|------------------------|---| | Test: | RATA | | | | | | | TEST DATA | A | Pollutant 1 | Pollutant 2 | Diluent 1 | Diluent 2 | | | VARIABLE | DESCRIPTION | NOx | CO | <u>O2</u> | CO2 | | | A | ANALYTICAL RANGE | 100 | 1000 | 25 | 10 | | | 15.0 | Unit of Measurement | ppmd | ppmd | % dry | % dry | | | | CALIBRATION GAS INFORMATION | The state of s | E La Composition | 50000000 | t with the same of the | | | В | Zero Gas | 0.00 | 0.0 | 0.00 | 0.00 | | | C | Mid Gas Concentration | 45.45 | 453.8 | 12.01 | 4.32 | | | | Mid Gas Cylinder S/N: | XC019657B | CC39463 | CC248731 | CC248731 | | | D | High Gas Concentration | 89.91 | 899 | 21.99 | 8.75 | | | | High Gas Cylinder S/N: | CC199782 | CC259973 | CC408131 | CC408131 | | | | Primary Gas Cylinder S/N: | | | | | | | E | UPSCALE CALIBRATION GAS USED | 45.45 | 453.8 | 12.01 | 4.32 | | | | L=Low, M=Mid, H=High | M | M | M | M | | | | INITIAL CALIBRATION ERROR TEST | | | | | | | F | Zero Gas Response | 0.00 | 0.70 | 0.03 | 0.00 | | | G | Mid Gas Response | 45.40 | 454.4 | 12.12 | 4.38 | | | H | High Gas Reponse | 89.92 | 896.5 | 21.94 | 8.76 | | | | INITIAL SYSTEM CALIBRATION CHECK | | | | | | | Ĩ | Zero Gas Response | 0.48 | 0.20 | 0.04 | -0.03 | | | J | Upscale Gas Response | 45.50 | 447.6 | 12.06 | 4.30 | | | | FINAL SYSTEM CALIBRATION CHECK | | | | | | | K | Zero Gas Response | 0.48 | 1.00 | 0.09 | 0.05 | | | L | Upscale Gas Response | 45.50 | 444.8 | 12.14 | 4.12 | | | | FINAL CALIBRATION ERROR CHECK | | | | | | | M | Zero Gas Response | 0.38 | 0.40 | 0.03 | -0.02 | | | N | Mid Gas Response | 45.27 | 454.1 | 12.15 | 4.29 | | | О | High Gas Reponse | 89.88 | 900.3 | 21.94 | 8.75 | | | | E 8 | | | | | | | P | AS MEASURED FLUE GAS CONCENTRATION | 35.18 | 580.09 | 11.89 | 6.99 | | | | | | | | | | | CALCULAT | TIONS | | | | | FORMULA | | | AVERAGE SYSTEM CALIBRATION | | | | | | | Q | Zero Response | 0.48 | 0.60 | 0.07 | 0.01 | (I+K)/2 | | R | Upscale Response | 45.50 | 446.20 | 12.10 | 4.21 | (J+L)/2 | | | no a same | 25.02 | 500.16 | 11.00 | 7.10 | Tarana rational as | | S | CORRECTED CONC. | 35.03 | 590.16 | 11.80 | 7.18 | E*(P-Q)/(R-Q) | | QA/QC CAL | CULATIONS | | | | | | | | CALIBRATION GAS SELECTION, % of Range | | | | | Cuta a a u v | | | Low Gas | nere. | STREET, ST | 10.0 | 10.0 | C'*100/A | | | Mid Gas | 45.5 | 45.4 | 48.0 | 43.2 | C*100/A | | | High Gas | 89.9 | 89.9 | 88.0 | 87.5 | D*100/A | | | CALIBRATION ERROR, % of Range | 0.00 | 0.07 | 0.10 | 0.00 | NO TITUDO CONT. | | | Initial Zero Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A | | | Initial Low Gas Error | | | | | (G'-C')*100/A | | | Initial Mid Gas Error | -0.05 | 0.06 | 0.44 | 0.60 | (G-C)*100/A | | | Initial High Gas Error | 0.01 | -0.25 | -0.20 | 0.11 | (H-D)*100/A | | | | 0.50 | 0.0 | 0.45 | | | | | Final Zero Gas Error | 0.38 | 0.04 | 0.12 | -0.20 | (M-B)*100/A | | | Final Low Gas Error | ey sould | 55 pelast | 225,000 | 91 29 | (N'-C')*100/A | | | Final Mid Gas Error | -0.18 | 0.03 | 0.56 | -0.30 | (N-C)*100/A | | | Final High Gas Error | -0.03 | 0.13 | -0.20 | 0.01 | (O-D)*100/A | | | LINEARITY, % of Range | | - | | | | | | Initial | -0.06 | 0.15 | 0.49 | 0.55 | {(G-F)-[(H-F)*C]/D}*100/A | | | Final | -0.35 | -0.06 | 0.61 | -0.20 | $\{(N-M)-[(O-M)*C]/D\}*100/A$ | | | - AWAR | | | | 41 115 | | | | SAMPLING SYSTEM BIAS, % of Range | 9500 94000 | Ng Signal | Agreeme | 1000000 | | | | Initial Zero Gas Bias | 0.48 | -0.05 | 0.04 | -0.30 | (I-F)*100/A | | | Initial Upscale Gas Bias | 0.10 | -0.68 | -0.24 | -0.80 | (J-G[or G', or H]*100/A | | | D. 70 0 01 | 12 (19 12) | 2 202 | 0.5 | 2 (22) | | | | I Pinal Zona Con Dina | 0.10 | 0.06 | 0.24 | 0.70 | (K-M)*100/A | | | Final Zero Gas Bias | | | | | | | | Final Upscale Gas Bias | 0.23 | -0.93 | -0.04 | -1.70 | (L-N[or N', or O]*100/A | | | Final Upscale Gas Bias CALIBRATION DRIFT, % of Range | 0.23 | -0.93 | | | | | | Final Upscale Gas Bias | | | -0.04
0.20
0.32 | -1.70
0.80
-1.80 | (L-N[or N', or O]*100/A
(K-J)*100/A
(L-J)*100/A | Facility: OCSD, Plant No. 2 Huntington Beach, CA Engine 5 RATA Run No.: 5 Test Date: 10/01/15 Run Time: 10:01-10:30 City: Source: | est: | RATA | | | | | | |----------
--|--|--|--|--|---| | EST DATA | 4 | Pollutant 1 | Pollutant 2 | Diluent 1 | Diluent 2 | | | VARIABLE | DESCRIPTION | NOx | CO | 02 | CO2 | | | A | ANALYTICAL RANGE | 100 | 1000 | 25 | 10 | | | | Unit of Measurement | ppmd | ppmd | % dry | % dry | | | | CALIBRATION GAS INFORMATION | 1.1. | Larren | | 1.6.2.0 | | | B | Zero Gas | 0.00 | 0.00 | 0.00 | 0.00 | | | C | Mid Gas Concentration | 45.45 | 453.8 | 12.01 | 4.32 | | | - | Mid Gas Cylinder S/N: | | CC39463 | CC248731 | | | | D | | | | | CC248731 | | | D | High Gas Concentration | 89.91 | 899 | 21.99 | 8.75 | | | | High Gas Cylinder S/N:
Primary Gas Cylinder S/N: | CC199782 | CC259973 | CC408131 | CC408131 | | | E | UPSCALE CALIBRATION GAS USED | 45.45 | 453.8 | 12.01 | 4.32 | | | | L=Low, M=Mid, H=High | M | M | M | M | | | | INITIAL CALIBRATION ERROR TEST | | 2/5 | | | | | F | Zero Gas Response | 0.00 | 0.70 | 0.03 | 0.00 | | | G | Mid Gas Response | 45.40 | 454.4 | 12.12 | 4.38 | | | | | 89.92 | | | | | | H | High Gas Reponse | 09.92 | 896.5 | 21.94 | 8.76 | | | | INITIAL SYSTEM CALIBRATION CHECK | 0.40 | 0.00 | 0.04 | 0.00 | | | 1 | Zero Gas Response | 0.48 | 0.20 | 0.04 | -0.03 | | | 1 | Upscale Gas Response | 45.50 | 447.6 | 12.06 | 4.30 | | | | FINAL SYSTEM CALIBRATION CHECK | 400 | Tables. | 0.26 | | | | K | Zero Gas Response | 0.48 | 1.00 | 0.09 | 0.05 | | | L | Upscale Gas Response | 45.50 | 444.8 | 12.14 | 4.12 | | | | FINAL CALIBRATION ERROR CHECK | | | | | | | M | Zero Gas Response | 0.38 | 0.40 | 0.03 | -0.02 | | | N | Mid Gas Response | 45.27 | 454.1 | 12.15 | 4.29 | | | 0 | High Gas Reponse | 89.88 | 900.3 | 21.94 | 8.75 | | | ~ | The case repende | 5,100 | 3000 | | 0.72 | | | P | AS MEASURED FLUE GAS CONCENTRATION | 35.77 | 568,94 | 11.92 | 7.00 | | | LCULAT | TIONS | | | | | FORMULA | | 200111 | AVERAGE SYSTEM CALIBRATION | | | | | 7 | | Q | Zero Response | 0.48 | 0.60 | 0.07 | 0.01 | (I+K)/2 | | Ř | Upscale Response | 45.50 | 446.20 | 12.10 | 4.21 | (J+L)/2 | | K | Opscare response | 45.50 | 740.20 | 12.10 | 4.41 | | | S | CORRECTED CONC. | 35.63 | 578.80 | 11.83 | 7.19 | E*(P-Q)/(R-Q) | | | CULATIONS | | | | 7122 | 7-1. 4/14/ | | | CALIBRATION GAS SELECTION, % of Range | | | | | | | | Low Gas | | | | | C'*100/A | | | Mid Gas | 45.5 | 45.4 | 48.0 | 43.2 | C*100/A | | | High Gas | 89.9 | 89.9 | 88.0 | 87.5 | D*100/A | | | CALIBRATION ERROR, % of Range | 07.7 | 07.7 | 00.0 | 07.5 | D 100.71 | | | Initial Zero Gas Error | 0.00 | 0.07 | 0.13 | 0.00 | IF DISTOR I | | | | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A | | | Initial Low Gas Error | | | | | COLONAL DOLLA | | | | 0.0- | 0.00 | 0.44 | | (G'-C')*100/A | | | Initial Mid Gas Error | -0.05 | 0.06 | 0.44 | 0.60 | (G-C)*100 A | | | | -0.05
0.01 | 0.06
-0.25 | 0.44
-0.20 | 0.60
0.11 | | | | Initial Mid Gas Error
Initial High Gas Error | 0.01 | -0.25 | -0.20 | 0.11 | (G-C)*100·A | | | Initial Mid Gas Error | | 1000000 | | | (G-C)*100·A | | | Initial Mid Gas Error
Initial High Gas Error | 0.01 | -0.25 | -0.20 | 0.11 | (G-C)*100·A
(H-D)*100/A | | | Initial Mid Gas Error
Initial High Gas Error
Final Zero Gas Error
Final Low Gas Error | 0.01 | -0.25
0.04 | 0.12 | -0.20 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error | 0.01
0.38
-0.18 | -0.25
0.04
0.03 | -0.20
0.12
0.56 | -0.20
-0.30 | (G-C)*100·A
(H-D)*100/A
(M-B)*100·A
(N'-C')*100·A
(N-C)*100/A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error | 0.01 | -0.25
0.04 | 0.12 | -0.20 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range | 0.01
0.38
-0.18
-0.03 | -0.25
0.04
0.03
0.13 | -0.20
0.12
0.56
-0.20 | 0.11
-0.20
-0.30
0.01 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A
(N-C)*100/A
(O-D)*100/A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial | 0.01
0.38
-0.18
-0.03 | -0.25
0.04
0.03
0.13
0.15 | -0.20
0.12
0.56
-0.20
0.49 | 0.11
-0.20
-0.30
0.01
0.55 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C]-D}*100 A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range | 0.01
0.38
-0.18
-0.03 | -0.25
0.04
0.03
0.13 | -0.20
0.12
0.56
-0.20 | 0.11
-0.20
-0.30
0.01 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C]-D}*100 A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final | 0.01
0.38
-0.18
-0.03 | -0.25
0.04
0.03
0.13
0.15 | -0.20
0.12
0.56
-0.20
0.49 | 0.11
-0.20
-0.30
0.01
0.55 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C]-D}*100 A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range | 0.01
0.38
-0.18
-0.03
-0.06
-0.35 | -0.25
0.04
0.03
0.13
0.15
-0.06 | -0.20
0.12
0.56
-0.20
0.49
0.61 | 0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C] D}*100 A
{(N-M)-{(O-M)*C]'D}*100/A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias | 0.01
0.38
-0.18
-0.03
-0.06
-0.35 | -0.25
0.04
0.03
0.13
0.15
-0.06 | -0.20
0.12
0.56
-0.20
0.49
0.61 | 0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C] D}*100 A
{(N-M)-{(O-M)*C]'D}*100/A
(I-F)*100 A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range | 0.01
0.38
-0.18
-0.03
-0.06
-0.35 | -0.25
0.04
0.03
0.13
0.15
-0.06 | -0.20
0.12
0.56
-0.20
0.49
0.61 | 0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C] D}*100 A
{(N-M)-{(O-M)*C]'D}*100/A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias | 0.01
0.38
-0.18
-0.03
-0.06
-0.35 | -0.25
0.04
0.03
0.13
0.15
-0.06 | -0.20
0.12
0.56
-0.20
0.49
0.61 | 0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C] D}*100 A
{(N-M)-{(O-M)*C]'D}*100/A
(I-F)*100 A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias | 0.01
0.38
-0.18
-0.03
-0.06
-0.35 | -0.25
0.04
0.03
0.13
0.15
-0.06 | -0.20
0.12
0.56
-0.20
0.49
0.61
0.04
-0.24 | 0.11
-0.20
-0.30
0.01
0.55
-0.20
-0.30
-0.80 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C]-D}*100 A
{(N-M)-{(O-M)*C]*D}*100 A
(I-F)*100 A
(J-G[or G', or H]*100 A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Upscale Gas Bias CALIBRATION DRIFT, % of Range | 0.01
0.38
-0.18
-0.03
-0.06
-0.35
0.48
0.10
0.10
0.23 | -0.25
0.04
0.03
0.13
0.15
-0.06
-0.68
0.06
-0.93 | -0.20
0.12
0.56
-0.20
0.49
0.61
0.04
-0.24
0.24
-0.04 | 0.11
-0.20
-0.30
0.01
0.55
-0.20
-0.30
-0.80
0.70
-1.70 | (G-C)*100 A
(H-D)*100/A
(M-B)*100
A
(N'-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]-D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100 A
(J-G[or G', or H]*100/A
(K-M)*100/A
(L-N[or N', or O]*100/A | | | Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Upscale Gas Bias | 0.01
0.38
-0.18
-0.03
-0.06
-0.35
0.48
0.10 | -0.25
0.04
0.03
0.13
0.15
-0.06
-0.68
0.06 | -0.20
0.12
0.56
-0.20
0.49
0.61
0.04
-0.24
0.24 | 0.11
-0.20
-0.30
0.01
0.55
-0.20
-0.30
-0.80
0.70 | (G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C)*100 A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C]-D}*100 A
{(N-M)-{(O-M)*C]/D}*100 A
(I-F)*100 A
(J-G[or G', or H]*100 A | OCSD, Plant No. 2 Facility: Run No.: Huntington Beach, CA Test Date: 10/01/15 City: Engine 5 RATA Source: Run Time: 10:31-11:00 | Source: | Engine 5 | | | Run Time: | 10:31-11:00 |) | |----------|--|---|--|---|--|---| | Test: | RATA | | | | | | | | | w 65 g | 12 Str. 72 | 200 | 500 5 | | | TEST DAT | <u>^A</u> | Pollutant 1 | Pollutant 2 | Diluent 1 | Diluent 2 | | | VARIABLE | DESCRIPTION | NOx | CO | <u>O2</u> | CO2 | | | A | ANALYTICAL RANGE | 100 | 1000 | 25 | 10 | | | | Unit of Measurement | ppmd | ppmd | % dry | % dry | | | | CALIBRATION GAS INFORMATION | ppina | ppma | 70 dij | 70 di y | | | | | 0.00 | 0.00 | 0.00 | 0.00 | | | В | Zero Gas | 0.00 | 0.00 | 0.00 | 0.00 | | | C | Mid Gas Concentration | 45.45 | 453.8 | 12.01 | 4.32 | | | | Mid Gas Cylinder S/N: | XC019657B | CC39463 | CC248731 | CC248731 | | | D | High Gas Concentration | 89.91 | 899 | 21.99 | 8.75 | | | D | High Gas Cylinder S/N: | CC199782 | CC259973 | | | | | | | CC199782 | CC239973 | CC408131 | CC408131 | | | | Primary Gas Cylinder S/N: | 1000 100 | 2223 0 | 1881 201 | 4 | | | E | UPSCALE CALIBRATION GAS USED | 45.45 | 453.8 | 12.01 | 4.32 | | | | L=Low, M=Mid, H=High | M | M | M | M | | | | INITIAL CALIBRATION ERROR TEST | | | | | | | F | Zero Gas Response | 0.00 | 0.70 | 0.03 | 0.00 | | | | | 45.40 | 454.4 | 12.12 | 4.38 | | | G | Mid Gas Response | | | | | | | Н | High Gas Reponse | 89.92 | 896.5 | 21.94 | 8.76 | | | | INITIAL SYSTEM CALIBRATION CHECK | | | | | | | I | Zero Gas Response | 0.48 | 0.20 | 0.04 | -0.03 | | | J | Upscale Gas Response | 45.50 | 447.6 | 12.06 | 4.30 | | | | FINAL SYSTEM CALIBRATION CHECK | 10100 | | 22100 | 1100 | | | 700 | | 0.40 | 1.00 | 0.00 | 0.05 | | | K | Zero Gas Response | 0.48 | 1.00 | 0.09 | 0.05 | | | L | Upscale Gas Response | 45.50 | 444.8 | 12.14 | 4.12 | | | | FINAL CALIBRATION ERROR CHECK | | | | | | | M | Zero Gas Response | 0.38 | 0.40 | 0.03 | -0.02 | | | | Mid Gas Response | 45.27 | 454.1 | 12.15 | 4.29 | | | N | 17 C | | | | | | | O | High Gas Reponse | 89.88 | 900.3 | 21.94 | 8.75 | | | | | | | | | | | P | AS MEASURED FLUE GAS CONCENTRATION | 36.00 | 571.03 | 11.99 | 6.95 | | | | | | | | | | | CALCULA | TIONS | | | | | FORMULA | | CALCULA | | | | | | 1 | | | AVERAGE SYSTEM CALIBRATION | | | 0.0= | | 50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Q | Zero Response | 0.48 | 0.60 | 0.07 | 0.01 | (I+K)/2 | | R | Upscale Response | 45.50 | 446.20 | 12.10 | 4.21 | (J+L)/2 | | | | | | | | | | S | CORRECTED CONC. | 35.86 | 580.92 | 11.90 | 7.14 | E*(P-Q)/(R-Q) | | | LCULATIONS | 55.00 | 000.72 | 11170 | 7.1 | 12 (1 4) (11 4) | | VA/VC CA | | | | | | | | | CALIBRATION GAS SELECTION, % of Range | | | | | | | | Low Gas | | | | | C'*100/A | | | Mid Gas | 45.5 | 45.4 | 48.0 | 43.2 | C*100/A | | | High Gas | 89.9 | 89.9 | 88.0 | 87.5 | D*100/A | | | | 07.7 | 07.7 | 00.0 | 01,3 | 5 100/11 | | | CALIBRATION ERROR, % of Range | 0.00 | 0.0= | 0.10 | 0.00 | | | | Initial Zero Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A | | | Initial Mid Gas Error | -0.05 | 0.06 | 0.44 | 0.60 | (G-C)*100/A | | | Initial High Gas Error | 0.01 | -0.25 | -0.20 | 0.11 | (H-D)*100/A | | | | | | Marie Santari | | Normania CONTRATA | | | Final Zana Cas Farra | 0.20 | 0.04 | 0.12 | 0.20 | (2.1 D)**100.1 | | | Final Zero Gas Error | 0.38 | 0.04 | 0.12 | -0.20 | (M-B)*100/A | | | | | | | -0.30 | (N-C)*100/A | | | Final Mid Gas Error | -0.18 | 0.03 | 0.56 | -0.30 | (11 0) 10011 | | | Final Mid Gas Error
Final High Gas Error | -0.18
-0.03 | 0.03 | -0.20 | 0.01 | (O-D)*100/A | | | Final High Gas Error | | | | | | | | Final High Gas Error LINEARITY, % of Range | -0.03 | 0.13 | -0.20 | 0.01 | (O-D)*100/A | | | Final High Gas Error
LINEARITY, % of Range
Initial | -0.03
-0.06 | 0.13 | -0.20
0.49 | 0.01 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A | | | Final High Gas Error LINEARITY, % of Range | -0.03 | 0.13 | -0.20 | 0.01 | (O-D)*100/A | | | Final High Gas Error
LINEARITY, % of Range
Initial | -0.03
-0.06 | 0.13 | -0.20
0.49 | 0.01 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A | | | Final High Gas Error
LINEARITY, % of Range
Initial | -0.03
-0.06 | 0.13 | -0.20
0.49 | 0.01 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range | -0.03
-0.06
-0.35 | 0.13
0.15
-0.06 | -0.20
0.49
0.61 | 0.01
0.55
-0.20 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias | -0.03
-0.06
-0.35 | 0.13
0.15
-0.06 | -0.20
0.49
0.61 | 0.01
0.55
-0.20 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range | -0.03
-0.06
-0.35 | 0.13
0.15
-0.06 | -0.20
0.49
0.61 | 0.01
0.55
-0.20 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias | -0.03
-0.06
-0.35
0.48
0.10 | 0.13
0.15
-0.06
-0.05
-0.68 | -0.20
0.49
0.61
0.04
-0.24 | 0.01
0.55
-0.20
-0.30
-0.80 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias | -0.03
-0.06
-0.35
0.48
0.10 | 0.13
0.15
-0.06
-0.05
-0.68
0.06 | -0.20
0.49
0.61 | 0.01
0.55
-0.20
-0.30
-0.80
0.70 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias | -0.03
-0.06
-0.35
0.48
0.10 | 0.13
0.15
-0.06
-0.05
-0.68 | -0.20
0.49
0.61
0.04
-0.24 | 0.01
0.55
-0.20
-0.30
-0.80 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A
(K-M)*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Zero Gas Bias | -0.03
-0.06
-0.35
0.48
0.10 | 0.13
0.15
-0.06
-0.05
-0.68
0.06 | -0.20
0.49
0.61
0.04
-0.24 | 0.01
0.55
-0.20
-0.30
-0.80
0.70 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Zero Gas Bias CALIBRATION DRIFT, % of Range | -0.03
-0.06
-0.35
0.48
0.10
0.10
0.23 | 0.13
0.15
-0.06
-0.05
-0.68
0.06
-0.93 | -0.20
0.49
0.61
0.04
-0.24
0.24
-0.04 | 0.01
0.55
-0.20
-0.30
-0.80
0.70
-1.70 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A
(K-M)*100/A
(L-N[or N', or O]*100/A | | | Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Zero Gas Bias | -0.03
-0.06
-0.35
0.48
0.10 | 0.13
0.15
-0.06
-0.05
-0.68
0.06 | -0.20
0.49
0.61
0.04
-0.24 | 0.01
0.55
-0.20
-0.30
-0.80
0.70 | (O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A
(K-M)*100/A | Facility: OCSD, Plant No. 2 Run No.: 7 City: Huntington Beach, CA Test Date: 10/01/15 Source: Engine 5 Run Time: 11:16-11:45 | Γest:
ΓEST DATA
VARIABLE | Engine 5 | | | Run Time. | 11;10-11;4; | 3 | |--------------------------------
--|---|---|--|--|---| | | RATA | | | | | | | | | Pollutant 1 | Pollutant 2 | Diluent 1 | Diluent 2 | | | VARIABLE | DESCRIPTION | NOx | CO | 02 | CO2 | | | A | ANALYTICAL RANGE | 100 | 1000 | 25 | 10 | | | | Unit of Measurement | ppmd | ppmd | % dry | % dry | | | | CALIBRATION GAS INFORMATION | Ppma | ppina | 70 423 | 70 tar 3 | | | В | Zero Gas | 0.00 | 0.00 | 0.00 | 0.00 | | | C | Mid Gas Concentration | 45.45 | 453.8 | 12.01 | 4.32 | | | C | Mid Gas Cylinder S/N: | | CC39463 | CC248731 | | | | 150 | High Gas Concentration | 89.91 | 899 | 21.99 | CC248731 | | | D | | | | | 8.75 | | | | High Gas Cylinder S/N: | CC199782 | CC259973 | CC408131 | CC408131 | | | | Primary Gas Cylinder S/N: | 45.45 | 453.0 | 10.01 | 4 22 | | | E | UPSCALE CALIBRATION GAS USED | 45.45 | 453.8 | 12.01 | 4.32 | | | | L=Low, M=Mid, H=High | M | M | M | M | | | | INITIAL CALIBRATION ERROR TEST | | | | | | | F | Zero Gas Response | 0.00 | 0.70 | 0.03 | 0.00 | | | G | Mid Gas Response | 45.40 | 454.4 | 12.12 | 4.38 | | | H | High Gas Reponse | 89.92 | 896.5 | 21.94 | 8.76 | | | | INITIAL SYSTEM CALIBRATION CHECK | | | | | | | I | Zero Gas Response | 0.48 | 1.00 | 0.09 | 0.05 | | | J | Upscale Gas Response | 45.50 | 444.8 | 12.14 | 4.12 | | | | FINAL SYSTEM CALIBRATION CHECK | | | | | | | K | Zero Gas Response | 0.42 | 0.60 | 0.03 | -0.01 | | | L | Upscale Gas Response | 45.32 | 443.9 | 12.03 | 4.21 | | | 15775 | FINAL CALIBRATION ERROR CHECK | | | | | | | M | Zero Gas Response | 0.38 | 0.40 | 0.03 | -0.02 | | | N | Mid Gas Response | 45.27 | 454.1 | 12.15 | 4.29 | | | 0 | High Gas Reponse | 89.88 | 900.3 | 21.94 | 8.75 | | | | riigii Gus Repolise | 02.00 | 700.5 | 21.54 | 0.75 | | | P | AS MEASURED FLUE GAS CONCENTRATION | 36.43 | 566.77 | 11.82 | 7.06 | | | | DIADE | | | | | | | CALCULAT | | | 200 | | | FORMULA | | 1021 | AVERAGE SYSTEM CALIBRATION | Securedo | No Peru | u 2005 | 1020075-0-57 | =1. 21 | | Q | Zero Response | 0.45 | 0.80 | 0.06 | 0.02 | (I+K)/2 | | R | Upscale Response | 45.41 | 444.35 | 12.09 | 4.17 | J(J+L)/2 | | S | CORRECTED CONC. | 36.38 | 579.05 | 11.75 | 7.34 | E*(P-Q)/(R-Q) | | | CULATIONS | 50.50 | 573.05 | 111.75 | 7.51 |]= (1-0) (11-0) | | | CALIBRATION GAS SELECTION, % of Range | 70° | | | | | | 1 | Low Gas | | | | | C'*100/A | | | Mid Gas | 45.5 | 45.4 | 48.0 | 43.2 | C*100/A | | | High Gas | 89.9 | | | 43.2 | C 100/A | | | | 07.7 | | 990 | 075 | D*100/A | | | | | 89.9 | 88.0 | 87.5 | D*100/A | | | CALIBRATION ERROR, % of Range | | ES PACE | 8 -8 | | | | 1 | Initial Zero Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A | | 3 | Initial Zero Gas Error
Initial Low Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A
(G'-C')*100/A | | | Initial Zero Gas Error
Initial Low Gas Error
Initial Mid Gas Error | 0.00 | 0.07 | 0.12
0.44 | 0.00 | (F-B)*100/A
(G'-C')*100/A
(G-C)*100 A | | | Initial Zero Gas Error
Initial Low Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A
(G'-C')*100/A | | | Initial Zero Gas Error
Initial Low Gas Error
Initial Mid Gas Error
Initial High Gas Error | 0.00
-0.05
0.01 | 0.07
0.06
-0.25 | 0.12
0.44
-0.20 | 0.00
0.60
0.11 | (F-B)*100/A
(G-C')*100/A
(G-C)*100/A
(H-D)*100/A | | | Initial Zero Gas Error
Initial Low Gas Error
Initial Mid Gas Error
Initial High Gas Error
Final Zero Gas Error | 0.00 | 0.07 | 0.12
0.44 | 0.00 | (F-B)*100/A
(G'-C')*100/A
(G-C)*100 A | | | Initial Zero Gas Error
Initial Low Gas Error
Initial Mid Gas Error
Initial High Gas Error | 0.00
-0.05
0.01
0.38 | 0.07
0.06
-0.25
0.04 | 0.12
0.44
-0.20
0.12 | 0.00
0.60
0.11 | (F-B)*100/A
(G-C')*100/A
(G-C)*100/A
(H-D)*100/A | | | Initial Zero Gas Error
Initial Low Gas Error
Initial Mid Gas Error
Initial High Gas Error
Final Zero Gas Error | 0.00
-0.05
0.01 | 0.07
0.06
-0.25 | 0.12
0.44
-0.20 | 0.00
0.60
0.11 | (F-B)*100/A
(G-C')*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error | 0.00
-0.05
0.01
0.38 | 0.07
0.06
-0.25
0.04 | 0.12
0.44
-0.20
0.12 | 0.00
0.60
0.11
-0.20 | (F-B)*100/A
(G'-C')*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N'-C')*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error | 0.00
-0.05
0.01
0.38
-0.18 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56 | 0.00
0.60
0.11
-0.20
-0.30 | (F-B)*100/A
(G'-C')*100/A
(G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C')*100/A
(N-C)*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error | 0.00
-0.05
0.01
0.38
-0.18 | 0.07
0.06
-0.25
0.04
0.03 | 0.12
0.44
-0.20
0.12
0.56 | 0.00
0.60
0.11
-0.20
-0.30 | (F-B)*100/A
(G'-C')*100/A
(G-C)*100 A
(H-D)*100/A
(M-B)*100 A
(N'-C')*100/A
(N-C)*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range | 0.00
-0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20 | 0.00
0.60
0.11
-0.20
-0.30
0.01 | (F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]D}*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial | 0.00
-0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55 | (F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]D}*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial | 0.00
-0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55 | (F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]D}*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final | 0.00
-0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]D}*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range | 0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (F-B)*100/A
(G'-C')*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N'-C')*100/A
(N-C)*100/A
(O-D)*100/A
((G-F)-[(H-F)*C]D}*100/A
((N-M)-[(O-M)*C]/D}*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias | 0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (F-B)*100/A
(G'-C')*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N'-C')*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final Mid Gas Error Final High
Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias | 0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (F-B)*100/A (G'-C')*100/A (G-C)*100 A (H-D)*100/A (M-B)*100/A (N'-C')*100/A (N-C')*100/A (O-D)*100/A ((G-F)-[(H-F)*C] D}*100/A ((N-M)-[(O-M)*C]/D}*100/A (I-F)*100/A (J-G[or G', or H]*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias | 0.00 -0.05 0.01 0.38 -0.18 -0.03 -0.06 -0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06
0.03
-0.96 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08
0.00 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60
0.10 | (F-B)*100/A (G-C)*100/A (G-C)*100/A (G-C)*100/A (H-D)*100/A (M-B)*100/A (N'-C)*100/A (N'-C)*100/A (O-D)*100/A ((G-F)-[(H-F)*C]/D]*100/A ((N-M)-[(O-M)*C]/D]*100/A (I-F)*100/A (J-G[or G', or H]*100/A (K-M)*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Jero Gas Bias | 0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60 | (F-B)*100/A (G'-C')*100/A (G-C)*100 A (H-D)*100/A (M-B)*100/A (N'-C')*100/A (N-C')*100/A (O-D)*100/A ((G-F)-[(H-F)*C] D}*100/A ((N-M)-[(O-M)*C]/D}*100/A (I-F)*100/A (J-G[or G', or H]*100/A | | | Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias | 0.00 -0.05 0.01 0.38 -0.18 -0.03 -0.06 -0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06
0.03
-0.96 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08
0.00 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60
0.10 | (F-B)*100/A (G-C)*100/A (G-C)*100/A (G-C)*100/A (H-D)*100/A (M-B)*100/A (N'-C)*100/A (N'-C)*100/A (O-D)*100/A ((G-F)-[(H-F)*C]/D]*100/A ((N-M)-[(O-M)*C]/D]*100/A (I-F)*100/A (J-G[or G', or H]*100/A (K-M)*100/A | Facility: OCSD, Plant No. 2 Run No.: 8 City: Huntington Beach, CA Test Date: 10/01/15 Source: Engine 5 Run Time: 11:46-12:15 | ource: | Engine 5 | | | Run Time: | 11:46-12:1 | 5 | |----------|---|---|---|--|--|---| | est: | RATA | | | | | | | 200000 | | | EE 465 TES | -22422 - 5 | | | | EST DATA | <u>A</u> | Pollutant 1 | Pollutant 2 | Diluent 1 | Diluent 2 | | | VARIABLE | DESCRIPTION | NOx | CO | O2 | CO2 | | | A | ANALYTICAL RANGE | 100 | 1000 | 25 | 10 | | | 1040871 | Unit of Measurement | ppmd | ppmd | % dry | % dry | | | | | ppina | ppina | 70 tily | 70 ury | | | | CALIBRATION GAS INFORMATION | 8.06 | | | | | | В | Zero Gas | 0.00 | 0.00 | 0.00 | 0.00 | | | C | Mid Gas Concentration | 45.45 | 453.8 | 12.01 | 4.32 | | | | Mid Gas Cylinder S/N: | XC019657B | CC39463 | CC248731 | CC248731 | | | D | High Gas Concentration | 89.91 | 899 | 21.99 | 8.75 | | | - | High Gas Cylinder S/N: | CC199782 | CC259973 | CC408131 | CC408131 | | | | | CC199782 | CC237713 | CC408131 | CC406131 | | | | Primary Gas Cylinder S/N: | | 450.0 | 10.01 | | | | E | UPSCALE CALIBRATION GAS USED | 45.45 | 453.8 | 12.01 | 4.32 | | | | L=Low, M=Mid, H=High | M | M | M | \mathbf{M} | | | | INITIAL CALIBRATION ERROR TEST | | | | | | | F | Zero Gas Response | 0.00 | 0.70 | 0.03 | 0.00 | | | G | Mid Gas Response | 45.40 | 454.4 | 12.12 | 4.38 | | | | | | | | | | | H | High Gas Reponse | 89.92 | 896.5 | 21.94 | 8.76 | | | | INITIAL SYSTEM CALIBRATION CHECK | | | 0.0 | | | | I | Zero Gas Response | 0.48 | 1.00 | 0.09 | 0.05 | | | J | Upscale Gas Response | 45.50 | 444.8 | 12.14 | 4.12 | | | | FINAL SYSTEM CALIBRATION CHECK | | | | | | | K | Zero Gas Response | 0.42 | 0.60 | 0.03 | -0.01 | | | | | 45.32 | 443.9 | 12.03 | | | | L | Upscale Gas Response | 45.34 | 443.7 | 12.03 | 4.21 | | | | FINAL CALIBRATION ERROR CHECK | | | | | | | M | Zero Gas Response | 0.38 | 0.40 | 0.03 | -0.02 | | | N | Mid Gas Response | 45.27 | 454.1 | 12.15 | 4.29 | | | 0 | High Gas Reponse | 89.88 | 900.3 | 21.94 | 8.75 | | | | | | | | | | | P | AS MEASURED FLUE GAS CONCENTRATION | 35.97 | 572.64 | 11.91 | 7.02 | | | | | | | | | | | ALCULAT | TIONS | | | | | FORMULA | | | AVERAGE SYSTEM CALIBRATION | | | | | | | Q | Zero Response | 0.45 | 0.80 | 0.06 | 0.02 | (I+K)/2 | | R | Upscale Response | 45.41 | 444.35 | 12.09 | 4.17 | (J+L)/2 | | 10 | Opseute Response | 13.11 | 111.55 | 12.07 | 7.17 |](3.12)/2 | | S | CORRECTED CONC. | 35.90 | 585.05 | 11.83 | 7.30 | E*(P-Q)/(R-Q) | | | LCULATIONS | 33.70 | 000100 | | 1.50 |]= (1 4)(1 4) | | DOC CAL | | | | | | | | | CALIBRATION GAS SELECTION, % of Range | 100000 | 200 | 10.0 | | | | | Mid Gas | 45.5 | 45.4 | 48.0 | 43.2 | C*100/A | | | High Gas | 89.9 | 89.9 | 88.0 | 07 6 | D*100/A | | | 201000700210000000 | | 07.7 | 00.0 | 87.5 | | | | [CALIBRATION ERROR, % of Range | | 07.7 | 00.0 | 87.3 | | | | CALIBRATION ERROR, % of Range
Initial Zero Gas Error | 0.00 | | | | (F-B)*100/A | | | Initial Zero Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | (F-B)*100/A | | | Initial Zero Gas Error
Initial Mid Gas Error | -0.05 | 0.07
0.06 | 0.12
0.44 | 0.00
0.60 | (G-C)*100/A | | | Initial Zero Gas Error | | 0.07 | 0.12 | 0.00 | | | | Initial Zero Gas Error
Initial Mid Gas Error
Initial High Gas Error | -0.05
0.01 | 0.07
0.06
-0.25 | 0.12
0.44
-0.20 | 0.00
0.60
0.11 | (G-C)*100/A
(H-D)*100/A | | | Initial Zero Gas Error
Initial Mid Gas Error | -0.05
0.01
0.38 | 0.07
0.06 | 0.12
0.44
-0.20 | 0.00
0.60 | (G-C)*100/A | | | Initial Zero Gas Error
Initial Mid Gas Error
Initial High Gas Error | -0.05
0.01 | 0.07
0.06
-0.25 | 0.12
0.44
-0.20 | 0.00
0.60
0.11 | (G-C)*100/A
(H-D)*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error | -0.05
0.01
0.38
-0.18 | 0.07
0.06
-0.25
0.04
0.03 | 0.12
0.44
-0.20
0.12
0.56 | 0.00
0.60
0.11
-0.20
-0.30 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error | -0.05
0.01
0.38 | 0.07
0.06
-0.25 | 0.12
0.44
-0.20 | 0.00
0.60
0.11
-0.20 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range | -0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20 | 0.00
0.60
0.11
-0.20
-0.30
0.01 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial | -0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20 | 0.00
0.60
0.11
-0.20
-0.30
0.01 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range | -0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20 | 0.00
0.60
0.11
-0.20
-0.30
0.01 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final | -0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20 | 0.00
0.60
0.11
-0.20
-0.30
0.01 |
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial | -0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20 | 0.00
0.60
0.11
-0.20
-0.30
0.01 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final | -0.05
0.01
0.38
-0.18
-0.03 | 0.07
0.06
-0.25
0.04
0.03
0.13 | 0.12
0.44
-0.20
0.12
0.56
-0.20 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY. % of Range Initial Final SAMPLING SYSTEM BIAS. % of Range Initial Zero Gas Bias | -0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range | -0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias | -0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias | -0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35
0.48
0.10 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Jero Gas Bias Final Jero Gas Bias | -0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final Mid Gas Error LINEARITY. % of Range Initial Final SAMPLING SYSTEM BIAS. % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Jero Gas Bias CALIBRATION DRIFT. % of Range | -0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35
0.48
0.10
0.04
0.05 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06
0.03
-0.96 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A
(K-M)*100/A
(L-N[or N', or O]*100/A | | | Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Jero Gas Bias Final Jero Gas Bias | -0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35
0.48
0.10 | 0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60 | (G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-[(H-F)*C]/D}*100/A
{(N-M)-[(O-M)*C]/D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A | Facility: City: Source: OCSD, Plant No. 2 Huntington Beach, CA Run No.: 9 Test Date: 10/01/15 Run Time: 12:16-12:45 Engine 5 RATA Run No.: | mk. | Engine 5 | | | Run Time: | 12:16-12:4: | 5 | |-----------|--|---|--|---|---|--| | est: | RATA | | | | | | | COT DAT | • | Dollutant 1 | Dollutont 2 | Diluent 1 | Dil 2 | | | EST DATA | 77 / | Pollutant 1 | Pollutant 2 | | Diluent 2 | | | VARIABLE | DESCRIPTION | NOx | CO | <u>O2</u> | CO2 | | | A | ANALYTICAL RANGE | 100 | 1000 | 25 | 10 | | | | Unit of Measurement | ppmd | ppmd | % dry | % dry | | | | CALIBRATION GAS INFORMATION | | | | | | | В | Zero Gas | 0.00 | 0.00 | 0.00 | 0.00 | | | C | Mid Gas Concentration | 45.45 | 453.8 | 12.01 | 4.32 | | | | Mid Gas Cylinder S/N: | XC019657B | CC39463 | CC248731 | CC248731 | | | D | High Gas Concentration | 89.91 | 899 | 21.99 | 8.75 | | | | High Gas Cylinder S/N: | CC199782 | CC259973 | CC408131 | CC408131 | | | | Primary Gas Cylinder S/N: | | | | | | | E | UPSCALE CALIBRATION GAS USED | 45.45 | 453.8 | 12.01 | 4.32 | | | | L=Low, M=Mid, H=High | M | M | M | M | | | | INITIAL CALIBRATION ERROR TEST | | | | | | | F | Zero Gas Response | 0.00 | 0.70 | 0.03 | 0.00 | | | | 이 것 그렇게 하지 않아야 있었다. 아니를 이 제공하다 하다 | 45.40 | 454.4 | 12.12 | 4.38 | | | G | Mid Gas Response | 89.92 | 896.5 | 21.94 | | | | H | High Gas Reponse | 69.92 | 090.3 | 21.94 | 8.76 | | | | INITIAL SYSTEM CALIBRATION CHECK | 0.40 | 1.00 | 0.00 | 0.05 | | | I | Zero Gas Response | 0.48 | 1.00 | 0.09 | 0.05 | | | J | Upscale Gas Response | 45.50 | 444.8 | 12.14 | 4.12 | | | | FINAL SYSTEM CALIBRATION CHECK | | | | 213 | | | K | Zero Gas Response | 0.42 | 0.60 | 0.03 | -0.01 | | | L | Upscale Gas Response | 45.32 | 443.9 | 12.03 | 4.21 | | | | FINAL CALIBRATION ERROR CHECK | | | | | | | M | Zero Gas Response | 0.38 | 0.40 | 0.03 | -0.02 | | | N | Mid Gas Response | 45.27 | 454.1 | 12.15 | 4.29 | | | 0 | High Gas Reponse | 89.88 | 900.3 | 21.94 | 8.75 | | | 6.50 | 0 | | | | | | | P | AS MEASURED FLUE GAS CONCENTRATION | 36.60 | 561.82 | 11.88 | 7.03 | | | | | | | | | | | LCULAT | TIONS | | | | | FORMULA | | LIC CLIFT | AVERAGE SYSTEM CALIBRATION | | | | | 1 | | 0 | Zero Response | 0.45 | 0.80 | 0.06 | 0.02 | (I+K)/2 | | Q | 5 C 20 C C C C C C C C C C C C C C C C C | | | | | | | R | Upscale Response | 45.41 | 444.35 | 12.09 | 4.17 | (J+L) 2 | | S | CONDECTED COVIC | 36.55 | 573.98 | 11.81 | 7.31 | Tetra over ov | | | CORRECTED CONC. | 30.33 | 313.90 | 11.01 | 7.31 | E*(P-Q)/(R-Q) | | | | | | | | | | /QC CAL | CULATIONS | | | | | | | VQC CAL | CALIBRATION GAS SELECTION, % of Range | | | | | Sittle and the | | VQC CAI | | 2014 AN | | 1442-244 | | C'*100/A | | VQC CAL | CALIBRATION GAS SELECTION, % of Range | 45.5 | 45.4 | 48.0 | 43.2 |
C'*100/A
C*100/A | | JQC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas | 45.5
89.9 | 45.4
89.9 | 48.0
88.0 | 43.2
87.5 | | | VQC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas | | | | | C*100/A | | VQC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas | | | | | C*100/A
D*100/A | | VQC CAI | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error | 89.9 | 89.9 | 88.0 | 87.5 | C*100/A
D*100/A
(F-B)*100/A | | VQC CAI | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | C*100/A
D*100/A
(F-B)*100/A
(G'-C')*100 A | | VQC CAI | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error | 0.00
-0.05 | 0.07
0.06 | 0.12
0.44 | 0.00
0.60 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100/A
(G-C)*100/A | | VQC CAI | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error | 0.00 | 0.07 | 0.12 | 0.00 | C*100/A
D*100/A
(F-B)*100/A
(G'-C')*100 A | | VQC CAI | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error | 0.00
-0.05
0.01 | 89.9
0.07
0.06
-0.25 | 0.12
0.44
-0.20 | 0.00
0.60
0.11 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A | | VQC CAI | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error | 0.00
-0.05 | 0.07
0.06 | 0.12
0.44 | 0.00
0.60 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A | | VQC CAI | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error | 89.9
0.00
-0.05
0.01
0.38 | 89.9
0.07
0.06
-0.25
0.04 | 0.12
0.44
-0.20
0.12 | 0.00
0.60
0.11
-0.20 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100 A
(G-C)*100/A
(H-D)*100/A | | VOC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Low Gas Error Final Low Gas Error Final Mid Gas Error | 89.9
0.00
-0.05
0.01
0.38
-0.18 | 89.9
0.07
0.06
-0.25
0.04
0.03 | 88.0
0.12
0.44
-0.20
0.12
0.56 | 87.5
0.00
0.60
0.11
-0.20
-0.30 | C*100/A
D*100/A
(F-B)*100/A
(G'-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M'-B)*100/A
(N'-C)*100/A
(N'-C)*100/A | | OC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final High Gas Error | 89.9
0.00
-0.05
0.01
0.38 | 89.9
0.07
0.06
-0.25
0.04 | 0.12
0.44
-0.20
0.12 | 0.00
0.60
0.11
-0.20 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N'-C)*100/A | | VOC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Low Gas Error Final Low Gas Error Final Mid Gas Error | 89.9
0.00
-0.05
0.01
0.38
-0.18 | 89.9
0.07
0.06
-0.25
0.04
0.03 | 88.0
0.12
0.44
-0.20
0.12
0.56 | 87.5
0.00
0.60
0.11
-0.20
-0.30 | C*100/A
D*100/A
(F-B)*100/A
(G'-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M'-B)*100/A
(N'-C')*100/A
(N'-C')*100/A | | OC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final High Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03 | 89.9
0.07
0.06
-0.25
0.04
0.03 | 88.0
0.12
0.44
-0.20
0.12
0.56 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01 | C*100/A
D*100/A
(F-B)*100/A
(G-C')*100 A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C')*100/A
(N-C)*100/A
(O-D)*100/A | | OC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final High Gas Error Final Mid Gas Error Final Mid Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N'-C)*100/A
(N-C)*100/A
((O-D)*100/A
((G-F)-[(H-F)*C]/D)*100/A | | VOC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final High Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100 A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N'-C)*100/A
(N-C)*100/A
(O-D)*100/A
((G-F)-[(H-F)*C]/D)*100/A | | VOC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Low Gas Error Final High Gas Error Final High Gas Error Final High Gas Error Final High Gas Error LINEARITY, % of Range Initial Final | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100 A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N'-C)*100/A
(N-C)*100/A
(O-D)*100/A
((G-F)-[(H-F)*C]/D)*100/A | | OC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial High Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final High Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100 A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C}/D}*100/A
{(N-M)-{(O-M)*C} D}*100/A | | OC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100 A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
((G-F)-{(H-F)*C]/D}*100/A
((N-M)-[(O-M)*C] D}*100/A | | MQC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial High Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final High Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100 A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
{(G-F)-{(H-F)*C}/D}*100/A
{(N-M)-{(O-M)*C} D}*100/A | | VOC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas
Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final Mid Gas Error Final Mid Gas Error Final Mid Gas Error Final Mid Gas Error Final Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N'-C)*100/A
(N-C)*100/A
(O-D)*100/A
((G-F)-[(H-F)*C]/D]*100/A
{(N-M)-[(O-M)*C] D]*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A | | VQC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Low Gas Error Final High Gas Error Final Mid Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35
0.48
0.10
0.04 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06
0.03
-0.96
0.02 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60
0.10 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100 A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
((G-F)-[(H-F)*C]/D]*100/A
((N-M)-[(O-M)*C] D]*100/A
(J-G[or G', or H]*100/A
(K-M)*100 A | | VQC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Zero Gas Bias Final Upscale Gas Bias | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100 A
(G-C)*100 A
(G-C)*100/A
(H-D)*100/A
(M'-C)*100/A
(N'-C)*100/A
(O-D)*100/A
((G-F)-{(H-F)*C]/D}*100/A
((N-M)-[(O-M)*C] D}*100/A
(I-F)*100/A
(J-G[or G', or H]*100/A | | MQC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Low Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final High Gas Error Final Mid Gas Error Final Mid Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Zero Gas Bias Final Upscale Gas Bias CALIBRATION DRIFT, % of Range | 89.9 0.00 -0.05 0.01 0.38 -0.18 -0.03 -0.06 -0.35 0.48 0.10 0.04 0.05 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06
0.03
-0.96
0.02
-1.02 | 0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08
0.00
-0.48 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60
0.10
-0.80 | C*100/A D*100/A D*100/A (F-B)*100/A (G-C)*100/A (G-C)*100/A (H-D)*100/A (M-B)*100/A (N-C)*100/A (N-C)*100/A (O-D)*100/A ((G-F)-[(H-F)*C]/D]*100/A ((I-F)*100/A (J-G[or G', or H]*100/A (K-M)*100 A (L-N[or N', or O]*100/A | | VOC CAL | CALIBRATION GAS SELECTION, % of Range Low Gas Mid Gas High Gas CALIBRATION ERROR, % of Range Initial Zero Gas Error Initial Mid Gas Error Initial High Gas Error Final Zero Gas Error Final Low Gas Error Final Low Gas Error Final Mid Gas Error Final High Gas Error LINEARITY, % of Range Initial Final SAMPLING SYSTEM BIAS, % of Range Initial Zero Gas Bias Initial Upscale Gas Bias Final Zero Gas Bias Final Zero Gas Bias Final Upscale Gas Bias | 89.9
0.00
-0.05
0.01
0.38
-0.18
-0.03
-0.06
-0.35
0.48
0.10
0.04 | 89.9
0.07
0.06
-0.25
0.04
0.03
0.13
0.15
-0.06
0.03
-0.96
0.02 | 88.0
0.12
0.44
-0.20
0.12
0.56
-0.20
0.49
0.61
0.24
0.08 | 87.5
0.00
0.60
0.11
-0.20
-0.30
0.01
0.55
-0.20
0.50
-2.60
0.10 | C*100/A
D*100/A
(F-B)*100/A
(G-C)*100/A
(G-C)*100/A
(H-D)*100/A
(M-B)*100/A
(N-C)*100/A
(N-C)*100/A
(O-D)*100/A
((G-F)-[(H-F)*C]/D]*100/A
((N-M)-[(O-M)*C] D]*100/A
(J-G[or G', or H]*100/A
(K-M)*100/A | | | | | RUN 1.0 | | | 1 | | | RUN 2.0 | | | |----|---------|-------|---------|-------|------|----|---------|-------|---------|-------|------| | | Time | NOx | CO | O2 | CO2 | | Time | NOx | CO | O2 | CO2 | | # | AVG | 34.13 | 584.83 | 11.85 | 7.57 | # | AVG | 36.04 | 567.77 | 11.85 | 7.67 | | | | | | 44.00 | | | 0.10.00 | 26.25 | 555.00 | 11.70 | 7.74 | | 1 | 7:43:03 | 33.09 | 594.80 | 11.80 | 7.44 | 1 | 8:13:03 | 36.35 | 555.80 | 11.69 | 7.74 | | 2 | 7:44:03 | 34.06 | 586.60 | 11.76 | 7.50 | 2 | 8:14:03 | 36.10 | 553.60 | 11.72 | 7.76 | | 3 | 7:45:03 | 33.31 | 593.90 | 11.81 | 7.50 | 3 | 8:15:03 | 36.34 | 556.80 | 11.74 | 7.75 | | 4 | 7:46:03 | 33.21 | 590.20 | 11.82 | 7.50 | 4 | 8:16:03 | 36.75 | 547.20 | 11.73 | 7.75 | | 5 | 7:47:03 | 33.19 | 598.90 | 11.85 | 7.51 | 5 | 8:17:03 | 36.38 | 550.10 | 11.72 | 7.75 | | 6 | 7:48:03 | 34.06 | 583.50 | 11.84 | 7.52 | 6 | 8:18:03 | 37.00 | 550.80 | 11.73 | 7.75 | | 7 | 7:49:03 | 33.03 | 592.70 | 11.89 | 7.51 | 7 | 8:19:03 | 36.66 | 551.60 | 11.77 | 7.75 | | 8 | 7:50:03 | 32.73 | 608.30 | 11.91 | 7.45 | 8 | 8:20:03 | 35.73 | 565.40 | 11.86 | 7.66 | | 9 | 7:51:03 | 33.41 | 592.00 | 11.80 | 7.57 | 9 | 8:21:03 | 35.50 | 573.00 | 11.88 | 7.66 | | 10 | 7:52:03 | 33.43 | 582.50 | 11.88 | 7.55 | 10 | 8:22:03 | 36.39 | 566.90 | 11.81 | 7.66 | | 11 | 7:53:03 | 33.47 | 592.00 | 11.82 | 7.55 | 11 | 8:23:03 | 36.61 | 554.50 | 11.82 | 7.67 | | 12 | 7:54:03 | 34.01 | 586.30 | 11.81 | 7.59 | 12 | 8:24:03 | 35.34 | 566.90 | 11.86 | 7.67 | | 13 | 7:55:03 | 33.60 | 588.40 | 11.91 | 7.55 | 13 | 8:25:03 | 35.45 | 573.50 | 11.83 | 7.67 | | 14 | 7:56:03 | 33.56 | 585.70 | 11.90 | 7.54 | 14 | 8:26:03 | 35.32 | 572.20 | 11.86 | 7.67 | | 15 | 7:57:03 | 34.86 | 585.70 | 11.85 | 7.56 | 15 | 8:27:03 | 35.21 | 581.10 | 11.90 | 7.66 | | 16 | 7:58:03 | 34.62 | 572.30 | 11.87 | 7.58 | 16 | 8:28:03 | 36.11 | 566.40 | 11.85 | 7.67 | | 17 | 7:59:03 | 34.15 | 596.30 | 11.94 | 7.53 | 17 | 8:29:03 | 35.78 | 562.70 | 11.90 | 7.65 | | 18 | 8:00:03 | 34.58 | 585.30 | 11.92 | 7.54 | 18 | 8:30:03 | 36.73 | 560.90 | 11.75 | 7.71 | | 19 | 8:01:03 | 34.21 | 580.80 | 11.95 | 7.54 | 19 | 8:31:03 | 36.44 | 564.80 | 11.79 | 7.73 | | 20 | 8:02:03 | 34.64 | 584.60 | 11.88 | 7.56 | 20 | 8:32:03 | 35.77 | 570.70 | 11.89 | 7.70 | | 21 | 8:03:03 | 33.99 | 588.70 | 11.93 | 7.58 | 21 | 8:33:03 | 36.29 | 569.20 | 11.84 | 7.67 | | 22 | 8:04:03 | 33.51 | 604.70 | 11.94 | 7.54 | 22 | 8:34:03 | 35.96 | 574.30 | 11.90 | 7.67 | | 23 | 8:05:03 | 34.66 | 589.30 | 11.86 | 7.61 | 23 | 8:35:03 | 35.94 | 574.90 | 11.94 | 7.65 | | 24 | 8:06:03 | 34.51 | 580.10 | 11.85 | 7.63 | 24 | 8:36:03 | 36.57 | 573.10 | 11.93 | 7.65 | | 25 | 8:07:03 | 34.32 | 587.30 | 11.91 | 7.59 | 25 | 8:37:03 | 35.86 | 573.30 | 12.01 | 7.60 | | 26 | 8:08:03 | 35.76 | 573.00 | 11.77 | 7.66 | 26 | 8:38:03 | 35.80 | 580.60 | 11.99 | 7.56 | | 27 | 8:09:03 | 35.47 | 565.40 | 11.77 | 7.68 | 27 | 8:39:03 | 35.45 | 583.20 | 12.03 | 7.57 | | 28 | 8:10:03 | 35.62 | 559.50 | 11.76 | 7.70 | 28 | 8:40:03 | 36.66 | 581.20 | 11.88 | 7.64 | | 29 | 8:11:03 | 35.17 | 560.70 | 11.77 | 7.70 | 29 | 8:41:03 | 35.72 | 577.30 | 11.96 | 7.63 | | 30 | 8:12:03 | 35.77 | 555.40 | 11.75 | 7.71 | 30 | 8:42:03 | 35.03 | 601.10 | 12.01 | 7.57 | | Г | | | RUN 3.0 | | | 7 [| | | RUN 4.0 | | | |-----|---------|-------|---------|-------|------|-----|----------|-------|---------|-------|------| | - 1 | Time | NOx | CO | O2 | CO2 | 7 [| Time | NOx | CO | O2 | CO2 | | # | AVG | 36.54 | 573.90 | 11.93 | 7.64 | # | AVG | 35.18 | 580.09 | 11.89 | 6.99 | | 1 | 8:43:03 | 35.96 | 589.80 | 11.93 | 7.61 | 1 | 9:31:03 | 37.86 | 564.00 | 11.62 | 7.03 | | 2 | 8:44:03 | 36.64 | 571.90 | 11.91 | 7.65 | 2 | 9:32:03 | 37.07 | 568.60 | 11.72 | 7.05 | | 3 | 8:45:03 | 36.04 | 576.20 | 11.97 | 7.63 | 3 | 9:33:03 | 36.43 | 577.80 | 11.76 | 7.05 | | 4 | 8:46:03 | 36.17 | 578.90 | 11.94 | 7.63 | 4 | 9:34:03 | 35.88 | 583.40 | 11.84 | 7.04 | | 5 | 8:47:03 | 36.58 | 580.40 | 11.90 | 7.62 | 5 | 9:35:03 | 35.56 | 580.40 | 11.92 | 6.99 | | 6 | 8:48:03 | 36.88 | 565.70 | 11.92 | 7.63 | 6 | 9:36:03 | 35.73 | 578.50 | 11.87 | 7.00 | | 7 | 8:49:03 | 37.16 | 566.80 | 11.90 | 7.65 | 7 | 9:37:03 | 34.96 | 585.80 | 11.99 | 6.95 | | 8 | 8:50:03 | 36.60 | 575.40 | 11.97 | 7.64 | 8 | 9:38:03 | 34.70 | 582.30 | 12.01 | 6.91 | | 9 | 8:51:03 | 36.41 | 577.50 | 11.96 | 7.62 | 9 | 9:39:03 | 35.00 | 583.20 | 11.94 | 6.92 | | 10 | 8:52:03 | 35.87 | 583.60 | 12.00 | 7.61 | 10 | 9:40:03 | 35.43 | 583.00 | 11.86 | 6.99 | | 11 | 8:53:03 | 36.25 | 580.20 | 11.97 | 7.61 | 11 | 9:41:03 | 35.43 | 575.30 | 11.92 | 6.99 | | 12 | 8:54:03 | 36.12 | 572.60 | 11.99 | 7.61 | 12 | 9:42:03 | 34.93 | 576.20 | 12.00 | 6.94 | | 13 | 8:55:03 | 36.37 | 572.10 | 12.02 | 7.59 | 13 | 9:43:03 | 35.01 | 584.60 | 11.85 | 6.98 | | 14 | 8:56:03 | 36.79 | 566.90 | 11.94 | 7.60 | 14 | 9:44:03 | 35.11 |
583.20 | 11.87 | 7.00 | | 15 | 8:57:03 | 38.02 | 564.90 | 11.87 | 7.66 | 15 | 9:45:03 | 35.36 | 583.10 | 11.86 | 7.00 | | 16 | 8:58:03 | 37.07 | 558.90 | 11.95 | 7.66 | 16 | 9:46:03 | 35.27 | 572.80 | 11.94 | 6.99 | | 17 | 8:59:03 | 36.83 | 567.10 | 11.92 | 7.64 | 17 | 9:47:03 | 34.84 | 572.10 | 11.94 | 6.97 | | 18 | 9:00:03 | 36.62 | 570.00 | 11.93 | 7.65 | 18 | 9:48:03 | 35.06 | 586.30 | 11.92 | 6.97 | | 19 | 9:01:03 | 36.27 | 571.70 | 11.93 | 7.64 | 19 | 9:49:03 | 34.62 | 573.70 | 11.98 | 6.96 | | 20 | 9:02:03 | 36.38 | 582.20 | 11.94 | 7.64 | 20 | 9:50:03 | 34.20 | 588.70 | 11.96 | 6.92 | | 21 | 9:03:03 | 36.04 | 583.80 | 11.98 | 7.64 | 21 | 9:51:03 | 35.56 | 588.80 | 11.78 | 7.04 | | 22 | 9:04:03 | 35.90 | 581.50 | 11.94 | 7.64 | 22 | 9:52:03 | 35.52 | 578.00 | 11.80 | 7.07 | | 23 | 9:05:03 | 36.26 | 581.20 | 11.89 | 7.67 | 23 | 9:53:03 | 34.66 | 583.30 | 11.91 | 7.03 | | 24 | 9:06:03 | 36.65 | 578.30 | 11,86 | 7.68 | 24 | 9:54:03 | 35.21 | 575.50 | 11.86 | 7.03 | | 25 | 9:07:03 | 36.62 | 569.90 | 11.88 | 7.69 | 25 | 9:55:03 | 34.17 | 572.00 | 11.99 | 6.96 | | 26 | 9:08:03 | 36.68 | 566.00 | 11.91 | 7.69 | 26 | 9:56:03 | 33.58 | 599.00 | 11.99 | 6.92 | | 27 | 9:09:03 | 37.15 | 567.10 | 11.87 | 7.67 | 27 | 9:57:03 | 34.34 | 580.20 | 11.93 | 6.97 | | 28 | 9:10:03 | 36.98 | 563.30 | 11.88 | 7.68 | 28 | 9:58:03 | 34.33 | 582.80 | 11.95 | 6.97 | | 29 | 9:11:03 | 36.74 | 569.20 | 11.91 | 7.69 | 29 | 9:59:03 | 34.63 | 581.40 | 11.89 | 6.97 | | 30 | 9:12:03 | 36.07 | 583.90 | 11.92 | 7.66 | 30 | 10:00:03 | 34.99 | 578.80 | 11.90 | 6.99 | | | | | RUN 5.0 | | | 7 [| | | RUN 6.0 | | | |----|----------|-------|---------|-------|------|-----|----------|-------|---------|-------|------| | | Time | NOx | CO | O2 | CO2 | 1 [| Time | NOx | CO | O2 | CO2 | | # | AVG | 35.77 | 568.94 | 11.92 | 7.00 | # | AVG | 36.00 | 571.03 | 11.99 | 6.95 | | 1 | 10:01:03 | 34.51 | 573.90 | 11.95 | 6.98 | 1 | 10:31:03 | 35.60 | 567.80 | 11.92 | 6.97 | | 2 | 10:02:03 | 34.88 | 572.50 | 11.92 | 6.97 | 2 | 10:32:03 | 36.81 | 561.10 | 11.92 | 7.00 | | 3 | 10:03:03 | 34.93 | 569.70 | 11.89 | 7.01 | 3 | 10:33:03 | 36.34 | 552.90 | 11.97 | 6.96 | | 4 | 10:04:03 | 34.62 | 577.70 | 11.98 | 6.99 | 4 | 10:34:03 | 36.36 | 569.90 | 11.94 | 6.97 | | 5 | 10:05:03 | 34.78 | 578.70 | 11.95 | 6.98 | 5 | 10:35:03 | 36.31 | 561.30 | 12.00 | 6.97 | | 6 | 10:06:03 | 35.39 | 580.90 | 11.89 | 6.98 | 6 | 10:36:03 | 36.52 | 563.00 | 11.93 | 7.00 | | 7 | 10:07:03 | 35.00 | 574.70 | 11.89 | 6.99 | 7 | 10:37:03 | 35.86 | 568.40 | 11.97 | 6.99 | | 8 | 10:08:03 | 34.85 | 580.20 | 11.87 | 7.00 | 8 | 10:38:03 | 35.79 | 573.50 | 12.00 | 6.95 | | 9 | 10:09:03 | 35.08 | 578.00 | 11.91 | 7.01 | 9 | 10:39:03 | 36.23 | 565.70 | 11.99 | 6.95 | | 10 | 10:10:03 | 36.08 | 573.60 | 11.91 | 6.98 | 10 | 10:40:03 | 35.56 | 568.30 | 12.11 | 6.89 | | 11 | 10:11:03 | 37.35 | 543.80 | 11.87 | 7.02 | 11 | 10:41:03 | 36.35 | 574.00 | 11.98 | 6.92 | | 12 | 10:12:03 | 37.32 | 554.40 | 11.79 | 7.04 | 12 | 10:42:03 | 36.52 | 572.40 | 11.92 | 6.99 | | 13 | 10:13:03 | 36.61 | 566.50 | 11.86 | 7.05 | 13 | 10:43:03 | 36.10 | 577.60 | 11.97 | 6.99 | | 14 | 10:14:03 | 36.16 | 569.40 | 11.86 | 7.05 | 14 | 10:44:03 | 35.43 | 579.20 | 12.06 | 6.92 | | 15 | 10:15:03 | 35.95 | 573.40 | 11.89 | 7.05 | 15 | 10:45:03 | 35.71 | 579.90 | 12.03 | 6.92 | | 16 | 10:16:03 | 36.03 | 567.00 | 11.96 | 6.99 | 16 | 10:46:03 | 35.43 | 574.60 | 12.05 | 6.89 | | 17 | 10:17:03 | 36.25 | 567.40 | 11.90 | 6.99 | 17 | 10:47:03 | 35.45 | 582.30 | 12.01 | 6.93 | | 18 | 10:18:03 | 35.71 | 571.60 | 11.92 | 7.00 | 18 | 10:48:03 | 35.30 | 586.20 | 12.01 | 6.94 | | 19 | 10:19:03 | 35.88 | 568.10 | 11.94 | 7.00 | 19 | 10:49:03 | 36.01 | 578.90 | 11.99 | 6.96 | | 20 | 10:20:03 | 35.66 | 568.30 | 11.96 | 6.96 | 20 | 10:50:03 | 36.58 | 572.30 | 11.97 | 6.96 | | 21 | 10:21:03 | 36.65 | 564.80 | 11.83 | 7.04 | 21 | 10:51:03 | 35.30 | 574.90 | 12.12 | 6.85 | | 22 | 10:22:03 | 36.32 | 569.90 | 11.86 | 7.07 | 22 | 10:52:03 | 36.10 | 572.70 | 12.00 | 6.91 | | 23 | 10:23:03 | 36.12 | 566.90 | 11.92 | 7.03 | 23 | 10:53:03 | 36.04 | 575.70 | 11.97 | 6.93 | | 24 | 10:24:03 | 35.76 | 573.10 | 11.92 | 7.02 | 24 | 10:54:03 | 36.46 | 567.20 | 12.01 | 6.93 | | 25 | 10:25:03 | 35.63 | 564.50 | 12.04 | 6.97 | 25 | 10:55:03 | 36.87 | 565.00 | 11.97 | 6.97 | | 26 | 10:26:03 | 35.86 | 562.00 | 11.99 | 6.94 | 26 | 10:56:03 | 35.79 | 568.50 | 12.01 | 6.91 | | 27 | 10:27:03 | 36.36 | 562.80 | 11.93 | 6.99 | 27 | 10:57:03 | 35.89 | 572.00 | 11.97 | 6.97 | | 28 | 10:28:03 | 35.96 | 559.50 | 11.97 | 6.99 | 28 | 10:58:03 | 36.20 | 567.60 | 11.92 | 6.99 | | 29 | 10:29:03 | 35.75 | 569.40 | 11.98 | 6.99 | 29 | 10:59:03 | 35.55 | 567.30 | 12.04 | 6.94 | | 30 | 10:30:03 | 35.76 | 565.50 | 12.00 | 6.93 | 30 | 11:00:03 | 35.64 | 570.60 | 11.98 | 6.94 | | - 1 | | | RUN 7.0 | | | 1 [| | | RUN 8.0 | | | |-----|----------|-------|---------|-------|------|-----|----------|-------|---------|-------|------| | | Time | NOx | CO | O2 | CO2 | 1 | Time | NOx | CO | O2 | CO2 | | # | AVG | 36.43 | 566.77 | 11.82 | 7.06 | # | AVG | 35.97 | 572.64 | 11.91 | 7.02 | | 1 | 11:16:03 | 36.15 | 575.20 | 11.67 | 7.03 | 1 | 11:46:03 | 35.94 | 570.20 | 11.93 | 7.04 | | 2 | 11:17:03 | 35.71 | 581.30 | 11.73 | 7.03 | 2 | 11:47:03 | 36.03 | 577.30 | 11.92 | 7.00 | | 3 | 11:18:03 | 36.29 | 574.50 | 11.72 | 7.07 | 3 | 11:48:03 | 36.10 | 579.20 | 11.94 | 7.00 | | 4 | 11:19:03 | 35.91 | 565.70 | 11.78 | 7.07 | 4 | 11:49:03 | 35.62 | 574.70 | 11.94 | 7.00 | | 5 | 11:20:03 | 35.78 | 572.10 | 11.79 | 7.07 | 5 | 11:50:03 | 36.64 | 573.20 | 11.87 | 7.06 | | 6 | 11:21:03 | 36.74 | 564.60 | 11.74 | 7.08 | 6 | 11:51:03 | 35.91 | 571.70 | 11.94 | 7.02 | | 7 | 11:22:03 | 36.71 | 560.00 | 11.77 | 7.10 | 7 | 11:52:03 | 36.16 | 577.50 | 11.91 | 7.02 | | 8 | 11:23:03 | 36.68 | 564.90 | 11.77 | 7.10 | 8 | 11:53:03 | 36.04 | 566.40 | 11.93 | 7.01 | | 9 | 11:24:03 | 37.16 | 554.60 | 11.79 | 7.07 | 9 | 11:54:03 | 35.90 | 570.70 | 11.91 | 7.01 | | 10 | 11:25:03 | 37.56 | 551.70 | 11.76 | 7.08 | 10 | 11:55:03 | 36.66 | 567.00 | 11.83 | 7.05 | | 11 | 11:26:03 | 36.84 | 558.70 | 11.76 | 7.09 | 11 | 11:56:03 | 36.32 | 559.30 | 11.89 | 7.04 | | 12 | 11:27:03 | 36.06 | 564.00 | 11.84 | 7.08 | 12 | 11:57:03 | 35.88 | 570.50 | 11.86 | 7.03 | | 13 | 11:28:03 | 36.52 | 564.70 | 11.82 | 7.06 | 13 | 11:58:03 | 36.41 | 569.60 | 11.83 | 7.05 | | 14 | 11:29:03 | 36.28 | 560.00 | 11.91 | 7.03 | 14 | 11:59:03 | 35.59 | 570.90 | 11.96 | 7.00 | | 15 | 11:30:03 | 36.37 | 567.20 | 11.83 | 7.03 | 15 | 12:00:03 | 35.32 | 575.70 | 11.95 | 6.99 | | 16 | 11:31:03 | 36.69 | 562.30 | 11.83 | 7.05 | 16 | 12:01:03 | 34.90 | 582.20 | 11.96 | 6.99 | | 17 | 11:32:03 | 36.29 | 569.70 | 11.85 | 7.05 | 17 | 12:02:03 | 35.49 | 581.30 | 11.91 | 7.00 | | 18 | 11:33:03 | 37.09 | 561.90 | 11.84 | 7.05 | 18 | 12:03:03 | 35.36 | 577.00 | 11.96 | 7.02 | | 19 | 11:34:03 | 36.60 | 562.40 | 11.90 | 7.03 | 19 | 12:04:03 | 35.96 | 569.20 | 11.90 | 7.02 | | 20 | 11:35:03 | 36.01 | 566.30 | 11.89 | 7.04 | 20 | 12:05:03 | 35.90 | 570.30 | 11.88 | 7.05 | | 21 | 11:36:03 | 36.50 | 574.80 | 11.82 | 7.05 | 21 | 12:06:03 | 35.36 | 580.10 | 11.96 | 7.01 | | 22 | 11:37:03 | 36.04 | 566.40 | 11.92 | 7.04 | 22 | 12:07:03 | 36.12 | 572.80 | 11.88 | 7.03 | | 23 | 11:38:03 | 36.19 | 571.70 | 11.84 | 7.05 | 23 | 12:08:03 | 36.84 | 567.60 | 11.81 | 7.06 | | 24 | 11:39:03 | 36.25 | 568.10 | 11.82 | 7.08 | 24 | 12:09:03 | 36.15 | 560.60 | 11.95 | 7.04 | | 25 | 11:40:03 | 35.82 | 574.40 | 11.94 | 7.05 | 25 | 12:10:03 | 35.97 | 582.10 | 11.91 | 7.01 | | 26 | 11:41:03 | 36.71 | 567.10 | 11.83 | 7.07 | 26 | 12:11:03 | 36.17 | 576.50 | 11.90 | 7.03 | | 27 | 11:42:03 | 36.66 | 565.30 | 11.89 | 7.06 | 27 | 12:12:03 | 36.00 | 577.20 | 11.87 | 7.03 | | 28 | 11:43:03 | 36.56 | 565.10 | 11.88 | 7.04 | 28 | 12:13:03 | 36.16 | 566.90 | 11.91 | 7.04 | | 29 | 11:44:03 | 36.27 | 572.40 | 11.82 | 7.08 | 29 | 12:14:03 | 35.89 | 571.60 | 11.90 | 7.02 | | 30 | 11:45:03 | 36.58 | 576.00 | 11.85 | 7.08 | 30 | 12:15:03 | 36.18 | 569.90 | 11.88 | 7.03 | | T | | | RUN 9.0 | | 7 | |----|----------|-------|---------|-------|------| | | Time | NOx | CO | O2 | CO2 | | # | AVG | 36.60 | 561.82 | 11.88 | 7.03 | | ī | 12:16:03 | 36.59 | 563.60 | 11.87 | 7.05 | | 2 | 12:17:03 | 36.84 | 566.70 | 11.83 | 7.05 | | 3 | 12:18:03 | 35.36 | 577.60 | 12.00 | 6.95 | | 4 | 12:19:03 | 36.30 | 577.20 | 11.88 | 7.03 | | 5 | 12:20:03 | 35.65 | 574.80 | 11.99 | 6.95 | | 6 | 12:21:03 | 36.01 | 568.20 | 11.94 | 7.00 | | 7 | 12:22:03 | 36.42 | 569.90 | 11.84 | 7.04 | | 8 | 12:23:03 | 35.85 | 569.20 | 11.89 | 7.05 | | 9 | 12:24:03 | 35.24 | 577.50 | 11.96 | 7.03 | | 10 | 12:25:03 | 35.75 | 578.10 | 11.94 | 7.00 | | 11 | 12:26:03 | 35.55 | 570.60 | 11.96 | 7.00 | | 12 | 12:27:03 | 36.80 | 568.50 | 11.85 | 7.05 | | 13 | 12:28:03 | 36.89 | 549.50 | 11.85 | 7.08 | | 14 | 12:29:03 | 36.91 | 553.50 | 11.81 | 7.08 | | 15 | 12:30:03 | 37.31 | 552.60 | 11.79 | 7.08 | | 16 | 12:31:03 | 36.88 | 553.80 | 11.81 | 7.08 | | 17 | 12:32:03 | 36.76 | 552.90 | 11.92 | 7.04 | | 18 | 12:33:03 | 36.38 | 557.10 | 11.89 | 7.04 | | 19 | 12:34:03 | 35.92 | 568.50 | 11.98 | 7.00 | | 20 | 12:35:03 | 36.58 | 563.80 | 11.90 | 7.04 | | 21 | 12:36:03 | 36.74 | 561.90 | 11.84 | 7.03 | | 22 | 12:37:03 | 36.99 | 558.20 | 11.87 | 7.03 | | 23 | 12:38:03 | 38.00 | 545.70 | 11.77 | 7.10 | | 24 | 12:39:03 | 37.41 | 551.70 | 11.82 | 7.09 | | 25 | 12:40:03 | 36,99 | 552.10 | 11.90 | 7.03 | | 26 | 12:41:03 | 36.87 | 552.20 | 11.89 | 7.00 | | 27 | 12:42:03 | 37.65 | 553.30 | 11.85 | 7.02 | | 28 | 12:43:03 | 37.36 | 548.60 | 11.85 | 7.03 | | 29 | 12:44:03 | 36.98 | 555.60 | 11.87 | 7.04 | | 30 | 12:45:03 | 37.10 | 561.60 | 11.85 | 7.03 | ## Appendix D2 CEMS – Strip Chart | | ++++ | +++ | +++ | ++ | + | +++ | +++ | + | + | +++ | +++ | H | ++- | H | 4 | 1 | + | +++ | | +++ | +++ | ++ | + | H | + | | | No | 1 | - | 1 | 6 | |----------|--------|-------|-----|-----|---------------|-----|--------------------|------------------------------------|----------------|-------|------
----------------------------|-------|-------|--------|----------------|--------|---------|--------|-------|-----------------|-------------|------------|------|--------------|-------|------|-------------------|-------|-------|----------|--------| | | | 111 | | | | | | | | | | | | 3 | Sylvan | | | | | 111 | | | | | 10 | 1 | | | 1 | | TII | | | | | | | 14 | 191 | | 111 | | | | | 4, | sal | 3 | 100 | | | | 18 | 100 | | 111 | | | | 9. | 88 | 111 | | Ш | | 111 | | FITTE | | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | 111 | 111 | | 111 | 1111 | | | | | | -11 | 11 | 111 | State of | 7 | | | 7 | H | T | runes | - | | er-ole | 1 | +++ | 111 | - | espression. | | | Carried Sec. | an me | 111 | 111 | 111 | 411 | | | | HOMUGI | | 111 | 11 | 4 | 11- | 115 | 111 | | 07: | 111 | -# | +++ | + | ++ | + | - | 1 | + | HH | +++ | ++1 | +1- | | +++ | 1 | 1 | Wan | 10 | 0 | 2 | 00 | 2 | | 111111 | 2719 | 992 | 911 | 3 | 0.2 | 111 | 1119 | = 1 | 600 | 77 | 111 | 101 | 4 | | 89 | 1 71 | 19 | MAM | 114 | | P | 1 3 | MONP | 种 | 11 | 1 | | 117 | TII | 111 | 111 | MI | | | | 111 | 111 | 11 | 1 | 1 | | H | | | 111 | 11 | 1-1 | | | | | | | 111 | | 111 | | | | 19 | Ha | | SET | 4 | | | | ++ | + | Tit | 11 | H | 1 | 111 | 1111 | Н | ITT | 1 | | 11 | 11 | 11 | | 11 | 111 | 111 | ITI | 111 | 111 | 111 | 111 | TIT | 11 | III | 1111 | 171 | | | 1 | TTT | | | | | 111 | | | | | | 1 | 111 | | | | | 111 | | | 111 | | | | | | | | | 1111 | | | | | | | HUNCH | | 111 | Di | 1 | | 115 | | | 05: | \$4 | | - | | | 1 | 1 | | | | 111 | | | kti The se | | 1 | 1 | 1 | 111 | 111 | 111 | 44 | 1111 | | | | 144 | 1 | 11 | 144 | 111 | 119 | 9 2 | PH | FT | 111 | 1 | | | 03 | 11, | 1 | 7011 | | 111 | 171 | 17- | MUMP | TTI | | 1 | 08 | | | 1 | 111 | co | | 01111 | 1111 | 111 | 111 | id | 100 | | Hii | | | | | 1 | 11 | | | 11 | | 111 | 1 1 4 | 41 | 111 | 111 | | | 11 | 1 | 3 | 1 | ψο | X | 19 | A. | | 44444 | | +++ | | + | ++ | HH | +++ | H | ++ | ++- | + | H | ++- | + | 1 | | | 111 | | 111 | -11-1 | | -1-1-1- | 11 | + | | | 111 | + | | 111 | 1131 | | | ĦĦ | 111 | 111 | 1 | 1 | Hi | | | | | - | | 100 | | 100 | 1 | | | | - | | DE U | 11 | | | | 1111 | 1 | | 11 | 1 | 1111 | | MAHUAL | 1111 | | 10 | 3 | 01: | 115 | | | 967 | 55 | | | | 11 | | | | | | | | | | | 10 | | 00 | Ek | and a | 6 | | 1111 | | 141111 | PIG | 342 | 111 | T | 10/2 | 111 | 1119 | # 1.4
1.4 | 000 | 73 | | P | | | | 7 | 141 | PA | 14 | | 1 | = 40 | Ankb | 79 | 17 | | 00 | III | M | 4 | | 1 1 | | | | 1 | 11 | id | 08 | | | | 1 | | | 1 | 211 | | | | | | 111 | 1 | | 11 | | | | 1 | 1991 | | | 1 | | 1 | | | 111 | | 111 | +1 | 4 | 111 | | 11 | ++ | + | 111 | 1 | + | 1 | ++ | + | 11 | +11 | 111 | +1-1 | +++ | | +++ | 1- | ++ | | 1-1- | 1-1-1 | | -++ | +11 | 111 | | | | 111 | 111 | 11 | | | | | | | | | | 11 | | | 11 | | | | 111 | 11 | | 111 | 11 | | | | | | | | | #ANUAH | | 111 | P | 1 | 41 = | 125 | | 1 1 5 | 061 | 52 | | 1 | - | | | 0 40 | 11 | | | TII | | de | while | | 1 | 1 | 1111 | | 111 | 111 | 111 | | | | 110 | 1 | 117 | 1 | 20 | TIT | 1111 | 3 | Carried Street | 1 | | 4 | | - | 1 | Liberary lak | ō | | | 60 | 111 | | 70 | | 11 | 1 8 | 30 | 111 | TIT | 90 | TIT | | | | 1171 | | 111 | H | ĬĬ | | | 11 | ĬI | 111 | | 111 | 44 | 1 | | | 111 | 111 | | 111 | 111 | 111 | 111 | | 16 | 1 | DOX | | 200 | do | 111 | 111 | | | | | 111 | | | | | Ш | | | | | 11 | Ш | | | | 111 | | | 111 | | 44 | Ш | 1 | 11 | TY | 111 | mhand | | de la la | | | BUNEGA | ENV. | 111 | 111 | II | | 111 | | | | | | | 11 | 11 | | 11 | | | | | 111 | | | | | | | 28 | | 111 | | 2 2 | | | delke | r S | | | 11 | 111 | 1111 | | | | | | 11 | | | | | | | 111 | | | | | | | 1111 | 111 | 111 | 111 | | | | tonness: | = + + | 900 | 30 | + | + | +++ | ++++ | + | ++ | ++ | + | + | + | 1 | 1 | ++ | 111 | +++ | 111 | 111 | +++ | 11 | TT | 111 | 1 | + | HH | +++ | 111 | 111 | 111 | | | 114 188 | 9 + 40 | 9 | | | | | | | | 111 | | | | H | Ш | | | 111 | 11-11 | 111 | 111 | | | | 11 | | | | | | 111 | | | | | | | | Ш | | | - | | | | | | | | ••••• | | | | | | | | | | | | 111 | -111 | | 44 | 44 | | | | | | 1 | | | Al | m | ega | 2 | | | | | | | | | | | | | | | | | | 111 | | | 111 | 1111 | | | | | | | 11 | | Proj | ject | No. | | 984 | 9 | | | | - | | | | | | | 10/01 | | | | | | 111 | 111 | 111 | | | +++++ | +++ | | ++ | ++ | ++ | 1 | Faci | | | | Ora | nge | Cour | nty ! | Sani | tation | n Dis | strict | PR | | | | Hunti | | n Bea | ach, | CA | 111 | 1 | 111 | 111 | 1111 | | | | | 111 | 11 | 1 | | Unit | t: | | | Plan | nt 2 - | - Eng | gine | 5 | | | | | | | am: | T.Tr./ | L.B. | | | | 111 | 111 | 111 | 111 | | | | | 111 | 111 | | | 11 | Test | t: | | | | | | | | | ATA | s - Rul | le 218 | /218. | 1 | | | | | | | 111 | | | | | | THIT | TITI | TH | | T | T | П | | | | | | | Info | orm | atio | | | | т • • | | 2.1.4 | | | T7 | D | | | | | 111 | 111 | 1111 | | 1111111 | 1111 | | | | 11 | 1 | Typ | | | _ | | ang | e | | | | nc. | | Jnit | | Cyl. # | | | | 05/2 | | | 111 | | | | | | 1111111 | 1111 | 111 | 444 | 11 | 4 | 4 | 02 (| | _ | | | 25 | | _ | _ | | .01 | | % | | 2487.
24081. | | - | | /21/2: | | -1 | 111 | 4 | +++ | +++ | 444 | | | | 1 1 1 | 111 | 11 | | | O2 (| | 0 | | | 25
10 | | | | | 32 | | % | | 2487 | | 117 | | 05/2 | | | | | | 111 | A A | | | 1111 | 111 | 111 | 1 1 | | 1 | | | | - | | 10 | | | | | 749 | | % | | 4081 | | | | /21/2: | | | 111 | | | 111 | 120 | | | | | | | | | 1000 |) (H | 1 | | | | 44.00 | _ | | | .45 | | PM | | 01965 | | dil. | 06/ | /09/1 | | | TH | 111 | | 111 | MIN | | | | | | ++ | # | H | CO2 | | | | | | | | | 13 | | | | CC | 1997 | 20 | | | | | | The second second | | 6 1 1 | 1)) | | | | | | | # | | | NOx | x (M | f) | | | 100
100 | | | | | .91 | ŀ | PM | _ | _ | _ | | | /07/2 | | | 111 | 111 | | | 00 | | | | | | | $\frac{1}{1}$ | | NOx
NOx | х (М
х (Н | f)
() | | | 100 | TF | | | 89 | 3.8 | P | PM | C | C3946 | 3 | | 12/ | /02/2: | 2 | | | | | | Almega | | | | | | # | + | | NOx
NOx
CO (| x (M
x (H
(M)
(H) | n) | | 1 | 100
100
1000
1000 | | | | 89
45 | | P | | C | _ | 3 | | 12/ | | 2 | | | | | | 682 | | | | | | | | | NOx
NOx
CO (| x (M
x (H
(M)
(H)
x Co | n) | ter C | 1 | 100
100
1000
1000 | | | | 89
45
89 | 3.8 | P
P | PM | CC | C3946 | 73 | | 04/ | /02/2: | 2 | | | | | | 82 | 14 - 1 Cal and 10 22 # Appendix D3 **CEMS –DAS One-Minute Data** Client OCSD Location Huntington Beach Unit ICE 5 Date 10/1/2015 Job Number 9849 | 5 | | 030/ | 6020/ | 60 | NOV | |-----------|-----------------|------------------|------------|------------|---------------------| | Date | Time
6:50:03 | O2 % 4.53 | CO2% | CO ppm | NOXppm | | 10/1/2015 | 6:51:03 | 0.03 | -0.21
0 | 1.4
0.6 | 0 | | 10/1/2015 | 6:52:03 | 0.03 | 0 | 0.6 | 0
Zero | | 10/1/2015 | | | | | | | 10/1/2015 | 6:53:03 | 0.03 | 0 | 0.7 | 0 zero NOx mode | | 10/1/2015 | 6:54:03 | 0.03 | | 0.8 | 0 | | 10/1/2015 | 6:55:03 | 0.03 | 0 | 0.9 | 0 zero NO mode | | 10/1/2015 | 6:56:03 | 15.8 | 5.74 | 134.5 | 143.65 | | 10/1/2015 | 6:57:03 | 21.84 | 8.79 | 864.2 | 89.56 | | 10/1/2015 | 6:58:03 | 21.94 | 8.76 | 896.5 | 89.92 high | | 10/1/2015 | 6:59:03 | 21.97 | 8.76 | 895.5 | 89.86 high NOx mode | | 10/1/2015 | 7:00:03 | 21.97 | 8.77 | 894.4 | 89.89 | | 10/1/2015 | 7:01:03 | 21.98 | 8.77 | 893.8 | 89.86 high NO mode | | 10/1/2015 | 7:02:03 | 20.47 | 7.48 | 885.3 | 79.49 | | 10/1/2015 | 7:03:03 | 11.85 | 4.02 | 540.6 | 42.19 | | 10/1/2015 | 7:04:03 | 12.13 | 4.37 | 438.2 | 45.3 | | 10/1/2015 | 7:05:03 | 12.12 | 4.37 | 448 | 45.36 | | 10/1/2015 | 7:06:03 | 12.12 | 4.37 | 454.5 | 45.41 | | 10/1/2015 | 7:07:03 | 12.12 | 4.38 | 454.4 | 45.4 mid | | 10/1/2015 | 7:08:03 | 12.12 | 4.37 | 454 | 45.37 mid NOx mode | | 10/1/2015 | 7:09:03 | 12.12 | 4.37 | 454 | 45.36 | | 10/1/2015 | 7:10:03 | 12.12 | 4.36 | 453.6 | 45.31 mid NO mode | | 10/1/2015 | 7:11:03 | 12.12 | 4.36 | 447.8 | 38.96 | | 10/1/2015 | 7:12:03 | 17.73 | 1.75 | 193.3 | 3.91 | | 10/1/2015 | 7:13:03 | 21.03 | 0.28 | 7.4 | 0.16 | | 10/1/2015 | 7:14:03 | 21.07 | 0.23 | 2.2 | 0.16 NO2 NO mode | | 10/1/2015 | 7:15:03 | 18.57 | 1.74 | 18.7 | 8.62 | | 10/1/2015 | 7:16:03 | 11.36 | 7.27 | 309.3 | 15.91 | | 10/1/2015 | 7:17:03 | 11.17 | 7.45 | 460.5 | 15.91 NO2 NOx mode | | 10/1/2015 | 7:18:03 | 11.22 | 7.49 | 449.5 | 25.89 | | 10/1/2015 | 7:19:03 | 2.43 | 1.45 | 256.4 | 8.07 | | 10/1/2015 | 7:20:03 | 0.15 | 0.37 | 5.2 | 1.05 | | 10/1/2015 | 7:21:03 | 0.11 | 0.29 | 0.9 | 0.88 | | 10/1/2015 | 7:22:03 | 0.06 | 0.26 | 0.9 | 0.81 | | 10/1/2015 | 7:23:03 | 0.04 | 0.09 | 0.9 | 0.62 | | 10/1/2015 | 7:24:03 | 0.03 | 0 | 0.8 | 0.27 bias zero | | 10/1/2015 | 7:25:03 | 0.03 | 0 | 0.8 | 0.21 | | 10/1/2015 | 7:26:03 | 9.01 | 1.68 | 0.9 | 0.19 | | 10/1/2015 | 7:27:03 | 12.08 | 4.08 | 0.8 | 0.18 | | 10/1/2015 | 7:28:03 | 12.11 | 4.31 | 0.8 | 0.19 bias O2/CO2 | Client **OCSD** Location **Huntington Beach** Unit ICE 5 Date 10/1/2015 Job Number | Date | Time | 02% | CO2% | CO ppm | NOXppm | |-----------|---------|-------|------|--------|------------------| | 10/1/2015 | 7:29:03 | 12.09 | 4.31 | 0.6 | 0.19 | | 10/1/2015 | 7:30:03 | 6.79 | 2.34 | 0.9 | 17.07 | | 10/1/2015 | 7:31:03 | 0.13 | 0.17 | 0.6 | 44.98 | | 10/1/2015 | 7:32:03 | 0.04 | 0.1 | 0.9 | 45.38 bias NOx | | 10/1/2015 | 7:33:03 | 0.03 | 0.07 | 0.4 | 45.39 | | 10/1/2015 | 7:34:03 | 0.2 | 0.05 | 172.9 | 8.15 | | 10/1/2015 | 7:35:03 | 0.2 | 0.05 | 447.3 | 0.7 | | 10/1/2015 | 7:36:03 | 0.18 | 0.05 | 450.2 | 0.66 bias CO | | 10/1/2015 | 7:37:03 | 0.17 | 0.09 | 450.4 | 0.65 | | 10/1/2015 | 7:38:03 | 9.94 | 6.66 | 513.3 | 27.14 | | 10/1/2015 | 7:39:03 | 11.47 | 7.46 | 587.9 | 32.97 | | 10/1/2015 | 7:40:03 | 11.61 | 7.49 | 591.8 | 31.92 | | 10/1/2015 | 7:41:03 | 11.66 | 7.52 | 593.9 | 31.87 | | 10/1/2015 | 7:42:03 | 11.78 | 7.47 | 591.1 | 32.51 | | 10/1/2015 | 7:43:03 | 11.8 | 7.44 | 594.8 | 33.09 R 1 | | 10/1/2015 | 7:44:03 | 11.76 | 7.5 | 586.6 | 34.06 | | 10/1/2015 | 7:45:03 | 11.81 | 7.5 | 593.9 | 33.31 | | 10/1/2015 | 7:46:03 | 11.82 | 7.5 | 590.2 | 33.21 | | 10/1/2015 | 7:47:03 | 11.85 |
7.51 | 598.9 | 33.19 | | 10/1/2015 | 7:48:03 | 11.84 | 7.52 | 583.5 | 34.06 | | 10/1/2015 | 7:49:03 | 11.89 | 7.51 | 592.7 | 33.03 | | 10/1/2015 | 7:50:03 | 11.91 | 7.45 | 608.3 | 32.73 | | 10/1/2015 | 7:51:03 | 11.8 | 7.57 | 592 | 33.41 | | 10/1/2015 | 7:52:03 | 11.88 | 7.55 | 582.5 | 33.43 | | 10/1/2015 | 7:53:03 | 11.82 | 7.55 | 592 | 33.47 | | 10/1/2015 | 7:54:03 | 11.81 | 7.59 | 586.3 | 34.01 | | 10/1/2015 | 7:55:03 | 11.91 | 7.55 | 588.4 | 33.6 | | 10/1/2015 | 7:56:03 | 11.9 | 7.54 | 585.7 | 33.56 | | 10/1/2015 | 7:57:03 | 11.85 | 7.56 | 585.7 | 34.86 | | 10/1/2015 | 7:58:03 | 11.87 | 7.58 | 572.3 | 34.62 | | 10/1/2015 | 7:59:03 | 11.94 | 7.53 | 596.3 | 34.15 | | 10/1/2015 | 8:00:03 | 11.92 | 7.54 | 585.3 | 34.58 | | 10/1/2015 | 8:01:03 | 11.95 | 7.54 | 580.8 | 34.21 | | 10/1/2015 | 8:02:03 | 11.88 | 7.56 | 584.6 | 34.64 | | 10/1/2015 | 8:03:03 | 11.93 | 7.58 | 588.7 | 33.99 | | 10/1/2015 | 8:04:03 | 11.94 | 7.54 | 604.7 | 33.51 | | 10/1/2015 | 8:05:03 | 11.86 | 7.61 | 589.3 | 34.66 | | 10/1/2015 | 8:06:03 | 11.85 | 7.63 | 580.1 | 34.51 | | 10/1/2015 | 8:07:03 | 11.91 | 7.59 | 587.3 | 34.32 | Client OCSD Location **Huntington Beach** Unit ICE 5 Date 10/1/2015 Job Number | D-4- | T | 030/ | 6030/ | 60 | NOV | |-----------|--------------------|----------------------|-------------------|-------------------|---------------------------| | Date | Time | O2 %
11.77 | CO2 % 7.66 | CO ppm 573 | NOXppm | | 10/1/2015 | 8:08:03 | | | | 35.76 | | 10/1/2015 | 8:09:03 | 11.77
11.76 | 7.68
7.7 | 565.4 | 35.47 | | 10/1/2015 | 8:10:03
8:11:03 | 11.76 | 7.7 | 559.5
560.7 | 35.62
35.17 | | 10/1/2015 | | 11.77 | 7.71 | | | | 10/1/2015 | 8:12:03
8:13:03 | 11.75 | 7.71 | 555.4
555.8 | 35.77
36.35 R 2 | | 10/1/2015 | 8:14:03 | 11.72 | 7.74 | 553.6 | 36.1 | | 10/1/2015 | 8:15:03 | 11.72 | 7.75 | 556.8 | 36.34 | | 10/1/2015 | 8:16:03 | 11.74 | 7.75 | 547.2 | 36.75 | | 10/1/2015 | 8:17:03 | 11.72 | 7.75 | 550.1 | 36.38 | | 10/1/2015 | 8:18:03 | 11.72 | 7.75 | 550.8 | 37 | | 10/1/2015 | 8:19:03 | 11.77 | 7.75 | 551.6 | 36.66 | | 10/1/2015 | 8:20:03 | 11.86 | 7.66 | 565.4 | 35.73 | | 10/1/2015 | 8:21:03 | 11.88 | 7.66 | 573 | 35.5 | | 10/1/2015 | 8:22:03 | 11.81 | 7.66 | 566.9 | 36.39 | | 10/1/2015 | 8:23:03 | 11.82 | 7.67 | 554.5 | 36.61 | | 10/1/2015 | 8:24:03 | 11.86 | 7.67 | 566.9 | 35.34 | | 10/1/2015 | 8:25:03 | 11.83 | 7.67 | 573.5 | 35.45 | | 10/1/2015 | 8:26:03 | 11.86 | 7.67 | 572.2 | 35.32 | | 10/1/2015 | 8:27:03 | 11.9 | 7.66 | 581.1 | 35.21 | | 10/1/2015 | 8:28:03 | 11.85 | 7.67 | 566.4 | 36.11 | | 10/1/2015 | 8:29:03 | 11.9 | 7.65 | 562.7 | 35.78 | | 10/1/2015 | 8:30:03 | 11.75 | 7.71 | 560.9 | 36.73 | | 10/1/2015 | 8:31:03 | 11.79 | 7.73 | 564.8 | 36.44 | | 10/1/2015 | 8:32:03 | 11.89 | 7.7 | 570.7 | 35.77 | | 10/1/2015 | 8:33:03 | 11.84 | 7.67 | 569.2 | 36.29 | | 10/1/2015 | 8:34:03 | 11.9 | 7.67 | 574.3 | 35.96 | | 10/1/2015 | 8:35:03 | 11.94 | 7.65 | 574.9 | 35.94 | | 10/1/2015 | 8:36:03 | 11.93 | 7.65 | 573.1 | 36.57 | | 10/1/2015 | 8:37:03 | 12.01 | 7.6 | 573.3 | 35.86 | | 10/1/2015 | 8:38:03 | 11.99 | 7.56 | 580.6 | 35.8 | | 10/1/2015 | 8:39:03 | 12.03 | 7.57 | 583.2 | 35.45 | | 10/1/2015 | 8:40:03 | 11.88 | 7.64 | 581.2 | 36.66 | | 10/1/2015 | 8:41:03 | 11.96 | 7.63 | 577.3 | 35.72 | | 10/1/2015 | 8:42:03 | 12.01 | 7.57 | 601.1 | 35.03 | | 10/1/2015 | 8:43:03 | 11.93 | 7.61 | 589.8 | 35.96 R 3 | | 10/1/2015 | 8:44:03 | 11.91 | 7.65 | 571.9 | 36.64 | | 10/1/2015 | 8:45:03 | 11.97 | 7.63 | 576.2 | 36.04 | | 10/1/2015 | 8:46:03 | 11.94 | 7.63 | 578.9 | 36.17 | | 10/1/2015 | 8:47:03 | 11.9 | 7.62 | 580.4 | 36.58 | Client OCSD Location **Huntington Beach** Unit ICE 5 Date 10/1/2015 Job Number | _ | | 020/ | 6030/ | | NOV | | |-----------|---------|-------|-------|--------|--------|-------------| | Date | Time | 02% | CO2% | CO ppm | NOXppm | | | 10/1/2015 | 8:48:03 | 11.92 | 7.63 | 565.7 | 36.88 | | | 10/1/2015 | 8:49:03 | 11.9 | 7.65 | 566.8 | 37.16 | | | 10/1/2015 | 8:50:03 | 11.97 | 7.64 | 575.4 | 36.6 | | | 10/1/2015 | 8:51:03 | 11.96 | 7.62 | 577.5 | 36.41 | | | 10/1/2015 | 8:52:03 | 12 | 7.61 | 583.6 | 35.87 | | | 10/1/2015 | 8:53:03 | 11.97 | 7.61 | 580.2 | 36.25 | | | 10/1/2015 | 8:54:03 | 11.99 | 7.61 | 572.6 | 36.12 | | | 10/1/2015 | 8:55:03 | 12.02 | 7.59 | 572.1 | 36.37 | | | 10/1/2015 | 8:56:03 | 11.94 | 7.6 | 566.9 | 36.79 | | | 10/1/2015 | 8:57:03 | 11.87 | 7.66 | 564.9 | 38.02 | | | 10/1/2015 | 8:58:03 | 11.95 | 7.66 | 558.9 | 37.07 | | | 10/1/2015 | 8:59:03 | 11.92 | 7.64 | 567.1 | 36.83 | | | 10/1/2015 | 9:00:03 | 11.93 | 7.65 | 570 | 36.62 | | | 10/1/2015 | 9:01:03 | 11.93 | 7.64 | 571.7 | 36.27 | | | 10/1/2015 | 9:02:03 | 11.94 | 7.64 | 582.2 | 36.38 | | | 10/1/2015 | 9:03:03 | 11.98 | 7.64 | 583.8 | 36.04 | | | 10/1/2015 | 9:04:03 | 11.94 | 7.64 | 581.5 | 35.9 | | | 10/1/2015 | 9:05:03 | 11.89 | 7.67 | 581.2 | 36.26 | | | 10/1/2015 | 9:06:03 | 11.86 | 7.68 | 578.3 | 36.65 | | | 10/1/2015 | 9:07:03 | 11.88 | 7.69 | 569.9 | 36.62 | | | 10/1/2015 | 9:08:03 | 11.91 | 7.69 | 566 | 36.68 | | | 10/1/2015 | 9:09:03 | 11.87 | 7.67 | 567.1 | 37.15 | | | 10/1/2015 | 9:10:03 | 11.88 | 7.68 | 563.3 | 36.98 | | | 10/1/2015 | 9:11:03 | 11.91 | 7.69 | 569.2 | 36.74 | | | 10/1/2015 | 9:12:03 | 11.92 | 7.66 | 583.9 | 36.07 | | | 10/1/2015 | 9:13:03 | 11.5 | 7.02 | 575.9 | 34.59 | | | 10/1/2015 | 9:14:03 | 11.99 | 4.45 | 231.4 | 2.43 | | | 10/1/2015 | 9:15:03 | 12.07 | 4.3 | 1.3 | 0.61 | | | 10/1/2015 | 9:16:03 | 12.06 | 4.3 | 0.2 | 0.48 | bias O2/CO2 | | 10/1/2015 | 9:17:03 | 12.05 | 4.3 | 0.2 | 0.41 | zero NOx/CO | | 10/1/2015 | 9:18:03 | 1.97 | 2.22 | 0.4 | 34.22 | | | 10/1/2015 | 9:19:03 | 0.19 | 0.3 | 0.2 | 45.53 | | | 10/1/2015 | 9:20:03 | 0.06 | 0.05 | 0.3 | 45.66 | | | 10/1/2015 | 9:21:03 | 0.04 | -0.03 | 0.2 | 45.5 | bias NOx | | 10/1/2015 | 9:22:03 | 0.03 | 0 | 0 | 45.53 | zero O2/CO2 | | 10/1/2015 | 9:23:03 | 0.19 | 0 | 142.6 | 13.06 | | | 10/1/2015 | 9:24:03 | 0.22 | -0.01 | 441.7 | 1.72 | | | 10/1/2015 | 9:25:03 | 0.2 | -0.01 | 447.1 | 1.65 | | | 10/1/2015 | 9:26:03 | 0.18 | -0.01 | 447.2 | 1.62 | | Client **OCSD** Location **Huntington Beach** Unit ICE 5 Date 10/1/2015 Job Number | Date | Time | 02% | CO2%(| CO ppm | NOXppm | |-----------|----------|-------|-------|--------|------------------| | 10/1/2015 | 9:27:03 | 0.18 | -0.01 | 447.6 | 1.58 bias CO | | 10/1/2015 | 9:28:03 | 0.18 | -0.01 | 447.5 | 1.56 | | 10/1/2015 | 9:29:03 | 3.64 | 2.51 | 451.4 | 11.59 | | 10/1/2015 | 9:30:03 | 11.55 | 6.85 | 550.9 | 36.76 | | 10/1/2015 | 9:31:03 | 11.62 | 7.03 | 564 | 37.86 R 4 | | 10/1/2015 | 9:32:03 | 11.72 | 7.05 | 568.6 | 37.07 | | 10/1/2015 | 9:33:03 | 11.76 | 7.05 | 577.8 | 36.43 | | 10/1/2015 | 9:34:03 | 11.84 | 7.04 | 583.4 | 35.88 | | 10/1/2015 | 9:35:03 | 11.92 | 6.99 | 580.4 | 35.56 | | 10/1/2015 | 9:36:03 | 11.87 | 7 | 578.5 | 35.73 | | 10/1/2015 | 9:37:03 | 11.99 | 6.95 | 585.8 | 34.96 | | 10/1/2015 | 9:38:03 | 12.01 | 6.91 | 582.3 | 34.7 | | 10/1/2015 | 9:39:03 | 11.94 | 6.92 | 583.2 | 35 | | 10/1/2015 | 9:40:03 | 11.86 | 6.99 | 583 | 35.43 | | 10/1/2015 | 9:41:03 | 11.92 | 6.99 | 575.3 | 35.43 | | 10/1/2015 | 9:42:03 | 12 | 6.94 | 576.2 | 34.93 | | 10/1/2015 | 9:43:03 | 11.85 | 6.98 | 584.6 | 35.01 | | 10/1/2015 | 9:44:03 | 11.87 | 7 | 583.2 | 35.11 | | 10/1/2015 | 9:45:03 | 11.86 | 7 | 583.1 | 35.36 | | 10/1/2015 | 9:46:03 | 11.94 | 6.99 | 572.8 | 35.27 | | 10/1/2015 | 9:47:03 | 11.94 | 6.97 | 572.1 | 34.84 | | 10/1/2015 | 9:48:03 | 11.92 | 6.97 | 586.3 | 35.06 | | 10/1/2015 | 9:49:03 | 11.98 | 6.96 | 573.7 | 34.62 | | 10/1/2015 | 9:50:03 | 11.96 | 6.92 | 588.7 | 34.2 | | 10/1/2015 | 9:51:03 | 11.78 | 7.04 | 588.8 | 35.56 | | 10/1/2015 | 9:52:03 | 11.8 | 7.07 | 578 | 35.52 | | 10/1/2015 | 9:53:03 | 11.91 | 7.03 | 583.3 | 34.66 | | 10/1/2015 | 9:54:03 | 11.86 | 7.03 | 575.5 | 35.21 | | 10/1/2015 | 9:55:03 | 11.99 | 6.96 | 572 | 34.17 | | 10/1/2015 | 9:56:03 | 11.99 | 6.92 | 599 | 33.58 | | 10/1/2015 | 9:57:03 | 11.93 | 6.97 | 580.2 | 34.34 | | 10/1/2015 | 9:58:03 | 11.95 | 6.97 | 582.8 | 34.33 | | 10/1/2015 | 9:59:03 | 11.89 | 6.97 | 581.4 | 34.63 | | 10/1/2015 | 10:00:03 | 11.9 | 6.99 | 578.8 | 34.99 | | 10/1/2015 | 10:01:03 | 11.95 | 6.98 | 573.9 | 34.51 R 5 | | 10/1/2015 | 10:02:03 | 11.92 | 6.97 | 572.5 | 34.88 | | 10/1/2015 | 10:03:03 | 11.89 | 7.01 | 569.7 | 34.93 | | 10/1/2015 | 10:04:03 | 11.98 | 6.99 | 577.7 | 34.62 | | 10/1/2015 | 10:05:03 | 11.95 | 6.98 | 578.7 | 34.78 | | | | | | | | Client **OCSD** Location **Huntington Beach** Unit ICE 5 Date 10/1/2015 Job Number 9849 | | Date | Time | 02% | CO2% | CO ppm | NOXppm | |----|----------|----------|-------|------|--------|--------| | 10 | 0/1/2015 | 10:06:03 | 11.89 | 6.98 | 580.9 | 35.39 | | 10 | 0/1/2015 | 10:07:03 | 11.89 | 6.99 | 574.7 | 35 | | 10 | 0/1/2015 | 10:08:03 | 11.87 | 7 | 580.2 | 34.85 | | 10 | 0/1/2015 | 10:09:03 | 11.91 | 7.01 | 578 | 35.08 | | 10 | 0/1/2015 | 10:10:03 | 11.91 | 6.98 | 573.6 | 36.08 | | 10 | 0/1/2015 | 10:11:03 | 11.87 | 7.02 | 543.8 | 37.35 | | 10 | 0/1/2015 | 10:12:03 | 11.79 | 7.04 | 554.4 | 37.32 | | 10 | 0/1/2015 | 10:13:03 | 11.86 | 7.05 | 566.5 | 36.61 | | 10 | 0/1/2015 | 10:14:03 | 11.86 | 7.05 | 569.4 | 36.16 | | 10 | 0/1/2015 | 10:15:03 | 11.89 | 7.05 | 573.4 | 35.95 | | 10 | 0/1/2015 | 10:16:03 | 11.96 | 6.99 | 567 | 36.03 | | 10 | 0/1/2015 | 10:17:03 | 11.9 | 6.99 | 567.4 | 36.25 | | 10 | 0/1/2015 | 10:18:03 | 11.92 | 7 | 571.6 | 35.71 | | 10 | 0/1/2015 | 10:19:03 | 11.94 | 7 | 568.1 | 35.88 | | 10 | 0/1/2015 | 10:20:03 | 11.96 | 6.96 | 568.3 | 35.66 | | 10 | 0/1/2015 | 10:21:03 | 11.83 | 7.04 | 564.8 | 36.65 | | 10 | 0/1/2015 | 10:22:03 | 11.86 | 7.07 | 569.9 | 36.32 | | 10 | 0/1/2015 | 10:23:03 | 11.92 | 7.03 | 566.9 | 36.12 | | 10 | 0/1/2015 | 10:24:03 | 11.92 | 7.02 | 573.1 | 35.76 | | 10 | 0/1/2015 | 10:25:03 | 12.04 | 6.97 | 564.5 | 35.63 | | 10 | 0/1/2015 | 10:26:03 | 11.99 | 6.94 | 562 | 35.86 | | 10 | 0/1/2015 | 10:27:03 | 11.93 | 6.99 | 562.8 | | | 10 | 0/1/2015 | 10:28:03 | 11.97 | 6.99 | 559.5 | | | 10
| 0/1/2015 | 10:29:03 | 11.98 | 6.99 | 569.4 | 35.75 | | 10 | 0/1/2015 | 10:30:03 | 12 | 6.93 | 565.5 | | | 10 | 0/1/2015 | 10:31:03 | 11.92 | 6.97 | 567.8 | | | | 0/1/2015 | 10:32:03 | 11.92 | 7 | 561.1 | | | 10 | 0/1/2015 | 10:33:03 | 11.97 | 6.96 | 552.9 | | | | 0/1/2015 | 10:34:03 | 11.94 | 6.97 | 569.9 | | | 10 | 0/1/2015 | 10:35:03 | 12 | 6.97 | 561.3 | | | | 0/1/2015 | 10:36:03 | 11.93 | 7 | 563 | 36.52 | | | 0/1/2015 | 10:37:03 | 11.97 | 6.99 | 568.4 | 35.86 | | | 0/1/2015 | 10:38:03 | 12 | 6.95 | 573.5 | 35.79 | | | 0/1/2015 | 10:39:03 | 11.99 | 6.95 | 565.7 | 36.23 | | | 0/1/2015 | 10:40:03 | 12.11 | 6.89 | 568.3 | 35.56 | | | 0/1/2015 | 10:41:03 | 11.98 | 6.92 | 574 | 36.35 | | | 0/1/2015 | 10:42:03 | 11.92 | 6.99 | 572.4 | 36.52 | | | 0/1/2015 | 10:43:03 | 11.97 | 6.99 | 577.6 | 36.1 | | | 0/1/2015 | 10:44:03 | 12.06 | 6.92 | 579.2 | 35.43 | | 10 | 0/1/2015 | 10:45:03 | 12.03 | 6.92 | 579.9 | 35.71 | | | | | | | | | Client OCSD Location Huntington Beach Unit ICE 5 Date 10/1/2015 Job Number 9849 | Date | Time | 02% | CO2% | CO ppm | NOXppm | |-----------|----------|-------|------|--------|-------------------| | 10/1/2015 | 10:46:03 | 12.05 | 6.89 | 574.6 | 35.43 | | 10/1/2015 | 10:47:03 | 12.01 | 6.93 | 582.3 | 35.45 | | 10/1/2015 | 10:48:03 | 12.01 | 6.94 | 586.2 | 35.3 | | 10/1/2015 | 10:49:03 | 11.99 | 6.96 | 578.9 | 36.01 | | 10/1/2015 | 10:50:03 | 11.97 | 6.96 | 572.3 | 36.58 | | 10/1/2015 | 10:51:03 | 12.12 | 6.85 | 574.9 | 35.3 | | 10/1/2015 | 10:52:03 | 12 | 6.91 | 572.7 | 36.1 | | 10/1/2015 | 10:53:03 | 11.97 | 6.93 | 575.7 | 36.04 | | 10/1/2015 | 10:54:03 | 12.01 | 6.93 | 567.2 | 36.46 | | 10/1/2015 | 10:55:03 | 11.97 | 6.97 | 565 | 36.87 | | 10/1/2015 | 10:56:03 | 12.01 | 6.91 | 568.5 | 35.79 | | 10/1/2015 | 10:57:03 | 11.97 | 6.97 | 572 | 35.89 | | 10/1/2015 | 10:58:03 | 11.92 | 6.99 | 567.6 | 36.2 | | 10/1/2015 | 10:59:03 | 12.04 | 6.94 | 567.3 | 35.55 | | 10/1/2015 | 11:00:03 | 11.98 | 6.94 | 570.6 | 35.64 | | 10/1/2015 | 11:01:03 | 11.96 | 6.96 | 574.2 | 35.81 | | 10/1/2015 | 11:02:03 | 11.41 | 4.46 | 402 | 10.5 | | 10/1/2015 | 11:03:03 | 12.03 | 4.13 | 15.1 | 0.62 | | 10/1/2015 | 11:04:03 | 12.14 | 4.12 | 1 | 0.48 bias O2/CO2 | | 10/1/2015 | 11:05:03 | 12.15 | 4.09 | 0.9 | 0.42 zero CO/NOx | | 10/1/2015 | 11:06:03 | 3.38 | 0.86 | 3 | 29.47 | | 10/1/2015 | 11:07:03 | 0.19 | 0.12 | 1_ | 45.12 | | 10/1/2015 | 11:08:03 | 0.09 | 0.05 | 0.9 | 45.5 bias NOx | | 10/1/2015 | 11:09:03 | 0.09 | 0.02 | 0.9 | 45.62 zero O2/CO2 | | 10/1/2015 | 11:10:03 | 0.14 | 0 | 160.2 | 11.98 | | 10/1/2015 | 11:11:03 | 0.14 | 0_ | 440.4 | 1.9 | | 10/1/2015 | 11:12:03 | 0.12 | 0 | 444.8 | 1.84 bias CO | | 10/1/2015 | 11:13:03 | 0.17 | 0.07 | 445.3 | 1.83 | | 10/1/2015 | 11:14:03 | 10.22 | 6.28 | 502.2 | 30.17 | | 10/1/2015 | 11:15:03 | 11.61 | 6.96 | 575.1 | 36.15 | | 10/1/2015 | 11:16:03 | 11.67 | 7.03 | 575.2 | 36.15 R 7 | | 10/1/2015 | 11:17:03 | 11.73 | 7.03 | 581.3 | 35.71 | | 10/1/2015 | 11:18:03 | 11.72 | 7.07 | 574.5 | 36.29 | | 10/1/2015 | 11:19:03 | 11.78 | 7.07 | 565.7 | 35.91 | | 10/1/2015 | 11:20:03 | 11.79 | 7.07 | 572.1 | 35.78 | | 10/1/2015 | 11:21:03 | 11.74 | 7.08 | 564.6 | 36.74 | | 10/1/2015 | 11:22:03 | 11.77 | 7.1 | 560 | 36.71 | | 10/1/2015 | 11:23:03 | 11.77 | 7.1 | 564.9 | 36.68 | | 10/1/2015 | 11:24:03 | 11.79 | 7.07 | 554.6 | 37.16 | Client OCSD Location **Huntington Beach** Unit ICE 5 Date 10/1/2015 Job Number 9849 | 10/1/2015 11:25:03 11.76 7.08 551.7 37.56 10/1/2015 11:26:03 11.76 7.09 558.7 36.84 10/1/2015 11:27:03 11.84 7.08 564 36.06 10/1/2015 11:28:03 11.82 7.06 564.7 36.52 10/1/2015 11:30:03 11.83 7.03 560 36.28 10/1/2015 11:31:03 11.83 7.03 567.2 36.37 10/1/2015 11:32:03 11.85 7.05 569.7 36.29 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:33:03 11.89 7.04 566.3 36.01 10/1/2015 11:35:03 11.82 7.05 564.9 36.01 10/1/2015 11:38:03 11.82 7.05 574.8 36.04 10/1/2015 11:40:03 11.84 | Date | Time | 02% | CO2% | CO ppm | NOXppm | | |--|--|----------|-------|------|--------|--------|--| | 10/1/2015 11:27:03 11.84 7.08 564 36.06 10/1/2015 11:28:03 11.82 7.06 564.7 36.52 10/1/2015 11:29:03 11.91 7.03 560 36.28 10/1/2015 11:30:03 11.83 7.03 567.2 36.37 10/1/2015 11:32:03 11.83 7.05 562.3 36.69 10/1/2015 11:33:03 11.85 7.05 569.7 36.29 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:33:03 11.89 7.04 566.3 36.01 10/1/2015 11:35:03 11.89 7.04 566.3 36.01 10/1/2015 11:38:03 11.82 7.05 574.8 36.5 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.84 | 10/1/2015 | 11:25:03 | 11.76 | 7.08 | 551.7 | 37.56 | | | 10/1/2015 11:28:03 11.82 7.06 564.7 36.52 10/1/2015 11:29:03 11.91 7.03 560 36.28 10/1/2015 11:30:03 11.83 7.03 567.2 36.37 10/1/2015 11:31:03 11.83 7.05 562.3 36.69 10/1/2015 11:33:03 11.85 7.05 569.7 36.29 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:36:03 11.9 7.03 562.4 36.6 10/1/2015 11:36:03 11.89 7.04 566.3 36.01 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:38:03 11.84 7.05 574.8 36.5 10/1/2015 11:39:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 < | 10/1/2015 | 11:26:03 | 11.76 | 7.09 | 558.7 | 36.84 | | | 10/1/2015 11:29:03 11.91 7.03 560 36.28 10/1/2015 11:30:03 11.83 7.03 567.2 36.37 10/1/2015 11:31:03 11.83 7.05 562.3 36.69 10/1/2015 11:32:03 11.85 7.05 569.7 36.29 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:35:03 11.89 7.04 566.3 36.01 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:38:03 11.84 7.05 574.8 36.5 10/1/2015 11:39:03 11.82 7.08 566.4 36.04 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.88 | 10/1/2015 | 11:27:03 | 11.84 | 7.08 | 564 | 36.06 | | | 10/1/2015 11:30:03 11.83 7.03 567.2 36.37 10/1/2015 11:31:03 11.83 7.05 562.3 36.69 10/1/2015 11:32:03 11.85 7.05
569.7 36.29 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:34:03 11.9 7.03 562.4 36.6 10/1/2015 11:35:03 11.89 7.04 566.3 36.01 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:38:03 11.84 7.05 574.8 36.5 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.83 7.07 567.1 36.71 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.88 | 10/1/2015 | 11:28:03 | 11.82 | 7.06 | 564.7 | 36.52 | | | 10/1/2015 11:31:03 11.83 7.05 562.3 36.69 10/1/2015 11:32:03 11.85 7.05 569.7 36.29 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:34:03 11.9 7.03 562.4 36.6 10/1/2015 11:35:03 11.89 7.04 566.3 36.01 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:38:03 11.82 7.05 574.8 36.5 10/1/2015 11:38:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.83 7.07 567.1 36.19 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:45:03 11.88 | 10/1/2015 | 11:29:03 | 11.91 | 7.03 | 560 | 36.28 | | | 10/1/2015 11:32:03 11.85 7.05 569.7 36.29 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:34:03 11.9 7.03 562.4 36.6 10/1/2015 11:35:03 11.89 7.04 566.3 36.01 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:37:03 11.92 7.04 566.4 36.04 10/1/2015 11:38:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:45:03 11.87 | 10/1/2015 | 11:30:03 | 11.83 | 7.03 | 567.2 | 36.37 | | | 10/1/2015 11:33:03 11.84 7.05 561.9 37.09 10/1/2015 11:34:03 11.9 7.03 562.4 36.6 10/1/2015 11:35:03 11.89 7.04 566.3 36.01 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:37:03 11.92 7.04 566.4 36.04 10/1/2015 11:38:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:44:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 | 10/1/2015 | 11:31:03 | 11.83 | 7.05 | 562.3 | 36.69 | | | 10/1/2015 11:34:03 11.9 7.03 562.4 36.6 10/1/2015 11:35:03 11.89 7.04 566.3 36.01 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:37:03 11.92 7.04 566.4 36.04 10/1/2015 11:38:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.56 10/1/2015 11:43:03 11.82 7.08 572.4 36.27 10/1/2015 11:44:03 11.82 7.08 576.3 36.58 10/1/2015 11:45:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:46:03 11.93 | 10/1/2015 | 11:32:03 | 11.85 | 7.05 | 569.7 | 36.29 | | | 10/1/2015 11:35:03 11.89 7.04 566.3 36.01 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:37:03 11.92 7.04 566.4 36.04 10/1/2015 11:38:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:44:03 11.82 7.08 572.4 36.27 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.93 7.04 570.2 36.1 10/1/2015 11:48:03 11.94 | 10/1/2015 | 11:33:03 | 11.84 | 7.05 | 561.9 | 37.09 | | | 10/1/2015 11:36:03 11.82 7.05 574.8 36.5 10/1/2015 11:37:03 11.92 7.04 566.4 36.04 10/1/2015 11:38:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:44:03 11.82 7.08 572.4 36.27 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:47:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:48:03 11.94 7 577.3 36.03 10/1/2015 11:49:03 11.94 | 10/1/2015 | 11:34:03 | 11.9 | 7.03 | 562.4 | 36.6 | | | 10/1/2015 11:37:03 11.92 7.04 566.4 36.04 10/1/2015 11:38:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:43:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:48:03 11.94 7 577.3 36.03 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 <td>10/1/2015</td> <td>11:35:03</td> <td>11.89</td> <td>7.04</td> <td>566.3</td> <td>36.01</td> <td></td> | 10/1/2015 | 11:35:03 | 11.89 | 7.04 | 566.3 | 36.01 | | | 10/1/2015 11:38:03 11.84 7.05 571.7 36.19 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:48:03 11.92 7 577.3 36.03 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 < | 10/1/2015 | 11:36:03 | 11.82 | 7.05 | 574.8 | 36.5 | | | 10/1/2015 11:39:03 11.82 7.08 568.1 36.25 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:45:03 11.85 7.08 572.4 36.27 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:55:03 11.91 <td< td=""><td>10/1/2015</td><td>11:37:03</td><td>11.92</td><td>7.04</td><td>566.4</td><td>36.04</td><td></td></td<> | 10/1/2015 | 11:37:03 | 11.92 | 7.04 | 566.4 | 36.04 | | | 10/1/2015 11:40:03 11.94 7.05 574.4 35.82 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:44:03 11.82 7.08 572.4 36.27 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:53:03 11.91 <td< td=""><td>10/1/2015</td><td>11:38:03</td><td>11.84</td><td>7.05</td><td>571.7</td><td>36.19</td><td></td></td<> | 10/1/2015 | 11:38:03 | 11.84 | 7.05 | 571.7 | 36.19 | | | 10/1/2015 11:41:03 11.83 7.07 567.1 36.71 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:45:03 11.82 7.08 572.4 36.27 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 | 10/1/2015 | 11:39:03 | 11.82 | 7.08 | 568.1 | 36.25 | | | 10/1/2015 11:42:03 11.89 7.06 565.3 36.66 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:44:03 11.82 7.08 572.4 36.27 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 <td>10/1/2015</td> <td>11:40:03</td> <td>11.94</td> <td>7.05</td> <td>574.4</td> <td>35.82</td> <td></td> | 10/1/2015 | 11:40:03 | 11.94 | 7.05 | 574.4 | 35.82 | | | 10/1/2015 11:43:03 11.88 7.04 565.1 36.56 10/1/2015 11:44:03 11.82 7.08 572.4 36.27 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 | 10/1/2015 | 11:41:03 | 11.83 | 7.07 | 567.1 | 36.71 | | | 10/1/2015 11:44:03 11.82 7.08 572.4 36.27 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.91 7.02 577.5 36.16 10/1/2015 11:54:03 11.91 7.01 566.4 36.04 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:58:03 11.86 | 10/1/2015 | 11:42:03 | 11.89 | 7.06 | 565.3 | 36.66 | | | 10/1/2015 11:45:03 11.85 7.08 576 36.58 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.86 7. | 10/1/2015 | 11:43:03 | 11.88 | 7.04 | 565.1 | 36.56 | | | 10/1/2015 11:46:03 11.93 7.04 570.2 35.94 R 8 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7
35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:58:03 11.86 7.03 570.5 35.88 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 | 10/1/2015 | 11:44:03 | 11.82 | 7.08 | 572.4 | 36.27 | | | 10/1/2015 11:47:03 11.92 7 577.3 36.03 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:59:03 11.83 7.05 569.6 36.41 10/1/2015 12:00:03 11.96 7 570.9 35.59 10/1/2015 12:01:03 11.96 <t< td=""><td>10/1/2015</td><td>11:45:03</td><td>11.85</td><td>7.08</td><td>576</td><td>36.58</td><td></td></t<> | 10/1/2015 | 11:45:03 | 11.85 | 7.08 | 576 | 36.58 | | | 10/1/2015 11:48:03 11.94 7 579.2 36.1 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.96 6.99 575.7 35.32 10/1/2015 12:02:03 11.91 | 10/1/2015 | 11:46:03 | | | | | | | 10/1/2015 11:49:03 11.94 7 574.7 35.62 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 | | | | | | | | | 10/1/2015 11:50:03 11.87 7.06 573.2 36.64 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 | 140. 5. | 11:48:03 | | | | | | | 10/1/2015 11:51:03 11.94 7.02 571.7 35.91 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | 10/1/2015 | 11:49:03 | | | 574.7 | | | | 10/1/2015 11:52:03 11.91 7.02 577.5 36.16 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | 10/1/2015 | 11:50:03 | 11.87 | | 573.2 | | | | 10/1/2015 11:53:03 11.93 7.01 566.4 36.04 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | 1.5) 5) | 11:51:03 | 11.94 | | | | | | 10/1/2015 11:54:03 11.91 7.01 570.7 35.9 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | 10/1/2015 | 11:52:03 | | | | | | | 10/1/2015 11:55:03 11.83 7.05 567 36.66 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | 10/1/2015 | 11:53:03 | 11.93 | | | | | | 10/1/2015 11:56:03 11.89 7.04 559.3 36.32 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | 10/1/2015 | 11:54:03 | 11.91 | | | | | | 10/1/2015 11:57:03 11.86 7.03 570.5 35.88 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | 150 50 | | | | | | | | 10/1/2015 11:58:03 11.83 7.05 569.6 36.41 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | | 11:56:03 | | | | | | | 10/1/2015 11:59:03 11.96 7 570.9 35.59 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | The state of s | 11:57:03 | | | | | | | 10/1/2015 12:00:03 11.95 6.99 575.7 35.32 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | | 11:58:03 | | 7.05 | | | | | 10/1/2015 12:01:03 11.96 6.99 582.2 34.9 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | | | | | | | | | 10/1/2015 12:02:03 11.91 7 581.3 35.49 10/1/2015 12:03:03 11.96 7.02 577 35.36 | | | | | | | | | 10/1/2015 12:03:03 11.96 7.02 577 35.36 | CONTRACTOR CONTRACTOR | | | | | | | | TO STATE OF THE PROPERTY TH | | | | | | | | | 10/1/2015 12:04:03 11.9 7.02 569.2 35.96 | 100 | | | | | | | | | 10/1/2015 | 12:04:03 | 11.9 | 7.02 | 569.2 | 35.96 | | Client **OCSD** Location **Huntington Beach** Unit ICE 5 Date 10/1/2015 Job Number | Date | Time | 02% | CO2% | CO ppm | NOXppm | | |-----------|----------|-------|------|--------|--------|-----| | 10/1/2015 | 12:05:03 | 11.88 | 7.05 | 570.3 | 35.9 | | | 10/1/2015 | 12:06:03 | 11.96 | 7.01 | 580.1 | 35.36 | | | 10/1/2015 | 12:07:03 | 11.88 | 7.03 | 572.8 | | | | 10/1/2015 | 12:08:03 | 11.81 | 7.06 | 567.6 | 36.84 | | | 10/1/2015 | 12:09:03 | 11.95 | 7.04 | 560.6 | | | | 10/1/2015 | 12:10:03 | 11.91 | 7.01 | 582.1 | 35.97 | | | 10/1/2015 | 12:11:03 | 11.9 | 7.03 | 576.5 | | | | 10/1/2015 | 12:12:03 | 11.87 | 7.03 | 577.2 | 36 | | | 10/1/2015 | 12:13:03 | 11.91 | 7.04 | 566.9 | | | | 10/1/2015 | 12:14:03 | 11.9 | 7.02 | 571.6 | 35.89 | | | 10/1/2015 | 12:15:03 | 11.88 | 7.03 | 569.9 | 36.18 | | | 10/1/2015 | 12:16:03 | 11.87 | 7.05 | 563.6 | 36.59 | R 9 | | 10/1/2015 | 12:17:03 | 11.83 | 7.05 | 566.7 | 36.84 | | | 10/1/2015 | 12:18:03 | 12 | 6.95 | 577.6 | 35.36 | | | 10/1/2015 | 12:19:03 | 11.88 | 7.03 | 577.2 | 36.3 | | | 10/1/2015 | 12:20:03 | 11.99 | 6.95 | 574.8 | 35.65 | | | 10/1/2015 | 12:21:03 | 11.94 | 7 | 568.2 | 36.01 | | | 10/1/2015 | 12:22:03 | 11.84 | 7.04 | 569.9 | 36.42 | | | 10/1/2015 | 12:23:03 | 11.89 | 7.05 | 569.2 | 35.85 | | | 10/1/2015 | 12:24:03 | 11.96 | 7.03 | 577.5 | 35.24 | | | 10/1/2015 | 12:25:03 | 11.94 | 7 | 578.1 | 35.75 | | | 10/1/2015 | 12:26:03 | 11.96 | 7 | 570.6 | 35.55 | | | 10/1/2015 | 12:27:03 | 11.85 | 7.05 | 568.5 | 36.8 | | | 10/1/2015 | 12:28:03 | 11.85 | 7.08 | 549.5 | 36.89 | | | 10/1/2015 | 12:29:03 | 11.81 | 7.08 | 553.5 | 36.91 | | | 10/1/2015 | 12:30:03 | 11.79 | 7.08 | 552.6 | 37.31 | | | 10/1/2015 | 12:31:03 | 11.81 | 7.08 | 553.8 | 36.88 | | | 10/1/2015 | 12:32:03 | 11.92 | 7.04 | 552.9 | 36.76 | | | 10/1/2015 | 12:33:03 | 11.89 | 7.04 | 557.1 | 36.38 | | | 10/1/2015 | 12:34:03 | 11.98 | 7 | 568.5 | 35.92 | | | 10/1/2015 | 12:35:03 | 11.9 | 7.04 | 563.8 | 36.58 | | | 10/1/2015 | 12:36:03 | 11.84 | 7.03 | 561.9 | 36.74 | | | 10/1/2015 | 12:37:03 | 11.87 | 7.03 | 558.2 | 36.99 | | | 10/1/2015 | 12:38:03 | 11.77 | 7.1 | 545.7 | 38 | | | 10/1/2015 | 12:39:03 | 11.82 | 7.09 | 551.7 | 37.41 | | | 10/1/2015 | 12:40:03 | 11.9 | 7.03 | 552.1 | 36.99 | | | 10/1/2015 | 12:41:03 | 11.89 | 7 | 552.2 | 36.87 | | | 10/1/2015 | 12:42:03 | 11.85 | 7.02 | 553.3 | 37.65 | | | 10/1/2015 | 12:43:03 | 11.85 | 7.03 | 548.6 | 37.36 | | | 10/1/2015 | 12:44:03 | 11.87 | 7.04 | 555.6 | 36.98 | | Client **OCSD** Location **Huntington Beach** Unit ICE 5 Date 10/1/2015 Job Number | Date | Time | 02% | CO2% | CO ppm | NOXppm | |-----------|----------|-------|-------|--------|------------------| | 10/1/2015 | 12:45:03 | 11.85 | 7.03 | 561.6 | 37.1 | | 10/1/2015 | 12:46:03 | 9.2 |
5.42 | 549.5 | 32.54 | | 10/1/2015 | 12:47:03 | 0.35 | 0.35 | 173.4 | 1.43 | | 10/1/2015 | 12:48:03 | 0.07 | 0.06 | 1.5 | 0.62 | | 10/1/2015 | 12:49:03 | 0.03 | -0.01 | 0.7 | 0.5 | | 10/1/2015 | 12:50:03 | 0.03 | -0.01 | 0.7 | 0.44 | | 10/1/2015 | 12:51:03 | 0.03 | -0.01 | 0.6 | 0.42 bias zero | | 10/1/2015 | 12:52:03 | 7.07 | 2.37 | 1 | 0.36 | | 10/1/2015 | 12:53:03 | 12.09 | 4.1 | 1.1 | 0.33 | | 10/1/2015 | 12:54:03 | 12.03 | 4.21 | 0.7 | 0.31 bias O2/CO2 | | 10/1/2015 | 12:55:03 | 12 | 4.17 | 0.8 | 0.3 | | 10/1/2015 | 12:56:03 | 2.55 | 0.76 | 1 | 0.28 | | 10/1/2015 | 12:57:03 | 0.1 | 0.1 | 0.4 | 40.15 | | 10/1/2015 | 12:58:03 | 0.11 | 0.04 | 0.6 | 45.32 bias NOx | | 10/1/2015 | 12:59:03 | 0.09 | 0.02 | 1 | 44.25 | | 10/1/2015 | 13:00:03 | 0.15 | 0 | 243.8 | 4.36 | | 10/1/2015 | 13:01:03 | 0.12 | 0_ | 443.1 | 2.02 | | 10/1/2015 | 13:02:03 | 0.13 | 0 | 443.9 | 1.97 bias CO | | 10/1/2015 | 13:03:03 | 0.07 | -0.01 | 334.9 | 1.21 | | 10/1/2015 | 13:04:03 | 0.03 | -0.02 | 9.5 | 0.45 | | 10/1/2015 | 13:05:03 | 0.03 | -0.02 | 0.4 | 0.38 zero | | 10/1/2015 | 13:06:03 | 13.45 | 5.23 | 93.4 | 70.12 | | 10/1/2015 | 13:07:03 | 21.67 | 8.35 | 842.2 | 81.81 | | 10/1/2015 | 13:08:03 | 21.84 | 8.71 | 902.6 | 90.98 | | 10/1/2015 | 13:09:03 | 21.94 | 8.75 | 900.3 | 89.88 high | | 10/1/2015 | 13:10:03 | 19.09 | 7.59 | 874.5 | 78.75 | | 10/1/2015 | 13:11:03 | 12.19 | 4.3 | 510.1 | 45.3 | | 10/1/2015 | 13:12:03 | 12.15 | 4.29 | 454.1 | 45.27 mid | | 10/1/2015 | 13:13:03 | 9.35 | 3.19 | 447.5 | 39.46 | | 10/1/2015 | 13:14:03 | 0.07 | -0.02 | 103.3 | 0.38 | | 10/1/2015 | 13:15:03 | 0.03 | -0.02 | 0.5 | 0.29 | ### APPENDIX E QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC) # Appendix E1 **Test Equipment Calibration Data** #### Semi-Annual Field Dry Gas Meter Calibration* Calibration Date. 8/7/2015 Orifice Series: Serial Number: 33-73 AE₁/AE₂ Calibrated by: MC (signature) Cal Type: Semi-Annual Reviewed by: Cur | DGM ID. MB-00 | 3 | ONTROL CHECKS | QUALITY CO | | | | S | ER READING | RY GAS MET | D | | | |-----------------------------|---------------------|---|-------------------|------------------------|----------|-----------|----------|------------|------------|---------|-------|---------| | Serial #. 22416 | dH@ _{Leve} | Average | 0.98 < | (Y _{Im,max} - | Reading | Orifice f | eading | Meter R | UTLET | DGM C | NLET | DGM I | | | < (dH@ | Coeff (Y) | (Y_{im}/Y_{im}) | Y _{fm.mm}) < | Final | Initial | Final | Initial | Final | Initial | Final | Initial | | Calibration Interval: | ± 0 15) | (0.95 <y<1.05)< td=""><td>1.02</td><td>0.010 **</td><td>(in H2O)</td><td>(in.H2O)</td><td>(cu.ft.)</td><td>(cu.fl.)</td><td>(°F)</td><td>(°F)</td><td>(°F)</td><td>(°F)</td></y<1.05)<> | 1.02 | 0.010 ** | (in H2O) | (in.H2O) | (cu.ft.) | (cu.fl.) | (°F) | (°F) | (°F) | (°F) | | Semi-Annual: x | | | | | 0 150 | 0.150 | 834.155 | 828.305 | 76.0 | 76.0 | 76.0 | 76.0 | | Bi-monthly. | 2.049 | 0.986 | 0.999 | 0.0013 | 0.150 | 0.150 | 840.010 | 834.155 | 78.0 | 76.0 | 76.0 | 76.0 | | Olher | PASS | PASS | PASS | PASS | 0.150 | 0.150 | 845.868 | 840.010 | 76.0 | 76.0 | 76 0 | 76,0 | | | | | | | 0.840 | 0.840 | 853.420 | 847.300 | 77.0 | 77.0 | 77.0 | 76,0 | | Standard | 1.941 | 0.984 | 0.997 | 0 0025 | 0.840 | 0.840 | 859.540 | 853.420 | 77.0 | 77.0 | 77.0 | 77,0 | | Temperature (deg F) | PASS | PASS | PASS | PASS | 0.840 | 0.840 | 865,650 | 859.540 | 77.0 | 77.0 | 78.0 | 77.0 | | Tstd = 60 | | | | | 2.100 | 2.100 | 873.245 | 867.700 | 77.0 | 77.0 | 80.0 | 78.0 | | Barometric | 1,997 | 0.987 | 1.000 | 0.0045 | 2.100 | 2.100 | 878.815 | 873,245 | 77.0 | 77.0 | 81.0 | 0,08 | | Pressure (in.Ha) | PASS | PASS | PASS | PASS | 2.100 | 2,100 | 884.365 | 878.815 | 77.0 | 77.0 | 82.0 | 81.0 | | Initial: 29.8 | | | | | 3.900 | 3,900 | 895.555 | 889.000 | 78.0 | 77.0 | 86.0 | 83.0 | | Final: 29.8 | 1.962 | 0.990 | 1.003 | 0.0056 | 3,900 | 3.900 | 902.100 | 895,555 | 78.0 | 78.0 | 87.0 | 86.0 | | Pbar _{trep} : 29.8 | PASS | PASS | PASS | PASS | 3.900 | 3.900 | 908.636 | 902,100 | 78.0 | 78.0 | 87.0 | 87.0 | | | | | CR | ITICAL ORIF | ICE | | | | DRY GAS ME | TER | | CALCUL | ATIONS | |---------------|----------------------|---------------------|-----------------------------|--------------------------|----------------------------|--------------------|--------------------------|---------------------|---------------------------|----------------------------|-----------------|---|-----------------------------| | Orifice | | | | | Corre | ected | 11 | | | Corre | ecled | Coefficient | | | Series
No. | Run
Time
(min) | Orifice
K-factor | Tested
Vacuum
(in.Hg) | Ambient
Temp.
(°F) | Flowrate
Q'rm
(SCFM) | Volume
(cu.ft.) | Onfice
dH
(in.H2O) | AVG
Temp
(°F) | NET
Volume
(cu.fl.) | Flowrate
Q'fm
(SCFM) | Volume
(SCF) | Y _{fm} ,
(0.95 < Y _{fm} ,
< 1.05) | Orifice
dH@,
(in.H2O) | | 33 | 28 | 0.1549 | 26,50 | 76.0 | 0.2000 | 5.600 | 0.150 | 76 00 | 5.850 | 0.203 | 5.674 | 0.9870 | 2.049 | | 33 | 28 | 0.1549 | 26.50 | 76.0 | 0.200 | 5.600 | 0.150 | 76 00 | 5.855 | 0.203 | 5.679 | 0.9861 | 2 049 | | 33 | 28 | 0.1549 | 26,50 | 76.0 | 0.200 | 5.600 | 0.150 | 76 00 | 5.858 | 0.203 | 5.682 | 0.9856 | 2.049 | | 52 | 12 | 0.3769 | 22.50 | 76.0 | 0.487 | 5.840 | 0.840 | 76 75 | 6.120 | 0.495 | 5.938 | 0 9835 | 1.942 | | 52 | 12 | 0.3769 | 22.50 | 76,0 | 0.487 | 5.840 | 0.840 | 77.00 | 6.120 | 0.495 | 5,935 | 0.9840 | 1.941 | | 52 | 12 | 0.3769 | 22,50 | 76.0 | 0.487 | 5,840 | 0.840 | 77.25 | 6,110 | 0.494 | 5.923 | 0.9860 | 1.940 | | 63 | 7 | 0,5890 | 20.50 | 77.0 | 0.760 | 5.319 | 2 100 | 78.00 | 5.545 | 0.769 | 5.384 | 0.9879 | 1.999 | | 63 | 7 | 0.5890 | 20,50 | 77.0 | 0.760 | 5.319 | 2.100 | 78.75 | 5.570 | 0.772 | 5.401 | 0.9848 | 1.996 | | 63 | 7 | 0.5890 | 20.50 | 77.0 | 0.760 | 5.319 | 2.100 | 79.25 | 5.550 | 0.768 | 5.376 | 0.9893 | 1.995 | | 73 | 6 | 0.8109 | 18 00 | 77.0 | 1 046 | 6.276 | 3.900 | 81.00 | 6.555 | 1.060 | 6.357 | 0.9873 | 1.965 | | 73 | 6 | 0,8109 | 18.00 | 77.0 | 1.046 | 6.276 | 3,900 | 82.25 | 6,545 | 1.055 | 6.333 | 0.9911 | 1.961 | | 73 | 6 | 0.8109 | 18.00 | 77 0 | 1.046 | 6.276 | 3.900 | 82.50 | 6,536 | 1.054 | 6 321 | 0.9929 | 1.960 | ^{*} Critical Orifice used. Bi-Monthly Field Dry Gas Meter Calibration* Calibration Date: 10/7/2015 SEMI TO BI CHECK DRY GAS METER ORIFICE (+2% of Y) (-2% of Y) CALIBRATION FACTOR CALIBRATION FACTOR 1.0068 0.9674 Y dH@ PASS Yds = 0.9675 dH@ = 1.975 Orifice Series: 52,63 Calibrated by: DJ Serial Number: AE₁/AE₂ (signature): Cal Type: Bi-Monthly Reviewed by: Sun | | DRY GAS METER READINGS QUALITY CONTROL CHECKS | | | | | | DGM ID: | MB-002 | | | | | | |---------|---|---------|-------|----------|----------|----------|----------|-------------------------|---------------------|------------|----------------------|-----------------|--------------| | DGM I | INLET | DGM C | UTLET | Meter F | Reading | Orifice | Reading | (Y _{fm,max} - | 0.98 < | Average | dH@ _{i,avg} | Serial #: | | | Initial | Final | Initial | Final | Initial | Final | Initial | Final | Y _{fm,min}) < | $(Y_{fm,i}/Y_{fm})$ | Coeff. | < (dH@ | Semi A Yfm: | 0.9871 | | (°F) | (°F) | (°F) | (°F) | (cu.ft.) | (cu.ft.) | (in.H2O) | (in.H2O) | 0.010 ** | 1.02 | $Y_{fm,l}$ | <u>+</u> 0.15) | Calibration | Interval: | | 74.0 | 74.0 | 74.0 | 74.0 | 416.467 | 422.685 | 0.850 | 0.850 | | | | | Bi-monthly: | × | | 74.0 | 76.0 | 74.0 | 75.0 | 422.685 | 428.911 | 0.850 | 0.850 | 0.0032 | 0.997 | 0.965 | 1.962 | Standa | ard | | 75.0 | 77.0 | 75.0 | 75.0 | 428.911 | 435.120 | 0.850 | 0.850 | PASS | PASS | PASS | PASS | Temperature | e (deg.F) | | 79.0 | 80.0 | 76.0 | 76.0 | 452.990 | 458.620 | 2.100 | 2.100 | | | | | Tstd = | 60 | | 80.0 | 81.0 | 76.0 | 77.0 | 458.620 | 464.255 | 2.100 | 2.100 | 0.0098 | 1,003 | 0.970 | 1.989 | Barometric Pres | ssure (in.Hg | | 81.0 | 81.0 | 77.0 | 77.0 | 464.255 | 469.950 | 2.100 | 2.100 | PASS | PASS | PASS | PASS | Pbar: | 30.00 | | | | CRITICAL ORIFICE | | | | | DRY GAS METER | | | | | CALCULATIONS | | |----------|----------------------|---------------------|-----------------------------|-----------|----------------------------|--------------------|---------------------------|----------------------|---------------------------|----------------------------|-----------------|---|---| | Orifice | | | | | Corre | ected | | | | Corr | ected | Coefficient | | | No. Time | Run
Time
(min) | Orifice
K-factor | Tested
Vacuum
(in.Hg) | uum Temp. | Flowrate
Q'rm
(SCFM) | Volume
(cu.fl.) | Orifice
dH
(in.H2O) | AVG
Temp.
(°F) | NET
Volume
(cu.ft.) | Flowrate
Q'fm
(SCFM) | Volume
(SCF) | Y _{fm.i}
(0.95 < Y _{fm.i}
< 1.05) | Orifice
dH@ _i
(in.H2O) | | 52 | 12 | 0.3769 | 23.0 | 75.0 | 0.489 | 5.868 | 0.850 | 74.00 | 6.218 | 0.507 | 6.087 | 0.9639 | 1.964 | | 52 | 12 | 0.3769 | 23.0 | 75.0 | 0.489 | 5.868 | 0.850 | 74.75 | 6.226 | 0.507 | 6.087 | 0.9640 | 1.961 | | 52 | 12 | 0.3769 | 23.0 | 76.0 | 0.489 | 5.862 | 0.850 | 75.50 | 6.209 | 0,505 | 6.062 | 0.9671 | 1.962 | | 63 | 7 | 0.5890 | 21.0 | 76.0 | 0.763 | 5.344 | 2.100 | 77.75 | 5.630 | 0.784 | 5.490 | 0.9734 | 1.989 | | 63 | 7 | 0.5890 | 21.0 | 77.0 | 0.763 | 5.339 | 2.100 | 78.50 | 5.635 | 0.784 | 5.487 | 0.9730 | 1.990 | | 63 | 7 | 0.5890 | 21.0 | 77.0 | 0.763 | 5.339 | 2.100 | 79.00 | 5.695 | 0.792 | 5.541 | 0.9636 | 1.988 | ^{*} Critical Orifice used. #### TYPE S PITOT TUBE SEMIANNUAL INSPECTION SHEET CAL DATE: 7/2/2015 NEXT DUE DATE: 12/31/2015 PITOT ID: PT-83 | | Parameter | Values | Allowable Range | |--
--------------------------|-----------|--| | Degree indicating level position for determining | Level and Perpendicular? | Yes OR No | Yes | | α_1 and α_2 | Obstruction? | Yes OR No | No | | | Damaged? | Yes OR No | No | | β, Degree | α1 | 1 | $-10^{\circ} \le \alpha 1 \le +10^{\circ}$ | | β, indicating level position for determining | α2 | +1 | $-10^{\circ} \le \alpha 2 \le +10^{\circ}$ | | β_1 and β_2 | β1 | 1 | $-5^{\circ} \le \beta 1 \le +5^{\circ}$ | | | β2 | 1 | $-5^{\circ} \le \beta 2 \le +5^{\circ}$ | | Degree indicating | γ | 2 | NA | | level position for determining θ | θ | 2 | NA | | | $Z = A (\tan \gamma)$ | 0.022 | \leq 0.125 in. | | Degree indicating level position | $W = A (\tan \theta)$ | 0.022 | ≤ 0.031 in. | | | Dt | 0.248 | $0.188 \le Dt \le 0.375$ | | for determining y, then calculating z. | A | 0.640 | NA | | | A/2/(Dt) | 1.29 | $1.05 \le PA/Dt \le 1.5$ | #### Certification: I certify that this pitot tube meets or exceeds all specifications, criteria and/or applicable design features and is hereby assigned a pitot tube calibration factor Cp of 0.84. | Certified | By: | |-----------|-----| |-----------|-----| Jan Date: 7/2/2015 # ALMEGA ENVIRONMENTAL AND TECHNICAL SERVICES 10602 WALKER STREET CYPRESS, CA 90630 #### STACK TEMPERATURE SENSOR SEMI-ANNUAL CALIBRATION | 83 | REF. IMMERSION GLASS THERMOMETER ID: :1, 2 & 3 | |-----------|--| | TRO-2 | ICE BATH: YES | | S-83 | BOILING WATER: YES | | 113 inch | HOT OIL: YES | | 9/24/2015 | CALIBRATED BY: LB Slufe | | | TRO-2
S-83
113 inch | | ICE BATH | | | | | | | | |--|--|---|-------------|-------------------|--|--|--| | REF. IN HG. GLASS THERMOMETER TEMPERATURE (°F) | FIELD
METER
TEMPERATURE
(^O F) | ABSOLUTE
DIFFERENCE
TEMPERATURE
(°F) | % | DIFFERENCE
(%) | | | | | 35.0 | 35.0 | 0.0 | euxer - 1.5 | 0.0 | | | | | 35.0 | 35.0 | 0.0 | | 0.0 | | | | | 34.0 | 34.0 | 0.0 | | 0.0 | | | | | BOILING WATER | | | | | | | | |---|--|---------------------------------------|----------|-------------------|--|--|--| | REF. IN HG. GLASS
THERMOMETER
TEMPERATURE
(OF) | FIELD
METER
TEMPERATURE
(^O F) | ABSOLUTE
DIFFERENCE
TEMPERATURE | % | DIFFERENCE
(%) | | | | | 212.0 | 211.0 | 1.0 | | 0.5 | | | | | 213.0 | 212.0 | 1.0 | 99911112 | 0.5 | | | | | 214.0 | 213.0 | 1.0 | | 0.5 | | | | | HOT OIL | | | | | | | | |--|---------------------------------------|---------------------------------------|---|-------------------|--|--|--| | REF. IN HG. GLASS THERMOMETER TEMPERATURE (OF) | FIELD
METER
TEMPERATURE
(°F) | ABSOLUTE
DIFFERENCE
TEMPERATURE | % | DIFFERENCE
(%) | | | | | 446.0 | 446.0 | 0.0 | | 0.0 | | | | | 448.0 | 448.0 | 0.0 | | 0.0 | | | | | 448.0 | 447.0 | 1.0 | | 0.2 | | | | NOTE: MAXIMUM TOLERANCE BETWEEN ANY TWO MEASUREMENT IS 1.5%. TAKE READING EVERY ONE MINUTE. REF. ICE BATH THERMOMETER: -30 - 120 (F) REF. BOILING WATER THERMOMETER: 20 - 500 (F) REF. HOT OIL THERMOMETER: 20 - 500 (F) ### ALMEGA ENVIRONMENTAL AND TECHNICAL SERVICES 10602 WALKER STREET CYPRESS, CA 90630 #### STACK TEMPERATURE SENSOR BI-MONTHLY CALIBRATION | TEMPERATURE SENSOR I.D: | 83 | REF. IMMERSION GLASS THERMOMETER ID: : 1, 2 | & 3 | |-------------------------|-----------|---|-----| | READ OUT I.D: | TRO-1 | ICE BATH: YES | | | PITOT TUBE I.D: | 83 | BOILING WATER: YES | | | PITOT TUBE LENGTH: | 113' | HOT OIL: YES | | | DATE: | 8/17/2015 | CALIBRATED BY: LB L. S. | | | ICE BATH | | | | | | | | |--|---------------------------------------|---------------------------------------|---|-------------------|--|--|--| | REF. IN HG. GLASS THERMOMETER TEMPERATURE (°F) | FIELD
METER
TEMPERATURE
(°F) | ABSOLUTE
DIFFERENCE
TEMPERATURE | % | DIFFERENCE
(%) | | | | | 34.0 | 33.5 | 0.5 | | 1.5 | | | | | BOILING WATER | | | | | | | | |---|---------------------------------------|---|---|-------------------|--|--|--| | REF. IN HG. GLASS
THERMOMETER
TEMPERATURE
(°F) | FIELD
METER
TEMPERATURE
(°F) | ABSOLUTE
DIFFERENCE
TEMPERATURE
(°F) | % | DIFFERÊNCE
(%) | | | | | 213.0 | 215.0 | 2.0 | | 0.9 | | | | | | } | HOT OIL | | | |---|---------------------------------------|---------------------------------------|---|-------------------| | REF. IN HG. GLASS
THERMOMETER
TEMPERATURE
(°F) | FIELD
METER
TEMPERATURE
(°F) | ABSOLUTE
DIFFERENCE
TEMPERATURE | % | DIFFERENCE
(%) | | 415.0 | 414.0 | 1.0 | | 0.2 | NOTE: MAXIMUM TOLERANCE BETWEEN ANY TWO MEASUREMENT IS 1.5%. TAKE READING EVERY ONE MINUTE. REF. ICE BATH THERMOMETER: -30 - 120 (F) REF. BOILING WATER THERMOMETER: 20 - 500 (F) REF. HOT OIL THERMOMETER: 20 - 500 (F) ### CERTIFICATE OF CALIBRATION CUSTOMER: ALMEGA ENVIRONMENTAL CALIBRATION DATE: CALIBRATION DUE: 07/13/2015 PO NUMBER: SHORTRIDGE 07/13/2016 INST. MANUFACTURER: AIR FLOW TESTER PROCEDURE: NAVAIR-17-20MP-03 INST. DESCRIPTION: ADM-880C CALIBRATION FLUID: AIR @ 70F A321 DUE 2-2016 MODEL NUMBER: SERIAL NUMBER: M10327 STANDARD(S) USED: NIST TRACE #' 5: 1236086968 RATED UNCERTAINTY: +/- 3% RD. + 5 FPM AMBIENT CONDITIONS: 764 mmHGA, 43% RH, 74F UNCERTAINTY GIVEN: +/- .17% RD.; K=2 CERTIFICATE FILE #: 460189.2015A NOTES: AS RECEIVED / AS LEFT WITHIN SPECS. | | RUN 1 | | | RUN 2 | | | RUN 3 | | |-----------|-----------|-------|-----------|-----------|-------|-----------|----------|-------| | UUT | DM.STD. | | UUT | DM.STD. | | UUT | DM.STD. | | | INDICATED | ACTUAL | % RD. | INDICATED | ACTUAL | % RD. | INDICATED | ACTUAL | % RD. | | "H2O | "H2O | ERROR | "H2O | "H2O | ERROR | "H20 | "H2O | ERROR | | 0.0000 | 0.00000 | 0.000 | 0.0000 | 0.00000 | 0.000 | 0.0000 | 0.00000 | 0,000 | | 0.0010 | 0.00102 | 2.000 | 0.0010 | 0.00101 | 1.000 | 0.0010 | 0.00102 | 2.000 | | 0.0025 | 0.00252 | 0.800 | 0.0025 | 0.00252 | 0.800 | 0.0025 | 0.00252 | 0.800 | | 0.0050 | 0.00505 | 1.000 | 0.0050 | 0.00507 | 1.400 | 0.0050 | 0.00506 | 1.200 | | 0.0100 | 0.01009 | 0.900 | 0.0100 | 0.01008 | 0.800 | 0.0100 | 0.01010 | 1.000 | | 0.0500 | 0.05015 | 0.300 | 0.0500 | 0.05012 | 0.240 | 0.0500 | 0.05011 | 0.220 | | 0.5000 | 0.50033 | 0.066 | 0.5000 | 0.50025 | 0.050 | 0.5000 | 0.50028 | 0.056 | | 1.0000 | 1.00530 | 0.530 | 1.0000 | 1.00041 | 0.041 | 1.0000 | 1.00045 | 0.045 | | 2.5000 | 2.50099 | 0.040 | 2.5000 | 2.50097 | 0.039 | 2.5000 | 2.50089 | 0.036 | | 5.0000 | 5.00174 | 0.035 | 5.0000 | 5.00122 | 0.024 | 5.0000 | 5.00115 | 0.023 | | 7.5000 | 7.50185 | 0.025 | 7.5000 | 7.50179 | 0,024 | 7.5000 | 7.50153 | 0.020 | | 10.0000 | 10.00256 | 0.026 | 10.0000 | 10.00255 | 0.025 | 10.0000 | 10.00224 | 0.022 | | | AVERAGE = | 0.477 | - | AVERAGE = | 0.370 | - | VERAGE = | 0.452 | All instruments used in the performance of the shown calibration have traceability to the National Institute of Standards and Technology (NIST). The uncertainty ratio between the calibration standards (DM.STD.) used and the unit under test (UUT) is a minimum of 4:1, unless otherwise noted. Calibration has been performed per the shown procedure number, in accordance with ISO 10012:2003, ISO 17025:2005. ANSI/NCSL-Z-540.3, and/or MIL-STD-45662A. Test methods: AP12530-92 & ASME MFC-3M-1989, > Dick Munns Company • 10572 Calle Lee #130 • Los Alamitos, CA 90720 Phone (714) 827-1215 • Fax (714) 827-0823 This I alternation Certalia are sticil and the reported and ends or in state of expension of the state Date Approved By Calibration Technician: 9849 OCSD Plant 2 Engine 5 E1-6 Page 1 of Page 107 of 1 # Appendix E2 **CEMS Calibration Gas Certificates** # CERTIFICATE OF ANALYSIS 11711 S. Alameda Sireet Los Angeles , CA 90059 Grade of Product: EPA Protocol (323) 568-2208 Fax (323) 567-3686 Airgas Specialty Gases Part Number: Cylinder Number: E03NI69E15A3B32 CC408131 Reference Number: Cylinder Volume: 48-12-4459216-1 151.4 CF Laboratory: ASG - Los Angeles - CA Cylinder Pressure: 2015 PSIG PGVP Number: Gas Code: B32014 Valve Outlet: 590 CO2,O2,BALN Certification Date: Oct 21, 2014 Expiration Date: Oct 21, 2022 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibra tion Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical Interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 pslg, i.e. 0.7 megapascals. | | | | ANALYTICAL | L RESULTS | | | |---------------|---------------|----------------------------|----------------------|--------------------|-------------------------------|------------------------| | Compon | ent | Requested
Concentration | Actual Concentration | Protocol
Method | Total Relative
Uncertainty | Assay
Dates | | CARBON | DIOXIDE | 8.750 % | 8.749 % | G1 | +/- 0.6% NIST Traceable | 10/21/2014 | | OXYGEN | | 22.00 % | 21.99 % | G1 | +/- 0.4% NIST Traceable | 10/21/2014 | | NITROGE | N | Balance | | | | | | | | | CALIBRATION | STANDARDS | | | | Туре | Lot JD | Cylinder No | Concentration | | Uncertainty | Expiration Date | | NTRM | 12061353 | CC360995 | 11.002 % CARBON DI | OXIDE/NITROGEN | +/- 0.6% | Jan 11, 2018 | | NTRM | 09061417 | CC273563 | 22.53 % OXYGEN/NIT
| ROGEN | +/- 0.4% | Mar 08, 2019 | | | , | | ANALYTICAL | EQUIPMENT | | 4 | | Instrume | ent/Make/Mode | el ' | Analytical Principle | - | Last Multipoint Calibrat | tion | | SIEMENS | 6E CO2 | | NDIR | | Dct 13, 2D14 | | | SIEMENS | OXYMAT 6 | | PARAMAGNETIC | | Oct 13, 2014 | | Triad Data Available Upon Request 000082722 Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22015 # CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS Customer & Order Information: PRAXAIR WHSE SIGNAL HILL 2677 SIGNAL PARKWAY DocNumber: SIGNAL HILL 907550 CA Praxair Order Number: 32010813 Customer P. O. Number: 05655758 Customer Reference Number: Fill Date Pari Number: 7/30/2015 NI CD4 301E-AS 109521109 Les Number: Cylinder Style & Outlet: 2000 paig CGA 590 Cylinder Pressure & Volume: 140 cu. ft Certified Concentration: | Expiration Date: | | 8/5/2023 | NIST Traceable | | | |------------------|---------|----------------|---------------------------------------|--|--| | Cylinder Number | er. | CC248731 | Analytical Uncertainty | | | | | - | | · · · · · · · · · · · · · · · · · · · | | | | 4,32 | % | CARBON DIOXIDE | ± 0.7 % | | | | 12.01 | % | OXYGEN | ± 0.4 % | | | | | Balance | NITROGEN | | | | Certification Information: Certification Date: 8/5/2015 Term: 96 Months Expiration Date: 8/5/2023 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. O2 responses have been corrected for CO2 interference. (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data: 1. Component: CARBON DIOXIDE Requested Concentration. Certified Concentration. 4.32 % Honba VIA-510 S/N 2807014 Instrument Used NDIR Analytical Method 7/13/2015 Last Multipoint Calibration | | 4 | | | | | | | | _ | |---|-------|----------|--------|------|-----|--------|--------|----------|---| | | First | t Analys | is Dat | R; | | | Date: | 8/5/2015 | | | į | Z: | 0 | R: | 9.87 | C: | 4.32 | Conc: | 4.32 | | | į | R: | 9 B7 | Z: | D | C: | 4.32 | Conc: | 4 32 | | | ! | Z: | 0 | C: | 4.32 | R: | 9 87 | Conc: | 4.32 | | | l | UON | A; % | | | Mea | n Test | Assay: | 4 32 % | | | L | | | | | | | | - | | 2. Component: OXYGEN Requested Concentration. 12 01 % Certified Concentration OXYMAT 5E Instrument Used PARAMAGNETIC Analytical Method 7/24/2015 Last Multipoint Calibration: | | First | Analysi | e Dat | A: | | | Date: | 8/5/2015 | | |---|-------|---------|-------|-------|-----|----------|--------|----------|--| | 1 | Z: | 0 | R: | 199 | C: | 12 01 | Conc: | 12 01 | | | | R: | 19.9 | Z: | 0 | C: | 12 01 | Conc: | 12 01 | | | | Z: | 0 | C: | 12 01 | R: | 19 9 | Conc: | 12 01 | | | | NOF | 1: % | | | Men | n Test A | Assay: | 12 01 % | | Analyzed by: Reference Standard Type GMIS Ref Std Cylinder # . SA17695 Ref Std Conc 9 B7% Ref Std Traceable to SRM#. 1574b SRM Semple # 7-H-07 SRM Cylinder # FF10631 Second Analysis Data: Date: n R: n C 0 Conc: R: 0 Z: 0 C: 0 D Z: 0 n 0 Mean Tesi Assay: UOM: D % Reference Standard Type GMIS Ref Std Cylinder# SA16022 Ref Std Conc 19 90% Ref Std Traceable to SRM# 2659a SRM Sample # 71-E-19 SRM Cylinder # FF22331 Second Analysis Data: Dale: n 7: D R. C: 0 Conc: R: D Z: 0 C: 0 Conc: D D Z! C: 0 R: 0 Conc: n UOM: Certified by: Jack Fu Air Liquide America Specialty Gases LLC # COMPLIANCE CLASS ### Dual-Analyzed Calibration Standard 8832 DICE ROAD, SANTA FE SPRINGS, CA 90670-2516 Phone: 800-323-2212 Fax: 562-464-5262 # CERTIFICATE OF ACCURACY: EPA Protocol Gas Assay Laboratory - PGVP Vendor ID: A52012 P.O. No.: RECERT AIR LIQUIDE AMERICA SPECIALTY GASES LLC Document #: 45861199-001 8832 DICE ROAD SANTA FE SPRINGS, CA 90670-2516 ALMEGA ENVIRONMENTAL & TECHNICAL SE WEDNESDAY DELIVERY ONLY U 5251 MC FADDEN AVE. HUNTINGTON BEACH CA 92649 US ANALYTICAL INFORMATION Gas Type: CO,BALN This certification was performed according to EPA Traceability Protocol For Assay & Certification of Ga seous Calibration Standards; Procedure G-1; September, 1997. CC259973 Certification Date: 18Apr2012 Exp. Date: 19Apr2020 Almega Cylinder Number: Cylinder Pressure * * *: 1700 PSIG Prev Certification Date: 07Apr2009 Batch No: SB00052655 COMPONENT CERTIFIED CONCENTRATION (Moles) ACCURACY** TRACEABILITY CARBON MONOXIDE NITROGEN PPM BALANCE NIST and VSL *** Do not use when cylinder pressure is below 150 psig. ** Analytical accuracy is based on the requirements of EPA Protocol procedures , September 1997. REFERENCE STANDARD TYPE/SRM NO. NTRM 1681 EXPIRATION DATE 15Jun2015 CYLINDER NUMBER KAL004633 CONCENTRATION 970.0 PPM COMPONENT CARBON MONOXIDE INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# FTIR//001785245 DATE LAST CALIBRATED 09Apr2012 ANALYTICAL PRINCIPLE Special Notes: The expiration date has been extended without re-assay per EPA 600/R-12/531. APPROVED BY: 9849 OCSD Plant 2 Engine 5 RATA Page 111 of 142 # CERTIFICATE OF ANALYSIS #### Airgas Specialty Gases # Grade of Product: EPA Protocol Los Angeles , CA 90059 323-568-2208 Fax: 323-567-3686 11711 S. Alameda Street Part Number: Cylinder Number: E02NI99E15A0499 CC39463 ASG - Los Angeles - CA Laboratory: PGVP Number: Gas Code: B32014 CO.BALN Reference Number: 48-124465925-1 as.com Cylinder Volume: Cylinder Pressure: 144.3 CF 2015 PSIG Valve Outlet: 350 Certification Date: Dec 02, 2014 Expiration Date: Dec 02, 2022 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical Interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals | | | | ANALYTICAL | RESULTS | | | |------------|---------------|----------------------------|--------------------------------------|--------------------|-------------------------------|-----------------| | Compon | ent | Requested
Concentration | Actual Concentration | Protocol
Method | Total Relative
Uncertainty | Assay
Dates | | CARBON | MONOXIDE
N | 450.0 PPM
Balance | 453.8 PPM | G1 | +/- 0.8% NIST Traceable | 12/02/2014 | | Type | Lot ID | Cylinder No | CALIBRATION : | STANDARDS | Uncertainty | Expiration Date | | NTRM | 12062425 | CC366875 | 487.1 PPM CARBON MO | NOXIDE/NITROGEN | +/- 0.6% | Jun 22, 2018 | | Instrume | ent/Make/Mode | ı | ANALYTICAL E
Analytical Principle | | Last Multipoint Calibra | ation | | Nicolet 67 | 00 AMP0900118 | CO | FTIR | | Nov 21, 2014 | | Triad Data Available Upon Request #### Airgas Specialty Gases 11711 S. Alameda Street Los Angeles , CA 90059 323-568-2208 Fax: 323-567-3686 Airgas.com # CERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol** Part Number: Cylinder Number: XC019657B Laboratory: PGVP Number: Gas Code: E02NI99E15AC0D7 ASG - Los Angeles - CA B32015 NO.NOX,BALN Reference Number: Cylinder Volume: 48-124495805-1 144.3 CF Cylinder Pressure: 2015 PSIG Valve Outlet: 660 Certification Date: Jun 09, 2015 Expiration Date: Jun 09, 2018 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals | ANALYTICAL RESULTS | | | | | | | | |--------------------------|----------------------------|-------------------------|--------------------|-------------------------------|------------------------|--|--| | Component | Requested
Concentration | Actual
Concentration | Protocol
Method | Total Relative
Uncertainty | Assay
Dates | | | | NOX | 45.00 PPM | 45.45 PPM | G1 | +/- 1.0% NIST Traceable | 06/01/2015, 06/09/2015 | | | | NITRIC OXIDE
NITROGEN | 45.00 PPM
Balance | 45.31 PPM | G1 | +/- 1.0% NIST Traceable | 06/01/2015, 06/09/2015 | | | | Туре | Lot ID | Cylinder No | CALIBRATION STANDARDS Concentration | Uncertainty | Expiration Date | |------|------------|-------------|-------------------------------------|-------------|-----------------| | NTRM | 13061216 | CC403894 | 49.40 PPM NITRIC OXIDE/NITROGEN | +/- 0.8% | Nov 19, 2019 | | PRM | 12328 | 680179 | 10.01 PPM NITROGEN DIOXIDE/NITROGEN | +/- 2.0% | Oct 15, 2014 | | NTRM | 13061245 | CC403940 | 49.40 PPM NITRIC OXIDE/NITROGEN | +/- 0.8% | Nov 19, 2019 | | GMIS | 1211201301 | CC501041 | 4.950 PPM NITROGEN DIOXIDE/NITROGEN | +/- 2.0% | Dec 11, 2016 | | | ANALYTICAL EQUIP | MENT | |-----------------------------|----------------------|-----------------------------| | Instrument/Make/Model | Analytical Principle | Last Multipoint Calibration | | Nicolet 6700 AHR0801551 NO | FTIR | May 22, 2015 | | Nicolet 6700 AHR0801551 NO2 | FTIR | May 21, 2015 | Triad Data Available Upon Request Approved for Release # CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Airgas Specialty Gases 11711 South Alameda Street Los Angeles, CA 90059 (323) 568-2203 Fax: (323) 567-3686 www.alrgas.com Part Number: E02NI99E15A3576 Cylinder Number: CC199782 Laboratory: ASG - Los Angeles - CA PGVP Number: B32013 Gas Code: NO, BALN Reference Number: 48-12-4376725-6 Cylinder Volume: Cylinder Pressure: 2015 PSIG Valve Outlet: 660 Certification Date: Jun 07, 2013 144.3 Cubic Feet Expiration Date: Jun 07, 2021 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration
Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical Interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. | Component | Requested
Concentration | ANALYTICAL I
Actual
Concentration | Protocol
Method | Total Relative
Uncertainty | Assay
Dates | |--------------|----------------------------|---|--------------------|-------------------------------|------------------------| | NOX | 90.00 PPM | 89.91 PPM | G1 | +/- 0.9% NIST
Traceable | 05/31/2013, 06/07/2013 | | NITRIC OXIDE | 90.00 PPM | 89.88 PPM | G1 | +/- 0.9% NIST
Traceable | 05/31/2013, 06/07/2013 | | NITROGEN | Balance | | | | | | CALIBRATION STANDARDS | | | | | | | | |-----------------------|--------------|-------------|---|-------------|------------------------|--|--| | Туре | Lot ID | Cylinder No | Concentration | Uncertainty | Expiration Date | | | | NTRM | 11060532 | CC331845 | 101.2 PPM NITRIC OXIDE/NITROGEN | +/- 0.6% | Feb 16, 2017 | | | | PRM | 12312 | 680179 | 10.01 PPM NITROGEN DIOXIDE/NITROGEN | +/- 2.0% | Feb 14, 2012 | | | | GMIS | 124208889129 | CC323206 | 4.835 PPM NITROGEN DIOXIDE/NITROGEN | +/-2.0% | Oct 11, 2013 | | | | | , | | MIS used in the assay and not part of the analysis. | 7 2.0 /0 | 00111, 2013 | | | | ANALYTICAL EQUIPMENT | | | | | | | |--|------|--------------|--|--|--|--| | Instrument/Make/Model Analytical Principle Last Multipoint Calibration | | | | | | | | Nicolet 6700 AMP0900118 NO | FTIR | May 09, 2013 | | | | | | Nicolet 6700 AMP0900118 NO2 | FTIR | May 20, 2013 | | | | | Triad Data Available Upon Request Notes: Approved for Release Mar ### Airgas Specialty Gases 11711 S. Alameda Street Los Angeles, CA 90059 (323) 568-2208 Fax: (323) 567-3686 www.airgas.com # CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol Part Number: E02NI99E15W4BQ4 Reference Number: 48-124424353-1 Cylinder Number: CC502676 Cylinder Volume: Laboratory: ASG - Los Angeles - CA Cylinder Pressure: CF PGVP Number: B32014 Valve Outlet: 660 Gas Code: Certification Date: Mar 27, 2014 NO2, BALN Expiration Date: Apr 03, 2017 Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. | | | | ANALYTICAL I | RESULTS | | | |-----------------------------|--------------------|-----------------------------------|-------------------------------------|------------------------|---|--| | NITROGEN DIOXIDE 16 | | Requested
Concentration | Actual | Protocol
Method | Total Relative
Uncertainty
+/- 2.0% NIST
Traceable | Assay
Dates
03/27/2014, 04/03/2014 | | | | 16.50 PPM | | | | | | | | Balance | | | | | | | | | CALIBRATION ST | FANDARDS | | | | Туре | Lot ID | Cylinder No | Concentration | | Uncertainty | Expiration Date | | GMIS | 1211201301 | CC500610 | 14.91 PPM NITROGEN DIOXIDE/NITROGEN | | +/- 1.6% | Dec 11, 2016 | | PRM | 12329 | 726612 | 25.02 PPM NITROGEN DI | OXIDE/NITROGEN | +/- 1.5% | Oct 15, 2014 | | The SRM. | , PRM or RGM noted | above is only in reference to the | ne GMIS used in the assay and | not part of the analys | sis. | | | | | | ANALYTICAL EQ | UIPMENT | | | | Instrument/Make/Model | | | Analytical Principle | Last Multi | Last Multipoint Calibration | | | Nicolet 6700 AHR0801551 NO2 | | | FTIR | Mar 13, 201 | Mar 13, 2014 | | #### Triad Data Available Upon Request Permanent Notes OXYGEN ADDED TO MAINTAIN STABILITY Notes: Approved for Release Appendix E3 Other QA/QC #### Reference Method QA/QC Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Test: RATA Test Date: 10/01/15 ### NO₂-to-NO CONVERTER EFFICIENCY CALCULATION | NO2 CONCENTRATION (Co): | 16.46 | |-------------------------------|-------| | AUDIT GAS WITH NO MODE (C1): | 0.16 | | AUDIT GAS WITH NOx MODE (C2): | 15.91 | **CALCULATIONS:** D1=|C2-C1|= 15.75 D2=|Co-C2|= **0.55** % CONVERTER EFFICIENCY: %CE=D1*100/Co= 95.7 Acceptance Criteria* (Yes/No) D2 < 1 ppm: yes % Converter Efficiency > 90%: yes STATUS: PASS Note: Stripchart and DAS can be found in Appendix D2 and D3 respectively. NOx analyzer was calibrated on a 0-100ppm range, while the NO_2 calibration gas used was below 20% of this range (16.46ppm). Converter efficiency value is still considered valid. ^{*} NO2-to-NO Conversion Efficiency must be greater than 90% ### NOx Converter, QA/QC Check Facility: OCSD, Plant No. 2 **Huntington Beach, CA** Run No.: 1 City: Engine 5 Test Date: 10/01/2015 **Test: NOx Converter Check** Source: Test: **RATA** | TEST DATA | | Pollutant 1 | | |-----------|--------------------------------|--------------|--| | VARIABLE | DESCRIPTION | <u>NOx</u> | | | Α | ANALYTICAL RANGE | 100 | | | | Unit of Measurement | ppmd | | | | CALIBRATION GAS INFORMATION | | | | В | Zero Gas | 0.00 | | | C | Mid Gas Concentration | 45.31 | | | | Mid Gas Cylinder S/N: | XC019657B | | | D | High Gas Concentration | 89.88 | | | | High Gas Cylinder S/N: | CC199782 | | | | Primary Gas Cylinder S/N: | | | | E | UPSCALE CALIBRATION GAS USED | 45.31 | | | | L=Low, M=Mid, H=High | \mathbf{M} | | | | INITIAL CALIBRATION ERROR TEST | | | | F | Zero Gas Response | 0.00 | | | G | Mid Gas Response | 45.31 | | | H | High Gas Reponse | 89.86 | | | | | | | ### **QA/QC CALCULATIONS** | CALIBRATION GAS SELECTION, % of Range | | | |---------------------------------------|-------|---------------------------| | Mid Gas | 45.3 | C*100/A | | High Gas | 89.9 | D*100/A | | CALIBRATION ERROR, % of Range | | | | Initial Zero Gas Error | 0.00 | (F-B)*100/A | | Initial Mid Gas Error | 0.00 | (G-C)*100/A | | Initial High Gas Error | -0.02 | (H-D)*100/A | | LINEARITY, % of Range | | | | Initial | 0.01 | {(G-F)-[(H-F)*C]/D}*100/A | # APPENDIX F FACILITY CEMS DATA ### Appendix F1 ### **FACILITY CEMS - Results and Calculations** ### **Facility CEMS Data Summary** Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Test: RATA Date: 10/1/2015 | Run
No. | Time (hh:mm) | NOx
ppm | NOx
ppm@15%O2 | NOx
lb/hr | CO
ppm | CO
ppm@15%O2 | CO
lb/hr | Dry Flow dscfh | O2
% | |------------|--------------|------------|------------------|--------------|-----------|-----------------|-------------|----------------|---------| | 1 | 7:43-8:12 | 38.01 | 25.02 | 2.71 | 644.87 | 424.59 | 28.03 | 597,826 | 11.94 | | 2 | 8:13-8:42 | 39.79 | 26.03 | 2.85 | 627.39 | 410.59 | 27.38 | 600,191 | 11.88 | | 3 | 8:43-9:12 | 39.60 | 26.33 | 2.93 | 632.74 | 420.71 | 28.44 | 618,448 | 12.03 | | 4 | 9:31-10:00 | 38.89 | 25.53 | 2.79 | 638.91 | 419.45 | 27.88 | 600,512 | 11.91 | | 5 | 10:01-10:30 | 40.14 | 26.56 | 2.91 | 629.02 | 416.17 | 27.73 | 606,556 | 11.98 | | 6 | 10:31-11:00 | 39.73 | 26.31 | 2.93 | 634.26 | 419.98 | 28.45 | 617,090 | 11.99 | | 7 | 11:16-11:45 | 39.61 | 25.75 | 2.81 | 629.08 | 408.90 | 27.16 | 593,955 | 11.82 | | 8 | 11:46-12:15 | 39.46 | 26.15 | 2.86 | 632.51 | 419.20 | 27.88 | 606,370 | 12.00 | | 9 | 12:16-12:45 | 40.01 | 26.21 | 2.86 | 623.82 | 408.64 | 27.16 | 599,077 | 11.89 | | Average: | | 39.47 | 25.99 | 2.85 | 632.51 | 416.47 | 27.79 | 604,447 | 11.94 | ### **Facility Process Data** Facility: OCSD, Plant No. 2 City: Huntington Beach, CA Source: Engine 5 Test: RATA Date: 10/1/2015 | Run | Load | Nat Gas Flow | Dig Gas Flow | |----------|-------|--------------|--------------| | No. | % | dscfm | dscfm | | 1 | 80.46 | 14.55 | 732.22 | | 2 | 83.18 | 14.70 | 739.55 | | 3 | 84.78 | 15.00 | 749.90 | | 4 | 82.32 | 14.64 | 737.63 | | 5 | 83.86 | 14.70 | 739.24 | | 6 | 84.96 | 14.98 | 751.40 | | 7 | 84.30 | 14.62 | 736.90 | | 8 | 83.50 | 14.87 | 737.46 | | 9 | 83.17 | 15.64 | 735.93 | | Average: | 83.39 | 14.86 | 740.03 | ### **RATA Report 1** 10/1/2015 8:28:56 AM Page 1 of 1 Unit Name: OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 7:43 Report End Date/Time: Thu 10/01/2015 8:12 | DATE/TIME | NOx Raw
(ppmvd) | NOx @15%O2
(ppmvd) | NOx Lbs/Hr | O2 (%) | Stack Flow
(dscfm) | CO Raw
(ppmvd) | CO @15%O2
(ppmvd) | CO Lbs/Hr | |-----------------|--------------------|-----------------------|------------|---------|-----------------------|-------------------|----------------------|-----------| | 10/01/2015 7:43 | 37.61 V | 24.86 V | 2.75 V | 11.97 V | 10208.54 V | 656.50 V | 433.87 V | 29.23 V | | 10/01/2015 7:44 | 38.10 V | 25.57 V | 2.83 V | 12.11 V | 10368.84 V | 643.90 V | 432.20 V | 29.12 V | | 10/01/2015 7:45 | 37.89 V | 25.12 V | 2.78 V | 12.00 V | 10240.38 V | 648.80 V | 430.10 V | 28.97 V | | 10/01/2015 7:46 | 36.95 V | 24.54 V | 2.71 V | 12.02 V | 10225.46 V | 662.10 V | 439.79 V | 29.52 V | | 10/01/2015 7:47 | 37.54 V | 24.81 V | 2.74 V | 11.97 V | 10192.42 V | 649.90 V | 429.51 V | 28.89 V | | 10/01/2015 7:48 | 37.78 V | 25.09 V | 2.79 V | 12.02 V | 10284.66 V | 644.30 V | 427.84 V | 28.90 V | | 10/01/2015 7:49 | 37.02 V | 24.93 V | 2.70 V | 12.14 V | 10162.03 V | 671.40 V | 452.07 V | 29.75 V | | 10/01/2015 7:50 | 37.24 V | 24.62 V | 2.64 V | 11.98 V | 9896.09 V | 654.70
V | 432.80 V | 28.25 V | | 10/01/2015 7:51 | 37.44 V | 24.44 V | 2.65 V | 11.86 V | 9873.67 V | 653.40 V | 426.45 V | 28.13 V | | 10/01/2015 7:52 | 37.05 V | 24.42 V | 2.65 V | 11.95 V | 9983.97 V | 655.90 V | 432.38 V | 28.56 V | | 10/01/2015 7:53 | 37.54 V | 24.62 V | 2.71 V | 11.91 V | 10051.94 V | 648.20 V | 425.17 V | 28.41 V | | 10/01/2015 7:54 | 37.44 V | 24.67 V | 2.69 V | 11.95 V | 10016.01 V | 648.50 V | 427.38 V | 28.33 V | | 10/01/2015 7:55 | 38.24 V | 25.27 V | 2.77 V | 11.97 V | 10089.73 V | 646.70 V | 427.39 V | 28.45 V | | 10/01/2015 7:56 | 37.55 V | 24.75 V | 2.71 V | 11.95 V | 10079.71 V | 653.50 V | 430.68 V | 28.73 V | | 10/01/2015 7:57 | 39.11 V | 25.65 V | 2.82 V | 11.91 V | 10072.08 V | 624.20 V | 409.43 V | 27.42 V | | 10/01/2015 7:58 | 37.38 V | 24.96 V | 2.73 V | 12.06 V | 10197.61 V | 657.80 V | 439.15 V | 29.25 V | | 10/01/2015 7:59 | 38.66 V | 25.61 V | 2.81 V | 12.00 V | 10128.69 V | 645.00 V | 427.34 V | 28.49 V | | 10/01/2015 8:00 | 38.45 V | 25.41 V | 2.75 V | 11.97 V | 9958.09 V | 639.10 V | 422.37 V | 27.75 V | | 10/01/2015 8:01 | 37.54 V | 24.69 V | 2.68 V | 11.93 V | 9958.74 V | 654.80 V | 430.69 V | 28.44 V | | 10/01/2015 8:02 | 38.21 V | 25.25 V | 2.76 V | 11.97 V | 10089.43 V | 641.30 V | 423.82 V | 28.22 V | | 10/01/2015 8:03 | 37.34 V | 24.94 V | 2.71 V | 12.07 V | 10108.50 V | 658.60 V | 439.81 V | 29.03 V | | 10/01/2015 8:04 | 36.87 V | 24.25 V | 2.61 V | 11.93 V | 9859.81 V | 659.30 V | 433.65 V | 28.35 V | | 10/01/2015 8:05 | 37.92 V | 24.75 V | 2.67 V | 11.86 V | 9817.36 V | 639.10 V | 417.11 V | 27.36 V | | 10/01/2015 8:06 | 37.99 V | 25.04 V | 2.68 V | 11.95 V | 9833.54 V | 645,60 V | 425.47 V | 27.69 V | | 10/01/2015 8:07 | 38.02 V | 24.75 V | 2.61 V | 11.84 V | 9560.39 V | 644.30 V | 419.46 V | 26.86 V | | 10/01/2015 8:08 | 39.57 V | 25.63 V | 2.71 V | 11.79 V | 9549.14 V | 617.80 V | 400.22 V | 25.73 V | | 10/01/2015 8:09 | 39,68 V | 25.70 V | 2.72 V | 11.79 V | 9556.76 V | 623.00 V | 403.48 V | 25,96 V | | 10/01/2015 8:10 | 39.22 V | 25.41 V | 2.69 V | 11.79 V | 9564.94 V | 619.00 V | 401.00 V | 25.82 V | | 10/01/2015 8:11 | 39.26 V | 25.29 V | 2.67 V | 11.74 V | 9491.79 V | 621.20 V | 400.12 V | 25.71 V | | 10/01/2015 8:12 | 39.64 V | 25.46 V | 2.70 V | 11.72 V | 9492.36 V | 618.10 V | 397.04 V | 25.59 V | | Average: | 38.01 | 25.02 | 2.71 | 11.94 | 9963.76 | 644.87 | 424.59 | 28.03 | | Maximum: | 39.68 | 25.70 | 2.83 | 12.14 | 10368.84 | 671.40 | 452.07 | 29.75 | | Minimum: | 36.87 | 24.25 | 2.61 | 11.72 | 9491.79 | 617.80 | 397.04 | 25.59 | Unit Name: OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 7:43 Report End Date/Time: Thu 10/01/2015 8:12 | DATE/TIME | ICE % Load | Digester Gas
Flow (dscfm) | Natural Gas
Flow (dscfm) | NOx @15%O2
(ppmvd) | CO @15%O2
(ppmvd) | | |-----------------|------------|------------------------------|-----------------------------|-----------------------|----------------------|--| | 10/01/2015 7:43 | 78.31 | 747.24 | 14.93 | 24.86 | 433.87 | | | 10/01/2015 7:44 | 78.07 | 746.84 | 15.21 | 25.57 | 432.20 | | | 10/01/2015 7:45 | 80.77 | 747.04 | 15,07 | 25.12 | 430.10 | | | 10/01/2015 7:46 | 80.21 | 744.40 | 15.07 | 24.54 | 439.79 | | | 10/01/2015 7:47 | 79.94 | 746.03 | 14.93 | 24.81 | 429.51 | | | 10/01/2015 7:48 | 77.17 | 749.07 | 15.07 | 25.09 | 427.84 | | | 10/01/2015 7:49 | 82.54 | 729.99 | 14.65 | 24.93 | 452.07 | | | 10/01/2015 7:50 | 85.54 | 724.10 | 14.51 | 24.62 | 432.80 | | | 10/01/2015 7:51 | 80.51 | 732.02 | 14.51 | 24.44 | 426.45 | | | 10/01/2015 7:52 | 84.29 | 732.63 | 14.65 | 24.42 | 432.38 | | | 10/01/2015 7:53 | 79.23 | 741.15 | 14.93 | 24.62 | 425.17 | | | 10/01/2015 7:54 | 82.78 | 735.27 | 14.65 | 24.67 | 427.38 | | | 10/01/2015 7:55 | 80.32 | 738.72 | 14.65 | 25.27 | 427.39 | | | 10/01/2015 7:56 | 82.39 | 740.54 | 14.37 | 24.75 | 430.68 | | | 10/01/2015 7:57 | 76.99 | 743.59 | 14.37 | 25.65 | 409.43 | | | 10/01/2015 7:58 | 86.02 | 739.33 | 14.51 | 24.96 | 439.15 | | | 10/01/2015 7:59 | 80.75 | 739.73 | 14.65 | 25.61 | 427.34 | | | 10/01/2015 8:00 | 78.33 | 728.77 | 14.65 | 25.41 | 422.37 | | | 10/01/2015 8:01 | 82.13 | 732.63 | 14.51 | 24.69 | 430.69 | | | 10/01/2015 8:02 | 77.36 | 738.92 | 14.51 | 25.25 | 423.82 | | | 10/01/2015 8:03 | 83.50 | 732.22 | 14.65 | 24.94 | 439.81 | | | 10/01/2015 8:04 | 76.34 | 725.12 | 14.51 | 24.25 | 433.65 | | | 10/01/2015 8:05 | 81.63 | 728.16 | 14.23 | 24.75 | 417.11 | | | 10/01/2015 8:06 | 79.81 | 721.67 | 14.51 | 25.04 | 425.47 | | | 10/01/2015 8:07 | 83.63 | 710.09 | 14.37 | 24.75 | 419.46 | | | 10/01/2015 8:08 | 76.21 | 713.55 | 13.95 | 25.63 | 400.22 | | | 10/01/2015 8:09 | 82.29 | 714.56 | 13.81 | 25.70 | 403.48 | | | 10/01/2015 8:10 | 79.76 | 714.76 | 13.95 | 25.41 | 401.00 | | | 10/01/2015 8:11 | 79.19 | 713.34 | 13.95 | 25.29 | 400.12 | | | 10/01/2015 8:12 | 77.84 | 715.17 | 14.09 | 25.46 | 397.04 | | | Total: | | and the | 10000 | 73.736. | Tuesday | | | Average: | 80.46 | 732.22 | 14.55 | 25.02 | 424.59 | | | Maximum: | 86.02 | 749.07 | 15.21 | 25.70 | 452.07 | | | Minimum: | 76.21 | 710.09 | 13,81 | 24.25 | 397.04 | | Rel OCSD P2 Unit 5 Report Start Date/Time : Thu 10/01/2015 8:13 Report End Date/Time : Thu 10/01/2015 8:42 | DATE/TIME | NOx Raw | NOx @15%O2 | NOx Lbs/Hr | O2 (%) | Stack Flow | CO Raw | CO @15%O2 | CO Lbs/Hr | |-----------------|---------|------------|------------|---------|------------|----------|-----------|-----------| | | (ppmvd) | (ppmvd) | | | (dscfm) | (ppmvd) | (ppmvd) | | | | | | | | | | | | | 10/01/2015 8:13 | 40.72 V | 26.15 V | 2.77 V | 11.71 V | 9482.23 V | 609.10 V | 391.15 V | 25.19 V | | 10/01/2015 8:14 | 39.51 V | 25.37 V | 2.70 V | 11.71 V | 9523.71 V | 616.80 V | 396.10 V | 25.62 V | | 10/01/2015 8:15 | 40.79 V | 26.20 V | 2.78 V | 11.72 V | 9508.03 V | 603.80 V | 387.85 V | 25.04 V | | 10/01/2015 8:16 | 40.88 V | 26.25 V | 2.83 V | 11.71 V | 9651.33 V | 607.80 V | 390.32 V | 25.58 V | | 10/01/2015 8:17 | 40.40 V | 25.94 V | 2.84 V | 11.71 V | 9805.93 V | 608.10 V | 390.51 V | 26.00 V | | 10/01/2015 8:18 | 41.02 V | 26.49 V | 2.88 V | 11.76 V | 9778.52 V | 608.50 V | 392.90 V | 25.95 V | | 10/01/2015 8:19 | 40.23 V | 26.25 V | 2.86 V | 11.86 V | 9929.88 V | 618.10 V | 403.29 V | 26.77 V | | 10/01/2015 8:20 | 40.33 V | 26.32 V | 2.85 V | 11.86 V | 9861.29 V | 628.50 V | 410.19 V | 27.03 V | | 10/01/2015 8:21 | 39.32 V | 25.52 V | 2.74 V | 11.81 V | 9713.82 V | 635.40 V | 412.42 V | 26.92 V | | 10/01/2015 8:22 | 40.22 V | 25.91 V | 2.85 V | 11.74 V | 9867.08 V | 617.50 V | 397.74 V | 26.57 V | | 10/01/2015 8:23 | 40.65 V | 26.46 V | 2.88 V | 11.84 V | 9887.01 V | 617.20 V | 401.71 V | 26.61 V | | 10/01/2015 8:24 | 38.98 V | 25.37 V | 2.74 V | 11.84 V | 9817.63 V | 640.50 V | 416.87 V | 27.42 V | | 10/01/2015 8:25 | 38.97 V | 25.36 V | 2.76 V | 11.84 V | 9869.95 V | 625.40 V | 407.05 V | 26.92 V | | 10/01/2015 8:26 | 38.87 V | 25.42 V | 2.76 V | 11.88 V | 9890.16 V | 642.20 V | 419.95 V | 27.70 V | | 10/01/2015 8:27 | 39.64 V | 25.67 V | 2.76 V | 11.79 V | 9710.63 V | 635.10 V | 411.32 V | 26.89 V | | 10/01/2015 8:28 | 39.32 V | 25.59 V | 2.76 V | 11.84 V | 9801.76 V | 627.50 V | 408.41 V | 26.82 V | | 10/01/2015 8:29 | 39.50 V | 25.58 V | 2.78 V | 11.79 V | 9829.39 V | 622.60 V | 403.22 V | 26.69 V | | 10/01/2015 8:30 | 39.97 V | 25.89 V | 2.85 V | 11.79 V | 9929.73 V | 620.50 V | 401.86 V | 26.87 V | | 10/01/2015 8:31 | 39.82 V | 26.11 V | 2.88 V | 11.90 V | 10077.87 V | 630.20 V | 413.25 V | 27.70 V | | 10/01/2015 8:32 | 38.93 V | 25.45 V | 2.82 V | 11.88 V | 10087.03 V | 632.30 V | 413.36 V | 27.81 V | | 10/01/2015 8:33 | 39.57 V | 26.07 V | 2.93 V | 11.95 V | 10314.08 V | 626.00 V | 412.44 V | 28.16 V | | 10/01/2015 8:34 | 39.88 V | 26.36 V | 2.95 V | 11.97 V | 10318.98 V | 632.00 V | 417.68 V | 28.44 V | | 10/01/2015 8:35 | 39.95 V | 26.40 V | 2.97 V | 11.97 V | 10357.49 V | 635.00 V | 419.66 V | 28.68 V | | 10/01/2015 8:36 | 39.94 V | 26.52 V | 3.00 V | 12.02 V | 10471.22 V | 631.20 V | 419.14 V | 28.82 V. | | 10/01/2015 8:37 | 39.54 V | 26.32 V | 2.98 V | 12.04 V | 10497.80 V | 642.50 V | 427.73 V | 29.41 V | | 10/01/2015 8:38 | 39.66 V | 26.48 V | 2.95 V | 12.06 V | 10386.99 V | 636.40 V | 424.87 V | 28.83 V | | 10/01/2015 8:39 | 39.00 V | 25.97 V | 2.89 V | 12.04 V | 10345.86 V | 644.90 V | 429.45 V | 29.10 V | | 10/01/2015 8:40 | 40.49 V | 26.96 V | 3.01 V | 12.04 V | 10365.42 V | 621.10 V | 413.60 V | 28.08 V | | 10/01/2015 8:41 | 38.93 V | 26.49 V | 2.96 V | 12.23 V | 10606.09 V | 656.80 V | 446.96 V | 30.38 V | | 10/01/2015 8:42 | 38.62 V | 26.00 V | 2.88 V | 12.14 V | 10408.74 V | 648.80 V | 436.73 V | 29.45 V | | Average: | 39.79 | 26.03 | 2.85 | 11.88 | 10003.19 | 627.39 | 410.59 | 27.38 | | Maximum: | 41.02 | 26.96 | 3.01 | 12.23 | 10606.09 | 656.80 | 446.96 | 30.38 | | Minimum: | 38.62 | 25.36 | 2.70 | 11.71 | 9482.23 | 603.80 | 387.85 | 25.04 | OCSD P2 Unit 5 Report Start Date/Time : Thu 10/01/2015 8:13 Report End Date/Time: Thu 10/01/2015 8:42 | DATE/TIME | ICE % Load | Digester Gas
Flow (dscfm) | Natural Gas
Flow (dscfm) | NOx @15%O2
(ppmvd) | CO @15%O2
(ppmvd) | | | |-----------------|------------|------------------------------|-----------------------------|-----------------------|----------------------|--|--| | 10/01/2015 8:13 | 81.71 | 714.36 | 14.23 | 26.15 | 391.15 | | | | 10/01/2015 8:14 | 83.03 | 717.81 | 14.09 | 25.37 | 396.10 | | | | 10/01/2015 8:15 | 77.20 | 716.39 | 14.09 | 26.20 | 387.85 | | | | 10/01/2015 8:16 | 79.17 | 727.96 | 13.95 | 26.25 | 390.32 | | | | 10/01/2015 8:17 | 81.21 | 739.53 | 14.23 | 25.94 | 390.51 | | | | 10/01/2015 8:18 | 83.18 | 733.03 | 14.37 | 26.49 | 392.90 | | | | 10/01/2015 8:19 | 79.77 | 736.08 | 14.79 | 26.25 | 403.29 | | | | 10/01/2015 8:20 | 79.90 | 730.39 | 14.93 | 26.32 | 410.19 | | | | 10/01/2015 8:21 | 80.86 | 723.90 | 14.51 | 25.52 | 412.42 | | | | 10/01/2015 8:22 | 88.48 | 741.76 | 14.37 | 25.91 | 397.74 | | | | 10/01/2015 8:23 | 80.18 | 734.45 | 14.93 | 26.46 | 401.71 | | | | 10/01/2015 8:24 | 82.65 | 729.58 | 14.65 | 25.37 |
416.87 | | | | 10/01/2015 8:25 | 85.94 | 734.05 | 14.37 | 25.36 | 407.05 | | | | 10/01/2015 8:26 | 83.33 | 731.82 | 14.51 | 25.42 | 419.95 | | | | 10/01/2015 8:27 | 79.13 | 725.52 | 14.37 | 25.67 | 411.32 | | | | 10/01/2015 8:28 | 84.65 | 728.36 | 14.65 | 25.59 | 408.41 | | | | 10/01/2015 8:29 | 84.32 | 734.45 | 14.51 | 25.58 | 403.22 | | | | 10/01/2015 8:30 | 85.16 | 741.97 | 14.65 | 25.89 | 401.86 | | | | 10/01/2015 8:31 | 84.82 | 743.79 | 14.65 | 26.11 | 413.25 | | | | 10/01/2015 8:32 | 88.39 | 746.84 | 14.65 | 25.45 | 413.36 | | | | 10/01/2015 8:33 | 87.25 | 757.39 | 15.07 | 26.07 | 412.44 | | | | 10/01/2015 8:34 | 87.87 | 755.36 | 15.07 | 26.36 | 417.68 | | | | 10/01/2015 8:35 | 82.91 | 757.60 | 15.48 | 26.40 | 419.66 | | | | 10/01/2015 8:36 | 82.97 | 762.87 | 15.21 | 26.52 | 419.14 | | | | 10/01/2015 8:37 | 84.67 | 762.87 | 15.21 | 26.32 | 427.73 | | | | 10/01/2015 8:38 | 84.88 | 751.91 | 15.48 | 26.48 | 424.87 | | | | 10/01/2015 8:39 | 82.42 | 751.71 | 14.93 | 25.97 | 429.45 | | | | 10/01/2015 8:40 | 81.83 | 752.72 | 15.21 | 26.96 | 413.60 | | | | 10/01/2015 8:41 | 82.95 | 753.94 | 15.07 | 26.49 | 446.96 | | | | 10/01/2015 8:42 | 84.70 | 748.06 | 14.93 | 26.00 | 436.73 | | | | Total: | | | | | | | | | Average: | 83.18 | 739.55 | 14.70 | 26.03 | 410.59 | | | | Maximum: | 88.48 | 762.87 | 15.48 | 26.96 | 446.96 | | | | Minimum: | 77.20 | 714.36 | 13.95 | 25.36 | 387.85 | | | OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 8:43 Report End Date/Time: Thu 10/01/2015 9:12 | DATE/TIME | NOx Raw
(ppmvd) | NOx @15%O2
(ppmvd) | NOx Lbs/Hr | O2 (%) | Stack Flow
(dscfm) | CO Raw
(ppmvd) | CO @15%O2
(ppmvd) | CO Lbs/Hr | |-----------------|--------------------|-----------------------|------------|---------|-----------------------|-------------------|----------------------|-----------| | 10/01/2015 8:43 | 39.71 V | 26.44 V | 2.95 V | 12.04 V | 10351.28 V | 629.80 V | 419.39 V | 28.43 \ | | 10/01/2015 8:44 | 40.08 V | 26.82 V | 2.98 V | 12.08 V | 10363.39 V | 629.80 V | 421.41 V | 28.46 V | | 10/01/2015 8:45 | 39.25 V | 26.15 V | 2.91 V | 12.04 V | 10335.25 V | 640.10 V | 426.37 V | 28.85 V | | 10/01/2015 8:46 | 39.35 V | 26.21 V | 2.91 V | 12.04 V | 10327.43 V | 640.40 V | 426.57 V | 28.84 \ | | 10/01/2015 8:47 | 39.81 V | 26.31 V | 2.94 V | 11.97 V | 10286.74 V | 627.50 V | 414.70 V | 28.15 V | | 10/01/2015 8:48 | 40.19 V | 26.89 V | 3.03 V | 12.08 V | 10496.67 V | 627.90 V | 420.14 V | 28.74 V | | 10/01/2015 8:49 | 40.39 V | 26.90 V | 3.03 V | 12.04 V | 10449.33 V | 623.90 V | 415.46 V | 28.43 V | | 10/01/2015 8:50 | 39.28 V | 26.23 V | 2.94 V | 12.07 V | 10446.93 V | 641.60 V | 428.46 V | 29.23 V | | 10/01/2015 8:51 | 39.27 V | 26.43 V | 2.98 V | 12.14 V | 10568.67 V | 637,70 V | 429.26 V | 29.39 V | | 10/01/2015 8:52 | 39.46 V | 26.40 V | 2.93 V | 12.08 V | 10357.65 V | 642.80 V | 430.11 V | 29.03 V | | 10/01/2015 8:53 | 39.60 V | 26.38 V | 2.95 V | 12.04 V | 10370.45 V | 633.70 V | 422.11 V | 28.66 V | | 10/01/2015 8:54 | 39.28 V | 26.36 V | 2.97 V | 12.11 V | 10526.21 V | 642.00 V | 430.80 V | 29.47 V | | 10/01/2015 8:55 | 40.13 V | 26.72 V | 2.99 V | 12.04 V | 10403.31 V | 629.80 V | 419.39 V | 28.57 V | | 10/01/2015 8:56 | 39.88 V | 26.43 V | 2.95 V | 12.00 V | 10324.02 V | 633.70 V | 419.98 V | 28.53 V | | 10/01/2015 8:57 | 41.34 V | 27.53 V | 3.06 V | 12.04 V | 10338.35 V | 611.20 V | 407.01 V | 27.56 V | | 10/01/2015 8:58 | 39.67 V | 26.09 V | 2.90 V | 11.93 V | 10200.41 V | 629.80 V | 414.13 V | 28.02 V | | 10/01/2015 8:59 | 39.78 V | 26.57 V | 2.96 V | 12.07 V | 10380.87 V | 631.90 V | 421.98 V | 28,61 V | | 10/01/2015 9:00 | 39.60 V | 26.30 V | 2.94 V | 12.02 V | 10354.54 V | 626.00 V | 415.69 V | 28.27 V | | 10/01/2015 9:01 | 39.11 V | 26.05 V | 2.91 V | 12.04 V | 10365.33 V | 636.90 V | 424.24 V | 28.79 V | | 10/01/2015 9:02 | 39.25 V | 26.14 V | 2.89 V | 12.04 V | 10251.42 V | 640.80 V | 426.72 V | 28.65 V | | 10/01/2015 9:03 | 38.83 V | 25.73 V | 2.84 V | 12.00 V | 10197.10 V | 647.50 V | 429.12 V | 28.79 V | | 10/01/2015 9:04 | 38.27 V | 25.41 V | 2.80 V | 12.02 V | 10216.27 V | 645.00 V | 428.31 V | 28.74 V | | 10/01/2015 9:05 | 39.11 V | 26.12 V | 2.87 V | 12.07 V | 10247.25 V | 634.80 V | 423,92 V | 28.37 V | | 10/01/2015 9:06 | 40.12 V | 26.64 V | 2.93 V | 12.02 V | 10181.18 V | 620.80 V | 412.24 V | 27.56 V | | 10/01/2015 9:07 | 39.78 V | 26.22 V | 2.89 V | 11.95 V | 10128.23 V | 627.40 V | 413.48 V | 27.71 V | | 10/01/2015 9:08 | 39.32 V | 25.78 V | 2.85 V | 11.90 V | 10102.46 V | 631.90 V | 414.36 V | 27.84 V | | 10/01/2015 9:09 | 40.40 V | 26.63 V | 2.94 V | 11.95 V | 10147.88 V | 619.20 V | 408.07 V | 27.40 V | | 10/01/2015 9:10 | 39.92 V | 26.31 V | 2.93 V | 11.95 V | 10238.67 V | 624.20 V | 411.37 V | 27.87 V | | 10/01/2015 9:11 | 38,66 V | 25.75 V | 2.82 V | 12.04 V | 10164.96 V | 639.20 V | 425.77 V | 28.33 V | | 10/01/2015 9:12 | 39.14 V | 25.94 V | 2.84 V | 12.00 V | 10101.90 V | 635.00 V | 420.84 V | 27.97 V | | Average: | 39.60 | 26.33 | 2.93 | 12.03 | 10307.47 | 632.74 | 420.71 | 28.44 | | Maximum: | 41.34 | 27.53 | 3.06 | 12.14 | 10568.67 | 647.50 | 430.80 | 29.47 | | Minimum: | 38.27 | 25.41 | 2.80 | 11.90 | 10101.90 | 611.20 | 407.01 | 27.40 | OCSD P2 Unit 5 Report Start Date/Time : Thu 10/01/2015 8:43 Report End Date/Time: Thu 10/01/2015 9:12 | DATE/TIME | ICE % Load | Digester Gas | Natural Gas | NOx @15%O2 | CO @15%O2 | - H X - | | |-----------------|------------|--------------|--------------|------------|-----------|---------|--| | | | Flow (dscfm) | Flow (dscfm) | (ppmvd) | (ppmvd) | | | | 10/01/2015 8:43 | 89.11 | 752.12 | 14.93 | 26.44 | 419.39 | | | | 10/01/2015 8:44 | 83.15 | 749.07 | 15.07 | 26.82 | 421.41 | | | | 10/01/2015 8:45 | 86.24 | 750.69 | 14.93 | 26.15 | 426.37 | | | | 10/01/2015 8:46 | 87.46 | 749.88 | 15.07 | 26.21 | 426.57 | | | | 10/01/2015 8:47 | 91.15 | 752.93 | 15.07 | 26.31 | 414.70 | | | | 10/01/2015 8:48 | 85.42 | 759.02 | 15.07 | 26.89 | 420.14 | | | | 10/01/2015 8:49 | 86.05 | 759.02 | 15.21 | 26.90 | 415.46 | | | | 10/01/2015 8:50 | 85.21 | 756.18 | 15.48 | 26.23 | 428.46 | | | | 10/01/2015 8:51 | 87.09 | 759.02 | 15.48 | 26.43 | 429.26 | | | | 10/01/2015 8:52 | 81.29 | 748.87 | 14.93 | 26.40 | 430.11 | | | | 10/01/2015 8:53 | 81.52 | 753.33 | 14.93 | 26.38 | 422.11 | | | | 10/01/2015 8:54 | 80.64 | 759.22 | 14.93 | 26.36 | 430.80 | | | | 10/01/2015 8:55 | 83.19 | 755.57 | 15.21 | 26.72 | 419.39 | | | | 10/01/2015 8:56 | 81.21 | 753.33 | 15.21 | 26.43 | 419.98 | | | | 10/01/2015 8:57 | 86.00 | 750.69 | 15.21 | 27.53 | 407.01 | | | | 10/01/2015 8:58 | 84.87 | 750.29 | 15.07 | 26.09 | 414.13 | | | | 10/01/2015 8:59 | 86.69 | 751.91 | 15.07 | 26.57 | 421.98 | | | | 10/01/2015 9:00 | 83.23 | 754.55 | 14.93 | 26.30 | 415.69 | | | | 10/01/2015 9:01 | 89.03 | 752.72 | 15.07 | 26.05 | 424.24 | | | | 10/01/2015 9:02 | 87.59 | 744.40 | 15.07 | 26.14 | 426.72 | | | | 10/01/2015 9:03 | 82.42 | 744.00 | 15.07 | 25.73 | 429.12 | | | | 10/01/2015 9:04 | 85.94 | 744.60 | 14.65 | 25.41 | 428.31 | | | | 10/01/2015 9:05 | 79.45 | 742.37 | 14.79 | 26.12 | 423.92 | | | | 10/01/2015 9:06 | 80.82 | 741.97 | 14.65 | 26.64 | 412.24 | | | | 10/01/2015 9:07 | 90.56 | 744.00 | 14.51 | 26.22 | 413.48 | | | | 10/01/2015 9:08 | 84.54 | 745.21 | 14.93 | 25.78 | 414.36 | | | | 10/01/2015 9:09 | 78.51 | 744.81 | 14.93 | 26.63 | 408.07 | | | | 10/01/2015 9:10 | 83.72 | 751.91 | 14.79 | 26.31 | 411.37 | | | | 10/01/2015 9:11 | 86.91 | 737.70 | 15.07 | 25.75 | 425.77 | | | | 10/01/2015 9:12 | 84.34 | 737.50 | 14.65 | 25.94 | 420.84 | | | | Total: | | | | | | | | | Average: | 84.78 | 749.90 | 15.00 | 26.33 | 420.71 | | | | Maximum: | 91.15 | 759.22 | 15.48 | 27.53 | 430.80 | | | | Minimum: | 78.51 | 737.50 | 14.51 | 25.41 | 407.01 | | | R.3 OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 9:31 Report End Date/Time: Thu 10/01/2015 10:00 | DATE/TIME | NOx Raw
(ppmvd) | NOx @15%O2
(ppmvd) | NOx Lbs/Hr | O2 (%) | Stack Flow
(dscfm) | CO Raw
(ppmvd) | CO @15%O2
(ppmvd) | CO Lbs/Hr | |------------------|--------------------|-----------------------|------------|---------|-----------------------|-------------------|----------------------|-----------| | | (рршча) | (рріпуа) | | | (daciiii) | (ррпіча) | (рршча) | | | 10/01/2015 9:31 | 41.38 V | 27.06 V | 2.98 V | 11.88 V | 10031.34 V | 614.00 V | 401.51 V | 26.86 V | | 10/01/2015 9:32 | 40.33 V | 26.59 V | 2.94 V | 11.95 V | 10160.84 V | 624.20 V | 411.48 V | 27.66 V | | 10/01/2015 9:33 | 39.36 V | 26.01 V | 2.88 V | 11.97 V | 10197.19 V | 629.50 V | 416.02 V | 27.99 V | | 10/01/2015 9:34 | 39.54 V | 26.21 V | 2.88 V | 12.00 V | 10148.60 V | 634.10 V | 420.24 V | 28.06 V | | 10/01/2015 9:35 | 39.88 V | 26.28 V | 2.90 V | 11.95 V | 10139.84 V | 633.10 V | 417.23 V | 27.99 V | | 10/01/2015 9:36 | 38.52 V | 25.45 V | 2.79 V | 11.97 V | 10113.16 V | 641.70 V | 423.97 V | 28.30 V | | 10/01/2015 9:37 | 38.73 V | 25.52 V | 2.79 V | 11.95 V | 10061.42 V | 640.10 V | 421.73 V | 28.09 V | | 10/01/2015 9:38 | 38.35 V | 25.23 V | 2.76 V | 11.93 V | 10018.46 V | 651.00 V | 428.19 V | 28.44 V | | 10/01/2015 9:39 | 39.18 V | 25.69 V | 2.79 V | 11.90 V | 9944.59 V | 642.80 V | 421.51 V | 27.88 V | | 10/01/2015 9:40 | 38.73 V | 25.20 V | 2.74 V | 11.83 V | 9849.31 V | 637.50 V | 414.81 V | 27.38 V | | 10/01/2015 9:41 | 39.22 V | 25.72 V | 2.82 V | 11.90 V | 10014.20 V | 640.50 V | 420.00 V | 27.97 V | | 10/01/2015 9:42 | 38.47 V | 25.49 V | 2.76 V | 12.00 V | 10018.27 V | 648.60 V | 429.73 V | 28.34 V | | 10/01/2015 9:43 | 38.52 V | 25.19 V | 2.78 V | 11.88 V | 10065.60 V | 638.50 V | 417.53 V | 28.03 V | | 10/01/2015 9:44 | 38.42 V | 25.39 V | 2.79 V | 11.97 V | 10116.90 V | 638.50 V | 421.97 V | 28.17 V | | 10/01/2015 9:45 | 39.35 V | 25.80 V | 2.83 V | 11.90 V | 10035.52 V | 630.90 V | 413.71 V | 27.61 V | | 10/01/2015 9:46 | 39.47 V | 25.88 V | 2.85 V | 11.90 V | 10065.14 V | 629.10 V | 412.53 V | 27.61 V | | 10/01/2015 9:47 | 37.96 V | 24.96 V | 2.74 V | 11.93 V | 10068.53 V | 650.00 V | 427.42 V | 28.54 V | |
10/01/2015 9:48 | 39.22 V | 25.72 V | 2.81 V | 11.90 V | 9998.20 V | 629.20 V | 412.59 V | 27.43 V | | 10/01/2015 9:49 | 38.24 V | 25.35 V | 2.78 V | 12.00 V | 10145.16 V | 650.30 V | 431.10 V | 28.77 V | | 10/01/2015 9:50 | 38.16 V | 24.95 V | 2.73 V | 11.88 V | 9989.00 V | 653.10 V | 426.96 V | 28.45 V | | 10/01/2015 9:51 | 38.67 V | 25.16 V | 2.77 V | 11.83 V | 9992.14 V | 630.90 V | 410.51 V | 27.49 V | | 10/01/2015 9:52 | 38.42 V | 25.20 V | 2.74 V | 11.91 V | 9931.06 V | 639.20 V | 419.26 V | 27.68 V | | 10/01/2015 9:53 | 39.15 V | 25.48 V | 2.77 V | 11.84 V | 9864.96 V | 638.90 V | 415.83 V | 27.49 V | | 10/01/2015 9:54 | 38.87 V | 25.29 V | 2.77 V | 11.83 V | 9941.88 V | 631.70 V | 411.03 V | 27.39 V | | 10/01/2015 9:55 | 36.84 V | 24.42 V | 2.65 V | 12.00 V | 10042.15 V | 668.40 V | 443.10 V | 29.27 V | | 10/01/2015 9:56 | 38.41 V | 25.19 V | 2.74 V | 11.91 V | 9939.06 V | 639.60 V | 419.53 V | 27.72 V | | 10/01/2015 9:57 | 38.70 V | 25.46 V | 2.77 V | 11.93 V | 9995.57 V | 641.00 V | 421.62 V | 27.94 V | | 10/01/2015 9:58 | 38.52 V | 25.20 V | 2.71 V | 11.88 V | 9802.50 V | 643.30 V | 420.78 V | 27.50 V | | 10/01/2015 9:59 | 38.73 V | 25.21 V | 2.72 V | 11.84 V | 9809.10 V | 639.70 V | 416.35 V | 27.36 V | | 10/01/2015 10:00 | 39.28 V | 25.57 V | 2.75 V | 11.84 V | 9756.53 V | 637.80 V | 415.23 V | 27.14 V | | Average: | 38.89 | 25.53 | 2.79 | 11.91 | 10008.54 | 638.91 | 419.45 | 27.88 | | Maximum: | 41.38 | 27.06 | 2.98 | 12.00 | 10197.19 | 668.40 | 443.10 | 29.27 | | Minimum: | 36.84 | 24.42 | 2.65 | 11.83 | 9756.53 | 614.00 | 401.51 | 26.86 | Unit Name: OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 9:31 Report End Date/Time: Thu 10/01/2015 10:00 | DATE/TIME | ICE % Load | Digester Gas
Flow (dscfm) | Natural Gas
Flow (dscfm) | NOx @15%O2
(ppmvd) | CO @15%O2
(ppmvd) | | | |------------------|------------|------------------------------|-----------------------------|-----------------------|----------------------|---|--| | 10/01/2015 9:31 | 83.12 | 742.37 | 14.65 | 27.06 | 401.51 | 1 | | | 10/01/2015 9:32 | 80.01 | 746.03 | 14.65 | 26.59 | 411.48 | | | | 10/01/2015 9:33 | 84.37 | 746.84 | 14.65 | 26.01 | 416.02 | | | | 10/01/2015 9:34 | 83.20 | 740.34 | 15.07 | 26.21 | 420.24 | | | | 10/01/2015 9:35 | 84.28 | 744.20 | 14.93 | 26.28 | 417.23 | | | | 10/01/2015 9:36 | 85.90 | 741.15 | 14.37 | 25.45 | 423.97 | | | | 10/01/2015 9:37 | 85.65 | 738.92 | 14.65 | 25.52 | 421.73 | | | | 10/01/2015 9:38 | 78.99 | 736.48 | 14.93 | 25,23 | 428.19 | | | | 10/01/2015 9:39 | 82.59 | 733.64 | 14.65 | 25.69 | 421.51 | | | | 10/01/2015 9:40 | 82.16 | 732.22 | 14.65 | 25.20 | 414.81 | | | | 10/01/2015 9:41 | 84.13 | 738.72 | 14.79 | 25.72 | 420.00 | | | | 10/01/2015 9:42 | 80.87 | 731.41 | 14.65 | 25.49 | 429.73 | | | | 10/01/2015 9:43 | 83.38 | 745.21 | 14,51 | 25.19 | 417.53 | | | | 10/01/2015 9:44 | 78.43 | 740.54 | 14.79 | 25.39 | 421.97 | | | | 10/01/2015 9:45 | 84.10 | 740.34 | 14.79 | 25.80 | 413.71 | | | | 10/01/2015 9:46 | 81.50 | 742.37 | 14.93 | 25.88 | 412.53 | | | | 10/01/2015 9:47 | 79.27 | 740.95 | 14.65 | 24.96 | 427.42 | | | | 10/01/2015 9:48 | 79.67 | 737.50 | 14.79 | 25.72 | 412.59 | | | | 10/01/2015 9:49 | 81.90 | 740.54 | 14.65 | 25.35 | 431.10 | | | | 10/01/2015 9:50 | 79.59 | 739.12 | 14.79 | 24.95 | 426.96 | | | | 10/01/2015 9:51 | 79.05 | 743.18 | 14.65 | 25.16 | 410.51 | | | | 10/01/2015 9:52 | 85.16 | 732.63 | 14.51 | 25.20 | 419.26 | | | | 10/01/2015 9:53 | 86.53 | 733.44 | 14.51 | 25.48 | 415.83 | | | | 10/01/2015 9:54 | 79.99 | 739.33 | 14.65 | 25.29 | 411.03 | | | | 10/01/2015 9:55 | 81.10 | 733.24 | 14.37 | 24.42 | 443.10 | | | | 10/01/2015 9:56 | 84.36 | 733.24 | 14.51 | 25.19 | 419.53 | | | | 10/01/2015 9:57 | 81.96 | 735.88 | 14.23 | 25.46 | 421.62 | | | | 10/01/2015 9:58 | 80.70 | 724.91 | 14.51 | 25.20 | 420.78 | | | | 10/01/2015 9:59 | 81.72 | 729.38 | 14.37 | 25.21 | 416.35 | | | | 10/01/2015 10:00 | 86.06 | 724.91 | 14.51 | 25.57 | 415.23 | _ | | | Total: | | | | | | | | | Average: | 82.32 | 737.63 | 14.64 | 25.53 | 419.45 | | | | Maximum: | 86.53 | 746.84 | 15.07 | 27.06 | 443.10 | | | | Minimum: | 78.43 | 724.91 | 14.23 | 24.42 | 401.51 | | | Almega ENVIRONMENTAL Unit Name: OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 10:01 Report End Date/Time : Thu 10/01/2015 10:30 | DATE/TIME | NOx Raw
(ppmvd) | NOx @15%O2
(ppmvd) | NOx Lbs/Hr | O2 (%) | Stack Flow
(dscfm) | CO Raw
(ppmvd) | CO @15%O2
(ppmvd) | CO Lbs/Hr | |------------------|--------------------|-----------------------|------------|---------|-----------------------|-------------------|----------------------|-----------| | 10/01/2015 10:01 | 38.45 V | 25.03 V | 2.68 V | 11.84 V | 9710.91 V | 639.90 V | 416.48 V | 27.10 V | | 10/01/2015 10:02 | 38.62 V | 25.14 V | 2.76 V | 11.84 V | 9957.56 V | 627.50 V | 408.41 V | 27.25 V | | 10/01/2015 10:03 | 39.38 V | 26.03 V | 2.81 V | 11.97 V | 9946.45 V | 633.80 V | 418.87 V | 27.49 V | | 10/01/2015 10:04 | 39.56 V | 26.06 V | 2.86 V | 11.95 V | 10064.10 V | 636.90 V | 419.62 V | 27.95 V | | 10/01/2015 10:05 | 38.55 V | 25.35 V | 2.76 V | 11.93 V | 9982.70 V | 644.70 V | 423.93 V | 28.07 V | | 10/01/2015 10:06 | 39.67 V | 26.21 V | 2.83 V | 11.97 V | 9941.58 V | 630.20 V | 416.37 V | 27.32 V | | 10/01/2015 10:07 | 38.72 V | 25.52 V | 2.76 V | 11.95 V | 9922.25 V | 638.50 V | 420.79 V | 27.63 V | | 10/01/2015 10:08 | 39.21 V | 25.91 V | 2.83 V | 11.97 V | 10055.41 V | 632.70 V | 418.14 V | 27.74 V | | 10/01/2015 10:09 | 39.31 V | 25.90 V | 2.84 V | 11.95 V | 10061.72 V | 644.00 V | 424.30 V | 28.26 V | | 10/01/2015 10:10 | 42.22 V | 27.47 V | 3.04 V | 11.83 V | 10037.10 V | 603.90 V | 392.94 V | 26.43 V | | 10/01/2015 10:11 | 41.86 V | 27.74 V | 3.09 V | 12.00 V | 10302.16 V | 613.00 V | 406.26 V | 27.54 V | | 10/01/2015 10:12 | 41.44 V | 27.51 V | 3.03 V | 12.01 V | 10205.30 V | 613.30 V | 407.14 V | 27.29 V | | 10/01/2015 10:13 | 40.98 V | 27.15 V | 2.98 V | 12.00 V | 10148.15 V | 625.00 V | 414.09 V | 27.66 V | | 10/01/2015 10:14 | 40.50 V | 26.83 V | 2.93 V | 11.99 V | 10095.93 V | 631.50 V | 418.28 V | 27.80 V | | 10/01/2015 10:15 | 40.53 V | 26.86 V | 2.97 V | 12.00 V | 10212.35 V | 629.10 V | 416.93 V | 28.02 V | | 10/01/2015 10:16 | 41.09 V | 27.44 V | 3.03 V | 12.07 V | 10269.27 V | 628.80 V | 419.91 V | 28.16 V | | 10/01/2015 10:17 | 40.01 V | 26.64 V | 2.94 V | 12.04 V | 10251.12 V | 631.90 V | 420.79 V | 28.25 V | | 10/01/2015 10:18 | 40.15 V | 26.61 V | 2.93 V | 12.00 V | 10169.55 V | 629.40 V | 417.13 V | 27.91 V | | 10/01/2015 10:19 | 39.78 V | 26.42 V | 2.91 V | 12.02 V | 10189.58 V | 630.50 V | 418.68 V | 28.02 V | | 10/01/2015 10:20 | 40.47 V | 26.67 V | 2.96 V | 11.95 V | 10190.75 V | 629.40 V | 414.80 V | 27.97 V | | 10/01/2015 10:21 | 40.95 V | 27.34 V | 3.02 V | 12.06 V | 10290.18 V | 625.60 V | 417.66 V | 28.07 V | | 10/01/2015 10:22 | 41.01 V | 27.44 V | 3.01 V | 12.08 V | 10246.13 V | 621.90 V | 416.13 V | 27.79 V | | 10/01/2015 10:23 | 40.12 V | 26.79 V | 2.92 V | 12.07 V | 10141.38 V | 631.10 V | 421.45 V | 27.91 V | | 10/01/2015 10:24 | 40.57 V | 26.89 V | 2.94 V | 12.00 V | 10099.21 V | 628.70 V | 416.66 V | 27.69 V | | 10/01/2015 10:25 | 39.95 V | 26.48 V | 2.88 V | 12.00 V | 10061.49 V | 631.50 V | 418.52 V | 27.71 V | | 10/01/2015 10:26 | 40.40 V | 26.62 V | 2.91 V | 11.95 V | 10058.75 V | 626.40 V | 412.70 V | 27.48 V | | 10/01/2015 10:27 | 40.57 V | 26.94 V | 2.96 V | 12.02 V | 10170.08 V | 619.20 V | 411.17 V | 27.46 V | | 10/01/2015 10:28 | 40.22 V | 26.71 V | 2.91 V | 12.02 V | 10095.41 V | 630.50 V | 418.68 V | 27.76 V | | 10/01/2015 10:29 | 40.08 V | 26.56 V | 2.91 V | 12.00 V | 10126.45 V | 636.40 V | 421.77 V | 28.10 V | | 10/01/2015 10:30 | 39.78 V | 26.49 V | 2.93 V | 12.04 V | 10275.18 V | 625.30 V | 416.40 V | 28.02 V | | Average: | 40.14 | 26.56 | 2.91 | 11.98 | 10109.27 | 629.02 | 416.17 | 27.73 | | Maximum: | 42.22 | 27.74 | 3.09 | 12.08 | 10302.16 | 644.70 | 424.30 | 28.26 | | Minimum: | 38.45 | 25.03 | 2.68 | 11.83 | 9710.91 | 603.90 | 392.94 | 26.43 | ### **Engine 5 Minute Emissions Data** 10/1/2015 10:33:25 AM Page 1 of 1 **Unit Name:** OCSD P2 Unit 5 Report Start Date/Time : Thu 10/01/2015 10:01 Report End Date/Time : Thu 10/01/2015 10:30 | DATE/TIME | ICE % Load | Digester Gas | Natural Gas | NOx @15%O2 | CO @15%O2 | | | |------------------|------------|--------------|--------------|------------|-----------|--|--| | | | Flow (dscfm) | Flow (dscfm) | (ppmvd) | (ppmvd) | | | | L | | | | | | | | | 10/01/2015 10:01 | 83.94 | 722.07 | 14.23 | 25.03 | 416.48 | | | | 10/01/2015 10:02 | 80.49 | 740.54 | 14.51 | 25.14 | 408.41 | | | | 10/01/2015 10:03 | 85.20 | 728.57 | 14.23 | 26.03 | 418.87 | | | | 10/01/2015 10:04 | 79.59 | 739.12 | 14.65 | 26.06 | 419.62 | | | | 10/01/2015 10:05 | 76.46 | 734.66 | 14.51 | 25.35 | 423.93 | | | | 10/01/2015 10:06 | 82.73 | 727.96 | 14.51 | 26.21 | 416.37 | | | | 10/01/2015 10:07 | 78.33 | 728.16 | 14.65 | 25.52 | 420.79 | | | | 10/01/2015 10:08 | 82.51 | 735.67 | 14.93 | 25.91 | 418.14 | | | | 10/01/2015 10:09 | 84.18 | 738.72 | 14.79 | 25.90 | 424.30 | | | | 10/01/2015 10:10 | 85.90 | 746.63 | 14.65 | 27.47 | 392.94 | | | | 10/01/2015 10:11 | 89.07 | 751.91 | 15.07 | 27.74 | 406.26 | | | | 10/01/2015 10:12 | 86.41 | 744.00 | 14.65 | 27.51 | 407.14 | | | | 10/01/2015 10:13 | 84.51 | 740.75 | 14.93 | 27.15 | 414.09 | | | | 10/01/2015 10:14 | 81.86 | 737.70 | 14.51 | 26.83 | 418.28 | | | | 10/01/2015 10:15 | 85.32 | 745.82 | 14.65 | 26.86 | 416.93 | | | | 10/01/2015 10:16 | 84.44 | 743.79 | 14.93 | 27.44 | 419.91 | | | | 10/01/2015 10:17 | 81.66 | 744.60 | 14.93 | 26.64 | 420.79 | | | | 10/01/2015 10:18 | 81.21 | 742.37 | 14.79 | 26.61 | 417.13 | | | | 10/01/2015 10:19 | 91.40 | 742.37 | 14.79 | 26.42 | 418.68 | | | | 10/01/2015 10:20 | 86.76 | 748.06 | 14.93 | 26.67 | 414.80 | | | | 10/01/2015 10:21 | 83.63 | 746.03 | 14.65 | 27.34 | 417.66 | | | | 10/01/2015 10:22 | 84.34 | 740.54 | 14.93 | 27.44 | 416.13 | | | | 10/01/2015 10:23 | 80.82 | 734.45 | 14.79 | 26.79
 421.45 | | | | 10/01/2015 10:24 | 84.94 | 737.30 | 14.65 | 26.89 | 416.66 | | | | 10/01/2015 10:25 | 84.70 | 734.45 | 14.65 | 26.48 | 418.52 | | | | 10/01/2015 10:26 | 86.36 | 738.72 | 14.65 | 26.62 | 412.70 | | | | 10/01/2015 10:27 | 83.12 | 741.36 | 14.51 | 26.94 | 411.17 | | | | 10/01/2015 10:28 | 82.19 | 735.06 | 14.93 | 26.71 | 418.68 | | | | 10/01/2015 10:29 | 89.25 | 739.12 | 14.79 | 26.56 | 421.77 | | | | 10/01/2015 10:30 | 84.51 | 746.63 | 14.79 | 26.49 | 416.40 | | | | Total: | | | | | | | | | Average: | 83.86 | 739.24 | 14.70 | 26.56 | 416.17 | | | | Maximum: | 91.40 | 751.91 | 15.07 | 27.74 | 424.30 | | | | Minimum: | 76.46 | 722.07 | 14.23 | 25.03 | 392.94 | | | Page 1 of 1 Unit Name: OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 10:31 Report End Date/Time: Thu 10/01/2015 11:00 | DATE/TIME | NOx Raw
(ppmvd) | NOx @15%O2
(ppmvd) | NOx Lbs/Hr | O2 (%) | Stack Flow
(dscfm) | CO Raw
(ppmvd) | CO @15%O2
(ppmvd) | CO Lbs/Hr | |------------------|--------------------|-----------------------|------------|---------|-----------------------|-------------------|----------------------|-----------| | 10/01/2015 10:31 | 40.43 V | 26.65 V | 2.96 V | 11.95 V | 10219.61 V | 625.60 V | 412.29 V | 27.88 V | | 10/01/2015 10:32 | 41.72 V | 27.56 V | 3.07 V | 11.97 V | 10251.94 V | 612.60 V | 404.74 V | 27.39 V | | 10/01/2015 10:33 | 40.19 V | 26.77 V | 3.00 V | 12.04 V | 10405.65 V | 629.10 V | 419.05 V | 28.55 V | | 10/01/2015 10:34 | 40.39 V | 26.61 V | 2.97 V | 11.95 V | 10260.21 V | 622.20 V | 409.94 V | 27.84 V | | 10/01/2015 10:35 | 40.46 V | 26.74 V | 2.98 V | 11.97 V | 10284.36 V | 625.90 V | 413.64 V | 28.07 V | | 10/01/2015 10:36 | 39.92 V | 26.38 V | 2.95 V | 11.97 V | 10292.12 V | 627.70 V | 414.83 V | 28.17 V | | 10/01/2015 10:37 | 39.60 V | 26.45 V | 2.95 V | 12.07 V | 10383,59 V | 635.30 V | 424.25 V | 28.77 V | | 10/01/2015 10:38 | 39.85 V | 26.41 V | 2.97 V | 12.00 V | 10380.59 V | 627.10 V | 415.60 V | 28.39 V | | 10/01/2015 10:39 | 40.19 V | 26.70 V | 2.98 V | 12.02 V | 10347.86 V | 630.20 V | 418.60 V | 28.44 V | | 10/01/2015 10:40 | 38.94 V | 25.86 V | 2.88 V | 12.02 V | 10311.66 V | 648.50 V | 430.63 V | 29.16 V | | 10/01/2015 10:41 | 39.85 V | 26.46 V | 2.97 V | 12.02 V | 10376.14 V | 626.50 V | 416.02 V | 28.35 V | | 10/01/2015 10:42 | 40.12 V | 26.80 V | 3.02 V | 12.07 V | 10500.57 V | 635.00 V | 424.17 V | 29.08 V | | 10/01/2015 10:43 | 39.99 V | 26.77 V | 2.99 V | 12.09 V | 10442.52 V | 636.50 V | 426.02 V | 28.99 V | | 10/01/2015 10:44 | 38.51 V | 25.45 V | 2.88 V | 11.97 V | 10410.62 V | 648.40 V | 428.51 V | 29.44 V | | 10/01/2015 10:45 | 39.28 V | 26.28 V | 2.98 V | 12.08 V | 10575.55 V | 633,50 V | 423.89 V | 29.22 V | | 10/01/2015 10:46 | 39.75 V | 26.48 V | 2.96 V | 12.04 V | 10370.45 V | 639.50 V | 425.97 V | 28.92 V | | 10/01/2015 10:47 | 38.69 V | 25.88 V | 2.89 V | 12.08 V | 10425.41 V | 646.00 V | 432.13 V | 29.37 V | | 10/01/2015 10:48 | 38.80 V | 25.65 V | 2.85 V | 11.98 V | 10249.32 V | 645.40 V | 426.65 V | 28.85 V | | 10/01/2015 10:49 | 39.91 V | 26.30 V | 2.95 V | 11.95 V | 10319.43 V | 636.10 V | 419.09 V | 28.63 V | | 10/01/2015 10:50 | 39.47 V | 26,21 V | 2.92 V | 12.02 V | 10333.55 V | 640.10 V | 425.05 V | 28.85 V | | 10/01/2015 10:51 | 39.28 V | 25.96 V | 2.88 V | 11.97 V | 10230.03 V | 644.30 V | 425.81 V | 28.74 V | | 10/01/2015 10:52 | 39.15 V | 25.87 V | 2.88 V | 11.97 V | 10241.07 V | 638.80 V | 422.17 V | 28.53 V | | 10/01/2015 10:53 | 39.99 V | 26.30 V | 2.94 V | 11.93 V | 10243.06 V | 633.30 V | 416.55 V | 28.29 V | | 10/01/2015 10:54 | 40.46 V | 26.61 V | 2.95 V | 11.93 V | 10176.21 V | 628.20 V | 413.20 V | 27.88 V | | 10/01/2015 10:55 | 39.57 V | 26.09 V | 2.89 V | 11.95 V | 10180.19 V | 632.80 V | 417.15 V | 28.09 V | | 10/01/2015 10:56 | 39.74 V | 26.26 V | 2.88 V | 11.97 V | 10100.33 V | 633.10 V | 418.29 V | 27.89 V | | 10/01/2015 10:57 | 39.99 V | 26.30 V | 2.88 V | 11.93 V | 10049.82 V | 631.00 V | 414.92 V | 27.65 V | | 10/01/2015 10:58 | 39.57 V | 26.15 V | 2.87 V | 11.97 V | 10119.28 V | 633.70 V | 418.80 V | 27.96 V | | 10/01/2015 10:59 | 39.12 V | 25.72 V | 2.82 V | 11.93 V | 10036.16 V | 633.70 V | 416.70 V | 27.73 V | | 10/01/2015 11:00 | 38.94 V | 25.53 V | 2.80 V | 11.90 V | 10027.82 V | 647.80 V | 424.79 V | 28.33 V | | Average: | 39.73 | 26.31 | 2.93 | 11.99 | 10284.84 | 634.26 | 419.98 | 28.45 | | Maximum: | 41.72 | 27.56 | 3.07 | 12.09 | 10575.55 | 648.50 | 432.13 | 29.44 | | Minimum: | 38.51 | 25.45 | 2.80 | 11.90 | 10027.82 | 612.60 | 404.74 | 27.39 | #### **Engine 5 Minute Emissions Data** 10/1/2015 11:06:32 AM OCSD P2 Unit 5 **Unit Name:** Report Start Date/Time: Thu 10/01/2015 10:31 Report End Date/Time: Thu 10/01/2015 11:00 | DATE/TIME | ICE % Load | Digester Gas | Natural Gas | NOx @15%O2 | CO @15%O2 | | | |------------------|------------|--------------|--------------|------------|-----------|---|---| | | | Flow (dscfm) | Flow (dscfm) | (ppmvd) | (ppmvd) | i | ļ | | | | | | | | | | | 10/01/2015 10:31 | 85.53 | 750.69 | 14.65 | 26.65 | 412.29 | | | | 10/01/2015 10:32 | 88.10 | 750.29 | 15.21 | 27.56 | 404.74 | | | | 10/01/2015 10:33 | 81.87 | 755.97 | 14.93 | 26.77 | 419.05 | | | | 10/01/2015 10:34 | 83.27 | 753.54 | 14.93 | 26.61 | 409.94 | | | | 10/01/2015 10:35 | 81.57 | 752.52 | 15.21 | 26.74 | 413.64 | | | | 10/01/2015 10:36 | 84.33 | 753.33 | 15.07 | 26.38 | 414.83 | | | | 10/01/2015 10:37 | 87.59 | 752.12 | 15.07 | 26.45 | 424.25 | | | | 10/01/2015 10:38 | 88.97 | 757.60 | 15.21 | 26.41 | 415.60 | | | | 10/01/2015 10:39 | 87.88 | 752.93 | 15.48 | 26.70 | 418.60 | | | | 10/01/2015 10:40 | 88.42 | 751.10 | 15.07 | 25.86 | 430.63 | | | | 10/01/2015 10:41 | 88.63 | 756.18 | 14.93 | 26.46 | 416.02 | | | | 10/01/2015 10:42 | 82.25 | 760.64 | 15.07 | 26.80 | 424.17 | | | | 10/01/2015 10:43 | 81.28 | 754.75 | 15.07 | 26.77 | 426.02 | | | | 10/01/2015 10:44 | 84.52 | 762.06 | 15.21 | 25.45 | 428.51 | | | | 10/01/2015 10:45 | 82.20 | 764.90 | 15.07 | 26.28 | 423.89 | | | | 10/01/2015 10:46 | 78.90 | 753.33 | 14.93 | 26.48 | 425.97 | | | | 10/01/2015 10:47 | 78.97 | 754.15 | 14.93 | 25.88 | 432.13 | | | | 10/01/2015 10:48 | 88.78 | 749.88 | 15.07 | 25.65 | 426.65 | | | | 10/01/2015 10:49 | 88.97 | 757.80 | 15.07 | 26.30 | 419.09 | | | | 10/01/2015 10:50 | 86.32 | 752.52 | 15.21 | 26.21 | 425.05 | | | | 10/01/2015 10:51 | 84.38 | 748.87 | 14.93 | 25.96 | 425.81 | | | | 10/01/2015 10:52 | 88.53 | 749.48 | 15.07 | 25.87 | 422.17 | | | | 10/01/2015 10:53 | 83.71 | 753.54 | 14.93 | 26.30 | 416.55 | | | | 10/01/2015 10:54 | 85.66 | 748.46 | 14.93 | 26.61 | 413.20 | | | | 10/01/2015 10:55 | 84.81 | 747.04 | 14.93 | 26.09 | 417.15 | | | | 10/01/2015 10:56 | 85.65 | 739.73 | 14.65 | 26.26 | 418.29 | | | | 10/01/2015 10:57 | 87.67 | 739.53 | 14.65 | 26.30 | 414.92 | | | | 10/01/2015 10:58 | 82.78 | 740.95 | 14.65 | 26.15 | 418.80 | | | | 10/01/2015 10:59 | 84.29 | 738.72 | 14.51 | 25.72 | 416.70 | | | | 10/01/2015 11:00 | 82.90 | 739.53 | 14.93 | 25.53 | 424.79 | | | | Total: | | | | -,,,,, | | | | | Average: | 84.96 | 751.40 | 14.98 | 26.31 | 419.98 | | | | Maximum: | 88.97 | 764.90 | 15.48 | 27.56 | 432.13 | | | | Minimum: | 78.90 | 738.72 | 14.51 | 25.45 | 404.74 | | | Page 1 of 1 Almega = **Unit Name:** OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 11:16 Report End Date/Time: Thu 10/01/2015 11:45 | DATE/TIME | NOx Raw
(ppmvd) | NOx @15%O2
(ppmvd) | NOx Lbs/Hr | O2 (%) | Stack Flow (dscfm) | CO Raw
(ppmvd) | CO @15%O2
(ppmvd) | CO Lbs/Hr | |------------------|--------------------|-----------------------|------------|---------|--------------------|-------------------|----------------------|-----------| | | | | | | | | | | | 10/01/2015 11:16 | 38.48 V | 25.11 V | 2.69 V | 11.86 V | 9756.93 V | 640.80 V | 418.22 V | 27.27 V | | 10/01/2015 11:17 | 38.59 V | 25.04 V | 2.74 V | 11.81 V | 9903.70 V | 637.90 V | 413.93 V | 27.55 V | | 10/01/2015 11:18 | 40.12 V | 26.11 V | 2.82 V | 11.84 V | 9811.45 V | 621.00 V | 404.18 V | 26.57 V | | 10/01/2015 11:19 | 38.91 V | 25.25 V | 2.72 V | 11.81 V | 9734.89 V | 637.70 V | 413.80 V | 27.07 V | | 10/01/2015 11:20 | 39.32 V | 25.52 V | 2.75 V | 11.81 V | 9737.56 V | 631.00 V | 409.56 V | 26.80 V | | 10/01/2015 11:21 | 40.05 V | 25.87 V | 2.80 V | 11.77 V | 9759.90 V | 618.50 V | 399.47 V | 26.32 V | | 10/01/2015 11:22 | 39.68 V | 25.75 V | 2.79 V | 11.81 V | 9800.83 V | 626.40 V | 406.46 V | 26.77 V | | 10/01/2015 11:23 | 40.39 V | 26.08 V | 2.83 V | 11.76 V | 9770.94 V | 616.40 V | 398.00 V | 26.26 V | | 10/01/2015 11:24 | 40.51 V | 26.10 V | 2.86 V | 11.74 V | 9833.11 V | 613.70 V | 395.40 V | 26.32 V | | 10/01/2015 11:25 | 40.75 V | 26.45 V | 2.90 V | 11.81 V | 9908.47 V | 612.70 V | 397.68 V | 26.47 V | | 10/01/2015 11:26 | 40.26 V | 26.20 V | 2.85 V | 11.84 V | 9867.60 V | 622.30 V | 405.03 V | 26.78 V | | 10/01/2015 11:27 | 39.35 V | 25.53 V | 2.78 V | 11.81 V | 9868.82 V | 629.90 V | 408.73 V | 27.11 V | | 10/01/2015 11:28 | 39.85 V | 25.81 V | 2.82 V | 11.79 V | 9861.87 V | 623.60 V | 403.87 V | 26.82 V | | 10/01/2015 11:29 | 39.67 V | 25.81 V | 2.82 V | 11.83 V | 9920.63 V | 632.40 V | 411.37 V | 27.36 V | | 10/01/2015 11:30 | 40.09 V | 25.89 V | 2.85 V | 11.76 V | 9912.96 V | 625.10 V | 403.62 V | 27.02 V | | 10/01/2015 11:31 | 39.44 V | 25.66 V | 2.79 V | 11.83 V | 9864.88 V | 631.90 V | 411.16 V | 27.18 V | | 10/01/2015 11:32 | 39.54 V | 25.54 V | 2.81 V | 11.77 V | 9903.14 V | 627.20 V | 405.09 V | 27.09 V | | 10/01/2015 11:33 | 40.47 V | 26.54 V | 2.93 V | 11.90 V | 10096.53 V | 626.10 V | 410.56 V | 27.57 V | | 10/01/2015 11:34 | 39.84 V | 25.93 V | 2.85 V | 11.84 V | 9968.44 V | 620.80 V | 404.05 V | 26.99 V | | 10/01/2015 11:35 | 38.94 V | 25.34 V | 2.76 V | 11.83 V | 9888.98 V | 648.20 V | 421.77 V | 27.95 V | | 10/01/2015 11:36 | 39.61 V | 25.66 V | 2.81 V | 11.79 V | 9888.27 V | 625.70 V | 405.34 V | 26.98 V | | 10/01/2015 11:37 | 38.97 V | 25.28 V | 2.77 V | 11.81 V | 9906.84 V | 642.40 V | 416.73 V | 27.75 V | | 10/01/2015 11:38 | 39.21 V |
25.51 V | 2.80 V | 11.83 V | 9955.11 V | 635.50 V | 413.50 V | 27.59 V | | 10/01/2015 11:39 | 38.94 V | 25.46 V | 2.79 V | 11.88 V | 9992.06 V | 634.50 V | 414.91 V | 27.65 V | | 10/01/2015 11:40 | 39.50 V | 25.70 V | 2.84 V | 11.83 V | 10023.58 V | 636.20 V | 413.96 V | 27.81 V | | 10/01/2015 11:41 | 39.77 V | 26.00 V | 2.85 V | 11.88 V | 9986.04 V | 626.40 V | 409.50 V | 27.28 V | | 10/01/2015 11:42 | 39.39 V | 25.64 V | 2.82 V | 11.84 V | 9976.67 V | 624.00 V | 406.13 V | 27.15 V | | 10/01/2015 11:43 | 39.84 V | 26.05 V | 2.86 V | 11.88 V | 10018.64 V | 632.40 V | 413.54 V | 27.63 V | | 10/01/2015 11:44 | 39.25 V | 25.67 V | 2.82 V | 11.88 V | 10008.01 V | 638.50 V | 417.53 V | 27.87 V | | 10/01/2015 11:45 | 39.57 V | 25.88 V | 2.85 V | 11.88 V | 10050.54 V | 633.10 V | 414.00 V | 27.75 V | | Average: | 39.61 | 25.75 | 2.81 | 11.82 | 9899.25 | 629.08 | 408.90 | 27.16 | | Maximum: | 40.75 | 26.54 | 2.93 | 11.90 | 10096.53 | 648.20 | 421.77 | 27.95 | | Minimum: | 38.48 | 25.04 | 2.69 | 11.74 | 9734.89 | 612.70 | 395.40 | 26.26 | #### **Engine 5 Minute Emissions Data** 10/1/2015 11:53:43 AM Page 1 of 1 **Unit Name:** OCSD P2 Unit 5 Report Start Date/Time : Thu 10/01/2015 11:16 Report End Date/Time : Thu 10/01/2015 11:45 | DATE/TIME | ICE % Load | Digester Gas | Natural Gas | NOx @15%O2 | CO @15%O2 | | | |------------------|------------|--------------|--------------|------------|-----------|--|--| | | | Flow (dscfm) | Flow (dscfm) | (ppmvd) | (ppmvd) | | | | | | | | | | | | | 10/01/2015 11:16 | 81.62 | 723.09 | 14.51 | 25.11 | 418.22 | | | | 10/01/2015 11:17 | 85.28 | 738.72 | 14.51 | 25.04 | 413.93 | | | | 10/01/2015 11:18 | 82.01 | 729.79 | 14.23 | 26.11 | 404.18 | | | | 10/01/2015 11:19 | 82.16 | 725.73 | 14.51 | 25.25 | 413.80 | | | | 10/01/2015 11:20 | 84.54 | 725.73 | 14.51 | 25.52 | 409.56 | | | | 10/01/2015 11:21 | 84.74 | 731.61 | 14.23 | 25.87 | 399.47 | | | | 10/01/2015 11:22 | 83.11 | 730.80 | 14.51 | 25.75 | 406.46 | | | | 10/01/2015 11:23 | 83.62 | 732.22 | 14.51 | 26.08 | 398.00 | | | | 10/01/2015 11:24 | 84.21 | 738.92 | 14.37 | 26.10 | 395.40 | | | | 10/01/2015 11:25 | 85.64 | 739.33 | 14.23 | 26.45 | 397.68 | | | | 10/01/2015 11:26 | 85.35 | 733.64 | 14.51 | 26.20 | 405.03 | | | | 10/01/2015 11:27 | 81.41 | 736.48 | 14.23 | 25.53 | 408.73 | | | | 10/01/2015 11:28 | 81.36 | 736.28 | 14.93 | 25.81 | 403.87 | | | | 10/01/2015 11:29 | 90.22 | 737.91 | 14.65 | 25.81 | 411.37 | | | | 10/01/2015 11:30 | 82.58 | 742.98 | 14.65 | 25.89 | 403.62 | | | | 10/01/2015 11:31 | 83.42 | 733.64 | 14.51 | 25.66 | 411.16 | | | | 10/01/2015 11:32 | 87.13 | 741.56 | 14.93 | 25.54 | 405.09 | | | | 10/01/2015 11:33 | 80.53 | 745.21 | 14.65 | 26.54 | 410.56 | | | | 10/01/2015 11:34 | 82.56 | 741.15 | 14.65 | 25.93 | 404.05 | | | | 10/01/2015 11:35 | 82.86 | 735.27 | 14.65 | 25.34 | 421.77 | | | | 10/01/2015 11:36 | 86.63 | 738.11 | 14.93 | 25.66 | 405.34 | | | | 10/01/2015 11:37 | 86.01 | 738.72 | 14.79 | 25.28 | 416.73 | | | | 10/01/2015 11:38 | 82.18 | 740.34 | 14.65 | 25.51 | 413.50 | | | | 10/01/2015 11:39 | 84.89 | 738.92 | 14.93 | 25.46 | 414.91 | | | | 10/01/2015 11:40 | 85.39 | 745.82 | 14.51 | 25.70 | 413.96 | | | | 10/01/2015 11:41 | 87.89 | 739.12 | 14.65 | 26.00 | 409.50 | | | | 10/01/2015 11:42 | 84.81 | 741.56 | 14.79 | 25.64 | 406.13 | | | | 10/01/2015 11:43 | 79.85 | 740.95 | 14.93 | 26.05 | 413.54 | | | | 10/01/2015 11:44 | 86.94 | 740.14 | 14.93 | 25.67 | 417.53 | | | | 10/01/2015 11:45 | 89.94 | 743.39 | 14.93 | 25.88 | 414.00 | | | | Total: | | | | | | | | | Average: | 84.30 | 736.90 | 14.62 | 25.75 | 408.90 | | | | Maximum: | 90.22 | 745.82 | 14.93 | 26.54 | 421.77 | | | | Minimum: | 79.85 | 723.09 | 14.23 | 25.04 | 395.40 | | | Unit Name: OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 11:46 Report End Date/Time: Thu 10/01/2015 12:15 | DATE/TIME | NOx Raw
(ppmvd) | NOx @15%O2
(ppmvd) | NOx Lbs/Hr | O2 (%) | Stack Flow
(dscfm) | CO Raw
(ppmvd) | CO @15%O2
(ppmvd) | CO Lbs/Hr | |------------------|--------------------|-----------------------|------------|---------|-----------------------|-------------------|----------------------|-----------| | 10/01/2015 11:46 | 38.79 V | 25.56 V | 2.82 V | 11.95 V | 10120.94 V | 638.90 V | 420.94 V | 28.20 V | | 10/01/2015 11:47 | 39.50 V | 26.38 V | 2.89 V | 12.07 V | 10214.37 V | 635.70 V | 424.52 V | 28.32 V | | 10/01/2015 11:48 | 39.60 V | 26.24 V | 2.84 V | 12.00 V | 9996.72 V | 632.60 V | 419.13 V | 27.58 V | | 10/01/2015 11:49 | 38.86 V | 25.55 V | 2.82 V | 11.93 V | 10114.57 V | 639.20 V | 420.32 V | 28.19 V | | 10/01/2015 11:50 | 40.11 V | 26.64 V | 2.94 V | 12.02 V | 10227.07 V | 625.30 V | 415.23 V | 27.89 V | | 10/01/2015 11:51 | 39.38 V | 26.10 V | 2.87 V | 12.00 V | 10166.86 V | 639.80 V | 424.02 V | 28.37 V | | 10/01/2015 11:52 | 39.70 V | 26.30 V | 2.88 V | 12.00 V | 10104.45 V | 626.40 V | 415.02 V | 27.60 V | | 10/01/2015 11:53 | 40.11 V | 26.71 V | 2.86 V | 12.04 V | 9954.55 V | 629.90 V | 419.46 V | 27.34 V | | 10/01/2015 11:54 | 39.74 V | 26.33 V | 2.85 V | 12.00 V | 10015.27 V | 635.70 V | 421.18 V | 27.76 V | | 10/01/2015 11:55 | 40.67 V | 26.80 V | 2.86 V | 11.95 V | 9817.40 V | 614.70 V | 405.00 V | 26.32 V | | 10/01/2015 11:56 | 39.31 V | 26.05 V | 2.78 V | 12.00 V | 9875.22 V | 631.90 V | 418.67 V | 27.21 V | | 10/01/2015 11:57 | 39.81 V | 26.31 V | 2.88 V | 11.97 V | 10094.20 V | 633.70 V | 418.80 V | 27.90 V | | 10/01/2015 11:58 | 39.67 V | 26.42 V | 2.89 V | 12.04 V | 10145.55 V | 626.70 V | 417.33 V | 27.73 V | | 10/01/2015 11:59 | 39.21 V | 26.24 V | 2.84 V | 12.08 V | 10090.48 V | 633.80 V | 424.09 V | 27.89 V | | 10/01/2015 12:00 | 38.86 V | 25.96 V | 2.82 V | 12.07 V | 10133.08 V | 639.10 V | 426.91 V | 28.24 V | | 10/01/2015 12:01 | 38.62 V | 25.78 V | 2.81 V | 12.06 V | 10162.63 V | 647.10 V | 432.01 V | 28.68 V | | 10/01/2015 12:02 | 38.86 V | 25.95 V | 2.83 V | 12.07 V | 10163.10 V | 631.20 V | 421.51 V | 27.97 V | | 10/01/2015 12:03 | 38.93 V | 25.73 V | 2.83 V | 11.97 V | 10141.07 V | 636.40 V | 420.58 V | 28.14 V | | 10/01/2015 12:04 | 39.60 V | 26.09 V | 2.87 V | 11.95 V | 10104.88 V | 629.50 V | 414.75 V | 27.74 V | | 10/01/2015 12:05 | 38.90 V | 25.90 V | 2.82 V | 12.04 V | 10105.55 V | 638.40 V | 425.12 V | 28.13 V | | 10/01/2015 12:06 | 39.17 V | 25.89 V | 2.87 V | 11.97 V | 10200.78 V | 635.70 V | 420.12 V | 28.28 V | | 10/01/2015 12:07 | 39.35 V | 25.93 V | 2.88 V | 11.95 V | 10199.08 V | 633.70 V | 417.63 V | 28.19 V | | 10/01/2015 12:08 | 40.61 V | 26.83 V | 2.99 V | 11.97 V | 10251.64 V | 611.40 V | 403.95 V | 27.33 V | | 10/01/2015 12:09 | 38.69 V | 25.77 V | 2.84 V | 12.04 V | 10235.66 V | 643.90 V | 428.90 V | 28.74 V | | 10/01/2015 12:10 | 39.25 V | 26.01 V | 2.84 V | 12.00 V | 10100.41 V | 641.60 V | 425.21 V | 28.26 V | | 10/01/2015 12:11 | 39.25 V | 26.01 V | 2.84 V | 12.00 V | 10102.81 V | 633.10 V | 419.58 V | 27.89 V | | 10/01/2015 12:12 | 39.89 V | 26.29 V | 2.88 V | | 10078.23 V | 628.20 V | 414.01 V | 27.61 V | | 10/01/2015 12:13 | 39.61 V | 26.30 V | 2.88 V | | 10150.00 V | 631.30 V | 419.21 V | 27.94 V | | 10/01/2015 12:14 | 39.67 V | 26.14 V | 2.86 V | | 10058.76 V | 629.50 V | 414.75 V | 27.61 V | | 10/01/2015 12:15 | 40.08 V | 26.35 V | 2.89 V | 11.93 V | 10059.80 V | 620.90 V | 408.17 V | 27.24 V | | Average: | 39.46 | 26.15 | 2.86 | 12.00 | 10106.17 | 632.51 | 419.20 | 27.88 | | Maximum: | 40.67 | 26.83 | 2.99 | 12.08 | 10251.64 | 647.10 | 432.01 | 28.74 | | Minimum: | 38.62 | 25.55 | 2.78 | 11.93 | 9817.40 | 611.40 | 403.95 | 26.32 | #### **Engine 5 Minute Emissions Data** **Unit Name:** OCSD P2 Unit 5 Report Start Date/Time : Thu 10/01/2015 11:46 Report End Date/Time : Thu 10/01/2015 12:15 | DATE/TIME | ICE % Load | Digester Gas
Flow (dscfm) | Natural Gas
Flow (dscfm) | NOx @15%O2
(ppmvd) | CO @15%O2
(ppmvd) | | | |------------------|------------|------------------------------|-----------------------------|-----------------------|----------------------|--|--| | 10/01/2015 11:46 | 87.00 | 742.98 | 14.93 | 25.56 | 420.94 | | | | 10/01/2015 11:47 | 81.86 | 742.96 | 14.65 | 25.56
26.38 | 424.52 | | | | 10/01/2015 11:48 | 87.70 | 729.79 | 14.65 | 26.24 | 419.13 | | | | 10/01/2015 11:49 | 81.00 | 744.00 | 14.93 | 25.55 | 420.32 | | | | 10/01/2015 11:50 | 83.00 | 745.42 | 14.65 | 26.64 | 415.23 | | | | 10/01/2015 11:51 | 85.86 | 743.42 | 14.79 | 26.10 | 424.02 | | | | | | | 14.79 | | | | | | 10/01/2015 11:52 | 80.10 | 737.91 | | 26.30 | 415.02 | | | | 10/01/2015 11:53 | 80.86 | 723.49 | 14.23 | 26.71 | 419.46 | | | | 10/01/2015 11:54 | 81.04 | 731.41 | 14.51 | 26.33 | 421.18 | | | | 10/01/2015 11:55 | 82.65 | 720.65 | 14.51 | 26.80 | 405.00 | | | | 10/01/2015 11:56 | 80.72 | 720.85 | 14.51 | 26.05 | 418.67 | | | | 10/01/2015 11:57 | 82.09 | 739.73 | 14.23 | 26.31 | 418.80 | | | | 10/01/2015 11:58 | 85.57 | 736.69 | 14.93 | 26.42 | 417.33 | | | | 10/01/2015 11:59 | 85.49 | 729.38 | 14.65 | 26.24 | 424.09 | | | | 10/01/2015 12:00 | 81.32 | 733.85 | 14.65 | 25.96 | 426.91 | | | | 10/01/2015 12:01 | 87.14 | 736.48 | 14.65 | 25.78 | 432.01 | | | | 10/01/2015 12:02 | 83.75 | 736.08 | 14.79 | 25.95 | 421.51 | | | | 10/01/2015 12:03 | 81.84 | 742.37 | 14.79 | 25.73 | 420.58 | | | | 10/01/2015 12:04 | 76.14 | 741.76 | 14.93 | 26.09 | 414.75 | | | | 10/01/2015 12:05 | 85.26 | 733.24 | 15.21 | 25.90 | 425.12 | | | | 10/01/2015 12:06 | 80.99 | 746.43 | 15.07 | 25.89 | 420.12 | | | | 10/01/2015 12:07 | 86.42 | 748.46 | 15.07 | 25.93 | 417.63 | | | | 10/01/2015 12:08 | 83.70 | 750.49 | 15.07 | 26.83 | 403.95 | | | | 10/01/2015 12:09 | 83.07 | 742.78 | 15.21 | 25.77 | 428.90 | | | | 10/01/2015 12:10 | 87.69 | 736.48 | 15.21 | 26.01 | 425.21 | | | | 10/01/2015 12:11 | 86.14 | 736.89 | 15.07 | 26.01 | 419.58 | | | | 10/01/2015 12:12 | 88.68 | 739.53 | 14.93 | 26.29 | 414.01 | | | | 10/01/2015 12:13 | 84.49 | 738.72 | 15.21 | 26.30 | 419.21 | | | | 10/01/2015 12:14 | 84.18 | 736.69 | 15.90 | 26.14 | 414.75 | | | | 10/01/2015 12:15 | 79.23 | 738.92 | 15.62 | 26.35 | 408.17 | | |
| Total: | | | | | | | | | Average: | 83.50 | 737.46 | 14.87 | 26.15 | 419.20 | | | | Maximum: | 88.68 | 750.49 | 15.90 | 26.83 | 432.01 | | | | Minimum: | 76.14 | 720.65 | 14.23 | 25.55 | 403.95 | | | Page 1 of 1 Unit Name: OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 12:16 Report End Date/Time: Thu 10/01/2015 12:45 | DATE/TIME | NOx Raw | NOx @15%O2 | NOx Lbs/Hr | O2 (%) | Stack Flow | CO Raw | CO @15%O2 | CO Lbs/Hr | |------------------|---------|------------|------------|---------|------------|----------|-----------|-----------| | | (ppmvd) | (ppmvd) | | | (dscfm) | (ppmvd) | (ppmvd) | | | | | | | | | | | | | 10/01/2015 12:16 | 40.06 V | 26.40 V | 2.92 V | 11.95 V | 10159.54 V | 624.80 V | 411.76 V | 27.68 V | | 10/01/2015 12:17 | 39.75 V | 26.67 V | 2.93 V | 12.11 V | 10268.04 V | 625.40 V | 419.66 V | 28.00 V | | 10/01/2015 12:18 | 39.71 V | 26.16 V | 2.89 V | 11.95 V | 10134.67 V | 642.60 V | 423.38 V | 28.40 V | | 10/01/2015 12:19 | 39.35 V | 26.28 V | 2.89 V | 12.07 V | 10237.94 V | 632.70 V | 422.52 V | 28.25 V | | 10/01/2015 12:20 | 39.46 V | 26.00 V | 2.84 V | 11.95 V | 10021.28 V | 633.10 V | 417.12 V | 27.67 V | | 10/01/2015 12:21 | 39.39 V | 25.83 V | 2.83 V | 11.90 V | 10009.18 V | 634.60 V | 416.13 V | 27.70 V | | 10/01/2015 12:22 | 39.99 V | 26.43 V | 2.88 V | 11.97 V | 10045.88 V | 626.80 V | 414.24 V | 27.46 V | | 10/01/2015 12:23 | 38.80 V | 25.65 V | 2.81 V | 11.98 V | 10085.71 V | 636.90 V | 421.03 V | 28.01 V | | 10/01/2015 12:24 | 37.99 V | 25.11 V | 2.75 V | 11.97 V | 10079.00 V | 646.40 V | 427.19 V | 28.41 V | | 10/01/2015 12:25 | 39.61 V | 26.17 V | 2.86 V | 11.97 V | 10084.84 V | 628.80 V | 415.45 V | 27.65 V | | 10/01/2015 12:26 | 39.32 V | 25.86 V | 2.80 V | 11.93 V | 9940.54 V | 640.20 V | 420.97 V | 27.75 V | | 10/01/2015 12:27 | 40.68 V | 26.55 V | 2.88 V | 11.86 V | 9882.23 V | 608.90 V | 397.40 V | 26.24 V | | 10/01/2015 12:28 | 40.12 V | 26.03 V | 2.80 V | 11.81 V | 9743.40 V | 615.00 V | 399.07 V | 26.13 V | | 10/01/2015 12:29 | 40.65 V | 26.38 V | 2.89 V | 11.81 V | 9907.52 V | 616.50 V | 400.04 V | 26.64 V | | 10/01/2015 12:30 | 40.12 V | 26.19 V | 2.87 V | 11.86 V | 9967.52 V | 613.00 V | 400.19 V | 26.65 V | | 10/01/2015 12:31 | 40.15 V | 26.21 V | 2.86 V | 11.86 V | 9926.82 V | 619.00 V | 404.11 V | 26.80 V | | 10/01/2015 12:32 | 40.65 V | 26.66 V | 2.92 V | 11.90 V | 10026.33 V | 614.40 V | 402.89 V | 26.86 V | | 10/01/2015 12:33 | 39.35 V | 25.80 V | 2.79 V | 11.90 V | 9888.62 V | 632.00 V | 414.43 V | 27.25 V | | 10/01/2015 12:34 | 39.28 V | 25.56 V | 2.80 V | 11.83 V | 9936.59 V | 636.80 V | 414.35 V | 27.59 V | | 10/01/2015 12:35 | 39.38 V | 25.82 V | 2.85 V | 11.90 V | 10074.31 V | 623.90 V | 409.12 V | 27.41 V | | 10/01/2015 12:36 | 40.81 V | 26.69 V | 2.88 V | 11.88 V | 9844.97 V | 620,50 V | 405.76 V | 26.64 V | | 10/01/2015 12:37 | 41.02 V | 26.49 V | 2.90 V | 11.77 V | 9852.67 V | 615.00 V | 397.21 V | 26.42 V | | 10/01/2015 12:38 | 40.54 V | 26.39 V | 2.89 V | 11.84 V | 9946.38 V | 612.60 V | 398.71 V | 26.57 V | | 10/01/2015 12:39 | 41.20 V | 26.82 V | 2.96 V | 11.84 V | 10026.64 V | 611.70 V | 398.13 V | 26.75 V | | 10/01/2015 12:40 | 40.65 V | 26.34 V | 2.86 V | 11.80 V | 9827.18 V | 616.80 V | 399.68 V | 26.43 V | | 10/01/2015 12:41 | 39.75 V | 25.74 V | 2.83 V | 11.79 V | 9919.78 V | 623.10 V | 403.54 V | 26.95 V | | 10/01/2015 12:42 | 41.10 V | 26.75 V | 2.94 V | 11.84 V | 9963.14 V | 606.60 V | 394.81 V | 26.36 V | | 10/01/2015 12:43 | 40.58 V | 26.41 V | 2.90 V | 11.84 V | 9955.80 V | 612.00 V | 398.32 V | 26.57 V | | 10/01/2015 12:44 | 40.30 V | 26.35 V | 2.86 V | 11.88 V | 9893.11 V | 628.80 V | 411.19 V | 27.13 V | | 10/01/2015 12:45 | 40.68 V | 26.48 V | 2.88 V | 11.84 V | 9889.06 V | 615.80 V | 400.80 V | 26.56 V | | Average: | 40.01 | 26.21 | 2.86 | 11.89 | 9984.62 | 623.82 | 408.64 | 27.16 | | Maximum: | 41.20 | 26.82 | 2.96 | 12.11 | 10268.04 | 646.40 | 427.19 | 28.41 | | Minimum: | 37.99 | 25.11 | 2.75 | 11.77 | 9743.40 | 606.60 | 394.81 | 26.13 | ### **Engine 5 Minute Emissions Data** 10/1/2015 12:45:50 PM Page 1 of 1 Unit Name: OCSD P2 Unit 5 Report Start Date/Time: Thu 10/01/2015 12:16 Report End Date/Time: Thu 10/01/2015 12:45 | DATE/TIME | ICE % Load | Digester Gas
Flow (dscfm) | Natural Gas
Flow (dscfm) | NOx @15%O2
(ppmvd) | CO @15%O2
(ppmvd) | | | |------------------|------------|------------------------------|-----------------------------|-----------------------|----------------------|--|--| | | | Flow (uscilli) | riow (dsciiii) | (рршчи) | (ppinva) | | | | 10/01/2015 12:16 | 88.29 | 738.92 | 19.11 | 26.40 | 411.76 | | | | 10/01/2015 12:17 | 83.69 | 733.24 | 19.11 | 26.67 | 419.66 | | | | 10/01/2015 12:18 | 83.60 | 739.73 | 17.58 | 26.16 | 423.38 | | | | 10/01/2015 12:19 | 80.86 | 736.48 | 18.00 | 26.28 | 422.52 | | | | 10/01/2015 12:20 | 85.71 | 731.82 | 17.16 | 26.00 | 417.12 | | | | 10/01/2015 12:21 | 86.35 | 736.08 | 16.18 | 25.83 | 416.13 | | | | 10/01/2015 12:22 | 80.96 | 732.02 | 16.74 | 26.43 | 414.24 | | | | 10/01/2015 12:23 | 81.91 | 735.27 | 16.46 | 25.65 | 421.03 | | | | 10/01/2015 12:24 | 81.58 | 735.88 | 15.90 | 25.11 | 427.19 | | | | 10/01/2015 12:25 | 82.82 | 736.08 | 16.18 | 26.17 | 415.45 | | | | 10/01/2015 12:26 | 90.26 | 728.97 | 16.04 | 25.86 | 420.97 | | | | 10/01/2015 12:27 | 85.87 | 730.19 | 16.04 | 26.55 | 397.40 | | | | 10/01/2015 12:28 | 83.44 | 723.90 | 16.04 | 26.03 | 399.07 | | | | 10/01/2015 12:29 | 84.07 | 738.11 | 15.07 | 26.38 | 400.04 | | | | 10/01/2015 12:30 | 84.47 | 738.31 | 14.93 | 26.19 | 400.19 | | | | 10/01/2015 12:31 | 80.30 | 735.88 | 14.51 | 26.21 | 404.11 | | | | 10/01/2015 12:32 | 80.93 | 740.54 | 14.23 | 26.66 | 402.89 | | | | 10/01/2015 12:33 | 86.27 | 729.38 | 14.65 | 25.80 | 414.43 | | | | 10/01/2015 12:34 | 82.21 | 738.92 | 14.65 | 25.56 | 414.35 | | | | 10/01/2015 12:35 | 79.89 | 744.20 | 14.23 | 25.82 | 409.12 | | | | 10/01/2015 12:36 | 81.87 | 728.36 | 14.51 | 26.69 | 405.76 | | | | 10/01/2015 12:37 | 80.83 | 738.11 | 14.65 | 26.49 | 397.21 | | | | 10/01/2015 12:38 | 85.18 | 740.14 | 14.23 | 26.39 | 398.71 | | | | 10/01/2015 12:39 | 80.45 | 745.62 | 14.65 | 26.82 | 398.13 | | | | 10/01/2015 12:40 | 81.18 | 733.64 | 14.65 | 26.34 | 399.68 | | | | 10/01/2015 12:41 | 84.85 | 740.75 | 14.93 | 25.74 | 403.54 | | | | 10/01/2015 12:42 | 79.57 | 740.75 | 14.65 | 26.75 | 394.81 | | | | 10/01/2015 12:43 | 77.68 | 739.73 | 14.93 | 26.41 | 398.32 | | | | 10/01/2015 12:44 | 84.18 | 731.82 | 14.65 | 26.35 | 411.19 | | | | 10/01/2015 12:45 | 85.82 | 735.06 | 14.65 | 26.48 | 400.80 | | | | Total: | | | | | | | | | Average: | 83.17 | 735.93 | 15.64 | 26.21 | 408.64 | | | | Maximum: | 90.26 | 745.62 | 19.11 | 26.82 | 427.19 | | | | Minimum: | 77.68 | 723.90 | 14.23 | 25.11 | 394.81 | | | ### APPENDIX G ### SCAQMD CHECKLIST FOR SOURCE TEST REPORTS ### ENGINEERING FORM CHECK LIST FOR SOURCE TEST REPORTS Please check off <u>all</u> the following items to verify that the information is provided in the source test report, and then send the checklist along with the source test report. Title Page Facility ID: Revision #: 029110 Date: February 05, 2015 ### **FACILITY PERMIT TO OPERATE** ### ORANGE COUNTY SANITATION DISTRICT 22212 BROOKHURST ST HUNTINGTON BEACH, CA 92646 #### NOTICE IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR A COPY THEREOF MUST BE KEPT AT THE LOCATION FOR WHICH IT IS ISSUED. THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT SHALL NOT BE CONSTRUED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF ANY OTHER FEDERAL, STATE OR LOCAL GOVERNMENTAL AGENCIES. Barry R. Wallerstein, D. Env. EXECUTIVE OFFICER Mohsen Nazemi, P.E. Deputy Executive Officer Engineering & Compliance Table of Content Facility ID: Revision #: 029110 11 Date: February 05, 2015 ## FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### TABLE OF CONTENTS | Section | Description | Revision # | Date Issued | |----------|--|-------------|-------------| | A | Facility Information | 2 | 04/16/2014 | | В | RECLAIM Annual Emission Allocation | 1 | 04/16/2014 | | С | Facility Plot Plan | TO BE DEVEL | OPED | | D | Facility Description and Equipment Specific Conditions | 7 | 02/05/2015 | | E | Administrative Conditions | 1 | 04/16/2014 | | F | RECLAIM Monitoring and Source Testing Requirements | 1 | 04/16/2014 | | G | Recordkeeping and Reporting Requirements for RECLAIM Sources | 1 | 04/16/2014 | | Н | Permit To Construct and Temporary
Permit to Operate | 9 | 02/05/2015 | | I | Compliance Plans & Schedules | 1 | 04/16/2014 | | J | Air Toxics | 1 | 04/16/2014 | | K | Title V Administration | 1 | 04/16/2014 | | Appendix | | | | | A | NOx and SOx Emitting Equipment Exempt
From Written Permit Pursuant to Rule
219 | 1 | 04/16/2014 | | В | Rule Emission Limits | 1 | 04/16/2014 | Section A Facility ID: Revision #: Page: 1 029110 2 te: April 16, 2014 ## FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION A: FACILITY INFORMATION **LEGAL OWNER &/OR OPERATOR:** ORANGE COUNTY SANITATION DISTRICT LEGAL OPERATOR (if different than owner): **EQUIPMENT LOCATION:** 22212 BROOKHURST ST HUNTINGTON BEACH, CA 92646-8457 **MAILING ADDRESS:** P O BOX 8127 FOUNTAIN VALLEY, CA 92728-8127 **RESPONSIBLE OFFICIAL:** JAMES HERBERG TITLE: GENERAL MANAGER TELEPHONE NUMBER: (714) 593-7300 **CONTACT PERSON:** LISA ROTHBART TITLE: ENVIRONMENTAL SUPERVISOR TELEPHONE NUMBER: (714) 593-7405 TITLE V PERMIT ISSUED: April 16, 2014 TITLE V PERMIT EXPIRATION DATE: April 15, 2019 | TITLE V | RECLAIM | | |---------|---------|---------| | YES | NOx: | NO | | | SOx: | NO | | | CYCLE: | 0 | | | ZONE: | COASTAL | Section B Facility ID: Revision #: Page: 1 029110 Date: April 16, 2014 ## FACILITY PERMIT TO
OPERATE ORANGE COUNTY SANITATION DISTRICT ### SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION **NOT APPLICABLE** Section C Facility ID; Revision #; Date; Page: 1 029110 April 16, 2014 ## FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT **SECTION C: FACILITY PLOT PLAN** (TO BE DEVELOPED) Section D Page 1 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 ## FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## Facility Equipment and Requirements (Section D) This section consists of a table listing all permitted equipment at the facility, facility wide requirements, copies of all individual Permits to Construct and Permits to Operate issued to various equipment at the facility, and Rule 219-exempt equipment subject to source-specific requirements. Each permit and Rule 219-exempt equipment will list operating conditions including periodic monitoring requirements, and applicable emission limits and requirements that the equipment is subject to. Also included is the rule origin and authority of each emission limit and permit condition. Section D Page 2 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 ## FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMITTED EQUIPMENT LIST The following is a list of all permits to construct and operate at this facility: | Application Permit Equipment Description | | Page | | |--|----------|---|--------| | Number | Number | <u> </u> | Number | | 06045A | R-M29144 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 6 | | 06046A | R-M29146 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 8 | | 06047A | R-M29147 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 10 | | 06048A | R-M29148 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 12 | | 291030 | R-D94235 | BOILER (5-20 MMBTU/HR) NATURAL & DIGESTER GAS | 14 | | 291031 | R-D94232 | BOILER (5-20 MMBTU/HR) NATURAL & DIGESTER GAS | 16 | | 331911 | F11229 | SCRUBBER, ODOR | | | 424369 | F65823 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 20 | | 428804 | G34370 | ODOR CONTROL FACILITY, TRUNKLINES AND HEADWORKS | 22 | | 429663 | F71055 | FLARE, ENCLOSED LANDFILL/DIGESTER GAS | 25 | | 444111 | F99405 | SCRUBBER, ODOR | 29 | | 444112 | F99406 | SCRUBBER, ODOR | 31 | | 444113 | F99408 | SCRUBBER, ODOR | 33 | | 453240 | G25942 | SEWAGE TREATMENT (>5 MGD) ANAEROBIC | 35 | | 453244 | G27920 | APC SYSTEM, ACTIVATED CARBON ADSORBER | 38 | | 455670 | R-F81554 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 41 | | 455671 | R-F81555 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 42 | | 455673 | R-F81556 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 44 | | 457410 | G24634 | ACTIVATED CARBON ADSORBER, DRUM VENT SINGLE SOURCE | | | 474766 | F95584 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 48 | | 474767 | F95585 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 50 | | 474768 | F95586 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 52 | | 474769 | F95587 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 54 | | 474770 | F95588 | ICE (>500 HP) EMERGENCY ELECTRICAL GENERATOR DIESEL | 56 | | 512604 | G12233 | STORAGE TANK, FIXED ROOF, HCI, W/SPARGER | 58 | | 512832 | G12234 | STORAGE TANK, FIXED ROOF, HCI, W/CONTROL | 59 | | 512833 | G12235 | STORAGE TANK, FIXED ROOF, HCI, W/CONTROL | 60 | Section D Page 3 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT** ### PERMITTED EQUIPMENT LIST (CONT'D) The following is a list of all permits to construct and permits to operate at this facility: | Application
Number | Permit
Number | Equipment Description | Page
Number | |-----------------------|------------------|--------------------------------------|----------------| | 540708 | G27394 | ICE (>500 HP) NATURAL & DIGESTER GAS | 61 | | 540709 | G27395 | ICE (>500 HP) NATURAL & DIGESTER GAS | 64 | | 540710 | G27396 | ICE (>500 HP) NATURAL & DIGESTER GAS | 67 | | 540711 | G27397 | ICE (>500 HP) NATURAL & DIGESTER GAS | 70 | | 540712 | G27398 | ICE (>500 HP) NATURAL & DIGESTER GAS | 73 | NOTE: APPLICATIONS THAT ARE STILL BEING PROCESSED AND HAVE NOT BEEN ISSUED PERMITS TO CONSTRUCT OR PERMITS TO OPERATE WILL NOT BE FOUND IN THIS TITLE V PERMIT. Section D Page 4 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### **FACILITY WIDE CONDITION (S)** ### Condition(s): - 1. EXCEPT FOR OPEN ABRASIVE BLASTING OPERATIONS, THE OPERATOR SHALL NOT DISCHARGE INTO THE ATMOSPHERE FROM ANY SINGLE SOURCE OF EMISSIONS WHATSOEVER ANY AIR CONTAMINANT FOR A PERIOD OR PERIODS AGGREGATING MORE THAN THREE MINUTES IN ANY ONE HOUR WHICH IS: - A. AS DARK OR DARKER IN SHADE AS THAT DESIGNATED NO. I ON THE RINGLEMANN CHART, AS PUBLISHED BY THE UNITED STATES BUREAU OF MINES; OR - B. OF SUCH OPACITY AS TO OBSCURE AN OBSERVER'S VIEW TO A DEGREE EQUAL TO OR GREATER THAN DOES SMOKE DESCRIBED IN SUBPARAGRAPH (A) OF THIS CONDITION. [RULE 401] - 2. THE OPERATOR SHALL NOT COMBUST DIGESTER GAS CONTAINING SULFUR COMPOUNDS IN EXCESS OF 40 PPMV CALCULATED AS HYDROGEN SULFIDE AVERAGED DAILY. [RULE 431.1] - 3. THE OPERATOR SHALL NOT USE FUEL OIL CONTAINING SULFUR COMPOUNDS IN EXCESS OF 0.05 PERCENT BY WEIGHT. ON OR AFTER JUNE 1, 2004, A PERSON SHALL NOT PURCHASE ANY DIESEL FUEL FOR STATIONARY SOURCE APPLICATION IN THE DISTRICT, UNLESS THE FUEL IS LOW SULFUR DIESEL FOR WHICH THE SULFUR CONTENT SHALL NOT EXCEED 15 PPM BY WEIGHT AS SUPPLIED BY THE SUPPLIER. [RULE 431.2] - 4. THE OWNER/OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF 40 CFR 63 SUBPART VVV NON-INDUSTRIAL POTW PLANT NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) AND ALL APPLICABLE REQUIREMENTS OF 40 CFR 63 SUBPART ZZZZ STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES NESHAP. [40 CFR 63 SUBPART VVV, AND 40 CFR 63 SUBPART ZZZZ] - 5. THE OPERATOR SHALL MEASURE THE SULFUR CONTENT OF THE DIGESTER GAS ACCORDING TO THE FOLLOWING: - A. FOR READINGS UP TO 36 PPM AS H2S, DAILY ANALYSIS OF THE DIGESTER GAS FOR H2S, USING COLORIMETRIC TUBES, AND WEEKLY ANALYSIS OF THE DIGESTER GAS BY AQMD METHOD 307 TOTAL SULFUR COMPOUNDS IN FUEL GAS BY GAS CHROMATOGRAPHY AND SULFUR CHEMILUMINESCENCE DETECTOR. - B. FOR READINGS ABOVE 36 PPM AS H2S, DAILY ANALYSIS OF THE DIGESTER GAS FOR H2S BY AQMD METHOD 307 TOTAL SULFUR COMPOUNDS IN FUEL GAS BY GAS CHROMATOGRAPHY AND SULFUR CHEMILUMINESCENCE DETECTOR. A MINIMUM OF THREE CONSECUTIVE DAILY SAMPLES ARE REQUIRED TO DEMONSTRATE THE TOTAL SULFUR CONTENT IS BELOW 36 PPM. [RULE 431.1] Section D Page 5 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 6. A COMPLETE APPLICATION FOR COMPLIANCE ASSURANCE MONITORING (CAM, 40 CFR PART 64) SHALL BE SUBMITTED WHENEVER ANNUAL MASS OF VOC OF THE DIGESTER GAS EXCEEDS 19,999 LBS/YR. THE VOC CONTENT OF THE DIGESTER GAS SHALL BE ANALYZED IN CONJUNCTION WITH THE ANNUAL SOURCE TESTING OF THE CGS ENGINES USING THE APPROVED METHODS. FOR EACH CALENDAR YEAR, THE VOC EMISSIONS SHALL BE CALCULATED BY MARCH 31ST OF THE SUBSEQUENT CALENDAR YEAR BASED ON THE DIGESTER GAS CONCENTRATION DATA FROM THE MOST RECENT ANNUAL RULE 1110.2 SOURCE TESTING OF THE ENGINES. IF THE VOC EMISSIONS EXCEED 19,999 LBS/YR, THE CAM APPLICATION SHALL BE SUBMITTED BY MAY 31ST (WITHIN 60 DAYS AFTER THE CALCULATION DUE DATE). [40 CFR PART 64, CAM] Section D Page 6 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO OPERATE Permit No. R-M29144 A/N 06045A #### **Equipment Description:** INTERNAL COMBUSTION ENGINE NO. 1, DETROIT DIESEL, EMERGENCY ELECTRICAL GENERATION, MODEL NO. 9163-7305, DIESEL-FUELED, 16 CYLINDERS, TURBOCHARGED, 1515 BHP. - 1. OPERATION OF THIS EQUIPMENT MUST BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT MUST BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 20 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 20 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 7 Facility I.D. #: 29110 Revision #: 07 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF
OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] THIS PERMIT TO OPERATE R-M29144 SUPERSEDES PERMIT TO OPERATE M29144 ISSUED 01/20/1983. #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470 Page 8 Section D Facility I.D. #: 29110 Revision #: Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. R-M29146 A/N 06046A #### **Equipment Description:** INTERNAL COMBUSTION ENGINE NO. 2, DETROIT DIESEL, EMERGENCY ELECTRICAL GENERATION, MODEL NO. 9163-7305, DIESEL-FUELED, 16 CYLINDERS, TURBOCHARGED, 1515 BHP. - 1. OPERATION OF THIS EQUIPMENT MUST BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - THIS EQUIPMENT MUST BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITION AT ALL TIMES. **FRULE 2041** - THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH 3. INCLUDES NOT MORE THAN 20 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND 4. MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - THE OPERATION OF ENGINE BEYOND THE 20 HOURS PER YEAR ALLOTTED FOR ENGINE 5. MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING 6. INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 9 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] THIS PERMIT TO OPERATE R-M29146 SUPERSEDES PERMIT TO OPERATE M29146 ISSUED 01/20/1983. #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470 Section D Page 10 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. R-M29147 A/N 06047A ### **Equipment Description:** INTERNAL COMBUSTION ENGINE NO. 3, DETROIT DIESEL, EMERGENCY ELECTRICAL GENERATION, MODEL NO. 9163-7305, DIESEL-FUELED, 16 CYLINDERS, TURBOCHARGED, 1515 BHP. - 1. OPERATION OF THIS EQUIPMENT MUST BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT MUST BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 20 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 20 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 11 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] THIS PERMIT TO OPERATE R-M29147 SUPERSEDES PERMIT TO OPERATE M29147 ISSUED 01/20/1983. #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470 Section D Page 12 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. R-M29148 A/N 06048A ### **Equipment Description:** INTERNAL COMBUSTION ENGINE NO. 4, DETROIT DIESEL, EMERGENCY ELECTRICAL GENERATION, MODEL NO. 9163-7305. DIESEL-FUELED, 16 CYLINDERS, TURBOCHARGED, 1,515-H.P. - 1. OPERATION OF THIS EQUIPMENT MUST BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT MUST BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 20 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 20 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 13 Facility I.D. #: 29110 Revision #: 07 Revision #: 07 Date: February 5,
2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] THIS PERMIT TO OPERATE R-M29148 SUPERSEDES PERMIT TO OPERATE M29148 ISSUED 01/20/1983. ### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470 Section D Page 14 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. R-D94235 A/N 291030 #### **Equipment Description:** BOILER, CLEAVER BROOKS, FIRE TUBE TYPE, MODEL CB700-250, SERIAL NO. L-092869, 10.46 MMBTU PER HOUR, DIGESTER GAS AND NATURAL GAS FIRED WITH LO-NOx BURNERS AND FLUE GAS RECIRCULATION (FGR) SYSTEM. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS BOILER SHALL BE FIRED ON DIGESTER GAS AND OR NATURAL GAS ONLY. [RULE 204] - 4. CSDOC SHALL PROPERLY MAINTAIN AND OPERATE A DRY GAS METER TO MEASURE THE QUANTITY (IN CFM) OF DIGESTER GAS USED IN THIS EQUIPMENT. [RULE 1146, RULE 1303(b) (1), (b) (2)-MODELING AND OFFSETS] - 5. RECORDS OF THE DAILY FUEL USAGE OF THIS EQUIPMENT SHALL BE KEPT AND MAINTAINED FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] - 6. EMISSIONS OF NOX SHALL NOT EXCEED 40 PPM REFERENCED AT 3% 02 ON A DRY BASIS, AVERAGED OVER A PERIOD OF 15 CONSECUTIVE MINUTES. [RULE 1146] - 7. EMISSIONS OF CO SHALL NOT EXCEED 400 PPM REFERENCED AT 3% 02 ON A DRY BASIS, AVERAGED OVER A PERIOD OF 15 CONSECUTIVE MINUTES. [RULE 1146] - 8. THE FLUE GAS RECIRCULATION SYSTEM SHALL BE IN FULL USE WHENEVER THE BOILER IS IN OPERATION. [RULE 1303(A) (1)-BACT] Section D Page 15 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 407 CO: 400 PPMV, RULE 1146 NOx 30 PPMV, RULE 1146 PM: RULE 404, SEE APPENDIX B. PM: 0.1 gr/scf, RULE 409 SO2: 500 PPMV AS SO2, ORANGE COUNTY, RULE 53 10. THE OPERATOR SHALL DETERMINE COMPLIANCE WITH THE CO AND NOX EMISSION LIMIT(S) EITHER BY: (a) CONDUCTING A SOURCE TEST AT LEAST ONCE EVERY FIVE YEARS USING AQMD METHOD 100.1 OR 10.1 (METHOD 7.1 FOR NOX); OR (b) CONDUCTING A TEST AT LEAST ANNUALLY USING A PORTABLE ANALYZER AND AQMD-APPROVED TEST METHOD.. THE TEST SHALL BE CONDUCTED WHEN THE EQUIPMENT IS OPERATING UNDER NORMAL CONDITIONS TO DEMONSTRATE COMPLIANCE WITH RULE 1146 CONCENTRATIONS LIMITS. THE OPERATOR SHALL COMPLY WITH ALL GENERAL TESTING, REPORTING, AND RECORDKEEPING REQUIREMENTS IN SECTIONS E AND K OF THIS PERMIT. [RULE 3004 (a) (4)] THIS PERMIT TO OPERATE R-D94235 SUPERSEDES PERMIT TO OPERATE D94235 ISSUED 11/06/1995. Section D Page 16 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. R-D94232 A/N 291031 ### **Equipment Description:** BOILER, CLEAVER BROOKS, FIRE TUBE TYPE, MODEL CB700-250, SERIAL NO. L-092868, 10.46 MMBTU PER HOUR, DIGESTER GAS AND NATURAL GAS FIRED WITH LO-NOX BURNERS AND FLUE GAS RECIRCULATION (FGR) SYSTEM. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS BOILER SHALL BE FIRED ON DIGESTER GAS AND OR NATURAL GAS ONLY. [RULE 204] - 4. CSDOC SHALL PROPERLY MAINTAIN AND OPERATE A DRY GAS METER TO MEASURE THE QUANTITY (IN CFM) OF DIGESTER GAS USED IN THIS EQUIPMENT. [RULE 1146; RULE 1303(b) (1), (b) (2)-MODELING AND OFFSETS] - 5. RECORDS OF THE DAILY FUEL USAGE OF THIS EQUIPMENT SHALL BE KEPT AND MAINTAINED FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] - 6. EMISSIONS OF NOX SHALL NOT EXCEED 40 PPM REFERENCED AT 3% 02 ON A DRY BASIS, AVERAGED OVER A PERIOD OF 15 CONSECUTIVE MINUTES. [RULE 1146] - EMISSIONS OF CO SHALL NOT EXCEED 400 PPM REFERENCED AT 3% 02 ON A DRY BASIS, AVERAGED OVER A PERIOD OF 15 CONSECUTIVE MINUTES. [RULE 1146] - 8. THE FLUE GAS RECIRCULATION SYSTEM SHALL BE IN FULL USE WHENEVER THE BOILER IS IN OPERATION. [RULE 1303(A) (1)-BACT] Section D Page 17 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 407 CO: 400 PPMV, RULE 1146 NOx 30 PPMV, RULE 1146 PM: RULE 404, SEE APPENDIX B. PM: 0.1 gr/scf, RULE 409 SO2: 500 PPMV AS SO2, ORANGE COUNTY, RULE 53 10. THE OPERATOR SHALL DETERMINE COMPLIANCE WITH THE CO AND NOX EMISSION LIMIT(S) EITHER BY: (a) CONDUCTING A SOURCE TEST AT LEAST ONCE EVERY FIVE YEARS USING AQMD METHOD 100.1 OR 10.1 (METHOD 7.1 FOR NOX); OR (b) CONDUCTING A TEST AT LEAST ANNUALLY USING A PORTABLE ANALYZER AND AQMD-APPROVED TEST METHOD.. THE TEST SHALL BE CONDUCTED WHEN THE EQUIPMENT IS OPERATING UNDER NORMAL CONDITIONS TO DEMONSTRATE COMPLIANCE WITH RULE 1146 CONCENTRATIONS LIMITS. THE OPERATOR SHALL COMPLY WITH ALL GENERAL TESTING, REPORTING, AND RECORDKEEPING REQUIREMENTS IN SECTIONS E AND K OF THIS PERMIT. [RULE 3004 (a) (4)] THIS PERMIT TO OPERATE R-D94232 SUPERSEDES PERMIT TO OPERATE D94232 ISSUED 11/06/1995. Section D Page 18 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. F11229 A/N 331911 ### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM (SOUTH COMPLEX, P2-33) CONSISTING OF: - 1. FOUR SCRUBBERS NOS. U THROUGH X, EACH VERTICAL TYPE, PACKED TOWER, 10'-0" DIA. X 33'-0" H., WITH ASSOCIATED PUMPS. - 2. ACID AND CAUSTIC FEED SYSTEM. - 3. AUTOMATIC CHEMICAL FEED AND HYDROGEN SULFIDE (H2S) MONITORING SYSTEM. - 4. EXHAUST SYSTEM WITH ASSOCIATED BLOWERS VENTING PRIMARY TREATMENT CLARIFIERS. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. A SUFFICIENT NUMBER OF SCRUBBERS, FROM U THROUGH X, SHALL BE IN OPERATION WHEN THE BASIC EQUIPMENT ARE IN OPERATION TO MAINTAIN THE SCRUBBER OUTLET H2S CONCENTRATIONS, AS MEASURED BY THE AUTOMATIC CHEMICAL FEED AND H2S MONITORING SYSTEM, LESS THAN THE MAXIMUM OUTLET H2S LIMITS AS SPECIFIED IN CONDITION NO. 7 EXCEPT DURING UNFORESEEN AND ROUTINE MAINTENANCE WORK OR POWER OUTAGE IN THE PLANT THAT REQUIRES THE SCRUBBERS TO BE SHUTDOWN FOR A PERIOD NOT TO EXCEED 10 HOURS PER INCIDENT PER EQUIPMENT AND 50 HOURS PER YEAR PER EQUIPMENT. [RULE 402] Section D Page 19 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 5. WHEN THE SCRUBBERS ARE IN OPERATION, AUTOMATIC CHEMICAL FEED AND HYDROGEN SULFIDE (H2S) MONITORING SYSTEM SHALL BE IN OPERATION AND MAINTAINED TO RECORD THE SCRUBBER OUTLET H2S CONCENTRATION, IN PPMV, EXCEPT DURING SHUTDOWN FOR MAINTENANCE. THE H2S MONITORING SYSTEM SHALL BE CALIBRATED PURSUANT TO MANUFACTURER'S RECOMMENDATIONS AND SPECIFICATIONS. [RULE 402] - 6. WHEN THE AUTOMATIC CHEMICAL FEED AND H2S MONITORING SYSTEM IS SHUTDOWN FOR MAINTENANCE, PH OF THE SCRUBBING LIQUID AND THE SCRUBBER OUTLET H2S CONCENTRATION SHALL BE MEASURED AND RECORDED AT LEAST ONCE PER SHIFT. [RULE 402] - 7. WHEN THE SCRUBBERS ARE IN OPERATION, THE DAILY AVERAGE CONCENTRATION OF SULFUR COMPOUNDS, CALCULATED AS H2S MEASURED AT THE OUTLET OF EACH SCRUBBER SHALL NOT EXCEED 1.33 PPMV AND 2 PPMV, WHEN THE EXHAUST BLOWER IS OPERATING AT LOW AND HIGH SPEED, RESPECTIVELY. [RULE 402] - 8. RECORDS SHALL BE KEPT AND MAINTAINED FOR EACH SCRUBBER'S OUTLET H2S CONCENTRATION, AND THE DAILY AVERAGE H2S CONCENTRATION, IN PPMV, AT THE OUTLET OF EACH SCRUBBER. [RULE 204] Section D Page 20 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. F65823 A/N 424369 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, DETROIT DIESEL, 16 CYLINDER, "TURBOCHARGED, AFTERCOOLED," MODEL T1 637 M36 (2936 BHP), 2936 BHP, DIESEL FUEL-FUELED, DRIVING AN EMERGENCY ELECTRICAL GENERATOR. - 1. OPERATION OF THIS EQUIPMENT MUST BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS
SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT MUST BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 20 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 20 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1303 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 21 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470 Section D Page 22 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. G34370 A/N 428804 #### **Equipment Description:** #### ODOR CONTROL FACILITY CONSISTING OF: - A. TRUNKLINES ODOR CONTROL SYSTEM: - THREE (3) SINGLE STAGE BIOTRICKLING FILTERS (BIOTOWERS), IDENTICAL, (ONE STAND-BY), VERTICAL TYPE, EACH 10'- 0" DIA. X 47'- 9" H., OVERALL DIMENSIONS, WITH 8' 6" H. POLYURETHANE FOAM PACKING AND A MIST ELIMINATOR, ASSOCIATED RECIRCULATING PUMPS, AND AN EXHAUST SYSTEM WITH THREE 75 HP BLOWERS (40,000 SCFM TOTAL), TREATING FOUL AIR EXHAUST FROM THE DIVERSION STRUCTURE AND INFLUENT TRUNKLINES, VENTING TO THE 1ST STAGE BIOTRICKLING FILTERS AT THE HEADWORKS ODOR CONTROL FACILITY. - B. HEADWORKS ODOR CONTROL SYSTEM: - 1) 1ST STAGE, THIRTEEN (13) BIOTRICKLING FILTERS (BIOTOWERS), IDENTICAL, (THREE ON STAND-BY), VERTICAL TYPE, EACH 10'- 0" DIA. X 47'- 9" H., OVERALL DIMENSIONS, WITH 8'- 6" H. POLYURETHANE FOAM PACKING, A MIST ELIMINATOR, ASSOCIATED PUMPS, AND AN EXHAUST SYSTEM WITH THIRTEEN 75 HP BLOWERS (188,300 SCFM TOTAL), TREATING FOUL AIR FROM HEADWORKS FACILITY AND PRETREATED EXHAUST AIR FROM TRUNKLINE ODOR CONTROL FACILITY VENTING TO THE 2ND STAGE CHEMICAL SCRUBBERS AT THE HEADWORKS ODOR CONTROL FACILITY. - 2) 2ND STAGE, EIGHT (8) CHEMICAL SCRUBBERS, IDENTICAL, (TWO ON STAND-BY), VERTICAL TYPE, EACH 10'- 0" DIA. X 52'- 7" H., OVERALL DIMENSIONS (INCLUDES 3' 6" DIA. X 8' 9" H. STACK EXTENSION), WITH Q-PAC OR TRIPACK TYPE, 10' 0" H. POLYURETHANE PACKING, A MIST ELIMINATOR, AUTOMATIC CHEMICAL FEED, ASSOCIATED RECIRCULATION PUMPS, AND AN EXHAUST SYSTEM WITH EIGHT 60 HP BLOWERS (188,300 SCFM TOTAL), TREATING EXHAUST AIR FROM 1ST STAGE BIOTRICKLING FILTERS, AND VENTING TO THE ATMOSPHERE. - C. SODIUM HYPOCHLORITE, SODIUM HYDROXIDE AND HYDROCHLORIC ACID STORAGE TANKS. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED, UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] Section D Page 23 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. THIS EQUIPMENT SHALL ONLY TREAT FOUL AIR GENERATED FROM THE DIVERSION STRUCTURE AND TRUNKLINES, GRIT HANDLING BUILDING, BAR SCREEN BUILDING AND CHANNELS, PUMP STATION WET WELL, SCREENINGS WASHING AND LOADING BUILDINGS, GRIT BASINS, PRIMARY SPLITTER BOX, AND INFLUENT PUMP STATION DISCHARGE CHANNEL. [RULE 402] - 5. ALL THE EXHAUST FROM THE BIOTRICKLING FILTERS (TRUNKLINE AND HEADWORKS BIOTRICKLING FILTERS) SHALL BE VENTED TO AND TREATED BY THE FINAL CHEMICAL SCRUBBERS PRIOR TO RELEASE TO THE ATMOSPHERE. [RULE 1303 (a) (1) BACT] - 6. A SUFFICIENT NUMBER OF BIOTRICKLING (BIOTOWERS) AND CHEMICAL SCRUBBERS SHALL BE IN OPERATION WHEN THE BASIC EQUIPMENT ARE IN OPERATION TO MAINTAIN THE CHEMICAL SCRUBBERS OUTLET H2S CONCENTRATIONS, AS MEASURED BY THE AUTOMATIC CHEMICAL FEED AND H2S MONITORING SYSTEM, LESS THAN THE MAXIMUM OUTLET H2S LIMITS AS SPECIFIED IN CONDITION NO. 14 EXCEPT DURING UNFORESEEN AND ROUTINE MAINTENANCE WORK OR POWER OUTAGE IN THE PLANT THAT REQUIRES THE SCRUBBERS TO BE SHUTDOWN FOR A PERIOD NOT TO EXCEED 10 HOURS PER INCIDENT PER EQUIPMENT AND 50 HOURS PER YEAR PER EQUIPMENT. [RULE 204] - 7. ALL BIOTRICKLING FILTERS AND CHEMICAL SCRUBBERS SHALL BE EQUIPPED WITH INLET AND OUTLET CONTINUOUS HYDROGEN SULFIDE MONITORING SYSTEM (VAPAX UNIT OR EQUIVALENT). [RULE 204] - 8. WHEN THE CHEMICAL SCRUBBERS ARE IN OPERATION, AUTOMATIC CHEMICAL FEED AND HYDROGEN SULFIDE (H₂S) MONITORING SYSTEM SHALL BE IN OPERATION AND MAINTAINED TO RECORD THE SCRUBBER INLET AND OUTLET H2S CONCENTRATIONS, IN PPMV, EXCEPT DURING SHUTDOWN FOR MAINTENANCE. THE H₂S MONITORING SYSTEM SHALL BE CALIBRATED PERIODICALLY PURSUANT TO MANUFACTURER'S RECOMMENDATIONS AND SPECIFICATIONS. [RULE 204] - 9. A FLOW METER, INDICATING GALLONS PER MINUTE (GPM) SHALL BE INSTALLED AND MAINTAINED IN THE CHEMICAL SCRUBBING SOLUTION [SODIUM HYDROXIDE (NaOH) AND SODIUM HYPOCHLORITE (NaOCI)] RECIRCULATION LINE FOR EACH OF THE CHEMICAL SCRUBBER. AT LEAST 785 GPM OF CHEMICAL SCRUBBING SOLUTION SHALL BE SUPPLIED TO EACH CHEMICAL SCRUBBER WHEN IT IS IN OPERATION. [RULE 204] - 10. FOR THE CHEMICAL SCRUBBER(S), A DIFFERENTIAL PRESSURE GAUGE OR OTHER DEVICE SHALL BE INSTALLED AND MAINTAINED TO INDICATE, IN INCHES OF WATER COLUMN, THE DIFFERENTIAL PRESSURE DROP ACROSS THE SCRUBBER. DURING NORMAL OPERATION, THE PRESSURE DROP MEASURED ACROSS THE SCRUBBER SHALL BE LESS THAN 4 INCHES OF WATER COLUMN. [RULE 204] Section D Page 24 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 11. THE PH OF THE CHEMICAL SCRUBBING SOLUTION SHALL BE MAINTAINED BETWEEN 9 TO 10.5. [RULE 204] - 12. WHEN THE AUTOMATIC CHEMICAL FEED AND H₂S MONITORING SYSTEM IS NOT OPERATING, PH OF THE SCRUBBING LIQUID, SCRUBBER SOLUTION RECIRCULATION RATE (GPM), THE SCRUBBER INLET AND OUTLET H₂S CONCENTRATION (PPMV) AND DIFFERENTIAL PRESSURE (INCHES OF WATER COLUMN) ACROSS THE SCRUBBER SHALL BE MEASURED AND RECORDED AT LEAST ONCE PER SHIFT. [RULE 204] - 13. WHEN THE CHEMICAL SCRUBBERS ARE IN OPERATION, THE DAILY AVERAGE CONCENTRATION OF SULFUR COMPOUNDS, CALCULATED AS H2S MEASURED AT THE OUTLET OF THE SCRUBBER SHALL NOT EXCEED 1 PPMV. [RULE 402, 1401] - 14. ALL RECORDS SHALL BE KEPT AND MAINTAINED FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO SCAQMD PERSONNEL UPON REQUEST. [RULE 204] Section D Page 25 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. F71055 A/N 429663 #### **Equipment Description:** DIGESTER GAS FLARING SYSTEM (PLANT NO. 2) CONSISTING OF: - 1. THREE FLARES NOS. A, B AND C, EACH SUR-LITE CORP., VERTICAL TYPE, 6'-6" W. X 6'-6- L. X 24'-3" H., 27,000,000 BTU PER HOUR MAXIMUM HEAT INPUT, WITH A DIGESTER GAS PILOT BURNER, A NATURAL GAS PILOT BURNER, AN AUTOMATIC COMBUSTION AIR DAMPER AND A RESTART IGNITION SYSTEM. - 2. THREE GAS FILTERS, DOLLINGER, MODEL GP-188. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. THE HOURLY AVERAGE VOLUME OF DIGESTER GAS BURNED IN EACH FLARE SHALL NOT EXCEED 750 SCFM. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING & OFFSETS] - 5. THE HOURLY AVERAGE OF TOTAL VOLUME OF DIGESTER GAS BURNED IN THE FLARING SYSTEM (3-FLARES) SHALL NOT EXCEED 2250 SCFM. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING & OFFSETS] - 6. FLOW INDICATORS, AND RECORDERS
SHALL BE MAINTAINED TO MEASURE THE INDIVIDUAL FLOW RATE TO EACH FLARE AND TOTAL FLOW RATE TO THE FLARING SYSTEM. [RULE 1303(b) (2)-OFFSETS] Section D Page 26 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. WHEN THE FLARES ARE IN OPERATION, A TEMPERATURE OF NOT LESS THAN 1400 DEGREES F, AVERAGED OVER ONE HOUR, AS MEASURED BY THE TEMPERATURE INDICATOR SHALL BE MAINTAINED IN THE FLARE STACK, EXCEPT FOR A MAXIMUM OF THIRTY- MINUTES DURING START-UP AND FIFTEEN- MINUTES DURING SHUT-DOWN, AND THREE MINUTES WHEN THERMOCOUPLES SWITCH OCCURS. THE THERMOCOUPLE USED TO MEASURE THE TEMPERATURE SHALL BE ABOVE THE FLAME ZONE AND AT LEAST 0.6 SECONDS DOWNSTREAM OF THE BURNER. [RULE 1303(a) (1) BACT] - 8. A TEMPERATURE INDICATOR AND RECORDER SHALL BE MAINTAINED TO MEASURE THE EXHAUST GAS TEMPERATURE IN EACH OF THE FLARE STACKS. [RULE 1303(a) (1)-BACT] - 9. AUTOMATIC DAMPERS TO REGULATE THE FLOW OF COMBUSTION AIR SHALL BE MAINTAINED ON EACH FLARE. [RULE 1303(a) (1)-BACT] - 10. THE OPERATOR SHALL KEEP THE RECORDS OF DIGESTER GAS FLOW RATES AND OPERATING TEMPERATURE. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE UPON REQUEST TO AQMD PERSONNEL. [RULE 204] - 11. A FLARE FAILURE ALARM SYSTEM CONSISTING OF A FLAME-OUT WARNING LIGHT BY THE FLARE STATION AND AN AUDIBLE ALARM IN THE CONTROL ROOM SHALL BE MAINTAINED. THIS SAFETY SYSTEM SHALL BE TESTED MONTHLY FOR PROPER OPERATION AND THE RESULTS RECORDED AND MAINTAINED FOR FIVE YEARS. [RULE 204, RULE 1303(a) (1)-BACT] - 12. THE ORANGE COUNTY SANITATION DISTRICT SHALL, AT LEAST ONCE EVERY FIVE YEARS, CONDUCT TEST ON ONE OF THE THREE FLARES IN ACCORDANCE WITH SCAQMD TEST PROCEDURES AND FURNISH THE AQMD WITH WRITTEN RESULTS OF SUCH PERFORMANCE TEST WITHIN 45 DAYS AFTER THE TESTING. SUBSEQUENT TESTS SHALL BE PERFORMED ON ALTERNATE FLARES AT THE MAXIMUM FIRING RATE. WRITTEN NOTICE OF THE PERFORMANCE TESTS SHALL BE PROVIDED TO THE AQMD 7 DAYS PRIOR TO THE TEST SO THAT AN OBSERVER MAY BE PRESENT. THE PERFORMANCE TESTS SHALL INCLUDE, BUT MAY NOT BE LIMITED TO, A TEST OF THE DIGESTER GAS INLET TO THE FLARE AND THE FLARE EXHAUST FOR THE FOLLOWING: - I. METHANE (LBS/HR) - II. TOTAL NON-METHANE HYDROCARBONS (LB/HR) - III. OXIDES OF NITROGEN (AS NO2, EXHAUST ONLY, PPMV @ 3% 02, DRY, LBS/HR) - IV. CARBON MONOXIDE (EXHAUST ONLY, PPMV @3% 02, DRY, LBS/HR). - V. TOTAL PARTICULATES (EXHAUST ONLY, GR/DSCF, LBS/HR). - VI. CHEMICAL COMPOUNDS CONCENTRATION IN UG/M3,-INCLUDING BUT NOT LIMITED TO: - a. ACETALDEHYDE - b. ACROLEIN - c. BENZENE - d. CARBON TETRACHLORIDE Section D Page 27 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - e. CHLOROBENZENE - f. CHLOROFORM - g. 1, 4 (p)-DICHLOROBENZENE - h. 1, 2 DICHLOROETHANE - i. FORMALDEHYDE - j. METHYLENE CHLORIDE - k. STYRENE - 1. TETRACHLOROETHYLENE - m. TOLUENE - n. TRICHLOROETHYLENE - o. 1, 1, 1 TRICHLOROETHANE - p. VINYL CHLORIDE - a. XYLENES [RULE 1303(a) (1)-BACT, RULE 1303(b) (2) - OFFSETS, RULE 1401] - 13. SAMPLING PORTS SHALL BE MAINTAINED IN EACH FLARE STACK AT LEAST 3 FEET UPSTREAM OF FLARE OUTLET AND SHALL CONSIST OF 4-INCH COUPLINGS WITH PLUGS. AN EQUIVALENT METHOD OF EMISSION SAMPLING MAY BE USED UPON APPROVAL BY THE AQMD. ADEQUATE AND SAFE ACCESS TO THE TEST PORTS SHALL BE PROVIDED BY THE COUNTY SANITATION DISTRICTS OF ORANGE COUNTY. [RULE 217] - 14. EMISSIONS RESULTING FROM EACH FLARE OPERATION SHALL NOT EXCEED THE FOLLOWING: | POLLUTANT | LBS/HR | |--|--------| | NOX, AS N02 | 1.75 | | SOX, AS S02 | 0.30 | | CO | 8.33 | | PM | 1.13 | | ROG | 0.50 | | [RULE 1303(b) (2) – OFFSETS, RULE 431.1] | | 15. EMISSIONS RESULTING FROM THE FLARING OPERATION (3-FLARES) SHALL NOT EXCEED THE FOLLOWING: | POLLUTANT | LBS/DAY | |---------------------------|---------| | NOX, AS N02 | 126 | | SOX, AS S02 | 22 | | CO | 600 | | PM | 81 | | ROG | 36 | | [RULE 1303(b) (2) - OFFSE | TS] | Section D Page 28 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 16. THESE FLARES SHALL NOT OPERATE SIMULTANEOUSLY WITH THE CENTRAL POWER GENERATION ENGINES, AT PLANT NO. 2, EXCEPT DURING ROUTINE AND UNFORESEEN MAINTENANCE PERIODS, ENGINE START-UP, SOURCE TESTING PERIODS, AND WHEN THERE IS EXCESS DIGESTER GAS THAT CANNOT BE USED BY THE ENGINES DUE TO MAINTENANCE. [RULE 1303(b) (2) OFFSETS] - 17. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF DAY. [RULE 204] - 18. A SAMPLING PORT SHALL BE MAINTAINED AT THE INLET GAS LINE TO THE FLARING SYSTEM TO ALLOW THE COLLECTION OF A DIGESTER GAS SAMPLE. [RULE 217] - 19. ALL RECORDS AS REQUIRED BY THIS PERMIT SHALL BE MAINTAINED ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] - 20. THIS EQUIPMENT SHALL BE OPERATED IN COMPLIANCE WITH RULE 431.1. ### **Emissions and Requirements:** 21. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 407 PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS PM: 0.1 gr/scf, RULE 409 NO_X 0.06 lb/MMBTU, RULE 1303 (a) (1)- BACT. Section D Page 29 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. F99405 A/N 444111 #### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM (NORTH SCRUBBER COMPLEX, P2-33) CONSISTING OF: - 1. SCRUBBER 'H', VERTICAL TYPE, PACKED TOWER, 6'- 0" DIA. X 27'- 0" H., WITH ASSOCIATED PUMPS AND INLET BLOWER. - 2. BIOTRICKLING FILTER 'I', WITH POLYURETHANE FOAM PACKING, 6'-0" DIA. X 27'- 0" H., WITH ASSOCIATED PUMPS AND INLET BLOWER. - 3. SEVEN (7) SCRUBBERS 'M' THROUGH 'P' AND 'R' THROUGH T', VERTICAL TYPE, PACKED TOWER, 10'- 0" DIA. X 27'- 0" H., WITH ASSOCIATED PUMPS AND INLET BLOWERS. - 4. BIOTRICKLING FILTER 'Q', WITH POLYURETHANE FOAM PACKING, 10'-0" DIA. X 27'- 0" H., WITH ASSOCIATED PUMPS AND INLET BLOWER. - 5. AUTOMATIC CHEMICAL FEED AND HYDROGEN SULFIDE (H2S) MONITORING SYSTEMS. - 6. EXHAUST SYSTEM WITH ASSOCIATED BLOWERS VENTING THE INFLUENT TRUNKLINES, HEADWORKS AND PRIMARY TREATMENT FACILITIES. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED, UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. SCRUBBER 'H' AND BIOTRICKLING FILTER 'I' SHALL ONLY EXHAUST INTO THE SCRUBBERS 'M' THROUGH 'P' AND 'R' THROUGH 'T' AND BIOTRICKLING FILTER 'Q'. [RULE 204] Section D Page 30 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 5. AT LEAST THREE APC EQUIPMENT (SCRUBBERS OR BIOTRICKLING FILTERS) SHALL BE IN OPERATION WHEN THE BASIC EQUIPMENT ARE IN OPERATION EXCEPT DURING THE FOLLOWING EVENTS: UNFORESEEN AND ROUTINE MAINTENANCE WORK OR POWER OUTAGE IN THE PLANT THAT REQUIRES THE SCRUBBERS OR BIOTRICKLING FILTERS TO BE SHUTDOWN FOR A PERIOD NOT TO EXCEED 10 HOURS PER INCIDENT PER EQUIPMENT AND 50 HOURS PER YEAR PER EQUIPMENT, OR LONGER IF CHEMICAL TREATMENT OF THE BASIC EQUIPMENT REDUCES THE OUTLET H2S CONCENTRATION OF THE AIR POLLUTION CONTROL SYSTEM TO LESS THAN THE LIMIT AS SPECIFIED IN CONDITION NO. 8. A LOG OF SHUTDOWN DATE, DURATION, AND REASON FOR THE SHUTDOWN SHALL BE MAINTAINED. [RULE 204, 402] - 6. WHEN ANY OF THE SCRUBBERS, 'M' THROUGH 'P' AND 'R' THROUGH 'T' OR SCRUBBER 'H' OR BIOTRICKLING FILTERS ARE IN OPERATION, AUTOMATIC HYDROGEN SULFIDE (H2S) MONITORING SYSTEM SHALL BE IN OPERATION AND MAINTAINED TO RECORD THE AIR POLLUTION CONTROL SYSTEM OUTLET H2S CONCENTRATION, IN PPMV. THE H2S MONITORING SYSTEM SHALL BE CALIBRATED PURSUANT TO MANUFACTURER'S RECOMMENDATIONS AND SPECIFICATIONS. [RULE 204] - 7. WHEN THE AUTOMATIC CHEMICAL FEED AND H2S MONITORING SYSTEM IS NOT OPERATING, THE PH OF THE SCRUBBING OR RECYCLING LIQUID, MAKEUP WATER FLOW RATE (GPM), DIFFERENTIAL PRESSURE DROP (IN INCHES OF WATER COLUMN), FOR SCRUBBERS 'M' THROUGH 'P', 'R' THROUGH 'T' OR SCRUBBER 'H' OR BIOTRICKLING FILTERS SHALL BE MAINTAINED AS PER MANUFACTURER'S RECOMMENDATIONS. THE OPERATING PARAMETERS SHALL BE MEASURED AND RECORDED AT LEAST ONCE PER SHIFT. [RULE 204] - 8. THE DAILY AVERAGE CONCENTRATION OF SULFUR COMPOUNDS, MEASURED, AND CALCULATED AS H2S, AT THE OUTLET OF THE AIR POLLUTION CONTROL SYSTEM SHALL NOT EXCEED 1.33 PPMV AND 2 PPMV, WHEN THE EXHAUST BLOWER IS OPERATING AT LOW AND HIGH SPEED, RESPECTIVELY. EMISSION AT THE EXHAUST STACK SHALL BE MONITORED AND RECORDED AT LEAST ONCE PER SHIFT. [RULE 402, 1401] - 9. RECORDS SHALL BE KEPT AND MAINTAINED FOR DAILY AVERAGE OPERATING PARAMETERS AND H2S CONCENTRATION, IN PPMV, AT THE OUTLET OF EACH SCRUBBER OR BIOFILETER IN OPERATION. ALL RECORDS AS REQUIRED BY THIS PERMIT SHALL BE KEPT FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section D Page 31 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### **PERMIT TO OPERATE** Permit No. F99406 A/N 444112 ### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM (DEWATERING, P2-28-1) CONSISTING OF: - 1. TWO (2) SCRUBBERS, 'C', AND 'D' (STAND-BY MODE), EACH VERTICAL TYPE, PACKED TOWER, 10'- 0" DIA. X 35'- 9" H., WITH ASSOCIATED PUMPS AND INLET BLOWERS. - 2. BIOTRICKLING FILTERS 'J' AND 'K', EACH 10'- 0" DIA. X 35'- 9" H., 23,000 CFM AIR FLOW, WITH 10' POLYURETHANE FOAM PACKING HEIGHT, SPRAY NOZZLES, MIST ELIMINATOR PAD, ASSOCIATED PUMPS AND INLET BLOWER. - 3. CHEMICAL FEED SYSTEM FOR SCRUBBERS. - 4. EXHAUST SYSTEM WITH ASSOCIATED BLOWERS VENTING THE BELT FILTER PRESSES AND
THE DEWATERING BUILDING. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED, UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. WHEN ANY OF THE SCRUBBERS OR BIOTRICKLING FILTERS ARE IN OPERATION, THE PH OF THE SCRUBBING OR RECYCLING LIQUID, MAKEUP WATER FLOW RATE (GPM), DIFFERENTIAL PRESSURE DROP (IN INCHES OF WATER COLUMN), SHALL BE MAINTAINED AS PER MANUFACTURER'S RECOMMENDATIONS. THE OPERATING PARAMETERS AS DESCRIBED SHALL BE MEASURED AND RECORDED AT LEAST ONCE PER SHIFT. [RULE 204] - 5. WHEN ANY OF THE SCRUBBERS OR BIOTRICKLING FILTER ARE IN OPERATION, THE H2S EMISSION AT THE EXHAUST STACK SHALL BE MONITORED AND RECORDED AT LEAST ONCE PER SHIFT. THE DAILY AVERAGE CONCENTRATION OF SULFUR COMPOUNDS MEASURED, AND CALCULATED AS H2S, AT THE OUTLET OF SCRUBBERS OR THE BIOTRICKLING FILTER SHALL NOT EXCEED 2.5 PPMV. [RULE 402, 1401] Section D Page 32 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 6. RECORDS SHALL BE KEPT AND MAINTAINED FOR DAILY AVERAGE OPERATING PARAMETERS, AND H2S CONCENTRATION, IN PPMV, AT THE OUTLET OF EACH SCRUBBER IN OPERATION. THE RECORDS SHALL BE KEPT FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section D Page 33 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. F99408 A/N 444113 #### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM (DISSOLVED AIR FLOATATION FACILITY) CONSISTING OF: - 1. SCRUBBER 'F' (STAND-BY MODE), VERTICAL TYPE, PACKED TOWER, 9'- 6" DIA. X 21'- 4" H., WITH ASSOCIATED PUMPS AND INLET BLOWER. - 2. BIOTRICKLING FILTER 'G', WITH POLYURETHANE FOAM PACKING, 9'- 6" DIA. X 21'- 4" H., WITH ASSOCIATED PUMPS AND INLET BLOWER. - 3. CHEMICAL FEED SYSTEM FOR SCRUBBERS. - 4. EXHAUST SYSTEM WITH ASSOCIATED BLOWERS VENTING DISSOLVED AIR FLOATATION THICKENERS. ### **CONDITIONS:** - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED, UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. WHEN SCRUBBER 'F' OR BIOTRICKLING FILTER 'G' IS IN OPERATION, THE PH OF THE SCRUBBING OR RECYCLING LIQUID, MAKEUP WATER FLOW RATE (GPM), DIFFERENTIAL PRESSURE DROP (IN INCHES OF WATER COLUMN), SHALL BE MAINTAINED AS PER MANUFACTURER'S RECOMMENDATIONS. THE OPERATING PARAMETERS AS DESCRIBED SHALL BE MEASURED AND RECORDED AT LEAST ONCE PER SHIFT. [RULE 204] - 5. WHEN SCRUBBER 'F' OR BIOTRICKLING FILTER 'G' IS IN OPERATION, THE H2S EMISSION AT THE EXHAUST STACK SHALL BE MONITORED AND RECORDED AT LEAST ONCE PER SHIFT. THE DAILY AVERAGE CONCENTRATION OF SULFUR COMPOUNDS, MEASURED, AND CALCULATED AS H2S, AT THE OUTLET OF SCRUBBER OR THE BIOTRICKLING FILTER SHALL NOT EXCEED 3.5 PPMV. [RULE 204] Section D Page 34 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 6. RECORDS SHALL BE KEPT AND MAINTAINED FOR DAILY AVERAGE OPERATING PARAMETERS, AND H2S CONCENTRATION, IN PPMV, AT THE OUTLET OF THE SCRUBBER IN OPERATION. THE RECORDS SHALL BE KEPT FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 3004 (a) (4)] Section D Page 35 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. G25942 A/N 453240 #### **Equipment Description:** SEWAGE TREATMENT PLANT, 250 MGD CAPACITY, CONSISTING OF: - 1. INFLUENT STATION (HEADWORKS "D") CONSISTING OF INFLUENT TRUNKLINES, INFLUENT DIVERSION AND METERING, SIX (5 DUTY + 1 STANDBY) BARSCREENS, SCREENING HANDLING, INFLUENT PUMPS, GRIT REMOVAL AND HANDLING, PRIMARY INFLUENT SPLITTER AND METERING, AND FERRIC CHLORIDE FACILITY. - 2. WETWELL (WASTE SIDE STREAM PUMP STATION) WITH ASSOCIATED PUMPS. - 3. SEVENTEEN PRIMARY BASINS, THREE 41'-0" W. X 179'-0" L. X 8'-0" D., WITH ALUMINUM COVERS, FOURTEEN 140'-0" DIA. X 9'-0" D., WITH ALUMINUM GEODESIC DOME COVERS, AND ASSOCIATED SLUDGE AND SCUM COLLECTORS AND PUMPS. - 4. EIGHT ACTIVATED SLUDGE OXYGEN REACTORS, 139,656 CUBIC FEET CAPACITY, 46'-0" W. X 184'-0" L. X 16'-6" D., WITH ASSOCIATED MIXERS. - 5. TWO PURE OXYGEN GENERATION UNITS, 40,000 GALLON CAPACITY EACH, WITH TWO STORAGE TANKS AND ASSOCIATED COMPRESSORS. - 6. TWELVE SECONDARY CLARIFIERS, 61'-0" W. X 171'-0" L. X 14'-0" D., WITH ASSOCIATED SLUDGE COLLECTORS. - EAST SECONDARY SLUDGE PUMP STATION WITH ASSOCIATED PUMPS. - 8. WEST SECONDARY SLUDGE PUMP STATION WITH ASSOCIATED PUMPS. - 9. FOUR DISSOLVED AIR FLOATATION THICKENERS, EACH 55'-0" DIA. X 8'-6" D., WITH ASSOCIATED COLLECTOR DRIVES AND PUMPS. - 10. TWENTY DIGESTER TANKS, TWO 90'-0" DIA. X 30'-0" D., EACH 190,800 CUBIC FEET CAPACITY, SIX 80'-0" DIA. X 33'-0" D., EACH 164,120 CUBIC FEET CAPACITY, THREE 80'-0" DIA. X 33'-0" D., EACH 166,630 CUBIC FEET CAPACITY, FOUR 105'-0" DIA. X 30'-0" D., EACH 293,680 CUBIC FEET CAPACITY, FIVE 80'-0" DIA. X 18'-0" H., WITH ASSOCIATED PUMPS AND GRINDERS. EQUIPPED WITH OPTIONAL PASSIVE CARBON ADSORBERS. - 11. LOW PRESSURE DIGESTER GAS STORAGE TANK, 25,000 CUBIC FEET CAPACITY, 42'-0" DIA. X 30'-0" H., WITH ASSOCIATED COMPRESSORS. - 12. FERROUS AND/OR FERRIC CHLORIDE INJECTION STATION WITH TWO STORAGE TANKS, EACH 12'-0" DIA. X 18'-0" H., AND ASSOCIATED PUMPS. Section D Page 36 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 13. SLUDGE PROCESSING STATION WITH ASSOCIATED GRINDERS, BELT FILTER PRESSES, DEWATERED STORAGE HOPPERS, AND TRUCK LOADING HOPPER. - 14. TWO POLYMER STORAGE TANKS, EACH 20,000 GALLON CAPACITY, WITH ASSOCIATED PUMPS. - 15. FOUR POLYMER MIX TANKS, EACH 8,500 GALLON CAPACITY, WITH ASSOCIATED MIXERS AND PUMPS. - 16. PRIMARY EFFLUENT DIVERSION STRUCTURE. - 17. THREE TRICKLING FILTERS, COVERED, PRIMARY EFFLUENT TREATMENT (TOTAL 60 MGD AVERAGE CAPACITY AND 182 MGD PEAK FLOW), EACH 150' DIA. X 28' H., OVERALL, WITH MODULAR PLASTIC CROSS FLOW FILTER MEDIA, SPRAY NOZZLES, AND ASSOCIATED PUMPS. - 18. FOUR SOLIDS CONTACT (SC) REACTORS, FOUR SLUDGE RE-AERATION (SR) REACTORS, UNCOVERED, TWO MIXED LIQUOR CHANNELS (TOTAL 1.68 MG VOLUME), AND WITH ASSOCIATED AIR BLOWERS. - 19. SIX TRICKLING FILTER CLARIFIERS, UNCOVERED, EACH 135' DIA. X 19' SIDEWATER DEPTH, WITH FLOCCULATING CENTER WELLS, HYDRAULIC SLUDGE COLLECTORS, AND INBOARD LAUNDERS. - 20. SLUDGE BLENDING FACILITY WITH TWO SLUDGE BLENDING TANKS (SBTs), EACH 26,000 GALLON CAPACITY, WITH ASSOCIATED PIPING AND PUMPS. #### **Conditions:** - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. HEADWORKS FACILITY, PRIMARY BASINS, SLUDGE BLENDING FACILITY, DISSOLVED AIR FLOATATION THICKENERS, TRICKLING FILTER FACILITY AND SLUDGE PROCESSING STATION SHALL BE VENTED TO THEIR DESIGNATED AIR POLLUTION CONTROL SYSTEMS WHICH ARE IN OPERATION PER ITS' VALID PERMITS TO CONSTRUCT OR OPERATE ISSUED BY THE SCAQMD. IN THE EVENT AN AIR POLLUTION CONTROL SYSTEM IS REMOVED FROM OPERATION DURING CONSTRUCTION OR MAINTENANCE WORK, THE H2S CONCENTRATION IN EXHAUST AIR SHALL BE BELOW THE LIMITS SPECIFIED IN THE REMOVED AIR POLLUTION CONTROL SYSTEM'S PERMIT. EACH SUCH CONSTRUCTION OR MAINTENANCE EVENT SHALL BE RECORDED IN A DAILY LOG. [RULE 402, 1303(a) (1)-BACT, 1401] Section D Page 37 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 5. THE FERROUS AND/OR FERRIC CHLORIDE INJECTION STATION SHALL BE IN USE TO THE EXTENT NECESSARY TO MAINTAIN THE H2S CONCENTRATION IN THE DIGESTER GAS TO THE PERMITTED LIMIT. [RULE 431.1] - 6. RAW DIGESTER GAS PRODUCED AT THIS FACILITY SHALL NOT BE RELEASED INTO THE ATMOSPHERE, EXCEPT DURING MOMENTARY AUTOMATIC ACTIVATION OF PRESSURE RELIEF SAFETY DEVICES. ALL COLLECTED DIGESTER GAS SHALL BE EITHER COMBUSTED IN DIGESTER GAS FLARES, INTERNAL COMBUSTION ENGINES, OR BOILERS WITH VALID AQMD PERMIT, OR SHALL BE TREATED THROUGH OPTIONAL PASSIVE CARBON ADSORBERS. EACH SUCH PRESSURE RELIEF ACTIVATION SHALL BE MAINTAINED IN A DAILY LOG. [RULE 402, RULE 1401] - 7. RAW DIGESTER GAS RELEASES DUE TO EQUIPMENT FAILURE SHALL BE REPORTED IN ACCORDANCE WITH RULE 430. UPON DISCOVERY OF SUCH EMISSIONS, IMMEDIATE REMEDIAL MEASURES SHALL BE PUT INTO ACTION TO CORRECT THE PROBLEM AND PREVENT FURTHER EMISSIONS INTO THE ATMOSPHERE. [RULE 402, RULE 430] - 8. THE CALENDAR MONTHLY AVERAGE DAILY PRIMARY EFFLUENT FLOW RATE, TO THE SECONDARY TREATMENT PROCESS, SHALL NOT EXCEED 150 MILLIONS GALLONS PER DAY, EXCEPT DURING WET WEATHER PERIODS AND EMERGENCY PERIODS INVOLVING PUBLIC HEALTH SAFETY. THE RECORDS FOR THE PRIMARY EFFLUENT AVERAGE DAILY FLOW RATE (MGD), TREATED BY THE SECONDARY PROCESS, SHALL BE KEPT ON FILE. [RULE 1303(b) (2) –OFFSETS, 402, 1401] - 9. THE CALENDAR MONTHLY AVERAGE DAILY FLOW RATE OF WASTEWATER TREATED AT THIS FACILITY SHALL NOT EXCEED 250 MILLION GALLONS PER DAY (MGD) EXCEPT DURING WET WEATHER PERIODS. THE RECORDS FOR THE WASTEWATER FLOW RATE (MGD) MEASURED SHALL BE RECORDED AND KEPT ON FILE. [RULE 1303(b)
(2) –OFFSETS, 402, 1401] Section D Page 38 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. G27920 A/N 453244 #### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM, CONSISTING OF; - 1. FOUL AIR EXHAUST DUCTS FROM THREE (3) TRICKLING FILTERS, TRICKLING FILTER FACILITY'S (JOB NO. P2-90), IN PARALLEL. - THREE (3) EXHAUST BLOWERS, IN PARALLEL, EACH 11,000 SCFM, 25 H.P. - 3. THREE (3) CAUSTIC IMPREGNATED ACTIVATED CARBON UNITS, IN PARALLEL, EACH CONTAINING MINIMUM OF 10,600 LBS OF ACTIVATED CARBON BY NORIT AMERICAS OR WESTATES OR EQUIVALENT, EACH VENTING A SINGLE TRICKLING FILTER. - 4. THREE (3) EXHAUST STACKS, EACH 2.0'- 3" DIA. X 28' HIGH. - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATIONS UNDER WHICH THIS PERMIT IS ISSUED. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITIONS AT ALL TIMES. [RULE 204] - 3. A FLOW METER SHALL BE INSTALLED AND MAINTAINED AT THE INLET STREAM TO EACH OF THE CARBON UNIT TO INDICATE THE TOTAL FOUL AIR EXHAUST FROM THE TRICKLING FILTER TREATED, IN STANDARD CUBIC FEET PER MINUTE (SCFM). IN CASE A PRESSURE SENSOR DEVICE IS USED TO DETERMINE FLOW RATE, IN PLACE OF THE FLOW METER, A CONVERSION CHART SHALL BE MAINTAINED TO INDICATE THE CORRESPONDENT FLOW RATE, IN SCFM, TO THE PRESSURE READING. [RULE 204] - 4. MAXIMUM FOUL AIR EXHAUST FLOW RATE FROM EACH TRICKLING FILTER TO BE TREATED BY EACH CARBON UNIT SHALL NOT EXCEED 11,000 SCFM, AVERAGED OVER CALENDAR MONTH. [RULE 204] - 5. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE PRESSURE ACROSS THE CARBON BED IS LESS THAN 6.0 INCHES WATER COLUMN. TO COMPLY WITH THIS CONDITION THE OPERATOR SHALL INSTALL AND MAINTAIN A DIFFERENTIAL PRESSURE GAUGE TO ACCURATELY INDICATE THE DIFFERENTIAL PRESSURE ACROSS THE CARBON BED. THE OPERATOR SHALL DETERMINE AND RECORD THE PARAMETER BEING MONITORED ONCE EVERY WEEK. [RULE 204] Section D Page 39 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 6. WHENEVER THE CARBON UNIT IS IN OPERATION THE HYDROGEN SULFIDE (H2S) CONCENTRATION IN THE EXHAUST SHALL BE MONITORED USING AN AUTOMATIC H2S MONITORING DEVICE OR MEASURED MANUALLY AT LEAST ONCE A WEEK USING AN APPROVED AND CALIBRATED INSTRUMENT. H2S MEASUREMENT READINGS SHALL BE RECORDED AND MAINTAINED ON FILE. [RULE 402, 1401] - 7. CONCENTRATIONS MEASURED AT THE OUTLET OF THE CARBON ADSORBER SHALL NOT EXCEED THE FOLLOWING: CONSTITUENT CONCENTRATION, IN PPMV (DAILY AVG.) H₂S [RULE 402, 1401] 1.0 - 8. WHENEVER THE DAILY AVERAGE HYDROGEN SULFIDE (H2S) CONCENTRATION IS 0.9 PPMV OR HIGHER, THEN OPERATOR SHALL INVESTIGATE THE CAUSE AND TAKE IMMEDIATE CORRECTIVE MEASURES THAT MAY INCLUDE FRESH ACTIVATED CARBON REPLACEMENT AS PER MANUFACTURER'S RECOMMENDATIONS AND SPECIFICATIONS. THE OPERATOR SHALL RECORD THE DATE AND QUANTITY OF CARBON AT EACH REPLACEMENT EVENT, THE RESULTS OF THE INVESTIGATION AND CORRECTIVE MEASURES TAKEN. [RULE 204] - 9. SPENT CARBON REMOVED FROM THIS SYSTEM SHALL BE MAINTAINED OR STORED IN CLOSED CONTAINERS PRIOR TO REMOVAL FROM SITE. [RULE 402] - 10. RECORDS SHALL BE MAINTAINED AS REQUIRED BY THIS PERMIT FOR COMPLIANCE. THE RECORDS SHALL BE KEPT FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section D Page 40 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. R-F81554 A/N 455670 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, DETROIT DIESEL, 16 CYLINDER, TURBOCHARGED, AFTERCOOLED, MODEL T1637M36 (2936 BHP), SERIAL NO. 527200-2104, 2936 BHP, DIESEL FUEL-FUELED, DRIVING AN EMERGENCY ELECTRICAL GENERATOR. - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA 1. AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT MUST BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH 3. INCLUDES NOT MORE THAN 50 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - THE OPERATION OF ENGINE BEYOND THE 50 HOURS PER YEAR ALLOTTED FOR ENGINE 4. MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND 5. MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING 6. INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 41 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] THIS PERMIT TO OPERATE R-F81554 SUPERSEDES PERMIT TO OPERATE F81554 ISSUED 6/14/2007. #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470. Section D Page 42 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. R-F81555 A/N 455671 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, DETROIT DIESEL, 16 CYLINDER, TURBOCHARGED, AFTERCOOLED, MODEL T1637M36 (2936 BHP), SERIAL NO. 527200-2105, 2936 BHP, DIESEL FUEL-FUELED, DRIVING AN EMERGENCY ELECTRICAL GENERATOR. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT MUST BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 50 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. THE OPERATION OF ENGINE BEYOND THE 50 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 5. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 43 Facility I.D. #: 29110 Revision #: Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - B. MAINTENANCE AND TESTING HOURS - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE
OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND [RULE 431.2, RULE 1470] #### **Emissions And Requirements:** THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES 9. AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: **RULE 1470.** THIS PERMIT TO OPERATE R-F81555 SUPERSEDES PERMIT TO OPERATE F81555 ISSUED 4/12/2006. Section D Page 44 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### **PERMIT TO OPERATE** Permit No. R-F81556 A/N 455673 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, DETROIT DIESEL, 16 CYLINDER, TURBOCHARGED, AFTERCOOLED, MODEL T1637M36 (2936 BHP), SERIAL NO. 527200-2106, 2936 BHP, DIESEL FUEL-FUELED, DRIVING AN EMERGENCY ELECTRICAL GENERATOR. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT MUST BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 50 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. THE OPERATION OF ENGINE BEYOND THE 50 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 5. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 45 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470. THIS PERMIT TO OPERATE R-F81556 SUPERSEDES PERMIT TO OPERATE F81556 ISSUED 04/12/2006. Section D Page 46 Facility I.D. #: 29110 Revision #: Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO OPERATE Permit No. G24634 A/N 457410 #### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM CONSISTING OF; - FOUL AIR EXHAUST DUCTS FROM TWO (2) SLUDGE BLENDING TANKS (ONE STAND-BY), IN 1. PARALLEL. - 2. TWO (2) EXHAUST BLOWERS (ONE STAND-BY), IN PARALLEL, EACH 400 CFM, 1.5 H.P. - TWO (2) ADSORBERS (ONE STAND-BY), IN PARALLEL, CARBTROL CORPORATION, MODEL GC-21 3. SP, EACH CONTAINING MINIMUM OF 200 LBS OF GRANULAR ACTIVATED CARBON. - TWO (2) EXHAUST STACKS (ONE STAND-BY), EACH 0'- 6" DIA. X 8' HIGH. 4. #### **Conditions:** - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA 1. AND SPECIFICATIONS SUBMITTED WITH THE APPLICATIONS UNDER WHICH THIS PERMIT IS ISSUED. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITIONS AT ALL TIMES. [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN DIFFERENTIAL PRESSURE GAUGES TO 3. ACCURATELY INDICATE THE DIFFERENTIAL PRESSURE ACROSS EACH CARBON BED AND EACH EXHAUST BLOWER. [RULE 402] - ONCE A MONTH, DIFFERENTIAL PRESSURE DROP ACROSS THE BLOWER AND THE ADSORBER 4. SHALL ME MEASURED, IN INCHES OF WATER COLUMN, AND SHALL BE MAINTAINED AS FOLLOWS; DIFFERENTIAL PRESSURE DROP (INCHES OF WATER COLUMN) **BLOWER ADSORBER** [RULE 204] 8.0 - 11.06.5 - 8.5 Section D Page 47 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 5. HYDROGEN SULFIDE (H2S) CONCENTRATION (PPMV) IN THE EXHAUST SHALL BE CONTINUOUSLY MONITORED OR MEASURED MANUALLY AND RECORDED AT LEAST ONCE A DAY USING A DISTRICT APPROVED DEVICE. [RULE 204] - 6. THE HYDROGEN SULFIDE (H2S) CONCENTRATION IN THE EXHAUST SHALL NOT EXCEED I PPMV. [RULE 402, 1401] - 7. IF THE AVERAGE HYDROGEN SULFIDE (H2S) CONCENTRATION IS DETECTED 0.9 PPMV OR HIGHER, THE CARBON SHALL BE REPLACED AS PER MANUFACTURER'S RECOMMENDATIONS AND SPECIFICATIONS. [RULE 402] - 8. SPENT CARBON REMOVED FROM THIS SYSTEM SHALL BE MAINTAINED OR STORED IN CLOSED CONTAINERS PRIOR TO REMOVAL FROM SITE. [RULE 402] - 9. RECORDS SHALL BE MAINTAINED AS REQUIRED BY THIS PERMIT INCLUDING CARBON CHANGE OVER DATE(S) FOR COMPLIANCE. THE RECORDS SHALL BE KEPT FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section D Page 48 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. F95584 A/N 474766 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, NO. 2, AT PB-C, CATERPILLAR, COMPRESSION-IGNITION, FOUR STROKE, TURBOCHARGED-AFTERCOOLED, V-12 TYPE, MODEL NO. 3512, SERIAL NUMBER 24Z01547, 1482 HP, DIESEL OIL-FIRED, DRIVING A 1000 KW EMERGENCY ELECTRICAL GENERATOR. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 30 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 30 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 49 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470. Section D Page 50 Facility I.D. #: 29110 Revision #: 07 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### **PERMIT TO OPERATE** Permit No. F95585 A/N 474767 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, NO. 1, AT PB-C, CATERPILLAR,
COMPRESSION-IGNITION, FOUR STROKE, TURBOCHARGED-AFTERCOOLED, V-12 TYPE, MODEL NO. 3512, SERIAL NUMBER 24Z01541, 1482 HP, DIESEL OIL-FIRED, DRIVING A 1000 KW EMERGENCY ELECTRICAL GENERATOR. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 30 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 30 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 51 Facility I.D. #: 29110 Revision #: Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 8. 1470. [RULE 431.2, RULE 1470] #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: PM: **RULE 1470.** Section D Page 52 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO OPERATE Permit No. F95586 A/N 474768 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, NO. 1, AT PB-D, CATERPILLAR, COMPRESSION-IGNITION, FOUR STROKE, TURBOCHARGED-AFTERCOOLED, V-12 TYPE, MODEL NO. 3512, SERIAL NUMBER 24Z01544, 1482 HP, DIESEL OIL-FIRED, DRIVING A 1000 KW EMERGENCY ELECTRICAL GENERATOR. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 30 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 30 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 53 Facility I.D. #: 29110 Revision #: Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - B. MAINTENANCE AND TESTING HOURS - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 8. 1470. [RULE 431.2, RULE 1470] ### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: **RULE 1470.** Section D Page 54 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. F95587 A/N 474769 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, NO. 2, AT PB-B, DETROIT DIESEL, 16 CYLINDER, TURBOCHARGED, AFTERCOOLED, MODEL T163-7K16, 2935 BHP, SERIAL NUMBER DD5272000531, DIESEL - FUELED, DRIVING AN EMERGENCY ELECTRICAL GENERATOR. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 50 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 50 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 55 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470. Section D Page 56 Facility I.D. #: 29110 Revision #: 07 Date: February 5,
2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. F95588 A/N 474770 #### **Equipment Description:** INTERNAL COMBUSTION ENGINE, NO. 1, AT PB-B, DETROIT DIESEL, 16 CYLINDER, TURBOCHARGED, AFTERCOOLED, MODEL T163-7K16, 2935 BHP, SERIAL NUMBER DD5272000532, DIESEL - FUELED, DRIVING AN EMERGENCY ELECTRICAL GENERATOR. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR WHICH INCLUDES NOT MORE THAN 50 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES. [RULE 1304(a), RULE 1110.2, RULE 1470] - 4. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. [RULE 1304(a), RULE 1110.2, RULE 1470] - 5. THE OPERATION OF ENGINE BEYOND THE 50 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE ELECTRICAL GRID OPERATOR OR ELECTRIC UTILITY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. [RULE 1304 (a) (1)-BACT, RULE 1470] - 6. THIS ENGINE SHALL NOT BE USED AS PART OF A DEMAND RESPONSE PROGRAM USING INTERRUPTIBLE SERVICE CONTRACT IN WHICH A FACILITY RECEIVES A PAYMENT OR REDUCED RATES IN RETURN FOR REDUCING ITS ELECTRIC LOAD ON THE GRID WHEN REQUESTED TO SO BY THE UTILITY OR THE GRID OPERATOR. [RULE 1303 (a) (1)-BACT, RULE 1470] Section D Page 57 Facility I.D. #: 29110 Revision #: 07 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. AN ENGINE OPERATING LOG SHALL BE MAINTAINED WHICH ON A MONTHLY BASIS SHALL LIST ALL ENGINE OPERATIONS IN EACH OF THE FOLLOWING AREAS: - A. EMERGENCY USE HOURS OF OPERATION - **B. MAINTENANCE AND TESTING HOURS** - C. OTHER OPERATING HOURS (DESCRIBE THE REASON FOR OPERATION) IN ADDITION, EACH TIME THE ENGINE IS STARTED MANUALLY, THE LOG SHALL INCLUDE THE DATE OF OPERATION AND THE TIMER READING IN HOURS AT THE BEGINNING AND END OF OPERATION THE LOG SHALL BE KEPT FOR A MINIMUM OF THREE CALENDAR YEARS PRIOR TO THE CURRENT YEAR AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR SHALL BE RECORDED SOMETIME DURING THE FIRST 15 DAYS OF JANUARY OF EACH YEAR. [RULE 1304(A), RULE 1110.2, RULE 1470] 8. THE OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2 AND 1470. [RULE 431.2, RULE 1470] #### **Emissions And Requirements:** 9. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. PM: RULE 1470. Section D Page 58 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT/OPERATE Permit No. G12233 A/N 512604 #### **Equipment Description:** STORAGE TANK, VERTICAL FIXED ROOF, ID NO. 20GTNK500, HYDROCHLORIC ACID, 10' - 0" DIA. X 17' - 0" H., 10,000- GALLON CAPACITY, AND VENTING THROUGH A SPARGER TANK, 370 GALLON CAPACITY, CONTAINING WATER. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS PERMIT SHALL EXPIRE IF CONSTRUCTION OF THIS EQUIPMENT IS NOT COMPLETED WITHIN ONE YEAR FROM MARCH 3, 2011 UNLESS AN EXTENSION IS GRANTED BY THE EXECUTIVE OFFICER. [RULE 205] - 4. THIS EQUIPMENT SHALL STORE HYDROCHLORIC ACID WITH CONCENTRATION OF 38 WEIGHT PERCENT OR LESS ONLY. [RULE 204] - 5. THE MAXIMUM AMOUNT OF HYDROCHLORIC ACID FILLED INTO THIS STORAGE TANK SHALL NOT EXCEED 10,000 GALLONS PER MONTH. [RULE 1303 (b) (1) OFFSET] - 6. THE OPERATOR SHALL NOT OPERATE THIS TANK UNLESS VENT GASES ARE SPARGED AT LEAST 10 INCHES BELOW THE LIQUID SURFACE OF A TRAP CONTAINING AT LEAST 190 GALLONS OF WATER. [RULE 1303 (a) (1)-BACT] - 7. THE SPARGER TANK SHALL BE FILLED WITH FRESH WATER PRIOR TO EACH ACID TANK FILLING EVENT. [RULE 204] - 8. RECORDS REQUIRED BY THIS PERMIT SHALL BE KEPT AND MAINTAINED FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section D Page 59 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### **PERMIT TO OPERATE** Permit No. G12234 A/N 512832 #### **Equipment Description:** STORAGE TANK, FIXED ROOF, ID NO. 211TNK076 (P2 NSC), HYDROCHLORIC ACID, 8' - 0" DIA. X 13' - 0" H., 4,000- GALLON CAPACITY AND VENTING PASSIVELY THROUGH A 55-GALLON DRUM CONTAINING (50% SULPHASORB XL AND 50% SAFETYSORB BLEND OR EQUAL) ACTIVATED CARBON. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - THIS EQUIPMENT SHALL STORE HYDROCHLORIC ACID WITH CONCENTRATION OF 38 WEIGHT PERCENT OR LESS ONLY. [RULE 204] - 4. THE MAXIMUM AMOUNT OF HYDROCHLORIC ACID FILLED INTO THIS STORAGE TANK SHALL NOT EXCEED 2,000 GALLONS PER MONTH. [RULE 1303 (b) (1) OFFSET] - 5. THIS EQUIPMENT SHALL NOT BE FILLED UNLESS THE VENT GASES PASS THROUGH A 55-GALLON DRUM CONTAINING ACTIVATED CARBON. [RULE 1303 (a) (1)-BACT] - 6. THE OPERATOR SHALL REPLACE THE CARBON PER MANUFACTURER'S RECOMMENDATION. [RULE 204] - 7. RECORDS REQUIRED BY THIS PERMIT SHALL BE KEPT AND MAINTAINED FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section D Page 60 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO OPERATE Permit No. G12235 A/N 512833 #### **Equipment Description:** STORAGE TANK, FIXED ROOF, ID NO. 201TNK450 (P2 SSC), HYDROCHLORIC ACID, 7' - 0" DIA. X 10' - 0" H., 2,000- GALLON CAPACITY AND VENTING PASSIVELY THROUGH A 55-GALLON DRUM CONTAINING (50% SULPHASORB XL AND 50% SAFETYSORB BLEND OR EQUAL) ACTIVATED CARBON. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL STORE HYDROCHLORIC ACID WITH CONCENTRATION OF 38 WEIGHT PERCENT OR LESS ONLY. [RULE 204] - 4. THE MAXIMUM AMOUNT OF HYDROCHLORIC ACID FILLED INTO THIS STORAGE TANK SHALL NOT EXCEED 2000 GALLONS PER MONTH. [RULE 1303 (b) (1) OFFSET] - 5. THIS EQUIPMENT SHALL NOT BE FILLED UNLESS THE VENT GASES PASS THROUGH A 55-GALLON DRUM CONTAINING ACTIVATED CARBON. [RULE 1303 (a) (1)-BACT] - 6. THE OPERATOR SHALL REPLACE THE CARBON PER MANUFACTURER'S RECOMMENDATION. [RULE 204] - 7. RECORDS REQUIRED BY THIS PERMIT SHALL BE KEPT AND MAINTAINED FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section D Page 61 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO OPERATE Permit No. G27394 A/N 540708 #### **Equipment Description:** RESOURCE RECOVERY SYSTEM NO. 1 CONSISTING OF: INTERNAL COMBUSTION ENGINE (CG1-HB), COOPER BESSMER, SPARK IGNITION, FOUR STROKE, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO DETERMINE THE ENGINE ELAPSED OPERATING TIME FOR EACH FUEL BLEND BURNED. [RULE 1110.2] - 5. A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE FUEL GAS, OR FUEL BLEND, SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE QUANTITY OF EACH FUEL GAS (IN SCFM) BURNED. [RULE 204] - 6. SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW THE COLLECTION OF A FUEL GAS OR FUEL BLEND SAMPLES. [RULE 204] - 7. MONTHLY READINGS OF THE BTU CONTENT OF FUEL GAS (BTU/SCF) AT THE COMBINED INLET TO THE CGS ENGINES SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAQMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - 8. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. [RULE 204] Section D Page 62 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 9. THE TOTAL HEAT INPUT OF GASEOUS FUEL, OR FUEL BLEND, BURNED IN THIS ENGINE SHALL NOT EXCEED 33 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF
FUEL GAS, OR FUEL BLEND, BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - 10. THIS EQUIPMENT SHALL BE OPERATED IN COMPLIANCE WITH RULES 218, 431.1 AND 1110.2. [RULE 218, 431.1 AND 1110.2] - 11. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION RATES ARE NOT EXCEEDED. AIR CONTAMINANT CARBON MONOXIDE 600 PPMV AT 15% O2 PARTICULATES (PM10) 0.0058 GRAINS/ DSCF ROG OR TNMHC (AS CARBON) 115 PPMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] 12. THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | |-----------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | [RULE 1303 (b) (2)-EMISSIONS OFFS | SET] | - 13. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR NOX AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL NOX TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOX CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 218, RULE 1110.2] - 14. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS ANNUALLY. WRITTEN NOTICE OF THE PERFORMANCE TEST SHALL BE PROVIDED TO THE AQMD AT LEAST 7 DAYS PRIOR TO THE TEST SO THAT AN OBSERVER MAY BE PRESENT. A COMPLETE FINAL REPORT OF THE TEST (LBS/HR, PPMVD AT 15% O2, LBS/MMBTU, ETC.) SHALL BE PROVIDED TO THE AQMD WITHIN 45 DAYS AFTER TESTING. ALL TEST RUNS REQUIRED BY AQMD SHALL BE REPORTED. THE TESTS SHALL INCLUDE BUT NOT BE LIMITED TO, A TEST OF THE FUELS BURNED AND ENGINE EXHAUST FOR: - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY) - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - D. OXIDES OF NITROGEN (EXHAUST ONLY). Section D Page 63 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - E. OXYGEN - F. FLOW RATE - G. MOISTURE - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - I. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - J. TOTAL REDUCED SULFUR COMPOUNDS (FUEL ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (FUEL ONLY) - M. POWER OUTPUT [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET], [RULE 1110.2], [RULE 404] 15 RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] #### **Emissions And Requirements:** 16. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 1110.2 NOx: 45.4 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) ROG: 315 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. Section D Page 64 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO OPERATE Permit No. G27395 A/N 540709 ### **Equipment Description:** RESOURCE RECOVERY SYSTEM NO. 2 CONSISTING OF: INTERNAL COMBUSTION ENGINE (CG2-HB), COOPER BESSMER, SPARK IGNITION, FOUR STROKE, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO DETERMINE THE ENGINE ELAPSED OPERATING TIME FOR EACH FUEL BLEND BURNED. [RULE 1110.2] - 5. A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE FUEL GAS, OR FUEL BLEND, SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE QUANTITY OF EACH FUEL GAS (IN SCFM) BURNED. [RULE 204] - 6. SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW THE COLLECTION OF A FUEL GAS OR FUEL BLEND SAMPLES. [RULE 204] - 7. MONTHLY READINGS OF THE BTU CONTENT OF FUEL GAS (BTU/SCF) AT THE COMBINED INLET TO THE CGS ENGINES SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAQMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - 8. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. [RULE 204] Section D Page 65 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 9. THE TOTAL HEAT INPUT OF GASEOUS FUEL, OR FUEL BLEND, BURNED IN THIS ENGINE SHALL NOT EXCEED 33 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS, OR FUEL BLEND, BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - 10. THIS EQUIPMENT SHALL BE OPERATED IN COMPLIANCE WITH RULES 218, 431.1 AND 1110.2. [RULE 218, 431.1 AND 1110.2] - 11. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION RATES ARE NOT EXCEEDED. AIR CONTAMINANT CARBON MONOXIDE 600 PPMV AT 15% O2 PARTICULATES (PM10) 0.0058 GRAINS/ DSCF ROG OR TNMHC (AS CARBON) 115 PPMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] 12. THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | |-----------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | [RULE 1303 (b) (2)-EMISSIONS OFFS | SET) | - 13. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR NOx AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL NOx TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOX CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 218, RULE 1110.2] - 14. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS ANNUALLY. WRITTEN NOTICE OF THE PERFORMANCE TEST SHALL BE PROVIDED TO THE AQMD AT LEAST 7 DAYS PRIOR TO THE TEST SO THAT AN OBSERVER MAY BE PRESENT. A COMPLETE FINAL REPORT OF THE TEST (LBS/HR, PPMVD AT 15% O2, LBS/MMBTU, ETC.) SHALL BE PROVIDED TO THE AQMD WITHIN 45 DAYS AFTER TESTING. ALL TEST RUNS REQUIRED BY AQMD SHALL BE REPORTED. THE TESTS SHALL INCLUDE BUT NOT BE LIMITED TO, A TEST OF THE FUELS BURNED AND ENGINE EXHAUST FOR: - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY) - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - D. OXIDES OF NITROGEN (EXHAUST ONLY). Section D Page 66 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - E. OXYGEN - F. FLOW RATE - G. MOISTURE - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - 1. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - J. TOTAL REDUCED SULFUR COMPOUNDS (FUEL ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (FUEL ONLY) - M. POWER OUTPUT [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET], [RULE 1110.2], [RULE 404] 15 RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] #### **Emissions And Requirements:** 16. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 1110.2 NOx: 45.4 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) ROG: 315 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26). PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS Section D Page 67 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO OPERATE Permit No. G27396 A/N 540710 #### **Equipment Description:** RESOURCE RECOVERY SYSTEM NO. 3 CONSISTING OF: INTERNAL COMBUSTION ENGINE (CG3-HB), COOPER BESSMER, SPARK IGNITION, FOUR STROKE, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO DETERMINE THE ENGINE ELAPSED OPERATING TIME FOR EACH FUEL BLEND BURNED. [RULE 1110.2] - 5. A FLOW INDICATING AND
RECORDING DEVICE SHALL BE INSTALLED IN THE FUEL GAS, OR FUEL BLEND, SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE QUANTITY OF EACH FUEL GAS (IN SCFM) BURNED. [RULE 204] - 6. SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW THE COLLECTION OF A FUEL GAS OR FUEL BLEND SAMPLES. [RULE 204] - 7. MONTHLY READINGS OF THE BTU CONTENT OF FUEL GAS (BTU/SCF) AT THE COMBINED INLET TO THE CGS ENGINES SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAQMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - 8. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. [RULE 204] Section D Page 68 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 9. THE TOTAL HEAT INPUT OF GASEOUS FUEL, OR FUEL BLEND, BURNED IN THIS ENGINE SHALL NOT EXCEED 33 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS, OR FUEL BLEND, BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - 10. THIS EQUIPMENT SHALL BE OPERATED IN COMPLIANCE WITH RULES 218, 431.1 AND 1110.2. [RULE 218, 431.1 AND 1110.2] - 11. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION RATES ARE NOT EXCEEDED. AIR CONTAMINANT CARBON MONOXIDE PARTICULATES (PM10) 600 PPMV AT 15% O2 0.0058 GRAINS/ DSCF ROG OR TNMHC (AS CARBON) 115 PPMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] 12. THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | |--------------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | [RULE 1303 (b) (2)-EMISSIONS OFFSET] | | - 13. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR NOx AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL NOx TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOx CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 218, RULE 1110.2] - 14. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS ANNUALLY. WRITTEN NOTICE OF THE PERFORMANCE TEST SHALL BE PROVIDED TO THE AQMD AT LEAST 7 DAYS PRIOR TO THE TEST SO THAT AN OBSERVER MAY BE PRESENT. A COMPLETE FINAL REPORT OF THE TEST (LBS/HR, PPMVD AT 15% O2, LBS/MMBTU, ETC.) SHALL BE PROVIDED TO THE AQMD WITHIN 45 DAYS AFTER TESTING. ALL TEST RUNS REQUIRED BY AQMD SHALL BE REPORTED. THE TESTS SHALL INCLUDE BUT NOT BE LIMITED TO, A TEST OF THE FUELS BURNED AND ENGINE EXHAUST FOR: - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY) - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - D. OXIDES OF NITROGEN (EXHAUST ONLY). Section D Page 69 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - E. OXYGEN - F. FLOW RATE - G. MOISTURE - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - I. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - J. TOTAL REDUCED SULFUR COMPOUNDS (FUEL ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (FUEL ONLY) - M. POWER OUTPUT [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET], [RULE 1110.2], [RULE 404] 15 RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] ### **Emissions And Requirements:** 16. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 1110.2 NOx: 45.4 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) ROG: 315 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS Section D Page 70 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO OPERATE Permit No. G27397 A/N 540711 #### **Equipment Description:** RESOURCE RECOVERY SYSTEM NO. 4 CONSISTING OF: INTERNAL COMBUSTION ENGINE (CG4-HB), COOPER BESSMER, SPARK IGNITION, FOUR STROKE, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO DETERMINE THE ENGINE ELAPSED OPERATING TIME FOR EACH FUEL BLEND BURNED. [RULE 1110.2] - 5. A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE FUEL GAS, OR FUEL BLEND, SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE QUANTITY OF EACH FUEL GAS (IN SCFM) BURNED. [RULE 204] - 6. SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW THE COLLECTION OF A FUEL GAS OR FUEL BLEND SAMPLES. [RULE 204] - 7. MONTHLY READINGS OF THE BTU CONTENT OF FUEL GAS (BTU/SCF) AT THE COMBINED INLET TO THE CGS ENGINES SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAQMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - 8. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. [RULE 204] Section D Page 71 Facility I.D. #: 29110 Revision #: Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - 9. THE TOTAL HEAT INPUT OF GASEOUS FUEL, OR FUEL BLEND, BURNED IN THIS ENGINE SHALL NOT EXCEED 33 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS, OR FUEL BLEND, BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - THIS EQUIPMENT SHALL BE OPERATED IN COMPLIANCE WITH RULES 218, 431.1 AND 1110.2. 10. [RULE 218, 431.1 AND 1110.2] - THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION 11. RATES ARE NOT EXCEEDED. AIR CONTAMINANT 600 PPMV AT 15% O2 CARBON MONOXIDE PARTICULATES (PM10) 0.0058 GRAINS/ DSCF ROG OR TNMHC (AS CARBON) 115 PPMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY 12. EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | |-----------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | [RULE 1303 (b) (2)-EMISSIONS OFFS | SET] | - THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING 13. SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER. TO MEASURE THE ENGINE EXHAUST FOR NOx AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL NOX TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOx CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 218, RULE 1110.2] - THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS ANNUALLY. WRITTEN NOTICE OF THE 14. PERFORMANCE TEST SHALL BE PROVIDED TO THE AQMD AT LEAST 7 DAYS PRIOR TO THE TEST SO THAT AN OBSERVER MAY BE PRESENT. A COMPLETE FINAL REPORT OF THE TEST (LBS/HR, PPMVD AT 15% O2, LBS/MMBTU, ETC.) SHALL BE PROVIDED TO THE AQMD WITHIN 45 DAYS AFTER TESTING. ALL TEST RUNS REQUIRED BY AQMD SHALL BE REPORTED. THE TESTS SHALL INCLUDE BUT NOT BE LIMITED TO, A TEST OF THE FUELS BURNED AND ENGINE EXHAUST FOR: - TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY) A. - CARBON MONOXIDE (EXHAUST ONLY) B. - TOTAL PARTICULATE MATTER (EXHAUST ONLY). C. - OXIDES OF NITROGEN (EXHAUST ONLY). D. Section D Page 72 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - E. OXYGEN - F. FLOW RATE - G. MOISTURE - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - I. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - J. TOTAL REDUCED SULFUR COMPOUNDS (FUEL ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (FUEL ONLY) - M. POWER OUTPUT [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET], [RULE 1110.2], [RULE 404] 15 RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] #### **Emissions And Requirements:** 16. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 1110.2 NOx: 45.4 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) ROG: 315 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS Section D Page 73 Facility I.D. #: 29110 Revision #: Date: February 5, 2015 ### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO OPERATE Permit No. G27398 A/N 540712 #### **Equipment Description:** RESOURCE RECOVERY SYSTEM NO. 5 CONSISTING OF:
INTERNAL COMBUSTION ENGINE (CG5-HB), COOPER BESSMER, SPARK IGNITION, FOUR STROKE, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND 1. SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITION AT ALL TIMES. [RULE 204] - THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO 4. DETERMINE THE ENGINE ELAPSED OPERATING TIME FOR EACH FUEL BLEND BURNED. [RULE 1110.2] - A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE FUEL GAS, OR FUEL BLEND, SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE QUANTITY OF EACH FUEL GAS (IN SCFM) BURNED. [RULE 204] - SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW 6. THE COLLECTION OF A FUEL GAS OR FUEL BLEND SAMPLES. [RULE 204] - 7. MONTHLY READINGS OF THE BTU CONTENT OF FUEL GAS (BTU/SCF) AT THE COMBINED INLET TO THE CGS ENGINES SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAOMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. 8. [RULE 204] Section D Page 74 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 ## FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 9. THE TOTAL HEAT INPUT OF GASEOUS FUEL, OR FUEL BLEND, BURNED IN THIS ENGINE SHALL NOT EXCEED 33 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS, OR FUEL BLEND, BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - 10. THIS EQUIPMENT SHALL BE OPERATED IN COMPLIANCE WITH RULES 218, 431.1 AND 1110.2. [RULE 218, 431.1 AND 1110.2] - 11. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION RATES ARE NOT EXCEED. AIR CONTAMINANT CARBON MONOXIDE PARTICULATES (PM10) 600 PPMV AT 15% O2 0.0058 GRAINS/ DSCF 115 PPMV AT 15% O2 ROG OR TNMHC (AS CARBON) [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] 12. THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | |------------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | [RULE 1303 (b) (2)-EMISSIONS OFFSE | T] | - 13. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR NOx AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL NOx TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOX CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 218, RULE 1110.2] - 14. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS ANNUALLY. WRITTEN NOTICE OF THE PERFORMANCE TEST SHALL BE PROVIDED TO THE AQMD AT LEAST 7 DAYS PRIOR TO THE TEST SO THAT AN OBSERVER MAY BE PRESENT. A COMPLETE FINAL REPORT OF THE TEST (LBS/HR, PPMVD AT 15% O2, LBS/MMBTU, ETC.) SHALL BE PROVIDED TO THE AQMD WITHIN 45 DAYS AFTER TESTING. ALL TEST RUNS REQUIRED BY AQMD SHALL BE REPORTED. THE TESTS SHALL INCLUDE BUT NOT BE LIMITED TO, A TEST OF THE FUELS BURNED AND ENGINE EXHAUST FOR: - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY) - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - D. OXIDES OF NITROGEN (EXHAUST ONLY). Section D Page 75 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - E. OXYGEN - F. FLOW RATE - G. MOISTURE - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - I. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - J. TOTAL REDUCED SULFUR COMPOUNDS (FUEL ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (FUEL ONLY) - M. POWER OUTPUT [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET], [RULE 1110.2], [RULE 404] 15 RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] #### **Emissions And Requirements:** 16. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 1110.2 NOx: 45.4 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) ROG: 315 PPMV, RULE 1110.2 (WITH ECF ADJUSTMENT FACTOR = 1.26) PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS Section D Page 76 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### **RULE 219 EQUIPMENT** #### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, ABRASIVE BLASTING EQUIPMENT, GLOVE-BOX, < 53 FT³, WITH DUST FILTER. #### Periodic Monitoring: - 1. THE OPERATOR SHALL PERFORM AN ANNUAL INSPECTION OF THE EQUIPMENT AND FILTER MEDIA FOR LEAKS, BROKEN OR TORN FILTER MEDIA AND IMPROPERLY INSTALLED FILTER MEDIA. THE OPERATOR SHALL KEEP RECORDS, IN A MANNER APPROVED BY THE DISTRICT, FOR THE FOLLOWING PARAMETER(S) OR ITEM(S): - A. THE NAME OF THE PERSON PERFORMING THE INSPECTION AND/OR MAINTENANCE OF THE FILTER MEDIA; - B. THE DATE, TIME AND RESULTS OF THE INSPECTION; AND - C. THE DATE, TIME AND DESCRIPTION OF ANY MAINTENANCE OR REPAIRS RESULTING FROM THE INSPECTION. [RULE 3004 (a)(4)] - 2. THE OPERATOR SHALL DISCHARGE DUST COLLECTED IN THIS EQUIPMENT ONLY INTO CLOSED CONTAINERS. [RULE 3004 (a)(4)] - 3. THE OPERATOR SHALL CONDUCT AN INSPECTION FOR VISIBLE EMISSIONS FROM ALL STACKS AND OTHER EMISSION POINTS OF THIS EQUIPMENT WHENEVER THERE IS A PUBLIC COMPLAINT OF VISIBLE EMISSIONS, WHENEVER VISIBLE EMISSIONS ARE OBSERVED, AND ON AN ANNUAL BASIS, AT LEAST, UNLESS THE EQUIPMENT DID NOT OPERATE DURING THE ENTIRE ANNUAL PERIOD. THE ROUTINE ANNUAL INSPECTION SHALL BE CONDUCTED WHILE THE EQUIPMENT IS IN OPERATION AND DURING DAYLIGHT HOURS. IF ANY VISIBLE EMISSIONS (NOT INCLUDING CONDENSED WATER VAPOR) ARE DETECTED, THE OPERATOR SHALL TAKE CORRECTIVE ACTION(S) THAT ELIMINATES THE VISIBLE EMISSIONS WITHIN 24 HOURS AND REPORT THE VISIBLE EMISSIONS AS A POTENTIAL DEVIATION IN ACCORDANCE WITH THE REPORTING REQUIREMENTS IN SECTION K OF THIS PERMIT. THE OPERATOR SHALL KEEP THE RECORDS IN ACCORDANCE WITH THE RECORDKEEPING REQUIREMENTS IN SECTION K OF THIS PERMIT AND THE FOLLOWING RECORDS: - A. STACK OR EMISSION POINT IDENTIFICATION: - B. DESCRIPTION OF ANY CORRECTIVE ACTIONS TAKEN TO ABATE VISIBLE EMISSIONS; AND - C. DATE AND TIME VISIBLE EMISSION WAS ABATED. [RULE 3004 (a)(4)] Section D Page 77 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** ### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, CLEANING EQUIPMENT, SMALL UNHEATED, NON-CONVEYORIZED ### **Emissions And Requirements:** 1. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATION: VOC: RULE 1122 VOC: RULE 1171, SEE APPENDIX B FOR EMISSION LIMITS Section D Page 78 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** ### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, BOILER, WITH RATED HEAT INPUT STARTING AT 75, 000 BTU/HR UP TO AND INCLUDING 2 MMBTU/HR. ### **Emissions And Requirements:** 1. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: 0.1 gr/scf, RULE 409 CO: 2000 PPMV, RULE 407 NOx; 30 PPMV @3% O2, DRY-TYPE 2 UNIT, > 400,000 BTU/HR AND ≤2 MM BTU/HR, RULE 1146.2 NOx; 55 PPMV @3% O2, DRY-TYPE 1 UNIT, ≥ 400,000 BTU/HR AND ≤400,000 BTU/HR, RULE 1146.2 Section D Page 79 Facility I.D. #: 29110 Revision #: 07 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** ### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, ABRASIVE BLASTING EQUIPMENT, GLOVE-BOX, < 53 FT³, WITH DUST FILTER. #### Periodic Monitoring: - 4. THE OPERATOR SHALL PERFORM AN ANNUAL INSPECTION OF THE EQUIPMENT AND FILTER MEDIA FOR LEAKS, BROKEN OR TORN FILTER MEDIA AND IMPROPERLY INSTALLED FILTER MEDIA. THE OPERATOR SHALL KEEP RECORDS, IN A MANNER APPROVED BY THE DISTRICT, FOR THE FOLLOWING PARAMETER(S) OR ITEM(S): - D. THE NAME OF THE PERSON PERFORMING THE INSPECTION AND/OR MAINTENANCE OF THE FILTER MEDIA; - E. THE DATE, TIME AND RESULTS OF THE INSPECTION; AND - F. THE DATE, TIME AND DESCRIPTION OF ANY MAINTENANCE OR REPAIRS RESULTING FROM THE INSPECTION. [RULE 3004 (a)(4)] - 5. THE OPERATOR SHALL DISCHARGE DUST COLLECTED IN THIS EQUIPMENT ONLY INTO CLOSED CONTAINERS. [RULE 3004 (a)(4)] - 6. THE OPERATOR SHALL CONDUCT AN INSPECTION FOR VISIBLE EMISSIONS FROM ALL STACKS AND OTHER EMISSION POINTS OF THIS EQUIPMENT WHENEVER THERE IS A PUBLIC COMPLAINT OF VISIBLE EMISSIONS, WHENEVER VISIBLE EMISSIONS ARE OBSERVED, AND ON AN ANNUAL BASIS, AT LEAST, UNLESS THE EQUIPMENT DID NOT OPERATE DURING THE ENTIRE ANNUAL PERIOD. THE ROUTINE ANNUAL INSPECTION SHALL BE CONDUCTED WHILE THE EQUIPMENT IS IN OPERATION AND DURING DAYLIGHT HOURS. IF ANY VISIBLE EMISSIONS (NOT INCLUDING CONDENSED WATER VAPOR) ARE DETECTED, THE OPERATOR SHALL TAKE CORRECTIVE ACTION(S) THAT ELIMINATES THE VISIBLE
EMISSIONS WITHIN 24 HOURS AND REPORT THE VISIBLE EMISSIONS AS A POTENTIAL DEVIATION IN ACCORDANCE WITH THE REPORTING REQUIREMENTS IN SECTION K OF THIS PERMIT. THE OPERATOR SHALL KEEP THE RECORDS IN ACCORDANCE WITH THE RECORDKEEPING REQUIREMENTS IN SECTION K OF THIS PERMIT AND THE FOLLOWING RECORDS: - D. STACK OR EMISSION POINT IDENTIFICATION; - E. DESCRIPTION OF ANY CORRECTIVE ACTIONS TAKEN TO ABATE VISIBLE EMISSIONS; AND - F. DATE AND TIME VISIBLE EMISSION WAS ABATED. [RULE 3004 (a)(4)] Section D Page 80 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** ### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, CLEANING EQUIPMENT, SMALL UNHEATED, NON-CONVEYORIZED ### **Emissions And Requirements:** 2. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATION: VOC: RULE 1122 VOC: RULE 1171, SEE APPENDIX B FOR EMISSION LIMITS Section D Page 81 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** ### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, HAND WIPING OPERATIONS. ### **Emissions and Requirements:** 1. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATION: VOC: RULE 1171, SEE APPENDIX B FOR EMISSION LIMITS Section D Page 82 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** ### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, BOILER, WITH RATED HEAT INPUT STARTING AT 75, 000 BTU/HR UP TO AND INCLUDING 2 MMBTU/HR. ### **Emissions And Requirements:** 1. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: PM: 0.1 gr/scf, RULE 409 CO: 2000 PPMV, RULE 407 NOx; 30 PPMV @3% O2, DRY-TYPE 2 UNIT, > 400,000 BTU/HR AND ≤2 MM BTU/HR, RULE 1146.2 NOx; 55 PPMV @3% O2, DRY-TYPE 1 UNIT, ≥ 400,000 BTU/HR AND ≤400,000 BTU/HR, RULE 1146.2 Section D Page 83 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** #### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, COATING EQUIPMENT, PORTABLE, ARCHITECTURAL COATINGS. #### Periodic Monitoring: 1. THE OPERATOR SHALL KEEP RECORDS, IN A MANNER APPROVED BY THE DISTRICT, FOR THE FOLLOWING PARAMETER(S) OR ITEM(S): FOR ARCHITECTURAL APPLICATIONS WHERE NO THINNERS, REDUCERS, OR OTHER VOC CONTAINING MATERIALS ARE ADDED, MAINTAIN SEMI-ANNUAL RECORDS OF ALL COATINGS CONSISTING OF (a) COATING TYPE, (b) VOC CONTENT AS SUPPLIED IN GRAMS PER LITER (g/l) OF MATERIALS FOR LOW-SOLIDS COATINGS, (c) VOC CONTENT AS SUPPLIED IN g/l OF COATING, LESS WATER AND EXEMPT SOLVENT, FOR OTHER COATING. FOR OTHER ARCHITECTURAL APPLICATIONS WHERE THINNERS, REDUCERS, OR OTHER VOC CONTAINING MATERIALS ARE ADDED, MAINTAIN DAILY RECORDS FOR EACH COATING CONSISTING OF (a) COATING TYPE, (b) VOC CONTENT AS APPLIED IN GRAMS PER LITER (g/l) OF MATERIALS USED FOR LOW-SOLIDS COATINGS, (c) VOC CONTENT AS APPLIED IN g/l OF COATING, LESS WATER AND EXEMPT SOLVENT, FOR OTHER COATING. [RULE 3004(a)(4)] #### **Emissions And Requirements:** 2. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATION: VOC: RULE 1113, SEE APPENDIX B FOR EMISSION LIMITS VOC: RULE 1171, SEE APPENDIX B FOR EMISSION LIMITS Section D Page 84 Facility I.D.#: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** ## **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, AIR CONDITIONING UNITS. ### **Emissions And Requirements:** 1. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATION: VOC: RULE 1415 VOC: 40CFR 82 SUBPART F Section D Page 85 Facility I.D. #: 29110 Revision #: 07 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **RULE 219 EQUIPMENT** ### **Equipment Description:** RULE 219 EXEMPT EQUIPMENT, FIRE EXTINGUISHING EQUIPMENT ## **Emissions And Requirements:** 1. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATION: HALON: **RULE 1418** Section E Facility ID: Revision #: Page: 1 029110 1 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### SECTION E: ADMINISTRATIVE CONDITIONS The operating conditions in this section shall apply to all permitted equipment at this facility unless superseded by condition(s) listed elsewhere in this permit. - 1. The permit shall remain effective unless this permit is suspended, revoked, modified, reissued, denied, or it is expired for nonpayment of permit processing or annual operating fees. [201, 203, 209, 301] - a. The permit must be renewed annually by paying annual operating fees, and the permit shall expire if annual operating fees are not paid pursuant to requirements of Rule 301(d). [301(d)] - b. The Permit to Construct listed in Section H shall expire one year from the Permit to Construct issuance date, unless a Permit to Construct extension has been granted by the Executive Officer or unless the equipment has been constructed and the operator has notified the Executive Officer prior to the operation of the equipment, in which case the Permit to Construct serves as a temporary Permit to Operate. [202, 205] - c. The Title V permit shall expire as specified under Section K of the Title V permit. The permit expiration date of the Title V facility permit does not supercede the requirements of Rule 205. [205, 3004] - 2. The operator shall maintain all equipment in such a manner that ensures proper operation of the equipment. [204] - 3. This permit does not authorize the emissions of air contaminants in excess of those allowed by Division 26 of the Health and Safety Code of the State of California or the Rules and Regulations of the AQMD. This permit cannot be considered as permission to violate existing laws, ordinances, regulations, or statutes of other governmental agencies. [204] - 4. The operator shall not use equipment identified in this facility permit as being connected to air pollution control equipment unless they are so vented to the identified air pollution control equipment which is in full use and which has been included in this permit. [204] Section E Facility ID: Revision #: Date: Page: 2 029110 1 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### **SECTION E: ADMINISTRATIVE CONDITIONS** - 5. The operator shall not use any equipment having air pollution control device(s) incorporated within the equipment unless the air pollution control device is in full operation. [204] - 6. The operator shall maintain records to demonstrate compliance with rules or permit conditions that limit equipment operating parameters, or the type or quantity of material processed. These records shall be made available to AQMD personnel upon request and be maintained for at least five years. [204] - 7. The operator shall maintain and operate all equipment to ensure compliance with all emission limits as specified in this facility permit. Compliance with emission limits shall be determined according to the following specifications, unless otherwise specified by AQMD rules or permit conditions: [204] - a. For internal combustion engines and gas turbines, measured concentrations shall be corrected to 15 percent stack-gas oxygen content on a dry basis and be averaged over a period of 15 consecutive minutes; [1110.2, 1134] - b. For other combustion devices, measured concentrations shall be corrected to 3 percent stack-gas oxygen content on a dry basis and be averaged over a period of 15 consecutive minutes; [1146, 1146.1, 204] - c. For non-combustion sources, compliance with emission limits shall be determined and averaged over a period of 60 minutes; [204] - d. For the purpose of determining compliance with Rule 407, carbon monoxide (CO) shall be measured on a dry basis and be averaged over 15 consecutive minutes, and sulfur compounds which would exist as liquid or gas at standard conditions shall be calculated as sulfur dioxide (SO2) and be averaged over 15 consecutive minutes; [407] - e. For the purpose of determining compliance with Rule 409, combustion contaminant emission measurements shall be corrected to 12 percent of carbon dioxide (CO2) at standard conditions and averaged over a minimum of 15 consecutive minutes. [409] Section E Facility ID: Revision #: Page: 3 029110 1 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### SECTION E: ADMINISTRATIVE CONDITIONS - f. For the purpose of determining compliance with Rule 475, combustion contaminant emission measurements shall be corrected to 3 percent of oxygen (O2) at standard conditions and averaged over 15 consecutive minutes or any other averaging time specified by the Executive Officer. [475] - 8. The operator shall, when a source test is required by AQMD, provide a source test protocol to AQMD no later than 60 days before the proposed test date. The test shall not commence until the protocol is approved by AQMD. The test protocol shall contain the following information: [204, 304] - a. Brief description of the equipment tested. - b. Brief process description, including maximum and normal operating temperatures, pressures, throughput, etc. - c. Operating conditions under which the test will be performed. - d. Method of measuring operating parameters, such as fuel rate and process weight. Process schematic diagram showing the ports and sampling locations, including the dimensions of the ducts and stacks at the sampling locations, and distances of flow disturbances, (e.g. elbows, tees, fans, dampers) from the sampling locations (upstream and downstream). - e. Brief description of sampling and analytical methods used to measure each
pollutant, temperature, flow rates, and moisture. - f. Description of calibration and quality assurance procedures. - g. Determination that the testing laboratory qualifies as an "independent testing laboratory" under Rule 304 (conflict of interest). - 9. The operator shall submit a report no later than 60 days after conducting a source test, unless otherwise required by AQMD rules or equipment-specific conditions. The report shall contain the following information: [204] - a. The results of the source test. Section E Facility ID: Revision #: Date: Page: 4 029110 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### SECTION E: ADMINISTRATIVE CONDITIONS - b. Brief description of the equipment tested. - c. Operating conditions under which the test was performed. - d. Method of measuring operating parameters, such as fuel rate and process weight. Process schematic diagram showing the ports and sampling locations, including the dimensions of the ducts and stacks at the sampling locations, and distances of flow disturbances, (e.g. elbows, tees, fans, dampers) from the sampling locations (upstream and downstream). - e. Field and laboratory data forms, strip charts and analyses. - f. Calculations for volumetric flow rates, emission rates, control efficiency, and overall control efficiency. - 10. The operator shall, when a source test is required, provide and maintain facilities for sampling and testing. These facilities shall comply with the requirements of AQMD Source Test Method 1.1 and 1.2. [217] - 11. Whenever required to submit a written report, notification or other submittal to the Executive Officer, AQMD, or the District, the operator shall mail or deliver the material to: Deputy Executive Officer, Engineering and Compliance, AQMD, 21865 E. Copley Drive, Diamond Bar, CA 91765-4182. [204] Section F Facility ID: Revision # Page: 1 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT SECTION F: RECLAIM MONITORING AND SOURCE TESTING REQUIREMENTS NOT APPLICABLE Section G Facility ID: Page: 1029110 Revision #: Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT SECTION G: RECORDKEEPING AND REPORTING REQUIREMENTS FOR RECLAIM SOURCES **NOT APPLICABLE** Section H Page 1 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### SECTION H: PERMIT TO CONSTRUCT AND TEMPORARY PERMIT TO OPERATE This section consists of a table listing all equipment with Permits to Construct and copies of all individual Permits to Construct issued to various equipment at the facility. Each permit will list operating conditions including periodic monitoring requirements and applicable emission limits and requirements that the equipment is subject to. Also included is the rule origin and authority of each emission limit and permit condition. Section H Page 2 Facility l.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## PERMITTED EQUIPMENT LIST THE FOLLOWING IS A LIST OF ALL PERMITS TO CONSTRUCT AND PERMITS TO OPERATE AT THIS FACILITY: | Application | Permit to Construct | Equipment Description | Page Number | |-------------|----------------------------|---------------------------------------|-------------| | Number | Granted On | | | | 519422 | 6/07/2012 | ODOR CONTROL SYSTEM, FOR BIOSOLIDS | 5 | | | | TRUCK LOADING STATION | | | 518276 | 6/07/2012 | ODOR CONTROL SYSTEM, FOR DAF | 7 | | | \ | THICKENING PROCESS | | | 545003 | 6/26/2014 | ODOR CONTROL UNIT, BIOFILTER | 10 | | 545004 | 10/17/2013, will supersede | BOILER, 10.2 MMBTU/HR, DIGESTER GAS | 13 | | | R-D94235 | AND NATURAL GAS | | | 545005 | 10/17/2013, will supersede | BOILER, 10.2 MMBTU/HR, DIGESTER GAS | 16 | | | R-D94232 | AND NATURAL GAS | | | 546364 | 4/16/2014 | ICE CG-1, 4166 HP, DG/NG WITH DG FUEL | 19 | | | | PRETREATMENT | | | 546365 | 4/16/2014 | ICE CG-2, 4166 HP, DG/NG WITH DG FUEL | 23 | | | | PRETREATMENT | | | 546366 | 4/16/2014 | ICE CG-3, 4166 HP, DG/NG WITH DG FUEL | 27 | | | | PRETREATMENT | | | 546367 | 4/16/2014 | ICE CG-4, 4166 HP, DG/NG WITH DG FUEL | 31 | | | | PRETREATMENT | | | 546368 | 4/16/2014 | ICE CG-5, 4166 HP, DG/NG WITH DG FUEL | 35 | | | _ | PRETREATMENT | | | 556626 | 6/26/2014 | SEWAGE TREATMENT (>5 MG/D) | 39 | | | | ANAEROBIC | | | 556627 | 6/26/2014 | AIR POLLUTION CONTROL SYSTEM, WET | 43 | | | | SCRUBBER AND BIOFILTER | | | 557229 | 4/16/2014 | STORAGE TANK, AQUEOUS UREA | 46 | | | | SOLUTION | | | 557230 | 4/16/2014 | STORAGE TANK, AQUEOUS UREA | 47 | | | | SOLUTION | | | 559228 | 4/16/2014 | APC SYSTEM 1, SCR/CO CATALYST | 48 | | 559229 | 4/16/2014 | APC SYSTEM 2, SCR/CO CATALYST | 51 | | 559230 | 4/16/2014 | APC SYSTEM 3, SCR/CO CATALYST | 54 | | 559231 | 4/16/2014 | APC SYSTEM 4, SCR/CO CATALYST | 57 | | 559232 | 4/16/2014 | APC SYSTEM 4, SCR/CO CATALYST | 60 | | 565930 | 11/12/2014 | AIR POLLUTION CONTROL SYSTEM, | 63 | | | | CHEM. SCRUBBERS FOR TRICKLING | | | | | FILTERS | | NOTE: EQUIPMENT LISTED ABOVE THAT HAVE NO CORRESPONDING PERMITS TO OPERATE NUMBER ARE ISSUED PERMITS TO CONSTRUCT. THE ISSUANCE OR DENIAL OF THEIR PERMITS TO OPERATE IS SUBJECT TO ENGINEERING FINAL REVIEW. ANY OTHER APPLICATIONS THAT ARE STILL BEING PROCESSED AND HAVE NOT BEEN ISSUED PERMITS TO CONSTRUCT OR PERMITS TO OPERATE WILL NOT BE FOUND IN THIS TITLE V PERMIT. Section H Page 3 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **FACILITY WIDE CONDITION (S)** ### Condition(s): - 1. EXCEPT FOR OPEN ABRASIVE BLASTING OPERATIONS, THE OPERATOR SHALL NOT DISCHARGE INTO THE ATMOSPHERE FROM ANY SINGLE SOURCE OF EMISSIONS WHATSOEVER ANY AIR CONTAMINANT FOR A PERIOD OR PERIODS AGGREGATING MORE THAN THREE MINUTES IN ANY ONE HOUR WHICH IS: - A. AS DARK OR DARKER IN SHADE AS THAT DESIGNATED NO. 1 ON THE RINGLEMANN CHART. AS PUBLISHED BY THE UNITED STATES BUREAU OF MINES; OR - B. OF SUCH OPACITY AS TO OBSCURE AN OBSERVER'S VIEW TO A DEGREE EQUAL TO OR GREATER THAN DOES SMOKE DESCRIBED IN SUBPARAGRAPH (A) OF THIS CONDITION. [RULE 401] - 2. THE OPERATOR SHALL NOT COMBUST DIGESTER GAS CONTAINING SULFUR COMPOUNDS IN EXCESS OF 40 PPMV CALCULATED AS HYDROGEN SULFIDE AVERAGED DAILY. [RULE 431.1] - 3. THE OPERATOR SHALL NOT USE FUEL OIL CONTAINING SULFUR COMPOUNDS IN EXCESS OF 0.05 PERCENT BY WEIGHT. ON OR AFTER JUNE 1, 2004, A PERSON SHALL NOT PURCHASE ANY DIESEL FUEL FOR STATIONARY SOURCE APPLICATION IN THE DISTRICT, UNLESS THE FUEL IS LOW SULFUR DIESEL FOR WHICH THE SULFUR CONTENT SHALL NOT EXCEED 15 PPM BY WEIGHT AS SUPPLIED BY THE SUPPLIER. [RULE 431.2] - 4. THE OWNER/OPERATOR SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF 40 CFR 63 SUBPART VVV NON-INDUSTRIAL POTW PLANT NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) AND ALL APPLICABLE REQUIREMENTS OF 40 CFR 63 SUBPART ZZZZ STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES NESHAP. [40 CFR 63 SUBPART VVV, AND 40 CFR 63 SUBPART ZZZZ] - 5. THE OPERATOR SHALL MEASURE THE SULFUR CONTENT OF THE DIGESTER GAS ACCORDING TO THE FOLLOWING: - A. FOR READINGS UP TO 36 PPM AS H2S, DAILY ANALYSIS OF THE DIGESTER GAS FOR H2S, USING COLORIMETRIC TUBES, AND WEEKLY ANALYSIS OF THE DIGESTER GAS BY AQMD METHOD 307 TOTAL SULFUR COMPOUNDS IN FUEL GAS BY GAS CHROMATOGRAPHY AND SULFUR CHEMILUMINESCENCE DETECTOR. - B. FOR READINGS ABOVE 36 PPM AS H2S, DAILY ANALYSIS OF THE DIGESTER GAS FOR H2S BY AQMD METHOD 307 TOTAL SULFUR COMPOUNDS IN FUEL GAS BY GAS CHROMATOGRAPHY AND SULFUR CHEMILUMINESCENCE DETECTOR. A MINIMUM OF THREE CONSECUTIVE DAILY SAMPLES ARE REQUIRED TO DEMONSTRATE THE TOTAL SULFUR CONTENT IS BELOW 36 PPM. [RULE 431.1] Section H Page 4 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 6. A COMPLETE APPLICATION FOR COMPLIANCE ASSURANCE MONITORING (CAM, 40 CFR PART 64) SHALL BE SUBMITTED WHENEVER THE ANNUAL MASS OF VOC OF THE DIGESTER GAS EXCEEDS 19,999 LBS/YR. THE VOC CONTENT OF THE DIGESTER GAS SHALL BE ANALYZED IN CONJUNCTION WITH THE ANNUAL SOURCE TESTING OF THE CGS ENGINES USING THE APPROVED METHODS. FOR EACH CALENDAR YEAR, THE VOC EMISSIONS SHALL BE CALCULATED BY MARCH 31ST OF THE SUBSEQUENT CALENDAR YEAR, OR WITHIN 30 DAYS OF SOURCE TEST REPORT DATE, WHICHEVER IS LATER, BASED ON THE DIGESTER GAS CONCENTRATION DATA FROM ANNUAL RULE 1110.2 SOURCE TESTING OF THE ENGINES. IF THE VOC EMISSIONS EXCEED 19,999 LBS/YR, THE CAM APPLICATION SHALL BE SUBMITTED BY MARCH 31ST, OR WITHIN 60 DAYS AFTER THE CALCULATION DUE DATE, WHICHEVER IS LATER. [40 CFR PART 64, CAM] Section H Page 5 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 519422 Granted as of 6/07/2012 #### **Equipment Description:** ODOR CONTROL SYSTEM FOR THE BIOSOLIDS TRUCK LOADING STATION, CONSISTING OF; - EXHAUST BLOWER, MAXIMUM 3000 CFM, 15 H. P., VENTING TWO (2) BIOSOLIDS STORAGE 1. SILOS (PART OF THE SLUDGE PROCESSING STATION, PC 453240). - ADSORBER, BAY PRODUCTS, SPARROW 3000, 8' DIA. X 7'- 3" H. OVERALL, CONTAINING 2. MINIMUM OF 3800 LBS OF ACTIVATED CARBON (BOTTOM LAYER) AND 1500 LBS OF POTASSIUM PERMANGANATE (KMNO4) IMPREGNATED MEDIA (TOP LAYER). EQUIPPED WITH DIFFERENTIAL PRESSURE GAUGE AND A DEMISTER. - EXHAUST STACK, 1' 6" DIA. X 13' 6" HIGH ABOVE GROUND. 3. #### Conditions: - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA 1. AND SPECIFICATIONS SUBMITTED WITH THE APPLICATIONS UNDER WHICH THIS PERMIT IS ISSUED. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITIONS AT ALL TIMES. [RULE 204] - THE OPERATOR MAY USE ALTERNATE MEDIA AND AMOUNTS IN ORDER TO OPTIMIZE THE 3. ODOR CONTROL SYSTEM, PROVIDED SUCH ALTERNATE MEDIA AND AMOUNTS ARE GUARANTEED BY THE VENDOR TO MEET THE EMISSION LIMITS IN
THIS PERMIT. [RULE 204] - THIS PERMIT SHALL EXPIRE IF CONSTRUCTION OF THE EQUIPMENT IS NOT COMPLETED 4. WITHIN ONE YEAR FROM THE DATE OF ISSUANCE OF THIS PERMIT UNLESS AN EXTENSION IS GRANTED BY THE EXECUTIVE OFFICER. **IRULE 2051** - SAMPLING PORTS SHALL BE PROVIDED AT THE INLET AND OUTLET OF THE ODOR CONTROL 5. SYSTEM TO ALLOW COLLECTION/ANALYSIS OF THE INLET FOUL AIR AND TREATED EXHAUST STREAM. [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN A DIFFERENTIAL PRESSURE GAUGE TO 6. ACCURATELY INDICATE THE DIFFERENTIAL PRESSURE, IN INCHES OF WATER COLUMN, ACROSS THE MEDIA BED. [RULE 204] Section H Page 6 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. THE OPERATOR SHALL, ON A WEEKLY BASIS, MEASURE AND RECORD THE DIFFERENTIAL PRESSURE DROP, IN INCHES OF WATER COLUMN, ACROSS THE MEDIA BED. [RULE 204] - 8. IN OPERATION, THE PRESSURE DROP MEASURED ACROSS THE MEDIA BED SHALL BE MAINTAINED BETWEEN 4.8 AND 8.4 INCHES OF WATER COLUMN, OR ANOTHER RANGE SPECIFIED BY THE MANUFACTURER. MANUFACTURER'S PRESSURE DROP RANGE SPECIFICATIONS FOR THIS EQUIPMENT SHALL BE KEPT ON FILE AND SHALL BE MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST. [RULE 204] - 9. THE HYDROGEN SULFIDE (H2S) CONCENTRATION (PPMV) AT THE INLET TO ODOR CONTROL SYSTEM SHALL BE MONITORED AND RECORDED ON A WEEKLY BASIS FOR THE FIRST MONTH OF OPERATION, AND MONTHLY THEREAFTER USING COLORIMETRIC H2S TUBES OR ANY OTHER DISTRICT APPROVED METHOD. [RULE 204] - 10. THE HYDROGEN SULFIDE (H2S) CONCENTRATION (PPMV) IN THE EXHAUST OF THE ODOR CONTROL SYSTEM SHALL BE MEASURED AND RECORDED AT LEAST ONCE A WEEK USING COLORIMETRIC H2S TUBES, HANDHELD H2S ANALYZER, OR ANY OTHER DISTRICT APPROVED METHOD. [RULE 204] - 11. IN OPERATION, THE HYDROGEN SULFIDE (H2S) CONCENTRATION IN THE EXHAUST OF THE ODOR CONTROL SYSTEM SHALL NOT EXCEED 1.0 PPMV. [RULE 402, 1401] - 12. THE MEDIA IN THE ADSORBER SHALL BE REPLACED WITH MINIMUM AMOUNT (LBS) OF FRESH CARBON MEDIA, AS DESCRIBED UNDER EQUIPMENT DESCRIPTION OR CONDITION NO. 3, WHENEVER NECESSARY TO COMPLY WITH THE CONDITIONS OF THIS PERMIT. [RULE 204] - 13. SPENT MEDIA REMOVED FROM THIS SYSTEM SHALL BE MAINTAINED OR STORED IN CLOSED CONTAINERS PRIOR TO REMOVAL FROM SITE. [RULE 402] - 14. RECORDS SHALL BE MAINTAINED AS REQUIRED BY THIS PERMIT INCLUDING MEDIA CHANGE OVER DATE(S), QUANTITY, AND VENDOR GUARANTEES FOR COMPLIANCE. THE RECORDS SHALL BE KEPT FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section H Page 7 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 518276 Granted as of 6/07/2012 ### **Equipment Description:** ODOR CONTROL SYSTEM, TREATING EXHAUST FROM DISSOLVED AIR FLOATATION THICKENERS (DAFTS), CONSISTING OF: - EXHAUST HEADER FROM FOUR (4) DISSOLVED AIR FLOATATION THICKENERS (DAFTS) AND 1. TWO (2) POLYMER MIX TANKS. - THREE (3) FOUL-AIR EXHAUST FANS (ONE STANDBY), EACH 100 H.P., MAXIMUM 35,000 CFM 2. CAPACITY. - HUMIDIFICATION, IN-DUCT, WITH TWELVE (12) SPRAY NOZZLES, AND EQUIPPED WITH 3. HYDROGEN SULFIDE (H2S) ANALYZER. - THREE (3) BIOFILTER CELLS, CONCRETE WALLED, CUSTOM DESIGNED, EACH BIOFILTER CELL 4. 20' W. X 33' L. X 9' D., CONTAINING PROPRIETARY INORGANIC MINERAL BASED MEDIA, EQUIPPED WITH INLET FOUL-AIR FLOW METERS, SAMPLING PORTS AND SURFACE IRRIGATION SYSTEM. #### Conditions: - CONSTRUCTION AND OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN 1. COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT TO CONSTRUCT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - THIS PERMIT SHALL EXPIRE IF CONSTRUCTION OF THE EQUIPMENT IS NOT COMPLETED 4. WITHIN ONE YEAR FROM THE DATE OF ISSUANCE OF THIS PERMIT UNLESS AN EXTENSION IS GRANTED BY THE EXECUTIVE OFFICER. [RULE 205] - A TEMPERATURE INDICATOR SHALL BE INSTALLED AND MAINTAINED IN THE MAIN FOUL-AIR 5. HEADER PRIOR TO FOUL-AIR DISTRIBUTION TO THE BIOFILTERS. THE INLET FOUL AIR TEMPERATURE READINGS, TAKEN ON A MONTHLY BASIS, SHALL BE MAINTAINED IN THE Section H Page 8 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT RANGE OF EQUIPMENT DESIGN SPECIFICATIONS OR AS PER MANUFACTURER'S RECOMMENDATION, AND WRITTEN SPECIFICATIONS SHALL BE KEPT ON FILE. [RULE 204] - 6. A HYDROGEN SULFIDE (H2S) ANALYZER SHALL BE INSTALLED AND MAINTAINED IN THE MAIN FOUL-AIR HEADER PRIOR TO FOUL-AIR DISTRIBUTION TO THE BIOFILTERS. FOUL-AIR H2S CONCENTRATION (PPMV) SHALL BE MONITORED ON A MONTHLY BASIS AND RESULTS RECORDED. WHEN H2S ANALYZER IS NOT OPERATING, COLORIMETRIC H2S TUBES, HAND HELD H2S ANALYZERS OR ANY OTHER DISTRICT APPROVED METHODS SHALL BE USED FOR H2S MONITORING. [RULE 204] - 7. FOUL-AIR FLOW RATE (SCFM) MONITORING AND INDICATING DEVICE OR SYSTEM SHALL BE INSTALLED AND MAINTAINED IN THE FOUL AIR INLET DUCT TO EACH BIOFILTER. [RULE 204] - 8. FOUL-AIR FLOW RATE SHALL BE MONITORED AND RECORDED ON A DAILY BASIS. TOTAL FLOW RATE READING FOR INLET FOUL-AIR TO THREE (3) BIOFILTER CELLS SHALL NOT EXCEED 35, 000 SCFM. [RULE 402, 1401] - 9. THE INCOMING FOUL AIR HUMIDIFICATION AND SURFACE IRRIGATION SYSTEMS SHALL BE MAINTAINED IN GOOD OPERATING CONDITION, AT ALL TIMES, AND SHALL BE UTILIZED TO MAINTAIN THE DESIRED MOISTURE CONTENT FOR THE BIOFILTER MEDIA. [RULE 204] - 10. HYDROGEN SULFIDE (H2S) AND AMMONIA (NH₃) EMISSIONS FROM EACH BIOFILTER SURFACE (MULTI-POINT) SHALL BE MONITORED AT LEAST ONCE A MONTH USING PORTABLE ANALYZERS. THE MULTI-POINT SURFACE READINGS (PPMV) SHALL BE AVERAGED AND RECORDED. [RULE 204] - 11. EMISSIONS OF H2S FROM THE BIOFILTER SHALL NOT EXCEED 0.0175 LB/HR (93 PPBV AT THE SURFACE AT 35,000 CFM). [RULE 204] - 12. THE OWNER OR OPERATOR OF THE EQUIPMENT SHALL CONDUCT SOURCE PERFORMANCE TESTS UNDER THE FOLLOWING CONDITIONS: - I. A TEST PROTOCOL SHALL BE SUBMITTED TO AQMD NO LATER THAN 45 DAYS BEFORE THE PROPOSED TEST DATE AND SHALL BE APPROVED BY THE EXECUTIVE OFFICER BEFORE THE TEST COMMENCES. AT A MINIMUM, THE TEST PROTOCOL SHOULD INCLUDE THE FOLLOWING: - a. A DESCRIPTION OF THE EQUIPMENT TESTED. INCLUDE A PROCESS SCHEMATIC INDICATING SAMPLING LOCATIONS/PORTS; SAMPLING DUCT/STACK DIMENSIONS ALONG WITH UPSTREAM AND DOWNSTREAM FLOW DISTURBANCES (E.G. ELBOWS, TEES AND FANS). - b. A BRIEF PROCESS DESCRIPTION. Section H Page 9 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - OPERATING CONDITIONS UNDER WHICH THE TEST WILL BE PERFORMED. c. INCLUDING INLET AIR FLOW RATE (SCFM), TEMPERATURE, AND % MOISTURE. - A DESCRIPTION OF THE SAMPLING AND ANALYTICAL METHODS FOR EACH d. CONSTITUENT MEASURED. - COMPLETE CALCULATIONS FOR FLOW RATES, CONCENTRATIONS (PPMV), e. EMISSION RATES AND CONTROL EFFICIENCIES. - A DESCRIPTION OF THE CALIBRATION AND QUALITY ASSURANCE f. PROCEDURES. - SAMPLING FACILITIES SHALL COMPLY WITH THE DISTRICT GUIDELINES FOR g. CONSTRUCTION OF SAMPLING AND TESTING FACILITIES, PURSUANT TO RULE 217. - A STATEMENT DETERMINING THAT THE TESTING LABORATORY QUALIFIES AS h. AN "INDEPENDENT TESTING LABORATORY" UNDER RULE 304 (NO CONFLICT OF INTEREST) AND SIGNED BY THE RESPONSIBLE AUTHORITY. - H. THE TESTS SHALL DETERMINE BIOFILTER'S INLET AND OUTLET EMISSIONS FOR TOTAL NON-METHANE ORGANIC COMPOUNDS (TNMOC), H2S AND AMMONIA TO DETERMINE BIOFILTER'S CONTROL EFFICIENCY, IN WEIGHT PERCENT. TEST RESULTS SHOULD INCLUDE INLET AND OUTLET THMOC AND AMMONIA CONCENTRATIONS (PPMV), AND EMISSIONS (LBS/HR), AND SPECIATED ANALYSIS FOR TNMOCS, - THE TESTS SHALL BE CONDUCTED AND A WRITTEN REPORT SUBMITTED TO THE III. SCAOMD WITHIN 60 DAYS AT MAXIMUM FOUL-AIR INLET FLOW RATE AT WHICH THE EQUIPMENT WILL BE OPERATED, BUT NOT LATER THAN 180 DAYS AFTER INITIAL START-UP. [RULE 204, 217, 402, 1401] - SMOKE BOMB TESTS SHALL BE CONDUCTED INITIALLY AND, THEREAFTER, EVERY THREE (3) 13. YEARS TO DEMONSTRATE UNIFORM DISTRIBUTION OF AIR FLOWS, AREA OF COMPACTION AND/OR CHANNELING THAT NEEDS REPAIR. [RULE 204] - ANY BREAKDOWN OR MALFUNCTION OF THIS EQUIPMENT RESULTING IN EXCESSIVE ODOR 14. EMISSIONS INTO THE ATMOSPHERE SHALL BE REPORTED TO THE SCAQMD WITHIN TWENTY FOUR HOURS AFTER OCCURRENCE, AND IMMEDIATE REMEDIAL MEASURES SHALL BE UNDERTAKEN TO CORRECT THE PROBLEM AND PREVENT FURTHER EMISSIONS INTO THE ATMOSPHERE. [RULE 430, 402] - ALL RECORDS REQUIRED BY THIS PERMIT SHALL BE KEPT AND MAINTAINED FOR AT LEAST 15. FIVE YEARS, AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section H Page 10 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 545003 Granted as of 6-26-2014 #### **Equipment Description:** #### ODOR CONTROL SYSTEM CONSISTING OF: - 1. EXHAUST HEADER FROM FOUR (4) DISSOLVED AIR FLOATATION THICKENERS (DAFTS). - 2. OPTIONAL EXHAUST FROM TWO (2) POLYMER MIX TANKS. - 3. THREE (3) FOUL-AIR EXHAUST FANS (ONE STANDBY), EACH APPROXIMATELY 100 HP, TOTAL MAXIMUM 35,000 CFM CAPACITY. - 4. IN-DUCT INLET AIR HUMIDIFICATION SYSTEM WITH APPROXIMATELY TWELVE (12) WATER SPRAY NOZZLES. - 5. THREE (3) BIOFILTERS, CONCRETE WALLED, CUSTOM DESIGNED, EACH BIOFILTER APPROXIMATELY 20' W. X 33' L. X 9' D., CONTAINING PROPRIETARY INORGANIC MINERAL BASED MEDIA, EQUIPPED WITH A SURFACE IRRIGATION SYSTEM. #### Conditions: - 1. CONSTRUCTION AND OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT TO CONSTRUCT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS
EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. THIS PERMIT SHALL EXPIRE IF CONSTRUCTION OF THE EQUIPMENT IS NOT COMPLETED WITHIN ONE YEAR FROM THE DATE OF ISSUANCE OF THIS PERMIT UNLESS AN EXTENSION IS GRANTED BY THE EXECUTIVE OFFICER. [RULE 205] - 5. FOUL-AIR INLET FLOW RATE (SCFM) MONITORING AND INDICATING DEVICE OR RECORDING SYSTEM SHALL BE INSTALLED AND MAINTAINED IN THE FOUL AIR INLET DUCT TO THE BIOFILTERS. [RULE 204] Section H Page 11 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 6. FOUL-AIR INLET FLOW RATE TO THE BIOFILTERS SHALL BE MONITORED AND RECORDED AT LEAST ONCE EACH DAY. TOTAL AIR FLOW RATE MEASURED SHALL NOT EXCEED 35,000 SCFM, DAILY AVERAGE. [RULE 402, 1401] - 7. THE INCOMING FOUL AIR HUMIDIFICATION AND SURFACE IRRIGATION SYSTEMS SHALL BE MAINTAINED IN GOOD OPERATING CONDITION, AT ALL TIMES, AND SHALL BE UTILIZED TO MAINTAIN THE DESIRED MOISTURE CONTENT FOR THE BIOFILTER MEDIA. [RULE 204] - 8. WHEN IN OPERATION, HYDROGEN SULFIDE (H2S) EMISSIONS FROM EACH BIOFILTER SURFACE (MULTI-POINT) SHALL BE MONITORED AT LEAST ONCE A MONTH USING PORTABLE ANALYZERS. THE MULTI-POINT SURFACE READINGS (PPMV) SHALL BE AVERAGED AND RECORDED. [RULE 204] - 9. H2S EMISSIONS MEASURED FROM THE BIOFILTERS' SURFACES SHALL NOT EXCEED 1 PPMV. [RULE 402, 1401] - 10. THE OWNER OR OPERATOR OF THE EQUIPMENT SHALL CONDUCT SOURCE PERFORMANCE TESTS UNDER THE FOLLOWING CONDITIONS: - I. A TEST PROTOCOL SHALL BE SUBMITTED TO AQMD NO LATER THAN 45 DAYS BEFORE THE PROPOSED TEST DATE AND SHALL BE APPROVED BY THE EXECUTIVE OFFICER BEFORE THE TEST COMMENCES. AT A MINIMUM, THE TEST PROTOCOL SHOULD INCLUDE THE FOLLOWING: - a. A DESCRIPTION OF THE EQUIPMENT TESTED. INCLUDE A PROCESS SCHEMATIC INDICATING SAMPLING LOCATIONS/PORTS; SAMPLING DUCT/STACK DIMENSIONS ALONG WITH UPSTREAM AND DOWNSTREAM FLOW DISTURBANCES (E.G. ELBOWS, TEES AND FANS). - b. A BRIEF PROCESS DESCRIPTION. - c. OPERATING CONDITIONS UNDER WHICH THE TEST WILL BE PERFORMED, INCLUDING INLET AIR FLOW RATE (SCFM), TEMPERATURE, AND % MOISTURE. - d. A DESCRIPTION OF THE SAMPLING AND ANALYTICAL METHODS FOR EACH CONSTITUENT MEASURED. - e. COMPLETE CALCULATIONS FOR FLOW RATES, CONCENTRATIONS (PPMV), EMISSION RATES AND CONTROL EFFICIENCIES. - f. A DESCRIPTION OF THE CALIBRATION AND QUALITY ASSURANCE PROCEDURES. - g. SAMPLING FACILITIES SHALL COMPLY WITH THE DISTRICT GUIDELINES FOR CONSTRUCTION OF SAMPLING AND TESTING FACILITIES, PURSUANT TO RULE 217. Section H Page 12 Facility I.D. #: 029110 Revision #: February 5, 2015 Date: ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - A STATEMENT DETERMINING THAT THE TESTING LABORATORY QUALIFIES AS h. AN "INDEPENDENT TESTING LABORATORY" UNDER RULE 304 (NO CONFLICT OF INTEREST) AND SIGNED BY THE RESPONSIBLE AUTHORITY. - II. THE TESTS SHALL DETERMINE BIOFILTER'S INLET AND OUTLET EMISSIONS FOR TOTAL NON-METHANE ORGANIC COMPOUNDS (TNMOC) AND AMMONIA (AT LEAST FOR ONE BIOFILTER), AND H2S (FROM EACH BIOFILTER) TO DETERMINE BIOFILTER'S CONTROL EFFICIENCY, IN WEIGHT PERCENT. TEST RESULTS SHOULD INCLUDE INLET AND OUTLET H2S, TNMOC AND AMMONIA CONCENTRATIONS (PPMV), AND EMISSIONS (LBS/HR), AND SPECIATED ANALYSIS FOR ORGANIC COMPOUNDS (EXHAUST FROM ONE BIOFILTER). - III. THE TESTS SHALL BE CONDUCTED AFTER EQUIPMENT INITIAL START-UP, BUT NOT LATER THAN 180 DAYS, AT A MAXIMUM ACHIEVABLE INLET FOUL-AIR FLOW RATE AT WHICH THE EQUIPMENT WILL BE OPERATED. A WRITTEN REPORT SHALL BE SUBMITTED TO THE SCAOMD WITHIN 60 DAYS UPON SOURCE TESTS COMPLETION. [RULE 204, 217, 402, 1401] - 11. SMOKE BOMB TESTS SHALL BE CONDUCTED INITIALLY AND, THEREAFTER, EVERY THREE (3) YEARS TO DEMONSTRATE UNIFORM DISTRIBUTION OF AIR FLOWS OR IDENTIFY RESTRICTED OR CHANNELED AIR FLOW THAT NEEDS IMPROVEMENT. **[RULE 204]** - 12. ANY BREAKDOWN OR MALFUNCTION OF THIS EQUIPMENT RESULTING IN EXCESSIVE ODOR EMISSIONS INTO THE ATMOSPHERE SHALL BE REPORTED TO THE SCAOMD WITHIN TWENTY FOUR HOURS AFTER OCCURRENCE, AND IMMEDIATE REMEDIAL MEASURES SHALL BE UNDERTAKEN TO CORRECT THE PROBLEM AND PREVENT FURTHER EMISSIONS INTO THE ATMOSPHERE. [RULE 430, 402] - 13. ALL RECORDS REQUIRED BY THIS PERMIT SHALL BE KEPT AND MAINTAINED FOR AT LEAST FIVE YEARS, AND SHALL BE MADE AVAILABLE TO AOMD PERSONNEL UPON REQUEST. [RULE 204] Section H Page 13 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 545004 Granted as of 10/17/2013 **Equipment Description:** MODIFICATION TO BOILER, NO. 1, WITH PERMIT TO OPERATE D94235, BY THE REMOVAL OF THE EXISTING BURNER AND THE ADDITION OF A NEW BURNER, AMERICAN COMBUSTION TECHNOLOGY OR EQUAL, MODEL SLE-05-250 OR EQUAL, 10,205,800 BTU PER HOUR MAXIMUM, DIGESTER GAS AND NATURAL GAS (AS SECONDARY FUEL), AND REHABILITATION OF ANCILLARY EQUIPMENT #### Conditions: - 1. CONSTRUCTION AND OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS BOILER SHALL BE FIRED ON DIGESTER GAS AND OR NATURAL GAS ONLY. EXCEPT FOR PILOT GAS, NATURAL GAS SHALL ONLY BE USED IF DIGESTER GAS IS NOT AVAILABLE IN SUFFICIENT AMOUNT. [RULE 204] - 4. A FUEL METER SHALL BE INSTALLED AND MAINTAINED IN THE FUEL SUPPLY LINE(S) TO MEASURE, INDICATE AND RECORD THE AMOUNT OF FUEL(S) (SCFM) BURNED IN THIS EQUIPMENT. [RULE 1303 (b) (1) & 1303 (b) (2) MODELING & OFFSET] - 5. WHEN IN OPERATION, TOTAL HEAT INPUT FOR THIS EQUIPMENT SHALL NOT EXCEED 10, 205, 800 BTU/HR. A DAILY LOG SHALL BE KEPT, INDICATING THE TOTAL HEATING VALUE (BTU/SCF) OF FUEL BURNED IN THIS EQUIPMENT, BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) & 1303 (b) (2) MODELING & OFFSET] - 6. THIS EQUIPMENT SHALL BE EQUIPPED WITH A CONTROL SYSTEM TO AUTOMATICALLY REGULATE THE COMBUSTION AIR AND FUEL RATE AS THE BOILER LOAD VARIES. THIS AUTOMATIC CONTROL SYSTEM SHALL BE ADJUSTED AND TUNED PERIODICALLY, ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS TO ASSURE ITS ABILITY TO REPEAT THE SAME PERFORMANCE AT THE SAME BURNER FIRING RATE. [RULE 1146] - 7. THE FLUE GAS RECIRCULATION SYSTEM SHALL BE IN FULL USE WHENEVER THE BOILER IS IN OPERATION. [RULE 1303(a) (1)-BACT] Section H Page 14 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 8. THE OWNER OR OPERATOR OF THIS EQUIPMENT SHALL CONDUCT AN INITIAL PERFORMANCE SOURCE TESTS, FOR EACH FUEL, UNDER THE FOLLOWING CONDITIONS: - A. A TESTING LABORATORY CERTIFIED BY THE CALIFORNIA AIR RESOURCES BOARD AND IN COMPLIANCE WITH DISTRICT RULE 304 (NO CONFLICT OF INTEREST) SHALL CONDUCT THIS TEST. - B. A SOURCE TEST PROTOCOL SHALL BE SUBMITTED TO AQMD WITHIN 30 DAYS OF INITIAL START UP AND SHALL BE APPROVED BY AQMD BEFORE THE TEST COMMENCES. THE PROTOCOL SHALL INCLUDE PROPOSED OPERATING CONDITIONS OF THE EQUIPMENT DURING THE TEST, AND A DESCRIPTION OF ALL SAMPLING AND ANALYTICAL PROCEDURES TO BE USED. - C. SOURCE TESTING SHALL BE CONDUCTED WITHIN 60 CALENDAR DAYS AFTER NORMAL OPERATION OF THE EQUIPMENT HAS BEEN ESTABLISHED, BUT NO LATER THAN 180 DAYS AFTER INITIAL START UP. - D. THE INITIAL PERFORMANCE SOURCE TESTS SHALL BE PERFORMED WHEN THE BOILER IS OPERATING AT MAXIMUM, MINIMUM AND AVERAGE LOAD FOR EACH FUEL (DIGESTER GAS AND NATURAL GAS) TO BE BURNED. THE SAMPLING TIME AT EACH LOAD SHALL BE FOR A MINIMUM OF 15 CONSECUTIVE MINUTES. - E. TWO COPIES OF THE SOURCE TEST RESULTS SHALL BE SUBMITTED TO AQMD, ATTN. GAURANG RAWAL, WITHIN 60 DAYS OF THE TESTS COMPLETION. THE REPORT SHALL INCLUDE, BUT NOT BE LIMITED TO, THE FOLLOWING: FUEL FLOW RATE (EACH FUEL) FLUE GAS FLOW RATE (EACH FUEL) TOTAL HEAT INPUT RATE, BTU/HR TOTAL NON-METHANE ORGANICS (EXHAUST) SPECIATED TRACE ORGANICS (EXHAUST, DIGESTER GAS) TOTAL PARTICULATES (EXHAUST) OXIDES OF NITROGEN (EXHAUST) CARBON MONOXIDE (EXHAUST) OXYGEN DIGESTER GAS BTU (HHV), AND TOTAL SULFUR CONTENT (AS H2S, PPMV) THE REPORT SHALL PRESENT THE EMISSIONS DATA IN PARTS PER MILLION (PPMV) ON A DRY BASIS, POUNDS PER HOUR, AND LBS/MMBTU. [RULE 217, RULE 404, RULE 1146, RULE 1303(A) (1), 1303 (B) (1), 1303(B) (2) - BACT, MODELING AND OFFSET, 1401] 9. THE SOURCE TEST PROTOCOL AND REPORT, PER CONDITION NO. 8, SHALL BE SUBMITTED TO, SCAQMD – ATTN. GAURANG RAWAL ENERGY/ PUBLIC SERVICES/WASTE MGMT. / TERMINALS - PERMITTING ENGINEERING AND COMPLIANCE DIVISION 21865 COPLEY DRIVE DIAMOND BAR, CA 91765 Section H Page 15 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 10. EMISSIONS RESULTING FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | POLLUTANT | POUNDS PER DAY | | | | |---|-----------------------------|--|--|--| | CO | 90.6 | | | | | NOx | 5.52 (3.1 WITH NATURAL GAS) | | | | | PM10 | 3.1 | | | | | ROG | 2.6 | | | | | SOx | 1.4 | | | | | [RULE 1146, RULE 1303(a) (1), 1303(b) (2) - OFFSET] | | | | | #### **Periodic Monitoring:** 11. THE OPERATOR, AT LEAST ONCE EVERY FIVE YEARS, SHALL DETERMINE COMPLIANCE WITH THE EMISSION LIMITS IN CONDITION NO. 10 OF THIS PERMIT USING AQMD-APPROVED TEST METHODS. THE TEST SHALL BE CONDUCTED WHEN THE EQUIPMENT IS OPERATING UNDER NORMAL CONDITIONS. RULE 1146 COMPLIANCE TESTS MAY BE USED TO SATISFY PART OF THIS REQUIREMENT PROVIDED THAT MASS RATES ARE ALSO REPORTED. TO DEMONSTRATE COMPLIANCE WITH RULE 1146 CONCENTRATIONS LIMITS THE OPERATOR SHALL COMPLY WITH ALL GENERAL TESTING, REPORTING, AND RECORDKEEPING REQUIREMENTS IN SECTIONS E AND K OF THIS PERMIT. [RULE 1146, RULE 1303(a)(1) – BACT, 1303(b) (2) - OFFSET, RULE 3004 (a) (4) – PERIODIC [RULE 1146, RULE 1303(a)(1) – BACT, 1303(b) (2) - OFFSET, RULE
3004 (a) (4) – PERIODIC MONITORING] #### **Emissions and Requirements:** - 12. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: - CO: 2000 PPMV, RULE 407 - CO: 400 PPMV, @ 3% O2, DRY BASIS, RULE 1146 - NOx: 30 PPMV, @ 3% O2, DRY BASIS, RULE 1146 (UNTIL 1/1/2015) - NOx: 15 PPMV, @ 3% O2, DRY BASIS, ON AND AFTER JANUARY 1, 2015, DIGESTER GAS, - **RULE 1146** - NOx: 9 PPMV, @ 3% O2, DRY BASIS, ON AND AFTER JANUARY 1, 2015, NATURAL GAS, RULE - PM: RULE 404, SEE APPENDIX B. - PM: 0.1 gr/scf, RULE 409 - SO2: 500 PPMV AS SO2, ORANGE COUNTY, RULE 53 - H2S: 40 PPMV TOTAL SULFUR, DIGESTER GAS Section H Page 16 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 545005 Granted as of 10/17/2013 **Equipment Description:** MODIFICATION TO BOILER, NO. 2, WITH PERMIT TO OPERATE D94232, BY THE REMOVAL OF THE EXISTING BURNER AND THE ADDITION OF A NEW BURNER, AMERICAN COMBUSTION TECHNOLOGY OR EQUAL, MODEL SLE-05-250 OR EQUAL, 10,205,800 BTU PER HOUR MAXIMUM, DIGESTER GAS AND NATURAL GAS (AS SECONDARY FUEL), AND REHABILITATION OF ANCILLARY EQUIPMENT #### Conditions: - 1. CONSTRUCTION AND OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS BOILER SHALL BE FIRED ON DIGESTER GAS AND OR NATURAL GAS ONLY. EXCEPT FOR PILOT GAS, NATURAL GAS SHALL ONLY BE USED IF DIGESTER GAS IS NOT AVAILABLE IN SUFFICIENT AMOUNT. [RULE 204] - 4. A FUEL METER SHALL BE INSTALLED AND MAINTAINED IN THE FUEL SUPPLY LINE(S) TO MEASURE, INDICATE AND RECORD THE AMOUNT OF FUEL(S) (SCFM) BURNED IN THIS EQUIPMENT. [RULE 1303 (b) (1) & 1303 (b) (2) MODELING & OFFSET] - 5. WHEN IN OPERATION, TOTAL HEAT INPUT FOR THIS EQUIPMENT SHALL NOT EXCEED 10, 205, 800 BTU/HR. A DAILY LOG SHALL BE KEPT, INDICATING THE TOTAL HEATING VALUE (BTU/SCF) OF FUEL BURNED IN THIS EQUIPMENT, BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) & 1303 (b) (2) MODELING & OFFSET] - 6. THIS EQUIPMENT SHALL BE EQUIPPED WITH A CONTROL SYSTEM TO AUTOMATICALLY REGULATE THE COMBUSTION AIR AND FUEL RATE AS THE BOILER LOAD VARIES. THIS AUTOMATIC CONTROL SYSTEM SHALL BE ADJUSTED AND TUNED PERIODICALLY, ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS TO ASSURE ITS ABILITY TO REPEAT THE SAME PERFORMANCE AT THE SAME BURNER FIRING RATE. [RULE 1146] Section H Page 17 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 7. THE FLUE GAS RECIRCULATION SYSTEM SHALL BE IN FULL USE WHENEVER THE BOILER IS IN OPERATION. [RULE 1303(a) (1)-BACT] - 8. THE OWNER OR OPERATOR OF THIS EQUIPMENT SHALL CONDUCT AN INITIAL PERFORMANCE SOURCE TESTS, FOR EACH FUEL, UNDER THE FOLLOWING CONDITIONS: - A. A TESTING LABORATORY CERTIFIED BY THE CALIFORNIA AIR RESOURCES BOARD AND IN COMPLIANCE WITH DISTRICT RULE 304 (NO CONFLICT OF INTEREST) SHALL CONDUCT THIS TEST. - B. A SOURCE TEST PROTOCOL SHALL BE SUBMITTED TO AQMD WITHIN 30 DAYS OF INITIAL START UP AND SHALL BE APPROVED BY AQMD BEFORE THE TEST COMMENCES. THE PROTOCOL SHALL INCLUDE PROPOSED OPERATING CONDITIONS OF THE EQUIPMENT DURING THE TEST, AND A DESCRIPTION OF ALL SAMPLING AND ANALYTICAL PROCEDURES TO BE USED. - C. SOURCE TESTING SHALL BE CONDUCTED WITHIN 60 CALENDAR DAYS AFTER NORMAL OPERATION OF THE EQUIPMENT HAS BEEN ESTABLISHED, BUT NO LATER THAN 180 DAYS AFTER INITIAL START UP. - D. THE INITIAL PERFORMANCE SOURCE TESTS SHALL BE PERFORMED WHEN THE BOILER IS OPERATING AT MAXIMUM, MINIMUM AND AVERAGE LOAD FOR EACH FUEL (DIGESTER GAS AND NATURAL GAS) TO BE BURNED. THE SAMPLING TIME AT EACH LOAD SHALL BE FOR A MINIMUM OF 15 CONSECUTIVE MINUTES. - E. TWO COPIES OF THE SOURCE TEST RESULTS SHALL BE SUBMITTED TO AQMD, ATTN. GAURANG RAWAL, WITHIN 60 DAYS OF THE TESTS COMPLETION. THE REPORT SHALL INCLUDE, BUT NOT BE LIMITED TO, THE FOLLOWING: FUEL FLOW RATE (EACH FUEL) FLUE GAS FLOW RATE (EACH FUEL) TOTAL HEAT INPUT RATE, BTU/HR TOTAL NON-METHANE ORGANICS (EXHAUST) SPECIATED TRACE ORGANICS (EXHAUST, DIGESTER GAS) TOTAL PARTICULATES (EXHAUST) OXIDES OF NITROGEN (EXHAUST) CARBON MONOXIDE (EXHAUST) OXYGEN DIGESTER GAS BTU (HHV), AND TOTAL SULFUR CONTENT (AS H2S, PPMV) THE REPORT SHALL PRESENT THE EMISSIONS DATA IN PARTS PER MILLION (PPMV) ON A DRY BASIS, POUNDS PER HOUR, AND LBS/MMBTU. [RULE 217, RULE 404, RULE 1146, RULE 1303(A) (1), 1303 (B) (1), 1303(B) (2) - BACT, MODELING AND OFFSET, 1401] 9. THE SOURCE TEST PROTOCOL AND REPORT, PER CONDITION NO. 8, SHALL BE SUBMITTED TO, SCAQMD – ATTN. GAURANG RAWAL ENERGY/ PUBLIC SERVICES/WASTE MGMT. / TERMINALS - PERMITTING ENGINEERING AND COMPLIANCE DIVISION 21865 COPLEY DRIVE DIAMOND BAR, CA 91765 Section H Page 18 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 10. EMISSIONS RESULTING FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | <u>POLLUTANT</u> | POUNDS PER DAY | |--------------------------------|-----------------------------| | CO | 90.6 | | NOx | 5.52 (3.1 WITH NATURAL GAS) | | PM10 | 3.1 | | ROG | 2.6 | | SOx | 1.4 | | [RULE 1146, RULE 1303(a) (1), | 1303(b) (2) - OFFSET] | ### **Periodic Monitoring:** 11. THE OPERATOR, AT LEAST ONCE EVERY FIVE YEARS, SHALL DETERMINE COMPLIANCE WITH THE EMISSION LIMITS IN CONDITION NO. 10 OF THIS PERMIT USING AQMD-APPROVED TEST METHODS. THE TEST SHALL BE CONDUCTED WHEN THE EQUIPMENT IS OPERATING UNDER NORMAL CONDITIONS. RULE 1146 COMPLIANCE TESTS MAY BE USED TO SATISFY PART OF THIS REQUIREMENT PROVIDED THAT MASS RATES ARE ALSO REPORTED. TO DEMONSTRATE COMPLIANCE WITH RULE 1146 CONCENTRATIONS LIMITS THE OPERATOR SHALL COMPLY WITH ALL GENERAL TESTING, REPORTING, AND RECORDKEEPING REQUIREMENTS IN SECTIONS E AND K OF THIS PERMIT. [RULE 1146, RULE 1303(a)(1) – BACT, 1303(b) (2) - OFFSET, RULE 3004 (a) (4) – PERIODIC MONITORING] #### **Emissions and Requirements:** 12. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 407 CO: 400 PPMV, @ 3% O2, DRY BASIS, RULE 1146 NOx: 30 PPMV, @ 3% O2, DRY BASIS, RULE 1146 (UNTIL 1/1/2015) NOx: 15 PPMV, @ 3% O2, DRY BASIS, ON AND AFTER JANUARY 1, 2015, DIGESTER GAS, RULE 1146 NOx: 9 PPMV, @ 3% O2, DRY BASIS, ON AND AFTER JANUARY 1, 2015, NATURAL GAS, RULE 1146 PM: RULE 404, SEE APPENDIX B. PM: 0.1 gr/scf, RULE 409 SO2: 500 PPMV AS SO2, ORANGE COUNTY, RULE 53 H2S: 40 PPMV TOTAL SULFUR, DIGESTER GAS Section H Page 19 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 546364 Granted as of 4/16/2014 ### **Equipment Description:** MODIFICATIONS TO THE RESOURCE RECOVERY SYSTEM NO. 1 (G27394) CONSISTING OF: INTERNAL COMBUSTION ENGINE (CG1-HB), COOPER BESSMER, SPARK IGNITION, FOUR 1. STROKE, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. #### BY THE ADDITION OF; DIGESTER GAS CLEANING SYSTEM (DGCS), THREE VESSELS, EACH CONTAINING MINIMUM OF 2. 9,900 LBS OF MEDIA, TOTAL 2100 CFM CAPACITY, WITH ASSOCIATED PIPING AND VALVES. COMMON TO FIVE ENGINES (CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB) #### **Conditions:** - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITION AT ALL TIMES. [RULE 204] - THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. 3. [RULE 204] - AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL ONLY BE VENTED TO AIR POLLUTION CONTROL EQUIPMENT WHICH IS IN FULL USE AND HAS A VALID PERMIT TO CONSTRUCT OR OPERATE ISSUED BY THE SCAQMD. [RULE 1110.2] - THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO 6. DETERMINE THE ENGINE ELAPSED OPERATING TIME. [RULE 1110.2] Section H Page 20 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE DIGESTER GAS SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE QUANTITY OF DIGESTER GAS (IN SCFM) BURNED. [RULE 204] - 8. SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW THE COLLECTION OF A FUEL GAS SAMPLE. [RULE 204] - 9. MONTHLY READINGS OF THE BTU CONTENT OF DIGESTER GAS (BTU/SCF) SUPPLIED TO THE ENGINE SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAQMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - 10. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. [RULE 204] - 11. THE TOTAL HEAT INPUT OF GASEOUS FUEL BURNED IN THIS ENGINE SHALL NOT EXCEED 33 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - 12. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION RATES ARE NOT EXCEEDED. AIR CONTAMINANT CARBON MONOXIDE 600 PPMV AT 15% O2 PARTICULATES (PM10) 0.0058 GRAINS/ DSCF ROG OR TNMHC (AS CARBON) 115
PPMV AT 15% O2 [BLUE 1202 (a) (1) 1202(b) (1) AND 1202 (b) (2) PACT MODEL INC. (c) PMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] - 13. EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL MEET THE EMISSIONS LIMITS (EXHAUST) OF TABLE III-B IN RULE 1110.2 (d) (1) (C), UNLESS THE OPERATOR DEMONSTRATES COMPLIANCE WITH THE LIMITS AND SCHEDULE IN RULE 1110.2 (d) (1) (H). [RULE 1110.2] - 14. THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING (UNTIL JANUARY 1, 2016): | AIR CONTAMINANT | LBS/DAY | |------------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | IRULE 1303 (b) (2)-EMISSIONS OFFSI | ETI | Section H Page 21 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT 15. POST-COMBUSTION CONTROLLED EMISSIONS, INTO THE ATMOSPHERE, FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | | |--------------------------|---------|--| | CARBON MONOXIDE | 497.6 | | | NITROGEN OXIDES (AS NO2) | 36.0 | | | PARTICULATES (PM10) | 18.0 | | | ROG OR TNMHC (AS CH4) | 25.60 | | | SULFUR DIOXIDE | 21.0 | | | [RULE 204] | | | - THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR CO, NOx AND O2 CONCENTRATIONS ON A DRY BASIS. EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL CO AND NOx TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOx CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 203, 218, RULE 1110.2] - WITHIN 180 DAYS AFTER INITIAL START-UP, (POST- MODIFICATION OF FIVE ENGINES; CG1-HB, 17. CG2-HB, CG3-HB, CG4-HB AND CG5-HB), THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS, AT MAXIMUM ACHIEVABLE LOAD, IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAOMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. ALL SOURCE TESTING AND ANALYTICAL METHODS SHALL BE SUBMITTED FOR APPROVAL, AT LEAST 30 DAYS PRIOR TO START OF THE TESTS TO THE SCAQMD, ENERGY/PUBLIC SERVICES/WASTE MANAGEMENT/TERMINAL PERMITTING, 21865 COPLEY DRIVE, DIAMOND BAR, CA 91765. THE SUBMITTAL SHALL INCLUDE A COPY OF THE ACTIVE PERMIT. WRITTEN RESULTS OF SUCH PERFORMANCE TESTS SHALL BE SUBMITTED WITHIN 60 DAYS AFTER TESTING. NOTICE SHALL BE PROVIDED TO THE SCAOMD 10 DAYS PRIOR TO THE TESTING SO THAT AN OBSERVER MAY BE PRESENT. THE TESTS SHALL INCLUDE, BUT MAY NOT BE LIMITED TO: - TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY). A. - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - OXIDES OF NITROGEN (EXHAUST ONLY). D. - E. OXYGEN (EXHAUST ONLY) - F. **FLOW RATE** - G. MOISTURE (EXHAUST ONLY) - TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR H. - ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR I. - TOTAL REDUCED SULFUR COMPOUNDS (DIGESTER GAS ONLY) J. - K. NITROGEN AND CARBON DIOXIDE - BTU CONTENTS (DIGESTER GAS ONLY) L. - M. **POWER OUTPUT** Section H Page 22 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT THE ROUTINE COMPLIANCE SOURCE TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH RULE 1110.2 REQUIREMENTS AND ABOVE REQUIREMENTS. APPROPRIATE SCAQMD STAFF SHALL BE NOTIFIED A MINIMUM OF 45 DAYS IN ADVANCE OF COMPLIANCE SOURCE TESTING TO DETERMINE IF PREVIOUSLY APPROVED SOURCE TEST PROTOCOL MAY BE USED IF NO EQUIPMENT AND PROCESS CHANGES HAVE BEEN MADE. [RULE 404], [RULE 1110.2], [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET] 18. RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] #### **Emissions and Requirements:** 19. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: RULE 1110.2 LIMIT NOx: RULE 1110.2 LIMIT PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. VOC (TNMHC): RULE 1110.2 LIMIT H2S: RULE 431.1 Section H Page 23 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 546365 Granted as of 4/16/2014 #### **Equipment Description:** MODIFICATIONS TO THE RESOURCE RECOVERY SYSTEM NO. 2 (G27395) CONSISTING OF: 1. INTERNAL COMBUSTION ENGINE (CG2-HB), COOPER BESSMER, SPARK IGNITION, FOUR STROKES, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. #### BY THE ADDITION OF; 3. DIGESTER GAS CLEANING SYSTEM (DGCS), THREE VESSELS, EACH CONTAINING MINIMUM OF 9,900 LBS OF MEDIA, TOTAL 2100 CFM CAPACITY, WITH ASSOCIATED PIPING AND VALVES. COMMON TO FIVE ENGINES (CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB) - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - 5. EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL ONLY BE VENTED TO AIR POLLUTION CONTROL EQUIPMENT WHICH IS IN FULL USE AND HAS A VALID PERMIT TO CONSTRUCT OR OPERATE ISSUED BY THE SCAQMD. [RULE 1110.2] - 6. THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO DETERMINE THE ENGINE ELAPSED OPERATING TIME. [RULE 1110.2] Section H Page 24 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT 7. A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE DIGESTER GAS SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE QUANTITY OF DIGESTER GAS (IN SCFM) BURNED. [RULE 204] - SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW 8. THE COLLECTION OF A FUEL GAS SAMPLE. [RULE 204] - MONTHLY READINGS OF THE BTU CONTENT OF DIGESTER GAS (BTU/SCF) SUPPLIED TO THE 9. ENGINE SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAOMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. 10. **IRULE 2041** - THE TOTAL HEAT INPUT OF GASEOUS FUEL BURNED IN THIS ENGINE SHALL NOT EXCEED 33 11. MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION 12. RATES ARE NOT EXCEEDED. AIR CONTAMINANT **CARBON MONOXIDE** 600 PPMV AT 15% O2 0.0058 GRAINS/ DSCF PARTICULATES (PM10) ROG OR TNMHC (AS CARBON) 115 PPMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL MEET THE EMISSIONS LIMITS (EXHAUST) 13. OF TABLE III-B IN RULE 1110.2 (d) (1) (C), UNLESS THE OPERATOR DEMONSTRATES COMPLIANCE WITH THE LIMITS AND SCHEDULE IN RULE 1110.2 (d) (1) (H). [RULE 1110.2] THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING (UNTIL JANUARY 1, 2016): | AIR CONTAMINANT | LBS/DAY | |--------------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | [RULE 1303 (b) (2)-EMISSIONS OFFSET] | | Section H Page 25 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 15. POST-COMBUSTION CONTROLLED EMISSIONS, INTO THE ATMOSPHERE, FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | |--------------------------|---------| | CARBON MONOXIDE | 497.6 | | NITROGEN OXIDES (AS NO2) | 36.0 | | PARTICULATES (PM10) | 18.0 | | ROG OR TNMHC (AS CH4) | 25.60 | | SULFUR DIOXIDE | 21.0 | | [RULE 204] | | - 16. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR CO, NOx AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL CO AND NOX TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOX CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 203, 218, RULE 1110.2] - 17. WITHIN 180 DAYS AFTER INITIAL START-UP, (POST- MODIFICATION OF FIVE ENGINES; CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB), THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS, AT MAXIMUM ACHIEVABLE LOAD, IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAQMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. ALL SOURCE TESTING AND ANALYTICAL METHODS SHALL BE SUBMITTED FOR APPROVAL, AT LEAST 30 DAYS PRIOR TO START OF THE TESTS TO THE SCAQMD, ENERGY/PUBLIC SERVICES/WASTE MANAGEMENT/TERMINAL
PERMITTING, 21865 COPLEY DRIVE, DIAMOND BAR, CA 91765. THE SUBMITTAL SHALL INCLUDE A COPY OF THE ACTIVE PERMIT. WRITTEN RESULTS OF SUCH PERFORMANCE TESTS SHALL BE SUBMITTED WITHIN 60 DAYS AFTER TESTING. NOTICE SHALL BE PROVIDED TO THE SCAQMD 10 DAYS PRIOR TO THE TESTING SO THAT AN OBSERVER MAY BE PRESENT. THE TESTS SHALL INCLUDE, BUT MAY NOT BE LIMITED TO: - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY). - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - D. OXIDES OF NITROGEN (EXHAUST ONLY). - E. OXYGEN (EXHAUST ONLY) - F. FLOW RATE - G. MOISTURE (EXHAUST ONLY) - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - I. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - J. TOTAL REDUCED SULFUR COMPOUNDS (DIGESTER GAS ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (DIGESTER GAS ONLY) - M. POWER OUTPUT Section H Page 26 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT THE ROUTINE COMPLIANCE SOURCE TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH RULE 1110.2 REQUIREMENTS AND ABOVE REQUIREMENTS. APPROPRIATE SCAQMD STAFF SHALL BE NOTIFIED A MINIMUM OF 45 DAYS IN ADVANCE OF COMPLIANCE SOURCE TESTING TO DETERMINE IF PREVIOUSLY APPROVED SOURCE TEST PROTOCOL MAY BE USED IF NO EQUIPMENT AND PROCESS CHANGES HAVE BEEN MADE. [RULE 404], [RULE 1110.2], [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION [RULE 404], [RULE 1110.2], [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET] 18. RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] ### **Emissions and Requirements:** 19. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: RULE 1110.2 LIMIT NOx: RULE 1110.2 LIMIT PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. VOC (TNMHC): RULE 1110.2 LIMIT H2S: RULE 431.1 Section H Page 27 Facility 1.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 546366 Granted as of 4/16/2014 ### **Equipment Description:** MODIFICATIONS TO THE RESOURCE RECOVERY SYSTEM NO. 3 (G27396) CONSISTING OF: 1. INTERNAL COMBUSTION ENGINE (CG3-HB), COOPER BESSMER, SPARK IGNITION, FOUR STROKES, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. #### BY THE ADDITION OF: 4. DIGESTER GAS CLEANING SYSTEM (DGCS), THREE VESSELS, EACH CONTAINING MINIMUM OF 9,900 LBS OF MEDIA, TOTAL 2100 CFM CAPACITY, WITH ASSOCIATED PIPING AND VALVES. COMMON TO FIVE ENGINES (CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB) - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - 5. EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL ONLY BE VENTED TO AIR POLLUTION CONTROL EQUIPMENT WHICH IS IN FULL USE AND HAS A VALID PERMIT TO CONSTRUCT OR OPERATE ISSUED BY THE SCAQMD. [RULE 1110.2] - 6. THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO DETERMINE THE ENGINE ELAPSED OPERATING TIME. [RULE 1110.2] Section H Page 28 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE DIGESTER GAS 7. SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE OUANTITY OF DIGESTER GAS (IN SCFM) BURNED. [RULE 204] - SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW 8. THE COLLECTION OF A FUEL GAS SAMPLE. [RULE 204] - MONTHLY READINGS OF THE BTU CONTENT OF DIGESTER GAS (BTU/SCF) SUPPLIED TO THE 9. ENGINE SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAQMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - 10. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. [RULE 204] - THE TOTAL HEAT INPUT OF GASEOUS FUEL BURNED IN THIS ENGINE SHALL NOT EXCEED 33 11. MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION 12. RATES ARE NOT EXCEEDED. AIR CONTAMINANT 600 PPMV AT 15% O2 CARBON MONOXIDE PARTICULATES (PM10) 0.0058 GRAINS/ DSCF ROG OR TNMHC (AS CARBON) 115 PPMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] - 13. EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL MEET THE EMISSIONS LIMITS (EXHAUST) OF TABLE III-B IN RULE 1110.2 (d) (1) (C), UNLESS THE OPERATOR DEMONSTRATES COMPLIANCE WITH THE LIMITS AND SCHEDULE IN RULE 1110.2 (d) (1) (H). [RULE 1110.2] - THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY 14. EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING (UNTIL JANUARY 1, 2016): | AIR CONTAMINANT | LBS/DAY | |------------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | TRULE 1303 (b) (2)-EMISSIONS OFFSI | ETI | Section H Page 29 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 15. POST-COMBUSTION CONTROLLED EMISSIONS, INTO THE ATMOSPHERE, FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | |--------------------------|---------| | CARBON MONOXIDE | 497.6 | | NITROGEN OXIDES (AS NO2) | 36.0 | | PARTICULATES (PM10) | 18.0 | | ROG OR TNMHC (AS CH4) | 25.60 | | SULFUR DIOXIDE | 21.0 | | [RULE 204] | | - 16. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR CO, NOx AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL CO AND NOX TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOX CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 203, 218, RULE 1110.2] - 17. WITHIN 180 DAYS AFTER INITIAL START-UP, (POST- MODIFICATION OF FIVE ENGINES; CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB), THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS, AT MAXIMUM ACHIEVABLE LOAD, IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAQMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. ALL SOURCE TESTING AND ANALYTICAL METHODS SHALL BE SUBMITTED FOR APPROVAL, AT LEAST 30 DAYS PRIOR TO START OF THE TESTS TO THE SCAQMD, ENERGY/PUBLIC SERVICES/WASTE MANAGEMENT/TERMINAL PERMITTING, 21865 COPLEY DRIVE, DIAMOND BAR, CA 91765. THE SUBMITTAL SHALL INCLUDE A COPY OF THE ACTIVE PERMIT. WRITTEN RESULTS OF SUCH PERFORMANCE TESTS SHALL BE SUBMITTED WITHIN 60 DAYS AFTER TESTING. NOTICE SHALL BE PROVIDED TO THE SCAQMD 10 DAYS PRIOR TO THE TESTING SO THAT AN OBSERVER MAY BE PRESENT. THE TESTS SHALL INCLUDE, BUT MAY NOT BE LIMITED TO: - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY). - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - D. OXIDES OF NITROGEN (EXHAUST ONLY). - E. OXYGEN (EXHAUST ONLY) - F. FLOW RATE - G. MOISTURE (EXHAUST ONLY) - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - I. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - J. TOTAL REDUCED SULFUR COMPOUNDS (DIGESTER GAS ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (DIGESTER GAS ONLY) - M. POWER OUTPUT Section H Page 30 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT THE ROUTINE COMPLIANCE SOURCE TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH RULE 1110.2 REQUIREMENTS AND ABOVE REQUIREMENTS. APPROPRIATE SCAQMD STAFF SHALL BE NOTIFIED A MINIMUM OF 45 DAYS IN ADVANCE OF COMPLIANCE SOURCE TESTING TO DETERMINE IF PREVIOUSLY APPROVED SOURCE TEST PROTOCOL MAY BE USED IF NO EQUIPMENT AND PROCESS CHANGES HAVE BEEN MADE. [RULE 404], [RULE 1110.2], [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET] 18. RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] #### **Emissions and Requirements:** 19. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: RULE 1110.2 LIMIT NOX: RULE 1110.2 LIMIT PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. VOC (TNMHC): RULE 1110.2 LIMIT H2S: RULE 431.1 Section H Page 31 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ## PERMIT TO CONSTRUCT A/N 546367 Granted as of 4/16/2014 #### **Equipment Description:** MODIFICATIONS TO THE RESOURCE RECOVERY SYSTEM NO. 4 (G27397) CONSISTING OF: INTERNAL COMBUSTION ENGINE (CG4-HB), COOPER BESSMER, SPARK IGNITION, FOUR 1. STROKES, WITH
A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. ### BY THE ADDITION OF; DIGESTER GAS CLEANING SYSTEM (DGCS), THREE VESSELS, EACH CONTAINING MINIMUM OF 5. 9,900 LBS OF MEDIA, TOTAL 2100 CFM CAPACITY, WITH ASSOCIATED PIPING AND VALVES. COMMON TO FIVE ENGINES (CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB) - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND 1. SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITION AT ALL TIMES. [RULE 204] - THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. 3. [RULE 204] - AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL ONLY BE VENTED TO AIR POLLUTION CONTROL EQUIPMENT WHICH IS IN FULL USE AND HAS A VALID PERMIT TO CONSTRUCT OR OPERATE ISSUED BY THE SCAQMD. [RULE 1110.2] - THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO DETERMINE THE ENGINE ELAPSED OPERATING TIME. [RULE 1110.2] Section H Page 32 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 7. A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE DIGESTER GAS SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE QUANTITY OF DIGESTER GAS (IN SCFM) BURNED. [RULE 204] - 8. SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW THE COLLECTION OF A FUEL GAS SAMPLE. [RULE 204] - 9. MONTHLY READINGS OF THE BTU CONTENT OF DIGESTER GAS (BTU/SCF) SUPPLIED TO THE ENGINE SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAQMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - 10. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. [RULE 204] - 11. THE TOTAL HEAT INPUT OF GASEOUS FUEL BURNED IN THIS ENGINE SHALL NOT EXCEED 33 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - 12. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION RATES ARE NOT EXCEEDED. AIR CONTAMINANT CARBON MONOXIDE 600 PPMV AT 15% O2 PARTICULATES (PM10) 0.0058 GRAINS/ DSCF ROG OR TNMHC (AS CARBON) 115 PPMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] - 13. EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL MEET THE EMISSIONS LIMITS (EXHAUST) OF TABLE III-B IN RULE 1110.2 (d) (1) (C), UNLESS THE OPERATOR DEMONSTRATES COMPLIANCE WITH THE LIMITS AND SCHEDULE IN RULE 1110.2 (d) (1) (H). [RULE 1110.2] - 14. THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING (UNTIL JANUARY 1, 2016): | AIR CONTAMINANT | LBS/DAY | |--------------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | [RULE 1303 (b) (2)-EMISSIONS OFFSET] | | Section H Page 33 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 15. POST-COMBUSTION CONTROLLED EMISSIONS, INTO THE ATMOSPHERE, FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | | |--------------------------|---------|--| | CARBON MONOXIDE | 497.6 | | | NITROGEN OXIDES (AS NO2) | 36.0 | | | PARTICULATES (PM10) | 18.0 | | | ROG OR TNMHC (AS CH4) | 25.60 | | | SULFUR DIOXIDE | 21.0 | | | [RULE 204] | | | - 16. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR CO, NOx AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL CO AND NOX TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOX CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 203, 218, RULE 1110.2] - 17. WITHIN 180 DAYS AFTER INITIAL START-UP, (POST- MODIFICATION OF FIVE ENGINES; CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB), THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS, AT MAXIMUM ACHIEVABLE LOAD, IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAQMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. ALL SOURCE TESTING AND ANALYTICAL METHODS SHALL BE SUBMITTED FOR APPROVAL, AT LEAST 30 DAYS PRIOR TO START OF THE TESTS TO THE SCAQMD, ENERGY/PUBLIC SERVICES/WASTE MANAGEMENT/TERMINAL PERMITTING, 21865 COPLEY DRIVE, DIAMOND BAR, CA 91765. THE SUBMITTAL SHALL INCLUDE A COPY OF THE ACTIVE PERMIT. WRITTEN RESULTS OF SUCH PERFORMANCE TESTS SHALL BE SUBMITTED WITHIN 60 DAYS AFTER TESTING. NOTICE SHALL BE PROVIDED TO THE SCAQMD 10 DAYS PRIOR TO THE TESTING SO THAT AN OBSERVER MAY BE PRESENT. THE TESTS SHALL INCLUDE, BUT MAY NOT BE LIMITED TO: - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY). - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - D. OXIDES OF NITROGEN (EXHAUST ONLY). - E. OXYGEN (EXHAUST ONLY) - F. FLOW RATE - G. MOISTURE (EXHAUST ONLY) - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - I. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - TOTAL REDUCED SULFUR COMPOUNDS (DIGESTER GAS ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (DIGESTER GAS ONLY) - M. POWER OUTPUT Section H Page 34 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT THE ROUTINE COMPLIANCE SOURCE TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH RULE 1110.2 REQUIREMENTS AND ABOVE REQUIREMENTS. APPROPRIATE SCAQMD STAFF SHALL BE NOTIFIED A MINIMUM OF 45 DAYS IN ADVANCE OF COMPLIANCE SOURCE TESTING TO DETERMINE IF PREVIOUSLY APPROVED SOURCE TEST PROTOCOL MAY BE USED IF NO EQUIPMENT AND PROCESS CHANGES HAVE BEEN MADE. [RULE 404], [RULE 1110.2], [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET1 18. RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] ### **Emissions and Requirements:** THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES 19. AND REGULATIONS: CO: **RULE 1110.2 LIMIT RULE 1110.2 LIMIT** NOx: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. VOC (TNMHC): RULE 1110.2 LIMIT H2S: **RULE 431.1** Section H Page 35 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## PERMIT TO CONSTRUCT A/N 546368 Granted as of 4/16/2014 ### **Equipment Description:** MODIFICATIONS TO THE RESOURCE RECOVERY SYSTEM NO. 5 (G27397) CONSISTING OF: 1. INTERNAL COMBUSTION ENGINE (CG5-HB), COOPER BESSMER, SPARK IGNITION, FOUR STROKES, WITH A MODIFIED TURBOCHARGED-INTERCOOLED V-16 TYPE, MODEL NO. LSVB-16-SGC, 4166 HP, NATURAL GAS AND/OR DIGESTER GAS FIRED, DRIVING A 3000 KW ELECTRIC GENERATOR, WITH AN EXHAUST HEAT RECOVERY STEAM GENERATOR, 6,010,200 BTU/HR CAPACITY, UNFIRED. #### BY THE ADDITION OF: 6. DIGESTER GAS CLEANING SYSTEM (DGCS), THREE VESSELS, EACH CONTAINING MINIMUM OF 9,900 LBS OF MEDIA, TOTAL 2100 CFM CAPACITY, WITH ASSOCIATED PIPING AND VALVES. COMMON TO FIVE ENGINES (CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB) - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - 5. EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL ONLY BE VENTED TO AIR POLLUTION CONTROL EQUIPMENT WHICH IS IN FULL USE AND HAS A VALID PERMIT TO CONSTRUCT OR OPERATE ISSUED BY THE SCAQMD. [RULE 1!10.2] - 6. THIS ENGINE SHALL HAVE AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER TO DETERMINE THE ENGINE ELAPSED OPERATING TIME. [RULE 1110.2] Section H Page 36 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE DIGESTER GAS SUPPLY LINE TO THE ENGINE TO MEASURE AND RECORD THE OUANTITY OF DIGESTER GAS (IN SCFM) BURNED. [RULE 204] - SAMPLING PORT SHALL BE INSTALLED FOR THE INLET GAS LINE TO THE ENGINE TO ALLOW THE COLLECTION OF A FUEL GAS SAMPLE. [RULE 204] - 9. MONTHLY READINGS OF THE BTU CONTENT OF DIGESTER GAS (BTU/SCF) SUPPLIED TO THE ENGINE SHALL BE TAKEN USING AN INSTRUMENT APPROVED BY THE SCAOMD. ALL RESULTS SHALL BE RECORDED. [RULE 204] - 10. ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF THE DAY. [RULE 204] - 11. THE TOTAL HEAT INPUT OF GASEOUS FUEL BURNED IN THIS ENGINE SHALL NOT EXCEED 33 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS BURNED IN
THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET] - 12. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION RATES ARE NOT EXCEEDED. AIR CONTAMINANT 600 PPMV AT 15% O2 CARBON MONOXIDE PARTICULATES (PM10) 0.0058 GRAINS/ DSCF ROG OR TNMHC (AS CARBON) 115 PPMV AT 15% O2 [RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET] - 13. EFFECTIVE JANUARY 1, 2016, THIS EQUIPMENT SHALL MEET THE EMISSIONS LIMITS (EXHAUST) OF TABLE III-B IN RULE 1110.2 (d) (1) (C), UNLESS THE OPERATOR DEMONSTRATES COMPLIANCE WITH THE LIMITS AND SCHEDULE IN RULE 1110.2 (d) (1) (H). [RULE 1110.2] - THE COMBINED EMISSIONS FROM THE FOUR (4) CGS ENGINES, USING CALENDAR MONTHLY 14. EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING (UNTIL JANUARY 1, 2016): | AIR CONTAMINANT | LBS/DAY | |-----------------------------------|---------| | CARBON MONOXIDE | 2,644 | | NITROGEN OXIDES (AS NO2) | 828 | | PARTICULATES (PM10) | 72 | | ROG OR TNMHC (AS CH4) | 372 | | SULFUR DIOXIDE | 84 | | [RULE 1303 (b) (2)-EMISSIONS OFFS | ET] | Section H Page 37 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 15. POST-COMBUSTION CONTROLLED EMISSIONS, INTO THE ATMOSPHERE, FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | AIR CONTAMINANT | LBS/DAY | |--------------------------|---------| | CARBON MONOXIDE | 497.6 | | NITROGEN OXIDES (AS NO2) | 36.0 | | PARTICULATES (PM10) | 18.0 | | ROG OR TNMHC (AS CH4) | 25.60 | | SULFUR DIOXIDE | 21.0 | | [RULE 204] | | - 16. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR CO, NOX AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL CO AND NOX TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOX CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 203, 218, RULE 1110.2] - 17. WITHIN 180 DAYS AFTER INITIAL START-UP, (POST- MODIFICATION OF FIVE ENGINES; CG1-HB, CG2-HB, CG3-HB, CG4-HB AND CG5-HB), THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS, AT MAXIMUM ACHIEVABLE LOAD, IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAQMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. ALL SOURCE TESTING AND ANALYTICAL METHODS SHALL BE SUBMITTED FOR APPROVAL, AT LEAST 30 DAYS PRIOR TO START OF THE TESTS TO THE SCAQMD, ENERGY/PUBLIC SERVICES/WASTE MANAGEMENT/TERMINAL PERMITTING, 21865 COPLEY DRIVE, DIAMOND BAR, CA 91765. THE SUBMITTAL SHALL INCLUDE A COPY OF THE ACTIVE PERMIT. WRITTEN RESULTS OF SUCH PERFORMANCE TESTS SHALL BE SUBMITTED WITHIN 60 DAYS AFTER TESTING. NOTICE SHALL BE PROVIDED TO THE SCAQMD 10 DAYS PRIOR TO THE TESTING SO THAT AN OBSERVER MAY BE PRESENT. THE TESTS SHALL INCLUDE, BUT MAY NOT BE LIMITED TO: - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY). - B. CARBON MONOXIDE (EXHAUST ONLY) - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY). - D. OXIDES OF NITROGEN (EXHAUST ONLY). - E. OXYGEN (EXHAUST ONLY) - F. FLOW RATE - G. MOISTURE (EXHAUST ONLY) - H. TOXIC AIR CONTAMINANTS (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - I. ALDEHYDES (EXHAUST ONLY), FOR ONE ENGINE PER YEAR - J. TOTAL REDUCED SULFUR COMPOUNDS (DIGESTER GAS ONLY) - K. NITROGEN AND CARBON DIOXIDE - L. BTU CONTENTS (DIGESTER GAS ONLY) - M. POWER OUTPUT Section H Page 38 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT THE ROUTINE COMPLIANCE SOURCE TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH RULE 1110.2 REQUIREMENTS AND ABOVE REQUIREMENTS. APPROPRIATE SCAQMD STAFF SHALL BE NOTIFIED A MINIMUM OF 45 DAYS IN ADVANCE OF COMPLIANCE SOURCE TESTING TO DETERMINE IF PREVIOUSLY APPROVED SOURCE TEST PROTOCOL MAY BE USED IF NO EQUIPMENT AND PROCESS CHANGES HAVE BEEN MADE. [RULE 404], [RULE 1110.2], [RULE 1303(b) (1) AND 1303(b) (2) - MODELING AND EMISSION OFFSET] 18. RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] ### **Emissions and Requirements:** 19. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: RULE 1110.2 LIMIT NOx: RULE 1110.2 LIMIT PM: RULE 404, SEE APPENDIX B FOR EMISSION LIMITS. VOC (TNMHC): RULE 1110.2 LIMIT H2S: RULE 431.1 Section H Page 39 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## **PERMIT TO CONSTRUCT** A/N 556626 Granted as of 6-26-2014 ### **Equipment Description:** ALTERATION OF THE EXISTING SEWAGE TREATMENT PLANT (250 MGD), P/O G25942, CONSISTING OF: - 1. INFLUENT STATION (HEADWORKS "D") CONSISTING OF INFLUENT TRUNKLINES, INFLUENT DIVERSION AND METERING, SIX (5 DUTY + 1 STANDBY) BARSCREENS, SCREENING HANDLING, INFLUENT PUMPS, GRIT REMOVAL AND HANDLING, PRIMARY INFLUENT SPLITTER AND METERING, AND FERRIC CHLORIDE FACILITY. - 2. WETWELL (WASTE SIDE STREAM PUMP STATION) WITH ASSOCIATED PUMPS. - 3. SEVENTEEN PRIMARY BASINS, THREE 41'-0" W. X 179'-0" L. X 8'-0" D., WITH ALUMINUM COVERS, FOURTEEN 140'-0" DIA. X 9'-0" D., WITH ALUMINUM GEODESIC DOME COVERS, AND ASSOCIATED SLUDGE AND SCUM COLLECTORS AND PUMPS. - 4. EIGHT ACTIVATED SLUDGE OXYGEN REACTORS, 139,656 CUBIC FEET CAPACITY, 46'-0" W. X 184'-0" L. X 16'-6" D., WITH ASSOCIATED MIXERS. - 5. TWO PURE OXYGEN GENERATION UNITS, 40,000 GALLON CAPACITY EACH, WITH TWO STORAGE TANKS AND ASSOCIATED COMPRESSORS. - 6. TWELVE SECONDARY CLARIFIERS, 61'-0" W. X 171'-0" L. X 14'-0" D., WITH ASSOCIATED SLUDGE COLLECTORS. - EAST SECONDARY SLUDGE PUMP STATION WITH ASSOCIATED PUMPS. - 8. WEST SECONDARY SLUDGE PUMP STATION WITH ASSOCIATED PUMPS. - 9. FOUR DISSOLVED AIR FLOATATION THICKENERS, EACH 55'-0" DIA. X 8'-6" D., WITH ASSOCIATED COLLECTOR DRIVES AND PUMPS. - 10. TWENTY DIGESTER TANKS, TWO 90'-0" DIA. X 30'-0" D., EACH 190,800 CUBIC FEET CAPACITY, SIX 80'-0" DIA. X 33'-0" D., EACH 164,120 CUBIC FEET CAPACITY, THREE 80'-0" DIA. X 33'-0" D., EACH 166,630 CUBIC FEET CAPACITY, FOUR 105'-0" DIA. X 30'-0" D., EACH 293,680 CUBIC FEET CAPACITY, FIVE 80'-0" DIA. X 18'-0" H., WITH ASSOCIATED PUMPS AND GRINDERS. EQUIPPED WITH OPTIONAL PASSIVE CARBON ADSORBERS. - 11. LOW PRESSURE DIGESTER GAS STORAGE TANK, 25,000 CUBIC FEET CAPACITY, 42'-0" DIA. X 30'-0" H., WITH ASSOCIATED COMPRESSORS. - 12. FERROUS AND/OR FERRIC CHLORIDE INJECTION STATION WITH TWO STORAGE TANKS, EACH 12'-0" DIA. X 18'-0" H., AND ASSOCIATED PUMPS. Page 40 Section H Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - 13. SLUDGE PROCESSING STATION WITH ASSOCIATED GRINDERS, BELT FILTER PRESSES, DEWATERED BIOSOLIDS STORAGE SILOS (OR CAKE STORAGE BINS), AND TRUCK LOADING BAY.. - TWO POLYMER STORAGE TANKS, EACH 20,000 GALLON CAPACITY, WITH ASSOCIATED PUMPS. 14. - FOUR POLYMER MIX TANKS, EACH 8,500 GALLON CAPACITY, WITH ASSOCIATED MIXERS AND 15. PUMPS. - 16. PRIMARY EFFLUENT DIVERSION STRUCTURE. - THREE TRICKLING FILTERS, COVERED, PRIMARY EFFLUENT TREATMENT (TOTAL 60 MGD 17. AVERAGE CAPACITY AND 182 MGD PEAK FLOW), EACH 150' DIA. X 28' H., OVERALL, WITH MODULAR PLASTIC CROSS - FLOW FILTER MEDIA, SPRAY NOZZLES, AND ASSOCIATED PUMPS. - FOUR SOLIDS CONTACT (SC) REACTORS, FOUR SLUDGE RE-AERATION (SR) REACTORS, 18. UNCOVERED, TWO MIXED LIQUOR CHANNELS (TOTAL 1.68 MG VOLUME), AND WITH ASSOCIATED AIR BLOWERS. - 19. SIX TRICKLING FILTER CLARIFIERS, UNCOVERED, EACH 135' DIA. X 19' SIDEWATER DEPTH. WITH FLOCCULATING CENTER WELLS, HYDRAULIC SLUDGE COLLECTORS, AND INBOARD LAUNDERS. - SLUDGE BLENDING FACILITY WITH TWO SLUDGE BLENDING TANKS (SBTs), EACH 26,000 20. GALLON CAPACITY, WITH ASSOCIATED PIPING AND PUMPS. #### BY THE REMOVAL OF: - 13. SLUDGE PROCESSING STATION WITH ASSOCIATED GRINDERS AND BELT FILTER PRESSES. - 14. TWO POLYMER STORAGE TANKS, EACH 20,000 GALLON CAPACITY, WITH ASSOCIATED PUMPS. - 15. FOUR POLYMER MIX TANKS, EACH 8,500 GALLON CAPACITY, WITH ASSOCIATED MIXERS AND PUMPS. ### AND BY THE ADDITION OF: DIGESTED SLUDGE DEWATERING FACILITY, LOCATED IN A BUILDING, (OCSD PROJECT P2-92) - 21. CENTRATE WET WELL. - 22. **BIOSOLIDS LOADING SLUDGE PUMPS (5)** CENTRIFUGES (5): ANDRITZ SEPARATION, TYPE D7LL OR SIMILAR CENTRATE PUMPS (2): FAIRBANKS MORSE, MAXIMUM 1474 GPM, 18.5 H.P. OR SIMILAR CAKE PUMPS (5) - SCHWING BIOSET, MODEL KSP25 V (HD) L, 39 GPM, 150 H.P. OR SIMILAR - TWO POLYMER STORAGE TANKS, EACH APPROXIMATELY 7,500 GALLON CAPACITY, WITH 23. ASSOCIATED PUMPS. - 24. TWO POLYMER AGING TANKS, EACH APPROXIMATELY 5,000 GALLON CAPACITY, WITH ASSOCIATED PUMPS. Section H Page 41 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 4. THIS PERMIT SHALL EXPIRE IF CONSTRUCTION OF THE EQUIPMENT IS NOT COMPLETED WITHIN ONE YEAR FROM THE DATE OF ISSUANCE OF THIS PERMIT UNLESS AN EXTENSION IS GRANTED BY THE EXECUTIVE OFFICER. [RULE 205] - 5. ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL COMPLY WITH ALL APPLICABLE MITIGATION MEASURES STIPULATED IN THE STATEMENT OF FINDINGS, STATEMENT OF OVERRIDING CONSIDERATION, AND MITIGATION OR MONITORING PLAN DOCUMENT (THAT APPLIES TO PROJECT P2-92), WHICH IS PART OF THE
CERTIFIED FINAL SUBSEQUENT ENVIRONMENTAL IMPACT REPORT (SEIR) FOR THIS FACILITY AS APPROVED BY THE LEAD AGENCY. [CA PRC CEQA, 11-23-1970] - 6. HEADWORKS FACILITY, PRIMARY BASINS, SLUDGE BLENDING FACILITY, DISSOLVED AIR FLOATATION THICKENERS, TRICKLING FILTER FACILITY AND NEW SLUDGE DEWATERING FACILITY (PROJECT P2-92) SHALL BE VENTED TO THEIR DESIGNATED AIR POLLUTION CONTROL SYSTEMS WHICH ARE IN OPERATION PER ITS' VALID PERMITS TO CONSTRUCT OR OPERATE ISSUED BY THE SCAQMD. IN THE EVENT AN AIR POLLUTION CONTROL SYSTEM IS REMOVED FROM OPERATION DURING CONSTRUCTION OR MAINTENANCE WORK, THE H2S CONCENTRATION IN EXHAUST AIR SHALL BE BELOW THE LIMITS SPECIFIED IN THE REMOVED AIR POLLUTION CONTROL SYSTEM'S PERMIT. EACH SUCH CONSTRUCTION OR MAINTENANCE EVENT SHALL BE RECORDED IN A DAILY LOG. [RULE 402, 1303(a) (1)-BACT, 1401] - 7. AFTER COMPLETION OF CONSTRUCTION OF P2-92, THE BUILDING ENCLOSING THE DIGESTED SLUDGE DEWATERING FACILITY SHALL REMAIN CLOSED AT ALL TIMES, EXCEPT TO ALLOW PERSONNEL TO ENTER OR EXIT; AFTER COMPLETION OF CONSTRUCTION OF P2-92, THE BUILDING ENCLOSING THE DIGESTED SLUDGE DEWATERING FACILITY SHALL REMAIN CLOSED AT ALL TIMES, EXCEPT TO ALLOW PERSONNEL TO ENTER OR EXIT; FACILITATE OPERATIONS/MAINTENANCE ACTIVITIES OR TO ALLEVIATE SAFETY ISSUES. [RULE 204, 402] - 8. THE FERROUS AND/OR FERRIC CHLORIDE INJECTION STATION SHALL BE IN USE TO THE EXTENT NECESSARY TO MAINTAIN THE H2S CONCENTRATION IN THE DIGESTER GAS TO THE PERMITTED LIMIT. [RULE 431.1] Section H Page 42 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 9. RAW DIGESTER GAS PRODUCED AT THIS FACILITY SHALL NOT BE RELEASED INTO THE ATMOSPHERE, EXCEPT DURING MOMENTARY AUTOMATIC ACTIVATION OF PRESSURE RELIEF SAFETY DEVICES. ALL COLLECTED DIGESTER GAS SHALL BE EITHER COMBUSTED IN DIGESTER GAS FLARES, INTERNAL COMBUSTION ENGINES, OR BOILERS WITH VALID AQMD PERMIT, OR SHALL BE TREATED THROUGH OPTIONAL PASSIVE CARBON ADSORBERS. EACH SUCH PRESSURE RELIEF ACTIVATION SHALL BE MAINTAINED IN A DAILY LOG. [RULE 402, RULE 1401] - 10. RAW DIGESTER GAS RELEASES DUE TO EQUIPMENT FAILURE SHALL BE REPORTED IN ACCORDANCE WITH RULE 430. UPON DISCOVERY OF SUCH EMISSIONS, IMMEDIATE REMEDIAL MEASURES SHALL BE PUT INTO ACTION TO CORRECT THE PROBLEM AND PREVENT FURTHER EMISSIONS INTO THE ATMOSPHERE. [RULE 402, RULE 430] - 11. THE CALENDAR MONTHLY AVERAGE DAILY PRIMARY EFFLUENT FLOW RATE, TO THE SECONDARY TREATMENT PROCESS, SHALL NOT EXCEED 150 MILLIONS GALLONS PER DAY, EXCEPT DURING WET WEATHER PERIODS AND EMERGENCY PERIODS INVOLVING PUBLIC HEALTH SAFETY. THE RECORDS FOR THE PRIMARY EFFLUENT AVERAGE DAILY FLOW RATE (MGD), TREATED BY THE SECONDARY PROCESS, SHALL BE KEPT ON FILE. [RULE 1303(b) (2) –OFFSETS, 402, 1401] - 12. THE CALENDAR MONTHLY AVERAGE DAILY FLOW RATE OF WASTEWATER TREATED AT THIS FACILITY SHALL NOT EXCEED 250 MILLION GALLONS PER DAY (MGD) EXCEPT DURING WET WEATHER PERIODS. THE RECORDS FOR THE WASTEWATER FLOW RATE (MGD) MEASURED SHALL BE RECORDED AND KEPT ON FILE. [RULE 1303(b) (2) –OFFSETS, 402, 1401] Section H Page 43 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 556627 Granted as of 6-26-2014 ### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM FOR THE NEW SLUDGE DEWATERING FACILITY (P2-92). CONSISTING OF: - FOUL-AIR DUCT(S) FROM THE CENTRIFUGES, CAKE (BIOSOLIDS) BINS AND CENTRATE WET 1. WELL. - TWO BLOWERS, ONE STANDBY, HARTZELL SERIES 41 TYPE FA, OR SIMILAR, CAPABLE OF 2. APPROXIMATELY 7500 CFM AT 12" STATIC PRESSURE. - WET SCRUBBER, PACKED BED, APPROXIMATELY 4' DIA. X 8' H., WITH 4' H. POLYPROPYLENE 3. PACKING MATERIAL, SPRAY NOZZLES, WATER RECIRCULATION, MAKE-UP WATER AND ACID SUPPLY (AS BACK-UP) LINES, SUMP WITH PH PROBE, AND ASSOCIATED PUMPS. - BIOFILTER, CELL A, B AND C, CUSTOM MADE, APPROXIMATELY 20' W. X 43' L. X 22' H., 4. OVERALL DIMENSIONS, WITH APPROXIMATELY 8' H. INORGANIC ENGINEERED MEDIA, AND AN IRRIGATION SPRAY(S) SYSTEM. - TREATED AIR EXHAUST STACK, 2' DIA. X 47' 6" H. ABOVE GRADE. 5. - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA 1. AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITION AT ALL TIMES. [RULE 204] - THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS 3. OPERATION. [RULE 204] - THIS PERMIT SHALL EXPIRE IF CONSTRUCTION OF THE EQUIPMENT IS NOT COMPLETED 4. WITHIN ONE YEAR FROM THE DATE OF ISSUANCE OF THIS PERMIT UNLESS AN EXTENSION IS GRANTED BY THE EXECUTIVE OFFICER. [RULE 205] Section H Page 44 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL COMPLY WITH ALL APPLICABLE 5. MITIGATION MEASURES STIPULATED IN THE STATEMENT OF FINDINGS, STATEMENT OF OVERRIDING CONSIDERATION, AND MITIGATION OR MONITORING PLAN DOCUMENT (THAT APPLIES TO PROJECT P2-92), WHICH IS PART OF THE CERTIFIED FINAL SUBSEQUENT ENVIRONMENTAL IMPACT REPORT (SEIR) FOR THIS FACILITY AS APPROVED BY THE LEAD AGENCY. [CA PRC CEQA, 11-23-1970] - A FLOW METER SHALL BE INSTALLED AND MAINTAINED AT THE INLET STREAM TO THE WET 6. SCRUBBER TO INDICATE THE TOTAL AIR FLOW RATE IN CUBIC FEET PER MINUTE (CFM). THE TOTAL AIR FLOW RATE SHALL NOT EXCEED 7,500 CFM, DAILY AVERAGE. IN CASE A PRESSURE SENSOR DEVICE IS USED IN PLACE OF THE FLOW METER, A CONVERSION CHART SHALL BE MAINTAINED TO INDICATE THE CORRESPONDING FLOW RATE, IN CFM, TO THE PRESSURE READING. [RULE 203] - 7. A PRESSURE DIFFERENTIAL GAUGE INDICATING THE PRESSURE DROP ACROSS THE SCRUBBER PACKING BED SHALL BE INSTALLED AND MAINTAINED. THE PRESSURE DROP ACROSS THE PACKING BED SHALL BE MAINTAINED BELOW 2 INCHES OF WATER COLUMN, WHEN THE SCRUBBER IS IN OPERATION. [RULE 203] - 8. A PH METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE PH OF THE SCRUBBING SOLUTION (SUMP), WHENEVER SULFURIC ACID IS USED. THE PH OF THE SCRUBBING SOLUTION SHALL BE MAINTAINED BETWEEN 1 TO 8. [RULE 203] - WHEN THE EQUIPMENT IS IN OPERATION, THE INLET FLOW RATE, SCRUBBING SOLUTION 9. FLOW RATE, PH OF THE SCRUBBING SOLUTION, PRESSURE DIFFERENTIAL ACROSS THE SCRUBBER PACKING BED SHALL BE MONITORED AND RECORDED AT LEAST ONCE A DAY FOR THE FIRST MONTH OF OPERATION AND WEEKLY THEREAFTER. [RULE 203] - 10. WHEN BIOFILTER IS IN OPERATION, THE CONCENTRATION, PPMV, OF HYDROGEN SULFIDE (H2S), IN EXHAUST AIR (STACK) SHALL BE MONITORED AND RECORDED, AT LEAST DAILY. THE BIOFILTER SURFACE IRRIGATION SYSTEM SHALL BE MAINTAINED IN GOOD OPERATING CONDITION AT ALL TIMES AND SHALL BE UTILIZED TO MAINTAIN THE DESIRED MOISTURE CONTENT FOR THE BIOFILTER MEDIA. [RULE 402, 1401] - 11. EMISSIONS FROM THIS EQUIPMENT MEASURED IN THE EXHAUST STACK SHALL NOT EXCEED THE FOLLOWING: **HYDROGEN SULFIDE (H2S)** AMMONIA (NH3) 1 PPMV- DAILY AVERAGE **5 PPMV- DAILY AVERAGE** [RULE 402, 1401] IF THE OPERATION OF THIS EQUIPMENT RESULTS IN CONSIDERABLE NUMBER OF ODOR 12. COMPLAINTS, MITIGATION MEASURES SHALL BE IMPLEMENTED IMMEDIATELY. [RULE 402] Section H Page 45 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT 13. ALL RECORDS REQUIRED BY THIS PERMIT SHALL BE KEPT AND MAINTAINED FOR AT LEAST FIVE YEARS, AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 203] Section H Page 46 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ## PERMIT TO CONSTRUCT A/N 557229 Granted as of 4/16/2014 ### **Equipment Description:** STORAGE TANK, NO. 26KTNK001, AQUEOUS UREA SOLUTION (32.5% v), ABOVE GROUND, 2,000 GALLON CAPACITY, VENTING TO ATMOSPHERE. - OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA 1. AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. - THIS EQUIPMENT SHALL ONLY BE USED FOR STORAGE OF AQUEOUS UREA SOLUTION. 3. Section H Page 47 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## PERMIT TO CONSTRUCT A/N 557230 Granted as of 4/16/2014 ### **Equipment Description:** STORAGE TANK, NO. 26KTNK005, AQUEOUS UREA SOLUTION (32.5% ν), ABOVE GROUND, 2,000 GALLON CAPACITY, VENTING TO ATMOSPHERE. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. - 3. THIS EQUIPMENT SHALL ONLY BE USED FOR STORAGE OF AQUEOUS UREA SOLUTION. Section H Page 48 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 559228 Granted as of 4/16/2014 #### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM NO. 1 CONSISTING OF: - 1. CATALYTIC OXIDIZER, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 91449 OR EQUAL, ALUMINUM OXIDE OR PLATINUM CATALYST ACTIVE MATERIAL, WITH 200 CPSI OXIDATION CATALYST OR EQUAL, 18.67 CUBIC FEET TOTAL VOLUME, WITH ASSOCIATED AUTOMATIC TEMPERATURE AND PRESSURE MONITORING DEVICES AND CONTROLS, AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 2. SELECTIVE CATALYTIC REDUCTION, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 79449 OR EQUAL, METALLIC SUBSTRATE, 37.33 CUBIC FOOT TOTAL VOLUME AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 3 AQUEOUS UREA SOLUTION DOSING UNIT, INJECTORS, AND WITH ASSOCIATED AUTOMATIC TEMPERATURE, PRESSURE MONITORING AND CONTROL DEVICES. - 4. EXHAUST STACK, 2'-6" DIA. X 59' H.,
ABOVE GROUND. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - 4. THE OPERATOR SHALL INSTALL AND MAINTAIN TEMPERATURE MEASURING AND RECORDING SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET TEMPERATURES OF THE OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. THE TEMPERATURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. THE TEMPERATURE GAUGES SHALL BE ACCURATE TO PLUS OR MINUS 5 PERCENT, AND BE CALIBRATED ONCE EVERY TWELVE MONTHS. [RULE 204] Section H Page 49 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT - 5. THE OPERATOR SHALL INSTALL AND MAINTAIN DIFFERENTIAL PRESSURE AND RECORDING SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET PRESSURES ACROSS THE OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. HE DIFFERENTIAL PRESSURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. [RULE 204] - BASED ON THE OPERATING PARAMETERS' MEASURED AND MONITORED RESULTS OVER THE TWO-YEAR PERIOD (PER CONDITION #4 AND #5), OPERATING PARAMETERS' RANGE SHALL BE ESTABLISHED FOR THE PERMIT TO OPERATE. [RULE 204] - EXCEPT DURING STARTUP AND SHUTDOWN OF THE SCR SYSTEM, THE UREA FEED CONTROL 7. SYSTEM SHALL BE IN OPERATION. [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN A UREA FLOW RATE MEASURING AND RECORDING SYSTEM TO ACCURATELY INDICATE AND RECORD THE UREA INJECTION RATE TO THE SELECTIVE CATALYTIC REDUCTION SYSTEM. [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN A NOx ANALYZER TO MEASURE SCR INLET NOx CONCENTRATION AND CALIBRATED ANNUALLY IN ACCORDANCE THE MANUFACTURER'S SPECIFICATIONS. [RULE 204] - WHEN SCR IS IN OPERATION, THE OPERATOR SHALL ANALYZE THE UREA INJECTION RATE, AND 10. THE SCR INLET AND OUTLET NOX EMISSION RATE TO ESTIMATE THE AMMONIA CONCENTRATION IN THE SCR OUTLET, BASED ON ONE HOUR AVERAGE. [RULE 204] - SAMPLING PORTS SHALL BE INSTALLED AT THE INLET AND OUTLET OF THE AIR POLLUTION 11. CONTROL SYSTEM. [RULE 204] - THE AMMONIA SLIP SHALL BE TESTED WITHIN 180 DAYS AFTER INITIAL START-UP (POST 12. MODIFICATION), AND ANNUALLY THEREAFTER. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND. FURNISH THE SCAOMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. [RULE 1303(b) (1)], [RULE 1401] - RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AOMD PERSONNEL UPON REQUEST. [RULE 204] Section H Page 50 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### **Emissions and Requirements:** THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES 14. AND REGULATIONS: NH3 (AMMONIA SLIP): 5 PPMV AT 15% O2, 60 MINUTE AVERAGE, AFTER SCR START UP. [RULE 1303(b) (1)], [RULE 1402] Section H Page 51 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 559229 Granted as of 4/16/2014 ### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM NO. 2 CONSISTING OF: - 1. CATALYTIC OXIDIZER, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 91449 OR EQUAL, ALUMINUM OXIDE OR PLATINUM CATALYST ACTIVE MATERIAL, WITH 200 CPSI OXIDATION CATALYST OR EQUAL, 18.67 CUBIC FEET TOTAL VOLUME, WITH ASSOCIATED AUTOMATIC TEMPERATURE AND PRESSURE MONITORING DEVICES AND CONTROLS, AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 2. SELECTIVE CATALYTIC REDUCTION, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 79449 OR EQUAL, METALLIC SUBSTRATE, 37.33 CUBIC FOOT TOTAL VOLUME AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 3 AQUEOUS UREA SOLUTION DOSING UNIT, INJECTORS, AND WITH ASSOCIATED AUTOMATIC TEMPERATURE, PRESSURE MONITORING AND CONTROL DEVICES. - 4. EXHAUST STACK, 2'-6" DIA, X 59' H., ABOVE GROUND. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - 4. THE OPERATOR SHALL INSTALL AND MAINTAIN TEMPERATURE MEASURING AND RECORDING SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET TEMPERATURES OF THE OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. THE TEMPERATURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. THE TEMPERATURE GAUGES SHALL BE ACCURATE TO PLUS OR MINUS 5 PERCENT, AND BE CALIBRATED ONCE EVERY TWELVE MONTHS. [RULE 204] Section H Page 52 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 5. THE OPERATOR SHALL INSTALL AND MAINTAIN DIFFERENTIAL PRESSURE AND RECORDING SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET PRESSURES ACROSS THE OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. HE DIFFERENTIAL PRESSURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. [RULE 204] - 6. BASED ON THE OPERATING PARAMETERS' MEASURED AND MONITORED RESULTS OVER THE TWO-YEAR PERIOD (PER CONDITION #4 AND #5), OPERATING PARAMETERS' RANGE SHALL BE ESTABLISHED FOR THE PERMIT TO OPERATE. [RULE 204] - 7. EXCEPT DURING STARTUP AND SHUTDOWN OF THE SCR SYSTEM, THE UREA FEED CONTROL SYSTEM SHALL BE IN OPERATION. [RULE 204] - 8. THE OPERATOR SHALL INSTALL AND MAINTAIN A UREA FLOW RATE MEASURING AND RECORDING SYSTEM TO ACCURATELY INDICATE AND RECORD THE UREA INJECTION RATE TO THE SELECTIVE CATALYTIC REDUCTION SYSTEM. [RULE 204] - 9. THE OPERATOR SHALL INSTALL AND MAINTAIN A NOX ANALYZER TO MEASURE SCR INLET NOX CONCENTRATION AND CALIBRATED ANNUALLY IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS. [RULE 204] - 10. WHEN SCR IS IN OPERATION, THE OPERATOR SHALL ANALYZE THE UREA INJECTION RATE, AND THE SCR INLET AND OUTLET NOX EMISSION RATE TO ESTIMATE THE AMMONIA CONCENTRATION IN THE SCR OUTLET, BASED ON ONE HOUR AVERAGE. [RULE 204] - 11. SAMPLING PORTS SHALL BE INSTALLED AT THE INLET AND OUTLET OF THE AIR POLLUTION CONTROL SYSTEM. [RULE 204] - 12. THE AMMONIA SLIP SHALL BE TESTED WITHIN 180 DAYS AFTER INITIAL START-UP (POST MODIFICATION), AND ANNUALLY THEREAFTER. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAQMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. [RULE 1303(b) (1)], [RULE 1401] - 13. RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section H Page 53 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 **FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT** ### **Emissions and Requirements:** 14. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: NH3 (AMMONIA SLIP): 5 PPMV AT 15% O2, 60 MINUTE AVERAGE, AFTER SCR START UP. [RULE 1303(b) (1)], [RULE 1402] Section H Page 54 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 559230 Granted as of 4/16/2014 ### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM NO. 3 CONSISTING OF: - 1. CATALYTIC OXIDIZER, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 91449 OR EQUAL, ALUMINUM OXIDE OR PLATINUM CATALYST ACTIVE MATERIAL, WITH 200 CPSI OXIDATION CATALYST OR EQUAL, 18.67 CUBIC FEET TOTAL VOLUME, WITH ASSOCIATED AUTOMATIC TEMPERATURE AND PRESSURE MONITORING DEVICES AND CONTROLS, AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 2. SELECTIVE CATALYTIC REDUCTION, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 79449 OR EQUAL, METALLIC SUBSTRATE, 37.33 CUBIC FOOT TOTAL VOLUME AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 3 AQUEOUS UREA SOLUTION DOSING UNIT, INJECTORS, AND WITH ASSOCIATED AUTOMATIC TEMPERATURE, PRESSURE MONITORING AND CONTROL DEVICES. - 4. EXHAUST STACK, 2'-6" DIA. X 59' H., ABOVE GROUND. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - 4. THE OPERATOR SHALL INSTALL AND MAINTAIN TEMPERATURE MEASURING AND RECORDING SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET TEMPERATURES OF THE OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. THE TEMPERATURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. THE TEMPERATURE GAUGES SHALL BE ACCURATE TO PLUS OR MINUS 5 PERCENT, AND BE CALIBRATED ONCE EVERY TWELVE MONTHS. [RULE 204] - 5. THE OPERATOR SHALL INSTALL AND MAINTAIN DIFFERENTIAL PRESSURE AND RECORDING SYSTEMS TO MEASURE AND
RECORD THE INLET AND OUTLET PRESSURES ACROSS THE Section H Page 55 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. HE DIFFERENTIAL PRESSURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. [RULE 204] - BASED ON THE OPERATING PARAMETERS' MEASURED AND MONITORED RESULTS OVER THE TWO-YEAR PERIOD (PER CONDITION #4 AND #5), OPERATING PARAMETERS' RANGE SHALL BE ESTABLISHED FOR THE PERMIT TO OPERATE. [RULE 204] - EXCEPT DURING STARTUP AND SHUTDOWN OF THE SCR SYSTEM, THE UREA FEED CONTROL 7. SYSTEM SHALL BE IN OPERATION. [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN A UREA FLOW RATE MEASURING AND RECORDING SYSTEM TO ACCURATELY INDICATE AND RECORD THE UREA INJECTION RATE TO THE SELECTIVE CATALYTIC REDUCTION SYSTEM. [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN A NOX ANALYZER TO MEASURE SCR INLET NOX 9. CALIBRATED ANNUALLY IN ACCORDANCE WITH CONCENTRATION AND MANUFACTURER'S SPECIFICATIONS. [RULE 204] - WHEN SCR IS IN OPERATION, THE OPERATOR SHALL ANALYZE THE UREA INJECTION RATE, AND 10. THE SCR INLET AND OUTLET NOX EMISSION RATE TO ESTIMATE THE AMMONIA CONCENTRATION IN THE SCR OUTLET, BASED ON ONE HOUR AVERAGE. [RULE 204] - SAMPLING PORTS SHALL BE INSTALLED AT THE INLET AND OUTLET OF THE AIR POLLUTION 11. CONTROL SYSTEM. [RULE 204] - THE AMMONIA SLIP SHALL BE TESTED WITHIN 180 DAYS AFTER INITIAL START-UP (POST 12. MODIFICATION), AND ANNUALLY THEREAFTER. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAQMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. [RULE 1303(b) (1)], [RULE 1401] - RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS 13. FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Page 56 Section H Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 ## **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT ### **Emissions and Requirements:** THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES 14. AND REGULATIONS: NH3 (AMMONIA SLIP): 5 PPMV AT 15% O2, 60 MINUTE AVERAGE, AFTER SCR START UP. [RULE 1303(b) (1)], [RULE 1402] Section H Page 57 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### PERMIT TO CONSTRUCT A/N 559231 Granted as of 4/16/2014 ### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM NO. 4 CONSISTING OF: - 1. CATALYTIC OXIDIZER, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 91449 OR EQUAL, ALUMINUM OXIDE OR PLATINUM CATALYST ACTIVE MATERIAL, WITH 200 CPSI OXIDATION CATALYST OR EQUAL, 18.67 CUBIC FEET TOTAL VOLUME, WITH ASSOCIATED AUTOMATIC TEMPERATURE AND PRESSURE MONITORING DEVICES AND CONTROLS, AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 2. SELECTIVE CATALYTIC REDUCTION, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 79449 OR EQUAL, METALLIC SUBSTRATE, 37.33 CUBIC FOOT TOTAL VOLUME AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 3 AQUEOUS UREA SOLUTION DOSING UNIT, INJECTORS, AND WITH ASSOCIATED AUTOMATIC TEMPERATURE, PRESSURE MONITORING AND CONTROL DEVICES. - 4. EXHAUST STACK, 2'-6" DIA. X 59' H., ABOVE GROUND. - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAQMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - 4. THE OPERATOR SHALL INSTALL AND MAINTAIN TEMPERATURE MEASURING AND RECORDING SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET TEMPERATURES OF THE OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. THE TEMPERATURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. THE TEMPERATURE GAUGES SHALL BE ACCURATE TO PLUS OR MINUS 5 PERCENT, AND BE CALIBRATED ONCE EVERY TWELVE MONTHS. [RULE 204] - 5. THE OPERATOR SHALL INSTALL AND MAINTAIN DIFFERENTIAL PRESSURE AND RECORDING SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET PRESSURES ACROSS THE Section H Page 58 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. HE DIFFERENTIAL PRESSURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. [RULE 204] - 6. BASED ON THE OPERATING PARAMETERS' MEASURED AND MONITORED RESULTS OVER THE TWO-YEAR PERIOD (PER CONDITION #4 AND #5), OPERATING PARAMETERS' RANGE SHALL BE ESTABLISHED FOR THE PERMIT TO OPERATE. [RULE 204] - 7. EXCEPT DURING STARTUP AND SHUTDOWN OF THE SCR SYSTEM, THE UREA FEED CONTROL SYSTEM SHALL BE IN OPERATION. [RULE 204] - 8. THE OPERATOR SHALL INSTALL AND MAINTAIN A UREA FLOW RATE MEASURING AND RECORDING SYSTEM TO ACCURATELY INDICATE AND RECORD THE UREA INJECTION RATE TO THE SELECTIVE CATALYTIC REDUCTION SYSTEM. [RULE 204] - 9. THE OPERATOR SHALL INSTALL AND MAINTAIN A NOX ANALYZER TO MEASURE SCR INLET NOX CONCENTRATION AND CALIBRATED ANNUALLY IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS. [RULE 204] - 10. WHEN SCR IS IN OPERATION, THE OPERATOR SHALL ANALYZE THE UREA INJECTION RATE, AND THE SCR INLET AND OUTLET NOX EMISSION RATE TO ESTIMATE THE AMMONIA CONCENTRATION IN THE SCR OUTLET, BASED ON ONE HOUR AVERAGE. [RULE 204] - 11. SAMPLING PORTS SHALL BE INSTALLED AT THE INLET AND OUTLET OF THE AIR POLLUTION CONTROL SYSTEM. [RULE 204] - 12. THE AMMONIA SLIP SHALL BE TESTED WITHIN 180 DAYS AFTER INITIAL START-UP (POST MODIFICATION), AND ANNUALLY THEREAFTER. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAQMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. [RULE 1303(b) (1)], [RULE 1401] - 13. RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 204] Section H Page 59 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### **Emissions and Requirements:** 14. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: NH3 (AMMONIA SLIP): 5 PPMV AT 15% O2, 60 MINUTE AVERAGE, AFTER SCR START UP. [RULE 1303(b) (1)], [RULE 1402] Section H Page 60 Facility I.D. #: 029110 Revision #: Date: February 5, 2015 #### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO CONSTRUCT A/N 559232 Granted as of 4/16/2014 #### **Equipment Description:** AIR POLLUTION CONTROL SYSTEM NO. 5 CONSISTING OF: - CATALYTIC OXIDIZER, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 91449 OR EQUAL, 1. ALUMINUM OXIDE OR PLATINUM CATALYST ACTIVE MATERIAL, WITH 200 CPSI OXIDATION CATALYST OR EQUAL, 18.67 CUBIC FEET TOTAL VOLUME, WITH ASSOCIATED AUTOMATIC TEMPERATURE AND PRESSURE MONITORING DEVICES AND CONTROLS, AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - SELECTIVE CATALYTIC REDUCTION, JOHNSON MATTHEY INC. OR EQUAL, MODEL NO. 79449 OR 2. EQUAL, METALLIC SUBSTRATE, 37.33 CUBIC FOOT TOTAL VOLUME AND WITH PROVISIONS FOR ADDING TWO LAYERS OF CATALYST. - 3 AQUEOUS UREA SOLUTION DOSING UNIT, INJECTORS, AND WITH ASSOCIATED AUTOMATIC TEMPERATURE, PRESSURE MONITORING AND CONTROL DEVICES. - 4. EXHAUST STACK, 2'-6" DIA. X 59' H., ABOVE GROUND. #### Conditions: - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2. CONDITION AT ALL TIMES. [RULE 204] - AT LEAST 30 DAYS PRIOR TO INSTALLATION OF THE EQUIPMENT, ORANGE COUNTY SANITATION DISTRICT (OCSD) SHALL PROVIDE TO SCAOMD FINAL DESIGN DRAWINGS, PROCESS AND FLOW DIAGRAM, CONTROLS, EQUIPMENT SPECIFICATIONS (MAKE, MODEL, SIZE AND MAXIMUM CAPACITY). [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN TEMPERATURE MEASURING AND RECORDING 4. SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET TEMPERATURES OF THE OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. THE TEMPERATURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. THE TEMPERATURE GAUGES SHALL BE ACCURATE TO PLUS OR MINUS 5 PERCENT, AND BE CALIBRATED ONCE EVERY TWELVE MONTHS. [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN DIFFERENTIAL PRESSURE AND RECORDING 5. SYSTEMS TO MEASURE AND RECORD THE INLET AND OUTLET PRESSURES ACROSS THE Section H Page 61 Facility I.D. #: 029110 Revision #: nο Date: February 5, 2015 #### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT OXIDATION CATALYST AND THE SELECTIVE REDUCTION CATALYST. HE DIFFERENTIAL PRESSURES SHALL BE CONTINUOUSLY MEASURED AND RECORDED. [RULE 204] - BASED ON THE OPERATING PARAMETERS' MEASURED AND MONITORED RESULTS OVER THE 6. TWO-YEAR PERIOD (PER CONDITION #4 AND #5), OPERATING PARAMETERS' RANGE SHALL BE ESTABLISHED FOR THE PERMIT TO OPERATE. [RULE 204] - EXCEPT DURING STARTUP AND SHUTDOWN OF THE SCR SYSTEM, THE UREA FEED CONTROL 7. SYSTEM SHALL BE IN OPERATION. [RULE 204] - THE OPERATOR SHALL INSTALL AND MAINTAIN A UREA FLOW RATE MEASURING AND 8. RECORDING SYSTEM TO ACCURATELY INDICATE AND RECORD THE UREA INJECTION RATE TO THE SELECTIVE CATALYTIC REDUCTION SYSTEM. [RULE 204] - 9. THE OPERATOR SHALL INSTALL AND MAINTAIN A NOx ANALYZER TO MEASURE SCR INLET NOx CONCENTRATION AND CALIBRATED ANNUALLY IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS. [RULE 204] - WHEN
SCR IS IN OPERATION, THE OPERATOR SHALL ANALYZE THE UREA INJECTION RATE, AND 10. THE SCR INLET AND OUTLET NOX EMISSION RATE TO ESTIMATE THE AMMONIA CONCENTRATION IN THE SCR OUTLET, BASED ON ONE HOUR AVERAGE. [RULE 204] - SAMPLING PORTS SHALL BE INSTALLED AT THE INLET AND OUTLET OF THE AIR POLLUTION 11. CONTROL SYSTEM. [RULE 204] - THE AMMONIA SLIP SHALL BE TESTED WITHIN 180 DAYS AFTER INITIAL START-UP (POST 12. MODIFICATION), AND ANNUALLY THEREAFTER. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS IN ACCORDANCE WITH THE APPROVED TEST PROCEDURES AND, FURNISH THE SCAOMD WRITTEN RESULTS OF SUCH PERFORMANCE TESTS WITHIN 45 DAYS AFTER TESTING. [RULE 1303(b) (1)], [RULE 1401] - RECORDS SHALL BE KEPT AND MAINTAINED TO PROVE COMPLIANCE WITH ALL CONDITIONS FOR THIS PERMIT. THE RECORDS SHALL BE KEPT ON FILE FOR AT LEAST FIVE YEARS AND SHALL BE MADE AVAILABLE TO AOMD PERSONNEL UPON REQUEST. [RULE 204] Page 62 Section H Facility I.D. #: 029110 09 Revision #: Date: February 5, 2015 #### **FACILITY PERMIT TO OPERATE** ORANGE COUNTY SANITATION DISTRICT #### **Emissions and Requirements:** THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES 14. AND REGULATIONS: NH3 (AMMONIA SLIP): 5 PPMV AT 15% O2, 60 MINUTE AVERAGE, AFTER SCR START UP. [RULE 1303(b) (1)], [RULE 1402] Section H Page 63 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO CONSTRUCT A/N 565930 Granted as of 11/12/2014 #### **Equipment Description:** MODIFICATIONS TO AIR POLLUTION CONTROL SYSTEM (G27920) CONSISTING OF; - 1. FOUL AIR EXHAUST DUCTS FROM THREE (3) TRICKLING FILTERS, TRICKLING FILTER FACILITY'S (JOB NO. P2-90), IN PARALLEL. - 2. THREE (3) EXHAUST BLOWERS, IN PARALLEL, EACH 11,000 SCFM, 25 H.P. - 3. THREE (3) CAUSTIC IMPREGNATED ACTIVATED CARBON UNITS, IN PARALLEL, EACH CONTAINING MINIMUM OF 10,600 LBS OF ACTIVATED CARBON BY NORIT AMERICAS OR WESTATES OR EQUIVALENT, EACH VENTING A SINGLE TRICKLING FILTER. - 4. THREE (3) EXHAUST STACKS, EACH 2.0'- 3" DIA. X 28' HIGH. #### BY THE ADDITION OF: - 5. THREE (3) CHEMICAL SCRUBBERS (JOB NO. FE13-04), EACH SINGLE STAGE, SIEMENS OR EQUIVALENT, APPROXIMATELY 20' H. X 6' D., JAEGER 7'-10' H. PACKING MATERIAL OR EQUAL, SCRUBBING SOLUTION RECIRCULATION LINE, ASSOCIATED PUMPS, METERS AND AUTOMATIC CONTROLS, MIST ELIMINATOR AND CONTINUOUS H2S MONITORING SYSTEM (OPTIONAL). - ASSOCIATED SODIUM HYDROXIDE AND SODIUM HYPOCHLORITE STORAGE TANKS. - 7. ITEM NO. 3 ABOVE, USED AS OPTIONAL POLISHING UNIT CONTAINING GRANULAR ACTIVATED CARBON, IF NEEDED, OR EMPTY VESSEL USED AS EXHAUST FOR THE CHEMICAL SCRUBBERS. #### **PERMIT CONDITIONS:** - I. CONSTRUCTION AND OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATIONS UNDER WHICH THIS PERMIT IS ISSUED. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITIONS AT ALL TIMES. [RULE 204] - 3. THIS PERMIT TO CONSTRUCT IS VALID FOR ONE YEAR FROM ITS' ISSUANCE DATE. AN EXTENSION MAY BE GRANTED UPON WRITTEN REQUEST. SUCH A REQUEST SHALL INCLUDE THE REASONS THE EXTENSION IS REQUIRED, THE LENGTH OF THE EXTENSION, AND THE STATUS OF THE CONSTRUCTION ACTIVITIES COMPLETED TO DATE. [RULE 204] Section H Page 64 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 4. THIS EQUIPMENT SHALL BE OPERATED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION. [RULE 204] - 5. A FLOW METER SHALL BE INSTALLED AND MAINTAINED AT EACH OF THE ODOR CONTROL SYSTEM EXHAUST TO INDICATE THE TOTAL FOUL AIR FROM EACH OF THE TRICKLING FILTER TREATED, IN STANDARD CUBIC FEET PER MINUTE (SCFM). IN CASE A PRESSURE SENSOR DEVICE IS USED TO DETERMINE FLOW RATE, IN PLACE OF THE FLOW METER, A CONVERSION CHART SHALL BE MAINTAINED TO INDICATE THE CORRESPONDENT FLOW RATE, IN SCFM, TO THE PRESSURE READING. [RULE 204] - 6. MAXIMUM FOUL AIR FLOW RATE FROM EACH TRICKLING FILTER TO BE TREATED SHALL NOT EXCEED 11,000 SCFM, AVERAGED OVER CALENDAR MONTH. [RULE 204] - 7. SCRUBBER SYSTEM SHALL BE EQUIPPED WITH DIFFERENTIAL PRESSURE GAUGE, PH METER AND FLOW METER TO INDICATE AND MEASURE (GPM) FOR SCRUBBING LIQUID RECIRCULATION RATE. [RULE 204] - 8. WHEN THE SCRUBBERS ARE IN OPERATION, AUTOMATIC HYDROGEN SULFIDE (H2S) MONITORING SYSTEM SHALL BE IN OPERATION AND MAINTAINED TO RECORD THE OUTLET H2S CONCENTRATION, IN PPMV. THE H2S MONITORING SYSTEM SHALL BE CALIBRATED PURSUANT TO MANUFACTURER'S RECOMMENDATIONS AND SPECIFICATIONS. [RULE 204] - 9. WHEN THE AUTOMATIC H2S MONITORING SYSTEM IS NOT OPERATING, THE OPERATOR SHALL, ON A DAILY BASIS, MONITOR, RECORD AND MAINTAIN THE FOLLOWING PARAMETERS PER MANUFACTURER'S RECOMMENDATIONS. - DIFFERENTIAL PRESSURE ACROSS THE SCRUBBER, INCHES OF WATER COLUMN - SCRUBBING SOLUTION RECIRCULATION RATE, GPM - PH OF THE SCRUBBING SOLUTION - HYDROGEN SULFIDE (H2S) CONCENTRATION, PPMV, IN THE SCRUBBER EXHAUST. [RULE 204] - 10. THE PH OF THE SCRUBBING SOLUTION SHALL BE MAINTAINED BETWEEN 8 AND 12 ON A DAILY AVERAGE. [RULE 204] - 11. CONCENTRATION MEASURED AT EXHAUST SHALL NOT EXCEED THE FOLLOWING: **CONSTITUENT** CONCENTRATION H2S 1.0 PPMV, DAILY AVERAGE [RULE 402, 1401] Section H Page 65 Facility I.D. #: 029110 Revision #: 09 Date: February 5, 2015 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 12. IN CASE, WHEN AN OPTIONAL POLISHING UNIT (GRANULAR ACTIVATED CARBON) IS PUT IN SERVICE, THE UNIT SHALL BE OPERATED AS PER MANUFACTURER'S RECOMMENDATIONS AND SPECIFICATIONS AND, IN COMPLIANCE WITH ABOVE CONDITION NO. 11. [RULE 204] - 13. RECORDS SHALL BE MAINTAINED AS REQUIRED BY THIS PERMIT FOR COMPLIANCE. THE RECORDS SHALL BE KEPT FOR AT LEAST FIVE YEARS AND MADE AVAILABLE TO SCAQMD PERSONNEL UPON REQUEST. [RULE 204] Section I Facility ID: Revision #: Page: 1 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION I: PLANS AND SCHEDULES This section lists all plans approved by AQMD for the purposes of meeting the requirements of applicable AQMD rules specified below. The operator shall comply with all conditions specified in the approval of these plans. Documents pertaining to the plan applications listed below are available for public review at AQMD Headquarters. Any changes to plan applications will require permit modification in accordance with Title V permit revision procedures. #### List of approved plans: | Application | Rule | |-------------|-------| | 267656 | 431.1 | NOTE: This section does not list compliance schedules pursuant to the requirements of Regulation XXX - Title V Permits; Rule 3004(a)(10)(C). For equipment subject to a variance, order for abatement, or alternative operating condition granted pursuant to Rule 518.2, equipment specific conditions are added to the equipment in Section D or H of the permit. Section J Facility ID: Revision #: Page: 1 029110 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT # SECTION J: AIR TOXICS [40CFR 63 Subpart VVV 03-23-2001] ### NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS: PUBLICLY OWNED TREATMENT WORKS (NON-INDUSTRIAL PLANT) - (1) The owner/operator of a Publicly Owned Treatment Works (POTW) shall comply with all applicable requirements of 40 CFR Subpart VVV and general requirements applicable to Non-Industrial POTW Plant (emission points and control point requirements) as listed under § 63.1586 including covers on all emission points up to the secondary influent pumping station or secondary treatment unit. Covers shall be tightly fitted and designed and operated to minimize exposure of wastewater to the atmosphere. Each opening in a treatment unit shall be maintained in a closed, sealed position unless wastewater is not present or except when plant personnel are present and conducting wastewater or sludge sampling, or equipment inspection, maintenance or repair. - (2) The owner/operator of a Publicly Owned Treatment Works (POTW) shall comply with all applicable requirements of inspections listed under 40 CFR Subpart VVV, § 63.1588 including a visual inspection of all covers and their closure devices for defects that could results in air emissions. Inspections shall be conducted initially follow-up inspections at least once per year. Defects that are found on treatment units in use shall be repaired within 45 days. The owner/operator shall follow the notification and reporting requirements in § 63.1588 for repairs that cannot be completed in 45 days. Defects that are found on treatment units that are not in use shall be repaired prior to putting the treatment unit back in service. - (3) The owner/operator of a Publicly Owned Treatment Works (POTW) shall comply with all applicable requirements to prepare and maintain the records for each treatment unit inspection, each defect detected during inspection, date of detection, corrective actions taken to repair the defect, the date the repair is completed, and all other requirements listed under 40 CFR Subpart VVV, § 63.1589 - (4) The owner/operator of a Publicly Owned Treatment Works (POTW) shall comply with all applicable requirements and notification of compliance status, as applicable, and other reports submittal as listed under 40 CFR Subpart VVV, § 63.1590 Section J Facility ID: Revision #: Date: Page: 2 029110 1 ion #: 1 April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT SECTION J: AIR TOXICS [40CFR 63 Subpart ZZZZ, #1 03-09-2011] #### NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS: STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES The owner/operator of stationary Reciprocating Internal Combustion Engines (RICE) located at an area source of hazardous air pollutant (HAP) emissions shall comply with the applicable requirements of 40 CFR 63 Subpart ZZZZ including but not limited to the following: 1. The owner/operator shall comply with the applicable requirements as
specified in 63.6603 including but not limited to the following: #### Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions As stated in §§63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions: | For each | You must meet the following requirement, except during periods of startup | During periods of startup you must. | |--------------------------------|---|-------------------------------------| | landfill or digester gas-fired | a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first; b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first; and c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary. | | ¹Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement in Table 2d of this subpart. - 2. The owner/operator shall comply with the applicable general requirements as specified in 63.6605. - 3. The owner/operator shall comply with the applicable monitoring, installation, collection, operation, and maintenance requirements specified in 63.6625. - 4. The owner/operator shall demonstrate continuous compliance with the applicable emission limitations and operating limitations specified in 63.6640 including but not limited to the following: - (a) You must demonstrate continuous compliance with each emission limitation and operating limitation according to methods specified in Table 6 to this subpart. Section J Facility ID: Revision #: Page: 3 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT SECTION J: AIR TOXICS [40CFR 63 Subpart ZZZZ, #1 03-09-2011] Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, Operating Limitations, Work Practices, and Management Practices As stated in §63,6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following: | For each | Complying with the requirement to | You must demonstrate continuous compliance by | |--|-----------------------------------|--| | existing non-emergency
landfill or digester gas
stationary SI RICE located
at an area source of HAP | practices | i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. | - (b) You must report each instance in which you did not meet each emission limitation or operating limitation in Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in §63.6650. - 5. The owner/operator shall comply with the applicable record keeping requirements specified in 63.6655 and 63.6660. Section J Facility ID: Revision #: Page: 4 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT # SECTION J: AIR TOXICS [40CFR 63SubpartZZZZ 03-09-2011] #### NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS: STATIONARY RECIPROCATING INTERNAL COMBUSTION ENGINES The owner/operator of existing emergency stationary Reciprocating Internal Combustion Engines (RICE) located at an area source of hazardous air pollutant (HAP) emissions shall comply with the applicable requirements of 40 CFR 63 Subpart ZZZZ including but not limited to the following: 1. The owner/operator shall comply with the applicable requirements as specified in 63.6603 including but not limited to the following: #### Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions As stated in §§63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions: | For each | You must meet the following requirement, except during periods of startup | During periods of startup you must. | |---|---|-------------------------------------| | 4. Emergency stationary CI RICE and black start stationary CI RICE. ² | a. Change oil and filter every 500 hours of operation or annually, whichever comes first; ¹ | | | | b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first; and | | | | c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. | | | 5. Emergency stationary SI
RICE; black start stationary SI
RICE. ² | a. Change oil and filter every 500 hours of operation or annually, whichever comes first; b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first; and c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. | ļ | ¹Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement in Table 2d of this subpart. ²If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under Federal, State, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under Federal, State, or local law Section J Facility ID: Revision #: ge: 5 029110 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT # SECTION J: AIR TOXICS [40CFR 63SubpartZZZZ 03-09-2011] has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under Federal, State, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the Federal, State or local law under which the risk was deemed unacceptable. - 2. The owner/operator shall comply with the applicable general requirements as specified in 63.6605. - 3. The owner/operator shall comply with the applicable monitoring, installation, collection, operation, and maintenance requirements specified in 63.6625. - 4. The owner/operator shall demonstrate continuous compliance with the applicable emission limitations and operating limitations specified in 63.6640 including but not limited to the following: - (a) You must demonstrate continuous compliance with each emission limitation and operating limitation according to methods specified in Table 6 to this subpart. Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, Operating Limitations, Work Practices, and Management Practices As stated in §63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following: | For each | Complying with the requirement to | You must demonstrate continuous compliance by | |--|---------------------------------------|--| | existing emergency and
black start stationary
RICE located at an area
source of HAP | a. Work or
Management
practices | i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. | - (b) You must report each instance in which you did not meet each emission limitation or operating limitation in Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in
§63.6650. - (c) you must operate the emergency stationary RICE according to the requirements in paragraphs - (i) through (iii) of this section. Any operation other than emergency operation, maintenance and Section J Facility ID; Revision #; Page: 6 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT # SECTION J: AIR TOXICS [40CFR 63SubpartZZZZ 03-09-2011] testing, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (i) through (iii) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (i) through (iii) of this section, the engine will not be considered an emergency engine under this subpart and will need to meet all requirements for non-emergency engines. - (i) There is no time limit on the use of emergency stationary RICE in emergency situations. - (ii) You may operate your emergency stationary RICE for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by Federal, State or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that Federal, State, or local standards require maintenance and testing of emergency RICE beyond 100 hours per year. - (iii) You may operate your emergency stationary RICE up to 50 hours per year in nonemergency situations, but those 50 hours are counted towards the 100 hours per year provided for maintenance and testing. The 50 hours per year for non-emergency situations cannot be used for peak shaving or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity; except that owners and operators may operate the emergency engine for a maximum of 15 hours per year as part of a demand response program if the regional transmission organization or equivalent balancing authority and transmission operator has determined there are emergency conditions that could lead to a potential electrical blackout, such as unusually low frequency, equipment overload, capacity or energy deficiency, or unacceptable voltage level. The engine may not be operated for more than 30 minutes prior to the time when the emergency condition is expected to occur, and the engine operation must be terminated immediately after the facility is notified that the emergency condition is no longer imminent. The 15 hours per year of demand response operation are counted as part of the 50 hours of operation per year provided for nonemergency situations. The supply of emergency power to another entity or entities pursuant to financial arrangement is not limited by this paragraph (iii), as long as the power provided by the financial arrangement is limited to emergency power. - 5. The owner/operator shall comply with the applicable record keeping requirements specified in 63,6655 and 63,6660. Section K Facility ID: Revision #: Page: 1 029110 April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION K: TITLE V Administration #### **GENERAL PROVISIONS** - 1. This permit may be revised, revoked, reopened and reissued, or terminated for cause, or for failure to comply with regulatory requirements, permit terms, or conditions. [3004(a)(7)(C)] - 2. This permit does not convey any property rights of any sort or any exclusive privilege. [3004(a)(7)(E)] #### Permit Renewal and Expiration - 3. (A) Except for solid waste incineration facilities subject to standards under section 129(e) of the Clean Air Act, this permit shall expire five years from the date that this Title V permit is issued. The operator's right to operate under this permit terminates at midnight on this date, unless the facility is protected by an application shield in accordance with Rule 3002(b), due to the filing of a timely and complete application for a Title V permit renewal, consistent with Rule 3003. [3004(a)(2), 3004(f)] - (B) A Title V permit for a solid waste incineration facility combusting municipal waste subject to standards under Section 129(e) of the Clean Air Act shall expire 12 years from the date of issuance unless such permit has been renewed pursuant to this regulation. These permits shall be reviewed by the Executive Officer at least every five years from the date of issuance. [3004(f)(2)] - 4. To renew this permit, the operator shall submit to the Executive Officer an application for renewal at least 180 days, but not more than 545 days, prior to the expiration date of this permit. [3003(a)(6)] #### **Duty to Provide Information** 5. The applicant for, or holder of, a Title V permit shall furnish, pursuant to Rule 3002(d) and (e), timely information and records to the Executive Officer or designee within a reasonable time as specified in writing by the Executive Officer or designee. [3004(a)(7)(F)] #### **Payment of Fees** 6. The operator shall pay all required fees specified in Regulation III - Fees. [3004(a)(7)(G)] Section K Facility ID: Revision #: Page: 2 029110 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION K: TITLE V Administration #### Reopening for Cause - 7. The Executive Officer will reopen and revise this permit if any of the following circumstances occur: - (A) Additional regulatory requirements become applicable with a remaining permit term of three or more years. Reopening is not required if the effective date of the requirement is later than the expiration date of this permit, unless the permit or any of its terms and conditions has been extended pursuant to paragraph (f)(4) of Rule 3004. - (B) The Executive Officer or EPA Administrator determines that this permit contains a material mistake or that inaccurate statements were made in establishing the emissions standards or other terms or conditions of this permit. - (C) The Executive Officer or EPA Administrator determines that the permit must be revised or revoked to assure compliance with the applicable requirements. [3005(g)(1)] #### **COMPLIANCE PROVISIONS** - 8. The operator shall comply with all regulatory requirements, and all permit terms and conditions, except: - (A) As provided for by the emergency provisions of condition no. 17 or condition no. 18, or - (B) As provided by an alternative operating condition granted pursuant to a federally approved (SIP-approved) Rule 518.2. Any non-compliance with any federally enforceable permit condition constitutes a violation of the Federal Clean Air Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or revision; or denial of a permit renewal application. Non-compliance may also be grounds for civil or criminal penalties under the California State Health and Safety Code. [3004(a)(7)(A)] Section K Facility ID; Revision #; Page: 3 029110 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION K: TITLE V Administration - 9. The operator shall allow the Executive Officer or authorized representative, upon presentation of appropriate credentials to: - (A) Enter the operator's premises where emission-related activities are conducted, or records are kept under the conditions of this permit; - (B) Have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit; - (C) Inspect at reasonable times, any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under the permit; and - (D) Sample or monitor at reasonable times, substances or parameters for the purpose of assuring compliance with the facility permit or regulatory requirements. [3004(a)(10)(B)] - 10. All terms and conditions in this permit, including any provisions designed to limit a facility's potential to emit, are enforceable by the EPA Administrator and citizens under the federal Clean Air Act, unless the term or condition is designated as not federally enforceable. Each day during any portion of which a violation occurs is a separate offense. [3004(g)] - 11. A challenge to any permit condition or requirement raised by EPA, the operator, or any other person, shall not invalidate or otherwise affect the remaining portions of this permit. [3007(b)] - 12. The filing of any application for a permit revision, revocation, or termination, or a notification of planned changes or anticipated non-compliance does not stay any permit condition. [3004(a)(7)(D)] - 13. It shall not be a defense for a person in an enforcement action, including those listed in Rule 3002(c)(2), that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit, except as provided for in "Emergency Provisions" of this section. [3004(a)(7)(H)] Section K Facility ID: Revision #: Page: 4 029110 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION K: TITLE V Administration - 14. The operator shall not build, erect, install, or use any equipment, the use of which, without resulting in a reduction in the total release of air contaminants to atmosphere, reduces or conceals an emission which would otherwise constitute a violation of Chapter 3 (commencing with Section 41700) of Part 4, of Division 26 of the California Health and Safety Code or of AQMD rules. This rule shall not apply to cases in which the only violation involved is of Section 41700 of the California Health and Safety Code, or Rule 402 of AQMD Rules. [408] - 15. Nothing in this permit or in any permit shield can alter or affect: -
(A) Under Section 303 of the federal Clean Air Act, the provisions for emergency orders; - (B) The liability of the operator for any violation of applicable requirements prior to or at the time of permit issuance; - (C) The applicable requirements of the Acid Rain Program, Regulation XXXI; - (D) The ability of EPA to obtain information from the operator pursuant to Section 114 of the federal Clean Air Act; - (E) The applicability of state or local requirements that are not "applicable requirements", as defined in Rule 3000, at the time of permit issuance but which do apply to the facility, such as toxics requirements unique to the State; and - (F) The applicability of regulatory requirements with compliance dates after the permit issuance date. [3004(c)(3)] - 16. For any portable equipment that requires an AQMD or state permit or registration, excluding a) portable engines, b) military tactical support equipment and c) AQMD-permitted portable equipment that are not a major source, are not located at the facility for more than 12 consecutive months after commencing operation, and whose operation does not conflict with the terms or conditions of this Title V permit: 1) the facility operator shall keep a copy of the AQMD or state permit or registration; 2) the equipment operator shall comply with the conditions on the permit or registration and all other regulatory requirements; and 3) the facility operator shall treat the permit or registration as a part of its Title V permit, subject to recordkeeping, reporting and certification requirements. [3004(a)(1)] Section K Facility ID: Revision #: Date: Page: 5 029110 1 April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### SECTION K: TITLE V Administration **EMERGENCY PROVISIONS** - 17. An emergency¹ constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limit only if: - (A) Properly signed, contemporaneous operating records or other credible evidence demonstrate that: - (1) An emergency occurred and the operator can identify the cause(s) of the emergency; - (2) The facility was operated properly (i.e. operated and maintained in accordance with the manufacturer's specifications, and in compliance with all regulatory requirements or a compliance plan), before the emergency occurred; - (3) The operator took all reasonable steps to minimize levels of emissions that exceeded emissions standard, or other requirements in the permit; and, - (4) The operator submitted a written notice of the emergency to the AQMD within two working days of the time when the emissions limitations were exceeded due to the emergency. The notice shall contain a description of the emergency, any steps taken to mitigate emissions, and corrective actions taken; and - (B) The operator complies with the breakdown provisions of Rule 430 Breakdown Provisions, or subdivision (i) of Rule 2004 Requirements, whichever is applicable. [3002(g), 430, 2004(i)] - 18. The operator is excused from complying with any regulatory requirement that is suspended by the Executive Officer during a state of emergency or state of war emergency, in accordance with Rule 118 Emergencies. [118] ^{1 &}quot;Emergency" means any situation arising from sudden and reasonably unforeseeable events beyond the control of the operator, including acts of God, which: (A) requires immediate corrective action to restore normal operation; and (B) causes the facility to exceed a technology-based emission limitation under the permit, due to unavoidable increases in emissions attributable to the emergency; and (C) is not caused by improperly designed equipment, lack of preventative maintenance, careless or improper operation, or operator error. Section K Facility ID: Revision #: Page: 6 029110 1 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### SECTION K: TITLE V Administration RECORDKEEPING PROVISIONS - 19. In addition to any other recordkeeping requirements specified elsewhere in this permit, the operator shall keep records of required monitoring information, where applicable, that include: - (A) The date, place as defined in the Title V permit, and time of sampling or measurements; - (B) The date(s) analyses were performed; - (C) The company or entity that performed the analyses; - (D) The analytical techniques or methods used; - (E) The results of such analyses; and - (F) The operating conditions as existing at the time of sampling or measurement. [3004(a)(4)(B)] - 20. The operator shall maintain records pursuant to Rule 109 and any applicable material safety data sheet (MSDS) for any equipment claimed to be exempt from a written permit by Rule 219 based on the information in those records. [219(t)] - 21. The operator shall keep all records of monitoring data required by this permit or by regulatory requirements for a period of at least five years from the date of the monitoring sample, measurement, report, or application. [3004(a)(4)(E)] #### REPORTING PROVISIONS - 22. The operator shall comply with the following requirements for prompt reporting of deviations: - (A) Breakdowns shall be reported as required by Rule 430 Breakdown Provisions or subdivision (i) of Rule 2004 Requirements, whichever is applicable. Section K Facility ID: Revision #: Page: 7 029110 Revision #; April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION K: TITLE V Administration - (B) Other deviations from permit or applicable rule emission limitations, equipment operating conditions, or work practice standards, determined by observation or by any monitoring or testing required by the permit or applicable rules that result in emissions greater than those allowed by the permit or applicable rules shall be reported within 72 hours (unless a shorter reporting period is specified in an applicable State or Federal Regulation) of discovery of the deviation by contacting AQMD enforcement personnel assigned to this facility or otherwise calling (800) CUT-SMOG. - (C) A written report of such deviations reported pursuant to (B), and any corrective actions or preventative measures taken, shall be submitted to AQMD, in an AQMD approved format, within 14 days of discovery of the deviation. - (D) All other deviations shall be reported with the monitoring report required by condition no. 23. [3004(a)(5)] - 23. Unless more frequent reporting of monitoring results are specified in other permit conditions or in regulatory requirements, the operator shall submit reports of any required monitoring to the AQMD at least twice per year. The report shall include a) a statement whether all monitoring required by the permit was conducted; and b) identification of all instances of deviations from permit or regulatory requirements. A report for the first six calendar months of the year is due by August 31 and a report for the last six calendar months of the year is due by February 28. [3004(a)(4)(F)] - 24. The operator shall submit to the Executive Officer and to the Environmental Protection Agency (EPA), an annual compliance certification. For RECLAIM facilities, the certification is due when the Annual Permit Emissions Program (APEP) report is due and shall cover the same reporting period. For other facilities, the certification is due on March 1 for the previous calendar year. The certification need not include the period preceding the date the initial Title V permit was issued. Each compliance certification shall include: - (A) Identification of each permit term or condition that is the basis of the certification; Section K Facility ID: Revision #: Date: Page: 8 029110 1 April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION K: TITLE V Administration - (B) The compliance status during the reporting period; - (C) Whether compliance was continuous or intermittent; - (D) The method(s) used to determine compliance over the reporting period and currently, and - (E) Any other facts specifically required by the Executive Officer to determine compliance. The EPA copy of the certification shall be sent to: Director of the Air Division Attn: Air-3 USEPA, Region IX 75 Hawthorne St. San Francisco, CA 94105 [3004(a)(10)(E)] 25. All records, reports, and documents required to be submitted by a Title V operator to AQMD or EPA shall contain a certification of accuracy consistent with Rule 3003(c)(7) by a responsible official (as defined in Rule 3000). [3004(a)(12)] #### PERIODIC MONITORING 26. All periodic monitoring required by this permit pursuant to Rule 3004(a)(4)(c) is based on the requirements and justifications in the AQMD document "Periodic Monitoring Guidelines for Title V Facilities" or in case-by-case determinations documented in the TitleV application file. [3004(a)(4)] Section K Facility ID: Revision #: Page: 9 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### **SECTION K: TITLE V Administration** #### **FACILITY RULES** This facility is subject to the following rules and regulations With the exception of Rule 402, 473, 477, 1118 and Rules 1401 through 1420, the following rules that are designated as non-federally enforceable are pending EPA approval as part of the state implementation plan. Upon the effective date of that approval, the approved rule(s) will become federally enforceable, and any earlier versions of those rules will no longer be federally enforceable. | RULE SOURCE | Adopted/Amended Date | FEDERAL Enforceability | |--------------------------|----------------------|---------------------------| | RULE 104 | 1-9-1976 | Federally enforceable | | RULE 109 | 5-2-2003 | Federally enforceable | | RULE 1107 | 1-6-2006 | Federally enforceable | | RULE 1110.1 | 10-4-1985 | Non federally enforceable | | RULE 1110.2 | 11-14-1997 | Non federally enforceable | | RULE 1110.2 | 9-7-2012 | Non federally enforceable | | RULE 1113 | 7-13-2007 | Federally
enforceable | | RULE 1113 | 9-6-2013 | Non federally enforceable | | RULE 1122 | 7-11-1997 | Federally enforceable | | RULE 1140 | 2-1-1980 | Federally enforceable | | RULE 1140 | 8-2-1985 | Non federally enforceable | | RULE 1146 | 11-17-2000 | Federally enforceable | | RULE 1146 | 5-13-1994 | Federally enforceable | | RULE 1146 | 9-5-2008 | Non federally enforceable | | RULE 1168 | 1-7-2005 | Federally enforceable | | RULE 1171 | 2-1-2008 | Federally enforceable | | RULE 1171 | 5-1-2009 | Non federally enforceable | | RULE 1303(a)(1)-BACT | 12-6-2002 | Non federally enforceable | | RULE 1303(a)(1)-BACT | 5-10-1996 | Federally enforceable | | RULE 1303(b)(1) | 10-20-2000 | Non federally enforceable | | RULE 1303(b)(1)-Modeling | 5-10-1996 | Federally enforceable | | RULE 1303(b)(2)-Offset | 12-6-2002 | Non federally enforceable | Section K Facility ID: Revision #: Page: 10 029110 1 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### SECTION K: TITLE V Administration | RULE SOURCE | Adopted/Amended Date | FEDERAL Enforceability | |---------------------------|----------------------|---------------------------| | RULE 1303(b)(2)-Offset | 5-10-1996 | Federally enforceable | | RULE 1304(a)-Modeling and | 6-14-1996 | Federally enforceable | | Offset Exemption | 1 | | | RULE 1309.1 | 5-3-2002 | Federally enforceable | | RULE 1309.1 | 8-3-2007 | Non federally enforceable | | RULE 1401 | 9-10-2010 | Non federally enforceable | | RULE 1402 | 3-4-2005 | Non federally enforceable | | RULE 1415 | 12-3-2010 | Non federally enforceable | | RULE 1418 | 9-10-1999 | Non federally enforceable | | RULE 1470 | 5-4-2012 | Non federally enforceable | | RULE 1472 | 3-7-2008 | Non federally enforceable | | RULE 204 | 10-8-1993 | Federally enforceable | | RULE 217 | 1-5-1990 | Federally enforceable | | RULE 218 | 5-14-1999 | Federally enforceable | | RULE 218.1 | 5-14-1999 | Federally enforceable | | RULE 219 | 5-3-2013 | Non federally enforceable | | RULE 3002 | 11-14-1997 | Federally enforceable | | RULE 3002 | 11-5-2010 | Non federally enforceable | | RULE 3003 | 11-14-1997 | Federally enforceable | | RULE 3003 | 11-5-2010 | Non federally enforceable | | RULE 3004 | 12-12-1997 | Federally enforceable | | RULE 3004(a)(4)-Periodic | 12-12-1997 | Federally enforceable | | Monitoring | | | | RULE 3005 | 11-14-1997 | Federally enforceable | | RULE 3005 | 11-5-2010 | Non federally enforceable | | RULE 3006 | 11-14-1997 | Federally enforceable | | RULE 3006 | 11-5-2010 | Non federally enforceable | | RULE 3007 | 10-8-1993 | Federally enforceable | | RULE 301 | 6-1-2012 | Non federally enforceable | | RULE 304 | 6-1-2012 | Non federally enforceable | | RULE 306 | 6-1-2012 | Non federally enforceable | | RULE 401 | 11-9-2001 | Non federally enforceable | | RULE 401 | 3-2-1984 | Federally enforceable | Section K Facility ID: Revision #: Page: 11 029110 1 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### **SECTION K: TITLE V Administration** | RULE SOURCE | Adopted/Amended Date | FEDERAL Enforceability | |------------------------|----------------------|---------------------------| | RULE 402 | 5-7-1976 | Non federally enforceable | | RULE 403.1 | 1-15-1993 | Federally enforceable | | RULE 403.1 | 6-16-2000 | Non federally enforceable | | RULE 404 | 2-7-1986 | Federally enforceable | | RULE 407 | 4-2-1982 | Federally enforceable | | RULE 408 | 5-7-1976 | Federally enforceable | | RULE 409 | 8-7-1981 | Federally enforceable | | RULE 430 | 7-12-1996 | Non federally enforceable | | RULE 431.1 | 6-12-1998 | Federally enforceable | | RULE 431.2 | 5-4-1990 | Federally enforceable | | RULE 431.2 | 9-15-2000 | Non federally enforceable | | RULE 461 | 4-21-2000 | Federally enforceable | | RULE 461 | 6-15-2001 | Non federally enforceable | | RULE 701 | 6-13-1997 | Federally enforceable | | 40CFR 63 Subpart VVV | 3-23-2001 | Federally enforceable | | 40CFR 63SubpartZZZZ | 3-9-2011 | Federally enforceable | | 40CFR 63SubpartZZZZ_01 | 3-9-2011 | Federally enforceable | | 40CFR 82 Subpart B | 7-14-1992 | Federally enforceable | | 40CFR 82 Subpart F | 5-14-1993 | Federally enforceable | Appendix A Facility ID: Revision #: Date: Page: 1 029110 1 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT APPENDIX A: NOX AND SOX EMITTING EQUIPMENT EXEMPT FROM WRITTEN PERMIT PURSUANT TO RULE 219 **NONE** 1. Appendix B Facility ID: Revision #; Page: 1 029110 1 Revision #: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1107 01-06-2006] Except as otherwise provided in Rule 1107 #### (1) VOC Content of Coatings A person shall not apply to metal parts and products subject to the provisions of this rule any coatings, including any VOC-containing materials added to the original coating supplied by the manufacturer, which contain VOC in excess of the limits specified below: | VOC LIMITS Less Water and Less Exempt Compounds Effective Dates | | | | | | | | | | |---|---------|------------|---------|--------|---------|--------|---------|--------|--| | Coating | | <u>Air</u> | Dried | | | В | aked | | | | | gr | n/l | lb/ | gal | gı | n/l | lb | /gal | | | | Current | 7/1/07 | Current | 7/1/07 | Current | 7/1/07 | Current | 7/1/07 | | | General One-
Component | 275 | 275 | 2.3 | 2.3 | 275 | 275 | 2.3 | 2.3 | | | General Multi-
Component | 340 | 340 | 2.8 | 2.8 | 275 | 275 | 2.3 | 2.3 | | | Military
Specification | 340 | 340 | 2.8 | 2.8 | 275 | 275 | 2.3 | 2.3 | | | Etching Filler | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | | Solar-
Absorbent | 420 | 420 | 3.5 | 3.5 | 360 | 360 | 3.0 | 3.0 | | | Heat-Resistant | 420 | 420 | 3.5 | 3.5 | 360 | 360 | 3.0 | 3.0 | | | Extreme High-
Gloss | 420 | 340 | 3.5 | 2.8 | 360 | 360 | 3.0 | 3.0 | | | Metallic | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | Appendix B Facility ID; Revision #: Page: 2 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1107 01-06-2006] # VOC LIMITS Less Water and Less Exempt Compounds Effective Dates, cont. | | | | Effective I | Jates, co | ont. | | | | |------------------|----------|----------|-------------|-----------|------------|----------|---------|----------| | Coating | | Air-] | Dried | | | E | aked | | | | gm | gm/l | | lb/gal | | gm/l | | /gal | | • | Current | 7/1/07 | Current | 7/1/07 | Current | 7/1/07 | Current | 7/1/07 | | Extreme | 420 | 420 | 3.5 | 3.5 | 360 | 360 | 3.0 | 3.0 | | Performance | | | İ | | il | | | | | Prefabricated | 420 | 275 | 3.5 | 2.3 | 275 | 275 | 2.3 | 2.3 | | Architectural | ļ | } | |] |]] | | | } | | One-Component | | | | | <u> </u> | | | | | Prefabricated | 420 | 340 | 3.5 | 2.8 | 275 | 275 | 2.3 | 2.3 | | Architectural | | } | Ì | <u>.</u> | | | | <u> </u> | | Multi- | · | | | | | - | | 1 | | Component | | <u> </u> | | | | <u> </u> | | | | Touch Up | 420 | 420 | 3.5 | 3.5 | 360 | 360 | 3.0 | 3.0 | | Repair | 420 | 420 | 3.5 | 3.5 | 360 | 360 | 3.0 | 3.0 | | Silicone Release | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | High- | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | Performance | | | | | | | : | | | Architectural | <u> </u> | | | | <u> </u> | <u> </u> | | | | Camouflage | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | Vacuum- | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | Metalizing | <u> </u> | | | | <u> </u> | | | | | Mold-Seal | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | High- | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | Temperature | <u> </u> | | | | <u> </u> | | | | | Electric- | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | Insulating | | | | | | | | | | Varnish | <u> </u> | | | | | | | | | Pan Backing | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | Pretreatment | 420 | 420 | 3.5 | 3.5 | 420 | 420 | 3.5 | 3.5 | | Coatings | | | | | . <u> </u> | | | | Appendix B Facility ID: Revision #: Page: 3 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1107 01-06-2006] (2) A person shall not use VOC-containing materials which have a VOC content of more than 200 grams per liter of material for stripping any coating governed by this rule. Appendix B Facility ID: Revision #: Date: Page: 4 029110 on #: 1 April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1113 07-13-2007] - (1) Except as provided in paragraphs (c)(2), (c)(3), (c)(4), and specified coatings averaged under (c)(6), no person shall supply, sell, offer for sale, manufacture, blend, or repackage any architectural coating for use in the District which, at the time of sale or manufacture, contains more than 250 grams of VOC per liter of coating (2.08 pounds per gallon), less water, less exempt compounds, and less any colorant added to tint bases, and no person shall apply or solicit the application of any architectural coating within the District that exceeds 250 grams of VOC per liter of coating as calculated in this paragraph. - (2) Except as provided in paragraphs (c)(3), (c)(4), and designated coatings averaged under (c)(6), no person shall supply, sell, offer for sale, manufacture, blend, or repackage, for use within the District, any architectural coating listed in the Table of Standards which contains VOC (excluding any colorant added to tint bases) in excess of the corresponding VOC limit specified in the table, after the effective date specified, and no person shall apply or solicit the application of any architectural coating within the District that exceeds the VOC limit as specified in this paragraph. No person shall apply or solicit the application within the District of any industrial maintenance coatings, except anti-graffiti coatings, for residential use or
for use in areas such as office space and meeting rooms of industrial, commercial or institutional facilities not exposed to such extreme environmental conditions described in the definition of industrial maintenance coatings; or of any rust-preventative coating for industrial use, unless such a rust preventative coating complies with the Industrial Maintenance Coating VOC limit specified in the Table of Standards. Appendix B Facility ID: Revision #: age: 5 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT # APPENDIX B: RULE EMISSION LIMITS [RULE 1113 07-13-2007] TABLE OF STANDARDS VOC LIMITS #### Grams of VOC Per Liter of Coating, Less Water and Less Exempt Compounds | COATING CATEGORY | Ceiling
Limit | Current
Limit | | | Effect | ive Date | | | |---------------------------------|------------------|------------------|--------------|--------|---------|----------|--------|--------| | | Lanut | Duint_ | 1/1/03 | 1/1/04 | -1/1/05 | 7/1/06 | 7/1/07 | 7/1/08 | | Bond Breakers | 350 | | | | | | | | | Clear Wood Finishes | 350 | | | | | 275 | | | | Varnish | 350 | | | | | 275 | | | | Sanding Sealers | 350 | | | | | 275 | | | | Lacquer | 680 | 550 | | | 275 | | | ļ | | Clear Brushing Lacquer | 680 | | | | 275 | | | | | Concrete-Curing Compounds | 350 | | | | | | 100 | | | Concrete-Curing Compounds | 350 | | | | | | | | | For Roadways and
Bridges** | | | | | | | | | | Dry-Fog Coatings | 400 | | | | | <u> </u> | 150 | | | Fire-Proofing Exterior Coatings | 450 | 350 | | | | | | | | Fire-Retardant Coatings*** | | - | | | | - | | | | Clear | 650 | | | | | ľ | | | | Pigmented | 350 | | | | | | | | | Flats | 250 | 100 | | 1. | | | | 50 | | Floor Coatings | 420 | | 100 | | | 50 | | | | Graphic Arts (Sign) Coatings | 500 | | - | | | | | | | Industrial Maintenance (IM) | 420 | | | 250 | | 100 | | | | Coatings | | | | | | | | | | High Temperature IM | | | 420 | | | | | | | Coatings | Į. | | ļ | Į į | | l | ļ | | | Zinc-Rich IM Primers | 420 | | 340 | | | 100 | | | | Japans/Faux Finishing Coatings | 700 | 350 | | | | | | | | Magnesite Cement Coatings | 600 | 450 | | | | | | | | Mastic Coatings | 300 | | | | | | | | | Metallic Pigmented Coatings | 500 | | | | | | | | | Multi-Color Coatings | 420 | 250 | | | | | | | | Nonflat Coatings | 250 | | 150 | | | 50 | | | Appendix B Facility ID: Revision #: Date: Page: 6 029110 1 on #: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1113 07-13-2007] | | [KOLE 1115 07-15-2007] | | | | | | | | |--|------------------------|------------------|--------------|-------------------------|-----------|----------|-------------|----------| | COATING CATEGORY | Ceiling
Limit* | Current
Limit | her experien | 5 (5 54 SH
5 (44 SH) | a Alujera | ive Date | | | | | | | 1/1/03 | 1/1/04 | 1/1/05 | 7/1/06 | 7/1/07 | 7/1/08 | | Nonflat High Gloss | 250 | | 150 | | | | 50 | | | Pigmented Lacquer | 680 | 550 | | | 275 | | | | | Pre-Treatment Wash Primers | 780 | | 420 | | | | | | | Primers, Sealers, and
Undercoaters | 350 | | 200 | | | 100 | | | | Quick-Dry Enamels | 400 | | 250 | | | 150 | -50 | | | Quick-Dry Primers, Sealers, and Undercoaters | 350 | | 200 | | | 100 | | | | Recycled Coatings | † | | 250 | | | | | | | Roof Coatings | 300 | | 250 | - | 50 | | | | | Roof Coatings, Aluminum | 500 | | | | 100 |] | | | | Roof Primers, Bituminous | 350 | | 350 | | | | | | | Rust Preventative Coatings | 420 | | 400 | | | 100 | | <u> </u> | | Shellac | | | | | | | | | | Clear | 730 | | | | | | | | | Pigmented | 550 | | | | | | | 1 | | Specialty Primers | 350 | | | | | 250 | 100 | | | Stains | 350 | | 250 | | | | 100 | | | Stains, Interior | 250 | | | | | | | | | Swimming Pool Coatings | | | | | | | | | | Repair | 650 | | 340 | | | | | | | Other | 340 | | | | | | | | | Traffic Coatings | 250 | 150 | | | | | 100 | | | Waterproofing Sealers | 400 | | 250 | | | 100 | | | | Waterproofing | 400 | | | | | 100 | | | | Concrete/Masonry Sealers | | | | | | | | | | Wood Preservatives | | | | | | | | | | Below-Ground | 350 | | | | | | | | | Other | .350 | | | | | | <u> </u> | | ^{*} The specified limits remain in effect unless revised limits are listed in subsequent columns in the Table of Standards. ^{**} Does not include compounds used for curbs and gutters, sidewalks, islands, driveways and other miscellaneous concrete areas. ^{***} The Fire-Retardant Coating category will be eliminated on January 1, 2007 and subsumed by the coating category for which they are formulated. Appendix B Facility ID: Revision #: Page: 7 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1113 07-13-2007] ### TABLE OF STANDARDS (cont.) VOC LIMITS #### **Grams of VOC Per Liter of Material** | COATING | Limit | |--------------------|-------| | Low-Solids Coating | 120 | Appendix B Facility ID: Revision #: Page: 8 029110 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1113 09-06-2013] - (1) Except as provided in paragraphs (c)(3), (c)(4), and designated coatings averaged under (c)(6), no person shall supply, sell, offer for sale, market, manufacture, blend, repackage, apply, store at a worksite, or solid the application of any architectural coating within in the District: - (A) That is listed in the Table of Standards 1 and contains VOC (exclusing any colorant added to tint bases) in excess of the corresponding VOC limit specified in the table, after the effective date specified; or - (B) That is not listed in the Table of Standards 1, and contains VOC (excluding any colorant added to tint bases) in excess of 250 grams of VOC per liter of coating (2.08 pounds per gallon), less water, less exempt compounds, until January 1, 2014, at which time the limit drops to 50 grams of VOC per liter of coating, less water, less exempt compounds (0.42 pounds per gallon). - (2) No person within the District shall add colorant at the point of sale that is listed in the Table of Standards 2 and contains VOC in excess of the corresponding VOC limit specified in the Table of Standards 2, after the effective date specified. Appendix B Facility ID: Revision #: Date: Page: 9 029110 1 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1113 09-06-2013] #### TABLE OF STANDARDS I VOC LIMITS #### Grams of VOC Per Liter of Coating, Less Water and Less Exempt Compounds | COATING CATEGORY | Ceiling Limit ¹ | Current Limit ² | Effective Date 7/1/08 1/1/12 1/1/14 | | | |---|----------------------------|----------------------------|---|---------|--------| | Bond Breakers | | | 7/1/00 | 1/1/12 | 1/1/14 | | Clear Wood Finishes | | 275 | | | | | Varnish | 350 | 275 | | | | | Sanding Sealers | 350 | 275 | | | | | Lacquer | | 275 | | | | | Concrete-Curing Compounds | | 100 | | | | | Concrete-Curing Compounds For Roadways and Bridges ³ | | 350 | | | | | Concrete Surface Retarder | | 250 | 6.0000000000000000000000000000000000000 | | 50 | | Driveway Sealer | | 100 | | 50 | | | Dry-Fog Coatings | | 150 | | | 50 | | Faux Finishing Coatings | | | | | | | Clear Topcoat | 1 | 350 | | 200 | 100 | | Decorative Coatings | | 350 | | | | | Glazes | | 350 | | | | | Japan | | 350 | | | | | Trowel Applied Coatings | | 350 | | 150 | 50 | | Fire-Proofing Coatings | | 350 | | | 150 | | Flats | 250 | 50 | 50 | | | | Floor Coatings | 100 | 50 | | | | | Form Release Compound | | 250 | | | 100 | | Graphic Arts (Sign) Coatings | | 500 | | | 150 | | Industrial Maintenance (IM) Coatings | 420 | 100 | | | | | High Temperature IM Coatings | | 420 | | | | | Non-Sacrificial Anti-Graffiti Coatings | | 100 | | | | | Zinc-Rich IM Primers | | 100 | | | | | Magnesite Cement Contings | | 450 | Esta process | | | | Mastic Coatings | | 300 | | <u></u> | 100 | | Metallic Pigmented Coatings | 500 | 500 | | | 150 | | Multi-Color Coatings | | 250 | | | | | Nonflat Coatings | 150 | 50 | | | | | Pre-Treatment Wash Primers | | 420 | | | | | Primers, Sealers, and Undercoaters | | 100 | | | | | Reactive Penetrating Sealers | | 350 | | | | | | | | | | | Appendix B Facility ID: Revision #: Page: 10 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT APPENDIX B: RULE EMISSION LIMITS [RULE 1113 09-06-2013] | [KULE 1115 07-00-2015] | | | | | | |------------------------------------|-----|-----|--|--
--| | Recycled Coatings | | 250 | | | | | Roof Coatings | | 50 | | 10000000000000000000000000000000000000 | | | Roof Coatings, Aluminum | | 100 | | 0.000.000.000 | | | Roof Primers, Bituminous | | 350 | | | | | Rust Preventative Coatings | 400 | 100 | | | | | Sacrificial Anti-Graffiti Coatings | | 100 | | 50 | and the control of th | | Shellac | | | | | | | Clear | | 730 | | | | Appendix B Facility ID: Revision #: age; 11 029110 Revision #: Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1113 09-06-2013] | | | | Effective Date | | |--|----------------|----------------------------|----------------------|--| | COATING CATEGORY | Ceiling Limit' | Current Limit ² | 7/1/08 1/1/12 1/1/14 | | | Pigmented | | 550 | | | | Specialty Primers | | 100 | | | | Stains | 350 | 100 | | | | Stains, Interior | 250 | 250 | | | | Stone Consolidant | | 450 | | | | Swimming Pool Coatings | | | | | | Repair | | 340 | | | | Other | | 340 | | | | Traffic Coatings | | 100 | | | | Waterproofing Sealers | | 100 | | | | Waterproofing Concrete/Masonry Sealers | | 100 | | | | Wood Preservatives | | 350 | | | - The specified ceiling limits are applicable to products sold under the Averaging Compliance Option. - The specified limits remain in effect unless revised limits are listed in subsequent columns in the Table of Standards. - 3. Does not include compounds used for curbs and gutters, sidewalks, islands, driveways and other miscellaneous concrete areas. ### TABLE OF STANDARDS 1 (cont.) VOC LIMITS #### Grams of VOC Per Liter of Material | COATING | Limit | |--------------------|-------| | Low-Solids Coating | 120 | ### TABLE OF STANDARDS 2 VOC LIMITS FOR COLORANTS ### Grams of VOC Per Liter of Colorant Less Water and Less Exempt Compounds | - New Control of the | | |---|--------------------| | COLORANT ADDED TO | Limit ⁴ | | Architectural Coatings, excluding IM Coatings | 50 | | Solvent-Based IM | 600 | | Waterborne IM | 50 | 4. Effective January 1, 2014. Appendix B Facility ID: Revision #: Page: 12 029110 1 sion #: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1168 01-07-2005] - (1) Unless otherwise specified in paragraph (c)(2), a person shall not apply any adhesives, adhesive bonding primers, adhesive primers, or any other primer which have a VOC content in excess of 250 g/L less water and less exempt compounds. - (2) A person shall not apply adhesives, adhesive bonding primers, adhesive primers, sealants, sealant primers, or any other primer which have a VOC content in excess of the limits specified below: ### VOC Limit*, Less Water and Less Exempt Compounds in Grams per Liter | Architectural Applications | Current VOC
Limit* | |-------------------------------------|-----------------------| | Indoor Carpet Adhesives | 50 | | Carpet Pad Adhesives | 50 | | Outdoor Carpet Adhesives | 150 | | Wood Flooring Adhesive | 100 | | Rubber Floor Adhesives | 60 | | Subfloor Adhesives | 50 | | Ceramic Tile Adhesives | 65 | | VCT and Asphalt Tile Adhesives | 50 | | Dry Wall and Panel Adhesives | 50 | | Cove Base Adhesives | 50 | | Multipurpose Construction Adhesives | 70 | | Structural Glazing Adhesives | 100 | | Single Ply Roof Membrane Adhesives | 250 | Appendix B Facility ID; Revision #: 029110 1 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1168 01-07-2005] | Specialty Applications | VOC Limits and Effective Dates** | | | | |---|----------------------------------|--------|--------|--------| | | Current VOC
Limit* | 1-1-05 | 7-1-05 | 1-1-07 | | PVC Welding | 510 | | | | | CPVC Welding | 490 | | | | | ABS Welding | 400 | | 325 | | | Plastic Cement Welding | 350 | 250 | | | | Adhesive Primer for Plastic | 650 | | 550 | | | Computer Diskette
Manufacturing | 350 | | · | | | Contact Adhesive | 80 | , | | | | Special Purpose Contact
Adhesive | 250 | | | | | Tire Retread | 100 | | | | | Adhesive Primer for Traffic
Marking Tape | 150 | | | | | Structural Wood Member
Adhesive | 140 | | | | | Sheet Applied Rubber Lining
Operations | 850 | | | | | Top and Trim Adhesive | 540 | | | 250 | ^{**} The specified limits remain in effect unless revised limits are listed in subsequent columns. Appendix B Facility ID: Revision #: Page: 14 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 1168 01-07-2005] For adhesives, adhesive bonding primers, or any other primer not regulated by the above two tables and applied to the following substrates, the following limits shall apply: | Substrate Specific Applications | Current VOC
Limit* | |---------------------------------|-----------------------| | Metal to Metal | 30 | | Plastic Foams | 50 | | Porous Material (except wood) | 50 | | Wood | 30 | | Fiberglass | 80 | If an adhesive is used to bond dissimilar substrates together the adhesive with the highest VOC content shall be allowed. | Sealants | Current VOC
Limit* | |--------------------------|-----------------------| | Architectural | 250 | | Marine Deck | 760 | | Nonmembrane Roof | 300 | | Roadway | 250 | | Single-Ply Roof Membrane | 450 | | Other | 420 | Appendix B Facility ID: Revision #: Date: Page: 15 029110 1 1 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1168 01-07-2005] | Sealant Primers | Current VOC
Limit* | |---------------------|-----------------------| | Architectural | | | Non Porous | 250 | | Porous_ | 775 | | Modified Bituminous | 500 | | Marine Deck | 760 | | Other | 750 | ^{*}For low-solid adhesives or sealants the VOC limit is expressed in
grams per liter of material as determined in paragraph (b)(32); for all other adhesives and sealants, VOC limits are expressed as grams of VOC per liter of adhesive or sealant less water and less exempt compounds as determined in paragraph (b)(31). Appendix B Facility ID: Revision #: Page: 16 029110 1 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1171 02-01-2008] ### (1) Solvent Requirements A person shall not use a solvent to perform solvent cleaning operations unless the solvent complies with the applicable requirements set forth below: | SOLVENT CLEANING ACTIVITY | CHRRENT
LIMITS*
VOC
g/l
(lb/gal) | EFFECTIVE
1/1/2008*
VOC
g/l
(lb/gal) | EFFECTIV
1/1/2009
VOC
g/l
(lb/gal) | |--|--|--|--| | (A) Product Cleaning During Manufacturing Process Or Surface Preparation For Coating, Adhesive, Or Ink Application | | Annie Carma Visiento Carriera Annie a lacela | Confessional Assistant - Accordance | | (i) General | 25
(0.21) | | | | (ii) Electrical Apparatus Components & Electronic Components | 100 (0.83) | | | | (iii) Medical Devices &
Pharmaceuticals | 800
(6.7) | | | | (B) Repair and Maintenance Cleaning | | | | | (i) General | 25
(0.21) | | | | (ii) Electrical Apparatus Components & Electronic Components | 100 (0.83) | | | Appendix B Facility ID: Revision #: Page: 17 029110 1 Revision #: 1 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1171 02-01-2008] | | CURRENT
LIMITS*
VOC | EFFECTIVE
1/1/2008*
VOC | 1/1/2009
VOC | |---|---------------------------|-------------------------------|-----------------| | SOLVENT CLEANING ACTIVITY (cont.) | g/l
(lb/gal) | g/l
(Ib/gal) | g/l
(Ib/gal) | | (iii) Medical Devices & Pharmaceuticals | | | | | (A) Tools, Equipment, & | 800 | | | | Machinery | (6.7) | | · | | (B) General Work Surfaces | 600
(5.0) | | | | (C) Cleaning of Coatings or Adhesives Application Equipment | 25
(0.21) | | | | (D) Cleaning of Ink Application Equipment | | | | | (i) General | 25
(0.21) | | , | | (ii) Flexographic Printing | 25
(0.21) | | | | (iii) Gravure Printing | | | - | | (A) Publication | 100
(0.83) | | | | (B) Packaging | 25
(0.21) | | | | (iv) Lithographic (Offset) or Letter Press
Printing | | | | | (A) Roller Wash, Blanket Wash,
& On-Press Components | | | | | (I) Newsprint | 100
(0.83) | | | Appendix B Facility ID: Revision #: Page: 18 029110 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1171 02-01-2008] | | CURRENT
LIMITS* | EFFECTIVE
1/1/2008*
VOC | EFFECTIVE
1/1/2009
VOC | |--|--------------------|-------------------------------|------------------------------| | SOLVENT CLEANING ACTIVITY (cont.) | g/l
(lb/gal) | g/l
(lb/gal) | g/l
(lb/gal) | | (II) Other Substrates | 500
(4.2) | 100
(0.83) | | | (B) Removable Press Components | 25
(0.21) | | | | (v) Screen Printing | 500
(4.2) | 100
(0.83) | | | (vi) Ultraviolet Ink/ Electron Beam Ink Application Equipment (except screen printing) | 650
(5.4) | 650
(5.4) | 100 (0.83) | | (vii) Specialty Flexographic Printing | 100 (0.83) | | | | (E) Cleaning of Polyester Resin Application
Equipment | 25
(0.21) | | | ^{*} The specified limits remain in effect unless revised limits are listed in subsequent columns. Appendix B Facility ID: Revision #: Page; 1 02911 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1171 05-01-2009] ### (1) Solvent Requirements A person shall not use a solvent to perform solvent cleaning operations unless the solvent complies with the applicable requirements set forth below: | SOLVENT CLEANING ACTIVITY | CURRENT LIMITS* VOC g/l (lb/gal) | EFFECTIVE
1/1/2010
VOC
g/l
(lb/gal) | |--|-----------------------------------|---| | (A) Product Cleaning During Manufacturing Process Or Surface Preparation For Coating, Adhesive, Or Ink Application | | | | (i) General | 25
(0.21) | | | (ii) Electrical Apparatus Components & Electronic Components | 100
(0.83) | | | (iii) Medical Devices &
Pharmaceuticals | 800
(6.7) | | | (B) Repair and Maintenance Cleaning | | | | (i) General | 25
(0.21) | | | (ii) Electrical Apparatus Components & Electronic Components | 100 (0.83) | | Appendix B Facility ID: Revision #; Date: Page: 20 029110 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1171 05-01-2009] | | - | | |---|--|-------------------------------------| | SOLVENT CLEANING ACTIVITY (cont.) | CURRENT
LIMITS*
VOC
g/l
(lb/gal) | EFFECTIVE 1/1/2010 VOC g/l (lb/gal) | | (iii) Medical Devices & Pharmaceuticals | | | | (A) Tools, Equipment, & Machinery | 800
(6.7) | | | (B) General Work Surfaces | 600
(5.0) | | | (C) Cleaning of Coatings or Adhesives Application Equipment | 25
(0.21) | | | (D) Cleaning of Ink Application Equipment | | | | (i) General | 25
(0.21) | | | (ii) Flexographic Printing | 25
(0.21) | | | (iii) Gravure Printing | | | | (A) Publication | 100
(0.83) | | | (B) Packaging | 25
(0.21) | | | (iv) Lithographic (Offset) or Letter Press
Printing | | | | (A) Roller Wash, Blanket Wash,
& On-Press Components | 100
(0.83) | | Appendix B Facility ID: Revision #: Page: 2: 02911 Date: April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 1171 05-01-2009] | | CURRENT | EFFECTIVE | |--|--------------|------------| | | LIMITS* | 1/1/2010 | | SOLVENT CLEANING ACTIVITY | VOC
g/l | VOC
g/l | | (cont.) | (lb/gal) | (lb/gal) | | (B) Removable Press Components | 25 | | | | (0.21) | | | (v) Screen Printing | 100 | | | | (0.83) | | | (vi) Ultraviolet Ink/Electron Beam Ink | 650 | 100 | | Application Equipment (except screen printing) | (5.4) | (0.83) | | (vii) Specialty Flexographic Printing | 100 | | | | (0.83) | | | (E) Cleaning of Polyester Resin Application
Equipment | 25
(0.21) | | ^{*} The specified limits remain in effect unless revised limits are listed in subsequent columns. Appendix B Facility ID: Revision #: 029110 1 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 404 02-07-1986] The operator shall not discharge into the atmosphere from this equipment, particulate matter in excess of the concentration at standard conditions, shown in Table 404(a). Where the volume discharged is between figures listed in the Table, the exact concentration permitted to be discharged shall be determined by linear interpolation. For the purposes of this rule, emissions shall be averaged over one complete cycle of operation or one hour, whichever is the lesser time period. #### **TABLE 404(a)** | | | | • | • | ıı | | • | | |---|------------|----------|------------|--------------|--------------|------------|----------------|--------------| | | | | | oncentration | | | Maximum Co | | | 1 | | | of Part | iculate | | | of Particular | te Matter | | | Volume Di | scharged | Matter"A | llowed in | Volume Di | ischarged | Allowed in D | Pischarged | | | Calculated | l as Dry | Dischar | ged Gas | Calculated a | ıs Dry Gas | Gas Calculated | l as Dry Gas | | | Gas | 3 | Calculate | ed as Dry | At Standard | Conditions | at | | | | At Stan | dard | Gas at S | Standard | | | Standard Co | onditions | | 1 | Condit | ions | Cond | itions | | | | | | | Cubic | Cubic | Milligrams | Grains per | Cubic | Cubic | Milligrams | Grains per | | | meters | feet | per | Cubic Foot | meters | feet | per | Cubic | | | Per | Per | Cubic | | Per Minute | Per | Cubic Meter | Foot | | | Minute | Minute | Meter | | | Minute | | | | | 25 or | 883 | 450 | 0.196 | 900 | 31780 | 118 | 0.0515 | | | | or | | | | | | | | | less | less | | | | | | | | | 30 | 1059 | 420 | .183 | 1000 | 35310 | 113 | .0493 | | | 35 | 1236 | 397 | .173 | 1100 | 38850 | 109 | .0476 | | | 40 | 1413 | 377 | .165 | 1200 | 42380 | 106 | .0463 | | | 45 | 1589 | 361 | .158 | 1300 | 45910 | 102 | .0445 | Appendix B Facility ID: Revision #: Page: 23 029110 Date: April 16, 2014 ### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### APPENDIX B: RULE EMISSION LIMITS [RULE 404 02-07-1986] | [KULL 404 02-07-1700] | | | | | | | | |-----------------------|----------|------------------|--------------|--------------|------------|----------------|--------------| | | | | oncentration | | | Maximum Co | ncentration | | | | of Part | iculate | | | of Particula | te Matter | | Volume Di | scharged | Matter"A | Ilowed in | Volume D | ischarged | Allowed in I | Discharged | | Calculated | l as Dry | Dischar | ged Gas | Calculated a | as Dry Gas | Gas Calculated | l as Dry Gas | | Ga | S | Calculate | ed as Dry | At Standard | Conditions | at | | | At Stan | ıdard | Gas at S | Standard | | | Standard Co | onditions | | Condit | | | itions | | | | | | Cubic | Cubic | Milligrams | Grains per | Cubic | Cubic | Milligrams | Grains per | | meters | feet | per | Cubic Foot | meters |
feet | per | Cubic | | Per | Per | Cubic | | Per Minute | Per | Cubic Meter | Foot | | Minute | Minute | Meter | | | Minute | | _ | | 50 | 1766 | 347 | .152 | 1400 | 49440 | 100 | .0437 | | 60 | 2119 | 324 | .141 | 1500 | 52970 | 97 | .0424 | | 70 | 2472 | 306 | .134 | 1750 | 61800 | 92 | .0402 | | 80 | 2825 | 291 | .127 | 2000 | 70630 | 87 | .0380 | | 90 | 3178 | 279 | .122 | 2250 | 79460 | 83 | .0362 | | 100 | 3531 | 267 | .117 | 2500 | 88290 | 80 | .0349 | | 125 | 4414 | 246 | .107 | 3000 | 105900 | 75 | .0327 | | 150 | 5297 | 230 | .100 | 4000 | 141300 | 67 | .0293 | | 175 | 6180 | 217 | .0947 | 5000 | 176600 | 62 | .0271 | | 200 | 7063 | 206 | .0900 | 6000 | 211900 | 58 | .0253 | | 250 | 8829 | 190 | .0830 | 8000 | 282500 | 52 | .0227 | | 300 | 10590 | 177 | .0773 | 10000 | 353100 | 48 | .0210 | | 350 | 12360 | 167 ⁻ | .0730 | 15000 | 529700 | 41 | .0179 | | 400 | 14130 | 159 | .0694 | 20000 | 706300 | 37 | • | | 1 | | | | | | | .0162 | | 450 | 15890 | 152 | .0664 | 25000 | 882900 | 34 | .0148 | Appendix B Facility ID: Revision #: Date: 029110 1 April 16, 2014 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ### APPENDIX B: RULE EMISSION LIMITS [RULE 404 02-07-1986] | | | L- | | | | | | |--|----------------------------------|----------------------------|----------------------------------|---|---|--|--| | Volume Di
Calculated
Ga
At Star
Condit | l as Dry
s
ndard | of Part | ed as Dry
Standard | Volume D
Calculated a
At Standard | as Dry Gas | Maximum Co of Particula Allowed in D Gas Calculated at Standard Co | te Matter
Discharged
Las Dry Gas | | Cubic meters Per Minute | Cubic feet Per Minute | Milligrams per Cubic Meter | Grains per
Cubic Foot | Cubic
meters
Per Minute | Cubic
feet
Per
Minute | Milligrams
per
Cubic Meter | Grains per
Cubic
Foot | | 500
600
700
800 | 17660
21190
24720
28250 | 146
137
129
123 | .0637
.0598
.0563
.0537 | 30000
40000
50000
70000
or more | 1059000
1413000
1766000
2472000
or more | 32
28
26
23 | .0140
.0122
.0114
.0100 | | ROUTING RECORD | | | | | | | |---|------|-----|-----------|--|--|--| | DATE | FROM | το | ACTION | | | | | SEP 01 2015 | GL | DS | To Assign | | | | | 9/2/15 | DS | MW | Evaluate | | | | | PH/3/15 | MW | AU | Proof | | | | | 12/9/15 | AV | MAC | Review | | | | | 12-9-15 | MAC | MW | TYPOS | | | | | 12/10/15 | MW | MC | Revesión | | | | | 12-10-15 | MAC | DS | REVIEWED | | | | | 12/22/15 | DS | MW | QUESTIONS | | | | | 12/22/15 | mu | DS. | Revised | | | | | REFERENCE TO OTHER RECORDS INCI UDING VARIANCES | | | | | | | 12/22/15 DS MW EDIT 12/23/15 DS GL Legorit | DATE | FROM | 10 | ACTION | |--------------|------|------------|----------------| | DEC 2 3 2015 | GL | MW | Bill/memo sent | | 1-13-16 | MU | GL | Bill | | 2-1-16 | GL | | Scanned | | | | | | | | | <u> </u> | | | | | - | ļ <u></u> | | | | | | | | | | | | | | | | ### **South Coast Air Quality Mangement District** Source Test Engineering ### PERFORMANCE TEST DATABASE | STID: P 15308 | 8 | PRIORITY PROTOCOL | PRIORITY REPORT | |---|---|---|--| | CO
EQUIPMEI
APP
EQUIPMENT ADDRE
EQUIPMENT CI | NY: Orange County Sanitation In DID: 29110 NT: Boiler (Reclamation Plant Number | √o. 2) | 5 | | REQUESTO | OR: Gaurang Rawal | Phone: 2543 | | | | RM: Accurate Environmental Se | Phone 714-379-920 | 0 | | DATECOND: Prot. Rec'd Date: Rept. Rec'd Date: Prot Requested by: Rept Requested by: | Protocol Repor | rs _ | eck one of the following: Upload e-file to Onbase instead of hardcopy Scan hardcopy, discard e-file N/A, No e-file attached | | Pollutant(s) To Be Tested: CO NOx, NO/NO2 Organics Other PM PM10 SOx | Applicable Rule/Permit Condition Cond. 10, 12 Cond. 10, 12 HHV, Cond. 8 Cond.12 Cond. 10 Cond. 10 | Confirm ppmv, @3%O2 90.6 Confirm ppmv, @3%O2 5.52 PPMV (DG) gr/scf 3.1 lb | | | Total Sulfur (TS)
VOC | R 431.1, Cond. 12
Cond. 10 | Confirm reported results 2.6 lb | os/day | #### SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT #### <u>MEMORANDUM</u> DATE: December 4, 2015 TO: Andrew Lee FROM: Rudy Eden D. S. for Rudy Eden **SUBJECT:** Evaluation of Source Test Protocol: (Requested by Gaurang Rawal, August 26, 2015) IDENTIFICATION: (Application No. 545004, 545005) (Facility ID No. 29110) COMPANY: **EOUIPMENT:** **Orange County Sanitation District** Boiler, 10,2 MM Btu/hr, Model SLE-05-250 TEST LOCATION: 22212 Brookhurst Street, Huntington Beach, CA 92646 TEST DATE: 10 Day Notice Required **REFERENCE: P15308** (STE Source Test File) Source Test Engineering has completed the evaluation of the subject source test protocol for testing and has concluded that it is: #### CONDITIONALLY ACCEPTABLE Some of the applicable Rules and/or Permit Conditions may not have been acceptably addressed, and/or the proposed sampling locations, and/or the proposed sampling and analytical methods will need to be modified before testing can commence. Refer to the attached evaluation for a complete discussion concerning the modifications that must be implemented into this existing source test protocol. The attached evaluation has not been forwarded to the facility or the source testing firm. It is the responsibility of the requestor to review the attached evaluation and forward it to the parties involved, if you concur with our findings. If there are any questions, please contact Mike Wickson at Ext. 2258. DS:MDW Attachment cc: Dipankar Sarkar Gaurang Rawal # SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT MONITORING & ANALYSIS DIVISION * SOURCE TEST ENGINEERING BRANCH SOURCE TEST PROTOCOL EVALUATION | S/T ID: | P15308 | |---|---| | SCAQMD ID:
COMPANY:
EQUIPMENT: | FACILITY ID NO. 29110 Orange County Sanitation District Boiler, 10.2 MM Btu/hr, Model SLE-05-250 | | TEST LOCATION:
TEST DATE: | 22212 Brookhurst Street, Huntington Beach, CA 92646
10 Day Notice Required | | REQUESTED BY:
TYPE OF TEST:
REASON FOR TEST: | Gaurang Rawal (Memo Dated August 26, 2015) PERFORMANCE/COMPLIANCE PROTOCOL CTESTING SUBJECT TO THE FOLLOWING RULE, PERMIT, OR SPECIFIED CONDITIONS): - Conditions 8, 10, 12 - Rule 431.1 | | REQUESTED EVAL:
TEST FIRM: | NOx, CO, VOC, PM, SOx/TRS, Speciated Organics
Accurate Environmental Services, Inc. | | STE.EVALUATOR: | Mike Wickson EXT: 2258 REVIEW DATE: December 4, 2015 | | OVERVIEW O | F EVALUATION: | | OVERALL CONFIDENCE IN SOURCE TEST PROTOCOL: | □ ACCEPTABLE ⊠ CONDITIONALLY ACCEPTABLE □ UNACCEPTABLE □ NOT REVIEWED | | | • Deficiency noted concerning proposed NOx, CO, PM, H ₂ S/TRS, Speciated Organics, VOC emission testing. | | DEFICIENCIES
IDENTIFIED: | Deficiency noted concerning proposed sampling location(s) and/or
representativeness with respect to process and required testing. | | | Deficiency noted concerning proposed stack velocity and/or fuel
flow measurements. | | MODIFICATIONS
OR REMEDIAL
MEASURES
REQUIRED: | This source test protocol must be modified to address the
deficiencies described in the following section of this evaluation;
the source testing which incorporates these modifications may
proceed without further discussion. | (REFER TO NEXT SECTION FOR COMPLETE DISCUSSION OF THESE DEFICIENCIES) PROTOCOL REVIEW PAGE 2 #### S P E C I F I C R E Q U I R E M E N T S This source test protocol has been reviewed by the Source Test Engineering Branch staff. The following item(s) specifically explain the required modifications to the existing source test protocol which must be implemented, or items requiring further discussion or explanation, before testing can proceed: | Completeness of Application/Protocol/Rep | |--| |--| Representativeness of Data & Process Rule/Permit Fulfillment Sampling & Analytical Methods Quality Assurance Calculations ### **COMPLETENESS OF PROTOCOL** - Mike Wickson shall be notified of the scheduled test dates and changes by email to mwickson@aqmd.gov or telephone at 909-396-2258 at least 10 days in advance. - Each page of the final test report (including raw analytical and field data, as well as other third party reports) must have a unique and sequential <u>page number</u> which can be referenced in future correspondences. - The percentage of Digester gas (DG) and Natural Gas (NG) during each run shall be reported in the final report and a statement provided on how these ratios compare to normal operations. - Field data sheets shall be provided for fuel consumption of both DG and NG. A diagram showing the fuel routing and meter test locations is desirable to ensure the tester is sampling DG lines as well as NG lines separately. - Permit condition number 10 lists concentration and mass emission limits for SOx. The tester does not propose to sample SOx for either NG or DG firing. The permit engineer may wish
to require the additional testing for SOx. #### REPRESENTATIVENESS OF DATA & PROCESS - PM₁₀ emissions are to be estimated using total PM Methods. Actual PM₁₀ emissions may be overstated. Therefore, these emission data should not be used for banking or offset purposes in the future. - SCAQMD Method 5.2 shall be used in place of the proposed Method 5.1. - Individual fuel rates shall be provided where multiple fuels are combusted as well as total heat input rates. ### SPECIFIC REQUIREMENTS As per permit condition 8, maximum, minimum, and average load testing is also required for PM and VOC testing and must be documented and explained in the final report. Normal load testing is appropriate where the permit conditions are silent for other pollutants and tests. #### **RULE/PERMIT FULFILLMENT** Testing must be conducted pursuant to the following Rule/Permit Conditions: - P/C conditions 8, 10, 12 - Rule 431.1 All of the above requirements have been addressed in this protocol and are satisfactory as proposed, or as modified and discussed in this review. The source test report emission information must also be formatted to satisfy the above Rule/Permit Conditions. #### SAMPLING & ANALYTICAL METHODS - Fuel usage is to be taken for calculating inlet-based emissions. The following information must be recorded during testing and provided in the final source test report: - The fuel meter must be dedicated exclusively to that source or verified that only that source is operating during testing. - The fuel meter must be clearly identified and documented as to type (turbine, orifice, volumetric, etc.), make, model, serial no., min/max flow. - A current meter calibration certificate or "meter proof" relative to a NIST traceable standard, or SCAQMD equivalent, or District Method 1-4 Reference Method Velocity/Flowrate comparison (3-Run RAA). - Fuel meter corrections to standard temperature and pressure, and other corrections, if applicable, must be clearly shown. - If the fuel meter is also going to be used for stack velocity/flowrate determination by standard F-Factor calculation, then the fuel source must be of constant heating value and only standard HHV (1050 Btu/scf) and Fd_{O2} (8710 dscf/mmBtu) may be applied. - Samples for total sulfur compounds using SCAQMD Method 307-91 are to be collected in Tedlar bags with plastic (non-metal) fittings. Analysis must be completed within 24 hours of sampling. This may be increased to 7 days when using treated canisters. - Total PM using Method 5.2 is required and may also be used as a substitute for the Method 4.1 moisture data. The one hour standard run length may not be enough to collect 5 mg of sample and a four hour test is recommended. Lab analysis should not dilute the sample to under the 5 mg confidence level. - All particulate sampling analyses must include analysis of entire sample not aliquots or fractions of the total sample. Particulate analysis samples may not be split for other analyses of soluble substances, etc. - CARB Method 430 is an approved method for aldehydes and shall be used. However there are known interferences associated with **nitrogen oxides** present in combustion equipment that may make this method inappropriate for this boiler. This may be an issue if the NO_x emissions exceed 50 ppm and the test company must address this concern by providing adequate and detailed proof via appropriate QA tests (spiking) showing that the reported results were not detrimentally affected. If the NO_x levels are very high, the use of <u>EPA Method 323</u> may be considered as the best method available substitute for Method 430. However, prior to its use, the SCAQMD shall be consulted. - A cyclonic flow check is required at each load tested. - Multi-pollutant stratification tests must be done at the stack outlet where NO_x is to be measured. This is especially important downstream of a catalytic device and in horizontal ducts. If stratified, the complete set of traverse points (per Method 1.1) shall be used to acquire a representative sample during the Method 100.1 testing. Copies or original DAS/SC readings for the reference method are to be included with the range values and trace lines of the analyzers clearly presented. All tests must be clearly documented, including delineation. - Oxygen levels shall not be used for a stratification check. This is inappropriate for trace ppm levels pollutants. NO_x or other similar trace pollutant must be checked directly. - VOC analysis must include assay for CO, CO₂, and oxygen as a QA measure. - A Standard pitot tube may be required instead of a S-type pitot tube if outlet velocities fall below 0.05 in. W.C., and may be used provided it meets the specifications stated in SCAQMD Method 2.1. Whenever a standard pitot tube is used to perform a traverse, adequate proof must be furnished that the openings of the Pitot tube have not plugged up during the traverse period. The recording device must also be of increased precision. Use of electronic manometers is allowed subject to calibration reports and test procedures being provided, and proof of following such procedures, is supplied in the final report. - Particulate sampling in exhaust streams with appreciable amounts of sulfur compounds (e.g., sulfuric acid) may require additional procedures/analyses to assure accurate reporting of total and solid particulates, since some forms of sulfur are #### S P E C I F I C R E O U I R E M E N T S defined as particulates. In this case, the preferred sampling protocol is a District Method 5.2¹ particulate sampling train with a heated probe/heated filter and a companion Method 6.1 SOx train. The filter/probe temperature influences total/solid particulate determination, depending upon the rule application: - For District Rule 404/405 compliance, the probe/filter temperature is maintained between 180-200°F and liquid sulfuric acid (defined as particulate) and solid particulates are collected in the front half (probe+filter) of the sampling train with appropriate adjustments for total/solid particulate reporting. The back-half impinger train catch is also counted for total/solid particulate reporting after appropriate adjustments. If the probe/filter temperatures are maintained above 200°F, adjustments to certain particulate fractions are not allowed which can bias particulate reporting high, unless used in conjunction with the Method 6.1 SOx train results. - For EPA/District REG IX New Source Compliance Standards (NSPS) particulate testing, the filter temperature is maintained at about 250°F and only the front-half particulate collection (probe and filter) are counted. If the probe/filter temperatures are maintained between 180-200°F, adjustments to front-half particulate fractions are not allowed which can bias particulate reporting high. - Flow rate and concentration testing shall be performed simultaneously. Alternatively a reference point velocity may be used to establish the temporal flow changes, if the stack composition and velocity profile can be shown as stable. - The following attachments highlight what the District requires whenever District Method 100.1 testing is specified or utilized: ATTACHMENT A ATTACHMENT B ATTACHMENT C GENERAL CONTINUOUS GAS MONITORING REQUIREMENTS SAMPLE CONDITIONING REQUIREMENTS FOR METHOD 100.1 NO2 TO NO CONVERSION TEST PROCEDURE #### **QUALITY ASSURANCE** - A copy of this test protocol evaluation shall be included in the final report. - All applicable pieces of source test and process equipment used directly or indirectly for measurement of source test emission data must be calibrated, and the calibrations included in the final report (this includes gas meters, Pitot tubes, pressure gages, nozzles, temperature devices, calibration gases, fuel usage meters, totalizers, etc.). ¹ Use of District Method 5.1 particulate sampling train ("wet impingement" without upfront heated filter) is not recommended in high sulfur situations unless used in conjunction with a Method 6.1 SOx train. ### SPECIFIC REQUIREMENTS - Where appropriate, field blanks, reagent blanks and recovery spikes must be performed and the information submitted with the source test report. Only reagent blanks may be deducted for emission calculations. - All raw data field data sheets, as well as recorder strip charts, must accompany the certification test report. - Where laboratory instrument analysis is required, instrument raw stripcharts, calibrations and standards, and limit of detection must be included in the source test report. This also includes equipment transfer and "chain-of-custody" form clearly describing all equipment and laboratory ID numbers, dates and times, required analysis, and the signature/initials of persons involved in transfers. TCA analyses must also include trap burn-outs from previous test, if applicable. #### **CALCULATIONS** All calculations concerning intermediate process, emission, and/or flow information must be shown and included in the final report. This also applies to calculations concerning laboratory analyses emission calculations. ### GENERAL TEST GUIDELINES ### FINAL TEST REPORT The final Source Test Report must include the following information: - 1. Signed "Statement of Non-Conflict as an Independent Laboratory" (District Rule 304(k)) and CARB Lab Approval or District Lab Approval Program (LAP) document (if applicable). - 2. A brief opening statement identifying the Facility I.D., the equipment A/N, P/O, or Device I.D. and the reason(s) for testing (applicable rules permit conditions, etc.). Include a copy of the Permit-to-Construct, Permit-to-Operate, or Facility Permit. Also identify the test dates, the personnel on hand for the test, names, titles and phone numbers of responsible test firm and facility personnel. - 3. A summary of the Source Test results, including applicable rules and permit conditions (show allowable standards) and source test data properly formatted to satisfy these requirements. - 4. A
brief process description. Indicate equipment operation during testing; as well as any other information which may influence the final report. - 5. A "self-critique" of anything that transpired during the test which you feel is useful in the interpretation of the test results. - 6. A simple schematic diagram of the process, showing the sampling location, with respect to the upstream and downstream flow disturbances. Also include a cross-sectional diagram of the stack or duct at the sampling location, depicting the sampling points with respect to compass direction. - 7. The sampling and analytical procedures. Be specific about all aspects of sampling and analysis. Include diagrams of test equipment and methods. - 8. Complete raw field data, including production data indicative of the testing interval, lab analyses, and the test results (show all calculations). - Current calibration data regarding all sampling and measuring equipment utilized during testing. This also includes all laboratory calibrations, as well as facility fuel meter calibrations. (see <u>District Source Testing Manual, Chapter III</u> or "<u>Quality Assurance Handbook For Air Pollution Measurement Systems</u>", Vol. III, U.S. EPA-600/4-77-0276). #### GENERAL CONTINUOUS GAS MONITORING REQUIREMENTS (600perf pro: REV 12/10/2015 1:36.00 PM) The District requires continuous gas monitoring equipment employing sample extraction and conditioning, and electronic detection, to be conducted strictly according to District Method 100.1, with the emphasis upon representativeness, documentation, and quality assurance. This includes, in part: - 1. Gas analyzers must meet minimum acceptable standards for method of detection, sensitivity, noise, precision, linearity, and interference (see TABLE 100.1-1 for details). Also, the gas sample extraction and conditioning equipment (probe, filter, pump, conditioner, connective plumbing, etc., and data acquisition and logging equipment shall meet minimum acceptable specifications, as described in Method 100.1. - 2. It is recommended that the entire sampling system for continuous gas monitoring instruments should be leak checked before and after each test run by evacuating the system to a minimum of 20 in. Hg vacuum, and plugging for a period of 5 minutes. The resultant loss of vacuum can not exceed 1 in. Hg during this period. - 3. Calibration of all analyzers must be accomplished at zero, mid span (40-60% of full scale range), and high span (80-95% of full scale range). The lowest practicable range should be selected for monitoring, so that the measured emission values are within 20-95% of the range. If a significant amount of the data are outside of this range, the data may be rejected, depending upon the application. - 4. The calibration gases must be certified according to EPA Protocol Number 1, or certified to an analytical accuracy of ±1% and be NIST traceable (except cal gases used for system bias check), following EPA-600/R93/224, "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards", TABLE 2-2. Superblend or multi-component blend gas recertifications are based upon the individual component(s) with the shortest recertification date. - 5. Field calibrations employing gas dilution systems (mass flow or critical orifice) must be performed in accordance with <u>EPA Method 205</u>, "Gas Dilution Verification <u>Protocol"</u>, or available "<u>Draft</u>" <u>SCAQMD Method</u>, and supported with appropriate documentation. A 5-point check is required. - 6. A calibration error check, and zero/span drift check must be performed before and after each test run. Calibration error must be less than ±2% of the range of measurement for zero, mid, and high range calibration gases. Zero/span drift must be less than ±3% of the range of measurement. - 7. A system bias check must be performed before and after each test run by alternately introducing cal gases to the entire sampling system, then to the gas analyzer(s), for comparison. The difference can not exceed ±5% of the analyzer range. - 8. Semi-annual analyzer certifications consisting of linearity plot, calibration curve, response time, and interference response must be furnished with the other calibrations to satisfy O/A documentational requirements. #### ATTACHMENT A (GENERAL CONTINUOUS GAS MONITORING REQUIREMENTS) - 9. NO_X measurement must be performed in the NO_X mode of the analyzer. An NO₂ to NO converter is required if NO₂ constitutes 5% or more of the total NO_X in the sample stream, or the rule or permit condition requires "NO_X" monitoring. The NO₂ to NO converter must be at least 90% efficient (use the NO₂ to NO converter efficiency procedure). The converter should be high temperature (650°C) stainless steel, if no NH₃ is present. If NH₃ is present in the sample stream, then a low temperature (350°C) molybdenum catalyst must be used in the converter. This check must be done at the beginning of the test. - 10. The connective tubing from the probe to the sample conditioner must be heated above the dewpoint and the dewpoint reported. The sample conditioner must be able to maintain a dewpoint temperature of 37°F or less. (Refer to the "Sample Conditioning Requirements for Method 100.1" Addendum, for details) - 11. Data recorder resolution must be at least 0.5% of the range of measurement. A data point for each contaminant/diluent monitored must be recorded at least once/minute. Analog chart recorders must have a minimum 10-inch chart width, with 100 minor divisions. - 12. All facets of testing must be <u>continuously</u> recorded. This includes the 3-point calibration, system bias, calibration error, and zero/span drift checks, which must precede and conclude each test run. - 13. All chart traces, or digital printouts, must be included in the final report and must be clearly identified as to: - location/source - operator initials - date/running times - actual test interval - contaminant/diluent - range changes - range of measurement - calibrations - cal gas concentration/cyl. no. - range of calibration - 14. When more than one gas trace is shown on a chart, the individual traces must be distinguishable by color coding or some other means (original charts may be submitted, and returned following evaluation). If a gas measurement range has been "offset" from zero, or zero has been "transposed to the right side of the recorder chart, it must be clearly identified. this offset should not be more than 5-small divisions of the chart. This data must be corrected using the ratio of the offset. - 15. Gaseous measurements must be conducted a minimum of 15 continuous minutes at each load or specified condition, after the readings have stabilized (RECLAIM reference method sampling requires a minimum of 30 continuous minutes at each load for RATAs). Processes having multiple exhausts exhibiting non-cyclic (i.e. steady-state) characteristics may alternatively be monitored using the above criteria. Otherwise, simultaneous sampling may be required. - 16. Sampling locations not meeting the minimum site selection standards for District Method 1 must be tested for absence of stratification. (A gaseous constituent concentration profile differing more than 10% between any two monitoring points within the same cross-sectional plane of a stack or duct indicates stratification.) If stratification is present, and alternate approved site selection or modification is not possible, then special monitoring (see Chapter X of the District Source Testing Manual) will be required. ADDENDUM TO "General Continuous Gas Monitoring Requirements" ### SAMPLE CONDITIONING REQUIREMENTS FOR METHOD 100.1 For Method 100.1 tests, proper sample conditioning is essential for representative sampling. Sample conditioning includes removal of particulate matter and moisture present in the sample gas stream. The design of the sample conditioning system must be such that during the process of particulate and moisture removal, the pollutants of interest are not also removed from the gas stream. Method 100.1 requires that the tester select a system which will have a minimum "scrubbing" effect. In particular, NO₂ and SO₂ are more susceptible to scrubbing than, for example NO or CO, because of their high solubility in water. Since Method 100.1 is a reference method, it is required that a sample conditioning system cause only minimum loss of these pollutants. The District recommends a gas sampling system which can be used universally. (i.e. under all testing conditions). The set-up includes a heated 1/4-inch stainless steel probe with a 50-80 micron size, sintered 316 stainless steel or ceramic filter at the tip; and a short (not more than 6 feet) heated Teflon line to the sample conditioning system. The temperature of the probe and the Teflon line should be maintained at about 250°F. The conditioning system consists of a pair of standard Greenburg-Smith impingers with the stems cut to about 1-inch length from the top, immersed in a bath containing water and dry ice pellets, and immediately followed by a thermo-electric cooler or permeation drier. The gas temperature at the outlet of the impinger shall be less than 60°F and the gas at the drier outlet shall be maintained at a dew point less than 37°F. If the drier can not be directly connected to the impinger outlet, then a Teflon line heated to 10°F above the impinger outlet gas temperature can be used for connection. Another particulate filter (about 5 microns) should be in the line right after the cooler/drier. All the temperatures should be measured and recorded, preferably on a strip chart recorder. If the moisture content of the exhaust gas is below 5% and the sample gas flow rate is less than 10 liters/minute, the impinger set-up need not be used, as long as no moisture condensation occurs in the system and the conditioned sample is maintained at the required dew point. **PRECAUTIONS:** Never allow the water
in the impingers to accumulate more than 1/4 of the impinger height. Don't allow the water bath to become frozen around the impingers, or cracking of the glassware may result. Assure that the thermo-electric cooler/permeation drier has adequate design capacity. Follow a good maintenance schedule for the cooler/drier gas conditioning system. Other systems may be used, upon District approval, emphasizing the requirements that water is removed immediately after separation from the gas stream, and minimal water contact with the gas stream is assured. 1. An example of a <u>non-universally</u> applicable water removal system is based on the refrigerated cooling coil principle. A refrigerated cooling coil system can scrub out a high percentage of water soluble pollutants due to a comparatively long residence time, and intimate contact between the sample gases and the water droplets collected on the inside of the coil. Consequently, it will show a high bias for the CEMS being tested if the sample gas contains a significant amount of NO₂, compared to NO_x or SO₂, and therefore it may not be suitable in all cases. 600perf_pro: REV 12/10/15 ### NO2 TO NO CONVERSION TEST PROCEDURE (Alternative to O₃ Titration Method-40 CFR 50.1, Appendix F) ### 1. NO_x Analyzer Requirements - a. Full span range 0-20 ppm or 0-25 ppm - b. Equipped with NO and NO_x modes #### 2. Auditing Gas Requirements a. NO_2 in air (or N_2): Use NO_2 in air for a stainless steel converter. b. Concentration of NO_2 : 15 to 18 ppm (C_0, ppm) c. Recertification: An audit gas should be recertified after six months. ### 3. Calibration Gas Requirements a. Concentration: NO (17 to 19 ppm) with less than 0.1 ppm NO₂ – High Span NO (10 to 13 ppm) with less than 0.1 ppm NO₂ – Mid Span b. Zero Gas: High purity N₂ #### 4. Calibration of Analyzer: - a. Calibrate NO mode with the NO calibration gases. - b. Calibrate NO_x mode with the same gases without any gain adjustment. - b1. If the analyzer is equipped with two independent gain adjusting circuits, skip 4.b., then repeat 4.a. for the NO_x mode. ### 5. Conversion Efficiency (CE) Test - a. Analyze the audit gas with NO mode. Read and standardize concentration. (C_1, ppm) - b. Analyze the audit gas with NO_x mode. Read and standardize concentration. (C_2 , ppm) #### 6. Calculation for Conversion Efficiency: $$\%CE = \frac{|C_2 - C_1|}{C_0} x100$$ #### 7. Criteria for Acceptability of CE - a. %CE must be larger than 90%. - b. C_1 must be less than 5% of total NO_x (NO + NO₂) in the NO₂ audit gas (Section 2b). NOTE: NO_2 audit gas concentration of higher value than what is specified in Section 2. may be required where NO_2 present in the exhaust gas being measured is greater than 30 ppm. Select the NO_2 gas within 10% of the expected NO_2 concentration in the exhaust. Serving: Anaheim Brea Buena Park Cypress Fountain Valley Fullerton Garden Grove **Huntington Beach** Irvine La Habra La Palma Los Alamitos Newport Beach Orange: Placentia Santa Ana Seal Beach Stanton Tustin Villa Park County of Orange Costa Mesa Sanitary District Midway City Sanitary District > Irvine Ranch Water District Yorba Linda Water District ### Orange County Sanitation District 10844 Ellis Avenue, Fountain Valley, CA 92708 714.962.2411 • www.ocsewers.com August 24, 2015 Charles Tupac, Air Quality Analysis & Compliance Supervisor Toxics and Waste Management South Coast Air Quality Management District 21865 E. Copley Drive Diamond Bar, CA 91765-4182 SUBJECT: Submittal of Source Test Protocol for Modified Cleaver Brooks Boilers (A/Nos. 545004 and 545005) located at Orange County Sanitation Districts (OCSD) Treatment Plant No. 2 (Facility ID No. 29110) In accordance with Permit Condition No. 8(B) of the above referenced Permits-to-Construct application numbers, we hereby submit for your review and approval one (1) original copy of the test protocol including a description of all sampling and analytical procedures to be used on a single representative boiler. Following SCAQMD evaluation and approval of the proposed testing procedures, OCSD will proceed with scheduling testing activities. Should you have any questions and/or comments with regards to the enclosed material, please contact me at (714) 593–7405 or Vlad Kogan of our staff at (714) 593–7085. Lisa Rothbart, P.E. **Environmental Supervisor** in Rull LR:RA:jb H:\dept\eng\790\Groups\Air Quality\Letters\Rothbart\2015\P2-106 Protocol Submittal CovLttr.doc **Enclosure** cc: V. Kogan R. AbuShaban COMPLIANCE SOURCE TEST PROTOCOL FOR THE DETERMINATION OF NO_X, CO, VOCs, PM, AND TRS FROM DIGESTER GAS AND NATURAL GAS AS A STANDBY FUEL-FIRED TWO CLEAVER BROOKS BOILERS OPERATED AT ORANGE COUNTY SANITATION DISTRICT TREATMENT PLANT NO. 2 FACILITY ID 29110, APPLICATIONS NO. 545004 OR 545005 | Prepa | red | for | |-------|------|-----| | rrepa | ı cu | IUI | Orange County Sanitation District Treatment Plant No. 2 10844 Ellis Ave. Fountain Valley, CA 92708 | Facility Representative: | Randa AbuShaban | |--------------------------|----------------------------| | Equipment Description: | Two Cleaver Brooks Boilers | | Application No.: | 545004 or 545005 | | Proposed Test Date(s): | TBD | | Issue Date: | July 20, 2015 | Prepared by: Reviewed by: Wally Moe Source Testing Manager Source Testing Firm: Hassan Amin Project Manager AUG 28 2015 STA RECEIVED **M&STE BRANCH** Accurate Environmental Services, Inc. 8200 Katella Ave, Suite D Stanton, California 90680 (714) 379-9200 **Protocol Identification Number: TP 03322 OCSD** | tion | | <u>Page</u> | |------|---|--| | In | troduction | 1.0-1 | | Pr | ocess and Equipment Description | 2.0-1 | | Pr | ocess Conditions During the Test | 3.0-1 | | Sa | mpling and analytical Techniques | 4.0-1 | | 4.1 | SCAQMD Method 1.1 | | | 4.2 | SCAQMD Method 2.1 (Velocity) | 4.0-2 | | 4.3 | SCAQMD Method 4.1 (Moisture) | 4.0-3 | | 4.4 | | | | 4.5 | | | | 4.6 | | | | 4.7 | | | | 4.8 | | | | 4.9 | | | | 4.10 | | | | 4.11 | | | | Te | | | | | | | | | | | | 7.2 | | | | 7.3 | | | | Ar | | | | 8.1 | | | | 8.2 | | | | 8.3 | Permit to Construct | | | | Pr
Pr
Sa
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
Te
Ca
Ve
7.2
7.3
AI
8.1
8.2 | Introduction Process and Equipment Description Process Conditions During the Test Sampling and analytical Techniques 4.1 SCAQMD Method 1.1 4.2 SCAQMD Method 2.1 (Velocity) 4.3 SCAQMD Method 4.1 (Moisture) 4.4 SCAQMD Method 100.1 (Continuous Emission Monitoring System) 4.5 SCAQMD Method 25.3, (Reactive Organic Compounds) 4.6 EPA Method 323, (Formaldehyde Emission) 4.7 EPA Method 15, (Toxic Compounds list) 4.8 EPA Method 19 (Fuel Flow Rate and Firing Rate Calculations) 4.9 SCAQMD Method 5.1, (Total Particulates) 4.10 SCAQMD Method 307.91, (Total Reduced Sulfur as H2S) 4.11 Reference Method QA/QC Program Summary Test Critique Calculations Verification Forms 7.2 SCAQMD LAP Certificate 7.3 Statement of No Conflict of Interest Appendices 8.1 Reference Method Field and Laboratory Data 8.2 Quality Assurance/Quality Control | #### 1.0 Introduction Accurate Environmental Services, Inc. (AES) has been contracted by Orange County Sanitation District Treatment Plant No. 2. The primary objective in executing the source test is to obtain reliable and representative data on the composition of the effluent gasses and the rate of emissions from a single process boiler at Orange County Sanitation District Treatment Plant No. 2 in Huntington Beach, California. The source testing is to be conducted on the Digester Gas and Natural Gas as a standby fuel fired one Cleaver Brooks Boiler at maximum, minimum, and normal operational loads in order to determine the emissions of oxides of nitrogen (NO_x), carbon monoxide (CO), oxygen (O₂), carbon dioxide (CO₂), and Stack gas flow rates in one Cleaver Brooks Boiler exhaust. (In addition the Normal load will include a Total non-methane organics (TNMHC's), Particulate Matter (PM), Total Reduced Sulfur as H₂S, and speciated trace organics. The source test matrix is detailed in the protocol. In addition, Stratification checks will also be conducted at the sampling locations. Accurate Inc. is an independent test contractor with no conflict of interest as defined by SCAQMD Rule 304(k) (4). #### Contact Summary ### **Contracting Firm** Orange County Sanitation District 10844 Ellis Ave. Fountain Valley, CA 92708 Contact: Randa AbuShaban (714) 593-7413 #### Site and Equipment Location: Orange County Sanitation District Treatment Plant No. 2 22212 Brookhurst St. Huntington Beach, CA 92646 Contact: Randa AbuShaban (714) 593-7413 ### **Source Testing Firm:** Accurate Environmental Services, Inc. 8200 Katella Avenue, Suite D Stanton, California 90680 Contact: Wally Moe (714) 379-9200 #### Regulatory Agency: South Coast Air Quality Management District 21865 East Copley Drive Diamond Bar, California 91765 Contact: Gaurang Rawal (909) 396-2543 The two Cleaver Brooks Boilers, with American Combustion Technology or
equal, model No SLE-05-250, rated at 10.205,800 Btu/hr on Digester Gas as primary fuel, and Natural Gas as a standby fuel. A block flow diagram is presented as Figure 3-1. Figure 3-1 Process Diagram ### 3.0 Process Conditions during the Test Documentation of operating parameters and process conditions will be performed using existing monitoring instruments. These conditions and parameters will be included in the final source test report. A single representative Cleaver Brooks Boiler will be tested at maximum (16 minutes), minimum (16 minutes), and normal (one hour) operating loads for natural gas and digester gas. The following operating parameters will be included in the source test report: - 1. Fuel flow at each load. - 2. The exhaust flow rate (see Methods 1.1 thru 4.1). - 3. The exhaust Temperature in degree F - 4. The Oxygen content of the exhaust gases in percent. - 5. The firing rate in BTU per hour. - 6. Emission data in Pounds Per Hour ### 4.0 Sampling and Analytical Techniques The compliance source testing will be performed at the exhaust of a single representative Cleaver Brooks Boilers. This compliance test will be conducted in accordance with the applicable SCAQMD and EPA test methodologies. Table 4.1 and 4.2 summarizes the test methods, locations, duration, and number of tests. | TABLE 4-1 | | | | | | | | | | |--------------------------------------|-----------------------|----------------|-------------------------|-----------------|--|--|--|--|--| | INLET SOURCE TEST REQUIREMENTS | | | | | | | | | | | CONSTITUENTS | Fuel Type | REQUIRED UNITS | ANALYTICAL
METHOD(S) | # OF
SAMPLES | | | | | | | Total Heat Input Rate | Digester &
Natural | BTU/Hr | SCAQMD 19 | 1 | | | | | | | Digester Gas Btu Content (HHV) | Digester Gas | BTU/SCF | ASTM D3588 | 1 | | | | | | | Digester Gas Sulfur Content (as H2S) | Digester Gas / | PPMV | SCAQMD 307-91) | 2 | | | | | | | Fuel Flow Rate | Digester &
Natural | DSCFM | SCAQMD
1.1,2.1,3.1 | 1 | | | | | | | | | | | ABLE 4-2 | | | | | |--|--|--------------|----------------|----------|---------|-------------------------|-----------------------|-------------------| | CONSTITUENTS | OUTLET SOURCE TEST REQUIREMI Fuel Type REQUIRED UNI | | | | | ANALYTICAL
METHOD(S) | # OF
SAMPLES | | | Total Non-Methane
Hydrocarbons
(TNMHC) | Diges | Digester Gas | | Lbs/Hr | & | lb/mmcf | SCAQMD 25.3 | 2 Sample
Trays | | Toxic Air Contaminants: | | | | • | • | | | • | | Formaldehyde/
Acetaldehyde | Dig | ester (| 3as | Lbs/Hr | Lb/mmcf | PPMV | EPA 323 | 2 | | Acrolein | _ | | | | | | | 2 | | Benzene |] | | | | | ! | | 2 | | Carbon Tetrachloride | | | | | | | | 2 | | Chlorobenzene | | | | | | | 2 | | | Chloroform | | | | | | | 2 | | | ,4(p)-Dichlorobenzene | | | | | | | 2 | | | Ethylene Dichloride (1,2 - | | | | | | | | 2 | | Dichloroethane)
Methylene Chloride | Dig | ester (| Gas | Lbs/Hr | Lb/mmcf | PPMV | SCAQMD 207.1 | 2 | | Styrene | | | | | | | | 2 | | Tetrachloroethylene | | | | 1 | | | | 2 | | oluene | | | | | | | | 2 | | ,1,1-Trichloroethane | | | | | | | | 2 | | Frichloroethylene | | | | | | | | 2 | | Vinyl Chloride | | | | | | | | 2 | | Kylenes | | | | | | | | 2 | | Ammonia | | | | | | | | 2 | | Total Particulate | Dig | ester | Gas . | | 11 / 6 | 7000 | | | | Matter (PM10) | | r | | Lbs/Hr | lb/mmcf | gr/DSCF | SCAQMD 5.1 | I | | Oxides of Nitrogen
(As NO2) | Digester
Gas | Æ | Natural
Gas | Lbs/Hr | lb/mmcf | PPMV
@ 3% O2 | SCAQMD 100.1 | 1 | | Carbon Monoxide | Digester Gas | & | Natural
Gas | Lbs/Hr | lb/mmcf | PPMV
@ 3% O2 | SCAQMD 100.1 | 1 | | Oxygen | Digester
Gas | & | Natural
Gas | | % | | SCAQMD 100.1 | 1 | | Nitrogen | Digester
Gas | & | Natural
Gas | | % | | SCAQMD 100.1 | 1 | | Moisture Content | Digester
Gas | & | Natural
Gas | | % | | SCAQMD 4.1 | 1 | | Temperature | Digester
Gas | & | Natural
Gas | | °F | | N/A | 1 | | Flue Gas Flow Rate | Digester
Gas | /&c | Natural
Gas | | DSCFM | • | SCAQMD
1.1,2.1,3.1 | 1 | VOC PM ,,,, thud BTU's #### 4.1 SCAQMD Method 1.1 The reference method measurements will be made from sample ports accessible from the stack-sampling platform on the unit, roof, or from a man lift. The stack inside dimensions at the sample plane is, 20.0 inches. The sample ports are located 115.0 inches (5.75 diameters) downstream of the nearest flow disturbance and 63.0 inches (3.15 diameters) from the stack exit. Prior to the source test, the test location will be checked for cyclonic flow by rotating the Pitot tube until a null reading is obtained and the angle will be recorded by using a protractor. All gaseous samples will be collected by using multiple sampling points to show that no significant stratification exists at this location. A 16-point traverse for the flow rate and 8 points for the CEMS will be performed. A schematic of the Sampling and points locations are presented in Figures 4-1. #### 4.2 SCAQMD Method 2.1 (Velocity) The stack gas velocity will be measured using SCAQMD Method 2.1. A 16-point traverse will be conducted during each test. The velocity will be measured by aligning the S-type pitot tube parallel to the stack axis and recording the differential pressure indicated on the Incline manometer and temperature. A schematic of the velocity equipment is presented in Figure 4-2. Flue gas temperature will be measured using a thermocouple. Flue gas molecular weight is calculated from independently measured O₂, CO₂, and H₂O concentrations. Absolute pressure of the flue gas is determined from the barometric pressure at the sample location and the measured static pressure inside the duct or stack. Axial velocity is calculated using the following equations: $$V_s = 2.9 * C_p * \sqrt{\Delta P * Ts * \frac{29.92 * 28.95}{P_s * MW_{wet}}}$$ Where: C_p = Pitot flow coefficient, dimensionless ΔP = Velocity head, inches of water $T_s = Gas temperature, {}^{\circ}R$ P_s = Absolute stack pressure, inches Hg. MW = Molecular weight of gas, lb/lb-mole The flue gas flow rate is calculated from the measured stack gas velocity, and area of the measurement plane. The flow rate is then corrected to standard conditions using the gas temperature and gas pressure. The flow rate can be presented on a wet or dry basis by including or removing the moisture content of the gas. These calculations are presented below. $Q = V_s * Area * 60$, Wet actual cubic feet per minute $$Q_{ws} = Q * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$, Wet standard cubic feet per minute $$Q_{sd} = Q_{ws} * (1 - \frac{\%H_2O}{100})$$, Dry standard cubic feet per minute #### 4.3 SCAQMD Method 4.1 (Moisture) For the Normal Load the moisture content will be determined using a sampling train consisting of a stainless steel probe, Teflon line, four impingers in an ice-water bath, a leak-free pump, a vacuum gauge, and a temperature compensated dry gas meter. Prior to sampling, a leak check of the sampling train will be performed to ensure system integrity. Additionally, tare weights of the charged individual impingers will be recorded using an electronic balance capable of weighing to the nearest 0.1 grams. The sample rate will be adjusted to approximately 0.75 cubic feet per minute and sampled for the duration of 30 minutes. A schematic of the moisture sample equipment is presented in Figure 4-3. Following the test, the impingers are weighed and the moisture content of the flue gas is calculated from the measured moisture volume and dry gas volume. For the maximum and minimum loads the moisture will be calculated using the following formula: O2 Formula $$y_{w} = 1 - \frac{20.9 (1-B_{wa})}{\frac{F_{w}}{F_{d}} (20.9-\%O_{2d}) + \%O_{2d}}$$ Where: $B_{ws} = 0.01$ $F_{w} = 10,610$ $F_d = 8,710$ O_{2d} = Dry Stack Oxygen concentration #### 4.4 SCAQMD Method 100.1 (Continuous Emission Monitoring System) Accurate Inc. utilizes a mobile emission measurement laboratory for the measurements of NO_x, CO, O₂, and CO₂ using SCAQMD Method 100.1. The laboratory is housed in a clean, quiet, environmentally controlled base. The laboratory has air conditioning and heating to support the test instruments performance. A diagram of Accurate Inc.'s mobile emission monitoring system is presented in Figure 4-4. Prior to beginning of testing, a system leak check, calibration error, and system bias check will be performed. The leak check will be accomplished by plugging the probe tip and drawing at least 22" Hg vacuum on the entire sampling system. When all flow meters indicate 0.0 SCFH flow and holds for five minutes, the system is proven to be free of any leaks. The calibration error check will be performed as follows: After zeroing all analyzers, EPA Protocol No. 1 gases are used to calibrate each analyzer within 80-100% of full scale of the selected range. Then a 40%-60% of the selected range gas is introduced to each analyzer. Additionally, a system bias calibration check is performed by passing EPA protocol I zero and calibration gases through the entire sampling system using a three-way valve located at the probe tip. Sampling system bias checks are determined by comparing the external calibration values to that of the values when introduced directly to each instrument. NO_x, CO, O₂, and CO₂ concentrations are measured using an extractive sampling system consisting of a heated probe, a heat traced Teflon sample line connected to a thermo-electrically cooled sample dryer. Following the dryer, the sample is drawn into a Teflon lined pump where it is pressurized and then filtered for delivery to the gas analysis portion of the system. Table 4-2 summarizes the reference method analyzers, which will be used for this test program. Table 4-2 Reference Method Analyzers | Analyzer | Make | Model | S/N | Range | Comments | |-------------------|-----------|---------|--------------
-----------------------|--| | NO _x | Rosemount | NG 2000 | 45099259898 | 0-10 ppm
0-50 ppm | NO _x mode with
Molly NO ₂ converter | | \mathbf{O}_2 | Rosemount | NG 2000 | 45099259898 | 0-10%
0-25% | - | | CO ₂ | Rosemount | NG 2000 | 45099259898 | 0-10%
0-20% | - | | CO | Rosemount | NG 2000 | _45099259898 | 0-10 ppm
0-500 ppm | - | | Chart
Recorder | Yokogawa | DR 241 | 42VF0687 | n/a | - | | DAS | Omega | MF 5500 | n/a | n/a | - | Figure 4-1 Stack Diagram and Sampling Points Location Port Length: 2.00 | | CEMS Sar | mple Points | | Velocity Sample Points | | | | |-------|----------|----------------|-------------------|------------------------|----------------|----------------|--| | | % of | Inches
from | Inches
Include | % of | Inches
from | Inches Include | | | Point | Diameter | Wall | Port L. | Diameter | Wall | Port L | | | 1 | | | | 3.2 | 1.0 | 3.0 | | | . 2 | 10.5 | 2.1 | 4. I | 10.5 | 2.1 | 4.1 | | | 3 | | | | 19.4 | 3.9 | 5.9 | | | 4 | 32.3 | 6.5 | 8.5 | 32.3 | 6.5 | 8.5 | | | 5 | | | | 67.7 | 13.5 | 15.5 | | | 6 | 80.6 | 16.1 | 18.1 | 80.6 | 16.1 | 18.1 | | | 7 | | | | 89.5 | 17.9 | 19.9 | | | 8 | 96.8 | 19.4 | 21.4 | 96.8 | 19.0 | 21.0 | | | | | | | | | | | Figure 4-2 SCAQMD Method 2.1 Equipment Figure 4-3 SCAQMD Method 5.2/4.1 Equipment Rotometers Probe SO₂ Analyzer CO Analyzer NO_x Analyzer CO₂ Analyzer Strip chart/DAS O₂ Analyzer Sample Line 4 way Primary Water valves Knockout Electronic Chiller Regulator Filter Teflon Head Pump Bias Line Figure 4-4 Reference Method CEMS Diagram (SCAQMD Method 100.1) #### 4.5 SCAQMD Method 25.3, Reactive Organic Gases Reactive organic gases will be measured using SCAQMD Method 25.3. Duplicate samples will be simultaneously extracted using co-located stainless steel probes. The probes are connected to water condensate traps immersed in an ice bath. Evacuated tanks with metering valves and flow meters are connected to the water traps. The metering valves are opened at the beginning of the test period and adjusted to achieve a constant sample rate as indicated on the flow meter. Sampling is stopped when the vacuum in the tank reaches 1 to 5 inches high. Heavy organic components condense as liquids and solids in the water traps and lighter components pass through as gases into the tanks. Volatile organic compounds (VOC) as total non-methane organics (TGNMO) are determined by combining results from independent analyses of condensate in the traps and gases in the tanks. CO₂, CO, CH₄, non-volatile organics, and non-methane volatile organics are separated prior to the TGNMO oxidation to CO₂ and measurement by non-dispersive infrared (NDIR) detector. The contents of the trap and tank are analyzed separately for methane, ethane, and total carbon. Results are reported as total gaseous non-methane (non-ethane) organic compounds. #### I. Pretest preparation #### A) Determine site specific sample approach as necessary - 1. Access - 2. Utilities - 3. Safety - 4. Process operation, type - 5. Stack or duct dimensions including upstream and downstream diameters from flow disturbances. The diameter should be measured carefully and the location inspected for the width of insulation or other obstructions that will affect the diameter measurement - 6. Port connections for monorail support - 7. Flue gas temperature - 8. Flue gas pressure - 9. Flue gas velocity - 10. Flue gas content - 11. Limits of quantification - 12. Compliance limit or other data objective - 13. Acceptability limits for normal process and sampling parameters #### B) Get sampling system components (from Approved Lab) - 1. Tanks supplied by analytical lab (Quantum Analytical), precleaned with QA/QC audit. - 2. Water traps supplied by analytical lab (Quantum Analytical), precleaned with QA/QC audit. - 3. Sample flow controllers (Variflow), supplied by analytical lab (Quantum Analytical) - 4. Water traps bucket - 5. Stainless Steel Probes with nut (nut is used as a quartz glass wool holder used as filter) - 6. Probe to impinger connection (glass or teflon tubing w/glass connectors) - 7. Mobile laboratory supplies and equipment - a) Distilled water - (1) Water used shall be distilled deionized water, ASTM specification D1193-77 Type 3. Distilled H₂O is obtained from an outside vendor (i.e., VWR). - b) Aluminum foil - c) Labels - d) Prepared filters - (1) Precleaned Quartz Glass wool - e) Tweezers, spatula - f) Data sheets - g) Nalgene wash bottles - h) Paper towels #### C) Collect sampling support equipment - 1. Power cords - 2. Multiple power outlet adapter - 3. Port rags or seal - 4. Gloves - 5. Hot gloves if necessary - 6. Rope and pulley system - 7. Tools - 8. Digital volt meter - 9. Calculator - 10. Clipboard - 11. Pens #### D) Collect data handling equipment and supplies - 1. Portable computer with Method 25.3 sampling workbook - 2. Data sheets - a) Method 1 - b) Sampling - c) Chain of custody - 3. Project Notebook - a) Protocol - b) Correspondence and protocol modifications - c) Space for test data #### II. Mobilization and setup - A) Load equipment securely into mobile laboratory vehicle and prepare for transport - B) Transport mobile laboratory and all equipment to test site - C) Check in with host site representatives - D) Locate mobile laboratory in a clean, quiet, safe, level, location on site as close as practical to sample location area - E) Establish radio communication between test team members - F) Connect power and energize illumination and temperature control systems - G) Remove all equipment and supplies stowed for transport in work areas - H) Set up sample recovery area in mobile laboratory - 1. Clean counter top - 2. Place new aluminum foil on counter as blotter - 3. Fill wash bottles with distilled water - I) Determine barometric pressure by calling nearest National Weather Service station and making appropriate corrections for differences in elevation - J) Arrange sampling equipment at sample location - K) Set up portable computer, start Excel[™] program, open appropriate workbook (25_1_calcs.xls) file containing method 1 worksheet, isokinetic setup worksheet, and data summary worksheets - L) Prepare sampling equipment - 1. Inspect tanks, traps, and rotometer with critical flow limiting valve. Note tanks and traps number on data sheet. Label tanks and traps with test number, project number, and date - 2. Assemble train - a) Use two ranches to connect traps to rotometer with critical flow limiting valve and then to tanks and tighten all connecting fittings. #### III. Sampling - A) Perform sample system leak check - 1. Using an 1/8" male plugs, assure that each probe tip is tightly plugged - 2. Record the tank Vacuum as indicated by the vacuum gage. - 3. Open the sample flow valves and wait for 10 minutes. - 4. Recheck the indicated Vacuum - 5. If vacuum did not change, the system is acceptable - 6. Correct if not within limits - B) Add ice to traps in traps holder 5 minutes prior to sampling. - C) Put glass wool into nut at tip of probe. - D) Using a high temperature wire connect the two probe ends together. - E) Verify with Team Leader that process conditions are proper and that sampling can begin - F) Insert probe into port and locate nozzle at test point oriented away from flow stream being careful not to touch port wall with nozzle tip. - G) Allow time for probe temperature to equilibrate with stack temperature. Plug port with flame retardant cloth - H) Begin sampling as follows. Record time and open the sample flow valve on one line of data sheet. - 1. Record other required information on data sheet - 2. Add ice to traps bucket if needed - I) End sampling when the sample time period has been reached or vacuum on any tank is 5 in. Hg. whichever occurs first. - J) Close samples flow valves and record the final clock and vacuum. - K) Remove sample probes from port being careful not to touch the port wall. - 1. Check sample systems for leaks by sealing probes inlet (when probes is cool enough) - Open the sample flow valves and wait for 10 minutes. - 3. Recheck the indicated Vacuum - 4. If vacuum did not change, the system is acceptable - L) Complete any notes on the testing on the sample data sheet and attach sample data sheet securely to sampling system for transport to sample recovery area - M) Close the sample flow valve. - N) Disconnect the condensate traps and tightly cap the vials, place in ice. - O) Add ice to condensate traps to the top until returned to lab. #### IV. Sample Analysis Analysis of samples will be performed by an SCAQMD Approved Lab #### 4.6 EPA Methods 323 (Formaldehyde Emission) An emission sample from the combustion exhaust is drawn through a midget impinger train containing chilled reagent water to absorb formaldehyde. The formaldehyde concentration in the impinger is determined by reaction with acetyl acetone to form a colored derivative which is measured colorimetrically. #### 4.7 EPA Methods 15 (Volatile Organic Compounds) Two Samples of hydrocarbons will be collected in an evacuated Summa Canister. The sample will be analyzed for C₁-C₆ and C₆₊ using gas chromatography/FID. Data is reported as hexane. #### 4.8 EPA Method 19 The fuel meter reading will be taken at the start, during and at the end of each test run (Maximum, Minimum and Normal loads). The fuel flow will be corrected to standard conditions (pressure (29.92") and temperature (60°F)). The stack gas flowrate will then be calculated stochiometrically based on the Digester Gas and Natural Gas as a standby fuel higher heating value (HHV) of 1,050 BTU/scf and an F factor of 8,710 dscf/MBTU. The HHV and the fuel F factor for the Digester Gas and Natural Gas as a standby fuel will be used in accordance with EPA Method 19 protocol. A fuel meter calibration certificate will be included in the final report. #### 4.9 SCAQMD Method 5.1 Total Particulate Matter (PM) with Condensable Analysis Particulate testing using
SCAQMD Method 5.1. Particulate matter will be collected in the sampling probe, impinger train containing DI water and on a back-up filter. In this method, metered flue gas is collected isokinetically The flue gas is collected isokinetically through a Stainless Steel nozzle, and a probe. This followed by a Teflon sample line, two Smith-Greenburg impingers, which contain 100 ml of distilled water, an empty impinger as a knockout, a back-up filter and an impinger containing silica gel. The impingers collect condensable particulate species while the filter collects any species existing the impingers. Following testing, the impingers are weighed for moisture determination and the following sample fractions are recovered: - 1. Probe, nozzle water washing and brushing; - 2. Impingers and connecting glassware water wash; - 3. Filter. The probe wash, impinger contents are extracted with methylene chloride to determine condensable hydrocarbons that are considered particulate under SCAQMD requirements. Filter and the impinger catch are dried at 105°C or evaporated, desiccated, and weighed to constant weight. Each sample train fraction will be analyzed by acid-base titration for its acid content according to SCAQMD procedures, and for sulfate content also by barium thorn titration. #### 4.10 SCAQMD Method 307.91 (Total Reduced Sulfur as H₂S) AES will use flow-through "silica lined fuel bombs" during the test. The fuel bomb will be attached to a 1/4 inch teflon tube at the sample location and then opened on both ends so fuel gas can purge through the fuel bomb for about five minute. The tester first close the outlet side of the fuel bomb and then the inlet side to ensure that the sample is collected inside the fuel bomb. The samples were analyzed within forty-eight hours by Quantum Laboratory. #### 4.11 Reference Method QA/QC Program Summary Accurate Environmental Services, Inc. is committed to providing emission related data, which is complete, precise, accurate, representative, and comparable. Accurate Inc.'s quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements set forth by the EPA, CARB, SCAQMD, and SDAPCD of each test method for each of these items. The quality assurance program consists of the following items: - Assignment of an Internal QA Officer - Development and use of an internal QA Manual - Personnel training - Equipment maintenance and calibration - Knowledge of current test methods - Chain-of-custody - QA reviews of test programs Generally, Accurate Inc. QA/QC procedures follow guidelines in *Quality Assurance Handbook for Air Pollution Measurement Systems*, Volumes I through III. These procedures outline pretest preparation and calibrations of sampling equipment, post-test sample handling, and post-test calibrations. Standardized, written procedures, calculator programs, and spreadsheets are used for test planning, pre-surveys, equipment checklists, preliminary calculations, data and sample collection, sample tracking, data analysis, and reporting. Pre-test preparations and maintenance. Assignment of an Internal QA Officer: Accurate Inc. has assigned an internal QA Officer who is responsible for administering all aspects of the QA program. Internal Quality Assurance Manual: Accurate Inc. has prepared a QA Manual according to the guidelines issued by EPA. The manual documents and formalizes all of Accurate Inc.'s QA efforts. The manual is a "living" document, which is revised as Accurate Inc. adds capabilities and procedures. The QA manual provides details on the items provided in this summary. **Personnel Training**: Personnel training is essential to the production of high quality test results. Accurate Inc.'s training programs include: - requirement for all technical personnel to read and understand the test methods performed - requirement for all technical personnel to read and understand the Accurate Inc. QA manual - In-house training - Quality Assurance meetings - Attendance at EPA sponsored training courses - Maintenance of training records. Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of Accurate Inc.'s emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 4-3. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components are summarized in Table 4-4. Knowledge of Current Test Methods: Accurate Inc. maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations. Accurate Inc. personnel coordinate, attend, and present papers at emission testing related conferences. Accurate Inc. personnel maintain memberships in the Air and Waste Management Association and Source Evaluation Society. Accurate Inc. personnel continually work with industry and regulatory agencies in monitoring and developing new methods and rules. Chain-of-Custody: Accurate Inc. maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to Accurate Inc. source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to Accurate Inc.'s office. Upon return to the office, copies are made and stored in a locking file. The original data sheets are used for report preparation and any additions are initialed and dated. **QA Reviews:** Every Accurate Inc. report is reviewed by someone separate from the report author. The reviewer is selected based on knowledge of the test methods used and the source tested. Periodic field, laboratory, and report reviews are performed by the QA Officer. Test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods will be followed and any deviations from the methods are justified and documented. Generally, Accurate Inc.'s QA/QC procedures follow guidelines in *Quality Assurance Handbook for Air Pollution Measurement Systems*, Volumes I through III. These procedures outline pretest preparation and calibrations of sampling equipment, post-test sample handling, and post-test calibrations. Standardized, written procedures, calculator programs, and spreadsheets are used for test planning, pre-surveys, equipment checklists, preliminary calculations, data and sample collection, sample tracking, data analysis, and reporting. Pre-test preparations and maintenance include organization of the following equipment: Table 4-3 Equipment Maintenance Schedule | Equipment National Sense are | | | | | | | | |-------------------------------|---|---|---|--|--|--|--| | Equipment | Acceptance Limits | Frequency of Service | Methods of Service | | | | | | Pumps | Absence of leaks Ability to draw manufacturers required vacuum and flow | Every 500 hours of operation or 6 months, whichever is less | Visual inspection Clean Replace parts Leak check | | | | | | Flow Meters | Free mechanical movement | Every 500 hours of operation or 6 months, whichever is less | Visual inspection Clean Calibrate | | | | | | Sampling
Instruments | Absence of malfunction Proper response to zero, span gas | As recommended by manufacturer | As recommended by manufacturer | | | | | | Integrated
Sampling Tanks | 1. Absence of leaks | Depends on nature of use | Steam clean Leak check | | | | | | Mobile Lab
Sampling System | 1. Absence of leaks | Depends on nature of use | Change filters Change gas dryer Leak check Check for system contamination | | | | | | Sampling lines | 1. Sample degradation less than 2% | After each test series | 1. Blow dry, inert gas through line until dry. | | | | | Table 4-4 Sampling Equipment Calibration Requirements | Sampling Equipment Calibration Requirements | | | | | | | | | | |--|--------------------------------|---|---|--|--|--|--|--|--| | Sampling Equipment | Calibration Frequency | Calibration Procedure | Acceptable Calibration
Criteria | | | | | | | | Continuous Analyzers | Before and after each test day | 3-point calibration error test | < 2% of analyzer range | | | | | | | | Continuous Analyzers | Before and after each test run | 2-point sample system bias check | < 5% of analyzer range | | | | | | | | Continuous Analyzers | After each test run | 2-point analyzer drift determination | < 3% of analyzer range | | | | | | | | CEMS System | Beginning of each day | leak check | < 1 in. Hg decrease in 5 min.
at > 20 in. Hg | | | | | | | | Continuous Analyzers | Before and after each test day | 3-point linearity | < 1% of analyzer range | | | | | | | | NO _x analyzer | Before or after each test day | NO ₂ -> NO converter efficiency | >90% | | | | | | | | S-type pitot tube | Semi-annually | Dimensional calibration | Meet dimensional criteria of
Method 2 | | | | | | | | S-type pitot tube | Annually | Wind tunnel calibration | Defined in Method 2 | | | | | | | | S-type pitot tube | Prior to each project | Visual inspection | Meet dimensional criteria of
Method 2 | | | | | | | | Differential Pressure
Gauges (except for
manometers) | Semi-annually | Correction factor based on 5-
point comparison to standard | +/- 5% | | | | | | | | Differential Pressure Gauges (except for manometers) | Bi-monthly | 3-point comparison to standard, no correction factor | +/- 5% | | | | | | | | Manometer | Semi-annually | Clean and replace fluid | | | | | | |
| | Barometer | Semi-annually | Adjusted to mercury-in-glass
or National Weather Service
Station | +/- 0.1 inches Hg | | | | | | | | Dry gas meter | Semi-annually | Calibration check at 4 flow rates using a NIST traceable standard | +/- 2% | | | | | | | | Dry gas meter | Bi-monthly | Calibration check at 2 flow
rates using a NIST traceable
standard | +/- 2% of semi-annual factor | | | | | | | | Dry gas meter orifice | Annually | 4-point calibration for ΔH@ | | | | | | | | | Temperature sensors | Semi-annually | 3-point calibration vs. NIST traceable standard | +/- 1.5% | | | | | | | The information in the Final Emissions Source Test Report will be formatted as follows: - I. Table of Contents - II. Executive Summary - III. Results Table - IV. Introduction/Test Description - a. Test Conditions - b. Sample Locations - V. Equipment/Process Description including fuel meters(s), if applicable. This section shall include a statement that verifies acceptability of the method test location and the operating condition during the test. - a. List Legal Facility Owner and Address - b. Facility Contact Person and Information - c. Equipment Location and Address - VI. Discussion of Results - VII. List of Sampling and Analytical Methods Used. This section shall include a list of the test methods used. Do not include copies or descriptions of the source test methods if the methods were adhered to as written. If exceptions were made to the methods, submit only an explanation of the exceptions. - a. Test Procedures/Methods - b. Sampling Procedures & Equations - VIII. Appendices - a. SCAQMD Method Results - b. Portable Analyzer Results - c. Schematic of Stack Sampling Locations - d. Field Data Sheets testing method and process data sheets shall be compiled in separate sections - e. QA/QC - f. Laboratory Analytical Data - g. Calibration Data and Calculations - h. Calibration Gas Certificates - i. Chain of Custody Information (as necessary) - j. Process Operating Data - k. Certifications (AQMD LAP or CARB Approval) - I. SCAQMD Permit(s) #### **General Emission Calculations** #### I. Stack Gas Velocity A. Stack gas molecular weight, lb/lb-mole $$MW_{dry} = 0.44 * \%CO_2 + 0.32 * \%O_2 + 0.28 * \%N_2$$ $MW_{wet} = MW_{dry} * (1-B_{wo}) + 18 * B_{wo}$ B. Absolute stack pressure, iwg $$Ps = Pbar + \frac{Psg}{13.6}$$ C. Stack gas velocity, ft/sec $$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$ #### II. Moisture A. Sample gas volume, dscf $$V_{mstd} = 0.03342 * V_{m} * (P_{bar} + \frac{\Delta H}{13.6}) * \frac{T_{ref}}{T_{m}} * Y_{d}$$ B. Water vapor volume, scf $$V_{wstd} = 0.0472 * V_{lc} * \frac{T_{ref}}{528 \text{ }^{\circ}R}$$ C. Moisture content, dimensionless $$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$ #### III. Stack gas flow rate A. Actual stack gas volumetric flow rate, wacfm $$Q = V_s * A_s * 60$$ B. Standard stack gas flow rate, dscfm $$Q_{sd} = Q * (1-B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$ - IV. Gaseous Mass Emission Rates, lb/hr $M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$ - V. Emission Rates, lb/MMBtu $\frac{lb}{MMBtu} = \frac{ppm *MW_i *F}{SV * 10^6} * \frac{20.9 \%O_2}{20.9 \%O_2}$ #### Nomenclature: A_s = stack area, ft² B_{wo} = flue gas moisture content, dimensionless C_p = pitot calibration factor, dimensionless F = fuel F-Factor, dscf/MMBtu @ 0% O₂ Η = orifice differential pressure, iwg = mass of collected particulate, mg M_n M_1 = mass emission rate of specie i, lb/hr MW = molecular weight of flue gas, lb/lb-mole = molecular weight of specie i: M_{ix} SO₂: 64 NO_x: 46 CO: 28 HC: 16 0 = sample time, min. = average velocity head, iwg = $(\sqrt{\Delta P})^2$ ΔΡ Pbar = barometric pressure, inches Hg P_s = stack absolute pressure, inches Hg P_{sg} = stack static pressure, iwb Q = wet stack flow rate at actual conditions, wacfm Qsd = dry standard stack flow rate, dscfm SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole $T_{\mathfrak{m}}$ = meter temperature, °R Tref = reference temperature, °R T_{s} = stack temperature, °R V_s = stack gas velocity, ft/sec V_{lc} = volume of liquid collected in impingers, ml V_{m} = uncorrected dry meter volume, dcf V_{mstd} = dry meter volume at standard conditions, dscf V_{wstd} = volume of water vapor at standard conditions, sef Y_d = meter calibration coefficient #### 7.0 Verification Forms The following forms are presented in this section: - Statement of No Conflict of Interest - Accurate Inc.'s current SCAQMD Laboratory Approval Program (LAP) certificate December 3, 2014 Mr. Walid Mohamed Accurate Environmental Services 8200 Katella Ave., Suite D Stanton, CA 90680 Subject: LAP Approval Notice Reference # 01LA0921 Dear Mr. Mohamed: We completed our review of the renewal application you submitted for approval under the South Coast Air Quality Management District's Laboratory Approval Program (SCAQMD LAP). We are pleased to inform you that your firm is approved for the period beginning December 31, 2014, and ending December 31, 2015 for the following methods: SCAQMD Methods 1-4 SCAQMD Method 25.1 (Sampling) SCAQMD Method 25.3 (Sampling) SCAQMD Rule 1121/1146.2 Protocols SCAQMD Method 100.1 (CO, CO₂, NOx, O₂, SO₂) SCAQMD Methods 5.1, 5.2, and 5.3 (Sampling) SCAQMD Method 6.1 (Sampling) Your LAP approval to perform nitrogen oxide emissions compliance testing for SCAQMD Rule 1121/ 1146.2 Protocols includes a satellite facility located at: Union Pacific Railroad 2000 S. Sycamore Avenue Bloomington, CA 92316 Thank you for participating in the SCAQMD LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov. Sincerel Rudy Eden, Senior Manager Laboratory Services & Source Test Engineering Attachment RE:GK/gk Dipankar Sarkar 141203 LapRenewal.doc #### 7.2 Statement of No Conflict of Interest #### (To be completed by authorized source testing firm representative and included in source test report) The following facility and equipment will be tested by my source-testing firm, and are the subjects of this Statement: | Facility ID: | 29110 | |-------------------------|---| | Date(s) Tested: | TBD | | Facility Name: | Orange County Sanitation District Treatment Plant No. 2 | | Equipment Address: | 22212 Brookhurst St. | | | Huntington Beach, CA 92646 | | Equipment to be Tested: | A Single Cleaver Brooks Boiler | | Application No.: | 545004 or 545005 | I state, as its legally authorized representative, that the source testing firm of: Source Test Firm: Accurate Environmental Services, Inc. **Business Address:** 8200 Katella Ave, Suite D Stanton, California 90680 is an "Independent Testing Laboratory" as defined in District Rule 304(k): For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria: - (1) The testing laboratory shall have no financial interest in the company or facility being tested. or in the parent company or any subsidiary thereof- - (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory; - (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and - (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing, or the source testing information provided to the SCAQMD. | Signature: | Wally Mol | Date: | 7/20/2015 | |-------------|------------------------|--------------|-----------| | Wally Moe | Source Testing Manager | 714-379-9200 | 7/20/2015 | | (Name) | (Title) | (Phone) | (Date) | | FORM ST-110 | | | | ## **Summary of Results** Facility: Equipment: Test Date: | Parameter | Units | High
Load | Low
Load | Normal
Load | Allowable
Limit | |---------------------------------------|----------|--------------|-------------|----------------|--------------------| | NOx, Concentration | ppm | | | | | | NO _x , @ 3% O ₂ | ppm | | | | | | NO _{x,} Emission Rate | lb/hr | | | | | | CO, Concentration | ppm | | | | 1 | | CO, @ 3% O ₂ | ppm | | | ļ | | | CO Emission Rate | lb/hr | | | | | | Total Stack Flow Rate, measured | dscfm | | | | | | Total Stack Flow Rate, calculated | dscfm | | | | | | % Difference | % | | | | | | Stack Gas Flow Rate, Actual | acfm | | | | | | Fuel Flow Rate | scfm | | | | | | Stack Temperature | °F | | | _ | | | Air/Fuel Ratio | N/A | _ | | | | | O_2 | % | | | | | | Firing Rate | MMBtu/hr | | | | | | % of Full Load | % | | | | | ## **Summary of Results** | Facility: | | | |---|-----------------------|---| | Source: | | | | Date: | | | | Parameter | | | | Stack Gas Velocity (ft/sec) | | | | Stack Temp (F) | | | | Moisture Fraction | | | | Fuel Flow Rate (scfin) | | | | Stack Flow, Dry | | | | Stack Flow, Actual | | | | O ₂ , (%) | | | | CO ₂ , (%) | | | | | Nitrogen Oxides (NOx) | | | NOx Concentration, ppmv | | _ | | Concentration ppmv @ 3%O ₂ | | | | Concentration, ppmv @ 3%CO ₁ | |
| | Mass Emissions, Normal, lb/hr | | | | | Carbon Monoxide (CO) | | | CO Concentration, ppmv | | | | Concentration, ppmv @ 3%O ₂ | | | | Mass Emissions 1h/hr | | | ### Run Number: 1 | Facility: Source: Load: Date: Start Time: End Time: Operator: | | Absolute Psi
Stack Gas M
Stack Area
Bws | | | | Barometrio
Meter Gan
Pitot Facto
Static Pres
Stack Dian
Stack widt
Stack lengt | nma:
or:
sure (Pg),
n.(in.) (Eq:
h (if rectar | in. H ₂ O:
uivalent):
ngular): | | | |--|-------------|--|-----------------|--------------|---------|--|---|---|-------|--------------| | Species | O_2 | CO2 | NO _x | co | | Stack leng | in (ii recia | ngular). | | | | High-Range Gas Fraction of Span | | 1 | | | | | Met | hod 2,1 Da | ta | | | Span | | | | 1 | i | đР | | Temp | Vel. | Dry Flowrate | | Span Gas Concentration, Cma HIGH | | | | | Point | (in. H ₂ O) | Angle | ۰F | (fps) | (Qsd) | | MID | | 1 | | | | | | | | | | ZÉRO | |] | | |] | | | | | | | Initial Analyzer Calibration Check, Cai HIGH | | | | | 1 | | | | | | | MID | | | | | | | | | | · | | ZERO | | | | | ŀ | | | | | ŀ | | Response Time (seconds) | | | | | | | | | | | | Initial Analyzer Calibration Error, Ei HIGH | | | | ŀ | | | | | ' | | | Ei = ((Cma - Cai)/Span)x100% MID ZERO | | | | Į. | | | | | | | | Initial Bias Check, Chi Upscale High (H) or Mid (M)? | | 1 | | | - | | | | | | | UPSCALE | | , | | | | | | | | | | (Select Calibration Gas Closest to Stack Gas Conc.) ZERO | | | | ł | i | | | | | | | Initial System Calibration Bias, Bi UPSCALE | - | | | | i | | | | | | | Bi = ((Cbi-Cai)/Span)x100% ZERO | | | | 1 | į | | | | | | | Final Bias Check, Cbf UPSCALE | | 1 | - | 1 | 1 | * | | | | | | (Select Calibration Gas Closest to Stack Gas Conc.) ZERO | | ! | | ļ | ļ | | | | | l | | Final System Calibration Bias, Bf UPSCALE | | | | | 1 | | | | | ļ <u></u> | | Bf = ((Cbf - Cai)/(Span))x100% ZERO | | | | | Average | | | | | | | Drift Check, D UPSCALE | | | | | | | | | | | | D = ((Cbf - Cbi)/(Span))x100% ZERO | |] | | | 1 | | | | | | | Average Bias Response, zero Gas, Co=(Cbi,zero+Cbf,zero)/2 | | | | | 1 | | | | | | | Average Bias Response, Upscale Gas, Cm=(Cbi,upscale+Cbf,upscale)/2 | | | | |] | | | | | | | Average Measured Concentration, Cavg Drift Corrected Concentration, Cgas=(Cavg-Co)xCma/(Cm-Co) | | | | |] | | | | | | | Drift Corrected Concentration, Cgas=(Cavg-Co)xCma/(Cm-Co) | | 1 | | |] | | | | | | | SCAQMD Method 4.1 | | 7 | | | | | | | | | | Orifice Pres. Meter Vol. Dry Gas Meter Tem | ıp. | 4 | | | | | | | | | | Point dH (in. H2O) Vm (cu. ft.) Inlet (⁰ F) | | - | | | | | | | | | | | | Inon No | 1 1 | 1 2 | 1 1 | |] | | | | | | | lmp, No.
Final (g) | 1 | 2 | 3 | 4 | | | | | | final | | កពេល (g)
Initial (g) | | | | | | | | | | Total/Average | | Net (g) | | | 1 | | | | | | | | | Total (g) | | | | | | | | | ## VELOCITY AND MOISTURE DATA, CALCULATION Facility: Source: Date: | | | | |
 |
 | |--|--------|----------|--|------|------| | Parameter Raw | Symbol | Units | | | | | Round Stack, Diameter | ds | in, | | | | | Rectangular Stack, Length | L | in. | | | | | Width | w | in. | | | | | Fuel Flow Rate | Ff | scfm | | | | | Average Stack Temperature | Fs,f | deg. F | | | | | Average Meter Temperature | Tm | deg. F | | | | | Barometric Pressure | Pbar | in. Hg | | | | | Stack Static Pressure | Pg | in. H20 | | | | | Avg. Delta H | dН | in. H20 | | | | | Avg. Velocity Head (mean square root) | dP | in. H20 | | | | | Pitot Coefficient | Ср | N/A | | | | | Cas Sample Volume | Vm | cu ft. | | | | | Meter Calibration Factor | Y | N/A | | | | | %O2 in Stack Gas | C, O2 | %, dry | | | | | %CO2 in Stack Gas | C, CO2 | %, dry | | | | | Stack Gas Nitrogen Oxide Content, drift/bias corr. | C, NOx | ppmv,dry | | | | | Total Impingers Gain (H2O) | Ww | grams | | | | ## VELOCITY AND MOISTURE DATA, CALCULATION #### Facility: Source: | Parameter Calculated | Symbol | Units | | | | | |---|--------|-----------|------|---|---|----| | Stack Area, As = 3.14*(ds)**2/576 (Round) | | | | | | | | □ L * W/144 (Rectangular) | As | sq feet | | | | | | Avg. Stack Temperature, Ts,f = Fs,f + 460 | Ts,f | degrees R | | | | | | Avg. Meter Temperature, Tm = Fm + 460 | Tm | degrees R | | | | | | Gas Sample Volume @ Standard Conditions, | | | | | | k. | | VmStd = 17.64*Vm * Y *Tm (Pbar + dH/13.6) | VmStd | cubic ft. | | | | | | Volume of Water Vapor, VwStd = 0.04707*Ww | VwStd | cubic ft, | | | | | | Moisture Fraction, Bws = 1-((20.9-(1-Bws)/((Fw/Fd*(20.9-O2stack))-O2stack)) | Bws | none | | | | | | Moisture Fraction, Bws = VwStd/(VmStd + VwStd) | Bws | none | | | | | | Dry Stack Gas Mol. Weight, Md = 0.32(Co2,m)+ | | | | | | | | 0.44(Cco2,m)+0.28{100-(C02,m)-(Cco2,m)} | Md | g/g-mole | | | | | | Wet Stack Gas Molecular Weight, | | | | | | | | Mw = Md(1-Bws)+18.0(Bws) | Mw | g/g-mole | | | ļ | | | Nitrogen volume fraction in the stack gas, | | | | | | | | l – mole fraction of O2 in stack gas – mole fraction of CO2 in stack gas | N2f | mole | | , | | | | Absolute Stack Pressure, Ps = Pbar + Pg/13.6 | Ps | in. Hg | | | | | | Stack Gas Velocity | | | | | | | | vs = 85.49*Cp*[sqtt (dP)]avg * sqtt [Ts,avg /(Ps*Mw)] | vs | fVs |
 | | | | | Actual Stack Gas Flowrate, Q = 60*vs*As | Q | acfin | | | | | | Standard Stack Gas Flowrate | | | | | | | | Qsd = 528/29.92*Q*(Ps/Ts) | Qs | scfm | | | | | | Dry Standard Stack Gas Flowrate | | | | | | | | Qsd = 528/29.92*Q*(Ps/Ts)*(1-Bws) | Qsd | dscfm | | | | | | Volume Flow Rate of Combustion Air | | | | | | | | DSCFM x N2f)/0 791 (0.791 nitrogen volume fraction in ambient air) | Qsd | vdscfm | | | | 1 | | Air-to-Fuel Ratio, Volume Flow Rate of Combustion Air / Fuel Usage | NA | NA | | | | | | NOx Emissions, MNOx = 1.558e-7 * CNOx,m * Qsd * 46 | MNOx | lb/hr | | | | | ## **Accurate Environmental Services Data Acquisition** | Date & Time | O ₂ (%) | CO ₂ (%) | NOx (ppm) | CO (ppm) | |-------------|--------------------|---------------------|-----------|----------| |-------------|--------------------|---------------------|-----------|----------| # Page 38 of 78 ## **EPA Method 19, Stack Gas Flowrate Calculation** Facility: Fuel Meter Model: Source: Fuel Meter S/N: Date: Fuel Manufacturer: | Run | Tim | ıe | O_2 | Fuel Flow | HHV | F | System Flow | Firing | |-----|-------|-----|-------|--------------|-----------|--------|-------------|--------| | | Start | End | (%) | Corr. (scfm) | (btu/scf) | Factor | (scfm) | Rate | | | | | | | - | | | | | | | | | | | | | | | | | _ | | | | | <u> </u> | | Fuel Flow Corrected (SCFM) = Fuel Used x Cal Factor / minutes Flow Rate = Fuel Flow Rate x F Factor x HHV/1000000 x 20.95/(20.95 - O2 conc) ## Page 39 of 78 ## **Fuel Flow correction to STD Conditions** Facility: Source: Date: | | Run | Time | | F. Flow | Time | Fuel Flow | Pres | Pressure | Temp | Corr. Fuel | |----|-----|-------|-----|---------|-------|-----------|-------|----------|------|------------| | | | Start | End | Uncorr | (min) | per min | psig_ | Factor | F | Flow | | | |
 | | | | | | | | | | ١. | <u> </u> | | | Corr. Fuel Flow Fuel Flow per min * (528/(Temp F+460)) * Pressure Factor (from Table) ## SCAQMD Velocity and Moisture Data Sheet | Start Date: TC Readout ID: TC ID: D. G. Meter ID dP Indicator Type: D. G. Meter ID Zero: Level: dH @ Pitot Tube ID: Pbar: Pitot Cp: Pstatic: Pitot Leak Check Pre: Stack Diam: Post: Port Length: Port Dia. Method 4.1 Data, Run Through Impingers Dry Gas Meter | Facility:
Unit: | | | _ | - | | Meter Y: | J D | | | | - 1 | 4 |
--|--------------------|----------|------------------------|-------------|--------------|----------|------------------------|------------------|--------------|--|------------------------|----------|--------------| | A | | | | | _ | | TC Peade | u by:
out ID: | | | | - _ | ╮┟┪ | | D. G. Meter ID Heave December Decemb | | | | | - | | | Jul 117. | | | | - ' | ' FT | | | | | : | | - | | | er ID | | | - | - լ | | | Pitot Unbe Discription Pitot Cip P | | | <u> </u> | Level: | _ | | | | | | - | - | 7 | | Nethod 4.1 Data, Run | Pitot Tube | m: | | | - | | | | | | | • | | | Post | | | | | <u>-</u> | | | | | | | _ | | | Method 4.1 Data, Run | Pitot Leak | | | | _ | | | | | | | _ | | | ##Matl. End Start Diff. Time dH Vol. T _m (in) T _m (out) Ti _{mp} Vac 1-H ₂ O | | Po | st: | | - | | Port Leng | th: | | _Port Di | a | - \ | \Box | | #/Matl. End Start Diff. Time dH Vol. T _m (in) T _m (out) Ti _{mp} Vac | | | | | Method | 4.1 Dat | a, Run_ | Thro | ugh | | | | | | 1-H ₂ O | | I | mpingers | | | | | | Dry G | as Meter | | | | | 2-H ₂ O 3-Empty 4-SilicaGel Total Method 4.1 Leak Check: Pre: cfm@ in.Hg, Post: cfm@ in.Hg Method 2.1 Data Run #: Start - End Time: Start - End Time: Point Angle (in. H ₂ O) 1-1 1-2 1-2 1-3 1-3 1-4 1-4 1-4 1-4 1-5 1-5 1-6 1-6 1-7 1-7 1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-8 | | | End | Start | Diff. | | Time | dH | Vol. | T _m (in) | T _m (out) | Timp | Vac. | | 3-Empty 4-SilicaGel Total Total Total | | | <u> </u> | | | | ļ | | | <u> </u> | | ļ | | | A-SilicaGe Total Total Total Total In.Hg., Post: cfm@ in.Hg., Post: cfm@ in.Hg. | | | _ | | | | <u> </u> | | | ļ | | ļ | | | Total Method 4.1 Leak Check: Pre: Cfm@ in.Hg, Post: Cfm@ in.Hg | | | | | | | | | | <u> </u> | | <u> </u> | | | Method 4.1 Leak Check: Pre: cfm@ in.Hg. Post: cfm@ in.Hg. Method 2.1 Data Run #: Run #: Run #: Start - End Time: Of Point Angle (in. H₂O) o°F | | | | | <u> </u> | | | <u>-</u> | | | | ļ | | | Nethod 2.1 Data Run #: Run #: Start - End Time: | | | <u> </u> | | | | Total | | | | | <u> </u> | | | Run #: Start - End Time: Tim | Method 4.1 | Leak C | heck: | Pre: | | | | | Post: | | cfm@ | | in.Hg | | Start - End Time: End Time: End Time: Start - | | | | | T | | od 2.1 Dat | <u>a</u> | | | | | | | Point Angle dP (in. H ₂ O) °F Point Angle (| | | | | | | | | | | | | | | Point Angle (in. H ₂ O) °F Point Angle (in. H ₂ O) °F Point Angle (in. H ₂ O) °F 1-1 < | Start - End | Time: | | | Start - | End Tir | | | Start - En | d Time: | | | | | 1-1 | | - | | - | | 1 | t l | _ | | | | | _ | | 1-2 1-2 1-2 1-3 1-3 1-3 1-4 1-4 1-4 1-5 1-5 1-5 1-6 1-6 1-6 1-7 1-7 1-7 1-8 1-8 1-8 2-1 2-1 2-1 2-2 2-2 2-2 2-3 2-3 2-3 2-4 2-4 2-4 2-5 2-5 2-5 2-6 2-6 2-6 2-7 2-7 2-7 2-8 2-8 2-8 Chiller Temp. °F Probe Temp. °F Probe Temp. °F | | Angle | (in. H ₂ O) | °F | | Angle | (in. H ₂ O) | °F_ | | Angle | (in. H ₂ O) | ٥ | F | | 1-3 | | | | | - | | | | + | | | | | | 1-4 1-4 1-4 1-4 1-5 1-5 1-5 1-5 1-6 1-6 1-6 1-7 1-7 1-7 1-7 1-8 1-8 1-8 1-8 1-8 2-1 2-1 2-1 2-1 2-2 2-2 2-2 2-2 2-3 2-3 2-3 2-3 2-4 2-4 2-4 2-4 2-5 2-5 2-5 2-5 2-6 2-6 2-6 2-7 2-8 2-8 2-8 2-8 Chiller Temp. °F Probe Temp. °F Probe Temp. °F | | ļ | | | | <u> </u> | | | | <u> </u> | | | | | 1-5 1-5 1-5 1-6 1-6 1-6 1-6 1-7 1-7 1-7 1-7 1-8 1-8 1-8 1-8 1-8 2-1 2-1 2-1 2-1 2-2 2-2 2-2 2-2 2-3 2-3 2-3 2-3 2-4 2-4 2-4 2-4 2-5 2-5 2-5 2-5 2-6 2-6 2-7 2-7 2-8 2-8 2-8 2-8 Chiller Temp. °F Probe Temp. °F Probe Temp. °F Probe Temp. °F | | | | | 1-3 | <u> </u> | | | 1-3 | | | | | | 1-6 1-6 1-6 1-6 1-7 1-7 1-7 1-7 1-7 1-8 1 | | <u> </u> | | | | | | | | | | <u> </u> | | | 1-7 1-8 1 | | | | | + | | | | 1-5 | | | | | | 1-8 | | ļ | _ | | | | | | 1-6 | | | | | | 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-2 2-2 2-2 | | ļ | _ | | | | | | 1-7 | | | | | | 2-2 2-2 2-3 2-3 2-3 2-3 2-4 2-4 2-4 2-5 2-5 2-5 2-6 2-6 2-7 2-7 2-7 2-7 2-8 2-8 2-8 Chiller Temp. °F Probe Temp. °F Probe Temp. °F Probe Temp. °F | 1-8 | | | | 1-8 | | | | 1-8 | | | | | | 2-2 2-2 2-3 2-3 2-3 2-3 2-4 2-4 2-4 2-5 2-5 2-5 2-6 2-6 2-7 2-7 2-7 2-7 2-8 2-8 2-8 Chiller Temp. °F Probe Temp. °F Probe Temp. °F Probe Temp. °F | | | | | <u> </u> | | <u> </u> | | | | | | | | 2-3 2-3 2-3 2-4 2-4 2-4 2-5 2-5 2-5 2-6 2-6 2-7 2-7 2-7 2-7 2-8 2-8 2-8 Chiller Temp. °F Chiller Temp. °F Probe Temp. °F Probe Temp. °F | | <u> </u> | | | | | | | | ļ <u>. </u> | | | | | 2-4 2-4 2-4 2-5 2-5 2-5 2-6 2-6 2-6 2-7 2-7 2-7 2-8 2-8 2-8 Chiller Temp. °F Chiller Temp. °F Chiller Temp. °F Probe Temp. °F Probe Temp. °F Probe Temp. °F | | | | | | <u> </u> | | | + | <u> </u> | | <u> </u> | | | 2-5 2-5 2-6 2-6 2-6 2-6 2-7 2-7 2-7 2-8 2-8 2-8 Chiller Temp. °F Chiller Temp. °F Chiller Temp. °F Probe Temp. °F Probe Temp. °F Probe Temp. °F | | | | | | <u> </u> | | | | | | | | | 2-6 2-6 2-6 2-7 2-7 2-7 2-8 2-8 2-8 Chiller Temp. °F Chiller Temp. °F Chiller Temp. °F Probe Temp. °F Probe Temp. °F Probe Temp. °F | | ļ | <u> </u> | | | | | | | | | <u> </u> | | | 2-7 2-7 2-7 2-8 2-8 2-8 Chiller Temp. °F Chiller Temp. °F Chiller Temp. °F Probe Temp. °F Probe Temp. °F Probe Temp. °F | - | 1 | | | | | | | + | | | | | | 2-8 2-8 2-8 Chiller Temp. °F Chiller Temp. °F Chiller Temp. °F Probe Temp. °F Probe Temp. °F | | ļ | ļļ | | | | <u></u> | | , | ļ | | | | | Chiller Temp. °F Chiller Temp. °F Chiller Temp. °F Probe Temp. °F Probe Temp. °F Probe Temp. °F | | | ļļ | | | | | | | _ | | <u> </u> | | | Probe Temp. °F Probe Temp. °F Probe Temp. °F | 2-8 | | | | 2-8 | | | | 2-8 | ļ | | | | | Probe Temp. °F Probe Temp. °F Probe Temp. °F | Chitte- (T) | <u> </u> | | | CI-: | T | 373 | | OL III | 013 | | | | | | | - | | | | | | | I | - | | | | | Hagted Line Lamp VV Hagted Line Tome VV Weeted Line Tome VV | | | <u>or</u> | | | | | | | | OE: | | | ## SCAQMD Method 100.1 Temps. Data Sheet | Facility:
Unit:
Test Date: | | | Performed By:
Leak Check Pre:
Pbar: | | |----------------------------------|--------------|-------------------|--|-----------------------------------| | Time | Probe Temp. | Heated Line Temp. | Primary Knockout Temp. | Thermo
Electrical
Chiller Temp | | | | | | | | | | | | | | | | | <u> </u> | | | | <u> </u> | | | | | | | | | | | | | ļ | | | | | | <u> </u> | | | | | | | | | | | - | - | <u> </u> | | | | <u> </u> | | | | | <u></u> | | | - | | | | | | | | | | | | | | | | | _ | <u></u> | | | | <u> </u> | | | | | _ | | | | | | | | | | | | | | | | i | | | | | | | | | | _ | | | | | - | | | | | | | | | <u> </u> | | | | | | | | | 1 | 1 | 1 | | Total/Average ## Accurate Environmental services, Inc. EPA Method 19, Stack Gas Flow rate Calculations | Facility:
Unit:
Start Date
Pbar:
Steam Pre
Steam Tei
Fuel Mete | essure:
mp.; | | | | Fuel Meter Mar Fuel Meter S/N FGR: Stack Dia.: Port Length: Port Dia.: | | Yes() No() | |--|-----------------|-------------------|-----------|-------------|--|--------------------|--------------| | Time | Time/Rev. | Readings per Rev. | Pressure | Temp. | Raw Readings | Corrected Readings | Comments | | | (sec.) | (cf) | (psi) | (°F) | (cf) | (ccf) | | | | | | | | | _ | <u> </u> | | | | | | | | | ļ <u>.</u> | | | | | | | | | | | | | | | | | | <u> </u> | | <u> </u> | | | | <u> </u> | | | ļ | | | | | | | | | | ļ | | | - | | <u> </u> | | | <u> </u> | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | ļ <u></u> | | | - | | | | - | <u> </u> | <u> </u> |
 | | | | | | | | | 1 | | 1 | | ## **Analog Instrument/ DPM Calibration** | Wor | k Order Number | Proces | | Loop Tag Number | | | | |------------|--|---------------------------------------|----------------|-------------------|---------------------|---------|--| | | 110017 | Boiler #1 Nat | ural Gas Flow | 25FFIT031 | | | | | , | · | Γest Equipmer | nt Informatio | n' | | , | | | | Vlanufacturer | Model I | lumber | S | erial Numbe | er | | | | FLUKE | 718-3 | 100G | | 2541131 | | | | Calibratio | on Certificate Number | Calibrati | | | pration Due | | | | | 120937 | 12/12 | | | 12/12/2015 | | | | | Vlanufacturer | Model | lumber | <u> </u> | erial Numbe | er | | | Calibratio | on Certificate Number | Calibrati | on Date | Calib | oration Due | Date | | | | | L
Calibration Ga | s Informatio | n . | | | | | | /lanufacturer | Lot Nu | | | Gas Type | | | | _ | | | | 1 | | | | | N | Manufacturer | Lot Nu | mber | | Gas Type | | | | | A PART OF THE STATE STAT | Instrument | nformation | | · * · · * · · | | | | | /lanufacturer | Model N | Serial Number | | | | | | | FOXBORO | IDP10-A22 | * | | | | | | - / , | | Instrume | ent Type | , | • | • | | | | mitter X ducer | Controller
Indicator | x | - | a tor
her | | | | Range | 54 | Eng Units INCH, | /H20 Input | PRESS. | Output | MA | | | | 0/ of Dance | Simulated Val | .a. T. Outmite | As Faund | Outmut | As Lafe | | | Point 1 | % of Range
0% | 0.0 | | As Found .
I.0 | Output As Left 4.0 | | | | Point 2 | 25% | 3.4 | | 3.0 | 8. | | | | Point 3 | 50% | 13.6 | | 2.0 12 | | | | | Point 4 | 75% | 30.4 | | 6.0 | | | | | Point 5 | 100% | 54.0 | | 0.0 | 20. | | | | Comn | | oan from 125" to s
ved from McCrom | - | | | | | | Techr | nician | Carl Herrigsta | d | Date | 4/22/ | 2015 | | ## **Analog Instrument/ DPM Calibration** · Process Area Loop Tag Number Work Order Number | 88016 | Cidel Mailinei | Lincess Wied | • | Luc | th tag rantime | • | |---|----------------------|--|----------------|--|----------------|-------| | | 110017 | Boiler #2 Digester G | ias Flow | 25FFIT071 | | | | | | Test Equipment Inf | ormatio | n . | • | | | - M | lanufacturer | Model Numbe |
er | Serial Number | | | | | FLUKE | 718-100G | | | 2541131 | | | Calibration | n Certificate Number | Calibration Da | - | | ration Due D | ate | | | 120937 | 12/12/2014 | | | 12/12/2015 | | | M | lanufacturer | Model Numbe | er | Se | erial Number | | | Calibration | n Certificate Number | Calibration Da | te | Calib | ration Due Da | ate | | 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | * . |
 Calibration Gas Inf | ormatio | <u> </u> | <u> </u> | -, ', | | n/ | lanufacturer | Lot Number | - | | Gas Type | | | 100 | ianuiacturei | LOC (VOILIBE) | | 1 | das rype | | | M | lanufacturer | Lot Number | | | Gas Type | | | | | Instrument Infor | mation | <u> </u> | | | | | lanufacturer | Model Number | • | <u>' </u> | erial Number | , | | | FOXBORO | IDP10-A22B21F- | * | | | | | -, -, - | · | Instrument T | | ' | | | | Transo
Transo | | Controller
Indicator | Isolator Other | | | | | Range | 0-69.2 | Eng Units INCH/H20 | Input | PRESS. | Output | MA | | | 0/ 25 Daine | Communication of Males of Males | Contract | A. F | Outual A | | | Point 1 | % of Range | Simulated Value 0.0 | | As Found | Output A: | Leit. | | Point 2 | 25% | 4.4 | | .0 | 8.0 | | | Point 3 | 50% | 17.3 | | 2.0 | 12.0 | | | Point 4 | 75% | 38.9 | | 5.0 | 16.0 | | | Point 5 | 100% | 69.2 | | 0.0 | 20.0 | | | Comm | | pan from 125" to 69.2"
ved from McCrometer. | | | | | | Techn | ician | Carl Herrigstad | | Date | 4/22/20 |)15 | | Test Equipment Information Manufacturer Model Number Serial Number FLUKE 718-100G 2541131 On Certificate Number Calibration Date 12/12/2014 12/12/2015 Manufacturer Model Number Serial Number FLUKE 718-100G 2541131 On Certificate Number Calibration Date Calibration Due Date 120937 12/12/2014 12/12/2015 Manufacturer Model Number Serial Number On Certificate Number Calibration Date Calibration Due Date Calibration Gas Information Manufacturer Lot Number Gas Type Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type Serial Number Isolator Serial Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type Serial Number Serial Number Serial Number Serial Number Serial Number Information Instrument Type Serial Number Serial Number Serial Number Serial Number Serial Number Information Informat | | | | | | | |
--|-------------|-----------------------------|--|--------------|----------------------------|---------------------|--| | Test Equipment Information Manufacturer FLUKE FLUKE On Certificate Number Calibration Date | Wor | k Order Number | Process Area | | . Lo | op Tag Num | ber | | Manufacturer Model Number Serial Number FLUKE 718-100G 2541131 on Certificate Number Calibration Date Calibration Due Date 120937 12/12/2014 12/12/2015 Manufacturer Model Number Serial Number on Certificate Number Calibration Date Calibration Due Date Calibration Gas Information Manufacturer Lot Number Gas Type Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type Smitter X Controller Isolator Sducer Indicator X Other S5.4 Eng Units INCH/H20 Input PRESS. Output MA | | 110017 | Boiler #2 Natural G | as Flow | | 25FFIT081 | | | FLUKE 718-100G 2541131 on Certificate Number Calibration Date Calibration Due Date 120937 12/12/2014 12/12/2015 Manufacturer Model Number Serial Number on Certificate Number Calibration Date Calibration Due Date Calibration Gas Information Manufacturer Lot Number Gas Type Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type Smitter X Controller Isolator Seducer Indicator X Other | , | - 1 | Test Equipment Inf | ormatio | n: | | • | | Calibration Date 120937 12/12/2014 12/12/2015 Manufacturer Model Number Calibration Date Calibration Due Date Calibration Due Date Calibration Gas Information Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number FOXBORO IDP10-A22821F-M1 Instrument Type Calibration Date Calibration Due Date Calibration Due Date Calibration Due Date Calibration Due Date Calibration Date Calibration Due Calib | ٨ | /lanufacturer | Model Numbe | er | S | erial Numbe | r | | 12/12/2014 12/12/2015 | | FLUKE | 718-100G | | | 2541131 | | | Manufacturer Model Number Serial Number Calibration Date Calibration Due Date Calibration Gas Information Manufacturer Lot Number Gas Type Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type Indicator X Controller Isolator Serial Number Other Indicator X Other Serial Number Other Instrument Type | Calibratio | on Certificate Number | Calibration Da | te | Calil | ration Due | Date | | Calibration Date Calibration Gas Information Manufacturer Lot Number Gas Type Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number FOXBORO IDP10-A22821F-M1 Instrument Type Semitter X Controller Indicator X Other Selial Number Isolator Seducer Indicator X Other | | 120937 | 12/12/2014 | | | 12/12/2015 | | | Calibration Gas Information Manufacturer Lot Number Gas Type Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type Smitter X Controller Isolator Sducer Indicator X Other 55.4 Eng Units INCH/H20 Input PRESS Output MA | ٨ | /lanufacturer | Model Numbe | er | S | erial Numbe | r | | Calibration Gas Information Manufacturer Lot Number Gas Type Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type Smitter X Controller Isolator Sducer Indicator X Other 55.4 Eng Units INCH/H20 Input PRESS. Output MA | | | | _ | - 111 | | | | Manufacturer Lot Number Gas Type Manufacturer Lot Number Gas Type | Calibratio | n Certificate Number | Calibration Da | te | Calik | oration Due | Date | | Manufacturer Lot Number Gas Type Instrument Information Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type | , | | Calibration Gas Inf | ormatio | n | · **; - /*, | | | Instrument Information Manufacturer | N | /lanufacturer | Lot Number | | | Gas Type | | | Instrument Information Manufacturer | | | | | | | | | Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type smitter X Controller Isolator sducer Indicator X Other 55.4 Eng Units INCH/H20 Input PRESS. Output MA | N | /lanufacturer | Lot Number | | | Gas Type | | | Manufacturer Model Number Serial Number FOXBORO IDP10-A22821F-M1 * Instrument Type smitter X Controller Isolator sducer Indicator X Other 55.4 Eng Units INCH/H20 Input PRESS. Output MA | •• • | And Agent Control | Instrument Infor | mation | ., | | . , | | Instrument Type Smitter X Controller Isolator Sducer Indicator X Other 55.4 Eng Units INCH/H20 Input PRESS. Output MA | | | | er . | S | erial Numbe | r | | smitter X Controller Isolator sducer Indicator X Other 55.4 Eng Units INCH/H20 Input PRESS. Output MA | | FOXBORO | IDP10-A22821F- | M1 | | * | | | smitter X Controller Isolator sducer Indicator X Other 55.4 Eng Units INCH/H20 Input PRESS. Output MA | | | Instrument T | ype | | : • • | | | 55.4 Eng Units INCH/H20 Input PRESS. Output MA | | mitter X | - | | • | - | | | | Trans | ducer | Indicator _ | <u> </u> | . Ot | her
- | | | % of Range Simulated Value Output As Found Output As Left | Range | 55.4 | Eng Units INCH/H20 | Input | PRESS. | Output | MA | | % of Range Simulated Value Output As Found Output As Leπ | | 0/ 50 | | | 4 = 1 * | | | | | | | | - | | _ | | | | | | <u> </u> | | | • | | | 25% 3.5 8.0 8.0 | | | | | | | | | 120 | | | | | | | | | 50% 13.9 12.0 12.0 | | | | | | | | | 75% 31.2 16.0 16.0 | roint 5 | 100% | 33.4 | 2(| J.U | 20. | .U | | 0% 0.0 4.0 4.0 25% 3.5 8.0 8.0 | Trans | 55.4 % of Range 0% 25% 50% | Indicator Eng Units INCH/H20 Simulated Value 0.0 3.5 13.9 | Output 4 | PRESS. As Found .0 .0 .0 | Output Output 4. 8. | 0 | | | ; | | | | | | | | | | | | | | | | | 75% 31.2 16.0 16.0 | Point 5 | 100% | 55.4 | 20 | J.U | 20. | .U | | | _ | | f annii | | : · · | | _ | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 | Comn | | | | | | <u>/ </u> | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 ments Changed span from 125" to 55.4" per calibration sheet from primary | | V-cone recei | ved from McCrometer. | Calibrated | l transmitte | r. | | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 | | | | | | | | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 ments Changed span from 125" to 55.4" per calibration sheet from primary | | | | | | | | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 ments Changed span from 125" to 55.4" per calibration sheet from primary | | | | | | | | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 ments Changed span from 125" to 55.4" per calibration sheet from primary | | | | | | | . | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 ments Changed span from 125" to 55.4" per calibration sheet from primary | | - • | | | | | | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 ments Changed span from 125" to 55.4" per calibration sheet from primary | Techr | nician | Carl Herrigstad | | Date | 4/22/ | 2015 | | 75% 31.2 16.0 16.0 100% 55.4 20.0 20.0 ments Changed span from 125" to 55.4" per calibration sheet from primary V-cone received from McCrometer. Calibrated transmitter. | 16011 | | - Carrielingstau | | - Late | 7/ 44/ | | | Wor | k Order Number | P | rocess Are | a · | Lo | op Tag Nun | ber | |-----------------|----------------------|-----------------------|------------|-------------|-------------|---------------|-----------| | | 110017 | Boiler #1 E | igester Ga | s Totalizer | | 25FFQ1021 | | | | | Test Equip | ment In | formatio | n | | | | N | lanufacturer | M | odel Numi | per | 5 | erial Numb | | | TR | RANSMATION | CA | LMATE 11 | .43 | | 10656017 | | | Calibratio | n Certificate Number | Cal | ibration D | ate | Cali | bration Due | Date | | | 117293 | | 6/10/2014 | 1 | | 6/10/2015 | • | | IV. |
lanufacturer | M | odel Numb | er | S | Serial Numb | er | | | | | | | · · · | | | | Calibratio | n Certificate Number | Cal | ibration D | ate | Calil | bration Due | Date | | , , | | Calibratio | n Gas In | formatio | <u> </u> | | | | N | lanufacturer | | ot Numbe | r | | Gas Type | | | | | | | | | | | | IV. | lanufacturer | L | ot Numbe | r | | Gas Type | | | | | Instrum | ent Info | rmation | * . | | F | | N | lanufacturer | | odel Numb | | S | erial Numb | er | | PRE | CISION DIGITAL | | PD6200 | | | * | | | | | Instr | ument 1 | Гуре | | | | | Transr
Trans | | Contr | | x | | lator
:her | | | Range | 0-350 | Eng Units | SCFM | Input | MA | Output | DISPLAY | | , , | % of Range . | Simulate | d Value | Output A | As Found | Qutnut | As Left , | | Point 1 | 0% | 4.0 | | 0. | | · · | .0 | | Point 2 | 25% | 8.0 | | 17 | | <u> </u> | 5.0 | | Point 3 | 50% | 12. | | 24 | | | 7.5 | | Point 4 | 75% | 16. | .0 | 30 | 3.0 | 30 | 3.0 | | Point 5 | 100% | 20. | 0 | 350 | 0.0 | 350 | 0.0 | | Comm | nents Changed sp | oan from 35
Calibi | to 350. Ch | | uare root i | input from l | near. | | Techn | ician | Carl Heri | rigstad | | Date | 4/22/ | 2015 | | Work | Order Number | P | rocess Are | a l | Lo | op Tag Number | |------------------|--|----------------|-------------|---------------|-------------|----------------------| | | 110017 | Boiler #1 | Natural Ga | s Totalizer | | 25FFQI031 | | | | rest Equip | ment In | formatio | n , . | | | M | anufacturer | | odel Numb | | | Serial Number | | TRA | ANSMATION | CA | LMATE 11 | 43 | | 10656017 | | Calibration | Certificate Number | Ca | libration D | ate | Cali | bration Due Date | | | 117293 | | 6/10/2014 | | | 6/10/2015 | | M | anufacturer | M | odel Numb | er | | Serial Number | | Calibration | Certificate Number | Cal | libration D | ate | Cali | bration Due Date | | | · | Calibratio | n Gas In | formation |) · | | | M | anufacturer | <u>l</u> | ot Numbe | r | | Gas Type | | M | anufacturer | | ot Numbe | r | | Gas Type | | 47. 4 | | Instrum | ent Info | rmation | 7,3 | | | | anufacturer | | odel Numb | - | S | erial Number | | _ | ISION DIGITAL | | PD6200 | | | * | | n | ······································ | Inst | rument 1 | vpe | | -, , | | Transm
Transd | | Contr
Indic | | Х | | her | | Range | 0-201.9 | Eng Units | SCFM | Input | MA | Output DISPLAY | | | % of Range | Simulate | d Value | Output A | s Found | Output As Left | | Point 1 | 0% | 4. | 0 | 0. | | 0.0 | | Point 2 | 25% | 8.0 | 0 | 100 |),9 | 100.9 | | Point 3 | 50% | 12. | .0 | 142 | 2.8 | 142.8 | | Point 4 | 75% | 16. | .0 | 174 | 1.8 | 174.8 | | Point 5 | 100% | 20 | .0 | 201 | L.9 | 201.9 | | Comm | ents Changed sp | | to 201.9. (| | square roo | t input from linear. | | | | | | | | | | Techni | cian | Carl Her | rigstad | | Date | 4/22/2015 | | Worl | c Order Number | | rocess Are | | | op Tag Number | |------------------|----------------------|------------------|-------------|-------------|-------------|-------------------| | | 110017 | Boiler #2 D | Digester Ga | s Totalizer | | 25FFQ1071 | | | | Test Equip | ment In | formatio | n _ | | | IV | lanufacturer | Me | odel Numb | er | S | erial Number | | TR | ANSMATION | CA | LMATE 11 | 43 | | 10656017 | | Calibratio | n Certificate Number | ·} | ibration D | | Calil | oration Due Date | | | 117293 | | 6/10/2014 | | | 6/10/2015 | | <u> </u> | lanufacturer | Me | odel Numb | er | S | erial Number | | Calibratio | n Certificate Number | Cal | ibration D | ate | Calil | pration Due Date | | , , , , | | Calibratio | n Gas In | formatio | ղ. | | | IV | lanufacturer | L | ot Numbe | r | | Gas Type | | N | lanufacturer | Į L | ot Numbe | <u></u> | | Gas Type | | | | | | | | | | , | | . Instrum | ent Info | rmation | | · | | M | lanufacturer | Mo | odel Numb | er | S | erial Number | | PREC | CISION DIGITAL | | PD6200 | | _ | * | | | | Instr | ument 1 | уре | * , , * | | | Transr
Transc | | Contro
Indica | | х | | ator
her | | Range | 0-350 | Eng Units | SCFM | Input | MA | Output DISPLAY | | | % of Range | Simulate | d Value | Output A | As Found | Output As Left | | Point 1 | 0% | 4.0 | | 0. | | 0.0 | | Point 2 | 25% | 8.0 | | 179 | 5.0 | 175.0 | | Point 3 | 50% | 12. | 0 | 24 | 7.4 | 247.4 | | Point 4 | 75% | 16. | 0 | 303 | 3.1 | 303.1 | | Point 5 | 100% | 20. | 0 | 350 | 0.0 | 350.0 | | Comm | ents Changed sp | | to 350. Ch | | uare root i | nput from linear. | | - | | | | | | | | Techn | ician | Carl Herr | rigstad | | Date | 4/22/2015 | | | | , | | | | | | |------------------|------------------------|----------------------|--------------------------|-------------|------------|--------------|-----------| | Work | Order Number | | rocess Are | | Lo | op Tag Nun | | | | 110017 | | | s Totalizer | | 25FFQI08: | <u> </u> | | | . 1 | Test Equip | ment In | formatio | n | | | | | anufacturer | M | odel Numi | per | S | erial Numb | er | | | ANSMATION | | LMATE 11 | | | 10656017 | | | Calibration | Certificate Number | | libration D | | Calil | bration Due | | | | 117293 | | 6/10/2014 | | | 6/10/2015 | | | M | anufacturer | M | odel Numi | er | S | erial Numb | er | | Calibration | Certificate Number | Cal | ibration D | ate | Calil | bration Due | Date | | | | <u>Calibratio</u> | n Gas ln | formation | 1 | | | | M | anufacturer | L | ot Numbe | r | | Gas Type | • | | | | | | | | | | | M: | anufacturer | 1 | ot Numbe | r | | Gas Type | | | | | Instrum | ent Info | rmation | | | | | M: | anufacturer | M | odel Numb | er | S | erial Numb | er | | PREC | ISION DIGITAL | | PD6200 | | | * | | | | | Insti | rument l | Гуре | | | | | Transm
Transd | | Contr
Indic | | x | | ator
her | | | Range | 0-201.9 | Eng Units | SCFM | Input | MA | Output | DISPLAY | | | % of Range | Simulate | d Value . | Output A | s Found | Outnu | t As Left | | Point 1 | 0% | 4.1 | | 0. | | | 1.0 | | Point 2 | 25% | 8.0 | | 101 | | - | 1.0 | | Point 3 | 50% | 12. | | 142 | | | 2.8 | | Point 4 | 75% | 16. | .0 | 174 | 1.8 | 17 | 4.8 | | Point 5 | 100% | 20. | .0 | 201 | L.9 | 20 | 1.9 | | Comm | ents <u>Changed sp</u> | oan from 20
Calib | to 201.9.
rated indic | | square roo | t input fron | n linear. | | | | | | | | | | | Techni | cian | Carl Her | rigstad | | Date | 4/22 | /2015 | | Work | c Order Number | Pı | ocess Are | ea . | Lo. | op Tag Numl | ber | |---------------------------------------|----------------------|-------------|-----------|-----------|------------|---------------------|---------| | | 110017 | Boiler# | 1 Digeste | r Gas I/I | | 25FFY021 | | | , | | Test Equip | ment in | formatio | n | * * ₂ ** | • | | M | lanufacturer | | del Numi | | | erial Numbe | ·r | | TR | ANSMATION | CA | LMATE 11 | .43 | | 10656017 | | | Calibration | n Certificate Number | Cali | bration D | ate | Calil | bration Due | Date | | | 117293 | 6 | /10/2014 | I | | 6/10/2015 | | | M | lanufacturer | Mo | del Numi | per | S | erial Numbe | r | | | FLUKE | | 87-V | | | 95840449 | | | Calibration | n Certificate Number | Cali | bration D | ate | Calil | bration Due I | Date | | | 123129 | 3 | /25/2015 | <u> </u> | | 3/25/2016 | | | | | Calibration | n Gas In | formatio | 1 · | t | | | | lanufacturer | Lo | ot Numbe | r | | Gas Type | | | M | lanufacturer | Le | ot Numbe | r | | Gas Type | | | | | | | | | | | | | | Instrume | | | | | | | M | lanufacturer | <u></u> | del Numi | | S | erial Numbe | r | | | MOORE | ECT/4-20M | A/4-20M | A/12-42DC | ·
 | *
 | | | | <u> </u> | Instr | ument] | Гуре | | | • | | Transn | nitter | Contro | iller | | Isol | ator | х | | Transc | | Indica | | | | her _ | | | Range | 4-20 | Eng Units | MA | Input | MA | Output | MA | | · · · · · · · · · · · · · · · · · · · | % of Range | Simulated | l Value | Outnut 4 | As Found | Output | Δs Left | | Point 1 | 0% | 4.0 | | 4. | | 4.0 | | | oint 2 | 25% | 8.0 | | 8. | | 8.0 | | | oint 3 | 50% | 12.0 | | 12 | | 12. | | | Point 4 | 75% | 16.0 | | 16 | | 16. | | | oint 5 | 100% | 20.0 |) | 20 | .0 | 20. | 0 | | Comm | ents Calibrated | isolator. | | | | | | | | | | | - | | | | | Techni | ician | Carl Herr | igstad | | Date | 4/22/: | 2015 | | Man TRAN Calibration Co Man Falibration Co | ufacturer ISMATION ertificate Number 17293 | Boiler # Test Equip Mo | rocess Are
1 Natural
ment In | | , Lo | op Tag Num | ber | |---|---|---------------------------|------------------------------------|-----------|---------------------|---|--------------------| | Man TRAN Calibration Co 1: Man F Calibration Co | ufacturer
ISMATION
ertificate Number
17293 | Test Equip | | Gas I/I | | 05550004 | | | Man TRAN Calibration Co 1: Man F Calibration Co | ufacturer
ISMATION
ertificate Number
17293 | Mo | ment in | | | 25FFY031 | | | TRAN Calibration Co Man F Calibration Co | ISMATION
ertificate Number
17293 | + | | formation | 'n ' | | , | | Calibration Co Man F Calibration Co | ertificate Number
17293 | CA | del Numi | er | S | erial Numbe | er | | 1
Man
F
Calibration C | 17293 | | LMATE 11 | .43 | | 10656017 | | | Man
F
Calibration Co | | Cali | bration D | ate | Calil | oration Due | Date | | F
Calibration Co | ufacturer | 6 | 6/10/2014 | l | | 6/10/2015 | | | Calibration Co | | Mo | del Numi | per | S | erial Numbe | ₽ Г | | | LUKE | | 87-V | | | 95840449 | | | 1: | ertificate Number | Cali | bration D | ate | Calil | oration Due | Date | | | 23129 | 3 | 3/25/2015 | j | | 3/25/2016 | | | | | Calibration | ı Gas In | formation | 1 | * | * | | Man | ufacturer | L | ot Numbe | r | | Gas Type | | | Man | ufacturer | L | ot Numbe | r | | Gas Type | | | * * | |
 Instrume | ent Info | rmation | , , | · | | | Man | ufacturer | Mo | del Numb | er |
S | erial Numbe | r | | M | IOORE | ECT/4-20M | A/4-20M | A/12-42DC | | * | | | • • | ** * * | Instr | | | | , | • | | | | | | | | | | | Transmitt
Transduc | | Contro
Indica | | | | ator
her | х | | | | _ | | Input | | - | X | | Transduc
Range | 4-20 | Indica | MA | , | Ot
MA | her | MA | | Transduc
Range | er | Indica
Eng Units | MA
J Value | , | MA
s Found | her
Output | MA
As Left | | Transduc Range oint 1 | 4-20
% of Range | Eng Units Simulated | MA
d Value | Output A | MA s Found | Output Output | MA
As Left | | Range oint 1 | 4-20
% of Range
0% | Eng Units 'Simulated 4.0 | MA
Value | Output A | MA AS Found 0 | Output Output 4. | MA
As Left
0 | | Transduc | 4-20
% of Range
0%
25% | Eng Units Simulated 4.0 | MA Value | Output A | MA ss Found 0 0 0 0 | Output Output 4. | MA As Left 0 0 | | . Worl | k Order Number . | Pi | rocess Are | ea | Lo | op Tag Num | ber | |---|----------------------|--------------------|------------|-------------|----------|--------------|----------| | | 110017 | Boiler # | 2 Digeste | r Gas I/I | | 25FFY071 | | | | | Test Equip | | | n | , | | | N | lanufacturer | | del Numi | | | erial Numb |
er | | TR | ANSMATION | CA | LMATE 11 | .43 | | 10656017 | | | Calibratio | n Certificate Number | Cal | ibration D | ate | Cali | bration Due | Date | | | 117293 | | 5/10/2014 | 1 | | 6/10/2015 | | | IV | lanufacturer | Mo | del Numi | oer | S | erial Numbo | er | | - | FLUKE | | 87-V | | | 95840449 | | | Calibratio | n Certificate Number | Cali | bration D | ate | Calil | bration Due | Date | | | 123129 | | 3/25/2015 | 5 | | 3/25/2016 | | | | | Calibratio | n Gás In | formation | 1 | | *, * | | | lanufacturer | L | ot Numbe | r | | Gas Type | | | | | | | | | | | | IV | lanufacturer | L | ot Numbe | r | | Gas Type | | | | | | | | | | | | و ادر | | Instrum | ent Info | rmation | | | * . | | N | lanufacturer | Mo | del Numi | per | S | erial Numbe | er | | | MOORE | ECT/4-20M | A/4-20M | A/12-42DC | | * | | | · | · | Instr | ument | Гуре | | | <u> </u> | | T | | Cantus | -11 | | la-d | l=& | v | | Transr
Transc | | . Contro
Indica | | | | lator
her | X | | Transe | | . indica | itor | | Ot | ner . | | | Range | 4-20 | Eng Units | MA | Input | МА | Output | MA | | | % of Range | Simulated | - Value | Output A | le Found | Output | Δs I oft | | Point 1 | 0% | 4.0 | | 4. | | 4. | | | Point 2 | 25% | 8.0 | | 8. | | 8. | | | Point 3 | 50% | 12.0 | | 12 | | 12 | | | Point 4 | 75% | 16. | _ | 16 | | 16 | | | Point 5 | 100% | 20. | | 20 | | 20 | | | Technician | Carl Herrigstad | Date | 4/22/2015 | |------------|-----------------|------|-----------| | Test Equipmer Manufacturer Mode TRANSMATION Calibration Certificate Number 117293 Manufacturer Mode FLUKE Calibration Certificate Number Lot I Manufacturer Manufacturer Mode PR Instrument Instrument Mode PR Instrument Controlle Indicator Indicator | Loop Tag Number 25FFY081 nent Information lel Number MATE 1143 ration Date 10/2014 1el Number 87-V ration Date 25/2015 Gas Information 1 Number Serial Number 25/2015 3/25/2016 Gas Information 1 Number 1 Serial Number 25/2016 Gas Type 1 Number 2 Gas Type 2 Serial Number 3 Serial Number 4 Serial Number 4 Serial Number 5 Serial Number 6 Serial Number 1 | |--|--| | Manufacturer Mode TRANSMATION CALM Calibration Certificate Number Calibra 117293 6/1 Manufacturer Mode FLUKE SCALIBRATION CALIBRATION Calibration Certificate Number Certific | nent Information lel Number Serial Number MATE 1143 10656017 cration Date Calibration Due Date 10/2014 6/10/2015 lel Number Serial Number 87-V 95840449 cration Date Calibration Due Date 125/2015 3/25/2016 Gas Information t Number Gas Type t Number Gas Type nt Information lel Number Serial Number 4116 * ment Type | | Manufacturer Mode TRANSMATION CALM Calibration Certificate Number Calibra 117293 6/1 Manufacturer Mode FLUKE Calibration Certificate Number Calibra 123129 3/2 Calibration Certificate Number Calibra Manufacturer Lot I Manufacturer Lot I Manufacturer Mode PR Instrumen Transmitter Controlle Transducer Indicator | Serial Number Serial Number MATE 1143 | | TRANSMATION CALM Calibration Certificate Number Calibra 117293 6/1 Manufacturer Mode FLUKE Calibration Certificate Number Calibra 123129 3/2 Calibration Calibration Calibra Manufacturer Lot I Manufacturer Lot I Manufacturer Mode PR Instrumen Transmitter Controlle Transducer Indicator | MATE 1143 ration Date Calibration Due Date (10/2014 6/10/2015 Rel Number 87-V 95840449 ration Date Calibration Due Date (25/2015 3/25/2016 Gas Information Number Gas Type The Information Rel Number Serial Number Serial Number Gas Type The Information Rel Number Serial Number Serial Number 4116 * ment Type | | Calibration Certificate Number 6/1 117293 6/1 Manufacturer Mode FLUKE Calibration Certificate Number Calibration | ration Date 10/2014 6/10/2015 lel Number 87-V 95840449 ration Date 25/2015 Gas Information Number Ration Ra | | Manufacturer Mode FLUKE Calibration Certificate Number Calibration Certificate Number 123129 3/2 Calibration Certificate Number Calibration Certificate Number Calibration Certificate Number 123129 3/2 Manufacturer Lot Instrumen Manufacturer Mode PR Instrumen Indicator Indica | 10/2014 | | Manufacturer Mode FLUKE Calibration Certificate Number Calibration Celibration | lel Number Serial Number 87-V 95840449 ration Date Calibration Due Date 25/2015 3/25/2016 Gas Information t Number Gas Type t Number Gas Type nt Information lel Number Serial Number 4116 * ment Type | | FLUKE Calibration Certificate Number 123129 3/2 Calibration C Manufacturer Lot I Manufacturer Instrumen Manufacturer Mode PR Instrum Transmitter Transducer Indicator | 87-V 95840449 ration Date Calibration Due Date 25/2015 3/25/2016 Gas Information t Number Gas Type Number Gas Type nt
Information lel Number Serial Number 4116 * Iment Type | | Calibration Certificate Number Calibration Certificate Number 3/2 3/2 Calibration Certificate Number Calibration Certificate Calibration Certificate Calibration Certificate Calibration Certificate Certificat | ration Date Calibration Due Date 3/25/2015 Gas Information Number Gas Type Number Gas Type The Information Serial Number 4116 ment Type | | Calibration G Manufacturer Lot I Manufacturer Lot I Instrumen Manufacturer Mode PR Instrum Instrumen Controlle Transmitter Controlle Indicator | 25/2015 3/25/2016 Gas Information t Number Gas Type Number Gas Type nt Information lel Number Serial Number 4116 * ment Type | | Manufacturer Lot I Manufacturer Lot I Instrumen Manufacturer Mode PR Instrum Instrumen Controlle Transmitter Controlle Indicator | Gas Information Number Gas Type Number Gas Type It Number Gas Type Int Information Iel Number Serial Number 4116 * Iment Type | | Manufacturer Lot I Manufacturer Lot I Instrumen Manufacturer Mode PR Instrum Instrumen Controlle Transmitter Controlle Indicator | Number Gas Type Number Gas Type It Number Gas Type It Information Itel Number Serial Number 4116 * Iment Type | | Manufacturer Lot I Instrumen Manufacturer Mode PR Instrum Instrum Controlle Transducer Indicator | nt Information lel Number Serial Number 4116 * ment Type | | Instrumen Manufacturer Mode PR Instrum Instrum Controlle Transmitter Indicator | nt Information lel Number Serial Number 4116 * Iment Type | | Instrumen Manufacturer Mode PR Instrum Instrum Controlle Transducer Indicator | nt Information lel Number Serial Number 4116 * Iment Type | | Manufacturer Mode PR Instrum Transmitter Controlle Transducer Indicator | lel Number Serial Number 4116 * ment Type | | PR Instrum Transmitter Controlle Transducer Indicator | # ment Type | | Transmitter Controlle Transducer Indicator | ment Type | | Transmitter Controlle Transducer Indicator | | | Transmitter Controlle Transducer Indicato | | | Range 20-Apr Eng Units | | | | MA Input MA Output M | | % of Pange Simulated V | Value Quinut As Found Quinut As Le | | 70 01 1101180 | | | | | | | | | | | | Point 5 100% 20.0 | 0.0 20.0 | | % of Range Simulated V Point 1 0% 4.0 Point 2 25% 8.0 Point 3 50% 12.0 Point 4 75% 16.0 | 0.0 4.0 0.0 8.0 0.0 12.0 | | | | | | | # NO₂ Converter Efficiency Test Client: NOx Gas Value: CEMS I.D.: Cylinder # By: NO₂ Gas Value: $\mathbf{C_0}$ Date: Cylinder # | Gas | Analyzer Mode | Analyzer | Cal. Corrected | Label | |-----------------|---------------|----------|----------------|-------| | 7 |) I O | | | | | Zero | NOx | | | | | Zero | NO | | | | | NO | NO | | | ; | | NO | NOx | | i | | | NO ₂ | NO | | | | | NO ₂ | NOx | | | | Label Requirement $CE = (C_a C_b)/C_a * 100\%$ - > 90% ## **RM Calibration Data** | Client: | | | |------------|--|--| | CEMS I.D.: | | | ## Thermal Oxidizer Date: By: | | High Span C | | al Oxidize | <u> </u> | Mid Spa | n Cylinde | <u> </u> | |-----------------|------------------------|----------------|-----------------|-----------------|---------|---------------|----------| | | Cylinder No. | | ntration | Cylind | ler No. | Concentration | | | Zero | | | | | | | | | 02 | | | | | | | | | CO ₂ | | - | | | | | | | NO _x | | | | | | | | | co | | | | | | | | | Parameter | | | | Analyzer | | _ | Status | | | | O ₂ | CO ₂ | NO _x | CO | | | | Analyzer R | | | | | | | | | Zero Gas C | Concentration | | | | | | | | High Gas (| Concentration | | | | | | | | Mid Gas C | oncentration | | | | | | | | Initial Rest | ponse, Zero | | | , | | | | | Initial Resp | ponse, High | | ! | | | | | | Initial Resp | oonse, Mid | | | | | | | | Final Resp | onse, Zero | | | | | | | | Final Resp | onse, High | | | i l | | | | | Final Resp | onse, Mid | | | , | | | | | Initial Erro | or (% of scale), Zero | | | | | | <2%F.S. | | Initial Erro | or (% of scale), High | | | | | | <2%F.S. | | Initial Erro | or (% of scale), Mid | | | | | | <2%F.S. | | Final Erro | r (% of scale), Zero | | | | | | <2%F.S. | | Final Erro | r (% of scale), High | | | | | | <2%F.S. | | Final Error | r (% of scale), Mid | | | <u> </u> | | | <2%F.S. | | Linearity a | t Mid Point, Pre-test | | | | | | <1%F.S. | | Linearity a | t Mid Point, Post-test | | | | | | <1%F.S. | Error Calculation: (Analyzer Response - Actual Span Value)/Range * 100% ## **Analyzers Semi-Annual Calibration Check** Analyzer S/N: 45099259898 **Test Date:** 3/14/2015 | O ₂ \ | /alue: | 22.50 | | | |------------------|------------------|-------------------|-----------------|-------------| | | of Full
Scale | Expected
Value | Actual
Value | % Deviation | | | 100 | 22.50 | 22.53 | 0.13 | | | 80 | 18.00 | 18.02 | 0.11 | | | 60 ` | 13.50 | 13.53 | 0.22 | | | 40 | 9.00 | 9.01 | 0.11 | | Pag | 20 | 4.50 | 4.52 | 0.44 | # Page 58 of 78 ## **Analyzers Semi-Annual Calibration Check** Analyzer S/N: 45099259898 Test Date: 3/14/2015 | CO2 Value: | 8.36 | | | |--------------------|-------------------|--------------|-------------| | % of Full
Scale | Expected
Value | Actual Value | % Deviation | | 100 | 8.36 | 8.35 | 0.12 | | 80 | 6.69 | 6.70 | 0.18 | | 60 | 5.02 | 5.05 | 0.68 | | 40 | 3.34 | 3.33 | 0.42 | | 20 | 1.67 | 1.68 | 0.48 | # Page 59 of 78 ## **Analyzers Semi-Annual Calibration Check** Analyzer S/N: 45099259898 Test Date: 3/14/2015 NOx Value: 22,2 | % of Full
Scale | Expected
Value | Actual Value | %
Deviation | |--------------------|-------------------|--------------|----------------| | 100 | 22.20 | 22.24 | 0.18 | | 80 | 17.76 | 17.80 | 0.23 | | 60 | 13,32 | 13.36 | 0.30 | | 40 | 8.88 | 8.90 | 0.23 | | 20 | 4.44 | 4.48 | 0.90 | ## **Analyzers Semi-Annual Calibration Check** Analyzer S/N: 45099259898 Test Date: 3/14/2015 | 85 | 5 | | |----------|---|--| | Expected | | | | Value | Actual Value | % Deviation | | 85.0 | 85.01 | 0.01 | | 68.0 | 68.14 | 0.21 | | 51.0 | 51.20 | 0.39 | | 34.0 | 34.15 | 0.44 | | 17.0 | 17.06 | 0.35 | | | Expected
Value
85.0
68.0
51.0
34.0 | Value Actual Value 85.0 85.01 68.0 68.14 51.0 51.20 34.0 34.15 | ### **Dry Gas Meter Calibration** ## **Dry Gas Meter Coefficient Calculations** Standard Meter Identification (S/N). Standard Dry Gas Meter Coefficient (Y--); Dry Gas Meter Identification (I.D.); Dry Gas Meter Identification (S/N); 1,0033 Apex-4 Date: Calib. by: Barometric Pressure (Pbar): Ambient Temperature (oF): 5/21/15 Walid M 29.93 64 Semiannual Bimonthly Other х | ny Cas | | | ` ' | | | | | Temperature | | | | |----------|--|--|---------|--------------|-------------|-----------|-----------|-------------|-----------|-------|--| | Арргох, | Total | | l | Refere | nce Dry Ga | s Meter | Fic | ld Dry Gas | Meter | | | | CFM | CF | | dH | | Moter Read | Time | Temp. Out | Meter Read | Timo | 9H@ | Yím | | Project. | | | in. H2O | (deg F) | (CF) | (min sec) | 63 | (CF) | (min:sec) | | | | | | Start | 0 27 | 76 | 17618 | 00 | 80 | 932.361 | 0,0 | | | | 0 25 | | End | 0 26 | 76 | 23,748 | 22.0 | 82 | 938.577 | 22.0 | 1.953 | 0.9977 | | | | Avg/Total | 0 27 | 76 | 6.130 | 22 0 | 81 | 6,216 | 22.0 | | | | | | Start | 0.27 | 77 | 23,748 | 0.0 | 83 | 938.577 | 00 | | | | 0,25 | | End | 0.26 | 78 | 29 878 | 22 0 | 84 | 944.804 | 22 0 | 1.955 | 0,9977 | | | | Avg/Total | 0 27 | 78 | 6.130 | 22 0 | 84 | 6,227 | 22 0 | | | | | | Start | 0 27 | 77 | 29 87B | 00 | 84 | 944.804 | 0.0 | | | | 0.25 | 1 | En4 | 0.26 | 78 | 36,008 | 22.0 | 85 | 951,042 | 22.0 | 1.951 | 0,9978 | | _ | | Avg/Total | 0.27 | 78 | 6.130 | 22.0 | 85 | 6 238 | 22.0 | | | | | | Start | 0.78 | 83 | 36.008 | 0.0 | 85 | 951.042 | 00 | | | | 0.5 | Ĺ | End | 0.78 | 84 | 43 283 | 15.0 | 86 | 958 370 | 15.0 | 1.940 | 0.9975 | | | | Avg/Total | 0.78 | 84 | 7.275 | 150 | 86 | 7.327 | 15.0 | | | | a | | Start | 0.78 | 84 | 43 283 | 0.0 | 87 | 958,3695 | 00 | | | | Page 61 | 1 | End | 0,78 | 85 | 51.528 | 17.0 | 88 | 966,6876 | 17.0 | 1.940 | 0.9977 | | | | Avg/Total | 0.78 | 85 | 8,245 | 17.0 | 88 | 8,318 | 17.0 | 1.7.0 | • | | of | | Start | 0.78 | 85 | 51.528 | 0.0 | 89 | 966 6876 | 00 | | | | | | End | 0.78 | 86 | 59,773 | 170 | 89 | 975,0142 | 17.0 | 1.942 | 0.9976 | | ≱։ | ļ | Avg/Total | 0,78 | 86 | 8.245 | 17.0 | 89 | 8,327 | 17.0 | 1.942 | 0.997 | | | | | | | | | | | | | | | | | Start | 188 | 87 | 59.773 | 0.0 | 90 | 975.0142 | 0.0 | | i | | 0.75 | | End | 1 88 | 88 | 67,333 | 10.0 | 91 | 982,6222 | 100 | 1.945 | 0.997 | | | \vdash | Avg/Total | 1.88 | 88 | 7,560 | 100 | 91 | 7 608 | 10,0 | | | | | | Start | 1 88 | 89 | 67.333 | 0.0 | 91 | 982 6222 | 0.0 | _ | | | 0 75 | | End | 1 88 | 90 | 74.913 | 10.0 | 92 | 990.2352 | 10.0 | 1.946 | 0.997 | | | - | Avg/Total | 1.88 | 90 | 7.580 | 10,0 | 92 | 7.613 | 10.0 | | | | | 1 | Start | 1.88 | 90 | 74.913 | 0.0 | 92 | 990.2352 | 0.0 | | | | 0.75 | | End | 1 88 | 91 | 82,503 | 10.0 | 92 | 997 8522 | 100 | 1.946 | 0.997 | | | ├ | Avg/Total | 1.88 | 91 | 7.590 | 10,0 | 92 | 7.617 | 10,0 | | | | | 1 | Start | 3.75 | 92 | 82.503 | 0.0 | 93 | 997.8522 | 0.0 | | | | 1.00 | | End | 3,75 | 93 | 90,063 | 7.0 | 94 | 1005,3982 | 7.0 | 1.944 | 0,997 | | | | Avg/Total | 3.75 | 93 | 7.560 | 7.0 | 94 | 7 546 | 7.0 | | <u> </u> | | | | Start | 3.75 | 94 | 90 063 | 00 | 94 | 1005.3982 | 0.0 | | | | 1.00 | 1 | End | 3.75 | 95 | 97.643 | 7.0 | 95 | 1012.9498 | 7,0 | 1.944 | 0.997 | | | <u>L</u> | Avg/Total | 3.75 | 95 | 7.580 | 7.0 | 95 | 7.552 | 7.0 | | <u></u> | | | 1 | Start | 3.75 | 95 | 97.643 | 00 | 95 | 1012.9498 | 0.0 | | | | 1.00 | 1 | End | 3.75 | 96 | 105,238 | 7.0 | 96 | 1020,5098 | 7.0 | 1.940 | 0 998 | | | 1 | Avg/Total | 3.75 | 96 |
7.595 | 70 | 96 | 7 56 | 7.0 |] | 1 | | Approx. | | | Reference | Dry Gas | Meter |] | | | | | | | |-----------|-----|---------------------|------------|-----------|------------|---|----------------------------------|-------------------|----------------|--------------------|--|--| | Flow Rate | RUN | Flow Rate | Average Me | ter | Corr. Flow | 1. For Non | Temperature C | compensated | Dry Gas Meter: | | | | | Projected | Ю | Qrm | Temp. | | Rate Q'rm | Q'ma = Qma [5 | 20/(460+T)] (Pbar | /29.92) | • | | | | | (cfm) | | (cfm) | (oF) | | (scfm) | or | | | | | | | | | 1 | 0 2786 | 76 0 | | 0.2713 | Q'fm = Qfm [520/(460+T)] {[Pbar+(dP/13.6)]/29,92} | | | | | | | | 0 25 | 2 | 0 2786 | 77 5 | | 0.2705 | 2. For Temperature Compensated Dry Gas Meter: | | | | | | | | | 3 | 0 2786 | 77.5 | | 0.2705 | | | | | | | | | | 1 | 0.4850 | 83,5 | - | 0,4657 | | Q'std = Qds{Pbar | +(dP/13.6)]/29.9: | 2) | | | | | 0.5 | 2 | 2 0 4850 84,5 | | | 0.4649 | , | | | | | | | | | 3 | 0.4850 | 85,5 | | 0,4640 | 3. Yds = Q'rm/Q'fm | | | | | | | | | | 0,7560 | 87.5 | | 0.7207 | 207 Criteria * and ** must be satisfied before caculating | | | | | | | | 0.75 | 2 | 0.7580 | 89.5 | | 0.7199 | Yds and Y ds | | | | | | | | | 3 | 0 7590 | 90.5 | | 0.7196 | | | | | | | | | | 1 | 1.0800 | 92 5 | | 1 0202 | | | | | | | | | 1.00 | 2 | 1.0829 | 94.5 | | 1.0192 |] | | | | | | | | | 3 | 1,0850 | 95.5 | | 1.0194 | İ | | | | | | | | Approx. | | Field Dry Gas Meter | | | | | | | | | | | | Flow Rate | RUN | Flow Rate | Average M | eter | Corr. Flow | Coefficient | oufficient (Yds max Average dH@< | | | | | | | Projected | NO. | Qím | Temp. | ďН | Rate Q'fin | Yfm< | Yds min.) < | Coefficient | (dH@+ | 0.98 < (Yds/Yds) < | | | | _(cfm) | | (cfm) | (oF) | (in. H2O) | (scfm) | (1+0.05)* | 0 010 ** | Yds | 0.15) | 1,02 | | | | | ı | 0.2825 | 81.0 | 0 27 | 0 2719 | 0.9977 | | | | | | | | 0.25 | 2 | 0 2830 | 83 5 | 0 27 | 0,2712 | 0.9977 | 0.0001 | 0.998 | 1.953 | 1,000 | | | | | 3 | 0.2835 | 84.5 | 0.27 | 0.2711 | 0.9978 | | | | | | | | | 1 | 0 4885 | 85 5 | 0,78 | 0.4669 | 0.9975 | | | • | | | | | 0.50 | 2 | 0 4893 | 87.5 | 0.78 | 0 4659 | 0 9977 | 0.0002 | 0.998 | 1.940 | 1.000 | | | | 1 | 3 | 0.4898 | 89.0 | 0.78 | 0.4651 | 0 9976 | | | | · | | | | | 1 | 0.7608 | 90.5 | 1.88 | 0.7225 | 0.9975 | | | | | | | | 0.75 | 2 | 0.7613 | 91.5 | 1.88 | 0.7216 | 0.9976 | 0.0002 | 0.998 | 1.946 | 1.000 | | | | | 3 | 0 7617 | 92 0 | 1.88 | 0.7214 | 0 9975 | | | | ļ | | | | | 1 | 1,0780 | 93.5 | 3.75 | 1.0228 | 0,9975 | | | | | | | | 1.00 | 2 | 1 0788 | 94.5 | 3.75 | 1 0217 | 0 9975 | 0.0010 | 0.998 | 1.943 | 1.000 | | | | | 3 | 1.0800 | 95.5 | 3.75 | 1.0210 | 0.9984 | | | | | | | Average dH @= 1.95 Yds =0.998 ## S-Type Pitot Calibration, Wind Tunnel Date: 5/21/15 Amb. Temperature: 64 degrees F Pitot ID: PT-4 **Barometric Pressure:** 29.93 Calibrated by: Wally M | | SIDE "A" CALIBRATION | | | | | | | | | | |-----|-----------------------|-----------------------|-------|---------------|--|--|--|--|--|--| | Run | Std. Pitot dP | S-Type dP | Ср | Deviation | | | | | | | | # | (in H ₂ O) | (in H ₂ O) | (S) | Cp(S) - Cp(A) | | | | | | | | 1a | 0.024 | 0.034 | 0.840 | -0.001 | | | | | | | | 1b | 0.024 | 0.034 | 0.840 | -0.001 | | | | | | | | 1c | 0.024 | 0.034 | 0.840 | -0.001 | | | | | | | | 2a | 0.051 | 0.072 | 0.842 | 0.000 | | | | | | | | 2b | 0.051 | 0.072 | 0.842 | 0.000 | | | | | | | | 2c | 0.051 | 0.072 | 0.842 | 0.000 | | | | | | | | 3a | 0.110 | 0.155 | 0.842 | 0.001 | | | | | | | | 3b | 0.110 | 0.155 | 0.842 | 0.001 | | | | | | | | 3c | 0.110 | 0.155 | 0.842 | 0.001 | | | | | | | Side "A" average, Cp(A) = 0.84 Average deviation, d= 0.001 Is $d \le 0.01$? Yes | | SIDE "B" CALIBRATION | | | | | | | | | | |----------|-----------------------|-----------------------|-------|---------------|--|--|--|--|--|--| | Run | Std. Pitot dP | S-Type dP | Ср | Deviation | | | | | | | | # | (in H ₂ O) | (in H ₂ O) | (S) | Cp(S) - Cp(B) | | | | | | | | 1a | 0.024 | 0.034 | 0.840 | -0.002 | | | | | | | | 1b | 0.024 | 0.034 | 0.840 | -0.002 | | | | | | | | 1c | 0.024 | 0.034 | 0.840 | -0.002 | | | | | | | | 2a | 0.046 | 0.065 | 0.844 | 0.002 | | | | | | | | 2b | 0.046 | 0.065 | 0.844 | 0.002 | | | | | | | | 2c | 0.046 | 0.065 | 0.844 | 0.002 | | | | | | | | 3a | 0.060 | 0.085 | 0.840 | -0.002 | | | | | | | | 3b | 0.060 | 0.084 | 0.845 | 0.003 | | | | | | | | 3c | 0.060 | 0.085 | 0.840 | -0.002 | | | | | | | Side "B" average, Cp(B) = 0.84 Average deviation, d= 0.002 Is $d \le 0.01$? Yes Actual Calculated Pitot Coefficient (Cp) = 0.84 Difference between "A" and "B", d = |Cp(A) - Cp(B)| = 0.001 Is $d \le 0.01$? Yes Note: Triplicate runs at 3 flow rates are required. ## Thermocouple Calibration Sheet Semi Annual Date: 5/21/2015 I.D. Number: TC-4 Performed by: Wally M | | Hg. in Glass Thermometer, °F | | | | Temp. Sensor °F | | | | Difference | | |---------------|------------------------------|-------|-------|-------|-----------------|-------|-------|-------|---------------|------| | | 0 min | 1 min | 2 min | avg. | 0 min | 1 min | 2 min | avg. | Absolute Diff | % | | Ice | 32.1 | 32.2 | 32.1 | 32.1 | 32.3 | 32.3 | 32.3 | 32.3 | 0.2 | 0.52 | | Ice | 32.1 | 32.2 | 32.1 | 32.1 | 32.3 | 32.3 | 32.3 | 32.3 | 0.2 | 0.52 | | Ice | 32.1 | 32.2 | 32.1 | 32.1 | 32.3 | 32.3 | 32.3 | 32.3 | 0.2 | 0.52 | | Boiling Water | 211.3 | 212.3 | 212.3 | 212.0 | 211.6 | 212.1 | 212 | 211.9 | 0.1 | 0.03 | | Boiling Water | 211.3 | 212.3 | 212.3 | 212.0 | 211.6 | 212.1 | 212 | 212.1 | 0.1 | 0.06 | | Boiling Water | 212.3 | 212.3 | 212.3 | 212.3 | 212.6 | 212.2 | 212 | 212.3 | 0.0 | 0.02 | | Boiling Oil | 386 | 387 | 387 | 386.7 | 386 | 387 | 387 | 386.7 | 0.0 | 0.00 | | Boiling Oil | 386 | 387 | 387 | 386.7 | 386 | 387 | 387 | 386.7 | 0.0 | 0.00 | | Boiling Oil | 386 | 387 | 387 | 386.7 | 386 | 387 | 387 | 386.7 | 0.0 | 0.00 | Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014 ## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS Customer & Order Information: PRAXAIR WHSE SANTA ANA CA 1545 E EDINGER AVE SANTA ANA CA 927050 Praxair Order Number: 28611425 Customer P. O. Number: 05123138 Customer Reference Number: Fill Date: Pari Number: 9/20/2014 NI CD8.504E-AS Lot Number: 109426305 Cylinder Style & Ontlet: Cylinder Pressure & Volume: CGA 590 AS 2000 psig 140 cu. ft. #### Certified Concentration: | Expiration Date:
Cylinder Number: | | | 9/24/2022
CC50182 | NIST Traceable Analytical Uncertainty: | | | |--------------------------------------|------|---------|----------------------|--|--|--| | * | 8.36 | % | CARBON DIOXIDE | ± 0.4 % | | | | | 22.5 | % | OXYGEN | ± 0.3 % | | | | | | Balance | NITROGEN | | | | Certification Information: Certification Date: 9/24/2014 Term: 96 Months Expiration Date: 9/24/2022 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. O2 responses have been corrected for CO2 interference. #### Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: CARBON DIOXIDE Requested Concentration: Certified Concentration: 8 36 % Instrument Used: Honba VIA-510 S/N 2807014 Analytical Method: NDIR Last Multipoint Calibration: 9/3/2014 | | | | | | | *** | | | |------|----------|--------|-----------|-----|--------|--------|-----------|--| | Firs | t Analys | la Dat | a: | | | Date: | 9/24/2014 | | | Z: | 0 | R: | 9.87 | C: | 8.36 | Conc: | 8 363 | | | R: | 9 86 | Z: | 0 | C: | 8.36 | Conce | 8.353 | | | Z: | 986
0 | C: | 0
8.36 | R: | 9 87 | Conc: | 8.383 | | | UOM | | | | Mea | o Test | Agsav: | 8 363 % | | 2. Component: OXYGEN Requested Concentration: 225% Certified Concentration: 225% Instrument Used: Analytical Method: Last Multipoint Calibration: OXYMAT 5E PARAMAGNETIC 9/19/2014 First Analysis Data: 9/24/2014 Û R; 20.9 22.531 Z: C: 22,52 Conc: 20.9 22,52 22.531 Z: 0 C; 22.52 R; 20.9 Conc: 22,531 % 22.531 % UOM: Mean Test Assay: Analyzed by: Reference Standard Type: GMIS SA17695 Ref. Std. Cylinder # : Ref. Std. Conc. 9 87% Ref Std. Traceable to SRM #: 16745 SRM Sample # SRM Cylinder # ; FF10631 | Seco | nd Ana | dysia D | ata; | | | Date: | · · · · · · · · · · · · · · · · · · · | |----------|--------|---------|------|------|--------|--------|---------------------------------------| | Z: | 0 | R: | C | C: | ٥ | Conc; | 0 | | Z:
R: | 0 | Z; | 0 | C; | O | Conc: | 0 | | Z: | D | C: | Q | R: | 0 | Conc: | a | | UOM | : % | | | Mean | n Test | Assay: | 0 % | Reference Standard Type: GMIS Ref. Std. Cylinder#: SA18070 Ref. Std. Conc: 20.91 % Ref. Std. Traceable to SRM # : 2659a SRM Sample #; 71-E-19 SRM Cylinder # : Second Analysis Data: Date: R: 0 C: a Conc: Conc: 0 G: 0 R: 0 Conc: цом: % Mean Test Assay: 0 % FF22331 Certified by: information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical dehods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information con tained herein exceed the fee established for providing such information. Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014 ## CERTIFICATE OF ANALYSIS/EPA PROTOCOL GAS Customer & Order Information: PRAXAIR WHSE SANTA ANA CA 1545 E EDINGER AVE SANTA ANA CA 927050 Praxair Order Number: 29103057 Customer P. O. Number: 05197636 Customer
Reference Number: Fill Date: Part Number: 11/3/2014 EV NICDOXE78-AS Lot Number: Cylinder Style & Outlet: AS 109430702 CGA 590 Cylinder Pressure & Volume: 2000 psig 140 cu.ft. #### Certified Concentration: | Expiration Date
Cylinder Number | | 11/10/2022
CC333865 | NIST Traceable
Analytical Uncertainty: | |------------------------------------|--------------|------------------------|---| | 5.01 | % | CARBON DIOXIDE | ± 0.6 % | | 10.01 | %
Balance | OXYGEN
NITROGEN | ± 0.4 % | Certification Information: Certification Date: 11/10/2014 Term: 96 Months Expiration Date: 11/10/2022 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. O2 responses have been corrected for CO2 interference. Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: CARSON DIOXIDE Requested Concentration: Certified Concentration: 5.01 % testrument Used: Horiba VIA-510 S/N 2807014 Analytical Method: Last Multipoint Calibration: | | Date: | 11/10/2 | |------------|-------|---------| | 10/31/2014 | | | | NDIR | | | | First | t Analys | s Dat | a; | | | Date: | 11/10/2014 | |-------|-----------|-------|------|-----|--------|--------|------------| | Z: | 0 | R: | 9.87 | C: | 5.01 | Conc: | 5.013 | | R: | 0
9.86 | Z: | 0 | C: | 5 0 1 | Conc: | 5.013 | | Z: | 0 | C: | 5.01 | R: | 9.86 | Conc; | 5.013 | | uon | A: % | | | Hea | n Test | Assay: | 5.013 % | 2. Component: OXYGEN Requested Concentration: Certified Concentration: Instrument Used: Analytical Method: Last Multipoint Calibration: 10.01 % OXYMAT SE PARAMAGNETIC 10/17/2014 | l | First / | Inalysi | s Dat | 2: | | - | Date: | 11/10/2014 | |---|---------|---------|-------|-------|-----|----------|--------|------------| | Ì | Z: | 0 | R: | 5 | C: | 10.01 | Conc | 10.01 | | ļ | R: | 5 | Z: | ٥ | C; | 10.01 | Conc | 10.01 | | ı | Z: | 0 | C: | 10.01 | R: | 5 | Cone: | 10,01 | | Į | UOM: | % | | | Mea | n Test / | lssay: | 10.01 % | Analyzed by: Reference Standard Type: Ref. Std. Cylinder #: GMIS SA17695 Ref. Std. Conc. 9.87% Ref. Std. Tracsable to SRM # : 16745 SRM Sample #: 7-H-07 SRM Cylinder #: FF10631 | Seco | nd Ana | dysia D | ala: | | | Date: | | |------|--------|---------|------|------|------|--------|----| | Z: | 0 | R: | 0 | C: | ā | Conc: | 0 | | R: | 0 | Z: | 0 | C: | 0 | Conc: | 0 | | Z: | 0 | C: | 0 | R: | 0 | Conc: | 0 | | HON | : % | | | Mean | Test | Assay: | 0% | Reference Standard Type: **GMIS** Ref. Std. Cylinder #: CC240877 Ref. Std. Conc: 5,00% Ref. Std. Traceable to SRM#: 2658a SRM Sample # : 72-D-28 SRM Cylinder # : CAL016862 | Seco | nd Ana | iyais Q | ata: | | | Date: | | |-----------|--------|---------|------|------|------|--------|----| | Z: | 0 | R: | 0 | C: | 0 | Conc: | a | | R: | O | Z: | 0 | C: | 0 | Conet | 0 | | Z: | 0 | C: | 0 | R: | 0 | Conc: | 0 | | UOM | : % | | | Mear | Test | Assay: | 0% | Certified by: Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014 ## *CERTIFICATE OF ANALYSIS/EPA PROTOCOL* Customer & Order Information: PRAXAIR WHSE SANTA ANA CA 1545 E EDINGER AVE SANTA ANA CA 927050 Proxair Order Number: 27364804 Customer P. O. Number: 04935077 Customer Reference Number: Fill Date: Part Number: 3/17/2012 NI NOS SME-AS Lot Number: Cylinder Style & Ontlet: 109207704 AS Cylinder Pressure & Volume: **CGA 660** 1000 psig 70 cu ft. Certified Concentration: Expiration Date: Cylinder Number: 5/20/2017 CC169749 NIST Traceable Analytical Uncertainty: ppm NITRIC OXIDE ± 1.1 % Balance NITROGEN NO× = 8,20 NOx for Reference Only Certification Information: Certification Date: 5/20/2014 Term: 36 Months Expiration Date: 5/20/2017 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: NITRIC OXIDE Requested Concentration: Certified Concentration: Instrument Used: 8.5 ppm 6.16 ppm Therivo Electron 42i-LS S/N 1030645077 Analytical Method: Last Multinoint Calibr Chemiluminescence 4/21/2014 Reference Standard Type: GMIS Ref. Std. Cylinder # . CC335945 10,07 ppm Ref. Std. Conc. Ref. Std. Traceable to SRM #: 2629a SRM Sample #: SRM Cylinder#: 50-G-109 FF31631 | Fire | t Analysi | is Dat | 2; | | | Date: | 5/20/2014 | |------|-----------|--------|-------|-----|----------|--------|-----------| | Z: | 0 | R: | 10.07 | C: | 8,16 | Conc: | 8.16 | | R: | 10.07 | Z: | 0 | C: | 8.16 | Conc: | 8,16 | | Z: | 0 | C: | 8.17 | R: | 10.07 | Conc: | 8.17 | | UOI | å: por | 0 | | Mes | n Test / | LEBBY: | 8.163 ppm | Analyzed by: Second Analysis Data: Date: 0 R: 0 C: 0 Conc: 0 R; a Z: ٥ C: n Conce Ω 0 0 Z: ٥ C: R: Conc 0 UOM: ррт Mean Test Assay: 0 ррт Certified by Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014 ## CERTIFICATE OF ANALYSIS/EPA PROTOCOL GAS Customer & Order Information: PRAXAIR WHSE SANTA ANA CA 1545 E EDINGER AVE SANTA ANA CA 927050 Praxair Order Number: 26792886 Customer P. O. Number: 04850910 Customer Reference Number: Fill Date: Cylinder Pressure & Volume: 12/29/2011 Part Number: NI NO4ME-AS Lot Number: Cylinder Style & Outlet: AS 109136306 CGA 660 1000 psig 70 cu. ft. ### **Certified Concentration:** | Expiration Date |): | 3/31/2017 | NIST Traceable | |------------------------|-----|--------------|-------------------------| | Cylinder Number: | | CC331147 | Analytical Uncertainty: | | 3.98 | ppm | NITRIC OXIDE | ± 1.2 % | | Balance | | NITROGEN | | NOx ≈ 4.02 ppm NOx for Reference Only Certification Information: Certification Date: 3/31/2014 Term: 36 Months Expiration Date: 3/31/2017 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. #### Last certified concentration was 3.98 ppm Nitric Oxide on 01/23/2012 #### Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: NITRIC OXIDE Requested Concentration: Certified Concentration: 3.98 ppm Instrument Used: Analytical Method Themo Electron 42i-LS S/N 1030645077 Chemiluminescence | | mostopou i | | | - | L 112017 | | | |------|------------|-------|------------|-----|----------|-------|-----------| | Fire | t Analys | s Dat | a : | | | Date: | 3/31/2014 | | Z: | ٥ | R: | 10,07 | C: | 3,98 | Conc: | 3.98 | | R: | 10 07 | Z: | a | C: | 3.97 | Conc: | 3.97 | | Z: | a | C; | 3.98 | R: | 10 07 | Conc; | 3.98 | | 1101 | it non | | | Mas | o Toet A | | 3 977 mm | Analyzed by(Reference Standard Type GMIS Ref. Std. Cytinder #; CC335945 10.07 ppm Ref. Std. Conc. Ref. Std. Traceable to SRM#: 2629a SRM Sample #: 50-G-109 SRM Cylinder #: FF31631 Second Analysis Data: Date: Z: 0 R: 0 C: Conc: R: ۵ Z: 0 C: a Conc: a 2: 0 C: R: ٥ Conc: UOM: ρрπ Mean Test Assay: Оррга Certified by: Praxeir 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax: (714) 542-6689 PGVPID: F22014 ## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS Customer & Order Information: PRAXAIR WHSE SANTA ANA CA 1545 E EDINGER AVE SANTA ANA CA 927050 Praxair Order Number: 28667509 Customer P. O. Number: 05132093 Customer Reference Number: Fill Date: 9/18/2014 NI NO22ME-AS Part Number: Los Number: 109426103 A\$ Cylinder Style & Outlet: Cylinder Pressure & Volume: 2000 psig 140 cu. ft. Certified Concentration: **Expiration Date:** Cylinder Number: 10/1/2017 CC204933 NIST Traceable Analytical Uncertainty: NITRIC OXIDE 21.9 ppm Balance NITROGEN NOx = 22.0 ppm NOx for Reference Only **GMIS** CC363337 Certifcation Information: Certification Date: 10/1/2014 Term: 36 Months Expiration Date: 10/1/2017 ±1% This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. Analytical Data: Z: 0 R: Z; 0 UOM: ppm (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: NITRIC OXIDE 19.9 Requested Concentration: **Certified Concentration:** 21 9 ppm Mean Test Assay: Instrument Used: Analytical Method: Last Multipoint Calibration: 22 ppm Themo Electron 42I-LS S/N 1030645077 Chemituminescence First Analysis Data: R: 19.9 Z: 0 9/16/2014 Date: 9/24/2014 C: 219 Conc: 21.9 C: 219 21.9 Conc: R: 19,9 21,9 Conc: Analyzed by: adeles 21.9 ppm Reference Standard Type: Ref. Std. Cylinder # : Ref. Std. Conc. 19,9 ppm Ref. Std. Traceable to SRM #: 2629a SRM Sample #: 50-G-109 SRM Cylinder #: FF31631 10/1/2014 Second Analysis Data: Date: 21,9 Conca 21.9 R: 19.9 19.9 Z: O C: 21.8 21.8 R: Conc: Z: 0 21 9 R: 19.9 Conc: 21.9 UOM: ppm Mean Test Assay: 21,867 ppm Certified by: Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014 ## CERTIFICATE OF ANALYSIS/EPA PROTOCOL GAS Customer & Order Information: PRAXAIR WHSE SANTA ANA CA 1545 E EDINGER AVE SANTA ANA CA 927050 Praxair Order Number: 26621241 Customer P. O. Number: 04824911 Customer Reference Number: Fill Date: Part Number: 3/27/2014 AI NX16ME-AS Lot Number: Cylinder Style & Outlet: AS 109408605 Cylinder Pressure & Volume: CGA 660 2000 psig 140 cu, ft. #### Certified Concentration: | Expiration Date: | 4/7/2017 | NIST Traceable | | | |---------------------|---------------------------|------------------------|--|--| | Cylinder Number: | CC2188 | Analytical Uncertainty | | | | 16.1 ppm
Balance | NITROGEN DIOXIDE (as NOx) | ± 1.8 % | | | | | | | | | NO = 0.1 ppm NO for Reference Only Certification Information: Certification Date: 4/7/2014 Term: 36 Months Expiration Date: 4/7/2017 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is
less than 100 PSIG. Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: NITROGEN DIOXIDE (as NOx) Requested Concentration: 16 ppm Certified Concentration 16.1 ppm Instrument Used: Thermo Env. 42:-HL Analytical Method: Chamiliuminescence Last Multipoint Calibration: 3/21/2014 First Analysis Date: Date: 3/31/2014 Z: 0 R: 947 C: 15.88 Conc: 18,132 Z: 0 C: 15.98 94.6 Conc: 16.213 R: R: 948 Conc: 16.172 Z: 0 UOM: Mean Test Assay: 16.172 ppm рρπ Analyzed by: Reference Standard Type: GMIS CC163565 Ref. Std. Cylinder#: Ref. Std. Conc: 96.2 ppm Ref. Std. Traceable to SRM#: 2660a SRM Sample #: 2660-C-45 SRM Cylinder # : CAL016162 Second Analysis Data: 4/7/2014 Z: 0 R: 94.6 C: 15 84 Conc: 16.097 Z: 0 R: 94.8 C: 15.86 16.117 Conc: a C; 15.83 94.6 Z: R± 16,086 Conc: UOM: 16.1 ppm ppm Certified Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information con tained herein exceed the (see established for providing such information. Praxair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014 ## CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS Customer & Order Information: PRAXAIR WHSE SANTA ANA CA 1545 E EDINGER AVE SANTA ANA 927050 Praxair Order Number: 28425785 Customer P. O. Number: 05094198 Customer Reference Number: FIII Date: Part Number: 9/11/2014 NI CO42.5ME-AS Lot Number: 109425403 AS Cylinder Style & Ontlet: Cylinder Pressure & Volume: 2000 psig 140 cu. ft. **CGA 350** #### Certified Concentration: | Expiration Date:
Cylinder Number: | 9/15/2022
CC15365 | NIST Traceable Analytical Uncertainty: | |--------------------------------------|-------------------------------------|--| | • | pm CARBON MONOXIDE
ance NITROGEN | ± 0.4 % | Certification Information: Certification Date: 9/15/2014 Term: 96 Months Expiration Date: 9/15/2022 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: CARBON MONOXIDE Requested Concentration: 42 5 ppm Certified Concentration: 42.1 ppm Instrument Used: Honba VIA-510, S/N 577172043 Analytical Method: Last Multipoint Calibration: NDIR 8/20/2014 | First | Analys | is Dat | a: | | | Date: | 9/15/2014 | | |-------|--------|--------|------|-----|--------|--------|------------|--| | Z: | 0 | R: | 49.9 | C: | 42 | Conc: | 42.056 | | | R: | 50 | Z: | 0 | C: | 421 | Conc: | 42.156 | | | Z: | Q | C: | 42.1 | R: | 49.9 | Conc: | 42,156 | | | מחוו | l: no | m | | Mea | n Test | Вавли: | 42 123 ppm | | Analyzed by: Reference Standard Type. GMIS Ref. Std. Cylinder #: CC243411 Ref. Std. Conc. 50.0 ppm 1678c Ref. Std. Traceable to SRM #: SRM Sample #: 04-L-41 SRM Cylinder #; FF18402 | | Seco | | | | | | | | |---|----------------|---|----------|---|------|--------|---------|-------| | į | Z:
R:
Z: | 0 | R: | 0 | C: | 0 | Conc: | 0 | | | R: | 0 | Z:
C: | 0 | C: | 0 | Conc: | 0 | | | Z: | 0 | C: | 0 | R: | 0 | Conc: - | 0 | | | UOM: | | | | Mear | ı Test | Assay: | 0 ррт | Certified by: CA 927050 Pravair 5700 South Alameda Street Los Angeles, CA 90058 Tel: (323) 585-2154 Fax:(714) 542-6689 PGVPID: F22014 # CERTIFICATE OF ANALYSIS/EPA PROTOCO Customer & Order Information: PRAXAIR WHSE SANTA ANA CA 1545 E EDINGER AVE SANTA ANA Praxair Order Number: 26525703 Customer P. O. Number: 04811777 Customer Reference Number: Fill Date: Part Number: 3/5/2014 NI CO22ME-AS Lot Number: 109405708 Cylinder Style & Outlet: AS Cylinder Pressure & Volume: 2000 psig 140 cu. ft. CGA 350 #### Certified Concentration: | NIST Traceable Analytical Uncertainty: | | | |--|--|--| | Analytical Uncertainty. | | | | ± 0.7 % | | | | | | | | | | | Certification Information: Certification Date: 3/10/2014 Term: 96 Months Expiration Date: 3/10/2022 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Do Not Use this Standard if Pressure is less than 100 PSIG. Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) 1. Component: CARBON MONOXIDE Requested Concentration: Certified Concentration: 22.4 ppm Honba VIA-510, S/N 577172043 Instrument Used: Analytical Method: Last Multipoint Calibration: NOIR 2/20/2014 First Analysis Data: 3/10/2014 Date: 0 R: 24.7 C: 22.4 22.461 Conc: 24 6 22,3 Conc 22.38 C; Z: 0 C: 22.3 R: 24.6 22,36 HOM: ppm Mean Test Assay: 22.394 ppm Analyzed by: Reference Standard Type: Ref. Std. Cylinder #: CC147286 Ref. Std. Conc. 24.7 ppm Ref. Std. Traceable to SRM #: 2635a SRM Sample ≇: 58-C-32 SRM Cylinder#: CAL011907 | Second Analysis Date: Date: | | | | | | | | | |-----------------------------|------|----|---|------|------|--------|-------|--| | Z: | 0 | R: | 0 | C: | 0 | Conc | 0 | | | R: | 0 | Z; | 0 | C: | 0 | Conc: | a | | | Z: | 0 | C: | 0 | R: | 0 | Conc: | 0 | | | UOM: | : PP | m | | Mear | Test | Assay: | 0 ppm | | Jacquelyné Figra GMIS Certified by: information contained herein has been prepared at your request by qualified experts within Praxelr Distribution, Inc. While we believe that the information is accurate within the limits of the analytical in nethods employed and is complete to the extent of the specific analyses performed, we make no warrantly or representation as to the suitability of the use of the information for any purpose. The information the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxeir Distribution, Inc., arising out of the use of the information con tained herein exceed the fee established for providing such information. Section H Page 15 Facility I.D. #: 029110 Revision #: 05 Date: October 17, 2013 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ## PERMIT TO CONSTRUCT A/N 545004 Granted as of 10/17/2013 **Equipment Description:** MODIFICATION TO BOILER, NO. 1 WITH PERMIT TO OPERATE D94235, BY THE REMOVAL OF THE EXISTING BURNER AND THE ADDITION OF A NEW BURNER, AMERICAN COMBUSTION TECHNOLOGY OR EQUAL, MODEL SLE-05-250 OR EQUAL, 10,205,800 BTU PER HOUR MAXIMUM, DIGESTER GAS AND NATURAL GAS (AS SECONDARY FUEL), AND REHABILITATION OF ANCILLARY EQUIPMENT. #### Conditions: - I. CONSTRUCTION AND OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS BOILER SHALL BE FIRED ON DIGESTER GAS AND OR NATURAL GAS ONLY. EXCEPT FOR PILOT GAS, NATURAL GAS SHALL ONLY BE USED IF DIGESTER GAS IS NOT AVAILABLE IN SUFFICIENT AMOUNT. [RULE 204] - 4. A FUEL METER SHALL BE INSTALLED AND MAINTAINED IN THE FUEL SUPPLY LINE(S) TO MEASURE, INDICATE AND RECORD THE AMOUNT OF FUEL(S) (SCFM) BURNED IN THIS EQUIPMENT. [RULE 1146, RULE 1303 (b) (2) OFFSET] - 5. WHEN IN OPERATION, TOTAL HEAT INPUT FOR THIS EQUIPMENT SHALL NOT EXCEED 10, 205, 800 BTU/HR. A DAILY LOG SHALL BE KEPT FOR FUEL USAGE, AND INDICATING FOR DIGESTER GAS THE TOTAL HEATING VALUE (BTU/SCF) OF FUEL BURNED IN THIS EQUIPMENT BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (2) OFFSET] - 6. THIS EQUIPMENT SHALL BE EQUIPPED WITH A CONTROL SYSTEM TO AUTOMATICALLY REGULATE THE COMBUSTION AIR AND FUEL RATE AS THE BOILER LOAD VARIES. THIS AUTOMATIC CONTROL SYSTEM SHALL BE ADJUSTED AND TUNED PERIODICALLY, ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS TO ASSURE ITS ABILITY TO REPEAT THE SAME PERFORMANCE AT THE SAME BURNER FIRING RATE. [RULE 204] - 7. THE FLUE GAS RECIRCULATION SYSTEM SHALL BE IN FULL USE WHENEVER THE BOILER IS IN OPERATION. [RULE 204] Section H Page 16 Facility I.D. #: 029110 Revision #: 05 Date: October 17, 2013 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 8. THE OWNER OR OPERATOR OF THIS EQUIPMENT SHALL CONDUCT AN INITIAL PERFORMANCE SOURCE TESTS, UNLESS OTHERWISE APPROVED, UNDER THE FOLLOWING CONDITIONS: - A. A TESTING LABORATORY CERTIFIED BY THE CALIFORNIA AIR RESOURCES BOARD AND IN COMPLIANCE WITH DISTRICT RULE 304 (NO CONFLICT OF INTEREST) SHALL CONDUCT THIS TEST. - B. A SOURCE TEST PROTOCOL SHALL BE SUBMITTED TO AQMD WITHIN 30 DAYS OF INITIAL START UP AND SHALL BE APPROVED BY AQMD BEFORE THE TEST COMMENCES. THE PROTOCOL SHALL INCLUDE PROPOSED OPERATING CONDITIONS OF THE EQUIPMENT DURING THE TEST, AND A DESCRIPTION OF ALL SAMPLING AND ANALYTICAL PROCEDURES TO BE USED. - C. SOURCE TESTING SHALL BE CONDUCTED WITHIN 60 CALENDAR DAYS AFTER NORMAL OPERATION OF THE EQUIPMENT HAS BEEN ESTABLISHED, BUT NO LATER THAN 180 DAYS AFTER INITIAL START UP. - D. THE INITIAL PERFORMANCE SOURCE TESTS SHALL BE PERFORMED WHEN THE BOILER IS OPERATING AT MAXIMUM, MINIMUM AND AVERAGE LOAD FOR EACH FUEL (DIGESTER GAS AND NATURAL GAS) TO BE BURNED. THE SAMPLING TIME AT EACH LOAD SHALL BE FOR A MINIMUM OF 15 CONSECUTIVE MINUTES. - E. TWO COPIES OF THE SOURCE TEST RESULTS SHALL BE SUBMITTED WITHIN 60 DAYS OF THE TESTS COMPLETION. THE REPORT SHALL INCLUDE, BUT NOT BE LIMITED TO, THE FOLLOWING: FUEL FLOW RATE (EACH FUEL) FLUE GAS FLOW RATE (EACH FUEL) TOTAL HEAT INPUT RATE, BTU/HR (EACH FUEL) TOTAL NON-METHANE ORGANICS (EXHAUST)
(DIGESTER GAS) TOTAL PARTICULATES (PM10) (EXHAUST) (DIGESTER GAS) OXIDES OF NITROGEN (EXHAUST) (EACH FUEL) CARBON MONOXIDE (EXHAUST) (EACH FUEL) OXYGEN (EACH FUEL) DIGESTER GAS BTU (HHV) AND TOTAL SULFUR CONTENT (AS H2S, PPMV) THE REPORT SHALL PRESENT THE EMISSIONS DATA IN PARTS PER MILLION (PPMV) ON A DRY BASIS, POUNDS PER HOUR, AND LBS/MMBTU. [RULE 217, RULE 404, RULE 1146, RULE 1303(A) (1), 1303 (B) (1), 1303(B) (2) - BACT, MODELING AND OFFSET, 1401] 9. THE SOURCE TEST PROTOCOL AND REPORT, PER CONDITION NO. 8, SHALL BE SUBMITTED TO, SCAQMD – ATTN. GAURANG RAWAL ENERGY/ PUBLIC SERVICES/WASTE MGMT. / TERMINALS - PERMITTING ENGINEERING AND COMPLIANCE DIVISION 21865 COPLEY DRIVE DIAMOND BAR, CA 91765 EMISSIONS RESULTING FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | POLLUTANT | POUNDS PER DAY | |-----------|-----------------------------| | CO | 90.6 | | NOx | 5.52 (3.1 WITH NATURAL GAS) | | PM10 | 3.1 | Section H Page 17 Facility LD. #: 029110 Revision #: 05 Date: October 17, 2013 Normal 7 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT ROG SOx 2.6 1.4 [RULE 1146, RULE 1303(a) (1) - BACT, 1303(b) (2) - OFFSET] #### Periodic Monitoring: THE OPERATOR, AT LEAST ONCE EVERY FIVE YEARS, SHALL DETERMINE COMPLIANCE WITH THE EMISSION LIMITS IN CONDITION NO. 10 OF THIS PERMIT USING AQMD-APPROVED TEST METHODS. THE TEST SHALL BE CONDUCTED WHEN THE EQUIPMENT IS OPERATING UNDER NORMAL CONDITIONS. RULE 1146 COMPLIANCE TESTS MAY BE USED TO SATISFY PART OF THIS REQUIREMENT PROVIDED THAT MASS RATES ARE ALSO REPORTED. TO DEMONSTRATE COMPLIANCE WITH RULE 1146 CONCENTRATIONS LIMITS. THE OPERATOR SHALL COMPLY WITH ALL GENERAL TESTING, REPORTING, AND RECORDKEEPING REQUIREMENTS IN SECTIONS E AND K OF THIS PERMIT. [RULE 1146, RULE 1303(a) (1) - BACT, 1303(b) (2) - OFFSET, RULE 3004 (a)(4)- PERIODIC MONITORING] #### **Emissions And Requirements:** 12. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 407 CO: 400 PPMV, @ 3% O2, DRY BASIS, RULE 1146 NOx: 30 PPMV, @ 3% O2, DRY BASIS, RULE 1146 (UNTIL 1/1/2015) NOx: 15 PPMV, @ 3% O2, DRY BASIS, ON AND AFTER JANUARY 1, 2015, DIGESTER GAS, **RULE 1146** NOx: 9 PPMV, @ 3% O2, DRY BASIS, ON AND AFTER JANUARY 1, 2015, NATURAL GAS-RULE 1146 PM: RULE 404, SEE APPENDIX B. PM: 0.1 gr/scf, RULE 409 SO2: 500 PPMV AS SO2, ORANGE COUNTY, RULE 53 40 PPMV TOTAL SULFUR, DIGESTER GAS Page 75 of 78 Section H Page 18 Facility I.D. #: 029110 Revision #: 05 Date: October 17, 2013 ## FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT #### PERMIT TO CONSTRUCT A/N 545005 Granted as of 10/17/2013 Equipment Description: MODIFICATION TO BOILER, NO. 2 WITH PERMIT TO OPERATE D94232, BY THE REMOVAL OF THE EXISTING BURNER AND THE ADDITION OF A NEW BURNER, AMERICAN COMBUSTION TECHNOLOGY OR EQUAL, MODEL SLE-05-250 OR EQUAL, 10,205,800 BTU PER HOUR MAXIMUM, DIGESTER GAS AND NATURAL GAS (AS SECONDARY FUEL), AND REHABILITATION OF ANCILLARY EQUIPMENT. #### Conditions: - CONSTRUCTION AND OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. [RULE 204] - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. [RULE 204] - 3. THIS BOILER SHALL BE FIRED ON DIGESTER GAS AND OR NATURAL GAS ONLY. EXCEPT FOR PILOT GAS, NATURAL GAS SHALL ONLY BE USED IF DIGESTER GAS IS NOT AVAILABLE IN SUFFICIENT AMOUNT. [RULE 204] - 4. A FUEL METER SHALL BE INSTALLED AND MAINTAINED IN THE FUEL SUPPLY LINE(S) TO MEASURE, INDICATE AND RECORD THE AMOUNT OF FUEL(S) (SCFM) BURNED IN THIS EQUIPMENT. [RULE 1146, RULE 1303 (b) (2) OFFSET] - 5. WHEN IN OPERATION, TOTAL HEAT INPUT FOR THIS EQUIPMENT SHALL NOT EXCEED 10, 205, 800 BTU/HR. A DAILY LOG SHALL BE KEPT FOR FUEL USAGE, AND INDICATING FOR DIGESTER GAS THE TOTAL HEATING VALUE (BTU/SCF) OF FUEL BURNED IN THIS EQUIPMENT BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (2) OFFSET] - 6. THIS EQUIPMENT SHALL BE EQUIPPED WITH A CONTROL SYSTEM TO AUTOMATICALLY REGULATE THE COMBUSTION AIR AND FUEL RATE AS THE BOILER LOAD VARIES. THIS AUTOMATIC CONTROL SYSTEM SHALL BE ADJUSTED AND TUNED PERIODICALLY, ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS TO ASSURE ITS ABILITY TO REPEAT THE SAME PERFORMANCE AT THE SAME BURNER FIRING RATE. [RULE 204] - 7. THE FLUE GAS RECIRCULATION SYSTEM SHALL BE IN FULL USE WHENEVER THE BOILER IS IN OPERATION. [RULE 204] Section H Page 19 Facility I.D. #: 029110 Revision #: 05 Date: October 17, 2013 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT - 8. THE OWNER OR OPERATOR OF THIS EQUIPMENT SHALL CONDUCT AN INITIAL PERFORMANCE SOURCE TESTS, UNLESS OTHERWISE APPROVED, UNDER THE FOLLOWING CONDITIONS: - A. A TESTING LABORATORY CERTIFIED BY THE CALIFORNIA AIR RESOURCES BOARD AND IN COMPLIANCE WITH DISTRICT RULE 304 (NO CONFLICT OF INTEREST) SHALL CONDUCT THIS TEST. - B. A SOURCE TEST PROTOCOL SHALL BE SUBMITTED TO AQMD WITHIN 30 DAYS OF INITIAL START UP AND SHALL BE APPROVED BY AQMD BEFORE THE TEST COMMENCES. THE PROTOCOL SHALL INCLUDE PROPOSED OPERATING CONDITIONS OF THE EQUIPMENT DURING THE TEST, AND A DESCRIPTION OF ALL SAMPLING AND ANALYTICAL PROCEDURES TO BE USED. - C. SOURCE TESTING SHALL BE CONDUCTED WITHIN 60 CALENDAR DAYS AFTER NORMAL OPERATION OF THE EQUIPMENT HAS BEEN ESTABLISHED, BUT NO LATER THAN 180 DAYS AFTER INITIAL START UP. - D. THE INITIAL PERFORMANCE SOURCE TESTS SHALL BE PERFORMED WHEN THE BOILER IS OPERATING AT MAXIMUM, MINIMUM AND AVERAGE LOAD FOR EACH FUEL (DIGESTER GAS AND NATURAL GAS) TO BE BURNED. THE SAMPLING TIME AT EACH LOAD SHALL BE FOR A MINIMUM OF 15 CONSECUTIVE MINUTES. - E. TWO COPIES OF THE SOURCE TEST RESULTS SHALL BE SUBMITTED WITHIN 60 DAYS OF THE TESTS COMPLETION. THE REPORT SHALL INCLUDE, BUT NOT BE LIMITED TO, THE FOLLOWING: FUEL FLOW RATE (EACH FUEL) FLUE GAS FLOW RATE (EACH FUEL) TOTAL HEAT INPUT RATE, BTU/HR (EACH FUEL) TOTAL NON-METHANE ORGANICS (EXHAUST) (DIGESTER GAS) TOTAL PARTICULATES (PM10) (EXHAUST) (DIGESTER GAS) OXIDES OF NITROGEN (EXHAUST) (EACH FUEL) CARBON MONOXIDE (EXHAUST) (EACH FUEL) OXYGEN (EACH FUEL) DIGESTER GAS BTU (HHV) AND TOTAL SULFUR CONTENT (AS H2S, PPMV) THE REPORT SHALL PRESENT THE EMISSIONS DATA IN PARTS PER MILLION (PPMV) ON A DRY BASIS, POUNDS PER HOUR, AND LBS/MMBTU. [RULE 217, RULE 404, RULE 1146, RULE 1303(A) (1), 1303 (B) (1), 1303(B) (2) - BACT, MODELING AND OFFSET, 1401] 9. THE SOURCE TEST PROTOCOL AND REPORT, PER CONDITION NO. 8, SHALL BE SUBMITTED TO, SCAQMD – ATTN. GAURANG RAWAL ENERGY/ PUBLIC SERVICES/WASTE MGMT. / TERMINALS - PERMITTING ENGINEERING AND COMPLIANCE DIVISION 21865 COPLEY DRIVE DIAMOND BAR, CA 91765 EMISSIONS RESULTING FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING: | <u>POLLUTANT</u> | <u>POUNDS PER DAY</u> | | | | | |------------------|-----------------------------|--|--|--|--| | | • | | | | | | CO | 90.6 | | | | | | NOx | 5.52 (3.1 WITH NATURAL GAS) | | | | | Section H Page 20 Facility I.D. #: 029110 Revision #: 05 Date: October 17, 2013 # FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT PM10 3.1 ROG 2.6 SOx 1.4 [RULE 1146, RULE 1303(a) (1) - BACT, 1303(b) (2) - OFFSET] #### Periodic Monitoring: THE OPERATOR, AT LEAST ONCE EVERY FIVE YEARS, SHALL DETERMINE COMPLIANCE WITH THE EMISSION LIMITS IN CONDITION NO. 10 OF THIS PERMIT USING AQMD-APPROVED TEST METHODS. THE TEST SHALL BE CONDUCTED WHEN THE EQUIPMENT IS OPERATING UNDER NORMAL CONDITIONS. RULE 1146 COMPLIANCE TESTS MAY BE USED TO SATISFY PART OF THIS REQUIREMENT PROVIDED THAT MASS RATES ARE ALSO REPORTED. TO DEMONSTRATE COMPLIANCE WITH RULE 1146 CONCENTRATIONS LIMITS. THE OPERATOR SHALL COMPLY WITH ALL GENERAL TESTING, REPORTING, AND RECORDKEEPING REQUIREMENTS IN SECTIONS E AND K OF THIS PERMIT. [RULE 1146, RULE 1303(a) (1) - BACT, 1303(b) (2) - OFFSET, RULE 3004 (a)(4)- PERIODIC MONITORING] #### **Emissions And Requirements:** 12. THIS EQUIPMENT IS SUBJECT TO THE APPLICABLE REQUIREMENTS OF THE FOLLOWING RULES AND REGULATIONS: CO: 2000 PPMV, RULE 407 CO: 400 PPMV, @ 3% O2, DRY BASIS, RULE 1146 NOx: 30 PPMV, @ 3% O2, DRY BASIS, RULE 1146 NOx: 15 PPMV, @ 3% O2, DRY BASIS, ON AND AFTER JANUARY 1, 2015, DIGESTER GAS, **RULE 1146** NOx: 9 PPMV, @ 3% O2, DRY BASIS, ON AND AFTER JANUARY 1, 2015, NATURAL GAS-RULE 1146 PM: RULE 404, SEE APPENDIX B. PM: 0.1 gr/scf, RULE 409 SO2: 500 PPMV AS SO2, ORANGE COUNTY, RULE 53 H2s: 40 PPMV TOTAL SULFUR, DIGESTER GAS ## SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT ## MEMORANDUM | DATE: | August 26, 2015 | S/T ID: P15 308 | |-----------------------------------|---|--| | TO: | Rudy Eden, Manager-Monitoring & Source Testing | STA RECEIVED | | FROM: | Andrew Lee, Manager-Energy/Public Services/
Waste Mgmt/Terminals-Permitting | Assigned: Assigned To: AUG 28 2015 | | SUBJECT: | Review Request (Included are FORMS ST-1 & ST-21) | Completed: | | DOCUMEN' | Γ ATTACHED FOR EVALUATION: | | | ☐ CEMS | ☐ Test Protocol ☐ Other: | | | Test Repo | rt: (Test Protocol already approved – memo attached Test Prot | tocol NOT approved by M&STE) | | | Additional Documentation (Required as of Marc | :h 2002): | | disclosure unles secret". If such | Public Records Act, part or all of the above document attached for
s the company claims that the information contained within is "pro
a statement was included when this document was submitted to you it
ment was not included: | prietary", "confidential", or a "trade | | Document co | ontaining a "Statement of Confidentiality" or similar statement, is include | ded with this request for evaluation. | | | ent of Confidentiality" or similar document
was included when this d | ocument was submitted to me by the | | SIGNED: | Gaung Ranal TITLE: | AO Engineer II | | | v v | | | | document id submitted for your evaluation. We would a ovide comments or approval by the indicated date. Thank you | | | REQUESTE | D RESPONSE DATE: September 30, 2015 | PRIORITY EVALUATION (explain under "COMMENTS" below) | | COMPANY | NAME: OCSD, Reclamation Plant No. 2 | FAC.ID: 29110 | | EQUIP. ADI | DRESS: 22212 Brookhurst St., Huntington Beach, CA 92 | <u>.646</u> | | BASIC EQU | IP: Boiler, Clever Brooks, American combustion Tec | ch, Model SLE-05-250, DG | | fired, NG as s | tand by fuel, 10.2 MM Btu/hr. | | | EQUIP IDE | NT: <u>A/N 545004 OR 545005</u>
RECLAIM USE ONLY: (NOx: \[MAJ \[LGE \[PRC \] | (□DevID⊠A/N□P/N)
SOx: □MAJ□LGE) | | - | S ² : Testing Company: Accurate Environmental Service
t Date: July 20, 2015 Date Received: August 24, 2105
e Test (Initial or Annual): Initial source test | | | This S/T prot | ocol (ID TP 03322 OCSD, attached) is for performance and | compliance determination for | | criteria pollut | ants' emissions concentrations and rates; as applicable. | | | PROCESSIN | IG ENGINEER: Gaurang Rawal | EXT. <u>2543</u> | ¹ Forms ST-1 and ST-2 must be completed and attached to this request, or your submittal will be returned. ² Explain reason for Priority Review, time constraints, Hearing Board action, clarify testing requirements, etc. , a rorrer to # CHECKLIST FOR REQUEST TO REVIEW: SOURCE TEST PROTOCOL, REPORT, OR SPECIAL PROJECT This Checklist (FORM ST-1) must accompany any request to evaluate a source test protocol, report, or special project. It may be completed by the requesting AQMD Engineer or Inspector, or a representative of the Source Testing Firm/Laboratory/Contractor. Verify, by checking each item below, that all the requested information has been provided with the attached source test protocol, report, or special project. (An incomplete submittal will be returned, and will ultimately delay the evaluation process): | | All Source Test Protocols and Reports Must Include: | |-------------|---| | \boxtimes | Completed Review Request Memorandum. (A request for a "Priority Review" involves Hearing Board, Abatement Order, or similar critical action, and must be authorized by a manager). | | \boxtimes | Information Request FORM ST-2 with those applicable parts filled out completely. | | \boxtimes | Reason for test, including proposed operating test loads, reference to applicable rules/permit conditions, and key facility, test firm and AQMD personnel. | | \boxtimes | Complete Permit to Construct or Permit to Operate, including all conditions. | | \boxtimes | Brief process description, including maximum and normal operating temperatures, pressures, through-put, etc. | | \boxtimes | Brief description of sampling and analytical methods for each constituent to be measured. If a standard District, EPA, or ARB method "without any deviation" will be used, reference it by method number. | | | TBD- Process schematic diagram showing the ports and sampling locations, including the dimensions of the ducts/stacks at the sampling locations, along with upstream and downstream distances to flow disturbances, (e.g. elbows, tees, fans) from the sampling locations. | | \boxtimes | Calibration and quality assurance (QA) procedures identified. | | \boxtimes | Statement that source test firm/laboratory qualifies as an "independent testing laboratory" under Rule 304 (no conflict of interest), and is approved by AQMD or ARB, if required. | | \boxtimes | Attached test firm AQMD-LAP or CARB approval, if required. | | | All Source Test Reports Must Also Include: | | | Field raw data sheets and laboratory data forms, where applicable. | | | Gas monitoring stripcharts and/or DAS printouts, legible and properly annotated, where applicable. | | | Complete calculations for volumetric flowrates and emissions rates, where applicable. | | | Complete QA supporting documentation (sampling equipment, cal gases, lab analyses, custodies). | | | (<u>CEMS & Fuel Meters</u>): Full identification/documentation for CEMS components and fuel meters (analyzer/fuel meter make, model, s/n, range, calibrations, etc.). | | | (<u>RECLAIM/Large Source</u>): "Certificate of No Exceptions for testing RECLAIM Large Sources" completed and signed. | | | Applicable Source Specific Protocols / Reports Must Also Include: | | | (VOC Efficiency): VOC overall efficiency (capture/collection plus control efficiencies), or transfer | | | efficiency describes all sample collection points, verifies total collection, and shows all calculations and documentation, according to specified requirements. | | | (Organics Loading): Organic (VOC) liquid loading testing describes all sample collection/monitoring | | | points (both liquid and vapor), verifies representative start/stop time, and shows all calculations and documentation, according to specified requirements. | | | (Particulates/sulfur): Particulate testing of effluent gas streams with high amounts of sulfur compounds addresses additional test preparation, equipment, calculations, and documentation. | # INFORMATION REQUEST FOR PROTOCOL, REPORT, OR SPECIAL PROJECT REVIEW This Information Request (FORM ST-2) must accompany any request to evaluate a source test protocol, report, or special project, and it can only be completed by the requesting AQMD Engineer or Inspector. Please mark the appropriate items and provide the requested information. The sampling and analytical methods will be reviewed only for those constituents identified on this form, so be sure to provide as much information as possible. | Constituent(s) to be measured | | Allowable Limit | | Rule or
Permit | Sampling
Location(s) | Other
Requirements | |--------------------------------|--------------------------------|---|--|------------------------|---------------------------------------|--| | | ppm as CI | ration (specify
H₄, @ 3% O₂, etc.) | Mass Emission
(specify lb/hr,
etc.) | Condition(s) | (SCR inlet, outlet,
exhaust, etc.) | (test parameters, BACT,
Rule Development, etc.) | | ⊠ co | Confirm ppmv, @ 3% O2. | ☑ Compliance Only☑ Mass Emissionsor Factors | 90.6 lbs/day
(DG) | Cond. 10 & 12 | Exhaust | | | □ CO ₂ | | ☐ Compliance Only ☐ Mass Emissions or Factors | | | | | | \boxtimes O ₂ | | ☐ Compliance Only ☐ Mass Emissions or Factors | | | Exhaust | | | NOx, as NO₂ | Confirm
ppmv, @
3% O2 | ☐ Compliance Only ☐ Mass Emissions or Factors | 5.52 lbs/day
(DG), 3.1
lbs/day
(NG) | Cond. 10 & 12 | Exhaust | | | SOx, as SO ₂ | | ☐ Compliance Only ☐ Mass Emissions or Factors | 1.4 lbs/dáy | Cond. 10 | Exhaust | | | ☐ SO ₃ | | ☐ Compliance Only ☐ Mass Emissions or Factors | | | | | | ☐ H ₂ S | | ☐ Compliance Only ☐ Mass Emissions or Factors | | | _ | | | ☐ Total Reduced Sulfur, as H2S | Confirm
reported
results | ☐ Compliance Only ☐ Mass Emissions or Factors | | Rule 431.1,
Cond 12 | Inlet | | | □ NH₃ Slip | | Compliance Only Mass Emissions | | | | | | Aldehydes | | ☐ Compliance Only ☐ Mass Emissions or Factors | | | | | ^{1.} Concentration must include correction to standard point-of-reference (NOx @ 3%O₂, ROG as CH₄, etc.). If there is no "Mass Emission" compliance limit specified, please specify if concentration will be used only for compliance determination or whether it will <u>also</u> be calculated to a mass emission or factor (this will affect how we interpret the reported concentrations). # INFORMATION REQUEST FOR SOURCE TEST PROTOCOL, REPORT, OR SPECIAL PROJECT REVIEW | | | | · | | | <u> </u> | |-------------------------------|------------------------|--|----------------------|---------------------|-------------------------|-------------------------| | Constituent(s) to be measured | | Allowable Limit(s) ^{1.} | | | Sampling
Location(s) | Other
Requirements | | to be measured | Concentration (specify | | Mass Emission | Permit Condition(s) | (SCR inlet, outlet, | (test parameters, BACT, | | | | H ₄ , @ 3% O ₂ , etc.) | (specify lb/hr, | | exhaust, etc.) | Rule Development, etc.) | | | <u> </u> | <u> </u> | etc.)
2.6 lbs/day | Cond. 10 | Exhaust | | | ⊠ TGNMO | | ☐ Compliance Only ☐ Mass Emissions | (DG) | Cond. 10 | Extiausi | | | | | or Factors | | | | | | | | | | | | | | ☐ TGNMO, | | | | | | | | Efficiency | | ^ , | | | | | | (check all that apply): | | | | | | | | ☐Capture/Collect | | | | | | | | ☐Control/Destruct☐Overall | | | | | | | | | | | | | | | | Speciated | PPMV | ☐ Compliance Only ☐ Mass Emissions | | | Exhaust | | | Organics | (DG) | or Factors | | | | | | (specify): | | | | , | PM (total) | gr/scf | ☐ Compliance Only Mass Emissions | | Cond. 12 | | | | | | or Factors | | | • | | | Mag 1 | | Compliance Only | | HHV, | Inlet | | | DG Fuel | | ☐ Mass Emissions
or Factors |] | Cond. 8 | | | | | | Compliance Only | 3.1 lbs/day | Cond. 10 | Exhaust | · · | | \square PM=PM ₁₀ | | Mass Emissions | | | | - | | | | or Factors | | | | | | ☐ Toxics | | ☐ Compliance Only ☐ Mass Emissions | | | | | | (specify): | | or Factors | | | | | | | | | | | | | | | | <u> </u> | | | · | | FORM ST-2: 545004 or 05, OCSD, Plant 2, Boiler ST Protocol Concentration must include correction to standard point-of-reference (NOx @ 3%O₂, ROG as CH₄, etc.). If there is no "Mass Emission" compliance limit specified, please
specify if concentration will be used only for compliance determination or whether it will also be calculated to a mass emission or factor (this will affect how we interpret the reported concentrations). #### SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT #### MONITORING ANALYSIS DIVISION * MONITORING ENGINEERING BRANCH # PERFORMANCE TEST PLAN EVALUATION WORKSHEET **SOURCE TEST ID #:** P 15308 **FACILITY ID #:** 29110 **COMPANY:** Orange County Sanitation District COMPANY CONTACT: Vlad Kogan MAILING ADDRESS: 10844 Ellis Ave. ATTN: Randa Abushaban MAILING CITY / ZIP: Fountain Valley, CA 92708-7018 BASIC EQUIPMENT: Boiler, 10.2 MMBtu/Hr, Model SLE-05-250 PROTOCOL DATE: 7/20/2015 TEST DATE: **EQUIPMENT ADDRESS: 22212 BROOKHURST ST** **EQUIPMENT CITY: HUNTINGTON BEACH** ## PERFORMANCE TEST EVALUATION | TRXN TYPE | TYPE OF EVALUATION | | NO. OF HOURS | SUBTOTAL | |-----------|---|--------------|--------------|----------| | 36 | MINIMUM FEE | | | \$348.82 | | | PROTOCOL | | 7.00 | | | | BASIC WORK HOURS | | 5 | | | | ADDITIONAL CHARGE IN EXCESS OF
THE BASIC HOURS | *(See below) | 2.00 | \$265.44 | TOTAL: \$614.26 **AUTHORIZED FOR BILLING** ^{*} A minimum fee of \$348.82 will be charged for the evaluation of source test protocols and reports. Additional fees for time spent in the evaluation in excess of 5 hours will be assessed at the hourly rate of \$132.72 per hour. # **Dunavent, Andrew/SDO** From: Lisa Ramos < lramos1@aqmd.gov> Sent: Wednesday, April 06, 2016 10:32 AM To: Dunavent, Andrew/SDO Cc: OB PR Support NA Docs **Subject:** Public Records Request #84579, Attachments: STE - Source Test Protocol & Report - 3/25/2016 - TestID: 14076- R - Fac ID: 94967 - Name: MESA WATER DISTRICT - Notes:.pdf; STE - Form 131 Public Request Evaluations - 3/25/2016 - 84579 - - - ANDREW DUNAVENT.doc; - PR - PR Supporting Docs - 4/6/2016 - 84579 - - - COMPLETION LETTER - ANDREW DUNAVENT.pdf; - PR - PR Review Docs - 7/24/2009 - 84579 - - 499283 APPLICATON - - - ANDREW DUNAVENT.pdf #### **Andrew Dunavent** I have attached the available requested information for this request. Lisa Ramos South Coast A.QM.D Public Records Unit 909.396.3211 Information Management Public Records Unit Direct Dial (909) 396-3700 Fax:(909) 396-3330 ## **COMPLETION LETTER** **April 06, 2016** ANDREW DUNAVENT CH2M HILL 402W. BROADWAY # SUITE 1450 SAN DIEGO, CA 92101 Ref.: CONTROL NO. 84579 Received 1/21/2016 Re: APPL'S, P/O'S & S/T RPTS FOR MESA WATER DISTRICT, FAC ID #94967, AT 3596 CADILLAC AVENUE, COSTA MESA, CA 92626, APPL #499283. After a thorough search of this agency's records, the following records were found: APPL'S, P/O'S & ST RPTS FOR MESA WATER DISTRICT, FAC ID #94967, AT 3596 CADILLAC AVENUE, COSTA MESA, CA 92626, APPL #499283. YOUR REQUESTED RECORDS WERE PROVIDED ELECTRONICALLY ON 04/06/2016 If you have any questions, please do not hesitate to contact me, Tuesday through Friday, 8:00 a.m. to 4:30 p.m. Sincerely, LISA RAMOS x3211 For Colleen Paine Public Records Coordinator # Restrictions Concerning the Release and Interpretation of Source Testing Emission Information (Please Read Carefully) The South Coast Air Quality Management District • Source Test Engineering Branch | Request | | | |-----------|---------------------|--------------------| | Concerns: | Mesa Water District | 84579 | | | | (AQMD Control No.) | The SCAQMD Source Test Engineering (STE) Branch has provided the following source testing reports pursuant to your Public Records Request. STE is obligated under AQMD's Guidelines for Implementing the California Public Records Request, to remove information which is regarded as proprietary, confidential, or information which contains trade secrets. Also, "data used to calculate emission data" must be removed, prior to dissemination. This includes, but is not limited to: - 1. Intermediate stack information (stack dimensions, velocity/flowrate, temperature, gaseous composition other than reported contaminant emissions, etc.). - 2. Intermediate emission information (emissions/losses to control devices, raw emission data, laboratory analyses, etc.). - 3. Process information (process/product throughput, fuel usage, firing rates and burner/control adjustments unless rule/permit conditions specify emissions to be formatted according to this information, photos or drawings of process, etc.). - 4. Quality Assurance concerning the above information (calibrations, corrections, etc.). Most source test reports received by STE are formally evaluated for accuracy and other factors pertinent to the accuracy of reported emissions. The attached source test reports have been rated as follows: | Source Test I.D. | Document Su | bject/Date | Accuracy Rating* | |------------------|------------------------------|--|-----------------------| | R 14076 | ☐ Protocol ☐ Report ☐ other: | ☐ Test Date ☐ Document Date September 20, 2013 | (I) (A) (CA) (U) (NR) | #### *STE's Accuracy Rating Explanations: **In-House** (I) – Source testing and report were conducted "in-house" by AQMD Source Testing staff and reported emission information is considered accurate. **ACCEPTABLE (A)** – Source test document was conducted/submitted by independent source testing firm, has been evaluated by STE staff, and reported emission information is considered accurate and well documented. **CONDITIONALLY ACCEPTABLE (CA)** – Source test document was conducted/submitted by independent source testing firm, has been evaluated by STE staff, and reported emission information may have limited use. For further details, contact STE at (909) 396-2265. UNACCEPTABLE (U) – Source test document was conducted/submitted by independent source testing firm, has been evaluated by STE staff, and emission information is <u>not</u> considered accurate. <u>Unacceptable source test reports will not be provided unless the requestor requests their release after being notified of their Accuracy Rating. For further details, contact STE at (909) 396-2265.</u> **Not RATED (NR)** – Source test report has <u>not</u> been formally evaluated or status is unknown. STE assumes no responsibility for the accuracy of the reported emission information. 131PUBLIC_Records Request Evaluation.doc (Revised 11/08/12) R14076 # AIR GAS TESTING & CONSULTING SERVICES AIR POLLUTION ENGINEERING, TESTING, PERMITTING, RISK ASSESSMENT, EMISSIONS REPORT # SOURCE TEST REPORT MESA CONSOLIDATED WATER DISTRICT RULE 1110.2 TESTING FOR NOx, CO & VOC WELL #5 ENGINE SCAQMD FACILITY ID: 94967 3596 CADILLAC AVENUE, COSTA MESA, CA 92628 ## PREPARED FOR: MESA CONSOLIDATED WATER DISTRICT 1965 PLACENTIA AVENUE COSTA MESA, CALIFORNIA 92627 #### PREPARED BY: AIR GAS TESTING & CONSULTING SERVICES 7111 GARDEN GROVE BLVD., SUITE 118 GARDEN GROVE, CALIFORNIA 92841 > TIMOTHY T. DINH ENGINEERNING MANAGER STA RECEIVED FEB 25 2014 **M&STE BRANCH** REPORT NO. 92013RP TEST DATE: AUGUST 26, 2013 REPORT DATE: SEPTEMBER 20, 2013 **TABLE 1.2** # **SUMMARY OF SOURCE TEST RESULTS – ENGINE WELL #5** Test Date: August 26, 2013 Client: Mesa Consolidated Water District | POLLUTANTS | NORMAL
LOAD | |---|-----------------------| | Oxides of Nitrogen (NOx) | , | | PPM at 15% O₂: | 6.85 | | Compliance Limit (ppm @15% O ₂): | 11 | | Pass/Fail Status: Compliance with Permit to Operate Conditions: | Passed
7 & 9 | | Compliance with remit to operate conditions. | 7 0.0 | | Carbon Monoxide (CO) | | | PPM at 15% O₂: | 56.8 ^{56.78} | | Compliance Limit (ppm @15% O ₂): | 70 | | Pass/Fail Status: | Passed
7 & 9 | | Compliance with Permit to Operate Conditions: | 7 & 9 | | Volatile Organic Compounds (VOC) | / | | PPM at 15% O₂: | 3.07 | | Compliance Limit (ppm @15% O ₂): | 30 | | Pass/Fail Status: | Passed | | Compliance with Permit to Operate Conditions: | 7 & 9 | Note: Refer to Section 3.0 for Detailed Test Results # **Dunavent, Andrew/SDO** From: Lisa Ramos < lramos1@aqmd.gov> Sent: Wednesday, April 06, 2016 10:40 AM To: Dunavent, Andrew/SDO Cc: OB PR Support NA Docs **Subject:** FW: Public Records Request #85112, Attachments: STE - Source Test Protocol & Report - 3/25/2016 - TestID: 08026- R - Fac ID: 95212 - Name: FABRICA - Notes:.pdf; STE - Source Test Protocol & Report - 3/25/2016 - TestID: 08025- R - Fac ID: 95212 - Name: FABRICA - Notes:.pdf; STE - Form 131 Public Request Evaluations - 3/25/2016 - 84580 - - - ANDREW DUNAVENT.doc This is for PRR 85112. Lisa Ramos South Coast A.QM.D Public Records Unit 909.396.3211 From: Lisa Ramos Sent: Wednesday, April 6, 2016 10:39 AM **To:** 'Andrew.Dunavent@ch2m.com' <Andrew.Dunavent@ch2m.com> **Cc:** OB PR Support NA Docs <ob_pr_support_na_docs@aqmd.gov> Subject: Public Records Request #85113, **Andrew Dunavent** I have attached some of the documents for this request. I am still waiting for any additional documents. Lisa Ramos South Coast A.Q.M.D Public Records Unit 909.396.3211 # **Dunavent, Andrew/SDO** From: Lisa Ramos < lramos1@aqmd.gov> Sent: Tuesday, April 19, 2016 7:18 AM To: Dunavent, Andrew/SDO Cc: OB PR Support NA Docs **Subject:** Public Records Request #85112, **Attachments:** - PR - PR Supporting Docs - 4/19/2016 - 85112 - - - COMPLETION LETTER - ANDREW DUNAVENT.pdf; - PR - PR Review Docs - 4/19/2016 - 85112 - - - ANS 581335-337.PDF - - ANDREW DUNAVENT.pdf #### **Andrew Dunavent** I have attached the available requested information for this request. Lisa Ramos South Coast A.QM.D Public Records Unit 909.396.3211 Information Management Public Records Unit Direct Dial (909) 396-3700 Fax:(909) 396-3330 ## **COMPLETION LETTER** **April 19, 2016** ANDREW DUNAVENT CH2M HILL 402W. BROADWAY # SUITE 1450 SAN DIEGO, CA 92101 **Ref.: CONTROL NO. 85112** Received 3/1/2016 Re: APPL'S, P/O'S & S/T RPTS FOR LA CITY, DWP HAYNES GENERATING STATION, FAC ID #800074, APPL #'S 581335, 581336 & 581337. After a thorough search of this agency's records, the following records were found: APPL'S
(STILL UNDER REVIEW) FOR LA CITY, DWP HAYNES GENERATING STATION, FAC ID #800074, APPL #'S 581335, 581336 & 581337. The following records were not found: P/O'S & S/T RPTS FOR LA CITY, DWP HAYNES GENERATING STATION, FAC ID #800074, APPL #'S 581335, 581336 & 581337. YOUR REQUESTED RECORDS WERE PROVIDED ELECTRONICALLY ON 04/19/2016 If you have any questions, please do not hesitate to contact me, Tuesday through Friday, 8:00 a.m. to 4:30 p.m. Sincerely, LISA RAMOS x3211 For Colleen Paine Public Records Coordinator South Coast Air Quality Management District # Form 400-A # **Application Form for Permit or Plan Approval** List only one piece of equipment or process per form. Mail To: SCAQMD P.O. Box 4944 Diamond Bar, CA 91765-0944 Tel: (909) 396-3385 | | | www.aqmd.go | | |--|--|---|--| | Section A - Operator Information | | | | | Facility Name (Business Name of Operator to Appear on the Permit): | | 2. Valid AQMD Facility ID (Available On | | | LA City DWP, Haynes Generating Station | | Permit Or Invaice Issued By AQMD): | | | 3. Owner's Business Name (If different from Business Name of Operator): | | 800074 | | | Section B • Equipment Location Address | Section C - Permit Mailing Address | | | | 4. Equipment Location is: Fixed Location C Various Location | | 1: | | | (For equipment operated at various locations, provide address of initial site.) | Check here if same as equipment local | ation address | | | 6801 East 2nd Street | 111 N. Hope Street, Room 1050 | | | | Street Address | Address | 0.4 00040 | | | Long Beach , CA 90803 Zip | Los Angeles
City | , CA 90012
State Zip | | | Edward Kim Env. Coordinator | Dat M. Quach | Air Quality Manager | | | Contact Name Title | Contact Name | Title | | | (310) 522-7512
Phone # Ext. Fax # | (213) 367-4697 Ext. | (213) 367-4710
Fax # | | | E-Mail: edward.kim@ladwp.com | E-Mail: dat.quach@ladwp.com | I GA T | | | | E-mail: data-gadon (endata-proofin | | | | Section D - Application Type 6. The Facility Is: Not In RECLAIM or Title V In RECLAIM | In Title V • In RECLAIM 8 | & Title V Programs | | | | III TILLE V - III RECEAMIN | s title v Plograms | | | 7. Reason for Submitting Application (Select only ONE): | Drange with an Existing President Section 1 | en os Dosmit. | | | | Process with an Existing/Previous Application | an or Permit: | | | New Construction (Permit to Construct) Administrative | • | Existing or Previous | | | Equipment On-Site But Not Constructed or Operational Alteration/Mod | | Permit/Application | | | · · · · · · · | dification without Prior Approval | If you checked any of the items in | | | Compliance Plan © Change of Co | 1 - 1 | 7c., you MUST provide an existing | | | | ondition without Prior Approval * | Permit or Application Number: | | | Streamlined Standard Permit Change of Lo | | | | | 70. rgenty remus: | cation without Prior Approval * perating with an Expired/Inactive Permit * | | | | Title V Application or Amendment (Refer to Title V Matrix) | peraung with an expireumacave remit | | | | TREAD BY LOUIS LOUIS AND L | ocessing Fee and additional Annual Operating Fees (up | | | | Ba. Estimated Start Date of Construction (mm/dd/yyyy): 8b. Estimated End Date of | Construction (mm/dd/yyyy): 8c. Estimated | Start Date of Operation (mm/dd/yyyy): | | | 9. Description of Equipment or Reason for Compliance Plan (list applicable rule): | 10. For Identical equipment, how many ad | lditional | | | Permit application for minor permit modification and change in | applications are being submitted with | this application? | | | condition. T5 Revision | (Form 400-A required for each equipmen | t / process) | | | 11. Are you a Small Business as per AQMD's Rule 102 definition? | 12. Has a Notice of Violation (NOV) or a | | | | (10 employees or less and total gross receipts are \$500,000 or less <u>OR</u> a not-for-profit training center) • No • Yes | Comply (NC) been issued for this eq
If Yes, provide N | erpriser. | | | Section E - Facility Business Information | | | | | 13. What type of business is being conducted at this equipment location? | 14. What is your business primary NAICS | Code? | | | Electric Generation | (North American Industrial Classification | System) 221112 | | | 15. Are there other facilities in the SCAQMD jurisdiction operated by the same operator? No Section 15. | 16. Are there any schools (K-12) within 1000 feet of the facility property line? | € No C Yes | | | | ontained herein and information submitted with th | is application are true and correct. | | | 17. Signature of Responsible Official: 18. Title of Respons | ible Official: 19. I wish to review | the permit prior to issuance. | | | Dir. of Power | r Supply and Op. (This may cause | a delay in the | | | 20. Print Name: 21. Date: / | / application proc | ,635.) | | | Kenneth A, Silver | 2016 data? (If Yes, s | | | | 23. Check List: Authorized Signature/Date Form 400-CEQA | Supplemental Form(s) (ie., Form 4 | | | | AOMO APPLICATION TRACKING # CHECK # AMOUNT RECEIVED | PAYMENT TRACKING # | VALIDATION A | | | USE ONLY 5 1/335 700100834 25,592 | 16 | 1/19/160 | | | DATE APP DATE APP CLASS BASIC ' EQUIPMENT CATEGOR
REJ REJ I III CONTROL | Y CODE TEAM ENGINEER REASON/ACTION | IAKEN (| | @ South Coast Air Quality Management District, Form 400-A (2014.07) cm 126073 South Coast Air Quality Management District #### Form 500-C1 ## **Title V Compliance Status Report** To provide the compliance status of your facility with applicable federally enforceable requirements and identify other local-only requirements, complete this form and attach it to a completed compliance certification Form 500-A2. As appropriate, all submittals of Form 500-C2 as appropriate should also be attached to this form. Mail To: SCAQMD P.O. Box 4944 Diamond Bar. CA 91765-0944 > Tel: (909) 396-3385 www.aqmd.gov #### Section I - Operator Information 1. Facility Name (Business Name of Operator That Appears On Permit): LA City DWP, Haynes Generating Station Valid AQMD Facility ID (Available On Permit Or Invoice Issued By AQMD): 800074 #### PROCEDURES FOR DETERMINING COMPLIANCE STATUS - Equipment verification: Review the list of pending applications, and either the preliminary Title V facility permit or the list of current permits to operate that the AQMD provided you, to determine if they completely and accurately describe all equipment operating at the facility. Attach a statement to describe any discrepancies. - Identify applicable requirements*: Use the checklist in Section II to identify all applicable and federally-enforceable local, state, and federal rules and regulations, test methods, and monitoring, recordkeeping and reporting (MRR) requirements that apply to any equipment or process (including equipment exempt from a permit by Rule 219) at your facility. The potential applicable requirements, test methods and MRR requirements are identified and listed adjacent to each given equipment/process description. Check off each box adjacent to the corresponding requirement as it applies to your particular equipment/process. Note: Even if there is only one piece of equipment that is subject to a particular requirement, the appropriate box should be checked. - 3. Identify additional applicable requirements*: Use Section III to identify any additional requirements not found in Section II. Section II is not a complete list of all applicable requirements. It does not include recently adopted NESHAP regulations by EPA or recent amendments to AQMD rules. Do not add rules listed in Section V here. - 4. Identify any requirements that do not apply to a specific piece of equipment or process: Also use Section III to identify any requirements that are listed in Section II but that do not apply to a specific piece of equipment or process. Fill out Section III of this form and attach a
separate sheet to explain the reason(s) why the identified rules do not apply. Note: Listing any requirement that does not apply to a specific piece of equipment will not provide the facility with a permit shield unless one is specifically requested by completing Form 500-D and is approved by AQMD. - 5. Identify SIP-approved rules that are not current AQMD rules: Use Section IV to identify older versions of current AQMD rules that are the EPA-approved versions in the State Implementation Plan (SIP), and that are still applicable requirements as defined by EPA. The facility is <u>not</u> required to certify compliance with the items checked in Section IV provided that the non-SIP approved rule in Section II is at least as stringent as the older SIP-approved version in Section IV. ** - 6. Identify Local-Only Enforceable Regulatory Requirements: Use Section V to identify AQMD rules that are not SIP-approved and are not federally enforceable. - 7. Determine compliance: Determine if all equipment and processes are complying with all requirements identified in Sections II and III. If each piece of equipment complies with all applicable requirements, complete and attach Form 500-A2 to certify the compliance status of the facility. If any piece of equipment is not in compliance with any of the applicable requirements, complete and attach Form 500-C2 in addition to Form 500-A2. ^{*} The following AQMD rules and regulations are not required to be included in Section II and do not have to be added to Section III: Regulation I, List and Criteria in Regulation II, Rule 201, Rule 201, Rule 201, Rule 202, Rule 203, Rule 205, Rule 206, Rule 207, Rule 208, Rule 209, Rule 210, Rule 212, Rule 214, Rule 215, Rule 216, Rule 217, Rule 219, Rule 220, Rule 221, Regulation III, Regulation VIII, Regulation XII, Regulation XV, Regulation XV, Regulation XVI, Regulation XXI, Regulation XXII, and Regulation XXX. ^{**} Emission units adversely affected by the gap between current and SIP-approved versions of rules may initially be placed in a non-Title V portion of the permit | Section II - Applicable Requirements, Tes | st Methods, & MRR Requirements | | and the state of | |--|--|--|---| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | All Air Pollution Control Equipment Using Combustion (RECLAIM & non-RECLAIM sources) | Rule 480 (10/07/77) | N/A | N/A | | ✓ All Coating Operations (12/15/00) | √ Rule 442 | √ Rule 442(f) | ✓ Rule 442(g) | | All Combustion Equipment, ≥ 555 Mmbtu/Hr (except for NOx RECLAIM sources) | Rule 474 (12/04/81) | AQMD TM 7.1 or 100.1 | | | All Combustion Equipment Except Internal | Rule 407 (04/02/82) | AQMD TM 100.1 or 10.1, 307-91 | | | Combustion Engines (RECLAIM & non-
RECLAIM sources) | √ Rule 409 (08/07/81) | ✓ AQMD TM 5.1, 5.2, or 5.3 | | | All Combustion Equipment Using Gaseous Fuel (except SOx RECLAIM sources) | Rule 431.1 (06/12/98) | √ Rule 431.1(f) | Rule 431.1(d) & (e) | | All Combustion Equipment Using Liquid Fuel (except SOx RECLAIM sources) | √ Rule 431.2 (09/15/00) | √ Rule 431.2(g) | √ Rule 431.2(f) | | All Combustion Equipment Using Fossil Fuel (except SOx RECLAIM sources) | Rule 431.3 (05/07/76) | | | | All Equipment | Rule 401 (11/09/01) | California Air Resources Board Visible Emission Evaluation | | | | ✓ Rule 405 (02/07/86) | AQMD TM 5.1, 5.2, or 5.3 | | | | Rule 408 (05/07/76) | N/A | Rule 430(b) | | | ✓ Rule 430 (07/12/96) | NA | | | | Rule 701 (06/13/97) | | | | | New Source Review, BACT | | | | | Rule 1703 (10/07/88) | | | | | ✓ 40 CFR68 - Accidental Release Prevention | See Applicable Subpart | See Applicable Subpart | | All Equipment Processing Solid Materials | Rule 403 (06/03/05) | Rule 403(d)(3) | Rule 403(f) | | All Equipment With Exhaust Stack (except cement kilns subject to Rule 1112.1) | √ Rule 404 (02/07/86) | ✓ AQMD TM 5.1, 5.2, or 5.3 | | | All Facilities Using Solvents to Clean Various | √ Rule 109 (05/02/03) | √ Rule 109(g) | Rule 109(c) | | Items or Equipment | √ Rule 1171 (05/01/09) | √ Rule 1171(e) | Rule 1171(c)(6) | | | ✓ 40 CFR63 SUBPART T | See Applicable Subpart | See Applicable Subpart | | All RECLAIM Equipment (NOx & SOx) | Reg. XX - RECLAIM | Rule 2011, App. A (05/06/05) | Rule 2011, App. A (05/06/05) | | | | ✓ Rule 2012, App. A (05/06/05) | ✓ Rule 2012, App. A (05/06/05) | | Abrasive Blasting | Rule 1140 (08/02/85) | Rule 1140(d) & (e), AQMD Visible Emission Method | | | Rute = AQMD Rule AQMD TM = AQMD Test Method CCR = California Code of Regulations | KEY ABBREVIATIONS: | Reg. = AQMD Regulation
Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | |--|--------------------|--|--|--| |--|--------------------|--|--|--| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | |---|--|---|---| | Aggregate and Related Operations | Rule 1157 (09/08/06) | Rule 1157(f) | Rule 1157(e) | | Appliances Containing Ozone Depleting Substances (except Motor Vehicle Air Conditioners): Manufacturing, Repair, Maintenance, Service, & Disposal | 40 CFR82 SUBPART F | See Applicable Subpart | See Applicable Subpart | | Asphalt | See Manufacturing, Asphalt Processing & Aspl | halt Roofing | | | Asphalt Concrete/Batch Plants | 40 CFR60 SUBPART I | See Applicable Subpart | See Applicable Subpart | | Benzene Emissions, Maleic Anhydride Plants,
Ethylbenzene/Styrene Plants, Benzene
Storage Vessels, Benzene Equipment Leaks,
& Coke By-Product Recovery Plants | Rule 1173 (02/06/09) Rule 1176 (09/13/96) 40 CFR61 SUBPART L 40 CFR61 SUBPART Y 40 CFR63 SUBPART R 40 CFR63 SUBPART CC | Rule 1173(j) Rule 1176(h) See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart | Rule 1173(i) Rule 1176(f) & (g) See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart | | Benzene Transfer Operations | Rule 1142 (07/19/91) 40 CFR61 SUBPART BB 40 CFR63 SUBPART Y | Rule 1142(e) See Applicable Subpart See Applicable Subpart | Rule 1142(h) See Applicable Subpart See Applicable Subpart | | Benzene Waste Operations | Rule 1176 (09/13/96) 40 CFR61 SUBPART FF 40 CFR63 SUBPART CC | Rule 1176(h) See Applicable Subpart See Applicable Subpart | Rule 1176(f) & (g) See Applicable Subpart See Applicable Subpart | | Beryllium Emissions | 40 CFR61 SUBPART C | See Applicable Subpart | See Applicable Subpart | | Beryllium Emissions, Rocket Motor Firing | 40 CFR61 SUBPART D | See Applicable Subpart | See Applicable Subpart | | Boiler, < 5 Mmbtu/Hr (non-RECLAIM sources) | Rule 1146.1 (09/05/08) Rule 1146.2 (05/05/06) 40 CFR63 SUBPART DDDDD | Rule 1146.1(d) N/A See Applicable Subpart | Rule 1146.1(c)(2) & (c)(3
N/A
See Applicable Subpart | | Boiler, < 5 Mmbtu/Hr (RECLAIM sources) | Rule 1146.1 (09/05/08) - excluding NOx requirements 40 CFR63 SUBPART DDDDD | Rule 1146.1(d) See Applicable Subpart | Rule 1146.1(c)(2) & (c)(3 | | Section II - Applicable Requirements, Tes | t Methods, & MRR Requirements | | | |--|--|--|--| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | Boiler, ≥ 5 Mmbtw/Hr (non-RECLAIM sources) | Rule 218 (05/14/99) Rule 429 (12/21/90) Rule 475 (08/07/78) Rule 476 (10/08/76) Rule 1146 (09/05/08) | AQMD TM 100.1 N/A AQMD TM 5.1, 5.2, or 5.3 AQMD TM 7.1, 100.1, 5.1, 5.2, or 5.3 Rule 1146(d) | Rule 218(e) & (f) Rule 429(d) Rule 1146(c)(6) & (c)(7) | | | 40 CFR60 SUBPART D 40 CFR60 SUBPART Da 40 CFR60 SUBPART Dc 40 CFR63 SUBPART DDDDD | See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart | See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart | | Boiler, ≥ 5 Mmbtu/Hr (RECLAIM sources) | Rule 475 (08/07/78) Rule 476 (10/08/76) - excluding NOx requirements Rule 1146 (09/05/08) - excluding NOx requirements Rule 2011 (05/06/05) Or Rule 2012 (05/06/05) 40
CFR60 SUBPART D 40 CFR60 SUBPART Dc 40 CFR63 SUBPART DDDDD | AQMD TM 5.1, 5.2, or 5.3 AQMD TM 7.1, 100.1, 5.1, 5.2, or 5.3 Rule 1146(d) Rule 2011, App. A (05/06/05) Or Rule 2012, App. A (05/06/05) See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart | Rule 1146(c)(6) & (c)(7) Rule 2011, App. A (05/06/05) Rule 2012, App. A (05/06/05) See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart | | Boiler, Petroleum Refining (non-RECLAIM sources) | Rule 218 (05/14/99) Rule 429 (12/21/90) Rule 431.1 (06/12/98) Rule 475 (08/07/78) Rule 1146 (09/05/08) 40 CFR60 SUBBPART J 40 CFR63 SUBPART DDDDD | AQMD TM 100.1 N/A Rule 431.1(f) AQMD TM 5.1, 5.2, or 5.3 Rule 1146(d) See Applicable Subpart See Applicable Subpart | Rule 218(e) & (f) Rule 429(d) Rule 431.1(d) & (e) Rule 1146(c)(6) & (c)(7) See Applicable Subpart See Applicable Subpart | | KEY ABBREVIATIONS: | Reg. = AQMD Regulation
Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | |--------------------|--|--|--| | | | | | | Section II - Applicable Requirements, Te | st Metrus, & MRR Requirements | | | |--|---|---|---| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | Boiler, Petroleum Refining (RECLAIM sources) | Rule 1146 (09/05/08) - excluding NOx requirements | Rule 1146(d) | Rule 1146(c)(6) & (c)(7) | | | Rule 2011 (05/06/05) | Rule 2011, App. A (05/06/05) | Rule 2011, App. A (05/06/05) | | | Or
Rule 2012 (05/06/05) | Rule 2012, App. A (05/06/05) | Rule 2012, App. A (05/06/05) | | | 40 CFR60 SUBPART J 40 CFR63 SUBPART DDDDD | See Applicable Subpart See Applicable Subpart | See Applicable Subpart See Applicable Subpart | | Boilers, Electric Utility (non-RECLAIM | Rule 218 (05/14/99) | AQMD TM 100.1 | Rule 218(e) & (f) | | sources) | Rule 429 (12/21/90) | N/A
I□ | Rule 429(d) | | | Rule 1135 (07/19/91) | Rule 1135(e) See Applicable Subpart | Rule 1135(e) See Applicable Subpart | | | 40 CFR60 SUBPART Db | See Applicable Subpart | See Applicable Subpart | | Boilers, Electric Utility (RECLAIM sources) | ✓ Rule 2012 (05/06/05) | ✓ Rule 2012, App. A (05/06/05) | ✓ Rule 2012, App. A (05/06/05) | | | 40 CFR60 SUBPART Db | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART DDDDD | See Applicable Subpart | See Applicable Subpart | | Bulk Loading Of Organic Liquids | Rule 462 (05/14/99) | Rule 462(f) | Rule 462(g) | | | 40 CFR60 SUBPART XX | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART R | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART BBBBBB | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART EEEE | See Applicable Subpart | See Applicable Subpart | | Cadmium Electroplating Operation | Rule 1426 (05/02/03) | | Rule 1426(e) | | Calciner, Mineral Industries | 40 CFR60 SUBPART UUU | See Applicable Subpart | See Applicable Subpart | | Calciner, Petroleum Coke | Rule 477 (04/03/81) | AQMD Visible Emissions, AQMD TM
5.1, 5.2, or 5.3 | | | | Rule 1119 (03/02/79) | AQMD TM 6.1 or 100.1 | | | | 40 CFR63 SUBPART L | See Applicable Subpart | See Applicable Subpart | | Charbroilers | Rule 1174 (10/05/90) | AQMD Test Protocol | П | | | Rule 1138 (11/14/97) | Rule 1138(g) | Rule 1138(d) | | Chrome Plating & Chromic Acid Anodizing | Rule 1426 (05/02/03) | | Rule 1426(e) | | Operation | Rule 1469 (12/05/08) | ☐ Rule 1469(e) | Rule 1469(g), (j) & (k) | | | | | | | |--------------------|--|---|--|-------------| | KEY ABBREVIATIONS: | Reg. = AQMD Regulation
Rule = AQMD Rule | App. = Appendix
AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | |---|------------------------|------------------------|------------------------| | Coating Operation, Adhesive Application | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | Operation | Rule 481 (01/11/02) | Rule 481(d) | | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1168 (01/07/05) | Rule 1168(f) & (e) | Rule 1168(d) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR60 SUBPART RR | See Applicable Subpart | See Applicable Subpart | | Coating Operation, Aerospace Assembly & | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | Component Manufacturing | Rule 481 (01/11/02) | Rule 481(d) | | | | Rule 1124 (09/21/01) | Rule 1124(e) & (f) | Rule 1124(j) & (d) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR63 SUBPART GG | See Applicable Subpart | See Applicable Subpart | | Coating Operation, Graphic Arts (Gravure, | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | Letter Press, Flexographic & Lithographic | Rule 481 (01/11/02) | Rule 481(d) | | | Printing Process, Etc.) | Rule 1130 (10/08/99) | Rule 1130(h) | Rule 1130(e) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR60 SUBPART QQ | See Applicable Subpart | See Applicable Subpart | | | 40 CFR60 SUBPART RR | See Applicable Subpart | See Applicable Subpart | | | 40 CFR60 SUBPART FFF | See Applicable Subpart | See Applicable Subpart | | | 40 CFR60 SUBPART VVV | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART KK | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART JJJJ | See Applicable Subpart | See Applicable Subpart | | Coating Operation, Magnet Wire Coating | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | | Rule 481 (01/11/02) | Rule 481(d) | | | | Rule 1126 (01/13/95) | Rule 1126(d) | Rule 1126(c)(4) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | KEY ABBREVIATIONS: Reg. = AQMD Reg
Rule = AQMD Rul | • | CFR = Code of Federal Regulations CCR = California Code of Regulations | _ | | | |---|---|--|---|--|--| |---|---|--|---|--|--| | Rule 109 (05/02/03) Rule 481 (01/11/02) Rule 1106 (01/13/95) Rule 1132 (05/05/06) Rule 1171 (05/01/09) 40 CFR63 SUBPART II Rule 109 (05/02/03) Rule 481 (01/11/02) Rule 1107 (01/06/06) Rule 1132 (05/05/06) | Rule 109(g) Rule 481(d) Rule 1106(e) Rule 1132(f) Rule 1171(e) See Applicable Subpart Rule 109(g) Rule 481(d) | Rule 109(c) Rule 1106(c)(5) Rule 1132(g) Rule 1171(c)(6) See Applicable Subpart Rule 109(c) | |---|--|--| | Rule 1106 (01/13/95) Rule 1132 (05/05/06) Rule 1171 (05/01/09) 40 CFR63 SUBPART II Rule 109 (05/02/03) Rule 481 (01/11/02) Rule 1107 (01/06/06) | Rule 1106(e) Rule 1132(f) Rule 1171(e) See Applicable Subpart Rule 109(g) Rule 481(d) | Rule 1132(g) Rule 1171(c)(6) See Applicable Subpart | | Rule 1132 (05/05/06) Rule 1171 (05/01/09) 40 CFR63 SUBPART II Rule 109 (05/02/03) Rule 481 (01/11/02) Rule 1107 (01/06/06) | Rule 1132(f) Rule 1171(e) See Applicable Subpart Rule 109(g) Rule 481(d) | Rule 1132(g) Rule 1171(c)(6) See Applicable Subpart | | Rule 1171 (05/01/09) 40 CFR63 SUBPART II Rule 109 (05/02/03) Rule 481 (01/11/02) Rule 1107 (01/06/06) | Rule 1171(e) See Applicable Subpart Rule 109(g) Rule 481(d) | Rule 1171(c)(6) See Applicable Subpart | | 40 CFR63 SUBPART II ✓ Rule 109 (05/02/03) ✓ Rule 481 (01/11/02) ✓ Rule 1107 (01/06/06) | See Applicable Subpart Rule 109(g) Rule 481(d) | See Applicable Subpart | | Rule 109 (05/02/03) Rule 481 (01/11/02) Rule 1107 (01/06/06) | ✓ Rule 109(g) ✓ Rule 481(d) | | | Rule 481 (01/11/02) Rule 1107 (01/06/06) | Rule 481(d) | ✓ Rule 109(c) | | Rule 1107 (01/06/06) | Rule 481(d) | | | Rule 1107 (01/06/06) | 17 | | | Rule 1132 (05/05/06) | ✓ Rule 1107(e) | ✓ Rule 1107(j) | | | Rule 1132(f) | Rule 1132(g) | | Rule 1171 (05/01/09) | Rule 1171(e) | ✓ Rule 1171(c)(6) | | 40 CFR60 SUBPART EE | See Applicable Subpart | See Applicable Subpart | | 40 CFR60 SUBPART SS | See Applicable Subpart | See Applicable Subpart | | 40 CFR63 SUBPART NNNN | See Applicable Subpart | See Applicable Subpart | | 40 CFR63 SUBPART MMMM | See Applicable Subpart | See Applicable Subpart | | ☐40 CFR63 SUBPART RRRR | See Applicable Subpart | See Applicable Subpart | | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | Rule 481 (01/11/02) | Rule 481(d) | | | Rule 1125 (03/07/08) | Rule 1125(e) | Rule 1125(c)(6)
| | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | 40 CFR60 SUBPART TT | See Applicable Subpart | See Applicable Subpart | | 40 CFR60 SUBPART WW | See Applicable Subpart | See Applicable Subpart | | 40 CFR63 SUBPART KKKK | See Applicable Subpart | See Applicable Subpart | | 40 CFR63 SUBPART SSSS | See Applicable Subpart | See Applicable Subpart | | Rule 109 (05/02/03) | Rule 109(g) | Rule 109© | | Rule 481 (01/11/02) | Rule 481(d) | | | Rule 1132 (05/05/06) | Rule 1132(f) | ☐Rule 1132(g) | | Rule 1151 (12/02/05) | Rule 1151(h) | Rule 1151(f) | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR60 SUBPART SS 40 CFR63 SUBPART NNNN 40 CFR63 SUBPART MMMM 40 CFR63 SUBPART RRRR Rule 109 (05/02/03) Rule 481 (01/11/02) Rule 1125 (03/07/08) Rule 1132 (05/05/06) Rule 1171 (05/01/09) 40 CFR60 SUBPART TT 40 CFR60 SUBPART WW 40 CFR63 SUBPART KKKK 40 CFR63 SUBPART SSSS Rule 109 (05/02/03) Rule 481 (01/11/02) Rule 1132 (05/05/06) Rule 1151 (12/02/05) | 40 CFR60 SUBPART SS | | Section II - Applicable Requirements, Tes | st Methods, & MRR Requirements | | | |---|--------------------------------|------------------------|------------------------| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | Coating Operation, Motor Vehicle Assembly | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | Line | Rule 481 (01/11/02) | Rule 481(d) | | | | Rule 1115 (05/12/95) | Rule 1115(e) | Rule 1115(g) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR60 SUBPART MM | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART IIII | See Applicable Subpart | See Applicable Subpart | | Coating Operation, Paper, Fabric, & Film | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | Coating Operations | Rule 481 (01/11/02) | Rule 481(d) | <u> </u> | | | Rule 1128 (03/08/96) | Rule 1128(f) | Rule 1128(e) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR60 SUBPART VVV | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART OOOO | See Applicable Subpart | See Applicable Subpart | | Coating Operation, Plastic, Rubber, & Glass | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | | Rule 481 (01/11/02) | <u></u> Rule 481(d) | | | | Rule 1145 (12/04/09) | Rule 1145(e) | Rule 1145(d) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR60 SUBPART TTT | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART NNNN | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART PPPP | See Applicable Subpart | See Applicable Subpart | | Coating Operation, Pleasure Craft | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | | Rule 481 (01/11/02) | Rule 481(d) | | | | Rule 1106.1 (02/12/99) | Rule 1106.1(e) | Rule 1106.1(d) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR63 SUBPART II | See Applicable Subpart | See Applicable Subpart | | KEY ABBREVIATIONS: Reg. = AQMD Regulation Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | |--|--|--|--| |--|--|--|--| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | |---|--|--|---------------------------------------| | Coating Operation, Screen Printing | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | | Rule 1130.1 (12/13/96) | Rule 1130.1(g) | Rule 1130.1(c)(5) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR63 SUBPART KK | See Applicable Subpart | See Applicable Subpart | | ✓ Coating Operation, Use Of Architectural | Rule 109 (05/02/03) | ✓ Rule 109(g) | √ Rule 109(c) | | Coating (Stationary Structures) | √ Rule 481 (01/11/02) | ▼ Rule 481(d) | Trule 105(c) | | , | | | | | | Rule 1113 (07/13/07) | Rule 1113(e) | Rule 1132(g) | | | Rule 1132 (05/05/06) | Rule 1132(f) | | | | ▼ Rule 1171 (05/01/09) | ✓ Rule 1171(e) | ✓ Rule 1171(c)(6) | | Coating Operation, Wood Flat Stock | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | | Rule 481 (01/11/02) | Rule 481(d) | <u> </u> | | | Rule 1104 (08/13/99) | Rule 1104(e) | Rule 1104(d) | | | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR63 SUBPART II | See Applicable Subpart | See Applicable Subpart | | Coating Operation, Wood Products | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | (Commercial Furniture, Cabinets, Shutters, | Rule 481 (01/11/02) | Rule 481(d) | | | Frames, Toys) | Rule 1132 (05/05/06) | Rule 1132(f) | Rule 1132(g) | | | Rule 1136 (06/14/96) | Rule 1136(f) | Rule 1136(d) & (g) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR63 SUBPART JJ | See Applicable Subpart | See Applicable Subpart | | Coater | See Coating Operations | | <u> </u> | | Columns | See Petroleum Refineries, Fugitive Emissio | ns | | | Composting Operation | Rule 1133 (01/10/03) | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | Composting Operation | Rule 1133.1 (01/10/03) | Rule 1133.1(e) | Rule 1133.1(d) | | | | Rule 1133.2(g) | Rule 1133.2(h) | | <u> </u> | Rule 1133.2 (01/10/03) See Fugitive Emissions or Petroleum Refine | | | | Compressors | See Nonmetallic Mineral Processing Plants | | | | Concrete Batch Plants | · · | | | | Consumer Product Manufacturing | See Manufacturing, Consumer Product | | | | Cooling Tower, Hexavalent Chromium | 40 CFR63 SUBPART Q | See Applicable Subpart | See Applicable Subpart | | | | | | | KEY ABBREVIATIONS: Reg. = AQMD Regulation
Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | |--|--|---|---------------------------------------| | Copper Electroplating Operation | Rule 1426 (05/02/03) | | Rule 1426(e) | | Crude Oil Production | See Oil Well Operations | | | | Crusher | See Nonmetallic Mineral Processing Plan | nts | | | Dairy Farms and Related Operations | Rule 1127 (08/06/04) | Rule 1127(h) | Rule 1127(g) | | Degreasers | Rule 109 (05/02/03) | √ Rule 109(g) | Rule 109(c) | | | Rule 1122 (05/01/09) | √ Rule 1122(h) | Rule 1122(i) | | | √ Rule 1171 (05/01/09) | √ Rule 1171(e) | Rule 1171(c)(6) | | | 40 CFR63 SUBPART T | See Applicable Subpart | See Applicable Subpart | | Dry Cleaning, Perchloroethlyene | Rule 1421 (12/06/02) | Rule 1421(e) & (i) | Rule 1421(g) & (h) | | Dry Cleaning, Petroleum Solvent | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | | Rule 1102 (11/17/00) | Rule 1102(g) | Rule 1102(f) | | | 40 CFR60 SUBPART JJJ | See Applicable Subpart | See Applicable Subpart | | Dryers, Mineral Industries | 40 CFR60 SUBPART UUU | See Applicable Subpart | See Applicable Subpart | | Ethylene Oxide Sterilizer | See Sterilizer, Ethylene Oxide | | · · · · · · · · · · · · · · · · · · · | | Flanges | See Fugitive Emissions or Petroleum Re | fineries, Fugitive Emissions | | | Fluid Catalytic Cracking Unit | Rule 218 (05/14/99) | AQMD TM 100.1 | Rule 218(e) & (f) | | _ | Rule 1105 (09/01/84) | Rule 1105(c)(1) | Rule 1105(c)(2) | | | Rule 1105.1 (11/07/03) | Rule 1105.1(f) | Rule 1105.1(e) | | Foundries, Iron and Steel | 40 CFR63 SUBPART EEEEE | See Applicable Subpart | See Applicable Subpart | | Friction Materials Manufacturing | See Manufacturing, Friction Materials | <u> </u> | | | Fugitive Emissions, Benzene | Rule 1173 (12/06/02) | Rule 1173(j) | Rule 1173(i) | | - - | 40 CFR61 SUBPART L | See Applicable Subpart | See Applicable Subpart | | | 40 CFR61 SUBPART V | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART R | See Applicable Subpart | See Applicable Subpart | | 200000 | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | | | | | | KEY ABBREVIATIONS: Reg. = AQMD Regulat
Rule = AQMD Rule | ion App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations
CCR = California Code of Regulations | | | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | |--|------------------------|------------------------|------------------------| | Fugitive Emissions, Chemical Plant | Rule 466 (10/07/83) | Rule 466(f) | Rule 466(e) | | | Rule 466.1 (03/16/84) | Rule 466.1(g) | Rule 466.1(h) | | | Rule 467 (03/05/82) | Rule 467(f) | Rule 467(e) | | | Rule 1173 (02/06/09) | Rule 1173(j) | Rule 1173(i) | | | 40 CFR60 SUBPART VV | See Applicable Subpart | See Applicable Subpart | | | 40 CFR61 SUBPART V | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART G | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART H | See Applicable Subpart | See Applicable
Subpart | | | 40 CFR63 SUBPART I | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART R | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | Fugitive Emissions, Natural Gas Processing | Rule 466 (10/07/83) | Rule 466(f) | Rule 466(e) | | Plant | Rule 466.1 (03/16/84) | Rule 466.1(g) | Rule 466.1(h) | | | Rule 467 (03/05/82) | Rule 467(f) | Rule 467(e) | | | Rule 1173 (02/06/09) | Rule 1173(j) | Rule 1173(i) | | | 40 CFR60 SUBPART KKK | See Applicable Subpart | See Applicable Subpart | | | 40 CFR61 SUBPART V | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART G | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART H | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART I | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART R | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | KEY ABBREVIATIONS: | Reg. = AQMD Regulation Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | |--------------------|---|--|--|--| | | tento i mino | | | | | Section II - Applicable Requirements, Te | st Methods, & MRR Requirements | | 9
<u> </u> | |--|--|--|------------------------| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | Fugitive Emissions, Oil & Gas Production | Rule 466 (10/07/83) | Rule 466(f) | Rule 466(e) | | Facility | Rule 466.1 (03/16/84) | Rule 466,1(g) | Rule 466.1(h) | | | Rule 467 (03/05/82) | Rule 467(f) | Rule 467(e) | | | Rule 1173 (02/06/09) | Rule 1173(j) | Rule 1173(i) | | | 40 CFR61 SUBPART V | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART G | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART H | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART I | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART R | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | Fugitive Emissions, Pipeline Transfer Station | Rule 466 (10/07/83) | Rule 466(f) | Rule 466(e) | | _ | Rule 466.1 (03/16/84) | Rule 466.1(g) | Rule 466.1(h) | | | Rule 467 (03/05/82) | Rule 467(f) | Rule 467(e) | | | Rule 1173 (02/06/09) | Rule 1173(j) | Rule 1173(i) | | | 40 CFR61 SUBPART V | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART G | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART H | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART I | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART R | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | Furnace, Basic Oxygen Process | 40 CFR60 SUBPART Na | See Applicable Subpart | See Applicable Subpart | | Furnace, Electric Arc, For Steel Plants:
Constructed After August 17, 1983 | 40 CFR60 SUBPART AAa | See Applicable Subpart | See Applicable Subpart | | Furnace, Electric Arc, For Steel Plants:
Constructed After Oct. 21, 1974, & On Or
Before Aug. 17, 1983 | 40 CFR60 SUBPART AA | See Applicable Subpart | See Applicable Subpart | | Furnace, Glass Melting | Rule 1117 (01/06/84) | Rule 1117(c), AQMD TM 7.1 or 100.1 | | | | 40 CFR60 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | Furnace, Lead Melting, Automotive Batteries | Rule 1101 (10/07/77) | AQMD TM 6.1 | | | | 40 CFR63 SUBPART X | See Applicable Subpart | See Applicable Subpart | | KEY ABBREVIATIONS: Reg. = AQMD Regulation Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | | Section II - Applicable Requirements, Tes | t Metrus, & MRR Requirements | | | |---|--|--|--| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | Gasoline Transfer & Dispensing Operation | Rule 461 (06/03/05) | Rule 461(f) | Rule 461(e)(6) & (e)(7) | | Glass Manufacturing | See Manufacturing, Glass | | | | Grain Elevators | 40 CFR60 SUBPART DD | See Applicable Subpart | See Applicable Subpart | | Halon-containing Equipment, Use for
Technician Training, Testing, Maintenance,
Service, Repair, or Disposal | 40 CFR82 SUBPART H | See Applicable Subpart | See Applicable Subpart | | Hazardous Waste Combustors | 40 CFR63 SUBPART EEE | See Applicable Subpart | See Applicable Subpart | | Heater, Asphalt Pavement | Rule 1120 (08/04/78) | AQMD Visible Emissions, AQMD TM 6.2 | Rule 1120(f) | | Heaters, Petroleum Refinery Process | Rule 429 (12/21/90) Rule 431.1 (06/12/98) Rule 1146 (09/05/08) 40 CFR60 SUBPART J 40 CFR63 SUBPART DDDDD | N/A Rule 431.1(f) Rule 1146(d) See Applicable Subpart See Applicable Subpart | Rule 429(d) Rule 431.1(d) & (e) Rule 1146(c)(6) & (c)(7) See Applicable Subpart See Applicable Subpart | | Heaters, Process | See Boilers | | | | Incinerators - | 40 CFR60 SUBPART E | See Applicable Subpart | See Applicable Subpart | | | 40 CFR60 SUBPART CCCC | See Applicable Subpart | See Applicable Subpart | | Inorganic Arsenic Emissions, Arsenic Trioxide & Metallic Arsenic Production Facilities | 40 CFR61 SUBPART P | See Applicable Subpart | See Applicable Subpart | | Internal Combustion Engines, Reciprocating | Rule 1110.2 (07/09/10) | Rule 1110.2(g) | Rule 1110.2(f) | | _ | 40 CFR60 SUBPART IIII and JJJJ | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART ZZZZ | See Applicable Subpart | See Applicable Subpart | | Kiln, Cement Plant | Rule 1112 (06/06/86) | N/A | N/A | | · | Rule 1112.1 (12/04/09) | N/A | N/A | | · · · · · · · · · · · · · · · · · · · | 40 CFR60 SUBPART F | See Applicable Subpart | See Applicable Subpart | | KEY ABBREVIATIONS: Reg. = AQMD Regulation App. = Appendix CFR = Code of Federal Regulations Rule = AQMD Rule AQMD TM = AQMD Test Method CCR = California Code of Regulations | | |--|--| |--|--| | Section II - Applicable Requirements, Tes | t Methods, & MRR Requirements | | | |--|--|---|------------------------| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | Landfills | Rule 1150 (10/15/82) | | | | | Rule 1150.1 (03/17/00) | Rule 1150.1(j) | Rule 1150.1(e) & (f) | | | 40 CFR60 SUBPART WWW | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART AAAA | See Applicable Subpart | See Applicable Subpart | | Lead Acid Battery Manufacturing Plants | See Manufacturing, Lead Acid Battery | | | | Lead Electroplating Operation | Rule 1426 (05/02/03) | | Rule 1426(e) | | Manufacturing, Asphalt Processing & Asphalt | Rule 470 (05/07/76) | N/A | See Applicable Subpart | | Roofing | Rule 1108 (02/01/85) | Rule 1108(b) | See Applicable Subpart | | | Rule 1108.1 (11/04/83) | Rule 1108.1 (b) | | | | 40 CFR60 SUBPART UU | See Applicable Subpart | | | | 40 CFR63 SUBPART LLLLL | See Applicable Subpart | _ | | Manufacturing, Brick & Structural Clay Products | 40 CFR63 SUBPART JJJJJ | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Cement | Rule 1156 (03/06/09) | Rule 1156(g) | Rule 1156(f) | | Manufacturing, Clay Ceramics | 40 CFR63 SUBPART KKKKK | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Coatings & Ink | Rule 1141.1 (11/17/00) | N/A | Rule 1141.1(c) | | (SIC Code 2851) | 40 CFR63 SUBPART HHHHH | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Consumer Product | Title 17 CCR 94500 | | | | Manufacturing, Food Product | Rule 1131 (06/06/03) | Rule 1131(e) | Rule 1131(d) | | Manufacturing, Friction Materials | 40 CFR63 SUBPART QQQQQ | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Glass | Rule 1117 (01/06/84) | Rule 1117(c), AQMD TM 7.1 or 100.1 | | | | 40 CFR60 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | | 40 CFR61 SUBPART N | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Hydrochloric Acid | 40 CFR63 SUBPART NNNNN | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Lead-Acid Battery | 40 CFR60 SUBPART KK | See Applicable Subpart | See Applicable Subpart | | | | | | | KEY ABBREVIATIONS: Reg. = AQMD Regulation Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method
 CFR = Code of Federal Regulations
CCR = California Code of Regulations | | | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | |---|--|-------------------------------------|------------------------| | Manufacturing, Lime | 40 CFR63 SUBPART AAAAA | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Magnetic Tape Industry | 40 CFR60 SUBPART SSS | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART EE | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Miscellaneous Organic
Chemical | 40 CFR63 SUBPART FFFF | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Nitric Acid | Rule 218 (05/14/99) | AQMD TM 100.1 | Rule 218(e) & (f) | | - | Rule 1159 (12/06/85) | AQMD TM 7.1 or 100.1 | | | | 40 CFR60 SUBPART G | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Plywood & Composite Wood | Rule 1137 (02/01/02) | N/A | Rule 1137(e) | | Products | 40 CFR63 SUBPART DDDD | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Polymer Industry | 40 CFR60 SUBPART DDD | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART W | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART J | See Applicable Subpart | See Applicable Subpart | | Manufacturing Delumenia Cellular Form | Rule 1175 (09/07/07) | Rule 1175(f) | Rule 1175(e) | | Manufacturing, Polymeric Cellular Foam | | See Applicable Subpart | See Applicable Subpart | | 1. | 40 CFR63 SUBPART UUUU | | | | Manufacturing, Products Containing Halon Blends | 40 CFR82 SUBPART H | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Products Containing Organic Solvents | Rule 443.1 (12/05/86) | N/A | N/A | | Manufacturing, Products Containing Ozone | 40 CFR82 SUBPART A | See Applicable Subpart | See Applicable Subpart | | Depleting Substances (ODS) | 40 CFR82 SUBPART E | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Reinforced Plastic Composites | | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Refractory Products | 40 CFR63 SUBPART SSSSS | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Resin | Rule 1141 (11/17/00) | Rule 1141(d) | Rule 1141(c) | | | 40 CFR63 SUBPART W | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Rubber Tire | 40 CFR63 SUBPART XXXX | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Semiconductors | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | | Rule 1164 (01/13/95) | Rule 1164(e) | Rule 109(c) | | | | | Rule 1171(c)(6) | | | Rule 1171 (05/01/09) | Rule 1171(e) See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART BBBBB | N/A | N/A | | Manufacturing, Solvent | Rule 443 (05/07/76) | · *** · | 1 *** 1 | | quipment/Process | Applicable Requirement | Test Method | MRR Requirement | |--|---|--|--| | Manufacturing, Sulfuric Acid | Rule 469 (02/13/81)
40 CFR60 SUBPART H | AQMD TM 6.1 or 6.2
See Applicable Subpart | See Applicable Subpart | | | 40 CFR60 SUBPART Cd | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Surfactant | Rule 1141.2 (01/11/02) | Rule 1141.2(e) AQMD TM 25.1 | | | Manufacturing, Synthetic Organic Chemical
Manufacturing Industry (SOCMI) Air Oxidation
Unit Processes | 40 CFR60 SUBPART III
40 CFR60 SUBPART NNN | See Applicable Subpart See Applicable Subpart | See Applicable Subpart See Applicable Subpart | | Manufacturing, Synthetic Organic Chemical
Manufacturing Industry (SOCMI) Reactor
Processes | 40 CFR60 SUBPART RRR | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Vinyl Chloride | 40 CFR61 SUBPART F | See Applicable Subpart | See Applicable Subpart | | Manufacturing, Water Heaters | Rule 1121 (09/03/04) | N/A | N/A | | Manufacturing, Wool Fiberglass Insulation | 40 CFR60 SUBPART PPP | See Applicable Subpart | See Applicable Subpart | | Manure Processing Operations | Rule 1127 (08/06/04) | Rule 1127(h) | Rule 1127(g) | | Marine Tank Vessel Operations | Rule 1142 (07/19/91) | Rule 1142(e) | Rule 1142(h) | | | Rule 1173 (02/06/09)
40 CFR63 SUBPART Y | Rule 1173(j) See Applicable Subpart | See Applicable Subpart | | Mercury Emissions | 40 CFR61 SUBPART E
40 CFR63 SUBPART IIII | See Applicable Subpart See Applicable Subpart | See Applicable Subpart See Applicable Subpart | | Motor Vehicle Air Conditioners with Ozone
Depleting Substances (ODS): Repair, Service,
Manufacturing, Maintenance, or Disposal | 40 CFR82 SUBPART B
40 CFR82 SUBPART F | See Applicable Subpart See Applicable Subpart | See Applicable Subpart See Applicable Subpart | | Municipal Waste Combustors | 40 CFR60 SUBPART Cb
40 CFR60 SUBPART Ea
40 CFR60 SUBPART Eb | See Applicable Subpart See Applicable Subpart See Applicable Subpart | See Applicable Subpart See Applicable Subpart See Applicable Subpart | | Negative Air Machines/HEPA, Asbestos | √ 40 CFR61 SUBPART M | See Applicable Subpart | See Applicable Subpart | | Nickel Electroplating Operation | Rule 1426 (05/02/03) | | Rule 1426(e) | | Nonmetallic Mineral Processing Plants | Rule 404 (02/07/86) Rule 405 (02/07/86) 40 CFR60 SUBPART OOO | AQMD TM 5.1, 5.2, or 5.3 AQMD TM 5.1, 5.2, or 5.3 See Applicable Subpart | See Applicable Subpart | | Off-site Waste and Recovery Operation | 40 CFR63 SUBPART DD | See Applicable Subpart | See Applicable Subpart | | KEY ABBREVIATIONS: | Reg. = AQMD Regulation
Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | |--------------------|--|--|--|--| | | Rule = AQIVID Rule | ACINID I III - ACIVID Test Method | CCR - California Code of Regulations | | | Section II - Applicable Requirements, Test Methods, & MRR Requirements | | | | | |--|---|--|---|--| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | | Oil and Gas Well Operation | Rule 1148 (11/05/82) Rule 1148.1 (03/05/04) | AQMD TM 25.1 Rule 1148.1 (g) | Rule 1148.1 (f) | | | Onshore Natural Gas Processing, SO2 Emissions | 40 CFR60 SUBPART LLL | See Applicable Subpart | See Applicable Subpart | | | Open Fires | Rule 444 (11/07/08) | | | | | Open Storage, Petroleum Coke | Rule 403 (06/03/05) Rule 403.1 (04/02/04) Rule 1158 (06/11/99) | Rule 403(d)(4) Rule 1158(h) | Rule 403(f) Rule 403.1(h) Rule 1158(j) | | | Open Storage | Rule 403 (06/03/05) Rule 403.1 (04/02/04) | Rule 403(d)(4) | Rule 403(f) Rule 403.1(h) | | | Outer Continental Shelf Platform | Rule 1183 (03/12/93) 40 CFR55 | 40 CFR55
See Applicable Subpart | 40 CFR55
See Applicable Subpart | | | Oven, Commercial Bakery | Rule 1153 (01/13/95) | Rule 1153(h) | Rule 1153(g) | | | Oven, Petroleum Coke | Rule 477 (04/03/81) 40 CFR63 SUBPART L 40 CFR63 SUBPART CCCCC | AQMD Visible Emissions, AQMD TM 5.1, 5.2, or 5.3 See Applicable Subpart See Applicable Subpart | See Applicable Subpart See Applicable Subpart | | | Ozone Depleting Substances (ODS) or Alternative ODS, Use | 40 CFR82 Subpart G | See Applicable Subpart | See Applicable Subpart | | KEY ABBREVIATIONS: Reg. = AQMD Regulation App. = Appendix CFR = Code of Federal Regulations Rule = AQMD Rule AQMD TM = AQMD Test Method CCR = California Code of Regulations | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | |--|------------------------|------------------------|-------------------------------| | Petroleum Refineries | Rule 218 (05/14/99) | AQMD TM 100.1 | Rule 218(e) & (f) | | | Rule 465 (08/13/99) | | | | | Rule 468 (10/08/76) | AQMD TM 6.1 or 6.2 | | | | Rule 469 (02/13/81) | AQMD TM 6.1 or 6.2 | | | | Rule 1118 (11/04/05) | Rule 1118(j) | Rule 1118(f), (g), (h), & (i) | | | Rule 1123 (12/07/90) | N/A | Rule 1123(c) | | | Rule 1189 (01/21/00) | Rule 1189(f) | Rule 1189(e) | | | 40 CFR60 SUBPART J | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART G | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART H | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART I | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART EEEE | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART GGGGG | See Applicable Subpart | See Applicable Subpart | | | Title 13 CCR 2250 | | | | Petroleum Refineries, Fugitive Emissions | Rule 1173 (02/06/09) | Rule 1173(j) | Rule 1173(i) | | | Rule 466 (10/07/83) | Rule 466(f) | Rule 466(e) | | | Rule 466.1 (03/16/84) | Rule 466.1(g) | Rule 466.1(h) | | | Rule 467 (03/05/82) | Rule 467(f) | Rule 467(e) | | | 40 CFR60 SUBPART GGG | See Applicable Subpart | See Applicable Subpart | | | 40 CFR61 SUBPART V | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART G | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART H | See Applicable
Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART I | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART R | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | KEY ABBREVIATIONS: | Reg. = AQMD Regulation
Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | |--------------------|--|--|--|--| | quipment/Process | Applicable Requirement | Test Method | MRR Requirement | |---|--|--|------------------------| | Petroleum Refineries, Storage Tanks | Rule 463 (05/06/05) | Rule 463(g) | Rule 463(e)(5) | | | Rule 1178 (04/07/06) | Rule 1178(i) | Rule 1178(f) & (h) | | | ☐40 CFR60 SUBPART K | See Applicable Subpart | See Applicable Subpart | | | 40 CFR60 SUBPART Ka | See Applicable Subpart | See Applicable Subpart | | | ☐40 CFR60 SUBPART Kb | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART G | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART H | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART I | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART R | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART EEEE | See Applicable Subpart | See Applicable Subpart | | Petroleum Refineries, Wastewater Systems | Rule 1176 (09/13/96) | Rule 1176(h) | Rule 1176(f) & (g) | | • | Rule 464 (12/07/90) | N/A | | | | 40 CFR60 SUBPART QQQ | See Applicable Subpart | See Applicable Subpart | | | 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | Pharmaceuticals & Cosmetics Manufacturing | Rule 1103 (03/12/99) | Rule 1103(f) | Rule 1103(e) | | , | 40 CFR63 SUBPART GGG | See Applicable Subpart | See Applicable Subpart | | Polyester Resin Operation | Rule 109 (05/02/03) | Rule 109(g) | Rule 109(c) | | | Rule 1162 (07/08/05) | Rule 1 162(f) | Rule 1162(e) | | | Rule 1171 (05/01/09) | Rule 1171(e) | Rule 1171(c)(6) | | Primary Magnesium Refining | 40 CFR63 SUBPART TTTTT | See Applicable Subpart | See Applicable Subpart | | 4 | | | | | Printing Press | See Coating Operations | <u>. </u> | | | Publicly Owned Treatment Works Operations | Rule 1179 (03/06/92) | Rule 1179(e) | Rule 1179(c) & (d) | | · | 40 CFR60 SUBPART O | See Applicable Subpart | See Applicable Subpart | | Pumps | See Fugitive Emissions or Petroleum Refi | neries, Fugitive Emissions | | | KEY ABBREVIATIONS: | Reg. = AQMD Regulation
Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | |--------------------|--|--|--|--| | | | | | | | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | |--|--|------------------------|------------------------|--| | Recycling & Recovery Equipment for Ozone Depleting Substances (ODS), | 40 CFR82 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | Refrigerant Reclaimers for Ozone Depleting Substances (ODS) | 40 CFR82 SUBPART F | See Applicable Subpart | See Applicable Subpart | | | Rendering Plant | Rule 472 (05/07/76) | N/A | Rule 472(b) | | | Rock Crushing | See Nonmetallic Mineral Processing Plant | | | | | Secondary Aluminum Production | 40 CFR63 SUBPART LL | See Applicable Subpart | See Applicable Subpart | | | Semiconductor Manufacturing | See Manufacturing, Semiconductors | | | | | Sewage Treatment Plants | See Publicly Owned Treatment Works Operation | | | | | Site Remediation | 40 CFR63 SUBPART GGGGG | See Applicable Subpart | See Applicable Subpart | | | Smelting, Primary Copper | 40 CFR63 SUBPART QQQ | See Applicable Subpart | See Applicable Subpart | | | Smelting, Secondary Lead | 40 CFR60 SUBPART L | See Applicable Subpart | See Applicable Subpart | | | | 40 CFR63 SUBPART X | See Applicable Subpart | See Applicable Subpart | | | Soil Decontamination / Excavation | Rule 1166 (05/11/01) | Rule 1166(e) | Rule 1166(c)(1)(C) | | | | 40 CFR63 SUBPART GGGGG | See Applicable Subpart | See Applicable Subpart | | | Spray Booth | See Coating Operations | | <u> </u> | | | Sterilizer, Ethylene Oxide | 40 CFR63 SUBPART O | See Applicable Subpart | See Applicable Subpart | | | Storage Tank, Degassing Operation | Rule 1149 (07/14/95) 40 CFR63 SUBPART CC | See Applicable Subpart | See Applicable Subpart | | KEY ABBREVIATIONS: Reg. = AQMD Regulation Rule = AQMD Rule App. = Appendix App. = Appendix AQMD TM = AQMD Test Method CFR = Code of Federal Regulations CCR = California Code of Regulations | Section II - Applicable Requirements, Test Methods, & MRR Requirements | | | | | | |--|---|---|---|--|--| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | | | Storage Tank, Greater Than 19,815 Gallon Capacity | Rule 463 (05/06/05) Rule 1178 (04/07/06) 40 CFR63 SUBPART F 40 CFR63 SUBPART H 40 CFR63 SUBPART I 40 CFR60 SUBPART K 40 CFR60 SUBPART K 40 CFR60 SUBPART Kb 40 CFR63 SUBPART R 40 CFR63 SUBPART R 40 CFR63 SUBPART BBBBBB 40 CFR63 SUBPART CC | Rule 463(g) Rule 1178(i) See Applicable Subpart | Rule 463(e)(5) Rule 1178(h) See Applicable Subpart | | | | Synthetic Fiber Production Facilities | 40 CFR60 SUBPART HHH | See Applicable Subpart | See Applicable Subpart | | | | Taconite Iron Ore Processing Facilities | 40 CFR63 SUBPART RRRRR | See Applicable Subpart | See Applicable Subpart | | | | ▼Turbine, Stationary Gas-Fired | Rule 1134 (08/08/97) Rule 475 (08/07/78) 40 CFR60 SUBPART GG 40 CFR60 SUBPART KKKK 40 CFR63 SUBPART YYYY | Rule 1134(e) & (g) AQMD TM 5.1, 5.2, or 5.3 See Applicable Subpart See Applicable Subpart See Applicable Subpart | Rule 1134(d) & (f) See Applicable Subpart See Applicable Subpart See Applicable Subpart | | | | Turbine, Stationary Oil-Fired | 40 CFR63 SUBPART YYYY | See Applicable Subpart | See Applicable Subpart | | | | Valves | See Fugitive Emissions or Petroleum Refi | See Fugitive Emissions or Petroleum Refineries, Fugitive Emissions | | | | | Vessel, Refinery Process | Rule 1123 (12/07/90) | N/A | Rule 1123(c) | | | | Vessels | See Petroleum Refineries, Fugitive Emiss | ions | | | | | KEY ABBREVIATIONS: | Reg. = AQMD Regulation
Rule = AQMD Rule | App. = Appendix AQMD TM = AQMD Test Method | CFR = Code of Federal Regulations CCR = California Code of Regulations | | |--------------------|--|--|--|--| | Section II - Applicable Requirements, Test Methods, & MRR Requirements | | | | | | | |--|---|---|---|--|--|--| | Equipment/Process | Applicable Requirement | Test Method | MRR Requirement | | | | | Wastewater, Chemical Plant | Rule 464 (12/07/90) Rule 1176 (09/13/96) 40 CFR63 SUBPART F 40 CFR63 SUBPART H 40 CFR63 SUBPART I 40 CFR63 SUBPART CC | N/A Rule 1176(h) See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart | Rule 1176(f) & (g) See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart See Applicable Subpart | | | | | Wastewater Treatment, Other | Rule 464 (12/07/90) Rule 1176 (09/13/96) | N/A
Rule 1176(h) | Rule 1176(f) & (g) | | | | | Woodworking Operations | Rule 1137 (02/01/02) | N/A | Rule 1137(e) | | | | KEY ABBREVIATIONS: Reg. = AQMD Regulation Rule = AQMD Rule App. = Appendix AQMD TM = AQMD Test Method CFR = Code of Federal Regulations CCR = California Code of Regulations ## Section III - Supplemental Identification of Specific Requirements Complete this section only if there is a specific requirement (i.e., rule reference, test method, or MRR requirement) that is: - 1. Listed for a specific type of equipment or process in Section II of this form & DOES NOT pertain to a specific device at your facility*: OR. - 2. Is NOT Listed for a specific type of equipment or process in Section II of this
form but it IS applicable to a specific device at your facility. #### NOTES: - 1. For any specific requirement, test method, or MRR requirement that is identified as "Remove," attach additional sheets to explain the reasons why the specific requirement does not pertain to the device listed. - All boxes that are checked in Section II and any additional requirements identified in this section as "Add" will be used to determine the facility's compliance status. This information will be used to verify the certification statements made on Form 500-A2. - Do not use this section to identify equipment that is exempt from specific rule requirements. Your equipment is automatically considered to be in compliance with the rule that specifically exempts the equipment from those requirements. - Listing any requirement that does not apply to a specific piece of equipment in this section will not provide the facility with a permit shield unless one is specifically requested by completing Form 500-D and approved by the AQMD. - * If this section is completed as part of the initial Title V application & there is no device number assigned, refer to the existing permit or application number in this column. | Device
No.* | Specific
Requirement
(Rule Number & Date) | Add (A) or
Remove (R)
(Check one) | Test Method | Add (A) or
Remove (R)
(Check one) | MRR Requirement | Add (A) or
Remove (R)
(Check one) | |----------------|---|---|-------------|---|-----------------|---| | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | 1 | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | - | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | | | OAOR | | OAOR | | OAOR | | Check off each SIP-Approved | Rule as it applies to th | ie racility. Use the bia | anks at the end of this form to fill | -in new items. | | |-----------------------------|--------------------------------|--------------------------|--------------------------------------|--------------------------------|-----------| | SIP - Approved Rule | Adoptioni
Amendment
Date | Check (√)
If Applies | SiP - Approved Rule | Adoption/
Amendment
Date | Check (🗸) | | 401 | 03/02/84 | √ | | | | | 431.2 | 05/04/90 | | <u> </u> | | | | 461 | 6/3/05 | | | | | | 466.1 | 05/02/80 | | | | | | 469 | 04/07/76 | | | | | | 475 | 10/08/76 | / | | | | | 1112 | 01/06/84 | | | | | | 1112.1 | 2/7/86 | | | | | | 1113 | 11/08/96 | <u> </u> | ·- | | | | 1117 | 1/6/83 | | | | | | 1122 | 07/11/97 | <u> </u> | | | | | 1132 | 03/05/04 | | | | | | 1140 | 02/01/80 | 7 | | | | | 1146 | 11/17/00 | | | - | | | 1146.1 | 5/13/94 | | | | | | 1151 | 12/11/98 | | | | | | 1158 | 6/11/99 | | | | | | 1162 | 11/17/00 | | | | | | 1166 | 07/14/95 | | | | | | 1171 | 11/07/03 | <u> </u> | | | | | 1175 | 05/13/94 | | | | | | 1186 | 09/10/99 | | | | | ERIC GARCETTI Mayor Commission MEL LEVINE, President WILLIAM W. FUNDERBURK JR., Vice President JILL BANKS BARAD MICHAEL F. FLEMING CHRISTINA E. NOONAN BARBARA E. MOSCHOS, Secretary MARCIE L. EDWARDS General Manager January 13, 2016 Mr. Li Chen Air Quality Engineer South Coast Air Quality Management District 21865 East Copley Drive Diamond Bar, CA 91765 Dear Mr. Chen: Subject: Permit Application for Change of Condition and Minor Permit Revision Los Angeles Department of Water and Power (LADWP) Haynes Generating Station (Haynes) The LADWP is submitting the enclosed permit application for Change of Condition and Minor Permit Revision for the Haynes (Facility ID 800074) Title V Permit. Since Haynes Unit 1 (Device ID D1) and Unit 2 (Device ID D4) only burn natural gas, the LADWP is requesting the removal of the following Title V permit conditions pertaining to fuel oil firing: - D182.1 - E371.1 - E202.1 - E204.1 - E204.2 - K171.1 The following forms are enclosed: - AQMD Form 400-A - AQMD Form 400-A2 - AQMD Form 400-CEQA - AQMD Form 500-C1 Mr. Li Chen Page 2 January 13, 2016 • Check No. R100837 in the amount of \$25,592.54 for the Change of Condition and Minor Permit Revision fees. Please refer to Enclosure 1 for the explanation of fees. If you have questions, please contact Ms. Leizl Lontok at (213) 367-3779. Sincerely, Dat M. Quach Manager of Air Quality Davach LL:rs **Enclosures** c: Ms. Leizl Lontok #### Section V - AQMD Rules That Are Not SIP-Approved (Continued on Following Page) Check off each AQMD Rule as it applies to the facility. Use the blanks at the end of this form to fill-in new items. Adoption/ Adoption/ Check (✓) Check (√) Amendment Non SIP - Approved Rule Non SIP - Approved Rule Amendment If Applies If Applies Date Date N/A 53 Los Angeles Co. 1192 06/16/00 **7** 53 Orange Co. 1193 N/A 07/09/10 53 Riverside Co. N/A 1194 10/20/00 53 San Bernardino Co. N/A 1195 05/05/06 53A San Bernardino Co. N/A 1196 06/06/08 402 05/07/76 1401 09/10/10 429 12/21/90 1401.1 11/04/05 430 07/12/96 1402 03/04/05 441 05/07/76 1403 10/05/07 473 05/07/76 1404 04/06/90 477 04/03/81 1405 01/04/91 480 1406 07/08/94 10/07/77 1407 1109 08/05/88 07/08/94 1411 1110.2 07/09/10 03/01/91 1414 1116.1 10/20/78 05/03/91 1127 08/06/04 1415 10/14/94 1143 07/09/10 1418 09/10/99 1147 12/05/08 1420 09/11/92 1148.1 03/05/04 1420.1 11/05/10 1150 10/15/82 1421 12/06/02 1155 12/04/09 1425 03/16/01 1156 03/06/09 1426 05/02/03 1157 09/08/06 1163 06/07/85 1170 05/06/88 1183 03/12/93 1186.1 01/09/09 1191 06/16/00 | Non SIP - Approved Rule | Adoption/
Amendment
Date | Check (√)
If Applies | Non SIP - Approved Rule | Adoption/
Amendment
Date | Check (√)
if Applies | |-------------------------|--------------------------------|-------------------------|-------------------------|--------------------------------|-------------------------| | 1469 | 12/05/08 | | 2009.1 | 05/11/01 | | | 1469.1 | 03/04/05 | | 2501 | 05/09/97 | | | 1470 | 06/01/07 | | 2506 | 12/10/99 | | | 1472 | 03/07/08 | | | | | | 2009 | 01/07/05 | ✓ | - " | | South Coast Air Quality Management District Form 400-A #### **Application Form for Permit or Plan Approval** Coast List only one piece of equipment or process per form. Mail To: SCAQMD P.O. Box 4944 Diamond Bar, CA 91765-0944 Tel: (909) 396-3385 www.agmd.gov | AQMD | www.aqmd.gov | | | | |---|---|--|--|--| | Section A - Operator Information | | | | | | Facility Name (Business Name of Operator to Appear on the Permit): | 2. Valid AQMD Facility ID (Available On | | | | | LA City DWP, Haynes Generating Station | Permit Or Invoice Issued By AQMD): | | | | | 3. Owner's Business Name (If different from Business Name of Operator): | 800074 | | | | | Section B - Equipment Location Address | Section C - Permit Mailing Address | | | | | 4. Equipment Location Is: Fixed Location Various Location (For equipment operated at various locations, provide address of initial site.) | Permit and Correspondence Information: Check here if same as equipment location address | | | | | 6801 East 2nd Street | 111 N. Hope Street, Room 1050 | | | | | Street Address | Address | | | | | Long Beach , CA 90803 Zip | Los Angeles , CA 90012 State Zip | | | | | Edward Kim Env. Coordinator | Dat M. Quach Air Quality Manager | | | | | Contact Name Title | Contact Name Title | | | | | (310) 522-7512
Phone # Ext Fax # | (213) 367-4697 (213) 367-4710 Ext. Fax # | | | | | E-Mail: edward.kim@ladwp.com | E-Mail: dat.quach@ladwp.com | | | | | Section D - Application Type | | | | | | 6. The Facility Is: Not In RECLAIM or Title V In RECLAIM | ☐ In Title V ☐ In RECLAIM & Title V Programs | | | | | 7. Reason for Submitting Application (Select only ONE): | | | | | | | rocess with an Existing/Previous Application or Permit: | | | | | New Construction (Permit to Construct) Administrative Construction | | | | | | C Equipment On-Site But Not Constructed or Operational Alteration/Modifi | e total angle to a | | | | | | ication without Prior Approval * | | | | | Compliance Plan Change of Conc | If you checked any of the items in | | | | | • | 7c., you MUST provide an existing dittion without Prior Approval Permit or Application Number: | | | | | Change of Code Streamlined Standard Permit Change of Loca | | | | | | Change of Loop | ition without Prior Approval • 410730 | | | | | M. Facility Petrius: | rating with an Expired/Inactive Permit * | | | | | Title V Application or Amendment (Refer to Title V Matrix) | | | | | | | assing Fee and additional Annual Operating Fees (up to 3 full years) may apply (Rule 301(c)(1)(D)(i)). | | | | | 8a. Estimated Start Date of Construction (mm/dd/yyyy): 8b. Estimated End Date of C | construction (mm/dd/yyyy): 8c. Estimated Start Date of Operation (mm/dd/yyyy): | | | | | 9. Description of Equipment or Reason for Compliance Plan (list applicable rule): | 10. For identical equipment, how many additional | | | | | Permit application for minor permit modification and change in condition. | applications are being submitted with this application? (Form 400-A required for each equipment / process) 1 | | | | | 11. Are you a Small Business as per AQMD's Rule 102 definition? | 12. Has a
Notice of Violation (NOV) or a Notice to Comply (NC) been issued for this equipment? | | | | | (10 employees or less and total gross receipts are \$500,000 or less OR a not-for-profit training center) Po No Yes | Comply (NC) been issued for this equipment? If Yes, provide NOV/NC#: | | | | | | | | | | | 13. What type of business is being conducted at this equipment location? Electric Generation | 14. What is your business primary NAICS Code? (North American Industrial Classification System) 221112 | | | | | 15. Are there other facilities in the SCAQMD jurisdiction operated by the same operator? No | 16. Are there any schools (K-12) within 1000 feet of the facility property line? No Yes | | | | | Section F - Authorization/Signature / hereby certify that all information cont | tained herein and information submitted with this application are true and correct. | | | | | 17. Signature of Responsible Official: Dir. of Power S | Cupally and Op (This may cause a delay in the | | | | | 20. Print Name: 21. Date: / / | application process.) 22. Do you claim confidentiality of | | | | | Kenneth A. Silver | data? (If Yes, see instructions.) • No Yes | | | | | 23. Check List: Authorized Signature/Date | Supplemental Form(s) (ie., Form 400-E-xx) | | | | | AOMO S 3 1336 TOBLO 837 25 392 | SUPAYMENT TRACKING # VALIDATION / 9/16 OF | | | | | DATE APP DATE APP CLASS BASIC EQUIPMENT CATEGORY REJ I III CONTROL | CODE TEAM ENGINEER REASON/ACTION TAKEN | | | | South Coast Air Quality Management District #### Form 400-A ## Application Form for Permit or Plan Approval List only one piece of equipment or process per form. Mail To: SCAQMD P.O. Box 4944 Diamond Bar, CA 91765-0944 Tel: (909) 396-3385 | ACIVID | | p.bmps.www | |--|---|---| | Section A - Operator Information | | | | Facility Name (Business Name of Operator to Appear on the Permit): | | 2. Valid AQMD Facility ID (Available On | | LA City DWP, Haynes Generating Station | | Permit Or Invoice Issued By AQMD): | | 3. Owner's Business Name (If different from Business Name of Operator): | | 800074 | | Section B - Equipment Location Address | Section C - Permit Mailing Address | <u> </u> | | 4. Equipment Location Is: Fixed Location Various Loca (For equipment operated at various locations, provide address of initial site.) | stion 5. Permit and Correspondence Information Check here if same as equipment le | | | 6801 East 2nd Street Street Address | 111 N. Hope Street, Room 105
Address | | | Long Beach , CA 90803 | Los Angeles City | , CA 90012
State Zip | | Edward Kim Env. Coordinator Contact Name Title | Dat M. Quach
Contact Name | Air Quality Manager | | (310) 522-7512
Phone # Ext Fax # | (213) 367-4697
Phone # Ext. | (213) 367-4710
Fax # | | E-Mail: edward.kim@ladwp.com | E-Mail: dat.quach@ladwp.com | | | Section D - Application Type | | | | 6. The Facility Is: Not In RECLAIM or Title V In RECLA | AIM In Title V • In RECLAIN | A & Title V Programs | | 7. Reason for Submitting Application (Select only ONE): | | | | 7a. New Equipment or Process Application: 7c. Equipmen | nt or Process with an Existing/Previous Applica | tion or Permit: | | New Construction (Permit to Construct) Administr | rative Change | | | | √Modification | Existing or Previous | | Equipment Operating Without A Permit * Alteration | v/Modification without Prior Approval * | Permit/Application | | • • | of Condition | If you checked any of the items in
7c., you MUST provide an existing | | Registration/Certification Change of | of Condition without Prior Approval | Permit or Application Number: | | Streamlined Standard Permit Change of | of Location | 410732 | | Pb. Facility Permits: | of Location without Prior Approval * | | | Title V Application or Amendment (Refer to Title V Matrix) | nt Operating with an Expired/Inactive Permit * | | | · · · · · · · · · · · · · · · · · · · | nit Processing Fee and additional Annual Operating Fees (| up to 3 full years) may apply (Rule 301(c)(1)(D)(i)). | | 14EOC diff. Builty 1 or not 7 or official to | | ed Start Date of Operation (mm/dd/yyyy): | | | | | | 9. Description of Equipment or Reason for Compliance Plan (list applicable rule | b): 10. For Identical equipment, how many | | | Permit application for minor permit modification and change in condition. Boiler Modification | applications are being submitted wit
(Form 400-A required for each equipment | ent / process) 1 | | 11. Are you a Small Business as per AQMD's Rule 102 definition? (10 employees or less and total gross receipts are | 12. Has a Notice of Violation (NOV) or
Comply (NC) been issued for this e | | | \$500,000 or less OR a not-for-profit training center) • No C Y | | | | Section E - Facility Business Information | | | | 13. What type of business is being conducted at this equipment location? Electric Generation | 14. What is your business primary NAIC (North American Industrial Classification | | | 15. Are there other facilities in the SCAQMD | 16. Are there any schools (K-12) within | 2 © No C Yes | | jurisdiction operated by the same operator: | 1000 feet of the facility property line | | | Section F - Authorization/Signature I hereby certify that all information 17. Signature of Responsible Official: 18. Title 18 | on contained herein and information submitted with | ew the permit prior to issuance. | | | | se a delay in the No | | 20. Print Name: 21. Date: /// Kenneth A. Silver | | confidentiality of
, see instructions.) • No Yes | | 23. Check List: Authorized Signature/Date Form 400-CE | QA Supplemental Form(s) (ie., Form | 1 400-E-xx) X Fees Enclosed | | AGMD APPLICATION TRACKING # CHECK # AMOUNT RECEIVED USE ONLY 531337 700100837 2559 | PAYMENT TRACKING # | VALIDATION 9/16 | | DATE APP DATE APP CLASS BASIC EQUIPMENT CATE | GORY CODE TOM ENGINEER REASON/ACTIO | | © South Coast Air Quality Management District, Form 400-A (2014.07) U 126073 # South Coast South Coast Air Quality Management District #### Form 400-CEQA Section A - Facility Information #### California Environmental Quality Act (CEQA) Applicability Mail To: SCAQMD P.O. Box 4944 Diamond Bar, CA 91765-0944 > Tel: (909) 396-3385 www.aqmd.gov The SCAQMD is required by state law, the California Environmental Quality Act (CEQA), to review discretionary permit project applications for potential air quality and other environmental impacts. This form is a screening tool to assist the SCAQMD in clarifying whether or not the project has the potential to generate significant adverse environmental impacts that might require preparation of a CEQA document [CEQA Guidelines §15060(a)]. Refer to the attached instructions for guidance in completing this form. For each Form 400-A application, also complete and submit one Form 400-CEQA. If submitting multiple Form 400-A applications for the same project at the same time, only one 400-CEQA form is necessary for the entire project. If you need assistance completing this form, contact Permit Services at (909) 396-3385 or (909) 396-2668. | | | | en was a warm of the control | | | | | | | | | |---------|-------------------------|----------
---|--|---|--|--|--|--|--|--| | 1. Fac | ility Na | me (Bus | iness Name of Operator To Appear On The Permit): | Valid AQMD Facility ID (Available On Permit Or Invoice Issued ACMD): | | | | | | | | | L/ | A City | DWP | , Haynes Generating Station | By AQMD): | 800074 | | | | | | | | 3. Pro | ject Des | scriptio | on: | _ | _ | | | | | | | | Pe | ermit a | applica | ation for minor permit revision and change of condition | ons pertaining to fu | iel oil firing of Boiler Unit 1 | | | | | | | | (D | evice | ID D | 1) and Boiler Unit 2 (Device ID D4) | | • | | | | | | | | Section | n B - I | Review | For Exemption From Further CEQA Action | | | | | | | | | | Check | "Yes" o | r "No" a | as applicable | | | | | | | | | | | Yes | No | Is this application for: | · | | | | | | | | | 1. | ر | • | A CEQA and/or NEPA document previously or currently prepared signed Notice of Determination to this form. | I that specifically evalua | ates this project? If yes, attach a copy of the | | | | | | | | 2. | | | | | | | | | | | | | 3. | ر | (e | A functionally identical permit unit replacement with no increase in rating or emissions? | | | | | | | | | | 4. | ر | • | A change of daily VOC permit limit to a monthly VOC permit limit? | | | | | | | | | | 5. | ر | 6 | Equipment damaged as a result of a disaster during state of eme | • , | | | | | | | | | 6. | ر (| (| A Title V (i.e., Regulation XXX) permit renewal (without equipment | modifications)? | | | | | | | | | 7. | ر , | • | A Title V administrative permit revision? | | | | | | | | | | 8. | ر | 6 | The conversion of an existing permit into an initial Title V permit? | | | | | | | | | | | | | r any question in Section B, your application does not require additional date this form. | evaluation for CEQA app | plicability. Skip to Section D - Signatures on | | | | | | | | Sectio | nC - I | Review | of Impacts Which May Trigger CEQA | | | | | | | | | | | lete Part
tach it to | | y checking "Yes" or "No" as applicable. To avoid delays in processing rm. | your application(s), expla | in all "Yes" responses on a separate sheet | | | | | | | | | Yes | No | Part I - General | | | | | | | | | | 1. | C | • | Has this project generated any known public controversy regarding potential adverse impacts that may be generated by the project? Controversy may be construed as concerns raised by local groups at public meetings; adverse media attention such as negative articles in newspapers or other periodical publications, local news programs, environmental justice issues, etc. | | | | | | | | | | 2. | | © | Is this project part of a larger project? If yes, attach a separate she | et to briefly describe the l | arger project. | | | | | | | | | | | Part II - Air Quality | | | | | | | | | | 3. | \subset | • | Will there be any demolition, excavating, and/or grading construction feet? | tion activities that enco | ompass an area exceeding 20,000 square | | | | | | | | 4. | (| • | Does this project include the open outdoor storage of dry bulk so with the application package. | olid materials that could | generate dust? If Yes, include a plot plan | | | | | | | ¹A "project" means the whole of an action which has a potential for resulting in physical change to the environment, including construction activities, clearing or grading of land, improvements to existing structures, and activities or equipment involving the issuance of a permit. For example, a project might include installation of a new, or modification of an existing internal combustion engine, dry-cleaning facility, boiler, gas turbine, spray coating booth, solvent cleaning tank, etc. ² To download the CEQA guidelines, visit http://ceres.ca.gov/env_law/state.html. ³ To download this form and the instructions, visit http://www.aqmd.gov/ceqa or http://www.aqmd.gov/permit | | nÇ- | renay | allings supple | Lance of Archive 1995 | | | | | | | | | |---------------|-----------------|---|---|--|--|--|--|--|--|--|--|--| | | Yes | No | Part II - Air Quality | (cont.) | | | | | | | | | | 5. | 0 | • | For example, comp | t result in noticeable off-site odors fro
lost materials or other types of greenwar
to Rule 402 – Nuisance. | om activities that may not be subject to SCAQMD permit requirements? ste (i.e., lawn clippings, tree trimmings, etc.) have the potential to generate odor | | | | | | | | | 6. | C | • | Does this project | cause an increase of emissions from | marine vessels, trains and/or airplanes? | | | | | | | | | 7. | C | • | Will the proposed
vehicle to or from | ill the proposed project increase the QUANTITY of hazardous materials stored aboveground onsite or transported by mobile chicle to or from the site by greater than or equal to the amounts associated with each compound on the attached Table 1?4 | | | | | | | | | | | | | Part III - Water Re | SOURCES | | | | | | | | | | 8. | ر | (e) | The following exam generate steam; 2) production process | ples identify some, but not all, types of in
projects that use water as part of the air | y by more than 5,000,000 gallons per day? projects that may result in a "yes" answer to this question: 1) projects that repolition control equipment; 3)
projects that require water as part of the on of existing sewage treatment facilities; 5) projects where water demand sufficient water for the project; and 6) projects that require new or expansion of | | | | | | | | | 9. | C | • | Examples of such p | If the project require construction of new water conveyance infrastructure? amples of such projects are when water demands exceed the capacity of the local water purveyor to supply sufficient water for the local water purveyor to supply supply sufficient water for the local water purveyor to supply sufficient water for the local water purveyor to supply su | | | | | | | | | | | | | Part IV - Transpor | tation/Circulation | | | | | | | | | | 10. | | | | sult in (Check all that apply): | | | | | | | | | | | ر | • | | ore than 350 new employees? | | | | | | | | | | | ر | ē | | an increase in heavy-duty transport truck traffic to and/or from the facility by more than 350 truck round-trips per day? | | | | | | | | | | | | • | c. increase customer traffic by more than 700 visits per day? | | | | | | | | | | | | |] | Part V - Noise | Services of the service servi | | | | | | | | | | 11. | Ċ | Ē | Will the project inc | clude equipment that will generate no | ise GREATER THAN 90 decibels (dB) at the property line? | | | | | | | | | | | | Part VI - Public Se | rvices | | | | | | | | | | 12. | | | Will the project cre | eate a permanent need for new or add | litional public services in any of the following areas (Check all that apply): | | | | | | | | | | رَ | • | | | ential amount of wastes generated by the project is less than five tons per day. | | | | | | | | | | C | b. Hazardous waste disposal? Check "No" if the projected potential amount of hazardous wastes generated by the project is less than 42 cubic yards per day (or equivalent in pounds). | | | | | | | | | | | | "REMI | NDER: F | or each | "Yes" response in Sect | tion C, attach all pertinent information includir | ng but not limited to estimated quantities, volumes, weights, etc.** | | | | | | | | | Sectio | nD - \$ | ignatu | res : | | | | | | | | | | | CORR
RIGHT | TO CO |) THE E | BEST OF MY KNOV
R OTHER PERTINE | | | | | | | | | | | 1. Sign | ature of | Respon | sible Official of Firm: | 2 1/1 | 2. Title of Responsible Official of Firm: | | | | | | | | | <u></u> | 1 | 2 | m | Silver | Director of Power Supply and Operations | | | | | | | | | | Name o
nneth | • | nsible Official of Firm
ver | i: | 4. Date Signed: 1/14/2016 | | | | | | | | | 5. Phor | ne#ofR | esponsi | ble Official of Firm: | 6. Fax # of Responsible Official of Firm: | 7. Email of Responsible Official of Firm: | | | | | | | | | (21 | 3) 067 | 7-437 | 4 | (213) 367-0210 | kenneth.silver@ladwp.com | | | | | | | | | | • | | 7) | on other than responsible official of firm): | 9. Title of Preparer: | | | | | | | | | / | ^ | \mathcal{V} | | - | Environmental Specialist | | | | | | | | | 10. Prir | nt Name | of Prepa | rer: | | 11. Date Signed: | | | | | | | | | | zl Lon | | | | 1/5/16 | | | | | | | | | | ne # of I | • | | 13. Fax # of Preparer: | 14. Email of Preparer: | | | | | | | | | (21 | 3) 26 | 7-377 | 9 | (213) 367-4710 | leizl.lontok@ladwp.com | | | | | | | | THIS CONCLUDES FORM 400-CEQA. INCLUDE THIS FORM AND ANY ATTACHMENTS WITH FORM 400-A. ⁴ Table 1 – Regulated Substances List and Threshold Quantities for Accidental Release Prevention can be found in the Instructions for Form 400-CEQA. # Restrictions Concerning the Release and Interpretation of Source Testing Emission Information (Please Read Carefully) The South Coast Air Quality Management District • Source Test Engineering Branch | Request | | | |-----------|----------------|--------------------| | Concerns: | Chroma Systems | 84580 | | | | (AQMD Control No.) | The SCAQMD Source Test Engineering (STE) Branch has provided the following source testing reports pursuant to your Public Records Request. STE is obligated under AQMD's Guidelines for Implementing the California Public Records Request, to remove information which is regarded as proprietary, confidential, or information which contains trade secrets. Also, "data used to calculate emission data" must be removed, prior to dissemination. This includes, but is not limited to: - 1. Intermediate stack information (stack dimensions, velocity/flowrate, temperature, gaseous composition other than reported contaminant emissions, etc.). - 2. Intermediate emission information (emissions/losses to control devices, raw emission data, laboratory analyses, etc.). - 3. Process information (process/product throughput, fuel usage, firing rates and burner/control adjustments unless rule/permit conditions specify emissions to be formatted according to this information, photos or drawings of process, etc.). - 4. Quality Assurance concerning the above information (calibrations, corrections, etc.). Most source test reports received by STE are formally evaluated for accuracy and other factors pertinent to the accuracy of reported emissions. The attached source test reports have been rated as follows: | Source Test I.D. | Document Su | ubject/Date | Accuracy Rating* | |------------------|------------------------------|---|-----------------------| | R 08025 | ☐ Protocol ☐ Report ☐ other: | ☐ Test Date ☐ Document Date May 8, 2006 | (I) (A) (CA) (U) (NR) | | R 08026 | ☐ Protocol ☐ Report ☐ other: | ☐ Test Date ☐ Document Date May 8, 2006 | (I) (A) (CA) (U) (NR) | #### *STE's Accuracy Rating Explanations: **In-House** (I) – Source testing and report were conducted "in-house" by AQMD Source Testing staff and reported emission information is considered accurate. **ACCEPTABLE** (A) – Source test document was conducted/submitted by independent source testing firm, has been evaluated by STE staff, and reported emission information is considered accurate and well documented. **CONDITIONALLY ACCEPTABLE (CA)** – Source test document was conducted/submitted by independent source testing firm, has been evaluated by STE staff, and reported emission information may have limited use. For further details, contact STE at (909) 396-2265. UNACCEPTABLE (U) – Source test document was conducted/submitted by independent source testing firm, has been evaluated by STE staff, and emission information is <u>not</u> considered accurate. <u>Unacceptable source test reports will not be provided unless the requestor requests their release after being notified of their Accuracy Rating.</u> For further details, contact STE at (909) 396-2265. **NOT RATED (NR)** – Source test report has \underline{not} been formally evaluated or status is unknown. STE assumes no responsibility for the accuracy of the reported emission information. 131PUBLIC_Records Request Evaluation.doc (Revised 11/08/12) #### RECLAIM LARGE SOURCE TEST REPORT #### PREPARED FOR: Chroma Systems 3201 South Susan Street Santa Ana, CA 92704 #### **EQUIPMENT LOCATION:** Chroma Systems 3201 South Susan Street Santa Ana, CA 92704 (SCAQMD Facility I.D. #095212) #### **EQUIPMENT I.D:** Boiler (SCAQMD Device ID #: D8) #### **TEST DATES:** March 30, 2006 #### **ISSUE DATE:** May 8, 2006 #### PARAMETERS MEASURED: NO_x and O₂ Emissions #### **TESTED BY:** World Environmental 20321 Lake Forest Drive, Suite D6 Lake Forest, CA 92630 World Environmental Report No: WER1723 Revision: 0 Prepared By: Mr. Thomas Cheng, Project Manager Reviewed By: Mr. Keith Shannon, President of World Environmental #### 2.0 SUMMARY OF RESULTS Facility: Chroma Systems Date Tested: March 30, 2006 Unit: Project #: Boiler (D8) WER1723 A. Boiler (Device ID: D8) | A. Boller (Device | 1D: Do) | | | |--|-------------------|-----------------------------|-------------------------| | Emissions | Test Run | Emission Limit | Applicable Rule | | Fuel Type: | Natural Gas | | | | DSCFM: | | | | | O ₂ %: | | | | | NO _x ppm (drift corr) ppm @ 3% O ₂ lb/hr | 15.84 0.48 | 20 ppm @ 3% O ₂ | RECLAIM
Large Source | | CO
ppm (drift corr)
ppm @ 3% O ₂
lb/hr | 85.10 1.57 | 400 ppm @ 3% O ₂ | | #### RECLAIM LARGE SOURCE TEST REPORT #### PREPARED FOR: Chroma Systems 3201 South Susan Street Santa Ana, CA 92704 #### **EQUIPMENT LOCATION:** Chroma Systems 3201 South Susan Street Santa Ana, CA 92704 (SCAQMD Facility I.D. #095212) #### **EQUIPMENT I.D:** Boiler (SCAQMD Device ID #: D9) ### TEST DATES: March 14, 2006 #### **ISSUE DATE:** May 8, 2006 #### **PARAMETERS MEASURED:** NO_x and O₂ Emissions #### **TESTED BY:** World Environmental 20321 Lake Forest Drive, Suite D6 Lake Forest, CA 92630 World Environmental Report No: WER1723 Revision: 0_____ Prepared By: Mr. Thomas Cheng, Project
Manager Reviewed By: Mr. Keith Shannon, President of World Environmental #### 2.0 SUMMARY OF RESULTS Facility: Chroma Systems Date Tested: March 14, 2006 Unit: Boiler (D9) Project #: WER1723 A. Boiler (Device ID: D9) | A. Doner (Device | 10.07) | | | |--|----------------------|-----------------------------|-------------------------| | Emissions | Test Run | Emission Limit | Applicable Rule | | Fuel Type: | Natural Gas | | | | DSCFM: | | | | | O ₂ %: | | | | | NO _X ppm (drift corr) ppm @ 3% O ₂ lb/hr | 10.42
0.31 | 15 ppm @ 3% O ₂ | RECLAIM
Large Source | | CO ppm (drift corr) ppm @ 3% O ₂ lb/hr | < 20.71 <0.37 | 400 ppm @ 3% O ₂ | | ^{*} CO concentration was less than the quantifiable limit, 20% of full scale was used as the concentration measured. Testing for CO was performed at 0-100 ppm range, therefore 20 ppm was used as the default value. #### **Dunavent, Andrew/SDO** From: Lisa Ramos < lramos1@aqmd.gov> Sent: Thursday, March 17, 2016 8:00 AM To: Dunavent, Andrew/SDO Cc: OB PR Support NA Docs Subject: Public Reords Request #84582, Attachments: - PR - PR Supporting Docs - 3/17/2016 - 84582 - - - COMPLETION LETTER - ANDREW DUNAVENT.pdf #### **Andrew Dunavent** No other documents were available for this request. I have attached the completion letter. Lisa Ramos South Coast A.QM.D Public Records Unit 909.396.3211 Information Management Public Records Unit Direct Dial (909) 396-3700 Fax:(909) 396-3330 #### **COMPLETION LETTER** March 17, 2016 ANDREW DUNAVENT CH2M HILL 402W. BROADWAY # SUITE 1450 SAN DIEGO, CA 92101 Ref.: CONTROL NO. 84582 Received 1/21/2016 Re: APPL'S, P/O'S & S/T RPTS FOR BETA OFFSHORE, FAC ID #166073, AT OCS LEASE PARCELS P300/P301, HUNTINGTON BEACH, CA 92648, APPL #'S 533629, 533630, 533631, 533632, 533634, 533635 & 533636. After a thorough search of this agency's records, the following records were found: APPL'S & P/O'S FOR BETA OFFSHORE, FAC ID #166073, AT OCS LEASE PARCELS P300/P301, HUNTINGTON BEACH, CA 92648, APPL #'S 533629, 533630, 533631, 533632, 533634, 533635 & 533636. The following records were not found: S/T RPTS FOR BETA OFFSHORE, FAC ID #166073, AT OCS LEASE PARCELS P300/P301, HUNTINGTON BEACH, CA 92648, APPL #'S 533629, 533630, 533631, 533632, 533634, 533635 & 533636. YOUR REQUESTED RECORDS WERE PROVIDED ELECTRONICALLY ON 03/17/2016 If you have any questions, please do not hesitate to contact me, Tuesday through Friday, 8:00 a.m. to 4:30 p.m. Sincerely, LISA RAMOS x3211 For Colleen Paine Public Records Coordinator #### **Dunavent, Andrew/SDO** From: Jacob Allen <jallen2@aqmd.gov> Sent: Friday, April 22, 2016 3:41 PM To: Dunavent, Andrew/SDO Cc: OB PR Support NA Docs **Subject:** Public Records Request #84573, partial **Attachments:** ENG - Application Folder - 7/2/2014 - Fac ID: 169754 - Appl# 555370 - Permit# G31830 - Name: OXY USA INC -.pdf; - PR - PR Review Docs - 1/22/2016 - 84573 - EQL - 4FD40F621BD37B438F14E5A944066C9D.TIF - - ANDREW DUNAVENT.pdf Attached is a partial delivery of your requested records. This is everything that is currently available. Your request is still routed out for Complete Engrg Appl File 572641, the Facility Permit and Source Testsrelated to your requested Applications. I have sent these departments a reminder and let them know that you are asking for your requested records Jacob Allen Public Records, SCAQMD (909) 396-2282 ### **SCAQMD** Facility Equipment List Report Run Date: 01/22/2016 10:19 AM Team: I Page 1 of 5 Facility: 169754 SO CAL HOLDING, LLC Status: Active Last Inspection: 05/12/2015 On Hold: N Contact: DIANA LANG (562) 6243314 Suspended: N RECLAIM: Y TS: TS-01 Cycle I RECLAIM/Title V Facility TITLE V: Y AIRS ID: 0605900025 Location Address: 20101 GOLDENWEST ST, HUNTINGTON BEACH 92648-2628 Sector:OH Mailing Address: 111 W OCEAN BLVD, LONG BEACH 90802 Sector:LB Instruction: MR: 0103 SIC: 1311 Quarter: 0010 - inspect in 3rd quarter, every year Assignment: 1324313 Inspector: VJ01 VICTOR JUAN JR Inspection Date: 08/01/2012 Disposition: Notice To Comply Date: _____ | Application
No. | Permit
No. | Permit
Issue Date | Permit
Status | Equipme
Category | | BCAT/CCAT
Description | Application
Date | Application
Status | |--------------------|---------------|----------------------|------------------|---------------------|------|--|---------------------|--| | 529221 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 11/08/2011 | BANKING/ PLAN GRANTED, NON BILLABLE | | 529222 | G16868 | 02/17/2012 | ACTIVE | 288900 | BCAT | STORAGE TANK OTHER SOLVENTS N.E.C. | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529223 | G16837 | 02/16/2012 | ACTIVE | 043901 | BCAT | I C E (50-500 HP) EM ELEC GEN-DIESEL | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529224 | G16840 | 02/16/2012 | ACTIVE | 044901 | BCAT | I C E (50-500 HP) EM FIRE FGHT-DIESEL | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529225 | G16839 | 02/16/2012 | ACTIVE | 044901 | BCAT | I C E (50-500 HP) EM FIRE FGHT-DIESEL | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529226 | G16845 | 02/16/2012 | ACTIVE | 048901 | BCAT | I C E (50-500 HP) EMERG OTHER, DIESEL | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529227 | G16870 | 02/17/2012 | ACTIVE | 231809 | BCAT | Crude Oil/Gas/Water Separation >=400 BPD | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529228 | G16869 | 02/17/2012 | ACTIVE | 294957 | BCAT | WASTE WATER TREATING (>50000 GAL/DAY) | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529229 | G16853 | 02/16/2012 | ACTIVE | 320349 | BCAT | NATURAL GAS DRYING | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529230 | G16850 | 02/16/2012 | ACTIVE | 42 | CCAT | SCRUBBER CHEMICAL M.S. | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529231 | G16843 | 02/16/2012 | ACTIVE | 320709 | BCAT | NATURAL GAS STABILIZATION UNIT | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529232 | G16849 | 02/16/2012 | ACTIVE | 320349 | BCAT | NATURAL GAS DRYING | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529233 | G16848 | 02/16/2012 | ACTIVE | 000533 | BCAT | GAS PLANT | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529234 | G16847 | 02/16/2012 | INACTIVE | 019001 | BCAT | HEATER/FURNACE (<5 MMBTU/HR) NAT GAS | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529235 | G16846 | 02/16/2012 | ACTIVE | 96 | CCAT | TAIL GAS INCINERATOR | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529236 | G16836 | 02/16/2012 | ACTIVE | 80 | CCAT | FLARE, OTHER | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529237 | G16873 | 02/17/2012 | ACTIVE | 19 | CCAT | Activated Carbon Adsorber Drum Vent s.s. | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529238 | G16874 | 02/17/2012 | ACTIVE | 19 | CCAT | Activated Carbon Adsorber Drum Vent s.s. | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529239 | G16871 | 02/17/2012 | INACTIVE | 231106 | BCAT | BULK LOAD TERMINAL REC PIPELINE CRUDE | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529240 | G16838 | 02/16/2012 | ACTIVE | 040901 | BCAT | I C E (50-500 HP) N-EM STAT DIESEL | 11/08/2011 | PERMIT TO OPERATE GRANTED | | 529242 | | | | 000992 | BCAT | ERC - CHANGE OF TITLE | 11/08/2011 | BANKING/ PLAN GRANTED, NON BILLABLE | | 529243 | | | | 000992 | BCAT | ERC - CHANGE OF TITLE | 11/08/2011 | BANKING/ PLAN GRANTED, NON BILLABLE | | 529244 | | | | 000992 | BCAT | ERC - CHANGE OF TITLE | 11/08/2011 | BANKING/ PLAN GRANTED, NON BILLABLE | | 529245 | | | | 000992 | BCAT | ERC - CHANGE OF TITLE | 11/08/2011 | BANKING/ PLAN GRANTED, NON BILLABLE | | 529246 | | | | 000992 | BCAT | ERC - CHANGE OF TITLE | 11/08/2011 | BANKING/ PLAN GRANTED, NON BILLABLE | | 529247 | | | | 000992 | BCAT | ERC - CHANGE OF TITLE | 11/08/2011 | BANKING/ PLAN GRANTED, NON BILLABLE | | 532242 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 01/20/2012 | ASSIGNED TO ENGINEER - CLASS III | | 532245 | | | | 666049 | BCAT | PLAN RULE 1110.2- Inspection & Monitoring Plan | 01/20/2012 | BANKING/ PLAN GRANTED, NON BILLABLE | | 533145 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 03/06/2012 | BANKING/ PLAN GRANTED, NON BILLABLE | | 533146 | | | | 011003 | BCAT | BOILER (5-20 MMBTU/HR) NAT GAS ONLY | 03/06/2012 | APPLICATION CHANGED FROM CLASS I - III | | 534354 | G21271 | 11/01/2012 | ACTIVE | 013608 | BCAT | TURBINE ENGINE (<=50 MW) PROCESS GAS | 03/27/2012 | PERMIT TO OPERATE GRANTED | | 534355 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 03/27/2012 | BANKING/ PLAN GRANTED, NON BILLABLE | | 538851 | G22427 | 01/15/2013 | ACTIVE | 019001 | BCAT | HEATER/FURNACE (<5 MMBTU/HR) NAT GAS | 06/19/2012 | PERMIT TO OPERATE GRANTED | | 538852 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 06/19/2012 | BANKING/ PLAN GRANTED, NON BILLABLE | | 555370 | G31830 | 07/02/2014 | ACTIVE | 043902 | BCAT | I C E (>500 HP) EM ELEC GEN DIESEL | 08/20/2013 | PERMIT TO OPERATE GRANTED | | | | | | | | | | | Reviewed By: ### **SCAQMD** Facility Equipment List Report Run Date: 01/22/2016 10:19 AM Team: I Facility: 169754 SO CAL HOLDING, LLC Contact: DIANA LANG (562) 6243314 Status: Active Last Inspection: 05/12/2015 On Hold: N Suspended: N RECLAIM: Y TS: TS-01 Cycle I RECLAIM/Title V Facility TITLE V: Y AIRS ID: 0605900025 Assignment: 1324313 MR: 0103 SIC: 1311 Quarter: 0010 - inspect in 3rd quarter, every year Location Address: 20101 GOLDENWEST ST, HUNTINGTON BEACH 92648-2628 Sector:OH Mailing Address: 111 W OCEAN BLVD, LONG BEACH 90802 Sector:LB Instruction: Inspector: VJ01 VICTOR JUAN JR Inspection Date: 08/01/2012 Disposition: Notice To Comply | Application
No | Permit
No. | Permit
Issue Date | Permit
Status | Equipmer
Category | | BCAT/CCAT
Description | Application
Date | Application
Status | |-------------------|---------------|----------------------|------------------|----------------------|------|--|---------------------|---| |
555402 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 08/20/2013 | BANKING/ PLAN GRANTED, NON BILLABLE | | 556388 | | | | 666116 | BCAT | PLAN RULE 1166 (CONTAMINATED SOIL HAND.) | 09/20/2013 | BANKING/ PLAN GRANTED, NON BILLABLE | | 557681 | | | | 666415 | BCAT | RULE 1415 PLAN NOTIFICATIONS | 10/29/2013 | BANKING/ PLAN GRANTED, NON BILLABLE | | 560466 | | | | 051504 | BCAT | BOILER (>20=50 MMBTU/HR) NG/PG & LPG | 02/04/2014 | APPLICATION CANCELLED, KEEP ALL FEES | | 560467 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 02/04/2014 | APPLICATION CANCELLED, KEEP FILING FEES | | 567796 | | | | 320709 | BCAT | NATURAL GAS STABILIZATION UNIT | 08/26/2014 | APPLICATION CANCELLED, KEEP FILING FEES | | 567798 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 08/26/2014 | APPLICATION CANCELLED, KEEP FILING FEES | | 567799 | | | | 666416 | BCAT | RULE 1415.1 PLAN NOTIFICATIONS | 08/26/2014 | BANKING/ PLAN GRANTED, NON BILLABLE | | 569440 | G34501 | 02/11/2015 | ACTIVE | 231106 | BCAT | BULK LOAD TERMINAL REC PIPELINE CRUDE | 10/23/2014 | PERMIT TO OPERATE GRANTED | | 570166 | | | | 320709 | BCAT | NATURAL GAS STABILIZATION UNIT | 12/02/2014 | APPLICATION CHANGED FROM CLASS I - III | | 570167 | | | | 555010 | BCAT | FACILITY PERMIT AMEND- RECLAIM ONLY | 12/02/2014 | BANKING/ PLAN GRANTED, NON BILLABLE | | 572641 | | | | 555003 | BCAT | TIERED (1-20 DEVICES) INITIAL TITLE V PERMIT APP | L 02/24/2015 | ASSIGNED TO ENGINEER - CLASS III | | Inspector: | Date: | Reviewed By: | Date: | Page 2 of 5 | |------------|-------|--------------|-------|-------------| |------------|-------|--------------|-------|-------------| ### **SCAQMD** Facility Equipment List Report Run Date: 01/22/2016 10:19 AM Team: I SIC: 1311 Quarter: 0010 - inspect in 3rd quarter, every year Facility: 169754 SO CAL HOLDING, LLC Status: Active Last Inspection: 05/12/2015 On Hold: N Suspended: N TS: TS-01 Cycle I RECLAIM/Title V Facility Contact: DIANA LANG (562) 6243314 Location Address: 20101 GOLDENWEST ST, HUNTINGTON BEACH 92648-2628 Sector:OH AIRS ID: 0605900025 RECLAIM: Y TITLE V: Y Inspector: VJ01 VICTOR JUAN JR Inspection Date: 08/01/2012 Disposition: Notice To Comply Assignment: 1324313 MR: 0103 Mailing Address: 111 W OCEAN BLVD, LONG BEACH 90802 Sector:LB Instruction: BCAT/CCAT Application Application Permit Permit Permit Equipment Application No. No. Issue Date Status Category Description Date Status | Inspector: | Date: | Reviewed By: | Date: | Page 3 of 5 | |------------|-------|--------------|-------|-------------| |------------|-------|--------------|-------|-------------| ### **SCAQMD** Facility Equipment List Report Run Date: 01/22/2016 10:19 AM Facility: 169754 SO CAL HOLDING, LLC Contact: DIANA LANG (562) 6243314 Status: Active Last Inspection: 05/12/2015 On Hold: N Suspended: N TS: TS-01 Cycle I RECLAIM/Title V Facility RECLAIM: Y AIRS ID: 0605900025 TITLE V: Y Location Address: 20101 GOLDENWEST ST, HUNTINGTON BEACH 92648-2628 Sector:OH Mailing Address: 111 W OCEAN BLVD, LONG BEACH 90802 Sector:LB Instruction: MR: 0103 Quarter: 0010 - inspect in 3rd quarter, every year SIC: 1311 Team: I Assignment: 1324313 Inspector: VJ01 VICTOR JUAN JR Inspection Date: 08/01/2012 Disposition: Notice To Comply Application Equipment BCAT/CCAT Application Permit Permit Permit Application Status No. No. Issue Date Status Category Description Date | T | Data | Reviewed By: | Data | Page 4 of 5 | |------------|-------|--------------|-------|--------------| | Inspector: | Date: | Reviewed by. | Date: | 1 age 4 01 3 | ### **SCAQMD** Facility Equipment List Report Run Date: 01/22/2016 10:19 AM Facility: 169754 SO CAL HOLDING, LLC Contact: DIANA LANG (562) 6243314 Status: Active Last Inspection: 05/12/2015 On Hold: N Suspended: N RECLAIM: Y TS: TS-01 Cycle I RECLAIM/Title V Facility TITLE V: Y AIRS ID: 0605900025 Location Address: 20101 GOLDENWEST ST, HUNTINGTON BEACH 92648-2628 Sector:OH Mailing Address: 111 W OCEAN BLVD, LONG BEACH 90802 Sector:LB Instruction: SIC: 1311 Team: I Quarter: 0010 - inspect in 3rd quarter, every year MR: 0103 Assignment: 1324313 Inspector: VJ01 VICTOR JUAN JR Inspection Date: 08/01/2012 Disposition: Notice To Comply BCAT/CCAT Application Application Permit Permit Permit Equipment Application No. Issue Date Status Category Description Date Status | ROUTING RECORD | | | | | | |----------------|----------|----------|-----------------------|--|--| | AUG 2 1 2013 | FROM | ŢÛ | ACTION | | | | ADG 2 1 2013 | Us | 450 | I-XRC | | | | | | | | | | | 6/25/2014 | H SA | | Plo RECOMMENDED | | | | 7-1-14 | 111405 | PS | ISS-L PID | | | | | | | | | | | | | | | REFERENCE TO (| THER APO | D RECORD | S INCLUDING VARIANCES | | | epolis - PRESCREENES 15 APPL# 555370 1.D.# 169754 OXY USAINC 28101 GOLDENWEST ST HUNTINGTON BEACH EMERGENCY I C E Date: 08/20/13 South Coast Air Quality Management District #### Form 400-A # Application Form for Permit or Plan Approval List only one piece of equipment or process per form. Mail To: SCAQMD P.O. Box 4944 Diamond Bar, CA 91765-0944 Tel: (909) 396-3385 | AGMU | | | | www.aqmd.gov | |---|---|---|---|--| | Section A - Operator Information | | _ | - | | | 1. Facility Name (Business Name of Operator to Appear on the Pe | emit): | | | 2. Valid AQMD Facility ID (Available On | | OXY USA Inc. | | | Permit Or Invoice Issued By AQMD): | | | 3. Owner's Business Name (If different from Business Name of C | operator): | | | 169754 | | Section B - Equipment Location Address | | Section C - Permit | Malling Address | | | Equipment Location is: | Various Location ress of initial site.) | 5. Permit and Corresp Check here if s | ondence information
ame as equipment loca | | | 20101 Goldenwest St. | | 111 W. Ocean B | lvd. #800 | | | Street Address Huntington Beach , CA 926 | 4R- | Address
Long Beach | | , CA 90802 | | City Zip | | City | | State Zip | | Diana Lang Env. Coom | dinator | Diana Lang
Contact Name | | Env. Coordinator | | Contact Name Title (562) 624-3314 (562) 624-3 | 3224 | (562) 624-3314 | | (562) 624-3224 | | Phone # Ext. Fax # | <u> </u> | Phone # | Ext. | Fax # | | E-Mail: diana_lang@oxy.com | | E-Mail: <u>diana_lang</u> | @oxy.com | | | Section D - Application Type | | | <u> </u> | h g | | 6. The Facility is: O Not in RECLAIM or Title V | (9) In RECLAIM | O In Title V | O In RECLAIM & | Title V Programs | | 7. Reason for Submitting Application (Select only ONE): | | | | | | 7a. New Equipment or Process Application | 7c. Equipment or F | rocess with an Existin | /Previous Application | n or Permit: | | New Construction (Permit to Construct) ([]) | Administrative (| Change | | \ | | C Equipment On-Site But Not Constructed or Operational | | fication | | Existing or Previous Permit/Application | | C Equipment Operating Without A Permit * | ○ Alteration/Modif | fication without Prior App | roval * | If you checked any of the items in | | Compliance Plan | Change of Con- | | | 7c., you MUST provide an existing | | | 1 | ondition without Prior Approval * Permit or Application Number: | | | | C Streamlined Standard Permit | Change of Loca | | | 1 | | 7b. Facility Permits: | 4 - | ation without Prior Approv | | 1 | | C) Title V Application or Amendment (Also submit Form 500-A1) | () Equipment Ope | rating with an Expired/In | active Permit* | | | C RECLAIM Facility Permit Amendment | * A Higher Permit Proc | essing Fee and additional A | nnual Operating Fees (up t | to 3 full years) may apply (Rule 301(c)(1)(D)(i)). | | 8a. Estimated Start Date of Construction (mm/dd/yyyy): 8b. I | Estimated End Date of C | Construction (mm/dd/yy) | y): 8c. Estimated | Start Date of Operation (mm/dd/yyyy): | | 9. Description of Equipment or Reason for Compliance Plan | (list applicable rule): | 10. For Identical equi | | | | Emergency IC Engine | | | eing submitted with t
red for each equipment | | | 11. Are you a Small Business as per AQMD's Rule 102 definiti | lon? | 12. Has a Notice of | Violation (NOV) or a N | lotice to | | (10 employees or less and total gross receipts are | ⊕ No <u>C</u> Yes | | en issued for this equ
If Yes, provide N | ipment? No Yes | | Section E - Facility Business Information | | | | | | What type of business is being conducted at this equipme
Oil and Gas Production | ent location? | 14. What is your busi
(North American In | ness primary NAICS (
dustrial Classification S | | | Janagrana photograph at aging aborators | O No | 16. Are there any sch
1000 feet of the fa | ools (K-12) within
cility property line? | ⑥ No | | <u></u> | | | | s application are true and correct. | | 17. Signature of Responsible Official: | 18. Title of Responsib VP - Eng and | | (This may cause a | · ~ Vnc ! | | 20. Print Name: | 21. Date: 0 /10 | - | application proce
22. Do you claim co | nfidentiality of | | Mark Kapelke | 8//3 | 12013 | data? (If Yes, se | | | 23. Check List: X Authorized Signature/Date | Form 400-CEQA | | l Form(s) (le., Form 4 | 10-E-xx) 🗵 Fees Enclosed | | AGMO SE ONLY SOPPLIES TON TRACKING # CHECK# 103 AM | 5130.62 | PAYMENT TRAC | KING # | VALIDATION 20 17 | | DATE APP DATE APP CLASS BASIC REJ I III CONTROL | EQUIPMENT CATEGORY | CODE TRÂN ENGINE | | AKEN | © South Coast Air Quality Management District, Form 400-A (2009.04) (111033) \$2218.39 13 AUG 20 P2:46 PERMIT PROCESSING # SC NO PERMIT PROCESSING SYSTEM (PPS) #### **FEE DATA - SUMMARY SHEET** | Application No | 555370 | | | | IRS/SS No: | |
--|---|-------------------|---|--|---|----------| | Previous Application | No: | | | Previous Permit No: | | | | Company Name: Equipment Street: Equipment Desc: Equipment Type: B-CAT NO.: Facility Zone: | OXY USA INC
20101 GOLDENWES
I C E (>500 HP) EM I
BASIC
043902
18 | | N BEACH CA S
C-CAT NO:
Compl. Date: | 92648
00
8/28/2 | Facility ID: Pee Charged by: Fee Schedule: Public Notice: | В | | Evaluation Type,: | PERMIT TO OPERATE | (PO NO PC) | | | Small B | usiness: | | Disposition : A | Approve PO, Recomm | ended by Engineer | | | Higher Fees fo
to Obtain a
Identical Perr | Permit: | | • | Approve PO, Recomm | ended by Engineer | · | \$0.00 | to Obtain a | Permit: | | Lead Appl. No Air quality Analysis E.I.R Health Risk Assessn | nent | ended by Engineer | | \$0.00
\$0.00 | to Obtain a
Identical Perr | Permit: | | Lead Appl. No Air quality Analysis E.I.R | nent
ration Fee | | · | \$0.00 | Filing Fee Paid: Permit Processing Fee Paid: Permit Processing Fee | Permit: | | Lead Appl. No Air quality Analysis E.I.R Health Risk Assessn Public Notice Prepar Public Notice Public Expedited Processin | nent
ration Fee
ation Fee | ended by Engineer | 0.00 | \$0.00
\$0.00
\$0.00
\$0.00
\$0.00 | Filing Fee Paid: Permit Processing Fee Paid: Permit Processing Fee Calculated*: Permit Processing | Permit: | | Air quality Analysis E.I.R Health Risk Assessn Public Notice Prepai Public Notice Public Expedited Processin Source Test Review | nent
ration Fee
ation Fee | | 0.00 | \$0.00
\$0.00
\$0.00
\$0.00
\$0.00 | Filing Fee Paid: Permit Processing Fee Paid: Permit Processing Fee Calculated*: Permit Processing | Permit: | | Lead Appl. No Air quality Analysis E.I.R Health Risk Assessn Public Notice Prepar | nent
ration Fee
ation Fee | Hours: | | \$0.00
\$0.00
\$0.00
\$0.00
\$0.00 | Filing Fee Paid: Permit Processing Fee Paid: Permit Processing Fee Calculated*: Permit Processing | Permit: | | Air quality Analysis E.I.R Health Risk Assessn Public Notice Prepair Public Notice Public Expedited Processin Source Test Review | nent
ration Fee
ation Fee | Hours:
Hours: | 0.00 | \$0.00
\$0.00
\$0.00
\$0.00
\$0.00 | Filing Fee Paid: Permit Processing Fee Paid: Permit Processing Fee Calculated*: Permit Processing | Permit: | COMMENTS: RECOMMENDED BY: HAMILTON A STODDARD DATE: 06/21/2014 REVIEWED BY: ^{*} ADJUSTED FOR SMALL BUSINESS, IDENTICAL EQUIPMENT AND P/O NO P/C PENALTY June 27, 2014 Mark Kapelpke Vice President, Engineering and Operations OXY USA, Inc 111 West Ocean Blvd. #800 Long Beach, CA 90802 Dear Mr. Kapelpke, Attached is your revised RECLAIM Facility Permit for the facility that is located at 20101 Goldenwest Street, Huntington Beach, CA. The Facility Permit reflects your request to add an emergeny ice/generator to the Platform Emmy site. The following applications are approved for permit to operate and are summarized in the table below. | Application | Equipment Description | Device | Process | System | Section | |-------------|-------------------------|--------|---------|--------|---------| | number | | number | number | l | | | 555370 | Emergency ICE/Generator | D228 | | 2 | D | | 555402 | RECLAIM Amendment | | | | | Please review the attached Section D of the Facility Permit carefully. Any questions pertaining to items in your Facility Permit should be directed to Mr. Hamilton Stoddard at (909) 396-2482. Sincerely, William C. Thompson, P.E. Senior Enforcement Manager Engineering and Compliance WT:MH:hs Title Page Facility ID Revision #: Date 169754 6 June 27, 2014 #### **FACILITY PERMIT TO OPERATE** #### OXY USA INC 20101 GOLDENWEST ST HUNTINGTON BEACH, CA 92648 #### NOTICE IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR A COPY THEREOF MUST BE KEPT AT THE LOCATION FOR WHICH IT IS ISSUED. THIS PERMIT DOES NOT AUTHORIZE—THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT SHALL NOT BE CONSTRUED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF ANY OTHER FEDERAL, STATE OR LOCAL GOVERNMENTAL AGENCIES. Barry R. Wallerstein, D. Env. EXECUTIVE OFFICER Mohsen Nazemi, P.E. Deputy Executive Officer Engineering & Compliance Table of Content Facility ID: Revision #: 169754 ate June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC ### TABLE OF CONTENTS | Section | Description | Revision # | Date Issued | |----------|--|------------|-------------| | Α | Facility Information | 0 | 02/17/2012 | | В | RECLAIM Annual Emission Allocation | 1, | 02/11/2013 | | C | Facility Plot Plan | TO BE DEVE | LOPED | | D | Facility Description and Equipment Specific Conditions | 3 | 06/27/2014 | | E | Administrative Conditions | 0 | 02/17/2012 | | F | RECLAIM Monitoring and Source Testing Requirements | 0 | 02/17/2012 | | ·G . | Recordkeeping and Reporting Requirements for RECLAIM Sources | 0 | 02/17/2012 | | Н | Permit To Construct and Temporary Permit to Operate | 3 | 12/13/2012 | | I | Compliance Plans & Schedules | 0 | 02/17/2012 | | J. | Air Toxics | 0 | 02/17/2012 | | Appendix | | | | | A | NOx and SOx Emitting Equipment Exempt
From Written Permit Pursuant to Rule
219 | 0 | 02/17/2012 | | В | Rule Emission Limits | 0 | 02/17/2012 | | Section D | Page | |-------------------|---------------| | Facility ID. | 169754 | | Revision# | 3 | | Date ⁻ | June 27, 2014 | ### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions* And Requirements | Conditions | |--|-----------|-----------------|--------------------------------------|-----------------------------|-------------| | Process 1: CRUDE OIL/GA | AS PROI | DUCTION | | | | | System 1: CRUDE OIL/GA | AS/WAT | ER SEPARA | TION | | | | VESSEL, V-104, FREE WATER OCK OUT, LENGTH: 40 FT; DIAMETER: 10 FT A/N: 529227 | DI | | | | | | VESSEL, V-107, FREE WATER
KNOCK OUT, LENGTH: 60 FT;
DIAMETER: 12 FT
A/N: 529227 | D2 | | | | | | VESSEL, V-108, FREE WATER
KNOCK OUT, LENGTH: 60 FT;
DIAMETER: 12 FT
A/N: 529227 | D3 | | | | | | VESSEL, V-109, FREE WATER KNOCK OUT, LENGTH: 60 FT; DIAMETER: 12 FT A/N: 529227 | D4 | | | | | | OCK OUT, LENGTH. 60 FT;
DIAMETER: 12 FT
A/N: 529227 | D5 | | | | | | VESSEL, V-111, FREE WATER
KNOCK OUT, LENGTH: 60 FT;
DIAMETER: 12 FT
A/N: 529227 | D6 | | | |

 | | VESSEL, V-114, FREEWATER
KNOCKOUT, LENGTH: 60 FT;
DIAMETER: 12 FT
A/N: 529227 | D7 | | | | | | VESSEL, V-115, FREE WATER
KNOCK OUT, LENGTH: 60 FT;
DIAMETER: 12 FT
A/N: 529227 | D8 | | | | | | * | (I)(IA)(IB) | Denotes RECLAIM emission factor | (2) (2A) (2B) | Denotes RECLAIM emission rate | |---|---------------|--|---------------|-------------------------------------| | | (3) | Denotes RECLAIM concentration limit | (4) | Denotes BACT emission limit | | | (5) (5A) (5B) | Denotes command and control emission limit | (6) | Denotes air toxic control rule limi | toxic control rule limit Denotes NSR applicability limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (7) See App B for Emission Limits (10)See section J for NESHAP/MACT requirements Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Facility ID: Revision #: Date: Page: 169754 June 27, 2014 ### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions* And Requirements | Conditions | |--|-----------|-----------------|--------------------------------------|------------------------------|-------------------------| | Process 1: CRUDE OIL/GA | AS PROI | DUCTION | | मैन्डिक्ट वेड क्या । वेट । व | | | TANK, HOLDING, T-101, CRUDE OIL,
VENTED TO VAPOR RECOVERY
COMPRESSOR, 2000 BBL;
DIAMETER: 29 FT 9 IN; HEIGHT: 16
FT
AN: 529227 | DIO | | | | E57.1, E127.1,
H23.5 | | TANK, HOLDING, T-102, CRUDE OIL,
VENTED TO VAPOR RECOVERY
COMPRESSOR, 2000 BBL;
DIAMETER: 29 FT 9 IN; HEIGHT: 16
FT
A/N: 529227 | DII | | | | E57.1, E127.1,
H23.5 | | TANK, HOLDING, T-103, WET OIL
DIVERT, VENTED TO VAPOR
RECOVERY COMPRESSOR, 2000 | D12 | | | | E57.1, E127.1,
H23.5 | | BBL; DIAMETER: 29 FT 9 IN;
HEIGHT: 16 FT
A/N: 529227 | | | | | | | TANK, HOLDING, T-104, WET OIL DIVERT, VENTED TO VAPOR RECOVERY COMPRESSOR, 2000 BBL; DIAMETER: 29 FT 9 IN; HEIGHT: 16 FT A/N: 529227 | D13 | | | | E57.1, E127.1,
H23.5 | | TANK, HOLDING, T-318, SKIM OIL,
VENTED TO VAPOR RECOVERY
COMPRESSOR, 5000 BBL;
DIAMETER: 38 FT 8 IN; HEIGHT: 24
FT
A/N: 529227 | D15 | | | | E57.1, E127.1,
H23.5 | | VESSEL, SEPARATOR, V-150, RELIEF
KNOCKOUT DRUM, LENGTH: 15 FT
; DIAMETER: 8 FT
A/N: 529227 | D41 | | | > |
H23.3 | | • | (1) (1A) (1B) Denotes RECL | .AIM emission factor | |---|----------------------------|----------------------| (3) Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit See App B for Emission Limits Denotes NSR applicability limit (9) (2) (2A) (2B) Denotes RECLAIM emission rate (4) Denotes BACT emission limit Denotes air toxic control rule limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10)See section J for NESHAP/MACT requirements Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Page: Facility ID: Revision #: June 27, 2014 169754 ### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions* And Requirements | Conditions | |---|-----------|-----------------|--------------------------------------|--|-------------------------| | Process 1: CRUDE OIL/GA | S PROI | UCTION | ा हेर्नुकार कुला कुला कुला है। | 7.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | : | | TANK, T-317, SURGE/SKIM OIL TANK, SKIM OIL/WASTEWATER, ENTED TO VAPOR RECOVERY OMPRESSOR, 5000 BBL; DIAMETER: 38 FT 8 IN; HEIGHT: 24 FT A/N: 529227 | D14 | | | | E57.1, E127.1,
H23.5 | | System 2: WASTE WATE | R TREA | TMENT | | | <u> </u> | | FLOATATION UNIT, WEMCO,
T-337, VENTED TO VAPOR
RECOVERY COMPRESSOR, 550 BBL
A/N: 529228 | D23 | | | | E127.1, H23.4 | | FLOATATION UNIT, WEMCO,
T-338, VENTED TO VAPOR
RECOVERY-COMPRESSOR; -550-BBL
A/N: 529228 | D24 | | | | E127.1, H23.4 | | TANK, SURGE, T-350, INJECTION WATER, VENTED TO VAPOR COVERY COMPRESSOR, 5000 BBL; DIAMETER: 38 FT 8 IN; HEIGHT: 24 FT A/N: 529228 | D215 | į | | | E57.1, E127.1,
H23.5 | | TANK, SURGE, T-360, RAINWATER,
2000 BBL; DIAMETER: 29 FT 9 IN;
HEIGHT: 16 FT
A/N: 529228 | D34 | | | | | | OIL WATER SEPARATOR, T-339,
1000 BBL CAPACITY,, VENTED TO
THE VAPOR RECOVERY
COMPRESSOR, LENGTH: 60 FT;
DIAMETER: 12 FT
A/N: 529228 | D36 | | | | E57.1, E127.1,
H23.7 | | • | (1) (1A) (1B) Denotes | RECLAIM emission factor | |---|-----------------------|-------------------------| Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit See App B for Emission Limits (7) Denotes NSR applicability limit (9) (2) (2A) (2B) Denotes RECLAIM emission rate Denotes BACT emission limit Denotes air toxic control rule limit (6) (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10)See section J for NESHAP/MACT requirements Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Page: Section D 169754 Facility ID: Revision #: June 27, 2014 Date: ### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions* And Requirements | Conditions | |--|-----------|-----------------|--------------------------------------|-----------------------------|-------------------------| | Process 1: CRUDE OIL/GA | AS PROI | DUCTION 🔠 | Compared the designation of | A CAMPAGE AND STATE | | | PIT, NO. 3, COVERED, SKIM OIL,
VENTED TO THE VAPOR RECOVERY
COMPRESSOR
A/N: 529228 | D40 | | | | E57.1, H23.4 | | TANK, HOLDING, T-340, OILY WATER, VACUUM TRUCK OFFLOADING, VENTED TO VAPOR RECOVERY COMPRESSOR, 180 BBL; DIAMETER: 12 FT; HEIGHT: 15 FT 1 IN A/N: 529228 | D216 | | | | E57.1, E127.1,
H23.3 | | TANK, HOLDING, T-341, OILY
WATER, VACUUM TRUCK
OFFLOADING, VENTED TO VAPOR
RECOVERY COMPRESSOR, 180 BBL; | D217 | | | | E57.1, E127.1,
H23.3 | | DIAMETER: 12 FT; HEIGHT: 15 FT 1
IN
A/N: 529228 | | | | | | | TANK, HOLDING, T-342, OILY WATER, VENTED TO VAPOR RECOVERY COMPRESSOR, 1000 BBL; DIAMETER: 29 FT 9 IN; HEIGHT: 8 FT A/N: 529228 | D218 | | | | E57.1, E127.1,
H23.5 | | TANK, HOLDING, T-343, OILY WATER, VENTED TO VAPOR RECOVERY COMPRESSOR, 1000 BBL; DIAMETER: 29 FT 9 IN; HEIGHT: 8 FT A/N: 529228 | D219 | | | | E57.1, E127.1,
H23.5 | | * | (I) (IA) (IB) | Denotes RECLAIM | emission factor | |---|---------------|-----------------|-----------------| |---|---------------|-----------------|-----------------| (3) Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit Denotes NSR applicability limit (9)See App B for Emission Limits (2) (2A) (2B) Denotes RECLAIM emission rate Denotes BACT emission limit (4) Denotes air toxic control rule limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10)See section J for NESHAP/MACT requirements Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Facility ID: Revision #: 169754 Date: June 27, 2014 ### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions* And Requirements | Conditions | |--|-----------|--|--------------------------------------|-----------------------------|---------------| | Process 1: CRUDE OIL/G | AS PRO | DUCTION | | | | | TANK, HOLDING, T-345, PROCESS DRAIN/RAIN WATER, SUMP RAIN, VENTED TO VAPORECOVERY COMPRESSOR, 53 BBL; WIDTH: 5 FT; HEIGHT: 5 FT; LENGTH: 12 FT A/N: 529228 | D220 | | | | E57.1, E127.1 | | System 3: GAS GATHER | ING | ·, · · · · · · · · · · · · · · · · · · | | . <u></u> | | | SCRUBBER, WET GAS, V-323,
LENGTH: 10 FT; DIAMETER: 4 FT 2
IN
A/N: 529229 | D120 | | | | | | GAS SEPARATOR, V-100, (NORTH
BOLSA), VENTING TO THE
HUNTINGTON-BEACH GAS PLANT,
HEIGHT: 10 FT; DIAMETER: 4 FT
A/N: 529229 | D19 | | | | | | SCRUBBER, SOUTH BOLSA,
EIGHT: 8 FT; DIAMETER: 3 FT
JA/N: 529229 | D145 | | | | | | SCRUBBER, LEASE 425
A/N: 529229 | D147 | | | _ | | | SCRUBBER, LEASE 426
A/N: 529229 | D148 | | | | | | SCRUBBER, HIGH PRESSURE,
HEIGHT: 8 FT; DIAMETER: 4 FT
A/N: 529229 | D128 | | | | | | SCRUBBER, LOW PRESSURE,
HEIGHT: 12 FT; DIAMETER: 5 FT
A/N: 529229 | D130 | | | | | | * | (1) | (1A) | (1B) | Denotes | RECLAI | M | emission | factor | |---|-----|------|------|---------|--------|---|----------|--------| |---|-----|------|------|---------|--------|---|----------|--------| Denotes RECLAIM concentration limit (3) (5) (5A) (5B) Denotes command and control emission limit See App B for Emission Limits (7) (9) Denotes NSR applicability limit (2) (2A) (2B) Denotes RECLAIM emission rate Denotes BACT emission limit (4) Denotes air toxic control rule limit (6) (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) See section J for NESHAP/MACT requirements Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. | Section D | Page: 6 | |--------------|---------------| | Facility ID: | 169754 | | Revision #: | 3 | | Date: | June 27, 2014 | # FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions [*]
And Requirements | Conditions | |--|-----------|-----------------|--------------------------------------|--|------------| | Process 1: CRUDE OIL/GA | S PROI | DUCTION | | | | | SCRUBBER, SUCTION, EMMY HIGH
PRESSURE GAS, HEIGHT: 6 FT;
DIAMETER: 2 FT 6 IN
A/N: 529229 | D170 | | | | | | SCRUBBER, DISCHARGE, EMMY
HIGH PRESSURE GAS, HEIGHT: 6 FT
; DIAMETER: 1 FT 4 IN
A/N: 529229 | D171 | | | | | | SCRUBBER, EMMY LOW PRESSURE
CASING GAS, HEIGHT: 12 FT;
DIAMETER: 5 FT
A/N: 529229 | D221 | | | | | | System 4: GAS DESULFU | RIZATI | ON (STRETF | ORD UNIT) | | | | SCRUBBER, V-I, WET GAS, HEIGHT: 13-FT 7-IN; DIAMETER: 6-FT A/N: 529230 | D42 | | | | | | ABSORBER, V-2 (STRETFORD UNIT
FOR H2S ABSORPTION), HEIGHT: 25
FT; DIAMETER: 3 FT 6 IN
A/N: 529230 | D20 | | | | | | ABSORBER, V-3 (STRETFORD UNIT
FOR H2S ABSORPTION), HEIGHT: 25
FT; DIAMETER: 3 FT 6 IN
A/N: 529230 | D43 | | | | | | ABSORBER, V-5 (STRETFORD UNIT
FOR H2S ABSORPTION),
(STANDBY), HEIGHT: 25 FT;
DIAMETER: 3 FT 6 IN
A/N: 529230 | D45 | | | | | | SCRUBBER, V-4, HEIGHT: 13 FT 7 IN;
DIAMETER: 6 FT
A/N: 529230 | D46 | | | | | | (1)(IA)(IB) | Denotes RECLAIM emission factor | (2)(2A)(2B) | Denotes RECLAIM emission rate | |---------------|--|---------------|---| | (3) | Denotes RECLAIM concentration limit | (4) | Denotes BACT emission limit | | (5) (5A) (5B) | Denotes command and control emission limit | (6) | Denotes air toxic control rule limit | | (7) | Denotes NSR applicability limit | (8) (8A) (8B) | Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) | | (9)
 See App B for Emission Limits | (10) | See section J for NESHAP/MACT requirements | ^{**} Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Facility ID: Revision #: Date: Page: 7 169754 3 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC ### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected | RECLAIM
Source Type/ | Emissions* And Requirements | Conditions | |---|-----------|-----------|-------------------------|--|--------------| | | | | Monitoring
Unit | | | | Process 1: CRUDE OIL/G | AS PROI | DUCTION | | FINE PROPERTY OF THE PARTY T | , | | PROCESS TANK, T-2, REACTION TANK, HEIGHT: 9 FT 6 IN; PIAMETER: 12 FT /N: 529230 | D47 | | | | | | PROCESS TANK, UNHEATED,
BACKUP, SULFUR SLURRY, OPEN
TOP, 470 BBL; WIDTH: 8 FT;
HEIGHT: 11 FT; LENGTH: 30 FT
A/N: 529230 | D172 | | | | | | PROCESS TANK, T-3, OXIDIZER
TANK, HEIGHT: 20 FT 9 IN;
DIAMETER: 12 FT
A/N: 529230 | D48 | | | | | | PROCESS TANK, UNHEATED, T-1,
SULFUR-SLURRY-HOLDING-TANK,—
HEIGHT: 8 FT; DIAMETER: 8 FT
A/N: 529230 | D83 | | | | | | PROCESS TANK, MIXING TANK, SIGHT: 4 FT; DIAMETER: 4 FT | D85 | | | | | | STORAGE TANK, STRETFORD
SOLUTION, HEIGHT: 10 FT;
DIAMETER: 10 FT
A/N: 529230 | D86 | | | | | | System 6: NATURAL GA | S STABI | LIZATION | | | S13.1, S13.2 | | KNOCK OUT POT, V-601,
COMPRESSOR SUCTION
A/N: 529231 | D64 | | | | | | KNOCK OUT POT, V-602,
COMPRESSOR 1ST STAGE
DISCHARGE
A/N: 529231 | D65 | | | | | | • | (I)(IA)(IB) | Denotes RECLAIM | emission factor | |---|-------------|-----------------|-----------------| |---|-------------|-----------------|-----------------| (3) Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit (7) Denotes NSR applicability limit (9) See App B for Emission Limits (2) (2A) (2B) Denotes RECLAIM emission rate (4) Denotes BACT emission limit (6) Denotes air toxic control rule limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10) See section J for NESHAP/MACT requirements ** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. # FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | D | Connected | RECLAIM | Emissions* | Conditions | |--|--------|-----------|---------------------------------|------------------|--------------| | | No. | То | Source Type/ | And Requirements | | | | | | Monitoring | | | | | L | | Unit | | | | Process 1: CRUDE OIL/GAS | S PROI | DUCTION | The first of the second section | 全国的 | | | KNOCK OUT POT, V-606,
COMPRESSOR 2ND STAGE
DISCHARGE
A/N: 529231 | D133 | | | | | | VESSEL, V-604, H2S REMOVAL
TOWER (PACKED WITH
SULFATREAT OR EQUIVALENT
MATERIAL), HEIGHT: 20 FT;
DIAMETER: 6 FT
A/N: 529231 | D80 | | | | | | VESSEL, V-605, H2S REMOVAL TOWER (PACKED WITH SULFATREAT OR EQUIVALENT MATERIAL), HEIGHT: 20 FT; DIAMETER: 6 FT | D101 | | | | | | A/N: 529231 | D#0 | <u> </u> | | | | | VESSEL, SEPARATOR, V-603,
GLYCOL, LENGTH: 8 FT;
DIAMETER: 3 FT
A/N: 529231 | D79 | | | | | | KNOCK OUT POT, V-607, LIQUID
KNOCKOUT
A/N: 529231 | D134 | | | | | | VESSEL, V-701, GLYCOL FLASH
DRUM
A/N: 529231 | D136 | | | | | | VESSEL, V-801, REFRIGERANT
COMPRESSOR SUCTION DRUM
A/N: 529231 | D137 | | | | | | VESSEL, V-802, REFRIGERANT
SURGE DRUM
A/N: 529231 | D138 | | | | | | • | (1) (1A) (1B) | Denotes RECLAIM emission factor | (2) (2A) (2B) Denotes RECLAIM emission rate | | | |---|---------------|--|---|---|--| | | (3) | Denotes RECLAIM concentration limit | (4) | Denotes BACT emission limit | | | | (5) (5A) (5B) | Denotes command and control emission limit | (6) | Denotes air toxic control rule limit | | | | (7) | Denotes NSR applicability limit | (8) (8A) (8B) | Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) | | | | (9) | See App B for Emission Limits | (10) | See section J for NESHAP/MACT requirements | | ^{**} Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Facility ID: Revision #: Page: 169754 June 27, 2014 ### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID | Connected | RECLAIM | Emissions* | Conditions | |---|---------|-----------|------------------------------------|------------------|------------| | | No. | То | Source Type/
Monitoring
Unit | And Requirements | | | Process 1: CRUDE OIL/GA | AS PROI | DUCTION | | | | | VESSEL, V-803, GAS/LUBE OIL
SEPARATOR
'/N: 529231 | D139 | | | | | | STORAGE TANK, T-703, GLYCOL
STORAGE
A/N: 529231 | D141 | | | | | | SUMP, T-704, GLYCOL COLLECTION
A/N: 529231 | D142 | | | | | | SUMP, T-705, OPEN DRAIN
A/N: 529231 | D143 | | | | | | COLUMN, GLYCOL STILL, HEIGHT: 8
FT; DIAMETER: 1 FT
A/N: 529231 | D173 | | | | | | HEAT EXCHANGER, COMPRESSOR IST STAGE DISCHARGE COOLER, | D174 | | | | | | E-601
A/N: 529231 | | | | | | | "EAT EXCHANGER, COMPRESSOR ID STAGE DISCHARGE COOLER, E-602, AIR COOLED A/N: 529231 | D175 | | | | | | HEAT EXCHANGER, GAS TO GAS,
E-603
A/N: 529231 | D176 | | | | | | HEAT EXCHANGER, GAS CHILLER,
E-604
A/N: 529231 | D177 | | | | | | HEAT EXCHANGER, RICH-LEAN
GLYCOL, E-701
A/N: 529231 | D178 | | | | | | + | (1)(1 | A) (IE |) Denotes | RECLAIM | emission | factor | |---|-------|--------|-----------|---------|----------|--------| |---|-------|--------|-----------|---------|----------|--------| Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit Denotes NSR applicability limit (9) See App B for Emission Limits (2) (2A) (2B) Denotes RECLAIM emission rate (4) Denotes BACT emission limit Denotes air toxic control rule limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10)See section J for NESHAP/MACT requirements Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Facility ID: Revision #: Date: 169754 3 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID | Connected | RECLAIM | Emissions* | Conditions | |--|--------|-----------|-----------------|------------------|------------| | | No. | To | Source Type/ | And Requirements | | | | | le le | Monitoring | • | | | | | | Unit | | | | Process 1: CRUDE OIL/GA | S PROI | DUCTION | The property of | | | | REGENERATOR, GLYCOL
REGENERATOR, E-702, ELECTRICAL,
142 KW
A/N: 529231 | D179 | | | | | | HEAT EXCHANGER, GLYCOL
REGENERATOR OFF-GAS COOLER,
E-703, AIR COOLED
A/N: 529231 | D180 | | | | | | HEAT EXCHANGER, REFRIGERANT
CONDENSER, E-801, AIR COOLED
A/N: 529231 | D181 | | | | | | HEAT
EXCHANGER, LUBE OIL COOLER, E-802, AIR COOLED A/N: 529231 | D182 | | | | | | FILTER, F-901, INLET GAS | D183 | | | | | | COALESCING FILTER, HEIGHT: 4 FT
; DIAMETER: 2 FT
A/N: 529231 | | | | | | | TOWER, T-901, GLYCOL CONTACT, PACKED COLUMN WITH INTEGRAL BOTTOM SCRUBBER/WIRE MESH SCREEN, HEIGHT: 29 FT; DIAMETER: 1 FT 2 IN A/N: 529231 | D184 | | | | | | | D105 | - | | <u> </u> | | | COLUMN, T-902, GLYCOL REGENERATION A/N: 529231 | D185 | | | | | | DRUM, V-900, RICH GLYCOL
A/N: 529231 | D186 | | | | | | (I) (IA) |) (1B) Denotes RECLAIM emission factor | (2) (2A) (2B) Denotes RECLAIM emission rate | | | | |----------|---|---|--|--|--| | (3) | Denotes RECLAIM concentration limit | (4) | Denotes BACT emission limit | | | | (5) (5A) |) (5B) Denotes command and control emission limit | (6) | Denotes air toxic control rule limit | | | | (7) | Denotes NSR applicability limit | (8) (8A) (8B) | Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc. | | | | (9) | See Ann B for Emission Limits | (10) | See section I for NESHAP/MACT requirements | | | ^{**} Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Facility ID: Revision #: Date: Page: 11 169754 3 June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | Ш | Connected | RECLAIM | Emissions* | Conditions | |--|--------|------------|--------------------|---|----------------| | | No. | To | Source Type/ | And Requirements | | | | | | Monitoring
Unit | | | | Process 1: CRUDE OIL/GA | S PROI | DUCTION | Unit | Land of the state | - | | FILTER, F-902, RICH GLYCOL PARTICULATE FILTER, HEIGHT: 4 T; DIAMETER: 2 FT /N: 529231 | D187 | | | | | | FILTER, F-903, RICH GLYCOL
CARBON FILTER, HEIGHT: 4 FT;
DIAMETER: 2 FT
A/N: 529231 | D188 | | | | | | HEAT EXCHANGER, LEAN-RICH
GLYCOL EXCHANGER, E-901
A/N: 529231 | D189 | | | | | | REGENERATOR, GLYCOL
RE-BOILER, V-901, ELECTRICAL, 40
KW
A/N:-529231 | D190 | | | | | | COLUMN, T-903, GLYCOL STRIPING,
HEIGHT: 8 FT; DIAMETER: 1 FT
A/N: 529231 | D191 | | | | | | UM, V-902, GLYCOLSURGE
 A/N: 529231 | D192 | | | | | | HEAT EXCHANGER, LEAN GLYCOL
FIN-FAN COOLER, E-900, AIR
COOLED
A/N: 529231 | D193 | | | | | | DRUM, V-904, VAPOR RECOVERY
KNOCKOUT, VENTED TO VAPOR
RECOVERY SYSTEM
A/N: 529231 | D194 | | | | E57.1 | | | DEHYI | PRATION UN | NT (Platform Emr | ny Gas) | \$13.1, \$13.2 | | FILTER, F-900, INLET GAS
COALESCING FILTER, HEIGHT: 4 FT
; DIAMETER: 2 FT
A/N: 529232 | D195 | | | | | | * | (1) (1A) (1B) | Denotes RECL | .AIM emission factor | | |---|---------------|--------------|----------------------|--| - (3) Denotes RECLAIM concentration limit - (5) (5A) (5B) Denotes command and control emission limit - (7) Denotes NSR applicability limit - (9) See App B for Emission Limits - (2) (2A) (2B) Denotes RECLAIM emission rate - (4) Denotes BACT emission limit - (6) Denotes air toxic control rule limit - (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) - (10) See section J for NESHAP/MACT requirements - ** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Page: 12 Facility ID: 169754 Revision #: 3 Date: June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM
Source Type/ | Emissions* And Requirements | Conditions | |---|-----------|-----------------|-------------------------|---|------------| | | | | Monitoring
Unit | And Requirements | | | Process 1: CRUDE OIL/G | AS PRO | DUCTION | 心思维·朗·纳特·奇 | · 中国 · · · · · · · · · · · · · · · · · · | r!- | | TOWER, T-900, GLYCOL CONTACT, PACKED COLUMN WITH AN INTEGRAL BOTTOM SCRUBBER AND WIRE MESH SCREEN, HEIGHT: 29 FT; DIAMETER: 1 FT 2 IN A/N: 529232 | D196 | | | | | | FILTER, F-904, EMMY GAS
COALESCING FILTER, HEIGHT: 8 FT
; DIAMETER: 2 FT
A/N: 529232 | D197 | | | | | | System 8: FUGITIVE EM | ISSION | DEVICES . | | e de la companya | | | FUGITIVE EMISSIONS, PUMPS
A/N: 529227 | D76 | | | | H23.1 | | FUGITIVE EMISSIONS, COMPRESSORS | D77 | | | | H23.1 | | A/N: 529229 FUGITIVE EMISSIONS, VALVES A/N: 529227 | D78 | | | | H23.1 | | FUGITIVE EMISSIONS, FLANGES
A/N: 529227 | D108 | | | | H23.1 | | FUGITIVE EMISSIONS, DRAINS
A/N: 529228 | D112 | | | | H23.3 | | FUGITIVE EMISSIONS, PRV
A/N: 529227 | D113 | | | | H23.1 | | System 9: Di-Ethanol Amir | ne Unit (| CO2 Removal |) | | | | FILTER, F-1001, INLET GAS COALESCING FILTER, WITH PRV SET AT 350 PSIG, VENTING TO APC SYSTEM, HEIGHT: 6 FT 9 IN; DIAMETER: 9 IN A/N: 529233 | D199 | D131 | | | | | * | (1) (1A) (1B) | Denotes RECLAIM emission factor | (2) (2A) (2B) | Denotes RECLAIM emission rate | |---|---------------|--|---------------|---| | | (3) | Denotes RECLAIM concentration limit | (4) | Denotes BACT emission limit | | | (5) (5A) (5B) | Denotes command and control emission limit | (6) | Denotes air toxic control rule limit | | | (7) | Denotes NSR applicability limit | (8) (8A) (8B) | Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) | (7) Denotes NSR applicability limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc. (9) See App B for Emission Limits (10) See section J for NESHAP/MACT requirements ^{**} Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Facility ID: Revision #: Page: 13 169754 3 Date: June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions* And Requirements | Conditions | |--|-----------|-----------------|--------------------------------------
--|--------------| | Process 1: CRUDE OIL/GA | AS PRO | DUCTION 🥬 | | to decimal program of the contract cont | | | TOWER, T-1006, AMINE CONTACTOR, PACKED COLUMN, VITH PRV SET AT 350 PSIG, VENTING TO APC SYSTEM, HEIGHT: 20 FT; DIAMETER: 2 FT A/N: 529233 | D201 | D131 | | | D12.2, D90.1 | | VESSEL, V-1003, AMINE FLASH
TANK, WITH PRV SET AT 100 PSIG,
VENTING TO APC SYSTEM, HEIGHT:
10 FT; DIAMETER: 3 FT 6 IN
A/N: 529233 | D204 | | | | D12.8, D90.2 | | FILTER, F-1003, PARTICULATE FILTER, WITH PRV SET AT 100 PSIG, VENTING TO CLOSED DRAIN HEADER, HEIGHT: 4 FT; DIAMETER: 3 FT | D205 | | | | | | A/N: 529233 | | | | | | | FILTER, F-1004, CHARCOAL FILTER ',030 LBS CHARCOAL), WITH PRV SET AT 250 PSIG, VENTING TO CLOSED DRAIN HEADER, HEIGHT: 8 FT; DIAMETER: 2 FT 6 IN A/N: 529233 | D206 | | | | | | HEAT EXCHANGER, E-1002,
LEAN/RICH AMINE EXCHANGER,
SHELL AND TUBE TYPE, 0.74
MMBTU/HR
A/N: 529233 | D207 | | | | | | TOWER, T-1007, AMINE REGENERATOR, WITH PRV SET AT 50 PSIG, VENTING TO ATMOSPHERE, HEIGHT: 28 FT; DIAMETER: 2 FT A/N: 529233 | D208 | | | | | | • | (1)(1A | (IB |) Denotes | RECLAIM | emission | factor | |---|--------|-----|-----------|---------|----------|--------| |---|--------|-----|-----------|---------|----------|--------| (3) Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit (7) Denotes NSR applicability limit (9) See App B for Emission Limits (2) (2A) (2B) Denotes RECLAIM emission rate (4) Denotes BACT emission limit (6) Denotes air toxic control rule limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10) See section J for NESHAP/MACT requirements ^{**} Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Facility ID: Revision #: Page: 14 169754 3 June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | m | Connected | RECLAIM | Emissions* | Conditions | |--|--------|-----------|------------------------------|---|--------------------------------------| | | No. | То | Source Type/ Monitoring Unit | And Requirements | | | Process 1: CRUDE OIL/GA | AS PRO | DUCTION | dayin si hakiyi | | | | HEATER, V-1007, AMINE RE-BOILER,
NATURAL GAS, MAXON, MODEL
XPO3PB41B3NNY, 2.7 MMBTU/HR
A/N: 538851 | D227 | | NOX: PROCESS
UNIT** | CO: 50 PPMV NATURAL GAS (4); NOX: 12 PPMV NATURAL GAS (4); NOX: 38.46 LBS/MMSCF NATURAL GAS (1) | A195.8,
A195.9,
E448.4, I297.2 | | HEAT EXCHANGER, E-1003, AMINE
REGENERATOR OVERHEAD
CONDENSER, AIR COOLED, 0.68
MMBTU/HR, VENTING ACID GAS
TO V-1005
A/N: 529233 | D210 | D211 | | | | | VESSEL, V-1005, REGENERATOR OVERHEAD REFLUX ACCUMULATOR, HEIGHT: 7 FT; DIAMETER: I FT I N | D211 | D210 | | | D12.4 | | HEAT EXCHANGER, E-1001, LEAN AMINE COOLER, AIR COOLED, 0.95 MMBTU/HR A/N: 529233 | D212 | | | | | | OXIDIZER, THERMAL, HT-1000,
NATURAL GAS, F. I. COMBUSTION
SYSTEMS, MODEL NO. FIRECAT
#2.2.1, 2 MMBTU/HR
A/N: 529233 | C213 | | NOX: PROCESS
UNIT** | NOX: 130 LBS/MMSCF
NATURAL GAS (I) | A195.3, C6.3,
C8.4, 1297.3 | | TANK, T-1000, AMINE MAKE-UP
SOLUTION, AMINE, CAPACITY 1000
GALLONS, WITH PRV VENTING TO
ATMOSPHERE
A/N: 529233 | D214 | | | | | | Process 2: INTERNAL CO | MBUST | ION | | | | | System 1: EMERGENCY I | ENGINE | S | | | | | ٠ | (1)(IA) | (1B) Denotes | RECLAIM | emission | factor | |---|---------|--------------|---------|----------|--------| |---|---------|--------------|---------|----------|--------| (3) Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit (7) Denotes NSR applicability limit See App B for Emission Limits (2) (2A) (2B) Denotes RECLAIM emission rate (4) Denotes BACT emission limit (6) Denotes air toxic control rule limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10) See section J for NESHAP/MACT requirements ** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Page: 15 Facility ID: 169754 Revision #: 3 Date: June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions* And Requirements | Condition | |---|--------|-----------------|--------------------------------------|--|--| | Process 2: INTERNAL CO | MBUST | ION | 和海岸 | 用为外部 | | | INTERNAL COMBUSTION ENGINE,
EMERGENCY FIRE, DIESEL FUEL,
CLARKE DETROIT DIESEL, MODEL
DFP-4AT, WITH TURBOCHARGER,
235 BHP WITH
A/N: 529224 | D149 | | NOX: PROCESS
UNIT** | NOX: 469 LBS/1000 GAL
DIESEL (1) | C1.2, D12.1,
D135.1 | | PUMP, FIRE WATER System 2: PLATFORM E | MMY- E | NGINES | | | | | INTERNAL COMBUSTION ENGINE,
EMERGENCY FIRE, DIESEL FUEL,
DETROIT DIESEL, MODEL 671RC,
241 HP WITH
A/N: 529225 | D44 | | NOX: PROCESS
UNIT** | NOX: 469 LBS/1000 GAL
DIESEL (1) | C1.2, D12.1,
D135.1 | | PUMP, FIRE WATER | | | | | | | INTERNAL COMBUSTION ENGINE,
EMERGENCY POWER, DIESEL FUEL,
AUKESHA, MODEL F674DS, 300
HP WITH
A/N: 529223 | D103 | | NOX: PROCESS
UNIT** | NOX: 469 LBS/1000 GAL
DIESEL (1) | D12.1,
D135.1,
E116.1,
E162.1 | | GENERATOR INTERNAL COMBUSTION ENGINE, EMERGENCY POWER, DIESEL FUEL, CUMMINS, MODEL QST30-G5-NR2, 1490 BHP WITH A/N: | D228 | | NOX: PROCESS
UNIT** | CO: 2.6 GRAM/BHP-HR DIESEL (4); NOX: 469 LBS/1000 GAL DIESEL (1); NOX + ROG: 4.8 GRAM/BHP-HR DIESEL (4); PM: 0.15 GRAM/BHP-HR DIESEL (4) | C1.6, D12.9,
E116.1,
H23.11, K67.1 | | GENERATOR | | | | | | | * | (1)(1A) | (1B) | Denotes | RECLAIM | emission facto | ī | |---|---------|------|---------|---------|----------------|---| |---|---------|------|---------|---------|----------------|---| (3) Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit (7) Denotes NSR applicability limit (9) See App B for Emission Limits (2) (2A) (2B) Denotes RECLAIM emission rate (4) Denotes BACT emission limit (6) Denotes air toxic control rule limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10) See section J for NESHAP/MACT requirements ** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Page: 169754 Facility ID: Revision #: June 27, 2014 Date: #### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected To | RECLAIM Source Type/ Monitoring Unit | Emissions * And Requirements | Conditions | |---|-----------|--------------|--------------------------------------
--|--| | Process 2: INTERNAL CO | DMBUST | ION | the second | The state of s | | | INTERNAL COMBUSTION ENGINE,
DIESEL FUEL, DEUTZ, MODEL
TCD2012L042V, DRIVING A CRANE,
131 HP
A/N: 529240 | D223 | | NOX: PROCESS UNIT** | CO: 3.73 GRAM/BHP-HR DIESEL (4); CO: 2000 PPMV (5) ; NOX: 116.3 LBS/1000 GAL DIESEL (1); NOX + ROG: 2.98 GRAM/BHP-HR DIESEL (4); PM: 0.22 GRAM/BHP-HR DIESEL (4); ROG: 250 PPMV (5) | C1.1, D12.1,
H23.10 | | System 3: EMERGENCY | INSTRU | MENT AIR O | COMPRESSOR | | | | INTERNAL COMBUSTION ENGINE, EMERGENCY POWER, DIESEL FUEL, CUMMINS, MODEL 6BTA5.9, INSTRUMENT AIR COMPRESSOR DRIVER, WITH AFTERCOOLER, TURBOCHARGER, 174 HP WITH A/N: 529226 | D168 | | NOX: PROCESS UNIT** | CO: 8.5 GRAM/BHP-HR DIESEL (4); NOX: 6.9 GRAM/BHP-HR DIESEL (4); NOX: 469 LBS/1000 GAL DIESEL (1); PM10: 0.38 GRAM/BHP-HR DIESEL (4); VOC: I GRAM/BHP-HR DIESEL (4) | C1.6, D12.1,
D135.1,
E116.1,
E162.1 | | COMPRESSOR, INSTRUMENT
AIR | | | | | | | System 4: POWER GENE | RATION | [
 | | - | | | GAS TURBINE, 1.0 MW (FIVE-200
KW MICROTURBINES POWER
MODULES) NATURAL GAS,
CAPSTONE TURBINE COMPANY,
MODEL C1000, 11.4 MMBTU/HR
A/N: 534354 | D225 | | NOX: LARGE
SOURCE** | CO: 10 PPMV NATURAL GAS (4); NOX: 9 PPMV NATURAL GAS (3); NOX: 9 PPMV NATURAL GAS (4) | A195.5,
D12.6, D29.1,
D29.2, E448.1,
I297.1 | | Process 3: PETROLEUM | STORAG | E/DISPENSI | NG | | | | STORAGE TANK, UNDERGROUND, JET FUEL (JPA), 4000 GALS; DIAMETER: 6 FT 3 IN; HEIGHT: 19 FT 11.5 IN A/N: 529222 | D68 | | | | | - (1) (1A) (1B) Denotes RECLAIM emission factor - Denotes RECLAIM concentration limit - (5) (5A) (5B) Denotes command and control emission limit - Denotes NSR applicability limit - See App B for Emission Limits - (2) (2A) (2B) Denotes RECLAIM emission rate - Denotes BACT emission limit (4) - Denotes air toxic control rule limit - (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) - (10)See section J for NESHAP/MACT requirements - Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. | Section D | Page: 17 | |--------------|--------------| | Facility ID: | 169754 | | Revision #: | 3 | | Date: | June 27 2014 | ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM Source Type/ Monitoring | Emissions * And Requirements | Conditions | |--|-----------|-----------------|---------------------------------|--|------------| | | | | Unit | | | | Process 3: PETROLEUM S | STORA | GE/DISPENSI | NG | · , | | | FUEL DISPENSING NOZZLE, JET
FUEL (JPA)
'N: 529222 | D63 | | | | | | rocess 5: FLARE | | | | | | | KNOCK OUT POT, V-1, FLARE
KNOCKOUT DRUM (PRESSURE
VESSEL)
A/N: 529236 | D131 | D199 D201 | | | | | VESSEL, V-2, WATER SEAL DRUM
A/N: 529236 | D132 | C81 | | | | | FLARE, GROUND FLARE, H-1,
PROCESS GAS, HEIGHT: 40 FT;
DIAMETER: 20 FT 10 IN
A/N: 529236 | C81 | D132 | | CO: 2000 PPMV (5); PM: 0.1
GRAINS/SCF (5) | D12.5 | | Process 7: Platform Emmy | Vent Sc | rubber | _ | · · · | | | CARBON FILTER, T-210A, CAMERON ENVIRONMENTAL, KOH PREGNATED ACIVATED _ARBON, MODEL 1500R, VENTING TO ATMOSPHERIC VENT POLE, HEIGHT: 7 FT 7 IN; DIAMETER: 4 FT A/N: 529237 | C164 | | | | E224.1 | | CARBON FILTER, T-210B, CAMERON ENVIRONMENTAL, KOH IMPREGNATED ACIVATED CARBON, MODEL 1500R, VENTING TO ATMOSPHERIC VENT POLE, HEIGHT: 7 FT 7 IN; DIAMETER: 4 FT A/N: 529238 Process 8: Petroleum Mark | C165 | and Turnels La | adin a | | E224.1 | | Process 8: Petroleum Mark | ering (1 | ank I ruck £0 | ading) | _ | | | • | (1) (1A) (1B) | Denotes RECLAIM emission factor | (2) (2A) (2B) | Denotes RECLAIM emission rate | |---|---------------|--|---------------|---| | | (3) | Denotes RECLAIM concentration limit | (4) | Denotes BACT emission limit | | | (5) (5A) (5B) | Denotes command and control emission limit | (6) | Denotes air toxic control rule limit | | | (7) | Denotes NSR applicability limit | (8) (8A) (8B) | Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) | | | (9) | See App B for Emission Limits | (10) | See section J for NESHAP/MACT requirements | ^{**} Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. | Section D | Page: 18 | |--------------|---------------| | Facility ID: | 169754 | | Revision #: | 3 | | Date: | Јиле 27, 2014 | ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment Process 8: Petroleum Mar | ID
No. | Connected To | RECLAIM Source Type/ Monitoring Unit | Emissions* And Requirements | Conditions | |---|-----------|--------------|--------------------------------------|-----------------------------|--| | LOADING ARM, BOTTOM, CRUDE OIL, WITH 2 HOSES, EACH. 3" DIA. AND WITH 3" DRIP-DRY SHUT-OFF VALVE A/N: 529239 | D166 | | 5). | ROG: 0.08 LBS/1000 GAL (5) | C1.3, C1.4,
E71.1, E147.1,
H23.9 | | VAPOR RETURN LINE, TWO 3" HOSES WITH QUICK DISCONNECT, VENTING TO VAPOR RECOVERY SYSTEM A/N: 529239 | D167 | | | | C6.4, E57.2 | 3) Denotes RECLAIM concentration limit (5) (5A) (5B) Denotes command and control emission limit (7) Denotes NSR applicability limit 9) See App B for Emission Limits (2) (2A) (2B) Denotes RECLAIM emission rate (4) Denotes BACT emission limit (6) Denotes air toxic control rule limit (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) (10) See section J for NESHAP/MACT requirements ** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. ^{(1) (1}A) (1B) Denotes RECLAIM emission factor Section D Facility ID: Revision #: Page: 19 169754 June 2 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC **SECTION D: DEVICE ID INDEX** The following sub-section provides an index to the devices that make up the facility description sorted by device ID. Section D Facility ID: Revision #: Page: 20 169754 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC | Device Index For Section D | | | | |----------------------------|--------------------|------------|--------| | Device ID | Section D Page No. | Process | System | | D1 | 1 | 1 | 1 | | D2 | 1 | 1_ | 1 | | ' D3 | 1 | 1 | 1 | | D4 | 1 | 1 | 1 | | _ D5 | . 1 | 1 | 1 | | D6 | 1 | 11 | 1 | | D7 | 1 \ | 11 | 1 | | D8 | 1 | <u> </u> | I | | D10 | | 1 | 1 | | D11 | 2 | 1 | 1 | | D12 | 2 | 11 | 1 | | D13 | 2 | 1 | 1 | | _ D14 | 3 | 11 | 1 | | D15 | 2 | | 1 | | _ D19 | 5 | 1 | 3 | | D20 | 6 | 1 | 4 | | D23 | 3 | 1 | 2 | | D24 | 3 | 1 | 2 | | D34 | 3 | 1 | 2 | | D36 | 3 | 1 | 2 | | D40 | 4 | ·1 | 2 . | | D41 | 2 | <u>1</u> . | `, 1 | | D42 | 6 | 11 | 4 | | D43 | 6 | 1 | 4 | | . D44 | 15 | 2 | 2 | | D45 | 6 | 1 | 4 | | D46 | 6 | 1 | 4 | | _ D47 | 7 | 1 | 4 | | D48 | 7 | 1 | 4 | | D63 | 17 | 3 | 0 | | D64 | 7 | 1 | 6 | | D65 | | · 1 | 6 | | D68 | 16 | 3 | 0 | | _ D76 | 12 | 1 | . 8 | | D77 | 12 | 1 | 8 | Section D Facility ID: Revision #: Date: Page: 21 169754 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC | Device Index For Section D | | | | |----------------------------|--------------------|---------|--------| | Device ID | Section D Page No. | Process |
System | | D78 | 12 | 1 | 8 | | D79 | 8 | 1 | 6 . | | D80 | 8 | 1 | 6 | | C81 | 17 | 5 | 0 | | D83 | 7 | 1 | 4 | | D85 | 7 . | 1 | 4 | | D86 | 7 | 1 | 4 | | D101 | 8 | 1 | 6 | | D103 | . 15 | 2 | 2 | | D108 | 12 | 1 | 8 | | D112 | 12 | 1 | 8 | | D113 | 12 | 1 | 8 | | D120 | 5 | 1 | 3 | | D128 | 5 | | 3 | | D130 | 5 | 1 | 3 | | D131 | 17 | 5 | 0 | | D132 | 17 | . 5 | 0 | | D133 | 8 | 1 | 6 | | D134 | 8 | 1 | 6 | | D136 | 8 | 1 | 6 | | D137 | 8 | 1 | 6 | | D138 | 8 . | 1 | 6 | | D139 | 9 | 1 | 6 | | D141 | 9 | 1 | 6 | | D142 | 9 | I | 6 | | D143 | 9 | 1 . | 6 | | D145 | 5 | 1 | 3 | | D147 | 5 | 1. | 3 | | D148 | _ 5 | 1 | 3 | | D149 | 15 | 2 | 1 | | C164 | 17 | 7 | 0 | | C165 | 17 | 7 | 0 | | D166 | 18 | 8 | 0 | | D167 | 18 | 8 | 0 | | D168_ | 16 | 2 | 3 | Section D Facility ID: Revision #: Date: Page: 22 169754 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC | Device Index For Section D | | | | |----------------------------|--------------------|-----------|--------| | Device ID | Section D Page No. | Process | System | | D170 | 6 | 1 | 3 | | D171 | 6 | 1 | 3 | | D172 | 7 | 1 | 4 | | D173 | 9 | 1 | 6 | | D174 | 9 | 1 | 6 | | D175 | 9 | 1 | 6 | | D176 | 9 | 1 | 6 | | D177 | 9 | 1 | 6 | | D178 | 9 | | 6 | | D179 | . 10 | <u> </u> | 6 | | D180 | 10 | 1 | 6 | | D181 | 10 | | 6 | | D182 | 10 | 1 | 6 | | D183 | 10 | 1 | 6 | | D184 | 10 | 1 | 6 | | D185 | 10 | <u> </u> | 6 | | D186 | 10 | 1 | 6 | | D187 | . 11 | 1 | 6 | | D188 | | | 6 | | D189 | 11 | <u></u> 1 | 6 | | D190 | 11 | 1 . | 6 | | D191 | 11 | 1 | 6 | | D192 | 11 | 1 | 6 | | D193 | 11 | 1 | 6 | | D194 | 11 | 1 | 6 | | D195 | 11 | 1 | 7 | | D196 | 12 | 1 | 7 | | D197 | 12 | 1 | 7 | | D199 | 12 | 1 | 9 | | D201 | 13 | 1 | 9 | | D204 | 13 | 1 | 9 | | D205 | 13 | 1 | 9 | | D206 | 13 | 1 | 9 | | D207 | 13 | 1 | 9 | | D208 | . 13 | | 9 | Section D Facility ID: Revision #: Date: Page: 23 169754 3 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC | | Device Inde | ex For Section D | | |-----------|--------------------|------------------|--------| | Device ID | Section D Page No. | Process | System | | D210 | 14 | 1 | 9 | | D211 | 14 | 1 | 9 | | D212 | 14 | 1 | 9 | | C213 | 14 | 1 | . 9 | | D214 | 14 | 1 | 9 | | D215 | 3 | 1 | 2 | | D216 | 4 | <u>l</u> | 2 | | D217 | 4 | 1 | 2 | | D218 | 4 | · I | 2 | | D219 | 4 | 1 | 2 | | D220 | 5 | _ 1 | 2 | | D221 | 6 | 1 | 3 | | D223 | 16 | 2 | 2 | | D225 | 16 | 2 | 4 | | D227 | 14 | 1 | 9 | | D228 | 15 | 2 | 2 | Section D Facility ID: Revision #: Page: 24 169754 3 June 27, 2014 FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: #### **FACILITY CONDITIONS** - F14.1 The operator shall not use fuel oil containing sulfur compounds in excess of 0.05 percent by weight. - F14.2 The operator shall not purchase diesel fuel containing sulfur compounds in excess of 15 ppm by weight as supplied by the supplier. - F30.1 For the purpose of exemption from Title V requirements, the total emissions from this facility shall not equal or exceed the following specified amounts: | Pollutant | Emission Limit (Tons in any 12 consecutive calendar-month | |-----------|---| | | period) | | NOx | 10 | | VOC | 10 | Section D Facility ID: Revision #: Page: 25 169754 Date: June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: - a). If the total facility emissions for any of the specified pollutant amounts are in exceedance in any 12 consecutive calendar-month period, or if the facility operator fails to comply with the following requirements, the Facility Permit holder shall submit a Title V Permit application package and obtain a Title V permit pursuant to the requirements specified in Rule 3003. To ensure compliance with the emission limit(s) of this condition, the facility operator shall: - i). determine emissions according to the requirements of Rule 2011 for SOx emissions and Rule 2012 for NOx emissions, as applicable; - ii). in addition to complying with all applicable monitoring, recordkeeping and reporting requirements of Regulation XX, monitor and record on a monthly basis the total facility emissions, excluding emissions identified in Rule 3000(b)(28)(D) and (E), for each 12 consecutive month period, and - iii). for any 12 consecutive month period in which emissions do not comply with an emission limit in this condition, submit to AQMD within 15 days a report of noncompliance and the total subject emissions from the facility for the preceding 12 consecutive calendar-month period. - b). For the purpose of determining compliance with the emission limit(s), the total emissions from this facility shall be equal to the emissions recorded each month by the facility, including any corrections as allowed by Rule 2004, and including any corrections resulting from an AQMD audit of this facility. - c). The provisions of this condition are the sole method of determining compliance with the facility emission limit(s) of this condition. - F52.1 This facility is subject to the applicable requirements of the following rules or regulation(s): #### **SYSTEM CONDITIONS** Section D Facility ID: Revision #: Date: 169754 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: S13.1 All devices under this system are subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|------------------|--------------| | VOC | 40CFR60, SUBPART | KKK . | [Systems subject to this condition: Process 1, System 6, 7] S13.2 All devices under this system are subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|---------------|--------------| | Sulfur | District Rule | 431.1 | | compounds | ' | ' | [Systems subject to this condition: Process 1, System 6, 7] #### **DEVICE CONDITIONS** #### A. Emission Limits A195.3 The 30 PPMV NOX emission limit(s) is averaged over 60 minutes at 3 percent oxygen, dry. [Devices subject to this condition: C213] A195.5 The 10 PPMV CO emission limit(s) is averaged over 60 minutes at 15% oxygen, dry. C1.2 ### South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178 Section D Facility ID: Revision #: Page: 27 169754 June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition: D225] A195.8 The 50 PPMV CO emission limit(s) is averaged over 60 minutes at 3 percent oxygen, dry. [Devices subject to this condition: D227] A195.9 The 12 PPMV NOX emission limit(s) is averaged over 60 minutes at 3 percent oxygen, dry. [Devices subject to this condition: D227] #### C. Throughput or Operating Parameter Limits C1.1 The operator shall limit the operating time to no more than 2190 hour(s) in any one year. The purpose(s) of this condition is to ensure that this equipment qualifies as a process unit. [Devices subject to this condition: D223] The operator shall limit the operating time to no more than 200 hour(s) in any one year. Which includes no more than 34 hours hours in any one year for maintenance and testing. [Devices subject to this condition : D44, D149] C1.3 The operator shall limit the loading rate to no more than 9000 barrel(s) in any one day. Section D Page: Facility ID: Revision #-Date: 169754 June 27, 2014 #### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: The operator shall use the existing LACT unit to monitor the daily tank truck loading volume and keep records of the daily loading during tank truck loading operation. [Devices subject to this condition: D166] C1.4 The operator shall limit the loading rate to no more than 270.000 barrel(s) in any one month. [Devices subject to this condition: D166] C1.6 The operator shall limit the operating time to no more than 200 hour(s) in any one year. > Which includes no more than 50 hours in any one year for maintenance and testing purposes. > The operation of the engine beyond the 50 hours per year allotted for engine maintenance and testing shall be allowed only in the event of a loss of grid power or up to 30 minutes prior to a rotating outage, provided that the electrical grid operator or electric utility has ordered rotating outages in the control area where the engine is located or has indicated that it expects to issue such an order at a certain time, and the engine is located in a utility service block that is subject to the rotating outage. Engine operation shall be terminated immediately after the utility distribution company advises that a rotating outage is no longer imminent or in effect. [Devices subject to this condition: D168, D228] C6.3 The operator shall use this equipment in such a manner that the flow being monitored, as indicated below, does not exceed 570 CFM. Section D Facility ID: Revision # Page: 29 169754 ate: June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: To comply with this condition, the operator shall install and maintain a(n) flow meter to accurately indicate the flow rate at the inlet of the thermal oxidizer. The measuring device or gauge shall be accurate to within +/- 5 percent. The accuracy of the device shall be verified once every 6 months. The
operator shall maintain records in a manner approved by the District, to demonstrate compliance with this condition. [Devices subject to this condition: C213] C6.4 The operator shall use this equipment in such a manner that the backpressure being monitored, as indicated below, does not exceed 18 inches water column. To comply with this condition, the operator shall install and maintain a(n) differential pressure gauge to accurately indicate the differential pressure in the vapor return line. [Devices subject to this condition: D167] C8.4 The operator shall use this equipment in such a manner that the temperature being monitored, as indicated below, is not less than 1400 Deg F. To comply with this condition, the operator shall install and maintain a(n) temperature gauge to accurately indicate the temperature at the point at least 8 feet down stream of the combustion box.. The measuring device or gauge shall be accurate to within +/- 30 degrees Fahrenheit. It shall be calibrated once every 12 months. The operator shall install and maintain a device to continuously record the parameter being monitored. [Devices subject to this condition: C213] Section D Facility ID: Revision #: Page: 30 169754 June June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: #### D. Monitoring/Testing Requirements D12.I The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine. [Devices subject to this condition: D44, D103, D149, D168, D223] D12.2 The operator shall install and maintain a(n) temperature gauge to accurately indicate the temperature of the 1) inlet gas stream to the amine contact tower and 2) inlet amine stream to the amine contact tower. The measuring device or gauge shall be accurate to within plus or minus 5 percent. The accuracy of the device shall be verified once a month. The operator shall also install and maintain an automatic temperature controller to monitor—the—DEA—absorber—approach—temperature.—This—monitoring—device—shall—be—inoperation at all times while the amine gas treating unit is in operation The operator shall monitor and record daily, the inlet gas and amine stream temperatures. if the absorber approach temperature is below 10 degrees Fahrenheit, the operator shall make necessary corrective actions to bring the absorber approach temperature within the specified range within 4 hours of the exceedance The absorber approach temperature is defined as the temperature differential between the amine solution (higher temperature) and the inlet gas (lower temperature) [Devices subject to this condition: D201] D12.4 The operator shall install and maintain a(n) temperature gauge to accurately indicate the temperature of the amine inlet line to reflux accumulator, V1003. Section D Facility ID: Revision #: Date: Page: 31 169754 June 27, 2014 FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: This monitoring device shall be in operation at all times while the amine gas tracting unit is in operation. The operator shall monitor and record daily, the temperature of the reflux accumulator, V-1005. The operator shall maintain a temperature in Vessel V-1005 of 120 degrees Fahrenheit or lower. If the temperature in Vessel V-1005 is outside the range specified above, the operator shall make necessary corrective actions to bring the temperature within 4 hours of the exceedance. [Devices subject to this condition: D211] D12.5 The operator shall install and maintain a(n) thermocouple or any other equivalent device to accurately indicate the presence of a flame at the pilot. The operator shall also install and maintain a device to continuously record the parameter being measured. [Devices subject to this condition: C81] D12.6 The operator shall install and maintain a(n) non-resettable totalizing fuel meter to accurately indicate the flow rate in the fuel supply line. [Devices subject to this condition: D225] D12.8 The operator shall install and maintain a(n) pressure gauge to accurately indicate the pressure of the amine flash tank, V-1003. Section D Facility ID: Revision #: Date: June 27, 2014 #### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every 12 months. The pressure gauge shall be in good operating condition at all times to indicate the back pressure of the flash tank in psig while the amine treating unit is in operation. The operator shall monitor and record daily for the first 30 days of operation and weekly thereafter, the operating back pressure of vessel V-1003. [Devices subject to this condition : D204] The operator shall install and maintain a(n) non-resettable elapsed time D12.9 accurately indicate the elapsed operating time of the engine. > The operator shall keep a log of the engine's operation, documenting the total time the engine is operated each month and specify the reasons for operation, such as: - A. Emergency use - B. Maintenance and testing - C. Other(Describe reason for operating) In addition, each time the engine is manually started, the log shall include the date of operation and shall include the total total hour meter reading (in hours and tenths of hours) at the beginning and end of the operation. [Devices subject to this condition: D228] The operator shall conduct source test(s) for the pollutant(s) identified below. D29.1 Averaging Time Required Test Method(s) Test Location Pollutant(s) to be tested Section D Facility ID: Revision #: Date: Page: 33 169754 June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: | NOX emissions | District method 100.1 | 1 hour | Outlet | |---------------|-----------------------|----------------|--------| | CO emissions | District method 100.1 | 1 hour | Outlet | | VOC emissions | District Method 25.3 | 1 hour | Outlet | | PM10 | District method 5.2 | l hour | Outlet | | emissions | | | | | SOX emissions | AQMD Laboratory | Not Applicable | Outlet | | | Method 307-91 | ı | ı | The test(s) shall be conducted within 60 days after achieving maximum production rate, but no later than 180 days after initial start-up. The test shall be conducted to measure the Nitrous Oxide (NOx), Carbon Monoxide (CO), the total Non-Methane Hydrocarbons, Total Particulate Matter, Total reduced Sulfur as H2S, percent oxygen of the exhaust, moisture content, temperature of the exhaust, exhaust flow rate, and the toxic air contaminants in accordance with EPA Method TO-15. The test shall be conducted in accordance with a District approved source test protocol. The protocol shall be submitted to the District engineer no later than 45 days prior to the proposed test date and shall be approved by the District before the test comences. The test protocol shall include the proposed operating conditions of the microturbine during the test, the identity of the testing lab, a statement from the testing lab certifying that it meets the criteria of Rule 304, and a description of all sampling and analytical procedures. The report shall present the emissions data in units of pounds per hour (lbs/hr), pounds per million Btu (lbs/MMBtu), and parts per million (ppmv) on a dry basis at 15% Oxygen. The District shall be notified of the date and time of the test at least 10 days prior to the test. Section D Facility ID: Revision #: Date: Page: 30 169754 3 June 27, 2014 ### FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: Once per operating day for the first month of operation and weekly thereafter A sample of circulating amine solution shall be obtained from V-1003 using a clean, dry, standard sample container Using a timer, the sample shall be allowed to cool to room conditions for a period of 30 minutes Using a standardized, clean, dry, laminated, cloud point test strip, the operator shall visually check sample cloudiness and/or turbidity by placing the test strip behind the sample container and record the relative sample visibility In addition, the amine solution shall be sampled and analytically tested by an independent laboratory to determine VOC and benzene levels at least once every 60 operating days for the first year and yearly thereafter [Devices subject to this condition: D204] D135.1 The operator shall inspect, adjust, and certify the ignition or fuel injection timing of this engine a minimum of once every 1 years of operation. Inspections, adjustments, and certifications shall be performed by a qualified mechanic and performed in accordance with the engine manufacturer's specifications and procedures. [Devices subject to this condition: D44, D103, D149, D168] #### E. Equipment Operation/Construction Requirements E57.1 The operator shall vent this equipment to vapor recovery compressor whenever this equipment is operating. [Devices subject to this condition: D10, D11, D12, D13, D14, D15, D36, D40, D194, D215, D216, D217, D218, D219, D220] Section D Facility ID: Revision #: Date: Page: 37 169754 3 June 27, 2014 FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: E57.2 The operator shall vent this equipment to the plant vapor recovery system which is in full use and
which has been permitted by the Executive officer whenever the tank truck loading is in operation. [Devices subject to this condition: D167] E71.1 The operator shall not use this equipment if there are overfills, fugitive liquid/vapor leaks or organic liquid leak during disconnect. [Devices subject to this condition: D166] E116.1 This engine shall not be used as part of a demand response program using interruptible service contract in which a facility receives a payment or reduced rates in return for reducing its electric load on the grid when requested to do so by the utility or the grid operator. [Devices subject to this condition: D103, D168, D228] E127.1 The operator shall keep gauge/sample hatches closed except during actual gauging/sampling operations. [Devices subject to this condition : D10, D11, D12, D13, D14, D15, D23, D24, D36, D215, D216, D217, D218, D219, D220] E147.1 The operator shall only conduct crude oil loading in this equipment. [Devices subject to this condition: D166] #### Line All Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178 Section D 169754 Facility ID: Revision #: June 27, 2014 Date: ### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: The operator shall use this equipment only during utility failure periods, except for E162.1 maintenance purposes. [Devices subject to this condition: D103, D168] The operator shall replace the operating carbon canister by the spare carbon canister when H2S is detected in the effluent gas by the H2S monitor. [Devices subject to this condition: C164, C165] E448.1 The operator shall comply with the following requirements: The microturbine shall only be operated with natural gas or process gas that has been treated to pipeline quality gas specifications. [Devices subject to this condition: D225] E448.4 The operator shall comply with the following requirements: The Amine Re-Boiler shall only be operated with natural gas. [Devices subject to this condition: D227] #### H. Applicable Rules This equipment is subject to the applicable requirements of the following rules or H23.1 regulations: Rule/Subpart Contaminant Rule Section D Facility ID: Revision #; Date Page: 39 169754 3 June 27, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS | The operator shall comp | ly with the terms and | conditions set forth below: | |-------------------------|-----------------------|-----------------------------| |-------------------------|-----------------------|-----------------------------| VOC District Rule 1173 [Devices subject to this condition: D76, D77, D78, D108, D113] H23.3 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | | |-------------|---------------|--------------|--| | VOC | District Rule | 1176 | | [Devices subject to this condition: D41, D112, D216, D217] H23.4 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant Rule | | Rule/Subpart | | |------------------|---------------|--------------|--| | VOC | District Rule | 1176 | | | VOC | District Rule | 1149 | | [Devices subject to this condition: D23, D24, D40] H23.5 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | | |-------------|---------------|--------------|--| | VOC | District Rule | 463 | | | VOC | District Rule | 1149 | | Section D Facility ID: Revision #: Page: 40 169754 3 June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition : D10, D11, D12, D13, D14, D15, D215, D218, D219] H23.7 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | | |-------------|---------------|--------------|--| | VOC | District Rule | 464 | | | VOC | District Rule | 1176 | | [Devices subject to this condition: D36] H23.9 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|---------------|--------------| | VOC | District Rule | 462 | [Devices subject to this condition: D166] H23.10 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|---------------|--------------| | CO | District Rule | 1110.2 | | NOX | District Rule | 1110.2 | | VOC | District Rule | 1110.2 | Section D Facility ID: Revision #: Page: 41 169754 June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition: D223] H23.11 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|---------------|--------------| | PM10 | District Rule | 1470 | | H2S | District Rule | 431.2 | [Devices subject to this condition: D228] #### I. Administrative in its allocation account to offset the annual emissions increase for the first year of operation. RTCs held to satisfy this condition may be transferred only after one year from the initial start of operation. If the hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit. [Devices subject to this condition: D225] This equipment shall not be operated unless the facility holds 350 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. RTCs held to satisfy this condition may be transferred only after one year from the initial start of operation. If the hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit. Section D Facility ID: Revision #: Page: -42 169754 June 27, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition: D227] This equipment shall not be operated unless the facility holds 613 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. RTCs held to satisfy this condition may be transferred only after one year from the initial start of operation. If the hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit. [Devices subject to this condition: C213] #### K. Record Keeping/Reporting K67.1 The operator shall keep records, in a manner approved by the District, for the following parameter(s) or item(s): On or before January 15 th of each year, the operator shall record in the engine's operating log, the following: - A. The total hours of operation for the previous calendar year, and - B. The total hours of the engine operation for maintenance and testing for the previous calendar year. The engine operating log shall be retained on site for a minimum of five calendar years and shall be made available to the executive officer or representative upon request. [Devices subject to this condition: D228] Section D Facility ID: Revision #: Date: J Page: 1 169754 DRAFT June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | ID
No. | Connected
To | RECLAIM
Source Type/
Monitoring
Unit | Emissions* And Requirements | Conditions | |--|-----------|-----------------|---|--|--| | Process 2: INTERNAL CO | | | \$., | | | | System 1: EMERGENCY I | ENGINE | <u> </u> | | | <u> </u> | | INTERNAL COMBUSTION ENGINE,
EMERGENCY FIRE, DIESEL FUEL,
CLARKE DETROIT DIESEL, MODEL
DDFP-4AT, WITH TURBOCHARGER,
235 BHP WITH
A/N: 529224 | D149 | | NOX: PROCESS UNIT** | NOX: 469 LBS/1000 GAL
DIESEL (1) | C1.2, D12.1,
D135.1 | | PUMP, FIRE WATER System 2: PLATFORM EM | IMY- E | NGINES | | | | | INTERNAL COMBUSTION ENGINE,
EMERGENCY FIRE, DIESEL FUEL,
DETROIT DIESEL, MODEL 67 IRC,
241 HP WITH
A/N: 529225 | D44 | | NOX: PROCESS:
UNIT** | NOX: 469 LBS/1000 GAL
DIESEL (1) | C1.2, D12.1,
D135.1 | | PUMP, FIRE WATER | | | | <u> </u> | | | INTERNAL COMBUSTION ENGINE,
EMERGENCY POWER, DIESEL FUEL,
WAUKESHA, MODEL F674DS, 300
HP WITH
A/N: 529223 | D103 | | NOX: PROCESS UNIT** | NOX: 469 LBS/1000 GAL
DIESEL (1) | D12.1,
D135.1,
E116.1,
E162.1 | | , GENERATOR | | www.igh | | | | | INTERNAL COMBUSTION
ENGINE,
EMERGENCY POWER, DIESEL FUEL,
CUMMINS, MODEL QST30-G5-NR2,
1490 BHP WITH | 5228 A | Called Carps | NOX: PROCESS | CO: 2.6 GRAM/BHP-HR DIESEL (4); NOX: 469 LBS/1000 GAL DIESEL (1); NOX + ROG: 4.8 GRAM/BHP-HR DIESEL (4); PM: 0.15 GRAM/BHP-HR DIESEL (4) | C1.6, D12.9,
E116.1,
H23.11, K67.1 | | GENERATOR | | | | | | ⁽³⁾ Denotes RECLAIM concentration limit ^{(5) (5}A) (5B) Denotes command and control emission limit ⁽⁷⁾ Denotes NSR applicability limit ⁽⁹⁾ See App B for Emission Limits ^{(2) (2}A) (2B) Denotes RECLAIM emission rate ⁽⁴⁾ Denotes BACT emission limit ⁽⁶⁾ Denotes air toxic control rule limit ^{(8) (8}A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) ⁽¹⁰⁾ See section J for NESHAP/MACT requirements Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. Section D Page: 2 Facility ID: 169754 169754 Revision #: DRAFT Date: June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: | Equipment | 1D
No. | Connected
To | RECLAIM Source Type/ Monitoring Unit | Emissions * And Requirements | Conditions | |---|------------|-----------------|--------------------------------------|--|--| | Process 2: INTERNAL CO | MBUST | ION | • | | | | INTERNAL COMBUSTION ENGINE, DIESEL FUEL, DEUTZ, MODEL TCD2012L042V, DRIVING A CRANE, 131 HP A/N: 529240 | D223 | | NOX: PROCESS UNIT** | CO: 3.73 GRAM/BHP-HR DIESEL (4); CO: 2000 PPMV (5); NOX: 116.3 LBS/1000 GAL DIESEL (1); NOX + ROG: 2.98 GRAM/BHP-HR DIESEL (4); PM: 0.22 GRAM/BHP-HR DIESEL (4); ROG: 250 PPMV (5) | C1.1, D12.1,
H23.10 | | System 3: EMERGENCY | INSTRU | MENT AIR (| COMPRESSOR | | | | INTERNAL COMBUSTION ENGINE, EMERGENCY POWER, DIESEL FUEL, CUMMINS, MODEL 6BTA5.9, INSTRUMENT AIR COMPRESSOR DRIVER, WITH AFTERCOOLER, TURBOCHARGER, 174 HP WITH A/N: 529226 COMPRESSOR, INSTRUMENT | D168 | | NOX: PROCESS UNIT** | CO: 8.5 GRAM/BHP-HR DIESEL (4); NOX: 6.9 GRAM/BHP-HR DIESEL (4); NOX: 469 LBS/1000 GAL DIESEL (1); PM10: 0.38 GRAM/BHP-HR DIESEL (4); VOC: I GRAM/BHP-HR DIESEL (4) | C1.6, D12.1,
D135.1,
E116.1,
E162.1 | | System 4: POWER GENE |
RATION | 1 | J | | | | GAS TURBINE, 1.0 MW (FIVE-200 KW MICROTURBINES POWER MODULES) NATURAL GAS, CAPSTONE TURBINE COMPANY, MODEL C1000, 11.4 MMBTU/HR A/N: 534354 | D225 | | NOX: LARGE
SOURCE** | CO: 10 PPMV NATURAL GAS (4); NOX: 9 PPMV NATURAL GAS (3); NOX: 9 PPMV NATURAL GAS (4) | A195.5,
D12.6, D29.1,
D29.2, E448.1,
1297.1 | | + | (1) (1A) (1B) | Denotes RECLAIM emission factor | (2) (2A) (2B) | Denotes RECLAIM emission rate | |---|---------------|--|---------------|---| | | (3) | Denotes RECLAIM concentration limit | (4) | Denotes BACT emission limit | | | (5) (5A) (5B) | Denotes command and control emission limit | (6) | Denotes air toxic control rule limit | | | (7) | Denotes NSR applicability limit | (8) (8A) (8B) | Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) | | | (9) | See App B for Emission Limits | (10) | See section J for NESHAP/MACT requirements | ^{**} Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. | Section D | Page: 3 | 169754 | Revision #: DRAFT | June 25, 2014 | ## FACILITY PERMIT TO OPERATE OXY USA INC **SECTION D: DEVICE ID INDEX** The following sub-section provides an index to the devices that make up the facility description sorted by device ID. Section D Page: 4 Facility ID: 169754 Revision #: DRAFT Date: June 25, 2014 # FACILITY PERMIT TO OPERATE OXY USA INC | Device Index For Section D | | | | |----------------------------|--------------------|---------|--------| | Device ID | Section D Page No. | Process | System | | D44 | <u></u> | 2 | 2 | | D103 | 1 | 2 | 2 | | D149 | 1 | 2 | 1 | | D168 | 2 | 2 | 3 | | D223 | 2 | 2 | 2 | | D225 | 2 | 2 | 4 | | D228 | 1 | 2 | 2 | | Section D | Page: 5 | Facility ID: 169754 | Revision #: DRAFT | Date: June 25, 2014 | ### FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: #### **FACILITY CONDITIONS** - F14.1 The operator shall not use fuel oil containing sulfur compounds in excess of 0.05 percent by weight. - F14.2 The operator shall not purchase diesel fuel containing sulfur compounds in excess of 15 ppm by weight as supplied by the supplier. - F30.1 For the purpose of exemption from Title V requirements, the total emissions from this facility shall not equal or exceed the following specified amounts: | Pollutant | Emission Limit (Tons in any 12 consecutive calendar-month period) | |-----------|---| | NOx | 10 | | VOC | 10 | Section D Page: 6 Facility ID: Revision #: Date: DRAFT June 25, 2014 ### FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: - a). If the total facility emissions for any of the specified pollutant amounts are in exceedance in any 12 consecutive calendar-month period, or if the facility operator fails to comply with the following requirements, the Facility Permit holder shall submit a Title V Permit application package and obtain a Title V permit pursuant to the requirements specified in Rule 3003. To ensure compliance with the emission limit(s) of this condition, the facility operator shall: - i). determine emissions according to the requirements of Rule 2011 for SOx emissions and Rule 2012 for NOx emissions, as applicable; - ii). in addition to complying with all applicable monitoring, recordkeeping and reporting requirements of Regulation XX, monitor and record on a monthly basis the total facility emissions, excluding emissions identified in Rule 3000(b)(28)(D) and (E), for each 12 consecutive month period, and - iii). for any 12 consecutive month period in which emissions do not comply with an emission limit in this condition, submit to AQMD within 15 days a report of noncompliance and the total subject emissions from the facility for the preceding 12 consecutive calendar-month period. - b). For the purpose of determining compliance with the emission limit(s), the total emissions from this facility shall be equal to the emissions recorded each month by the facility, including any corrections as allowed by Rule 2004, and including any corrections resulting from an AQMD audit of this facility. - c). The provisions of this condition are the sole method of determining compliance with the facility emission limit(s) of this condition. - F52.1 This facility is subject to the applicable requirements of the following rules or regulation(s): #### SYSTEM CONDITIONS Section D Facility ID: DRAFT June 25, 2014 Revision #: #### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: All devices under this system are subject to the applicable requirements of the following S13.1 rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|------------------|--------------| | VOC | 40CFR60, SUBPART | KKK | [Systems subject to this condition: Process 1, System 6, 7] S13.2 All devices under this system are subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|---------------|--------------| | Sulfur | District Rule | 431.1 | | compounds | • | • | [Systems subject to this condition: Process 1, System 6, 7] #### **DEVICE CONDITIONS** #### A. Emission Limits A195.3 The 30 PPMV NOX emission limit(s) is averaged over 60 minutes at 3 percent oxygen, dry. [Devices subject to this condition: C213] A195.5 The 10 PPMV CO emission limit(s) is averaged over 60 minutes at 15% oxygen, dry. Page: 8 169754 DRAFT June 25, 2014 ### FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition: D225] A195.8 The 50 PPMV CO emission limit(s) is averaged over 60 minutes at 3 percent oxygen, dry. [Devices subject to this condition: D227] A195.9 The 12 PPMV NOX emission limit(s) is averaged over 60 minutes at 3 percent oxygen, dry. [Devices subject to this condition: D227] #### C. Throughput or Operating Parameter Limits C1.1 The operator shall limit the operating time to no more than 2190 hour(s) in any one year. The purpose(s) of this condition is to ensure that this equipment qualifies as a process unit. [Devices subject to this condition: D223] C1.2 The operator shall limit the operating time to no more than 200 hour(s) in any one year. Which includes no more than 34 hours hours in any one year for maintenance and testing. [Devices subject to this condition: D44, D149] C1.3 The operator shall limit the loading rate to no more than 9000 barrel(s) in any one day. Section D Page: 9 Facility ID: 169754 Revision #: DRAFT Date: June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth
below: The operator shall use the existing LACT unit to monitor the daily tank truck loading volume and keep records of the daily loading during tank truck loading operation. [Devices subject to this condition : D166] C1.4 The operator shall limit the loading rate to no more than 270.000 barrel(s) in any one month. [Devices subject to this condition: D166] The operator shall limit the operating time to no more than 200 hour(s) in any one year. Which includes no more than 50 hours in any one year for maintenance and testing purposes. The operation of the engine beyond the 50 hours per year allotted for engine maintenance and testing shall be allowed only in the event of a loss of grid power or up to 30 minutes prior to a rotating outage, provided that the electrical grid operator or electric utility has ordered rotating outages in the control area where the engine is located or has indicated that it expects to issue such an order at a certain time, and the engine is located in a utility service block that is subject to the rotating outage. Engine operation shall be terminated immediately after the utility distribution company advises that a rotating outage is no longer imminent or in effect. [Devices subject to this condition : D168, D168, C6.3 The operator shall use this equipment in such a manner that the flow being monitored, as indicated below, does not exceed 570 CFM. | Section D | Page: 10 | 169754 | Revision #: DRAFT | June 25, 2014 | ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: To comply with this condition, the operator shall install and maintain a(n) flow meter to accurately indicate the flow rate at the inlet of the thermal oxidizer. The measuring device or gauge shall be accurate to within +/- 5 percent. The accuracy of the device shall be verified once every 6 months. The operator shall maintain records in a manner approved by the District, to demonstrate compliance with this condition. [Devices subject to this condition: C213] C6.4 The operator shall use this equipment in such a manner that the backpressure being monitored, as indicated below, does not exceed 18 inches water column. To comply with this condition, the operator shall install and maintain a(n) differential pressure gauge to accurately indicate the differential pressure in the vapor return line. [Devices subject to this condition: D167] C8.4 The operator shall use this equipment in such a manner that the temperature being monitored, as indicated below, is not less than 1400 Deg F. To comply with this condition, the operator shall install and maintain a(n) temperature gauge to accurately indicate the temperature at the point at least 8 feet down stream of the combustion box.. The measuring device or gauge shall be accurate to within \pm 30 degrees Fahrenheit. It shall be calibrated once every 12 months. The operator shall install and maintain a device to continuously record the parameter being monitored. [Devices subject to this condition: C213] ì ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS The operator shall comply with the terms and conditions set forth below: #### D. Monitoring/Testing Requirements D12.1 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine. [Devices subject to this condition: D44, D103, D149, D168, D223] D12.2 The operator shall install and maintain a(n) temperature gauge to accurately indicate the temperature of the 1) inlet gas stream to the amine contact tower and 2) inlet amine stream to the amine contact tower. The measuring device or gauge shall be accurate to within plus or minus 5 percent. The accuracy of the device shall be verified once a month. The operator shall also install and maintain an automatic temperature controller to monitor the DEA absorber approach temperature. This monitoring device shall be in operation at all times while the amine gas treating unit is in operation The operator shall monitor and record daily, the inlet gas and amine stream temperatures if the absorber approach temperature is below 10 degrees Fahrenheit, the operator shall make necessary corrective actions to bring the absorber approach temperature within the specified range within 4 hours of the exceedance The absorber approach temperature is defined as the temperature differential between the amine solution (higher temperature) and the inlet gas (lower temperature) [Devices subject to this condition: D201] D12.4 The operator shall install and maintain a(n) temperature gauge to accurately indicate the temperature of the amine inlet line to reflux accumulator, V1003. Section D Page: 12 169754 Facility ID: DRAFT Revision #: June 25, 2014 Date: #### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: This monitoring device shall be in operation at all times while the amine gas tracting unit is in operation. The operator shall monitor and record daily. the temperature of the reflux accumulator, V-1005. operator maintain temperature in Vessel V-1005 of 120 degrees shall а Fahrenheit or lower. If the temperature in Vessel V-1005 is outside the range specified above, the operator shall make necessary corrective actions to bring the temperature within 4 hours of the exceedance. [Devices subject to this condition: D211] The operator shall install and maintain a(n) thermocouple or any other equivalent device to D12.5 accurately indicate the presence of a flame at the pilot. > The operator shall also install and maintain a device to continuously record the parameter being measured. [Devices subject to this condition: C81] D12.6 The operator shall install and maintain a(n) non-resettable totalizing fuel meter to accurately indicate the flow rate in the fuel supply line. [Devices subject to this condition : D225] The operator shall install and maintain a(n) pressure gauge to accurately indicate the D12.8 pressure of the amine flash tank, V-1003. ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every 12 months. The pressure gauge shall be in good operating condition at all times to indicate the back pressure of the flash tank in psig while the amine treating unit is in operation. The operator shall monitor and record daily for the first 30 days of operation and weekly thereafter, the operating back pressure of vessel V-1003. [Devices subject to this condition: D204] The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine. The operator shall keep a log of the engine's operation, documenting the total time the engine is operated each month and specify the reasons for operation, such as: - A. Emergency use - B. Maintenance and testing - C. Other(Describe reason for operating) In addition, each time the engine is manually started, the log shall include the date of operation and shall include the total total hour meter reading (in hours and tenths of hours) at the beginning and end of the operation. [Devices subject to this condition : 0228] D29.1 The operator shall conduct source test(s) for the pollutant(s) identified below. Pollutant(s) to Required Test Method(s) Averaging Time Test Location be tested Page: 14 169754 DRAFT June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: | NOX emissions | District method 100.1 | 1 hour | Outlet | |---------------|-----------------------|----------------|--------| | CO emissions | District method 100.1 | 1 hour | Outlet | | VOC emissions | District Method 25.3 | 1 hour | Outlet | | PM10 | District method 5.2 | 1 hour | Outlet | | emissions | | | · · | | SOX emissions | AQMD Laboratory | Not Applicable | Outlet | | | Method 307-91 | • | • | The test(s) shall be conducted within 60 days after achieving maximum production rate, but no later than 180 days after initial start-up. The test shall be conducted to measure the Nitrous Oxide (NOx), Carbon Monoxide (CO), the total Non-Methane Hydrocarbons, Total Particulate Matter, Total reduced Sulfur as H2S, percent oxygen of the exhaust, moisture content, temperature of the exhaust, exhaust flow rate, and the toxic air contaminants in accordance with EPA Method TO-15. The test shall be conducted in accordance with a District approved source test protocol. The protocol shall be submitted to the District engineer no later than 45 days prior to the proposed test date and shall be approved by the District before the test comences. The test protocol shall include the proposed operating conditions of the microturbine during the test, the identity of the testing lab, a statement from the testing lab certifying that it meets the criteria of Rule 304, and a description of all sampling and analytical procedures. The report shall present the emissions data in units of pounds per hour (lbs/hr), pounds per million Btu (lbs/MMBtu), and parts per million (ppmv) on a dry basis at 15% Oxygen. The District shall be notified of the date and time of the test at least 10 days prior to the test. ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition: D225] D29.2 The operator shall conduct
source test(s) for the pollutant(s) identified below. | Pollutant(s) to be tested | Required Test Method(s) | Averaging Time | Test Location | |---------------------------|-------------------------|----------------|---------------| | NOX emissions | District method 100.1 | 1 hour | Outlet | | CO emissions | District method 100.1 | 1 hour | Outlet: | The test shall be conducted once every three years as per Rule 2012, Chapter 5, Section (B)(2)(a) and for compliance with BACT. The test shall be conducted to measure Nitrous Oxide (NOx) and Carbon Monoxide (CO) at 15% Oxygen.. [Devices subject to this condition : D225] D90.1 The operator shall monitor and record the amount of the process gas treated in the amine conatct tower, T-1006, according to the following specifications: Section D Page: 16 Facility ID: 169754 169754 Revision #: DRAFT Date: June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: The volume of gas processed by this unit shall not exceed monthly average of 4.0 mmscfd The volume of gas recorded by the gas sales meter can be used to determine compliance with this requirement If the volume of gas measured by the gas sales meter, which includes the gas treated in the amine treating unit plus additional gas that bypasses the amine treating unit, is 4.0 mmscfd or higher, the applicant shall install a dedicated gas meter at the inlet of the amine gas treating system to indicate in scf per day, the inlet flow rate of process gas to the amine system. The operator shall install the gas meter within 90 days of exceeding the specified limit above The operator shall notify the AQMD in writing within 7 days of exceeding 4.0 mmscfd level [Devices subject to this condition: D201] D90.2 The operator shall monitor and record the level of cloudiness and/or turbidity of the amine solution in the amine flash tank, V-1003, according to the following specifications: Section D Page: 17 Facility ID: 169754 Revision #: DRAFT Date: June 25, 2014 Revi Date ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: Once per operating day for the first month of operation and weekly thereafter A sample of circulating amine solution shall be obtained from V-1003 using a clean, dry, standard sample container Using a timer, the sample shall be allowed to cool to room conditions for a period of 30 minutes Using a standardized, clean, dry, laminated, cloud point test strip, the operator shall visually check sample cloudiness and/or turbidity by placing the test strip behind the sample container and record the relative sample visibility In addition, the amine solution shall be sampled and analytically tested by an independent laboratory to determine VOC and benzene levels at least once every 60 operating days for the first year and yearly thereafter [Devices subject to this condition: D204] D135.1 The operator shall inspect, adjust, and certify the ignition or fuel injection timing of this engine a minimum of once every 1 years of operation. Inspections, adjustments, and certifications shall be performed by a qualified mechanic and performed in accordance with the engine manufacturer's specifications and procedures. [Devices subject to this condition: D44, D103, D149, D168] #### E. Equipment Operation/Construction Requirements E57.1 The operator shall vent this equipment to vapor recovery compressor whenever this equipment is operating. [Devices subject to this condition: D10, D11, D12, D13, D14, D15, D36, D40, D194, D215, D216, D217, D218, D219, D220] Page: 15 169754 Section D Facility ID: DRAFT Revision #: June 25, 2014 Date: #### **FACILITY PERMIT TO OPERATE OXY USA INC** #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: E57.2 The operator shall vent this equipment to the plant vapor recovery system which is in full use and which has been permitted by the Executive officer whenever the tank truck loading is in operation. [Devices subject to this condition: D167] E71.1 The operator shall not use this equipment if there are overfills, fugitive liquid/vapor leaks or organic liquid leak during disconnect. [Devices subject to this condition: D166] This engine shall not be used as part of a demand response program using interruptible service contract in which a facility receives a payment or reduced rates in return for reducing its electric load on the grid when requested to do so by the utility or the grid operator. [Devices subject to this condition: D103, D168, D228] E127.1 The operator shall keep gauge/sample hatches closed except during actual gauging/sampling operations. > [Devices subject to this condition: D10, D11, D12, D13, D14, D15, D23, D24, D36, D215, D216, D217, D218, D219, D220] E147.1 The operator shall only conduct crude oil loading in this equipment. [Devices subject to this condition: D166] Page: 19 169754 DRAFT June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D. FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: E162.1 The operator shall use this equipment only during utility failure periods, except for maintenance purposes. [Devices subject to this condition: D103, D168] E224.1 The operator shall replace the operating carbon canister by the spare carbon canister when H2S is detected in the effluent gas by the H2S monitor. [Devices subject to this condition: C164, C165] E448.1 The operator shall comply with the following requirements: The microturbine shall only be operated with natural gas or process gas that has been treated to pipeline quality gas specifications. [Devices subject to this condition: D225] E448.4 The operator shall comply with the following requirements: The Amine Re-Boiler shall only be operated with natural gas. [Devices subject to this condition: D227] #### H. Applicable Rules H23.1 This equipment is subject to the applicable requirements of the following rules of regulations: Contaminant Rule Rule/Subpart Page: 20 169754 DRAFT June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS | The operator shall comp | ply with the terms and conditions : | set forth below: | |----------------------------------|---|---| | VOC | District Rule | 1173 | | [Devices subj | ect to this condition: D76, D77, D78, 1 | D108, D113] | | H23.3 This equipmen regulations: | nt is subject to the applicable | requirements of the following rules or | | Contaminant | Rule | Rulc/Subpart | | VOC | District Rule | 1176 | | - | ect to this condition: D41, D112, D216 nt is subject to the applicable | 6, D217] requirements of the following rules or | | Contaminant | Rule | Rule/Subpart | | VOC | District Rule | 1176 | | VOC | District Rule | 1149 | | | ect to this condition: D23, D24, D40] nt is subject to the applicable | requirements of the following rules or | | Contaminant | Rule | Rule/Subpart | | VOC | District Rule | 463 | | VOC | District Rule | 1149 | Page: 21 169754 DRAFT June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition : D10, D11, D12, D13, D14, D15, D215, D218, D219] H23.7 This equipment is subject to the applicable requirements of the following rules or regulations: | Rule | Rule/Subpart | |---------------|---------------| | District Rule | 464 | | District Rule | 1176 | | | District Rule | [Devices subject to this condition : D36] H23.9 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|---------------|--------------| | VOC | District Rule | 462 | [Devices subject to this condition : D166] H23.10 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|---------------|--------------| | CO | District Rule | 1110.2 | | NOX | District Rule | 1110.2 | | VOC | District Rule | 1410.2 | Page: 22 169754 DRAFT June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition: D223] H233 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rulc | Rule/Subpart | |-------------|---------------|--------------| | PM10 | District Rule | 1470 | | H2S | District Rule | 431.2 | [Devices subject to this condition: 0228] #### I. Administrative This equipment shall not be operated unless the facility holds 3366 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. RTCs held to satisfy this condition may be transferred only after one year from the initial start of operation. If the hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit. [Devices subject to this condition: D225] 1297.2 This equipment shall not be operated unless the facility holds 350 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. RTCs held to
satisfy this condition may be transferred only after one year from the initial start of operation. If the hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit. Page: 23 169754 DRAFT June 25, 2014 ## FACILITY PERMIT TO OPERATE OXY USA INC #### SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS #### The operator shall comply with the terms and conditions set forth below: [Devices subject to this condition: D227] This equipment shall not be operated unless the facility holds 613 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. RTCs held to satisfy this condition may be transferred only after one year from the initial start of operation. If the hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit. [Devices subject to this condition: C213] #### K. Record Keeping/Reporting The operator shall keep records, in a manner approved by the District, for the following parameter(s) or item(s): On or before January 15th of each year, the operator shall record in the engine's operating log, the following: - A. The total hours of operation for the previous calendar year, and - B. The total hours of the engine operation for maintenance and testing for the previous calendar year. The engine operating log shall be retained on site for a minimum of five calendar years and shall be made available to the executive officer or representative upon request. [Devices subject to this condition : D228] #### **NSR DATA SUMMARY SHEET** Application No Application Type Application status Previous Apps, Dev 555370 10 **PENDAPPRV** Company Name Company ID Address **OXY USA INC** 169754 20101 GOLDENWEST ST. **HUNTINGTON BEACH, CA 92648-2628** Reclaim NOX Reclaim Zone 01 Air Basin SC 18 Zone Title V NO Device ID **Estimated Completion Date** **Heat Input Capacity** 02-28-2014 **Priority Reserve** Recommended Disposition Millions BTU/Hr NONE - No Priority Access Requested 31 - PERMIT TO OPERATE GRANTED PR Expiration 12-31-9999 NO 0 - School within 1,000 feet Operating Weeks per year Operating Days per week 50 1 **Operating Hours** Monday 08:00 to 09:00 Tuesday 00:00 to 00:00 Wednesday 00:00 to 00:00 Thursday 00:00 to 00:00 Friday 00:00 to 00:00 Saturday 00:00 to 00:00 Sunday 00:00 to 00:00 | Application No 555370 | | Company ID | 169754 | |---------------------------------------|------------------------|------------|--------| | Emittant | со | | | | BACT | | | | | Cost effectiveness | NO | | | | Source Type | MINOR | | | | Emis Increase | 0.3 | | | | Modelling | N/A | | | | Public Notice | N | | | | Controlled Emission | | | | | Max Hourly | 2.16 | Lbs/Hr | | | Max Daily | 2.16 | Lbs/day | | | Uncontrolled Emission | | • | | | Max Hourly | 2.16 | Lbs/Hr | | | Max Daily | 2.16 | Lbs/day | | | Current Emission | | • | | | BACT 30 Day Avg | 0.30 | Lbs/day | | | Annual Emission | 108.00 | Lbs/year | | | District Emission | 1304(a)(4) - 10-12-1 | • | | | Emittant | CO2 | | | | BACT | | | | | Cost effectiveness | NO | | | | Source Type | MINOR | | | | Emis Increase | 80614.63 | | | | Modelling | N/A | | | | Public Notice | N | | | | Controlled Emission | • • | | | | Max Hourly | 1,612.29 | Lbs/Hr | | | Max Daily | 1,612.29 | Lbs/day | | | Uncontrolled Emission | 1,012.23 | Loaduy | | | Max Hourly | 1,612.29 | Lbs/Hr | | | Max Hourly
Max Daily | 1,612.29 | Lbs/day | | | Current Emission | 1,012.23 | Logiday | | | BACT 30 Day Avg | | Lbs/day | | | Annual Emission | 90 614 62 | Lbs/year | | | District Emission | 80,614.63 | LD3/yCal | | | · · · · · · · · · · · · · · · · · · · | | | | | Emittant
BACT | CO2e | | | | Cost effectiveness | NO | | | | * | | | | | Source Type | MINOR | | | | Emis Increase | 80890.002999999
N/A | | | | Modelling Public Notice | N/A | | | | | N | | | | Controlled Emission | | l bo/Lle | | | Max Hourly | | Lbs/Hr | | | Max Daily | | Lbs/day | | | Uncontrolled Emission | | h=/ l= | | | Max Hourly | | Lbs/Hr | | | Max Daily | | Lbs/day | | | Current Emission | | 11 72 | | | BACT 30 Day Avg | 00.000.00 | Lbs/day | | | Annual Emission | 80,890.00 | Lbs/year | | | District Emission | | | | | Application No 555370 | | Company ID | 169754 | |-----------------------|-----------|------------|--------| | Emittant | GHG | | | | BACT | | | | | Cost effectiveness | NO | | | | Source Type | MINOR | | | | · Emis Increase | 80618.607 | | | | Modelling | N/A | | | | Public Notice | N | | | | Controlled Emission | | | | | Max Hourly | | Lbs/Hr | | | Max Daily | | Lbs/day | | | Uncontrolled Emission | | | | | Max Hourly | | Lbs/Hr | | | Max Daily | | Lbs/day | | | Current Emission | | | | | BACT 30 Day Avg | | Lbs/day | | | Annual Emission | 80,618.61 | Lbs/year | | | District Emission | | | | | Emittant | METHANE | | | | BACT | | | | | Cost effectiveness | NO | | | | Source Type | MINOR | | | | Emis Increase | 3.31 | | | | Modelling | N/A | | | | Public Notice | N | | | | Controlled Emission | | | | | Max Hourly | 0.07 | Lbs/Hr | | | Max Daily | 0.07 | Lbs/day | | | Uncontrolled Emission | | | | | Max Hourly | 0.07 | Lbs/Hr | | | Max Daily | 0.07 | Lbs/day | | | Current Emission | | | | | BACT 30 Day Avg | | Lbs/day | | | Annual Emission | 3.31 | Lbs/year | | | District Emission | _ | | | | Emittant | N2O | | | | BACT | | | | | Cost effectiveness | NO | | | | Source Type | MINOR | | | | Emis Increase | 0.66 | | | | Modelling | N/A | | | | Public Notice | N | | | | Controlled Emission | | | | | Max Hourly | 0.01 | Lbs/Hr | | | Max Daily | 0.01 | Lbs/day | | | Uncontrolled Emission | | | , | | Max Hourly | 0.01 | Lbs/Hr | | | Max Daily | 0.01 | Lbs/day | | | Current Emission | | | | | BACT 30 Day Avg | | Lbs/day | | | Annual Emission | 0.66 | Lbs/year | | | District Emission | | | | | | | | | | Emittant BACT Cost effectiveness NO Source Type MA_UOR Emis Increase 1.8 Modelling N/A Public Notice N Controlled Emission Max Hourly 12.98 Lbs/Hr Max Daily 12.98 Lbs/Hr Max Daily 12.98 Lbs/Hr Max Daily 12.98 Lbs/day Uncontrolled Emission BACT 30 Day Avg Annual Emission District Emission Max Hourly N/A Public Notice N Controlled Emission BACT 30 Day Avg Annual Emission Max Hourly N/A Public Notice N Controlled Emission Max Hourly 0.36 Lbs/Hr Max Daily 0.32 Lbs/Hr Max Daily 0.33 Lbs/Hr Max Daily 0.23 | Application | on No 555370 | | Company ID | 169754 | |--|--------------|---------------------------------------|-----------------|-----------------|-------------| | Cost effectiveness | | | NOX | · · | | | Source Type | | | 110 | | | | Emis Increase 1.8 Modelling N/A N/A Public Notice N Contrôlled Emission Max Hourly 12.98 Lbs/Hr Max Daily 12.98 Lbs/Hr Max Daily 12.98 Lbs/Hr Max Daily 12.98 Lbs/Hr Max Daily 12.98 Lbs/day | . (+ | | | · | | | Modelling | | | | · | | | Public Notice | | · · | | | | | Contrölled Emission Max Hourly 12.98 Lbs/Hr Max Daily 12.98 Lbs/day Uncontrolled Emission Max Hourly 12.98 Lbs/day Uncontrolled Emission Max Hourly 12.98 Lbs/day Uncontrolled Emission Emistric | | | | | | | Max Daily 12.98 Lbs/Hr Max Daily 12.98 Lbs/day Uncontrolled Emission 12.98 Lbs/Hr Max Daily 12.98 Lbs/day Current Emission 1.80 Lbs/day Annual Emission 648.80 Lbs/year District Emission 1304(a)(4) - 10-12-1995 Emittant PM10 BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.05 Modelling N/A Public Notice N Controlled Emission N Max Hourly 0.36 Lbs/Hr Max Daily 0.36 Lbs/Hr Max Hourly 0.36 Lbs/Hr Max Hourly 0.36 Lbs/Hr Max Daily 0.36 Lbs/day Current Emission
18.10 Lbs/day District Emission 18.10 Lbs/day Annual Emission 18.10 Lbs/day Emittant ROG Roc | - | | N | | | | Max Daily | ' ' | • | | | | | Uncontrolled Emission Max Hourly 12.98 | | | | | | | Max Hourly | | • | 12.98 | Lbs/day | | | Max Daily 12.98 | | | | | | | Current Emission | | | | | • | | BACT 30 Day Avg | ' H . | | 12.98 | Lbs/day | | | Annual Emission 648.80 Lbs/year District Emission 1304(a)(4) - 10-12-1995 | | | | | | | District Emission | , h | | | • | | | Emittant | | • | | | • , | | BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.05 Modelling N/A Public Notice N Controlled Emission Max Hourly Max Daily Uncontrolled Emission BACT 30 Day Avg BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission BACT 30 Day Avg Annual Emission BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily | 7. | District Emission | 1304(a)(4) - 10 | <u>-12-1995</u> | <u> </u> | | Cost effectiveness | | | PM10 | | | | Source Type | | | | | | | Emis Increase No No No | • | Cost effectiveness | NO | | | | Modelling | , " · · | Source Type | MINOR | | | | Public Notice Controlled Emission Max Hourly Max Daily Uncontrolled Emission Max Hourly Max Daily Uncontrolled Emission Max Hourly Max Daily Mix D | . * | Emis Increase | 0.05 | | | | Controlled Emission Max Hourly 0.36 Lbs/Hr Max Daily 0.36 Lbs/day | | Modelling | N/A | | | | Max Hourly 0.36 Lbs/Hr Max Daily 0.36 Lbs/day Uncontrolled Emission 0.36 Lbs/Hr Max Daily 0.36 Lbs/day Current Emission 0.05 Lbs/day Annual Emission 18.10 Lbs/year District Emission 1304(a)(4) - 10-12-1995 Emittant ROG RACT Cost effectiveness NO Source Type MiNOR Emis Increase 0.32 Modelling N/A Nodelling Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | Public Notice | N | • | | | Max Daily Uncontrolled Emission Max Hourly Max Daily O.36 Lbs/Hr Max Daily O.36 Lbs/day Current Emission BACT 30 Day Avg Annual Emission District Emission BACT Cost effectiveness NO Source Type MINOR Emis Increase O.32 Modelling N/A Public Notice N Controlled Emission Max Hourly Max Daily Uncontrolled Emission BACT Max Daily O.23 Lbs/Hr Max Daily Uncontrolled Emission Max Hourly Max Daily O.23 Lbs/Hr Max Daily Uncontrolled Emission Max Hourly Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/day Uncontrolled Emission BACT 30 Day Avg Annual Emission BACT 30 Day Avg Annual Emission 11.50 Lbs/year | | Controlled Emission | | • | | | Max Daily Uncontrolled Emission Max Hourly Max Daily O.36 Lbs/Hr Max Daily O.36 Lbs/day Current Emission BACT 30 Day Avg Annual Emission District Emission BACT Cost effectiveness NO Source Type MINOR Emis Increase O.32 Modelling N/A Public Notice N Controlled Emission Max Hourly Max Daily Uncontrolled Emission BACT Max Daily O.23 Lbs/Hr Max Daily Uncontrolled Emission Max Hourly Max Daily O.23 Lbs/Hr Max Daily Uncontrolled Emission Max Hourly Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/day Uncontrolled Emission BACT 30 Day Avg Annual Emission BACT 30 Day Avg Annual Emission 11.50 Lbs/year | , | Max Hourly | 0.36 | Lbs/Hr | | | Uncontrolled Emission | 1 | | 0.36 | Lbs/day | | | Max Hourly 0.36 Lbs/Hr Max Daily 0.36 Lbs/day Current Emission BACT 30 Day Avg 0.05 Lbs/day Annual Emission 18.10 Lbs/year District Emission 1304(a)(4) - 10-12-1995 Emittant ROG BACT Cost effectiveness NO Source Type Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission N Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/day Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | • | | • | | | Max Daily | | , | 0.36 | Lbs/Hr | | | Current Emission BACT 30 Day Avg Annual Emission District Emission BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice Controlled Emission Max Hourly Max Daily Uncontrolled Emission Max Hourly Max Daily Max Hourly Max Daily Current Emission BACT 30 Day Avg Annual Emission BACT 30 Day Avg Annual Emission 18.10 Lbs/day | | - | | | | | BACT 30 Day Avg Annual Emission District Emission 1304(a)(4) - 10-12-1995 Emittant BACT Cost effectiveness NO Source Type Minor Emis Increase 0.32 Modelling N/A Public Notice Controlled Emission Max Hourly Max Daily Uncontrolled Emission Max Hourly Max Daily 0.23 Lbs/Hr Lbs/day Current Emission BACT 30 Day Avg Annual Emission 11.50 Lbs/year | | | | | | | Annual Emission 18.10 Lbs/year District Emission 1304(a)(4) - 10-12-1995 Emittant ROG BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | • | · · · · · · · · · · · · · · · · · · · | 0.05 | l bs/day | | | District Emission 1304(a)(4) - 10-12-1995 Emittant ROG BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | | | | | | Emittant BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Uncontrolled Emission BACT 30 Day Avg Annual Emission 11.50 NO BACT BACT BACT BACT BACT BACT BACT BACT | | | | - | | | BACT Cost effectiveness NO Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | • | | - | | | | Cost effectiveness NO Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | | RUG | | | | Source Type MINOR Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | _ | NO | | | | Emis Increase 0.32 Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg Annual Emission 11.50 Lbs/year | * : | · · | | | | | Modelling N/A Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | | | | | | Public Notice N Controlled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | | | | • | | Controlled Emission Max Hourly Max Daily Uncontrolled Emission Max Hourly Max Daily O.23 Lbs/Hr Max Daily O.23 Lbs/Hr Max Daily Current Emission BACT 30 Day Avg Annual Emission 11.50 Lbs/year | | | | | | | Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | | N | | | | Max Daily 0.23 Lbs/day Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | | - / - | | | | | Uncontrolled Emission Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg Annual Emission 11.50 Lbs/year | • | | | | | | Max Hourly 0.23 Lbs/Hr Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | • | <u>-</u> | 0.23 | Lbs/day | | | Max Daily 0.23 Lbs/day Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | • | | | | | | Current Emission BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | . 1 | | | | | | BACT 30 Day Avg 0.32 Lbs/day Annual Emission 11.50 Lbs/year | ٦. | | 0.23 | Lbs/day | | | Annual Emission 11.50 Lbs/year | | | | | | | • | | | | | | | District Emission 1304(a)(4) - 10-12-1995 | | | | | | | | | District Emission | 1304(a)(4) - 10 |)-12-1995 | | | Application No 555370 | | Company ID | 169754 | |-----------------------|-----------------|------------|--------| | Emittant | sox | <u></u> | | | BACT | | | | | Cost effectiveness | NO | | | | Source Type | MINOR | | | | Emis Increase | 0 | | | | Modelling | N/A | | | | Public Notice | N | | | | Controlled Emission | | | | | Max Hourly | 0.02 | Lbs/Hr | | | Max Daily | 0.02 | Lbs/day | | | Uncontrolled Emission | | | | | Max Hourly | 0.02 | Lbs/Hr | , | | Max Daily | 0.02 | Lbs/day | | | Current Emission | | | | | BACT 30 Day Avg | 0.00 | Lbs/day | | | Annual Emission | 0.80 | Lbs/year | | | District Emission | 1304(a)(4) - 10 | -12-1995 | . 1 | Supervisor's Approval NVH Supervisor's Review Date #### SCAQMD PERMIT PROCESSING SYSTEM (PPS) #### **AEIS
DATA SHEET** Company Name: OXY USA INC Facility ID: 169754 Equipment Address: 20101 GOLDENWEST ST **HUNTINGTON BEACH CA 92648** Application Number: 555370 Equipment B-Cat: 043902 Estimated Completion Date: 06/25/14 Equipment C-Cat: Equipment Type: Basic Equipment Description: I C E (>500 HP) EM ELEC GEN DIESEL | | Emi | ssions . | |-----------|---------------------------|-------------| | Emittants | R1
LB/H _I R | R2
LB/HR | | co | 2.16 | 2.16 | | NOX | 12.98 | 12.98 | | PM10 | 0.36 | 0.36 | | ROG | 0.23 | 0.23 | | sox | 0.02 | 0.02 | | Applicable Rules | | | |------------------|------------|--| | 1401 | 09/10/2010 | New Source Review of Toxic Air Contaminants | | 1470 | 05/04/2012 | Requirements for Stationary Diesel-Fueled Internal Combustion and Other | | 1472 | 03/07/2008 | Requirements for Facilities with Multiple Stationary Emergency Standby Diesel-Fu | | 2000 | 05/06/2005 | General (RECLAIM) | | 3000 | 11/05/2010 | General (Title V) | | 401 | 11/09/2001 | Visible Emissions | | 402 | 05/07/1976 | Nuisance | | 404 | 02/07/1986 | Particulate Matter - Concentration | | 407 | 04/02/1982 | Liquid and Gaseous Air Contaminants | | 431.2 | 09/15/2000 | Sulfur Content of Liquid Fuels | | | Mon | Tue | Wed | Thu | Fri | Sat | Sun | | |---------------------|-------|-------|-------|-------|-------|-------|-------|--| | Daily Start Times : | 08:00 | 00:00 | 00:00 | 00:00 | 00:00 | 00:00 | 00:00 | | | Daily Stop Times : | 09:00 | 00:00 | 00:00 | 00:00 | 00:00 | 00:00 | 00:00 | | User's Initials : HS01 Date: 06/25/14 Supervisor's Name : MKX Review Date : 7/1/14 # SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT STATIONARY SOURCE COMPLIANCE APPL. NO. 555370 APPLICATION PROCESSING AND CALCULATIONS PROCESSED BY HS CHECKED BY HS #### PERMIT TO CONSTRUCT/OPERATE #### **COMPANY NAME AND ADDRESS:** OXY USA, INC MAILING ADDRESS: 11 West Ocean Blvd. #800 Long Beach, CA 90802 ID: 169754 #### **EQUIPMENT LOCATION:** 20101 Goldenwest Street Huntington Beach, CA 92648 | SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT | PAGES
9 | PAGE 2 | |---|--------------|------------| | STATIONARY SOURCE COMPLIANCE | APPL. NO. | DATE | | | 555370 | 5/18/2014 | | APPLICATION PROCESSING AND CALCULATIONS | PROCESSED BY | CHECKED BY | | | HS | | #### **EQUIPMENT DESCRIPTION:** INTERNAL COMBUSTION ENGINE, CUMMINS, 12 CYLINDERS, TURBOCHARGED, AFTERCOOLED, LEAN BURN, MODEL NO. QST30-G5NR2, SERIAL NO. 37254511, 1490 BHP, DIESEL-FUELED, DRIVING AN EMERGENCY ENGINE. | Equipment | ID
No. | Connected To | Source Type/
Monitoring
Unit | Emissions
And
Requirements | Conditions | |---|-----------|--------------|------------------------------------|--|---------------------------------------| | Process 2: INTERNAL COMB | USTIO | N | | | | | System 2: PLATFORM EMM | Y ENG | INES | • | | | | INTERNAL COMBUSTION ENGINE, EMERGENCY POWER, DIESEL FUEL, CUMMINS, MODEL OST30- G5-NR2, 1490 BHP A/N:55370 | D228 | | INOX: PROCESS
UNIT | CO:2.6 GM/BHP-HR. DIESEL(4): NOX: 469 LBS//1000 GAL DIESEL (1): NOX+ROG: 4.8 GM/BHP-HR DIESEL. (4): PM: 0.15 GM/BHP-HR DIESEL. HR DIESEL (4) | B61.1. C1.6. D12.9,
E116.1. H23.11 | | <u>GENERATOR</u> | | | | | | #### **BACKGROUND**: This application A/N 555370 was submitted on 08/20/2013 as a Class I equipment. The applicant indicated that the engine was manufactured on 5/10/2012. The application will be processed and the emissions of the engine will be compared with AQMD BACT emissions limit. The engine will be classified as a Tier 2 diesel engine, since the horsepower is greater than 750 horsepower. This is a RECLAIM facility (ID 169754), located at 20101 Goldenwest Street, Huntington Beach, Ca. It is a typical Crude Oil/Gas/Water Separation facility. The emergency engine is not located within 1000 feet of a K-12 school (see map attached). | SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT | PAGES
9 | PAGE
3 | |---|--------------|------------| | STATIONARY SOURCE COMPLIANCE | APPL. NO. | DATE | | | 555370 | 5/18/2014 | | APPLICATION PROCESSING AND CALCULATIONS | PROCESSED BY | CHECKED BY | | | HS | | #### **PROCESS DESCRIPTION:** The internal combustion engine is diesel-fueled and drives a generator to produce electricity when there is an emergency. The engine will be allowed to operate at a maximum of 200 hours/year which includes 50 hours/yr for testing and maintenance. The proposed engine will be located at its offshore operation referred to as Platform Emmy. It will provide emergency back-up power for upcoming drilling operation in the event that the drilling rig loses power. #### **EMISSIONS:** The emissions calculations will be based on 1 hr/day, 1 day/week and 50 weeks/yr. The table shows the comparison emission factors for the same engine and AQMD BACT values: Table – 1 BACT Requirements | | NOx+ROG
gm/bhp-hr | CO
gm/bhp-hr | PM10
gm/bhp-hr | SOx
gm/bhp-hr | |-----------------------------------|------------------------------|-----------------|-------------------|---| | Cummins 1490 | giii/onp-iii | guvonp-in | gill/onp-iii | gilvonp-iii | | hp HP ICE (given) | 4.02
NOx=3.95
ROG=0.07 | 0.66 | 0.11 | 0.0049 | | AQMD BACT
Emissions
Tier 2. | 4.8 | 2.6 | 0.15 | 0.0049 Diesel fuel, sulfur content 0.0015 % by weight | | Compliance? | Yes | Yes | Yes | Yes | NOx emissions (ex. cal.) = $3.95 \text{ gm/Bhp-hr} \times 1490 \text{ Bhp} \times 1 \text{ lb/453.593 gm} = 12.98 \text{ lbs/hr} 12.98 \text{ lbs/hr} \times 50 \text{ hrs/hr} = 648.8 \text{ lbs/yr}$ 30 day Av. = (12.98 lbs/hr x 1 hr/week x 50 weeks/yr/12 months/yr)/(30 days/month) $^{12.98 \}text{ lbs/hr} \times 1 \text{ hr/day} = 12.98 \text{ lbs/day}$ #### SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT #### STATIONARY SOURCE COMPLIANCE #### APPLICATION PROCESSING AND CALCULATIONS | PAGES 9 | PAGE
4 | |--------------|------------| | APPL, NO. | DATE | | 555370 | 5/18/2014 | | PROCESSED BY | CHECKED BY | | l hs | | | TT 11 A | \sim . | _ | | | |-----------|----------|----|---------|---| | Table – 2 | Criteria | ⊢m | 1001AN | C | | I UUIC Z | CITCLIA | | 1221611 | J | | Source | lbs/hr | Lbs/day | lbs/yr | 30-Day Av. | |--------|--------|---------|--------|------------| | NOx | 12.98 | 12.98 | 648.8 | 2 (1.80) | | ROG | 0.230 | 0.230 | 11.5 | 0 (0.32) | | СО | 2.16 | 2.16 | 108 | 0 (0.30) | | PM10 | 0.36 | 0.36 | 18.1 | 0 (0.05) | | SOx | 0.020 | 0.020 | 0.80 | 0 (0.002) | #### b) Greenhouse Gases (GHG) $E = FC \times HC \times EF$ [Greenhouse gas equation] Where: E = Emission of the given CHG for that type of fuel (grams) FC = Amount of fuel combusted (gallons/hr) HC = Heat content of the fuel type (BTU/gallon) EF = Emission factor of given CHG by type of fuel (grams CHG/BTU) FC = 20 gall/hr (estimated: 0.05 gal/hp-hr x 399 hp) HC = 138690 BTU/gallon (diesel) $EF-CH_4 = 0.000003 \text{ gm GHG/BTU}$ $EF-CO_2 = 0.0731 \text{ gm GHG/BTU}$ $EF-N_2O = 0.0000006 \text{ gm GHG/BTU}$ $E(CH_4) = (72.2 \text{ gal/hr x } 138690 \text{ BTU x } 0.000003 \text{ gm GHG/BTU})x \text{ lb/453.593 gm}$ = 0.066 lbs/hr 0.066 lbs/hr x 1 hr/day = 0.066 lbs/day 0.066 lbs hr x 50 hrs/yr = 3.311 lbs/yr 30 day ave. = $(0.066 \text{ lbs/hr} \times 50 \text{ hrs/}12 \text{ months})/30 \text{ days/month} = 0.009$ Table 3 - GHG | GHG | lbs/hr | lbs/day | lbs/yr | 30-day ave. | |------------------|---------|---------|-----------|-------------| | CH ₄ | 0.066 | 0.066 | 3.311 | 0.009 | | CO ₂ | 1612.29 | 1612.29 | 80614.632 | 223.93 | | N ₂ O | 0.013 | 0.013 | 0.662 | 0.0018 | ## SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT PAGES 9 5 STATIONARY SOURCE COMPLIANCE APPL. NO. 555370 DATE 555370 5/18/2014 APPLICATION PROCESSING AND CALCULATIONS PROCESSED BY HS #### **Toxic Analysis** Emergency Ice's are exempt from toxic analysis as per Rule 1401(g)(1)(F #### **RULES EVALUATION:** #### **RULE 212: STANDARDS FOR APPROVING PERMITS** There are no K-12 schools within 1000 feet of the facility. A 30 day public notice is not required. (see map). #### RULE 401: VISIBLE EMISSIONS Based on experience with similar equipment, this engine is expected to comply with the visible emission limits. #### RULE 402: NUISANCE Based on experience with similar equipment, nuisance complaints are not expected. #### RULE 404: PARTICULATE MATTER - CONCENTRATION Based on experience with similar equipment, compliance with this rule is expected. #### RULE 407: LIQUID AND GASEOUS AIR CONTAMINANTS This engine is exempt from this rule as per (b)(1). #### RULE 431.2: SULFUR CONTENT OF LIQUID FUELS Compliance with the 15 PPM or less sulfur limit of the diesel fuel is expected. #### RULE 1110.2: EMISSIONS FROM GASEOUS-AND LIQUID-FUELED ENGINES This engine is exempt from this rule as per (i)(2). #### REGULATION XIII: <u>NEW SOURCE REVIEW</u> BACT: As per 1303(a)(1), the engine must meet BACT. This engine has to meet the BACT requirements for the engine that was manufactured 1n 2012, Tier 2 (> 750 hp). ## SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT PAGES 9 6 STATIONARY SOURCE COMPLIANCE APPL. NO. DATE 555370 5/18/2014 APPLICATION PROCESSING AND CALCULATIONS PROCESSED BY HS According to the "BACT Guidelines for Non-Major Polluting Facilities", the engine is in compliance with all criteria pollutants. Modeling: As per 1304(a)(4), this emergency engine is exempt. Offsets: Only the NOx criteria emission is greater than 1(lb/day). Regardless, offsets are not required as per Rule 1304(a)(4). RULE 1401: <u>NEW SOURCE REVIEW OF TOXIC AIR CONTAMINANTS</u> This emergency engine is exempt from this rule as per (g)(1)(F RULE 1470: REQUIREMENTS FOR STATIONARY
DIESEL-FUELED INTERNAL COMBUSTION AND OTHER COMPRESSION IGNITION ENGINES As an in-use engine, the engine will be allowed to operate 50 hrs/yr for maintenance and testing and 150 hrs/yr for emergency purposes. ### RULE 1472: <u>REQUIREMENTS FOR FACILITIES WITH MULTIPLE</u> STATIONARY EMERGENCY STANDBY DIESEL-FUELED INTERNAL #### **COMBUSTION** #### **ENGINES** This engine (A/N 555370) is the only stationary emergency diesel-fueled engine at the facility. Based on the above, this rule is not applicable. REG.XX: REGIONAL CLEAN AIR INCENTIVES MARKET -RECLAIM This is a RECLAIM facility. REG.XXX: <u>TITLE V PERMITS</u> This is not a Title V facility. | SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT | PAGES
9 | PAGE
7 | |---|----------------|------------| | STATIONARY SOURCE COMPLIANCE | APPL. NO. | DATE | | <u>.</u> | <u>5553</u> 70 | 5/18/2014 | | APPLICATION PROCESSING AND CALCULATIONS | PROCESSED BY | CHECKED BY | | | HS | | #### **RECOMMENDATION:** This equipment is expected to comply with all applicable Rules and Regulations of the District. A Permit to Operate, subject to the following conditions, is recommended: - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. ## H23.11 This equipment is subject to the applicable requirements of the following rules or regulations: | Contaminant | Rule | Rule/Subpart | |-------------|-----------------------------|---------------| | PM10
H2S | District Rule District Rule | 1470
431.2 | | 1125 | District Rule | 131.2 | See Facility Permit, Emissions and Requirements section: NMHC + NOX: 4.80 gm/bhp-hr CO: 2.6 gm/bhp-hr PM: 0.15 gm/bhp-hr #### C1.6 The operator shall limit the operating time to no more than 200 hour(s) in any one year. Which includes no more than 50 hours in any one year for maintenance and testing purposes. The operation of the engine beyond the 50 hours per year allotted for engine ## SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT PAGES 9 8 STATIONARY SOURCE COMPLIANCE APPL. NO. 555370 DATE 555370 5/18/2014 APPLICATION PROCESSING AND CALCULATIONS PROCESSED BY HS maintenance and testing shall be allowed only in the event of a loss of grid power or up to 30 minutes prior to a rotating outage, provided that the electrical grid operator or electric utility has ordered rotating outages in the control area where the engine is located or has indicated that it expects to issue such an order at a certain time, and the engine is located in a utility service block that is subject to the rotating outage. Engine operation shall be terminated immediately after the utility distribution company advises that a rotating outage is no longer imminent or in effect. #### E116.1 This engine shall not be used as part of a demand response program using interruptible service contract in which a facility receives a payment or reduced rates in return for reducing its electric load on the grid when requested to do so by the utility or the grid operator. #### D12.9 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine The operator shall keep a log of the engine's operation, documenting the total time the engine is operated each month and specific the reasons for operation, such as: - A. Emergency use - B. Maintenance and testing - C. Other (Describe reason for operating) In addition, each time the engine is manually started, the log shall include the date of operation, the specific reason for operation, and the totalizing hour meter reading (in hours and tenths of hours) at the beginning and end of operation. #### K67.1 The operator shall keep records, in a manner approved by the District, for the following parameter(s) or item(s): On or before January 15 th of each year, the operator shall record in the engine's operating log, the following: | SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT | PAGES
9 | PAGE
9 | |---|--------------|------------| | STATIONARY SOURCE COMPLIANCE | APPL. NO. | DATE | | | 555370 | 5/18/2014 | | APPLICATION PROCESSING AND CALCULATIONS | PROCESSED BY | CHECKED BY | | | HS | | - A. The total hours of operation for the previous calendar year, and - B. The total hours of engine operation for maintenance and testing for the previous calendar year. The engine operating log shall be retained on site for a minimum of five calendar years and shall be made available to the executive officer or representative upon request. OXY USA, INC ID. 169754 A/N 555370 E = FC * HC * EF #### Where: E = Emission of the given GHG for the type of fuel (grams of GHG) FC = Amount of Fuel combusted (gallons/hr) HC = Heat content of the fuel type (BTU/gallon) EF = Emission Factor of the given GHG by type of fuel (grams GHG/BTU) | FC = 72.2 | 100% <mark>Ope</mark> | rating | Schedule | |---------------------|-----------------------|--------|----------| | HC = 138690 | | 1 | hr/day | | EF -CH4 = 0.000003 | | 1 | day/week | | EF -CO2 = 0.0731 | | 50 | week/yr | | EF -N2O = 0.0000006 | | | | | E | CH4 | iron CO2 | N2O | |------------|-------|-----------|----------| | lb/hr | 0.066 | 1612.29 | 0.013 | | lb/day | 0.066 | 1612.29 | 0.013 | | 30 day ave | 0.009 | 223.93 | - 0.0018 | | lb/γr | 3.311 | 80614.632 | 0.662 | #### GHG NSR CALCULATOR | General | Combust | ion | | |---------|---------|-----|------| | | CHC | F |
 | GHG Emissions: CO₂ CH₄ N₂O 0.0 lb/hr 0.00 lb/hr 0.00 lb/hr **Natural Gas Engine** **GHG Emissions:** CO₂ CH₄ N₂O 0.0 lb/hr 0.00 lb/hr 0.00 lb/hr Diesel Engine **GHG Emissions:** CO₂ CH₄ N₂O 1,682.0 lb/hr 0.03 lb/hr 0.02 lb/hr | | | | GHG Emission Factors | | | | | |--------------|------------------|-------------|----------------------|----------|---------------------|------------|--| | | GHG | GENERAL CON | GENERAL COMBUSTION | | INTERNAL COMBUSTION | | | | Fuel Type | | kg/MMBtu | lb/MMBtu | kg/MMBtu | lb/MMBtu | lb/HP-hr* | | | Natural Gas | CO ₂ | 53.02 | 116.89 | 53.02 | 116.89 | 0.818215 | | | | CH₄ | 0.0009 | 0.0020 | 0.0059 | 0.0130 | 0.000091 | | | | N ₂ O | 0.0001 | 0.0002 | 0.001 | 0.0022 | 0.000015 | | | LPG | CO ₂ | 62.98 | 138.85 | | | - | | | | CH₄ | 0.001 | 0.0022 | | | | | | | N ₂ O | 0.0001 | 0.0002 | i | | | | | Diesel | CO2 | 73.1 | 161.16 | 73.15 | 161.27 | 1.12886543 | | | | CH₄ | 0.003 | 0.0066 | 0.0014 | 0.0031 | 0.000022 | | | | N₂O | 0.0006 | 0.0013 | 0.001 | 0.0022 | 0.000015 | | | Landfill Gas | CO ₂ | 52.03 | 114.71 | | | | | | | CH₄ | 0.0009 | 0.0020 | | | • | | | · | N₂O | 0.0001 | 0.0002 | | | | | ^{*} Average brake specific consumption of 7,000 Btu/hp-hr to convert from lb/MMBtu to lb/hp-hr (Source: Table 3.3-1 Emission Factors for Uncontrolled Gasoline & Diesel Industrial Engines, EPA) 1.61.16 16 +7000 Blee Willisten Tup-L | SOUTH COAS | T AIR QUALITY | MANAGEM | ENT DISTRICT | | T | | | 0.4 | |-----------------|-----------------------------------|---|---|---------------------------------|--|---|---|---| | Certified ICE- | EMERGENCY GI | NERATOR | S (Updated July | 3, 2012) | HC | NON | ()0 | PIVE | | DIESEL FUEL EXC | EPT AS SPECIFIED | | | | | | | | | | | | | | | | | | | QST30-G5 | 1490 BHP | 1000 KW | 455112 12/31/201 | 2 EPA-TIER 2 | 0.22 | 4.4 | 1 0.52 | 0.08 | | | | - | | | 0,07 | 3.45 | .66 | 411 | | | | | | BACT | 1.30 | (2.6) | 2.6 | 0.07 | | | | | | | A = A | | 1: (| | | | Certified ICE-
DIESEL FUEL EXC | Certified ICE-EMERGENCY GED DIESEL FUEL EXCEPT AS SPECIFIED | Certified ICE-EMERGENCY GENERATOR DIESEL FUEL EXCEPT AS SPECIFIED | DIESEL FUEL EXCEPT AS SPECIFIED | Certified ICE-EMERGENCY GENERATORS (Updated July 3, 2012) DIESEL FUEL EXCEPT AS SPECIFIED QST30-G5 1490 BHP 1000 KW 455112 12/31/2012 EPA-TIER 2 | Certified ICE-EMERGENCY GENERATORS (Updated July 3, 2012) C DIESEL FUEL EXCEPT AS SPECIFIED | Certified ICE-EMERGENCY GENERATORS (Updated July 3, 2012) DIESEL FUEL EXCEPT AS SPECIFIED QST30-G5 1490 BHP 1000 KW 455112 12/31/2012 EPA-TIER 2 0.22 4.4 0.07 3.45 | Certified ICE-EMERGENCY GENERATORS (Updated July 3, 2012) DIESEL FUEL EXCEPT AS SPECIFIED QST30-G5 1490 BHP 1000 KW 455112 12/31/2012 EPA-TIER 2 0.22 4.4 1. 0.52 0.01 3.45 6.66 | P.O. Box 2900 111 W. Ocean Boulevard, 8TH FLOOR LONG BEACH, CALIFORNIA 90801-2900 TELEPHONE (562) 624-3400 FACSIMILE (562) 624-3299 August 13, 2013 Permit Services South Coast Air Quality Management District 21685 Copley Drive Diamond Bar, CA 91765 Subject: Application for Permit to Construct/Operate an Emergency IC Engine OXY USA Inc. / SCAQMD Facility ID 169754 Dear Sirs: Please find enclosed an application package prepared by our consultant Yorke Engineering, LLC for an emergency internal combustion engine for OXY USA Inc.'s offshore facility (Platform Emmy) in Huntington Beach, CA. If you have any questions, please feel free to contact me at the number below. Sincerely, Diana Lang Regulatory/Environmental Coordinator (562) 624-3314 Diana Lang@oxy.com **Enclosures** August 9, 2013 South Coast Air Quality Management District Attention: Permit Services 21865 Copley Drive
Diamond Bar, CA 91765 Subject: Application for Permit to Construct - One (1) Emergency Internal Combustion Engine **OXY USA INC. - FACILITY ID 169754** To Whom It May Concern: Attached is an application for Permit to Construct for one (1) emergency internal combustion engine. The application processing fee is shown in the table below. Table 1: Application Processing Fee | Equipment/Item | Rule 301 Table IA/IB Description | Schedule | Proposed Change | Base Fee | |---|----------------------------------|----------|-------------------|------------| | Emergency
Internal
Combustion
Engine | IC Engine,
Emergency | В | Permit Processing | \$2,218.39 | | | | | Subtotals | \$2,218.39 | | RECLAIM Facility P | ermit Amendment | | | \$912.44 | | | | | Grand Total | \$3,130.83 | The application forms, shown in the table below, can be found in Appendix A of the application. **Table 2: Application Forms** | Device /
Equipment | Form | Title | | |------------------------|-----------|---|--| | | 400-A | Application for Permit or Plan Approval | | | Emergency IC
Engine | 400-E-13a | Emergency Internal Combustion Engine | | | | 400-PS | Plot Plan and Stack Information Form | | | RECLAIM
Permit | 400-A | Application for Permit or Plan Approval | | | Project | 400-CEQA | California Environmental Quality Act (CEQA) Applicability | | South Coast Air Quality Management District **Attention: Permit Services** August 9, 2013 Page 2 of 2 Should you have any questions or concerns, please contact James Adams at (949) 248-8490 x231, or Ms. Diana Lang at (562) 331-0378. Sincerely, James Adams Yorke Engineering, LLC (949) 248-8490 x231 cc: Diana Lang, OXY USA Inc. Russ Kingsley, Yorke Engineering, LLC #### **Enclosures:** 1. One (1) Check for \$3,130.83 2. One (1) Application for Permit to Construct for one (1) emergency internal combustion engine OXY USA Inc. 20101 Goldenwest St. Huntington Beach, CA 92648 SCAQMD Facility ID: 169754 August 2013 Prepared by: www.YorkeEngr.com Office Locations: Los Angeles, Orange County, Riverside, Ventura, Fresno, Oakland, Bakersfield > Tel: (949) 248-8490 Fax: (949) 248-8499 ## Application for Permit to Construct/ Operate an Emergency IC Engine Prepared for: OXY USA Inc. 20101 Goldenwest St. Huntington Beach, CA 92648 **SCAQMD Facility ID: 169754** August 2013 ## **Table of Contents** | 1.0 | INTRODUCTION | 1 | |------|---|--------| | 1.1 | Facility Information | 1 | | 1.2 | Application Preparation | | | 1.3 | Proposed Permit Actions | | | | | | | 2.0 | EQUIPMENT AND PROCESS DESCRIPTION | 4 | | 3.0 | EMISSIONS | 5 | | 3.1 | Emission Factors | 5 | | 3.2 | Emission Calculations | | | 4.0 | RULE COMPLIANCE EVALUATION | 7 | | | | | | 4.1 | Regulation II – Permits | | | | 4.1.1 Rule 212 – Standards for Approving Permits and Issuing Public Notice | | | 4.2 | 6 | | | _ | 4.2.1 Rule 301 | | | 4.3 | | | | | 4.3.1 Rule 401 – Visible Emissions | | | | 4.3.2 Rule 402 – Nuisance | | | | 4.3.3 Rule 404 – Particulate Matter-Concentration | | | | 4.3.4 Rule 431.2 – Sulfur Content of Liquid Fuels | ŏ | | 4.4 | 6 | | | | 4.4.1 Rule 1110.2 - Emissions from Gaseous - and Liquid-Fueled Engines | | | 4.5 | | | | | 4.5.1 Best Available Control Technology (BACT) | | | | 4.5.2 Modeling | | | | 4.5.3 Offsets | | | 4.6 | | | | | 4.6.1 Rule 1401 – New Source Review for Air Toxics | | | 4 | 1.6.2 Rule 1470 – Requirements for Stationary Diesel-Fueled Internal Combustion and Other Compression Ignition Engine | i
Q | | 4 | 4.6.3 Rule 1472 – Requirements for Facilities with Multiple Stationary Emergency | | | • | Standby Diesel-Fueled Internal Combustion Engines | 9 | | 4.7 | Regulation XX – Regional Clean Air Incentives Market (RECLAIM) | | | 4.8 | Regulation XXX – Title V Permits | | | 4.9 | Federal Rules and Regulations | | | | 4.9.1 40 CFR Part 60, Subpart IIII – Standard of Performance for Stationary | | | • | Compression Ignition Internal Combustion Engines | .10 | | 4 | 4.9.2 Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for | _ | | · | Stationary Reciprocating Internal Combustion Engines | .11 | | 4.10 | | | ## Application for Permit to Construct/Operate an Emergency IC Engine OXY USA Inc. | • | 4.10.1 | Airborne Toxic Control Measure (ATCM) for Stationary Comp | , | |-----|--------|---|----| | | 4.10.2 | California Environmental Quality Act (CEQA) | 11 | | 5.0 | PRO | POSED PERMIT TERMS AND CONDITIONS | 12 | | 5.1 | Equ | ıipment | 12 | | | | posed Conditions | 12 | | List of Figures | |-----------------| |-----------------| | Figure 1: O | XY USA Inc. | Huntington Be | each Facility and | Surrounding | Area 2 | • | |-------------|-------------|---------------|-------------------|-------------|--------|---| |-------------|-------------|---------------|-------------------|-------------|--------|---| ## **List of Tables** | Table 1-1: | Facility Information | 1 | |------------|--|---| | Table 1-2: | Application Preparers | 2 | | | SCAQMD Forms Accompanying This Application | | | Table 2-1: | Engine Specifications | 4 | | | Criteria Pollutant Emission Factors | | | | Criteria Pollutant Emissions | | | Table 4-1: | Rule 212(g) Notification Thresholds | 7 | | Table 4-2: | Permit Processing Fees | 8 | ## **Appendices** Appendix A – Application Forms Appendix B - Engine Data Appendix C – Emission Calculations Appendix D – Health Risk Assessment # Application for Permit to Construct/Operate an Emergency IC Engine #### 1.0 INTRODUCTION OXY USA Inc. (OXY) is proposing to install an emergency IC engine at its Huntington Beach facility. This unit will be located on Platform Emmy and will provide emergency backup power for upcoming drilling operations in the event that the drilling rig loses power. This document contains a complete engineering evaluation for the emergency IC engine. #### 1.1 Facility Information Facility contact information is provided in Table 1-1. **Table 1-1: Facility Information** | Applicant's Name: | OXY USA Inc. | |-----------------------|--| | Facility ID: | 169754 | | Mailing Address: | 111 W. Ocean Blvd. Suite 800
Long Beach, CA 90802 | | Equipment Location 1: | 20101 Goldenwest St.
Huntington Beach, CA 92648 | OXY's Huntington Beach facility is an oil and gas production facility. This facility also includes an off-shore operation, Platform Emmy. The emergency IC engine will be located on Platform Emmy. Figure 1 is a map showing the facility and the surrounding area. Platform Emmy is approximately 1 mile offshore. MOPKE Engineering, LLC 1 ¹ This is the address of the onshore production facility. Approximate geographic coordinates of Platform Emmy are: Lat: 33.3944° N Long: -118.0237 W Figure 1: OXY USA Inc. Huntington Beach Facility and Surrounding Area #### 1.2 Application Preparation This permit application was prepared by Carla Prasetyo Jo and James Adams of Yorke Engineering, LLC. If there are technical questions regarding this application, please contact: Table 1-2: Application Preparers | Carla Prasetyo Jo, PE | | | | |------------------------|-------------------------|--|--| | Yorke Eng | gineering, LLC | | | | Phone: | (559) 908-6979 | | | | Fax: | (949) 248-8499 | | | | Cellular: | (559) 908-6979 | | | | Email: | cjo@YorkeEngr.com | | | | James Ad | James Adams, CPP #M6901 | | | | Yorke Engineering, LLC | | | | | Phone: | (949) 248-8490 x231 | | | | Fax: | (949) 248-8499 | | | | Cellular: | (949) 573-7924 | | | | Email: | jadams@YorkeEngr.com | | | #### 1.3 Proposed Permit Actions OXY is proposing to construct and operate an emergency IC engine on Platform Emmy. The proposed IC engine installation also requires a modification to the facility RECLAIM permit. A list of the application forms provided with this application is provided as Table 1-3. The application forms are included in Appendix A. Table 1-3: SCAQMD Forms Accompanying This Application | Form | Title | Device/Equipment | |-----------|---|---------------------| | 400-A | Application Form for Permit or Plan Approval | Emergency IC Engine | | 400-E-13a | Emergency Internal Combustion Engine | Emergency IC Engine | | 400-PS | Plot Plan and Stack Information Form | Emergency IC Engine | | 400-A | Application Form for Permit or Plan Approval | RECLAIM Permit | | 400-CEQA | California Environmental Quality Act (CEQA) Applicability | Project | | 400-XPP | Expedited Permit Processing | Project- | #### 2.0 EQUIPMENT AND PROCESS DESCRIPTION The emergency IC engine will be used to provide emergency backup power to upcoming drilling operations on Platform Emmy in the event that the drill rig loses power. In addition, the emergency IC engine will be operated for maintenance and testing purposes. Engine specifications are listed in Table 2-1. Pictures of the engine nameplate are included in Appendix B. Appendix B also contains some general engine documentation. **Table 2-1: Engine Specifications** | Parameter | Value | |----------------------|--------------| | Manufacturer | Cummins | | Model | QST30-G5 NR2 | | Serial No. | 37254511 | | Engine Family Number | ACEXL060.AAD | | Engine Output | 1490 HP | | Tier | 2 | OXY proposes to limit the maximum annual maintenance and testing operation to no more than 50 hours per calendar year per Rule 1470(c)(2)(C)(i) and no more than 2.7 hours per day in order for the MDC NOx emissions to remain below the Rule 212(g) threshold of 40 lb/day. In addition, OXY is proposing to limit the total hours of operation to no more than 200 hours per calendar year. These operating limits are reflected in the proposed permit conditions that are shown in
Section 5.0. #### 3.0 EMISSIONS #### 3.1 Emission Factors The emergency IC engine will combust diesel fuel, and will result in the emissions of VOC, NOx, CO, PM10, and SOx. The emergency IC engine is a certified tier 2 engine, rated at 1490 HP. The VOC, NOx, and CO, and PM10 emission factors for this unit will be based on the tier 2 standards for an engine greater than 750 HP. The SOx emissions were calculated based on 0.0015 percent sulfur by weight in the fuel. The criteria pollutant emission factors are shown in Table 3-1. Table 3-1: Criteria Pollutant Emission Factors | Pollutant | Emission Factor
(g/hp-hr) | |--|------------------------------| | Nitrogen Oxides (NOx) + Volatile
Organic Compound (VOC) | 4.8 | | Nitrogen Oxides (NOx) | 4.5 ¹ | | Volatile Organic Compound (VOC) | 0.301 | | Sulfur Oxides (SOx) | 0.005 ² | | Carbon Monoxide (CO) | 2.6 | | Particulate Matter (PM10) | 0:15 | ^{1.} Per the Carl Moyer program guidance, NOx is assumed to be 95% of the NOx + VOC emission factor, and VOC is assumed to be 5%. The emergency IC engine will combust diesel fuel, and result in the emissions of toxic air contaminants (TAC). However, since subparagraph (g)(1)(F) of Rule 1401 exempts emergency internal combustion engines from new source review for TAC, TAC emission calculations are not provided with this application. #### 3.2 Emission Calculations The emergency IC engine will combust diesel fuel, and result in the emissions of VOC, NOx, CO, PM10, and SOx. Pursuant to the SCAQMD's Policy and Procedures EC-02-09 ("Emergency Standby Diesel IC Engine Maintenance & Testing Hours", dated February 24, 2009), in determining an emergency engine's potential to emit under Regulation XIII, emissions are to be based on the annual testing and maintenance hours, in this case, 50 hours per year. Calculation details are included in Appendix C. A summary of emissions is shown in Table 3-2. ^{2.} The calculation from weight percent sulfur in the fuel to g/hp-hr is provided in Appendix C. Table 3-2: Criteria Pollutant Emissions | Criteria
Pollutant | AHU
(lb/hr) | AHC
(lb/hr) | MHU
(lb/hr) | MHC
(lb/hr) | MDU
(lb/day) | MDC
(lb/day) | AA
(lb/yr) | 30DA
(lb/day) | |-----------------------|----------------|----------------|----------------|----------------|-----------------|-----------------|---------------|------------------| | NOx | 14.769 | 14.769 | 14.769 | 14.769 | 39.88 | 39.88 | 738.5 | 2.05 | | VOC | 0.985 | 0.985 | 0.985 | 0.985 | 2.66 | 2.66 | 49.3 | 0.14 | | SOx | 0.016 | 0.016 | 0.016 | 0.016 | 0.04 | 0.04 | 0,8 | 0.00 | | СО | 8.533 | 8.533 | 8.533 | 8.533 | 23.04 | 23.04 | 426.7 | 1.19 | | PM10 | 0.492 | 0.492 | 0.492 | 0.492 | 1.33 | 1.33 | 24.6 | 0.07 | #### 4.0 RULE COMPLIANCE EVALUATION #### 4.1 Regulation II - Permits #### 4.1.1 Rule 212 - Standards for Approving Permits and Issuing Public Notice Rule 212 requires public notification for all new or modified permit units that may emit air contaminants located within 1,000 feet from the outer boundary of a school, all new or modified permit units that may emit air contaminants in excess of the limits shown in subdivision (g) of the rule or 3 pounds per day of lead, and all new or modified permit units that may emit TAC listed in Rule 1401 with an individual lifetime cancer risk greater than one in one million or greater than ten in one million with TBACT. Table 4-1 compares the emission increases associated with the proposed unit to the thresholds from subdivision (g) of Rule 212. As shown, the emission increases associated with this project are less than the notification thresholds. Table 4-1: Rule 212(g) Notification Thresholds | Permit Unit | Pollutant | Emissions
(MDC)
(lb/day) | Rule 212
Notification
Threshold
(lb/day) | Public Notice
Required?
(Yes/No) | |------------------------|-----------|--------------------------------|---|--| | _ | NOx | 39.88 | 40 | No | | F | SOx | 0.04 | 60 | No | | Emergency IC
Engine | СО | 23.04 | 220 | No | | Engine | VOC | 2.66 | 30 | No | | | PM10 | 1.33 | 30 | No | Although the engine is exempt from Rule 1401 per subparagraph (g)(1)(F) of that rule, a tier 2 screening health risk assessment (HRA) was performed for the project using the SCAQMD risk calculator spreadsheet. Diesel particulate matter (DPM) emissions were assumed to be equal to PM10 emissions from the engine. The HRA demonstrates that the health risk from engine emissions will not exceed Rule 212 thresholds for notification. The HRA worksheets are provided in Appendix D. The engine will not be installed within 1000 feet of a school. Based on these factors, public notice is not required for this application. #### 4.2 Regulation III - Fees #### 4.2.1 Rule 301 - Permitting and Associated Fees The processing fees were determined using Rule 301; fees are summarized in Table 4-2. **Table 4-2: Permit Processing Fees** | Equipment/Item | Rule 301 Table IA/IB Description | Schedule | Permit Action | Base Fee | | | | |-----------------------------------|----------------------------------|----------|-------------------|------------|--|--|--| | Emergency IC Engine | IC Engine, Emergency | В | Permit Processing | \$2,218.39 | | | | | | | <u>.</u> | Subtotal | \$2,218.39 | | | | | RECLAIM Facility Permit Amendment | | | | | | | | | - | - | <u>-</u> | Total | \$3,130.83 | | | | #### 4.3 Regulation IV – Prohibitions #### 4.3.1 Rule 401 - Visible Emissions No visible air contaminant with 20 percent opacity or greater is expected to be released to the atmosphere for a period or periods aggregating more than three minutes in any one hour from the operation of the emergency IC engine; therefore, compliance with this rule is expected. #### 4.3.2 Rule 402 - Nuisance The proposed emergency IC engine is not expected to result in a nuisance, as defined in Rule 402, to the public; therefore, compliance with this rule is expected. #### 4.3.3 Rule 404 - Particulate Matter-Concentration The operation of the emergency IC engine is expected to comply with this rule. #### 4.3.4 Rule 431.2 - Sulfur Content of Liquid Fuels The emergency IC engine will be fueled with CARB diesel. Therefore, compliance with this rule is expected. #### 4.4 Regulation XI - Source Specific Standards #### 4.4.1 Rule 1110.2 - Emissions from Gaseous - and Liquid-Fueled Engines This unit will be exempt from subdivision (d) of the rule per paragraph (i)(2). This provides an indirect exemption from the other requirements of the rule. #### 4.5 Regulation XIII - New Source Review #### 4.5.1 Best Available Control Technology (BACT) BACT must be applied to all new and modified permit units when the net increase in emissions of any nonattainment air contaminant, ozone depleting compound or ammonia is equal to 1.0 pounds per day or higher. The maximum daily emissions of VOC, PM10, CO and SO_X from the emergency IC engine are estimated to be greater than 1.0 pounds/day per pollutant, thus BACT is required. BACT for stationary emergency IC engine rated at greater than 750 HP is tier 2^2 . Since the emergency IC engine proposed is a certified tier 2 IC engine, compliance with BACT is demonstrated. [Note: Since Oxy is a RECLAIM facility, NOx BACT is discussed in Section 4.7 of this application. ² SCAQMD Best Available Control Technology (BACT) Guidelines for Non-Major Polluting Facilities, Part D, I.C. Engine, Stationary, Emergency, 10-3-2008, Rev. 4, page 69. #### 4.5.2 Modeling The Executive Officer or designee shall, except as Rule 1304 applies, deny the permit to construct for any new or modified source which results in a net emission increase of any nonattainment air contaminant at a facility, unless the applicant substantiates with modeling that the modification will not cause a violation, or make significantly worse an existing violation according to Appendix A or other analysis approved by the Executive Officer or designee, of any state or national ambient air quality standards at any receptor location in the District. Pursuant to Rule 1304(a)(4), an emergency IC engine is exempt from the modeling and offsets requirements. Since the unit is exclusively used as emergency standby equipment, and limited to no more than 200 hours per year for emergency, maintenance, and testing operations, this emergency IC engine is exempt from modeling. #### 4.5.3 Offsets The Executive Officer or designee shall, except as Rule 1304 applies, deny the permit to construct for any new or modified source which results in a net emission increase of any nonattainment air contaminant at a facility, unless the applicant offsets the emission increases by either Emission Reduction Credits (ERCs) approved pursuant to Rule 1309, or by allocations from the Priority Reserve in accordance with provisions of Rule 1309.1 or allocations from the Offset Budget in accordance with the provisions of Rule 1309.2. Pursuant to Rule 1304(a)(4), an emergency IC engine is exempt from the modeling and offsets requirements. Since the unit is exclusively used as emergency standby equipment, and limited to no more than 200 hours per year for emergency, maintenance, and testing operations, this emergency IC engine is exempt from offsets. #### 4.6 Regulation XIV - Toxics and Other Non-Criteria Pollutants #### 4.6.1 Rule 1401 - New Source Review for Air Toxics Rule 1401 applies to new, relocated, and modified permit units. However, pursuant to subparagraph (g)(1)(F) of Rule 1401, emergency IC engines are exempt from new source review of toxic air contaminants. Therefore, no further assessment for Rule 1401 is included. ## 4.6.2 Rule 1470 – Requirements for Stationary Diesel-Fueled Internal Combustion and Other Compression Ignition Engine Rule 1470 is applicable to any person who owns or operates a stationary compression ignition (CI) engine in the SCAQMD with a rated
brake horsepower greater than 50. Pursuant to the definition of new and in-use IC engine, as stated in Paragraph (b)(37) and (b)(47) of this rule, the proposed emergency IC engine falls under the category of new engine. Subparagraph (c)(3)(C) of this rule limits the hours of operation for maintenance and testing purposes for new stationary emergency standby diesel-fueled CI engine (>50 bhp) to 50 hours/year. OXY proposes to limit the maintenance and testing operation to no more than 50 hours/year. The emergency IC engine is a certified tier 2 engine rated at 1490 HP. This engine is expected to meet the requirements of this rule. #### 4.6.3 Rule 1472 – Requirements for Facilities with Multiple Stationary Emergency Standby Diesel-Fueled Internal Combustion Engines There is currently one emergency generator on Platform Emmy. With one additional generator, Emmy will contain one less emergency generator than the minimum required to form an engine group. The proposed unit will not cause the facility to become subject to the requirements of Rule 1472. #### 4.7 Regulation XX – Regional Clean Air Incentives Market (RECLAIM) OXY is a NOX RECLAIM facility. The proposed new emergency IC engine is considered emergency standby equipment. Therefore, it will be classified as a NOX process unit. This engine will be equipped with an hour meter to comply with the requirements of Rule 2012. Pursuant to paragraph (k)(5) of Rule 2005, the requirements under subparagraphs (b)(1)(B) and (c)(1)(B), and clause (c)(4)(A)(ii) do not apply to equipment used exclusively on a standby basis for non-utility electrical power generation or any other equipment used on a standby basis in case of emergency, provided the source does not operate more than 200 hours per year as evidenced by an engine-hour meter or equivalent method and is listed as emergency equipment in the Facility Permit. The proposed emergency IC engine meets the requirements for exemption under paragraph (k)(5), and is exempt from modeling requirements under Rule 2005. The maximum daily emissions of NOx from the emergency IC engine is estimated to be greater than 1.0 pounds/day, thus BACT is required. BACT for stationary emergency IC engine rated at greater than 750 HP is tier 2³. Since the emergency IC engine proposed is a certified tier 2 IC engine, compliance with BACT is demonstrated. The expected NOx emission increase associated with the engine is 738 lb/year (maintenance and testing only). The facility holds sufficient RTCs to offset the emission increase for the first year of operation. #### 4.8 Regulation XXX - Title V Permits OXY maintains exemption from the requirements of the Title V program by complying with Facility Condition F30.1, which limits the emissions of NOx and VOC from the relevant sources to no more than 10 tons in any rolling 12 calendar-month period. OXY proposes to maintain compliance with the NOx and VOC limits as required under Facility Condition F30.1. Therefore, OXY is expected to continue to be exempt from the requirements of the Title V program. #### 4.9 Federal Rules and Regulations ## 4.9.1 40 CFR Part 60, Subpart IIII – Standard of Performance for Stationary Compression Ignition Internal Combustion Engines This Code of Federal Regulation (CFR) is applicable to owners and operators of stationary CI engine that commence construction after July 11, 2005. Since the proposed emergency IC engine was constructed in 2012, this rule applies to this emergency IC engine. Pursuant to §60.4205 (b), owners and operators of 2007 model year and later emergency stationary CI ICE with a displacement of less than 30 liters per cylinder that are not fire pump engines must comply with the emission standards for new non-road CI engines in §60.4202, for ³ SCAQMD Best Available Control Technology (BACT) Guidelines for Non-Major Polluting Facilities, Part D, I.C. Engine, Stationary, Emergency, 10-3-2008 Rev. 4, page 69. all pollutants, for the same model year and maximum engine power for their 2007 model year and later emergency stationary CI IC engine. The proposed emergency IC engine is a certified tier 2 IC engine. Therefore, the emergency IC engine complies with the emission standards for new non-road CI engines in §60.4202. Pursuant to § 60.4207 (b), beginning October 1, 2010, owners and operators of stationary CI IC engine subject to this subpart with a displacement of less than 30 liters per cylinder that use diesel fuel must use diesel fuel that meets the requirements of 40 CFR 80.510(b) for non-road diesel fuel. The proposed emergency IC engine will be fueled with CARB diesel fuel, which meets the requirements of 40 CFR 80.510(b) for non-road diesel fuel. Pursuant to §60.4209 (b), emergency stationary CIIC engines is required to be equipped with a non-resettable hour meter prior to startup of the engine. The proposed emergency IC engine will be equipped with a non-resettable hour meter. Therefore, the proposed emergency IC engine is expected to be in compliance with this subpart. ## 4.9.2 Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines An engine is subject to this subpart if it is a stationary reciprocating IC engine (RICE) at a major or area source of HAP emissions. Oxy Huntington Beach and Platform Emmy is an area source of HAP. Pursuant to § 63.6590(c), a new or reconstructed stationary RICE located at an area source must meet the requirements of Subpart ZZZZ by meeting the requirements of 40 CFR part 60 subpart IIII. No further requirements apply for such engines under this part. As shown in Section 4.9.1 of this application, the proposed emergency engine complies with Subpart IIII, thus compliance with Subpart ZZZZ is demonstrated. #### 4.10 California State Rules and Regulations ## 4.10.1 Airborne Toxic Control Measure (ATCM) for Stationary Compression Ignition (CI) Engines This ATCM is a California regulation established by the California Air Resources Board (ARB) to reduce diesel PM and criteria pollutant emissions from stationary diesel-fueled CI engine and applies to any person who owns or operates a stationary CI engine in California with a brake horsepower (bhp) rating greater than 50. Since the proposed IC engine is rated at 1490 HP, the IC engine is subject to this ATCM. The proposed IC engine is a tier 2 certified IC engine, which meets the ATCM standards. The emergency IC engine will be fueled with CARB diesel, which meets the fuel requirements of the ATCM. OXY proposes to limit the maintenance and testing operation to 50 hours annually to meet the ATCM requirements. #### 4.10.2 California Environmental Quality Act (CEQA) The requested permit actions are ministerial in nature and, therefore, are not subject to additional review under CEQA. A completed form 400-CEQA is included in Appendix A. #### 5.0 PROPOSED PERMIT TERMS AND CONDITIONS #### 5.1 Equipment We request that a permit to construct/ operate be issued with the following proposed wording. | Equipment | ID
No. | Connected
To | RECLAIM Source Type/Monitoring Unit | Emissions and
Requirements | Conditions | |--|-----------|-----------------|-------------------------------------|------------------------------------|--| | EMERGENCY INTERNAL COMBUSTION ENGINE, CUMMINS, MODEL QST30-G5 NR2, SERIAL NO.: 37254511, DIESEL FUELED, 1490 HP, DRIVING AN EMERGENCY ELECTRICAL GENERATOR | Dxx | | NOX: PROCESS
UNIT | NOX: 14.77 LBS/HR ⁴ (1) | (1), (2), (3),
(4) (as
shown
below) | #### **5.2 Proposed Conditions** - 1. THIS ENGINE SHALL NOT OPERATE MORE THAN 200 HOURS IN ANY ONE YEAR. - 2. THIS ENGINE SHALL NOT OPERATE MORE THAN 50 HOURS IN ANY ONE YEAR AND 2.7 HOURS IN ANY ONE DAY FOR MAINTENANCE AND TESTING PURPOSES. - 3. AN OPERATIONAL NON-RESETTABLE TOTALIZING TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. - 4. AN ENGINE OPERATING LOG LISTING THE DATE OF OPERATION, THE ELAPSED TIME, IN HOURS, AND THE REASON FOR OPERATION SHALL BE KEPT AND MAINTAINED ON FILE FOR A MINIMUM OF TWO YEARS AND BE MADE AVAILABLE TO THE SCAQMD. PERSONNEL UPON REQUEST. ^{4 (4.5} g/bhp-hr) / (454 g/lb) x (1,490 bhp) #### **APPENDIX A – APPLICATION FORMS** #### Appendix A – Schedule of Forms | Device/Equipment | Form | | | |---------------------|-----------|---|--| | | 400-A | Application Form for Permit or Plan Approval | | | Emergency IC Engine | 400-E-13a | Emergency Internal Combustion Engine | | | | 400-PS | Plot Plan and Stack Information Form | | | RECLAIM Permit | 400-A | Application Form for Permit or Plan Approval | | | Project | 400-CEQA | California Environmental Quality Act (CEQA) Applicability | | # SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT ENGINEERING AND COMPLIANCE WORKSHEET APPLICATION PROCESSING AND CALCULATIONS PAGE 2 of 3 CHECKED BY: A/N: PROCESSED BY: DATE: #### **CONDITIONS** - 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN COMPLIANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW. - 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES. - 3. THIS ENGINE SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULE 431.2 AND RULE 1470. - 4. THIS ENGINE SHALL NOT BE OPERATED MORE THAN 200 HOURS IN ANY ONE YEAR, WHICH INCLUDES NO MORE THAN 50 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING AND NO MORE THAN 4.2 HOURS IN ANY ONE MONTH FOR MAINTENANCE AND TESTING. - 5. OPERATING BEYOND THE 50 HOURS PER YEAR ALLOTED FOR MAINTENANCE AND TESTING PURPOSES SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT THE UTILITY DISTRIBUTION
COMPANY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME, AND THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT. - 6. AN OPERATIONAL NON-RESERVABLE SCAPSED TIME METER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME. - 7. AN ENGINE OPERATING LOG SHALL BE KEPT AND MAINTAINED, DOCUMENTING THE TOTAL TIME THE ENGINE'S OPERATED EACH MONTH AND SPECIFIC REASON FOR OPERATION AS: - A. EMERGENCY USE, - B. MAINTENANCE AND TESTING. - C. OTHER (DESCRIBE THE REASON FOR OPERATING). IN ADDITION, EACH TIME THE ENGINE IS MANUALLY STARTED, THE LOG SHALL INCLUDE THE DATE OF OPERATION, THE SPECIFIC REASON FOR OPERATION, AND THE TOTALIZING HOUR METER READING (IN HOURS AND TENTHS OF HOURS) AT THE BEGINNING AND END OF OPERATION. | | PAGE | 3 of 3 | | |---|---------------|--------|----------| | SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT | CHECKED BY: | | For | | ENGINEERING AND COMPLIANCE | A/N: | | Official | | APPLICATION PROCESSING AND CALCULATIONS | PROCESSED BY: | | Use Only | | AT LICATION TROCESOING AND CALCODATIONS | DATE: | | • | - 8. ON OR BEFORE JANUARY 15TH OF EACH YEAR, THE OPERATOR SHALL RECORD IN THE ENGINE OPERATING LOG THE FOLLOWING: - A. THE TOTAL HOURS OF OPERATION FOR THE PREVIOUS CALENDAR YEAR, AND - B. THE TOTAL HOURS OF ENGINE OPERATION FOR MAINTENANCE AND TESTING FOR THE PREVIOUS CALENDAR YEAR. THE ENGINE OPERATING LOG SHALL BE RETAINED ON SITE FOR A MINIMUM OF THREE CALENDAR YEARS AND SHALL BE MADE AVAILABLE TO THE EXECUTIVE OFFICER OR REPRESENTATIVE UPON REQUEST. South Coast Air Quality Management District ## Form 400-PS Plot Plan And Stack Information Form This form must be accompanied by a completed Application for a Permit to Construct/Operate - Form 400A and Form 400-CEQA. Mail To: SCAQMD P.O. Box 4944 Diamond Bar, CA 91765-0944 > Tel: (909) 396-3385 www.aqmd.gov | Section A - Operator Info | rmation | | | | | | | | |---|--|--|--|--|--|--|--|--| | Facility Name (Business Name
Oxy USA Inc. | of Operator To Appears On The Permit): Valid AQMD Facility ID (Available On Permit Or Invoice Issued By AQMD): 169754 | | | | | | | | | Address where the equipmen | t will be operated (for equipment which will be moved to various location in AQMD's jurisdiction, please list the initial location site): | | | | | | | | | Piatform Emmy (offs | shore, Huntington Beach) © Fixed Location O Various Locations | | | | | | | | | Section B - Location Date | | | | | | | | | | Plot Plan | Please attach a site map for the project with distances and scales. Identify and locate the proposed equipment on the map. A copy of the appropriate Thomas Brothers page, a web-based map, or a sketch that shows the major streets and location of the equipment is acceptable. | | | | | | | | | | Is the facility located within a 1/4 mile radius (1,320 feet) of the outer boundary of a school? Yes No If yes, please provide name(s) of school(s) below: School Name: School Name: | | | | | | | | | Location of Schools Nearby | School Address: School Address: | | | | | | | | | Estation of California and | Distance from stack or equipment vent to the outer boundary of the school: CA Health & Safety Code 42301.9: "School" means any public or private school used for purposes of the education of more than 12 children in kindergarten or any of grades 1 to 12, inclusive, but does not include any private school in which education is primarily conducted in private homes. | | | | | | | | | Population Density | O Urban Rural (<50% of land within 3 km radius accounted for by urban land use categories, i.e., multi-family dwelling or industrial.) | | | | | | | | | Zoning Classification | ○ Mixed Use Residential Commercial Zone (M-U) ○ Service and Professional Zone (C-S) ○ Medium Commercial (C-3) ○ Heavy Commercial (C-4) ⑤ Commercial Manufacturing (C-M) | | | | | | | | | Section C - Emission Rel | ease Parameters - Stacks, Vents | | | | | | | | | Stack Data | Stack Height: 75.00 feet (above ground level) What is the height of the closest building nearest the stack? 20 feet Stack Inside Diameter: inches: Stack Flow: 325,577 acfm Stack Temperature: 850 °F Rain Cap Present: ① Yes ② No Stack Orientation: ② Vertical ① Horizontal If the stack height is less than 2.5 times the closest building height (H), please provide information on any building within 5xH distance from the stack (altach additional sheet if necessary): | | | | | | | | | | Building #/Name: | | | | | | | | | Receptor Distance From
Equipment Stack or Roof
Vents/Openings | Building Length:feet | | | | | | | | | Building Information | Are the emissions released from vents and/or openings from a building? Yes No If yes, please provide: Building #Name: Building Width: feet Building Height: feet (above ground level) Building Length: feet | | | | | | | | South Coast Air Quality Management District #### Form 400-PS #### Plot Plan And Stack Information Form This form must be accompanied by a completed Application for a Permit to Construct/Operate - Form 400A and Form 400-CEQA. | I hereby certify that all information contained | herein and information submitted | d with this application is true and correct. | | |---|---|--|--| | Signature of Preparer: | Title of Preparer: | Preparer's Phone #: (805) 376-0088 | | | Russ Kingsley Off Control Regulation of Solid Control | Principal Engineer | Preparer's Email: RKingsley@ | | | Contact Person:
Diana Lang | Contact's | Phone#: (562) 624-3314 | Date Signed: 07/20/2013 | | Contact's Email: diana_lang@oxy.com | Contact's | Fax#: (562) 624-3224 | | | claim certain limited Information as exempt from
Act, you must make such claim <u>at the time of sul</u> | our permit application and any suppli
disclosure because it qualifies as a | IIS IS A PUBLIC DOCUMENT emental documentation are public records and ma trade secret, as defined in the District's Guidelines | y be disclosed to a third party. If you wish to for Implementing the California Public Recor | ڪ '.. South Coast Air Quality Management District Form 400 - XPP Express Permit Processing Request Form 400-A, Form 400-CEQA and one or more 400-E-xx form(s) must accompany all submittals. Mail To: SCAQMD P.O Box 4944 Diamond Bar, CA 91765-0944 Tel: (909) 396-3385 www.aqmd.gov | Section A - Operator Information | | | | | | | |--|--|---|--|--|--|--| | 1. Facility Name
(Business Name of Operati | or To Appear On The Permit): | 2. Valid AQMD Facility ID
AQMD): | (Available On Permit Or Invoice Issued By | | | | | Oxy USA Inc. | | | 169754 | | | | | Section B - Equipment Location Add | iress | Section C - Permit Mailing Address | | | | | | 1 3 7. | Various Location (cations, provide address of initial site.) | 4. Permit and Correspondence Information: Check here if same as equipment location address | | | | | | 20101 Goldenwest St. | | 111 W. Ocean Blvd. #800 | | | | | | #* 14 | GA 92648 | 1 | CA 90802 | | | | | Hüntington Beach | , CA | Long Beach | , <u>CA</u> <u>90802</u> | | | | | ļ | Env. Coordinatir | Diana Lang | Env. Coordinatir | | | | | Diana Lang | Title | Contact Name | Title | | | | | (562) 624-3314 | (562) 624-3224 | (562) 624-3314 | (562) 624-3224 | | | | | Phone # Ext. | Fax # | Phone # Ext. | Fax # | | | | | diana_lang@oxy.com | | diana_lang@oxy.com | | | | | | E-Mail | | E-Mail | | | | | | Section D' - Authorization/Signature | | | | | | | | and that the application may
Permit Processing neither g
Express Permit Processing | y be subject to additional fe
juarantees action by any sp
is subject to availability of
ited fees will not be refunde | must be submitted at the time ses per Rule 301. I understand to secific date nor does it guarante qualified staff; and that once Exed. I hereby certify that all information and correct. | hat requests for Express
e permit approval; that
press Permit Processing | | | | | 5. Signature of Responsible Official: | | 6. Title of Responsible Official: | | | | | | Mach S. Ka | pelhe | VP - Eng and Ops | | | | | | 7. Print Name of Responsible Official: | | 8. Date: | | | | | | Mark Kapelke | | 8/13/201= | <u> </u> | | | | | 9. Phone #:
(562) 495-9348 | | 10. Fax #:
(562) 495-1950 | | | | | | AQMD
USE ONLY | | PLICAT | TION TRACKIN | IG# | | TYPE
B C | EQUIPMEN | NT CATEGORY CODE: | FEE SCHEDULE: | V | ALIDATION | |------------------|---|--------|--------------|-----|---|----------------|------------------|-------------------|-------------------|--------------|------------| | ENG. A | 4 | R | ENG.
DATE | A | R | CLASS
I III | ASSIGNME
Unit | NT
Engineer | CHECK/MONEY ORDER | AMOUNT
\$ | TRACKING # | # AQMIZA South Coast Air Quality Management District #### Form 400-CEQA #### California Environmental Quality Act (CEQA) Applicability Mail To: SCAQMD P.O. Box 4944 Diamond Bar, CA 91765-0944 > Tel: (909) 396-3385 www.agmd.gov The SCAQMD is required by state law, the California Environmental Quality Act (CEQA), to review discretionary permit project applications for potential air quality and other environmental impacts. This form is a screening tool to assist the SCAQMD in clarifying whether or not the project has the potential to generate significant adverse environmental impacts that might require preparation of a CEQA document [CEQA Guidelines §15060(a)]. Refer to the attached instructions for guidance in completing this form. For each Form 400-A application, also complete and submit one Form 400-CEQA. If submitting multiple Form 400-A applications for the same project at the same time, only one 400-CEQA form is necessary for the entire project. If you need assistance completing this form, contact Permit Services at (909) 396-3385 or (909) 396-2668. | Section | n A - F | acility | ty Information | | | | | | | | |---|------------------------|---------|---|---|--|--|--|--|--|--| | 1. Facility Name (Business Name of Operator To Appear On The Permit): 2. Valid AQMD Facility ID (Available On Permit Or Invoice | | | | | | | | | | | | OXY USA Inc. By AQMD); 169754 | | | | | | | | | | | | 3. Proi | ect Des | criptio | lon: | | | | | | | | | | | - | of a new emergency IC engine. | | | | | | | | | 1110 | J.Canicati | 011 01 | A HOW CINCINGS TO CINGING. | | | | | | | | | Section | n B - f | Review | w For Exemption From Further CEQA Action | == | | | | | | | | - | | | as applicable | | | | | | | | | ĺ | Yes | No | Is this application for: | | | | | | | | | 1. | ۲ | • | A CEQA and/or NEPA document previously or currently prepared that specifically evaluates this project? If yes, attach a co signed Notice of Determination to this form. | A CEQA and/or NEPA document previously or currently prepared that specifically evaluates this project? If yes, attach a copy of the | | | | | | | | 2. | C | • | A request for a change of permittee only (without equipment modifications)? | | | | | | | | | 3. | 7 | • | A functionally identical permit unit replacement with no increase in rating or emissions? | | | | | | | | | 4. | C | • | A change of dally VOC permit limit to a monthly VOC permit limit? | _ | | | | | | | | 5. | ر | • | Equipment damaged as a result of a disaster during state of emergency? | Equipment damaged as a result of a disaster during state of emergency? | | | | | | | | 6. | ٦ | • | A Title V (i.e., Regulation XXX) permit renewal (without equipment modifications)? | | | | | | | | | 7. | С | • | A Title V administrative permit revision? | | | | | | | | | 8. | 7 | • | The conversion of an existing permit into an initial Title V permit? | | | | | | | | | | | | for any question In Section B, your application does not require additional evaluation for CEQA applicability. Skip to Section D - Signati
Id date this form. | ires on | | | | | | | | Sectio | n C - I | Review | w of Impacts Which May Trigger CEQA | | | | | | | | | | ete Parl
tach it to | | by checking "Yes" or "No" as applicable. To avoid delays in processing your application(s), explain all "Yes" responses on a separate form. | sheet | | | | | | | | | Yes | No | Part I - General | | | | | | | | | 1. | | | Has this project generated any known public controversy regarding potential adverse impacts that may be generated by the | е | | | | | | | | | (| • | project? Controversy may be construed as concerns raised by local groups at public meetings; adverse media attention such as negative arti | cles in | | | | | | | | | | | newspapers or other periodical publications, local news programs, environmental justice issues, etc. | | | | | | | | | 2. | ر | • | Is this project part of a larger project? If yes, attach a separate sheet to briefly describe the larger project. | Is this project part of a larger project? If yes, attach a separate sheet to briefly describe the larger project. | | | | | | | | | | | Part II - Air Quality | | | | | | | | | 3. | ١ | • | Will there be any demolition, excavating, and/or grading construction activities that encompass an area exceeding 20,000 s feet? | quare | | | | | | | | 4. | C | • | Does this project include the open outdoor storage of dry bulk solid materials that could generate dust? If Yes, include a pl with the application package. | ot plan | | | | | | | | | | | · | | | | | | | | ¹ A "project" means the whole of an action which has a potential for resulting in physical change to the environment, including construction activities, clearing or grading of land, improvements to existing structures, and activities or equipment. Involving the Issuance of a permit. For example, a project might include installation of a new, or modification of an existing internal combustion engine, dry-cleaning facility, boiler, gas turbine, spray coating booth, solvent cleaning tank, etc. ² To download the CEQA guidelines, visit http://ceres.ca.gov/env_law/state.html. ³ To download this form and the instructions, visit http://www.aqmd.gov/ceqa or http://www.aqmd.gov/permit | Section | on C - | Review | of Impacts Which | May Trigger CEQA (cont.) | | | | | | | | |--------------|--------------------|-------------|---|---|---|--|--|--|--|--|--| | | Yes | No | Part II - Air Quality | y (cont.) | | | | | | | | | 5. | C | • | For example, comp | Nould this project result in noticeable off-site odors from activities that may not be subject to SCAQMD permit requirements? For example, compost materials or other types of greenwaste (i.e., lawn clippings, tree trimmings, etc.) have the potential to generate odor complaints subject to Rule 402 – Nuisance. Does this project cause an increase of emissions from marine vessels, trains and/or airplanes? | | | | | | | | | 6. | C | • | L | | | | | | | | | | 7. | С | • | | Will the proposed project increase the QUANTITY of hazardous materials stored aboveground onsite or transported by mobile vehicle to or from the site by greater than or equal to the amounts associated with each compound on the attached Table 1?4 | | | | | | | | | | | | Part III – Water Re | sources, | | | | | | | | | 8. | C |
œ. | The following exam
generate steam; 2)
production process
exceeds the capaci
existing water supp | Will the project Increase demand for water at the facility by more than 5,000,000 gallons per day? The following examples identify some, but not all, types of projects that may result in a "yes" answer to this question: 1) projects that penerate steam; 2) projects that use water as part of the air pollution control equipment; 3) projects that require water as part of the production process; 4) projects that require new or expansion of existing sewage treatment facilities; 5) projects where water demand exceeds the capacity of the local water purveyor to supply sufficient water for the project; and 6) projects that require new or expansion of existing water supply facilities. | | | | | | | | | 9. | ۲ | • | Examples of such p | | eyance Infrastructure? d the capacity of the local water purveyor to supply sufficient water for the les such that the project requires new water lines, sewage lines, sewage hook- | | | | | | | | | | | Part IV – Transpoi | | | | | | | | | | 10. | | | | sult in (Check all that apply): | | | | | | | | | | ۲ | • | L | ore than 350 new employees? | | | | | | | | | İ | <u>_</u> | 6 | | | ind/or from the facility by more than 350 truck round-trips per day? | | | | | | | | <u> </u> | ٢ | • | | mer traffic by more than 700 visits pe | r day r | | | | | | | | 44 | - | | Part V - Noise | aliida aasilamaas shasiiidda aaaaasa wa | olse GREATER THAN 90 decibels (dB) at the property line? | | | | | | | | 11. | <u> </u> | (6) | | • • • | 700 ONEST TIME 30 decides (ab) at the property lines | | | | | | | | 12. | Ι | | Part VI - Public Se | | ditional public services in any of the following areas (Check all that apply): | | | | | | | | 12. | _ | 6 | | • | tential amount of wastes generated by the project is less than five tons per day. | | | | | | | | | r | (| b. Hazardous was | | ed potential amount of hazardous wastes generated by the project is less than 42 | | | | | | | | **REM | NDER: | or each | "Yes" response in Sec | tion C, attach all pertinent information includi | ng but not limited to estimated quantities, volumes, weights, etc.** | | | | | | | | Section | n D - | Signati | ires | | | | | | | | | | CORR
RIGH | ECT TO | THE CHISIDE | BEST OF MY KNOW
R OTHER PERTINE | NLEDGE. I UNDERSTAND THAT THIS
ENT INFORMATION IN DETERMINING | ID INFORMATION SUBMITTED WITH THIS APPLICATION IS TRUE AND S FORM IS A SCREENING TOOL AND THAT THE SCAQMD RESERVES THE CEQA APPLICABILITY. | | | | | | | | 1. Sign | | | sible Official of Firm: | | 2. Title of Responsible Official of Firm: | | | | | | | | ے | ÜN | ack | 2 8 Ka | pelha | VP - Eng and Ops | | | | | | | | | t Name o
Irk Ka | of Respo | onsible Official of Firm | ń: | 4. Date Signed: 8//3/2013 | | | | | | | | 5. Pho | ne#ofF | espons | ible Official of Firm: | 6. Fax # of Responsible Official of Firm: | 7. Email of Responsible Official of Firm: | | | | | | | | (56 | 32) 49 | 5-934 | 8 | (562) 624-3224 | mark_kapelke@oxy.com | | | | | | | | 8. Sign | ature of | Prepare | or, (If prepared by perso | on other than responsible official of firm): | 9. Title of Preparer: | | | | | | | | 1 | Parl | la F. | Prasetyo G |)
8 | Senior Engineer | | | | | | | | 10. Pri | nt Name | of Prep | arer. | | 11. Date Signed: | | | | | | | | | rla Pr | | | | 03/28/2013 | | | | | | | | 12. Ph | one#of | Prepare | n. | 13. Fax # of Preparer: | 14. Email of Preparer: | | | | | | | | (55 | 9) 90 | 8-697 | <u> </u> | (949) 248-8499 | CJo@YorkeEngr.com | | | | | | | THIS CONCLUDES FORM 400-CEQA. INCLUDE THIS FORM AND ANY ATTACHMENTS WITH FORM 400-A. ⁴ Table 1 – Regulated Substances List and Threshold Quantities for Accidental Release Prevention can be found in the Instructions for Form 400-CEQA. South Coast Air Quality Management District #### FORM 400-E-13a #### **Emergency Internal Combustion Engine** Mail Application To: SCAQMD P.O. Box 4944 Diamond Bar, CA 91765 Tel: (909) 396-3385 www.aqmd.gov This form must be accompanied by a completed Application for a Permit to Construct/Operate -Form 400A Permit to be issued to (Business name of operator to appear on permit): Street location where the equipment will be operated (for equipment which will be moved to various location in AQMD's jurisdiction, please list the initial location site): 20101 Goldenwest Street, Huntington Beach, CA 92648 Section A: EQUIPMENT INFORMATION Manufacturer. Model No.: **CUMMINS** QST30 - G5 NR2 Serial No.: Date of Manufacture: Internal Combustion Engine 37254511 05/01/2012 (mm/dd/yyyy) Manufacturer Maximum Reting: Date of Installation: 1800 1490 _{BHP @} (mm/dd/yyyy) ICE Emergency Electrical Generator C Fire Pump C Flood Control Pump Driver Compressor Function How is This Type of Equipment Used? Type (2) Fixed site O Portable Within Facility Off- Site ☐ Rental (Check All That Apply) (Diesal Oil No. 2 O LPG Fuel O Natural Gas Other: Cycle Type C Two Cycle Four Cycle Combustion Type C Lean Burn O Rich Burn No. of Cylinders C) Four C) Six C Eight C Ten (Twelve C Sixteen Other C Turbocharged Turbocharged/Aftercooled **Aspiration Type** ☐ Timing Retarded > 4° (relative to standard timing) Naturally Aspirated Selective Catalytic Reduction (SCR)* No Controls Selective Non-catalytic Reduction (SNCR)* Air Fuel Ratio Controller Other (specify) Non-selective Catalytic Reduction (NSCR) Air Poliution Control Separate application is required. (if applicable) Manufacturer: Model No.: tf already permitted, indicate Permit No. Davice No. Section B: OPERATION INFORMATION **Fuel Consumption** Maximum Rated load: 72.200 gal./hr. OR 63.900 gal./hr. OR ____ _cu. ft_/hr Average Load:_ Normal: hours/day days/week Operating Maximum: Schedule hoursiday days/week 50 hours/year Testing & Maintenance (Emergency ICE only): #### CONFIDENTIAL INFORMATION Under the California Public Records Act, all information in your permit application will be considered a matter of public record and may be disclosed to a third party. If you wish to keep certain items as confidential, please complete the following steps: - (a) Make a copy of any page containing confidential information blanked out. Label this page "public copy." - (b) Label the original page "confidential." Circle all confidential items on the page. - (c) Prepare a written justification for the confidentiality of each confidential item. Append this to the confidential copy. | Engine Data | (1) Select year of manufacture and rated horsepower. (2) Provide actual emission figures from manufacturing specifications (if available) for the Rated Power selected. If engine fuel is LPG or Natural Gas, select Spark Ignition. (3) The compression ignited Internal combustion engine must meet the State of California or EPA's Non-Road Emission Standards as listed below (please provide manufacturer's specification and guarantee). | | | | | | | | | | |-----------------|---|-------------------|---------|-----------------------------------|--------------------------------|--------------------------------------|--------------------------------------|--|--|--| | | Rated Power | Year | Figures | Carbon Monoxide
(grams/bhp*hr) | Hydrocarbons
(grams/bhp hr) | Oxides of Nitrogen
(grams/bhp-hr) | Particulate Matter
(grams/bhp*hr) | | | | | om pressor Igni | tion | | | | | | | | | | | | 50 -<750 H.P. | | | | | | | | | | | | | 50 -< 100
H.P. | Default | 3.7 | 0.35 (0.56)* | 3.15 (5.04)* | 0.30 | | | | | | 0 | | Actual | | | | | | | | | | | 100-< 175 | Default | 3.7 | 0.3 | 2.7 | 0.22 | | | | | | 0 | H.P. | Actual | | | | , | | | | | | | 175 ← 750 | Default | 2.6 | 0.3 | 2.7 | 0.15 | | | | | | | H.P. | Actual | | | | | | | | | | 750 and greater H.P | | | | | | | | | | | | | .754 | Default | 2.6 | 0.48 | 4.32 | 0,15 | | | | | | (6) ≥75 | 2/30 | Actual | 2.600 | 0.480 | 4.320 | 0.110 | | | | | | | Figures | VOC | NOx | CO | |----------------|-------------|-----------------------|-------------------------|-------------------------|----------------------| | Spark Ignition | | For natural gas fired | or LPG. The ICE must me | et the requirements for | BACT as listed below | | | 0 | Default | 1.5 grams/bhp-hr | 1.5 grams/bhp-hr | 2.0 grams/bhp-hr | | | k .: | Actual | | | | | Section C: Applicant Certification Statement I hereby certify that all information contained herein and information st | bmitted with this application is true and correct | | |--|--|--------------| | SIGNATURE OF PREPARER: | TITLE OF PREPARER:
Senior Engineer | ~~~ | | CONTACT PERSON FOR INFORMATION ON THIS EQUIPMENT: Carla Prasetyo Jo | CONTACT PERSON'S TEL EPHONE NUMBER
(559) 908-6979 | DATE SIGNED: | #### Official Use Only Engr. Int. | | | | | | | Añ | - - | | | |---|-------------------------|--------------|----------------------------|-------------------|---------------|----------------|-----------------|---------|----------| | | | | | | | Ap | pin Date | : | | | | | | | | | Cia | 89 | | | | Data Input | | | | | | | | | | | Applicant | OXY USA Inc. | | | | | ID | | | <u> </u> | | Mailing Address | | | | | | | | | | | Equipment Location | 20101 Goldenwe | st Street, | Huntington Bea | ch, CA 9264 | | Equip
Ty | oment
rpe | Fixed s | ite | | | Manufacturer: |
CUMMIN | vs | | | | | | | | | Model No: | QST30 - | G5 NR2 | | | | | | | | | Serial No.: | 3725451 | 11 | | _ | | | | | | Equipment Description | Manufacturer Date: | 05/2012 | | | | | | | | | | Installation Date: | | | | | | | | | | | Cylinders: | Twelve | | | | | | | | | | HP Rating: | 1490 | | | | | | | | | · · · · · · · · · · · · · · · · · · · | Turbocharge | ٠ | Turbanharandi | A December | No. | | | | | | Aspiration Type | O | 20 | Turbocharged/Aftercooled X | | | ally Aspirated | | | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Turbocharged/After | | | | | | | | | | | | | 1 | | | | | | | | Driving (ICE Emergency | Generator | | Compressor | | Pump | | | | | | Function) | X | | 0 | | | 0 | _ | | ; | | | Electrical Generato | <u>r</u> | <u></u> | | <u> </u> | <u> </u> | | | | | | Voc | | NOx | С | 0 | P | M | | | | Emission Factors, g/HP-hr | 0.480 | | 4.320 | 2.6 | 500 | 0.4 | 10 | | | | <u> </u> | (Note: Emission factors | taken from e | ngine manufacturer s | pecs included wit | h application | | | | <u></u> | | | Yes | | No | <u></u> | | | | | | | Retard Timing | Hrs/Day Max. | | | Hrs/Month Max | · | | | | | | Operating Schedule | Hrs/Day Ave. | | | Wks/Yr | | | | | | | , , | Days/Wk. | | | | | | | | | | | Days/Mo | | | | | | | | | #### Official Use Only | A/NI- | | |-------|-------| | 7VIV. | ····- | Given | Giveii | | | | | | | |-------------------------------------|----------------|-------|--------|----------|-------|-------| | HP | 1490 | | | | | | | G to ib conversion factor | 0.0022046 | | | | | | | | Hrs/Day Max. | | | | | | | | Hre/Day Avg. | | | | | | | | Days/Wk. | | | | | | | Operating Schedule | Days.Mo. | | | | | | | | Hrs/Month Max. | | | | | | | | Wks/Yr. | | | | | | | | VOC | NOx | SOx | co | PM | PM10 | | Emission Factors
(grams/bhp -hr) | 0.480 | 4.320 | 0.0049 | 2.600 | 0.110 | 0.106 | | | Yes | No | | <u> </u> | | - | | Retard Timing | | | | | | | | | VOC | NOx | SOx | co | PM | PM10 | | Emission Correction Factor | 1.000 | | 1.000 | | 1.000 | 1.000 | | | | | 1 | L | L | | Computations | Computations | | voc | NOx | SOx | со | PM | PM10 | |--------------|--------------------------|-------|-----|--------|----|-------|-------| | | Emission factor, g/HP-hr | 0.480 | | 0.0049 | | 0.110 | 0.106 | | | ib/hr. | 1.577 | | 0.016 | | 0.361 | 0.348 | | | lb/day Max. | | | | | | | | | ib/day Avg. | | | | | | | | | lb/yr. | | | | | | | #### SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT #### ENGINEERING AND COMPLIANCE #### APPLICATION PROCESSING AND CALCULATIONS | PAGE | 1 of 3 | | |---------------|--------|----------| | CHECKED BY: | | For | | A/N: | | Official | | PROCES SED BY | | Use Only | | DATE: | | | | Applicant's Name: OXY | USA Inc. | <u>ID:</u> | |------------------------|---|--| | Equipment Location: 20 | 101 Goldenwest Street, Huntington Beach, CA | 9264 | | Equipment Description: | | | | EQUIPMENT | INTERNAL COMBUSTION ENGINE | Per mitDescripti on; | | MANUFACTURER: | CUMMINS | INTERNAL COMBUSTION ENGINE, | | MODEL NO.: | QST30 - G5 NR2 | Fixed site, CUMMINS, MODEL NO.
QST30 - G5 NR2 | | FUELED WITH: | Diesel Oil No. 2 | , SERIAL NO. 37254511 | | DRIVING: | Electrical Generator | , Diesel Oil No. 2 FUELED, Four CYCLES, Twelve CYLINDERS, | | SERIAL NO.: | 37254511 | Turbocharged/Aftercooled, RATED AT | | No. of CYLINDERS: | Twelve | 1490 B.H.P., DRIVING AN EMERGENCY
Electrical Generator. | | ASPIRATION: | Turbocharged/Aftercooled | Digitival Continue. | ## CALCULATIONS See ATTACHMENT A HP RATING: #### **EVALU ATION:** Rule 212: (Not Applicable if more than 1,000 feet from a school.) 1490 This is a not significant project as defined by this rule. Hence, public notice snot required. #### Rule 401: Based on experience with similar equipment, the engine is expected to comply with the visible emission limits. #### Rule 402: Based on experience with similar equipment and sance complaints are not expected. #### Rule 404: Based on experience with similar equipment compliance with this rule is expected. #### Rule 431.2: Diesel fuel supplied to this equipment must contain 0.0015% or less sulfur by weight. Compliance is expected. #### Rule 1110.2: Exempt per Rule 110.2 (h)(25) #### REGULATION XIII Rule 1303(a) meets BACT emission limits. Rule 1303(b)(1) and (b)(2) - Exempt per Rule 1304(a)(4) #### REGULATION XIV: Exempt per Rule 1401(g)(1)(F). #### APPENDIX B – ENGINE DATA ## Exhaust Emission Data Sheet 1000DQFAD #### 60 Hz Diesel Generator Set Engine Information: Model: Cummins Inc. QST30-G5 NR2 Bore: 5.51 in. (139 mm) Type: Aspiration: 4 Cycle, 50°V, 12 Cylinder Diesel Turbocharged and Low Temperature aftercooled Stroke: Displacement: 6.5 in. (165 mm) 1860 cu. in. (30.4 liters) Compression Ratio: 14.7:1 **Emission Control Device:** Aftercooled (Air-to-Air) | | 1/4 | <u>1/2</u> | 3/4 | (<u>Full</u>) | Full | | |----------------------------------|---------|------------|---------|-----------------|-------|--| | PERFORMANCE DATA | Standby | Standby | Standby | (Standby) | Prime | | | BHP @ 1800 RPM (60 Hz) | 371 | 741 | 1112 | 1482 | 1322 | | | Fuel Consumption (gal/Hr)) | 19.1 | 35.8 | 54.1 | (72.2) | 63.9 | | | Exhaust Gas Flow (CFM) | 2780 | 4500 | 6370 | 7540 | 6950 | | | Exhaust Gas Temperature (°F) | 620 | .760 | 814 | 890 | 873 | | | EXHAUST EMISSION DATA | | | | | - | | | HC (Total Unburned Hydrocarbons) | 0.12 | 0.10 | 0.08 | 0.07 | 0.08 | | | NOx (Oxides of Nitrogen as NO2) | 4.17 | 5.20 | 3.87 | 3.95 | 4.00 | | | CO (carbon Monoxide) | 0.66 | 0.36 | 0.48 | 0.66 | 0.58 | | | PM (Particular Matter) | 0.19 | 0.15 | 0.12 | 0.11 | 0.11 | | | SO2 (Sulfur Dioxide) | 0.11 | 0.10 | 0.10 | 0.11 | 0.10 | | | Smoke (Bosch) | 0.88 | 0.80 | 0.79 | 0.73 | 0.75 | | #### **TEST CONDITIONS** Data was recorded during steady-state rated engine speed (\pm 25 RPM) with full load (\pm 2%). Pressures, temperatures, and emission rates were stabilized. Fuel Specification: 46.5 Cetane Number, 0.035 Wt.% Sulfur; Reference ISO8178-5, 40CFR86.1313-98 Type 2- D and ASTM D975 No. 2-D. Fuel Temperature: 99 ± 9 °F (at fuel pump inlet) Intake Air Temperature: 77 ± 9 °F Barometric Pressure. $29.6 \pm 1 \text{ in. Hg}$ Humidity: NOx measurement corrected to 75 grains H2O/lb dry air Reference Standard: ISO 8178 The NOx, HC, CO and PM emission data tabulated here were taken from a single engine under the test conditions shown above. Data for the other components are estimated. These data are subjected to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to test site conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may results in elevated emission levels. Home Programs 3 About Us 3 Help 3 Contact Us 3 ### Santa Barbara County Air Pollution Control District Air Quality Today's Air Quality Pollutants & Health Monitoring Air Quality > Attainment Class Planning Clean Air Plans Land Use & CEQA Transportation Business News/Notices/Meetings APCD Board Agendas Permits & Engineering Permit Applications Compliance/Breakdowns Download Documents Rules & Regulations Air Taxics Business Assistance Funding Programs News/Natices/Meetings Students & Teachers Publications & Projects View Public Records Marine Shipping Community Outreach Contact Us 961-8800 Site Map # Diesel Internal Combustion Engine (DICE) Engine **Emission Factors** To determine an engine's emissions, an owner/operator may use: - Default SBCAPCD Diesel Engine Emission Factors For use with older engines (see the first table presented below), or USEPA emission standards for Tier 1 3 engines (see the second table presented below) # Default SBCAPCD Diesel Engine Emission Factors | POLLUTANT | EMISSION FACTOR | UNITS | REF | | |--------------|-----------------|----------|-----|--| | PM | 1.0 | g/bhp-hr | 1 | | | NOx (as NO2) | 14.1 | g/bhp-hr | 1 | | | NMHC | 1.12 | g/bhp-hr | 1 | | | NMHC+NOx | 15.22 | g/bhp-hr | 1 | | | co | 3.0 | g/bhp-hr | 1 | | | SOx (as SO2) | 3.67 * wt %S | g/bhp-hr | 2 | | besis: (1) USEPA AP-42, Table 3.3-1, (2) USEPA AP-42, Table 3.3-2, where S = wt % of suffur (eg. for S = 0.05 wt %. SOx = (3.67)*(0.05) = 0.183 gb/sp-fix. Assume NMHC = ROC # USEPA Emission Standards for Tier 1 - 3 engines | | Model Years | Regulation | Emission Standards (g/hp-hr) | | | | | | Year the Std |
--|-------------|------------|------------------------------|--------|----------|------------|------|------|--------------| | Engine Power (hp) | | | HC 4 d | VHC b | NOx a, d | NMHC+NOx * | co* | PM * | Takes Effect | | 50 to <75 | 1998-2003 | Tier 1 | | | 6.90 | | | | 1998 | | | 2004-2007 | Tier 2 | 0.40 | 0.3996 | 5.20 | 5.60 | 3.70 | 0.30 | 2004 | | | 2008-2012 | Tier 3 | 0.20 | 0.1998 | 3.3 | 3.50 | 3.70 | c | 2008 | | 75 to <100 | 1998-2003 | Tier 1 | | | 6.90 | | | | 1997 | | | 2004-2007 | Tier 2 | 0.40 | 0.3996 | 5.20 | 5.60 | 3.70 | 0.30 | 2004 | | | 2008-2011 | Tier 3 | 0.20 | 0.1998 | 3.3 | 3.50 | 3.70 | | 2007 | | >100 to <175 | 1997-2002 | Tier 1 | | | 6.90 | | | | 1997 | | | 2003-2006 | Tier 2 | 0.40 | 0.3996 | 4.5 | 4.90 | 3.70 | 0.22 | 2003 | | | 2007-2011 | Tier 3 | 0.20 | 0.1998 | 2.8 | 3.00 | 3.70 | 6 | 2007 | | >175 to <300 | 1996-2002 | Tier 1 | 1.00 | 0.9990 | 6.90 | | 8.50 | 0.40 | 1996 | | | 2003-2005 | Tier 2 | 0.40 | 0.3996 | 4.5 | 4.90 | 2.60 | 0.15 | 2003 | | | 2006-2010 | Tier 3 | 0.20 | 0.1998 | 2.8 | 3.00 | 2.60 | c | 2006 | | >300 to <600 | 1996-2000 | Tier 1 | 1.00 | 0.9990 | 6.90 | | 8.50 | 0.40 | 1996 | | | 2001-2005 | Tier 2 | 0.30 | 0.2997 | 4.5 | 4.80 | 2.60 | 0.15 | 2001 | | | 2006-2010 | Tier 3 | 0.20 | 0.1998 | 2.8 | 3.00 | 2.60 | c | 2006 | | >600 to <750 | 1996-2001 | Tier 1 | 1.00 | 0.9990 | 6.90 | | 8.50 | 0.40 | 1996 | | | 2002-2005 | Tier 2 | 0.30 | 0.2997 | 4.5 | 4.80 | 2.60 | 0.15 | 2002 | | | 2006-2010 | Tier 3 | 0.20 | 0.1998 | 2.8 | 3.00 | 2.60 | 4 | 2006 | | >750 except generator sets | 2000-2005 | Tier 1 | 1.00 | 0.9990 | 6.90 | | 8.50 | 0.40 | 2000 | | A CONTRACTOR OF THE PROPERTY O | 2006-2010 | Tier 2 | 0.30 | 0.2997 | 4.5 | 4.80 | 2.60 | 0.15 | 2006 | | Generator sets >750 to <1200 | 2000-2005 | Tier 1 | 1.00 | 0.9990 | 6.90 | | 8.50 | 0.40 | 2000 | | | 2006-2010 | Tier 2 | 0.30 | 0.2997 | 4.5 | 4.80 | 2.60 | 0.15 | 2006 | | Generator sets >1200 | 2000-2005 | Tier 1 | 1.00 | 0.9990 | 8.90 | | 8.50 | 0.40 | 2000 | | | 2006-2010 | Tier 2 | 0.30 | 0.2997 | 4.5 | 4.80 | 2.60 | 0.15 | 2006 | For more information or assistance, call or email Mike Goldman at (805) 961-8821 or Kaitlin McNally at (805) 961-8855 (Engineering and Compliance Division). ◀ Return to DICE ATCM Home | About Us | Air Quality | Planning | Business | Community | Regional | Help | Contact Us Nonroad Ci Engine Emission Standards from Title 13, California Code of Regulations, Section 2423 (ARB Executive Order "Std"). b VHC = Total Hydrocarbons (THC) minus methane and ethane fractions. Equivalent APCD standard. (Highlighted in Drange) See Conversion Factors to Hydrocarbon Emission Components, Report No. NR-002a, US EPA. 5/2003 (VHC = ROC) C Tier 3 PM standards have not yet been adopted. Tier 3 angines must meet the Tier 2 PM standard until the Tier 3 PM standard has been adopted. d Tier 2 and Tier 3 HC and NOx equivalent standards used to determine the NMHC + NOx standard. (Highlighted in blue) # SUNBELT UNIT 486714 # SUNBELT UNIT 486714 SUNBELL INIT 480714 # APPENDIX C – EMISSION CALCULATIONS ### OXY USA Inc. Facility ID 169754 # Emergency IC Engine (Generator) Emission Calculations Engine Data Criteria Pollutant Emission Factors http://www.sbcapcd.org/eng/atcm/dice/dice_efs.htm#USEPA_Emission_Standards_for_Tier_1 - 3_engines Fuel Use Rate (gal/hr, Full Standby) 72.2 Diesel Data Approximate Density (lb/gal) 6.943 Sulfur Content (wt.%) 0.0015% <- Calculated based on 15 ppmw | Pollutant | EF (g/bhp-hr): | _ | |-----------|----------------|--------------------------------| | KON | 4.5 | 7 | | voc | 0.3 . | 7 | | NOx + VOC | 4.8 | <- Calculated | | SOx* | 0.005 | <- Linked to calculation below | | ά | 2.6 | 7 | | PM10 | 0.15 | | | SOx CO | 0.905
2.6 | ⊣ | * SOx EF (g/bhp-hr) = Fuel Use Rate (gal/hr) x Approximate Density (lb/gal) x Sulfur Content (wt.%) x (64/32) (lb SOx/lb S) x 454 (g/lb) / bhp Rating 0.005 # Operating Schedule Hours per Year 50 Hours per Day 2.7 <- Maximum daily hours of operation to stay under Rule 212(g) limit for NOx. ### Criteria Pollutant Emission Calculations | | AHU | AHC | MHU | MHC | MDU | MDC | AA | 30DA | |-----------|---------|---------|---------|-----------|----------|----------|---------|----------| | Pollutant | (lb/hr) | (lb/hr) | (lb/hr) | · (lb/hr) | (lb/day) | (lb/day) | (ib/yr) | (lb/day) | | NOx | 14.769 | 14.769 | 14.769 | 14.769 | 39.876 | 39.876 | 738.45 | . 2.05 | | VÓC | 0.985 | 0.985 | 0.985 | 0.985 | 2.66 | 2.66 | 49.25 | 0.14 | | ·SOx | 0.016 | 0.016 | 0.016 | 0.016 | 0.043 | 0.043 | 0.8 | 0.00 | | CO | 8.533 | 8.533 | 8.533 | 8.533 | 23.039 | 23.039 | 426.65 | 1.19 | | PM10 | 0.492 | 0.492 | 0.492 | 0.492 | 1.328 | 1.328 | 24.6 | 0.07 | AHU = AHC = MHU = MHC = EF (g/bhp-hr) x bhp Rating /454 MDU = MHU x 2.7 hours per day MDC = MHC x 2.7 hours per day AA = MHC x 50 hours per year 30DA = MHC x 50 hours per year / 12 months per year / 30 days per month # APPENDIX D - HEALTH RISK ASSESSMENT # TIER 1 / TIER 2 SCREENING RISK ASSESSMENT DATA INPUT | Applica | ition deemed complete date:[| 07/22/13 | | | | |--|------------------------------|----------|--------------------|--|--| | | A/N:[
Fac: | | | | | | Stack Data | | | Units | | | | Hour/Day | | 2.7 | lm/day | | | | Day/Week | | | day/wk | | | | Weck/Year | | | wk/yr | | | | Emission Units | | lb/hr | | | | | | | | 0 | | | | Control Efficiency | | 0.00 | fraction range 0-1 | | | | Does source have TBACT? | | NO | | | | | Point or Volume Source ? | | P | Por V | | | | Stack Height or Building Height | | 75 | leet | | | | Area (For Volume Source Only) | | 900 | ft ¹ | | | | Distance-Residential | | 1609 | meters | | | | Distance-Commercial | | 1609 | meters | | | | Meteorological Station | | Cos | sta Mesa . | | | | Source Type: | | 0 | - Other | | | | Screening Mode (NO = Tier 1 or Tier 2; YES = 1 | Tie <u>r 3)</u> | NO: | | | | | Emission Units | | lb/hr | ì | | | | Source output capacity | | n/a | n/a | | | # FOR USER-DEFINED CHEMICALS AND EMISSIONS, FILL IN THE TABLE BELOW | USER DE | FINED CHEMICALS AND EMISSIONS | RI- | Efficiency | R2- | | | |--------------|---|----------|------------------|--------------|-------------------|--------------| | | • | | | Uncontrolled | Factor | Controlled | | Code
Code | Compound | lb/hr | Molecular Weight | lbs/hr | Fraction range 0- | lbs/hr | | DI4 | Diesel PM from diesel-fueled internal combustion engine | 4.92E-01 | ne data | 0.492 | | 0.492 | | | | | | 0 | | | | | | 10 | | 0 | | | | | • | | | 0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | -1, | | 0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | 1 | | Ö | | | | | | | | 0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | | | Ó | | | | | | | | 0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | i | | 0 | | | | | <u> </u> | | | 0 | | | | | _ | | | | | | | | | 2 . | | 0 | | | | | | 1 | | 0 | | | | | | 1 | | Ö | | _ | | | | | | Ö | | | | | | | | . 0 | | | | | | | | 0 | | | | | | | | Ö | | | | | | | | 0 | | | | | | | _ | 0 | | | | | | | | 0 | | - | | | | | | 0 | | | | | | | | 0 | | | | | | | | 0 | , | | # TIER 2 SCREENING RISK ASSESSMENT REPORT | A/N: |
Application deemed complete date: | 07/22/13 | |------|---------------------------------------|----------| | Fac: | | | # 2. Tier 2 Data | MET Factor | 0.69 | |------------|------| | | | | 4 hr | 0.87 | | 6 or 7 hrs | 0.88 | Dispersion Factors tables | 2 | For Chronic X/Q | |---|-----------------| | 6 | For Acute X/Q | Dilution Factors (ug/m3)/(tons/yr) | Receptor | X/Q | X/Qmax | |-------------|------|--------| | Residential | 0.04 | 7.2 | | Commercial | 0.04 | 7.2 | # Adjustment and Intake Factors | | AFann | DBR | EVF | |-------------|-------|-----|------| | Residential | 1 | 302 | 0.96 | | Worker | 4.2 | 149 | 0.38 | Tier 2 Report Page 1 of 9 7/22/2013 3. Rule 1401 Compound
Data | Compound | R1 -
uncontrolled | R2 -
controlled | СР | MP
MICR Resident | MP MICR
Worker | Chronic | MP Chronic
Worker | REL
Chronic | REL
Acute | |--|----------------------|--|----------|--|-------------------|----------|----------------------|----------------|--------------| | ! | (lbs/hr) | (lbs/hr) | | | | Resident | | | | | Diesel PM from diesel-fueled internal combustion eng | 4.92E-01 | 4.92E-01 | 1.10E+00 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | | | | | | | | | _ | | | | | | | | _ | | | _ | | _ | | | | | | | | | | | | | | | · · | | | | | | | | | | | | | - | _ | | _ | | _ | | | | | · | | |] | J | | J J | | | | | | | | | | | | | | | | - | | | - | | | | | | | | - | | | | - | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | _ | | | _ | | | | | | | | | | | | | _ | , | | | | | | _ | _ | | _ | | | | | | | | | | - . | _ | | | | | | | | _ | | | | | | | | | <u> </u> | - | _ | | _ | | | _ | | | | | | The state of s | _ | · | - i | | | | | | | | | | _ | | | | | | | | | | | | | | _ | | | | | | | _ | _ | | | | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | - | | | | | | - | | | | | _ | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | - | | | | | | _ | _ | · - | I | 4. Emission Calculations uncontrolled controlled Compound Diesel PM from diesel-fueled internal combustion eng R2 (lb/yr) 69.0768 R2 (ton/yr) 0.0345384 R1 (lb/hr) R2 (lb/hr) 4.92E-01 4.92E-01 4.92E-01 4.92E-01 6.91E+01 Total 3.45E-02 | /N: | Application deemed complete date: 07/22/13 | |-----|--| | | | # TIER 2 RESULTS # 5a. MICR MICR = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) * AFann * MET * DBR * EVF * 1E-6* MP | MICH - CF (Ing/(kg-day)) - 1 Q (IOIVYI) (A/Q) | APAIN WE | | |--|-------------|------------| | Compound | Residential | Commercial | | Diesel PM from diesel-fueled internal combustion eng | 3.04E-07 | 2.49E-07 | | | ' | | | | | | | | } | } | | | | | | | | | | | | | | | { | | | | | | | | 1 1 | | | | | | | | | | | | [| | | | | | | | | | | | ĺ [| | | | ļ <u>'</u> | | | | | | | | | | | | | | | |]] | 1 | } | } |) | | | i I | 1 1 | | | | | | | Total | 3.04E-07 | 2.49E-07 | | | PASS | PASS | | | 1 499 | I ALD 3 | No Cancer Burden, MICR<1.0E-6 | 5b. Cancer Burden | NO | |---------------------------|---------| | X/Q for one-in-a-million: | | | Distance (meter) | #VALUE! | | Area (km2): | #VALUE! | | Population: | #VALUE! | | Cancer Burden: | #VALUE! | # 6. Hazard Index HIA = [Q(lb/hr) * (X/Q)max] * AF / Acute REL HIC = [Q(ton/yr) * (X/Q) * MET * MP] / Chronic REL | Target Organs | Acute | Chronic | Acute
Pass/Fail | Chronic
Pass/Fail | |--------------------------------|-------|--|--------------------|----------------------| | Alimentary system (liver) - AL | | | Pass | Pass | | Bones and teeth - BN | | 1 - 1 | Pass | Pass | | Cardiovascular system - CV | | | Pass | Pass | | Developmental'- DEV | | | Pass | Pass | | Endocrine system - END | | | Pass | Pass | | Eye | _ | | Pass | Pass | | Hematopoietic system - HEM | | | Pass | Pass | | Immune system - IMM | | | Pass | Pass | | Kidney - KID | | | Pass | Pass | | Nervous system - NS | | | Pass | Pass | | Reproductive system - REP | | | Pass | Pass | | Respiratory system - RES | | 1.91E-04 | Pass | Pass | | Skip | | | Pass | Pass | | A/N: | Application deemed complete date: | 07/22/13 | |------|-----------------------------------|----------| | | | | 6a. Hazard Index Acute HIA = [Q(ib/hr) * (X/Q)max] *AF/ Acute REL | Γ | | | | HIA - Residen | tial | | • | | | | |--|-----|----|-----|---------------|------|-----|----|------|------|------| | Compound Diesel PM from diesel-fueled internal combustion eng | AL. | CV | DEV | EYE | HEM | IMM | NS | REP. | RESP | SKIN | | Diesel PM from diesel-fueled internal combustion eng | | | | - | | | | | _ | | | | | | | | | | | | | 1 | | | | | | | | | | | | ł | | | | | | | | | | | | ł | | | | | | | | | | | | 1 | | | | | | | | | | | | ł | | | | | | | | | | | | ł | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | · | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | | | • | | | | , | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | l | | | | | | | | | | | | l | | | | | | | | | | | | l | | | | | | | | | | | | l | | | | | | | | | | | | l | | | | | | | | | | | | l | | | | | | | | | | | | l | | | | | | | | | | | | l | | | | | | | | | | | | l | | | | | | | | | | | | l | l | | | | | | | | | | | | 1 | | | | | | | | | | | | } | | | | | | | | | | | | 1 | | | • | J | | | | | Total | | | | | | | ì | | | - | | | | | l | HIA - Commercial | rcial | | | | | | |--|----|----|-----|------------------|-------|-----|----|-----|------|------| | Compound | AL | CV | DEV | EYE | HEM | IMM | SN | REP | RESP | SKIN | | Diesel PM from diesel-fueled internal combustion eng | | · | | | | | | | | | | Total | 8b. Hazard Index Chronic HIC = [Q(ton/yr) * (X/Q) * MET * MP] / Chronic REL | 6D. Hazaro index Chronic | | HIC = [Q(ton/yr) - (| AU) MEIN | IPJ / Chironic REL | | | | | | | | | | |--|----|----------------------|----------|--|---------------|--|-------------|-----|--|----|-----|----------|------| | | | , | | | HIC - Residen | tial | | | | | | | | | Compound | AL | BN | CV | DEV | END | EYE | HEM | IMM | KID_ | NS | REP | RESP | SKIN | | Diesel PM from diesel-fueled internal combustion eng | | | | | | | | | | | | 1.91E-04 | | | | | | | | | | | | | | | i l | | | | | | | , | | | | | | ļ | | i l | | | | | | | | | | | | | | | i l | | | | | j | | | | | | | | | | i l | | | | | | ſ | ĺ | } | } . |) |) | J | 1 | | í I | | | | | | | | | | | ľ | | [| [| i l | | | | | | | | | | Ì | | | | | | | | | | | | | | | | ļ | | | | ı | | | | | | | | | | | | | | | i l | | | | | | | | | | | | 1 | | | i | | | | | | } | | | l | | | 1 | | | i l | | | | | | | | | ļ | | | | | | i I | | | | | | | 1 | | 1 | | | | | | i | | | | | | | | | | | | | | | i l | | | | | | | | | | | | | | | i l | | | | | | | | | | | | | | | í I | | | | | | | | | | | | | ļ | | i l | | | | | | | | | | | | | | | i l | | | | | l. | | | | | ! | | | 1 | | i l | | | | | | | | | | | | | | | i l | | | | | | | | | | ŀ | | | | | i l | | | | | J | | | | | | ļ | | | | i l | | | | | | ĺ | İ | } | l |) | j | J | | | i l | | | | | | | | | | | | | ĺ | [| i i | | | | | | 1 | | | | | | ļ | | | ; I | | | | | | | | | | | | | | | i | | | | | | | 1 | | 1 | | | | | | 1 | | | | | | | | | | | | | | | i 1 | | | | | | | | | | | | | | | i l | | | | | | | | | | | | | | | i l | | | | | | | | | | 1 | | | ļ | | i l | | | | | | | | i | | | | | Ì | | i l | | | | | | | | İ | | | | | | | i l | | | | | | | | | | | Į. | | | | í I | | | | | | | | | | | | | | | i l | | | | | | | | 1 | | | 1 | | | | i l | | | | | | | | 1 | | | 1 | ļ | | | i l | | | | | | | l | | 1 | | 1 | | | | j | | | |
 | | | 1 | | | 1 | | | | (| | | 1 | | J | 1 | | 1 | | | 1 | | | | 1 1 | | | | | | [| ĺ | 1 | 1 | 1 | 1 | J | J | l | 1 1 | | | T 4 1 | | 1 | | | <u> </u> | | | | | | | 1.91E-04 | 1 | | Total | | 1 | | | | | <u> </u> | | | l | | 1.91E-04 | | | A/N: | Application deemed complete date: | 07/22/13 | |------|-----------------------------------|----------| | | | | 6b. Hazard Index Chronic (cont.) | | HIC - Commercial | | | | | | | | | | | | | |---|------------------|----|----|-----|-----|-----|-----|-----|-------------|----------|-----|----------|------| | Compound | AL | BN | CV | DEV | END | EYE | HEM | IMM | KJD | NS | REP | RESP | SKIN | | Compound Diesel PM from diesel-fueled internal combustion eng | | | | | | _ | | | , . <u></u> | | | 1.91E-04 | | | · 1 | \ | | | | | | | | | | | | | Į. | \ | | | | | | | | | | | | | \ | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | 1 | 1 | | | | | | Į |) | | | | | | | | | | | | 1 | i | | | | | | | | | | | 1 | ! | Į. | | | | | | | | | | | | | | | 1 | <u> </u> | | | | | Total | | | | | | l | | l | | | | 1.91E-04 | | Tier 2 Report Page 9 of 9 SOUTH COAST AIR QUALITY MGMT DISTRICT 21865 E COPLEY DR DIAMOND BAR, CA 91765 DATE CHECK NO. 16-Aug-13 10004103 30079 | DATE | INVOICE
CREDIT MEMO | • DESCRIPTION | PO NUMBER | COMPANY
CODE | DISCOUNT | NET | |------------------------|------------------------------------|-----------------------------------|--------------|-----------------|----------|-------------| | 3-Aug-13
69754 PERM | 081313
T APPL FEE 'PLATFORM EMM | IY EMERGENCY GENERATOR PERMIT APP | LICATION CMA | 008577 | | 3,130.83 | | | , | | | | | | | | | | | | i
I | | | ĺ | | | | 1 | | 1 | | | | | | | |] | | | | | | | | | | J | | | |] | | } | | | | | | | | | | | | | | | |] | | | | | | | | | | | | | | 1 1 | | i | | | | | | | | 1 | | · - | | • | | | | 1 | | | | | | | | } | | - | | | | | | | | | | , e - 8 | | J | | | | } | | | | | 1 | | | | | | | - | <u> </u> | 1. 25 2 5 3 | | E ATTACHE | CHECK IS IN PAYMENT FOR | ITEMS DESCRIBED ABOVE | TOTAL >. | | | \$3,130. | # TIER 1 SCREENING RISK ASSESSMENT REPORT | Receptor Distance (actual) (m) | 1609 | |--|------| | Receptor Distance (for X/Q LOOKUP) (m) | 100 | | Tier 1 Results | | | | | |--------------------|-----------|--|--|--| | Cancer/Chronic ASI | Acute ASI | | | | | 4.97E+01 | | | | | | FAILED | PASSED | | | | # APPLICATION SCREENING INDEX CALCULATION | Compound | Average
Annual
Emission Rate
(lbs/yr) | Max Hourly
Emission Rate
(lbs/hr) | Cancer / Chronic Pollutant
Screening Level (lbs/yr) | Acute Pollutant
Screening Level (lbs/hr) | Cancer / Chronic
Pollutant
Screening Index
(PSI) | Acute Pollutant
Screening Index
(PSI) | |--|--|---|--|---|---|---| | Diesel PM from diesel-fueled internal combustion | | | | | | | | engine | 6.91E+01 | 4.92E-01 | 1.39E+00 | | 4.97E+01 | • , | TOTAL (APPLICATION SCREENING INDEX) 4.97E+01 **OXY USA Inc.** 111 W. Ocean Blvd. #800 Long Beach, CA 90802 7012,0470 0001 5861 9801 **SCAQMD** 21865 E. COPLEY DRIVE DIAMOND BAR, CA 91765 Attn: Permit Services