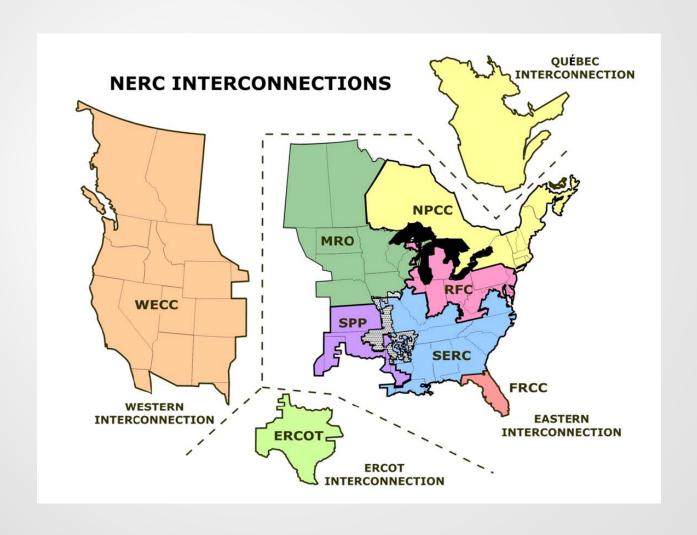
DOCKETED							
Docket Number:	15-RETI-02						
Project Title:	Renewable Energy Transmission Initiative 2.0						
TN #:	210104						
Document Title:	Planning for a Reliable Western Interconnection for RETI 2.0 Plenary Meeting January 29, 2016						
Description:	N/A						
Filer:	clare Laufenberg						
Organization:	Western Interconnection Planning						
Submitter Role:	Public Agency						
Submission Date:	1/29/2016 3:46:27 PM						
Docketed Date:	1/29/2016						

Planning for a Reliable Western Interconnection

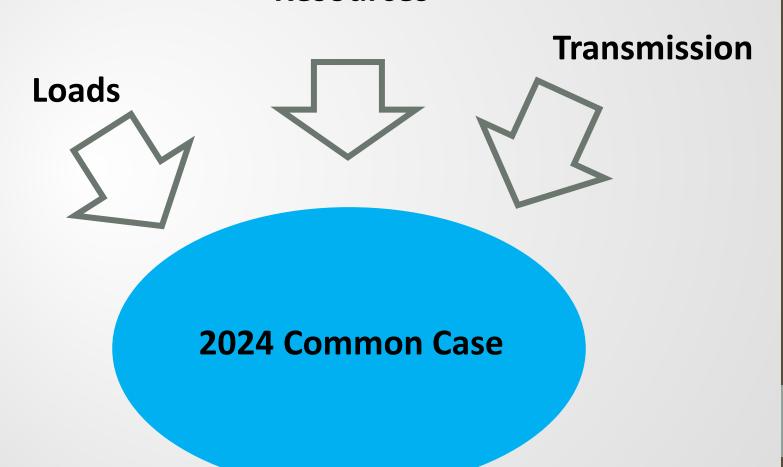
Thomas Carr
Western Interstate Energy Board


RETI 2.0 Planning Goals
Workshop
January 29, 2016

- 1. WECC's Common Case
- 2. RPS policies and renewable energy development
- 3. Study case: Coal plant retirement future

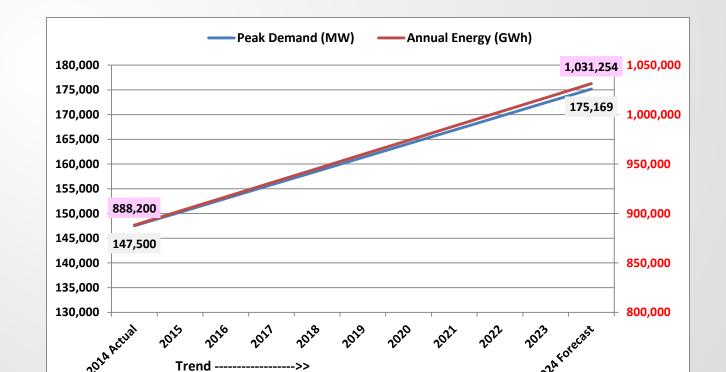
Western Interconnection Footprint

1. WECC's Common Case

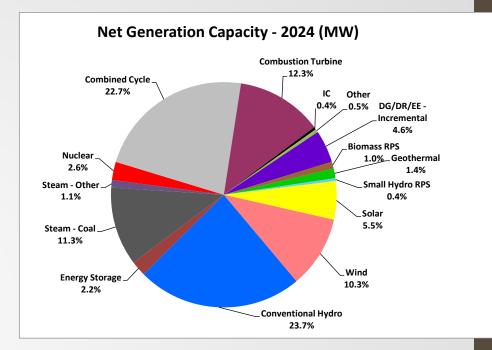

WECC's 2024 Common Case

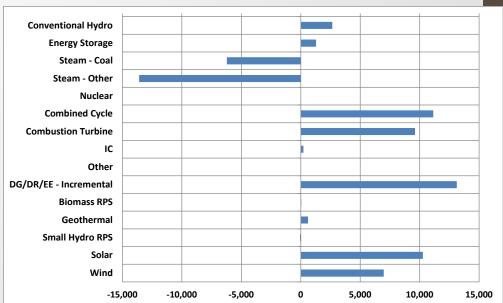

- Developed by WECC's Transmission Expansion Planning Policy Committee (TEPPC)
- Expected 10-year future
 - Production cost model for the year 2024 that simulates hourly power generation for the Western Interconnection
 - Critical assumptions:
 - Load forecasts for every Balancing Authority
 - Generation resources consistent with RPS policies and planned coal plant retirements (7200 MW)
 - Transmission system including projects expected to be online 2024
- New 2026 Common Case being developed, 2016 1st Qtr
 - Updated data
 - Modeling improvements
 - "Roundtrip" capability production cost model and power flow model

Inputs to the Common Case


Resources

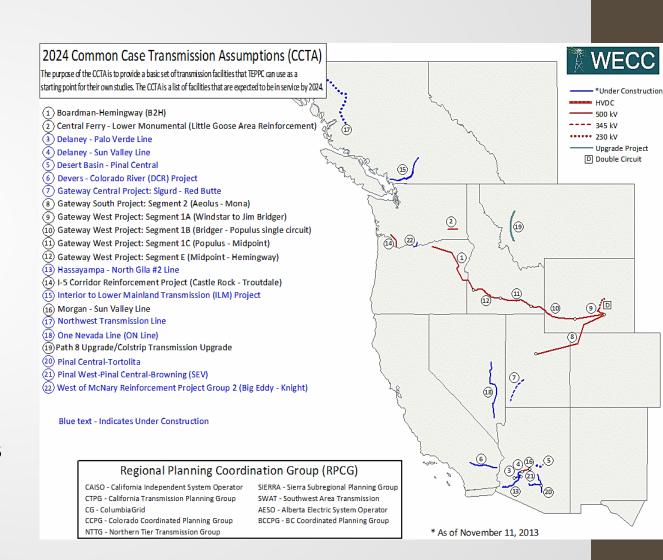
Load forecast 2024


- Peak demand: compound annual growth rate 1.7%
- Energy demand: compound annual growth rate 1.5%



Generation 2024

- Fossil Retirements:
 - Coal 7 GW
 - OTC / Other steam -14 GW
- Fossil Additions
 - Gas generators +20 GW
- Renewable Additions
 - GW Solar +10 GW
 - Wind +7 GW
- Demand-side Additions:
 - DG-DR-EE +13 GW



Transmission 2024

- Common Case Transmission Assumptions (CCTA)
 - Proposed transmission projects likely to be completed 2024
 - 22 projects and line additions for +2,500 miles

Uses of the Common Case

TEPPC Process

2024 Common Case

Study Cases (i.e. alternative future)

Expansion Cases (i.e. add transmission)

Outside TEPPC

- Regional Planning Groups
- EIM Studies
- WIEB Gas-Electric Study
- NREL's Western Wind and Solar Integration Studies
- WECC-WIEB Flexibility
 Assessment Study
- Clean Power Plan analysis

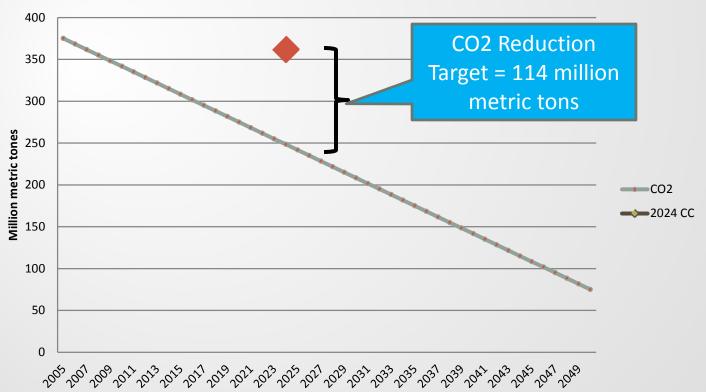
2. RPS policies and renewable energy development

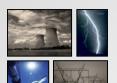
RPS and Renewable Energy

State/ Province	RPS% for IOUs in 2024	2024 RPS Target	2024 Common Case Renewable Energy (GWh)	2024 Adjusted Load Forecast (GWh)
AB			7,201	113,234
AZ	14.0%	8,325	6,446	103,465
ВС			3,441	68,154
CA	33.0%	93,377	95,362	321,134
CO	30.0%	11,453	10,283	61,476
ID			1,824	29,013
MEX			6,259	14,985
MT	15.0%	1,061	920	14,981
NV	24.5%	8,410	10,231	44,241
NM	20.0%	3,028	2,424	19,059
OR	24.0%	11,593	9,603	58,056
TX	5.0%	429	164	8,458
UT	18.7%	5,498	2,205	31,396
WA	15.0%	12,821	11,062	112,464
WY			2,727	20,022
Total		155,994	170,151	1,020,137

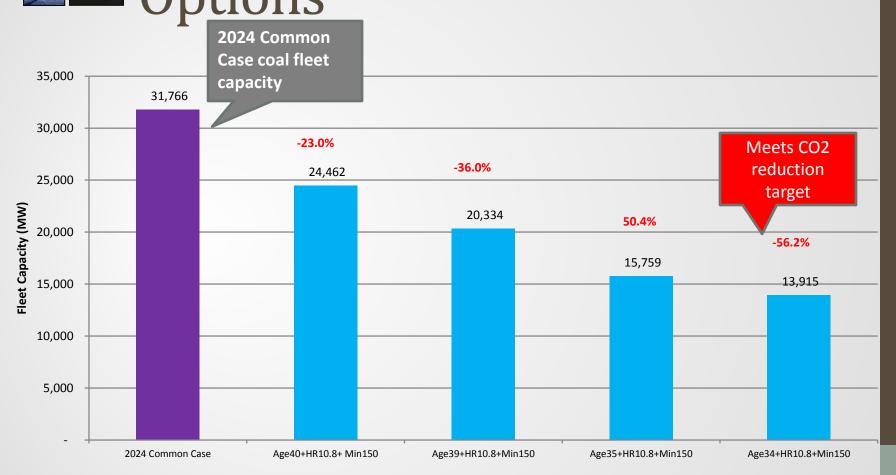
- 10 States with RPS
- State RPS policies are all unique
- Non-RPS states/provinces have significant RE
- 2024 Common Case estimates:
 - RPS RE = 15.3%
 - Total RE = 16.7%
 - Before SB 350 and CPP

3. Coal Retirement Study


Study Objective


 Target coal plant retirements to reduce emissions in 2024 to a trajectory moving to an 80% reduction in emissions by 2050 relative to the 2005 level.

Yr		CO2		% change
	2005		375	
	2024		248	33.8%
	2034		182	51.6%
	2050		75	80.0%
		_		

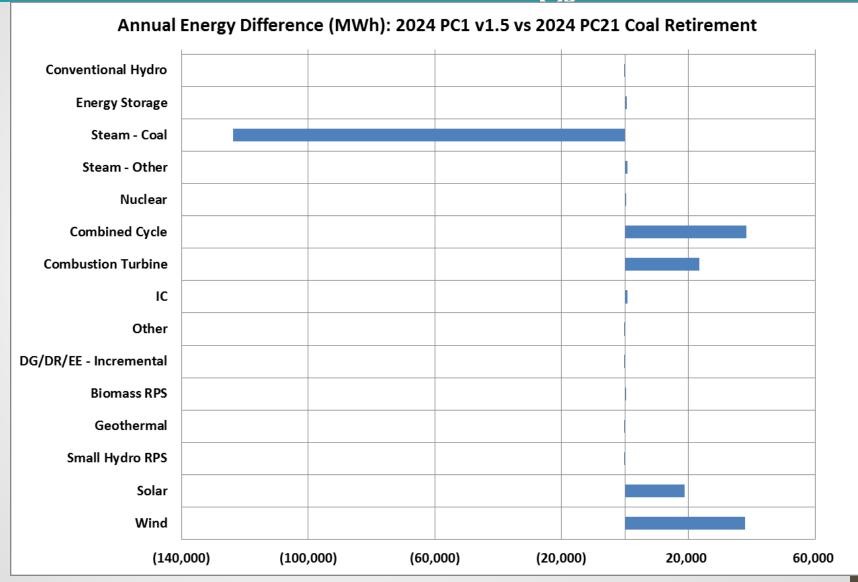

2024 Common Case	362
2024 Target	248
Reduction from 2024	114

CO2 Emission Path to 80% Reduction in 2050

Coal Fleet with Retirement

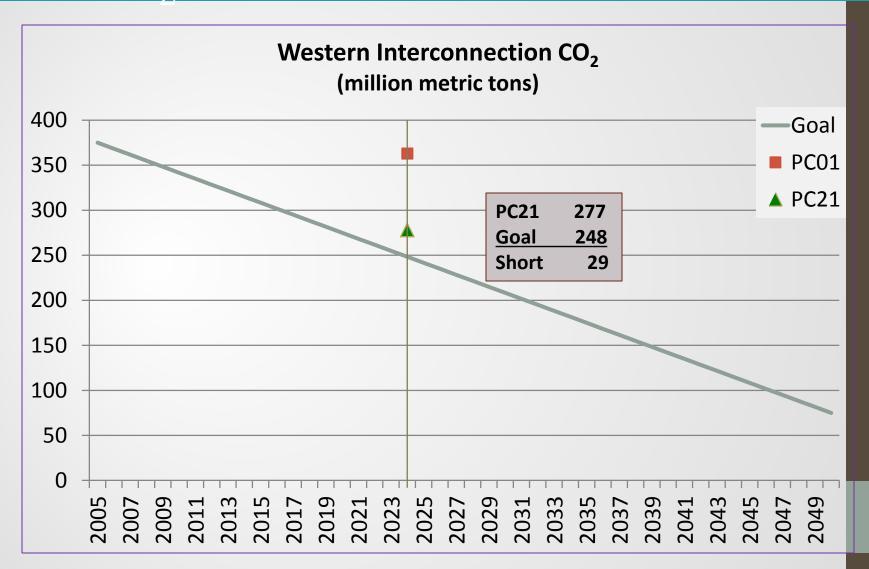
PC21 Additional Coal Retirements

AB	AZ	CA	СО	MT	UT	WY
Battle River 4,5 [537]	Apache 2,3 [350]	ACE Cogen [103]	Comanche 1,2 [660]	Colstrip 1,2,3 [1354]	Huntington 1,2 [909]	Dave Johnston 1-4 [762]
Genesse 2 [390]	Cholla 1,3 [387]	Argus 8,9 [50]	Craig 1,2 [863]		Intermountain 1,2 [1800]	Jim Bridger 1,2,3 [1581]
Sheerness 1,2 [780]	Coronado 1 [380]	Casterville [1]	Hayden 1,2 [446]	NM	KUCC 1-4 [175]	Naughton 1,2 [357]
Sundance 3 [362]	H.W. Sundt 4 [156]	Fellow [1]	M Drake 5,6,7 [254]	Four Corners 4,5 [1540]	Sunnyside [53]	Neil Simpson 2 [80]
	Navajo 2,3 [1500]	Jackson Valley [21]	Nucla 1-4 [100]			Wygen 1,2 [180]
		Lassen [22]	R D Nixon 1 [208]	NV	WA	Wyodak [340]
		Mt Poso [35]		N Valmy 2 [268]	Centralia 2 [688]	
		Phillips Carbon [16]		TS Power 1 [227]		
		Portland Cement [28]				
		Port of Stockton [44]				


Replacement Sources

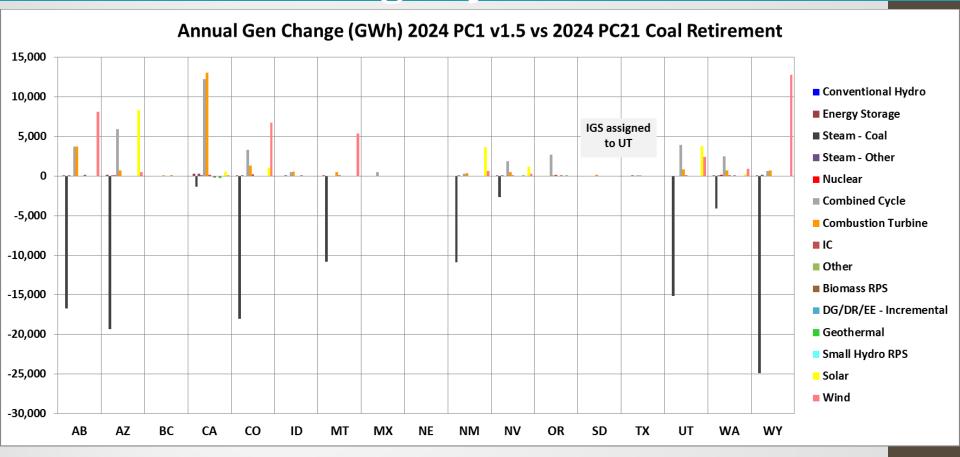
Repl. Type	AB	AZ	CA	со	MT	NM	NV	UT	WA	WY	Total	Est. Energy	%
CC (MW)	150	150	0	150	0	0	0	150	0	0	600	3,162,240	4.7%
CT (MW)	100	100	0	100	100	100	0	100	100	100	800	2,108,160	3.1%
ES (MW)	100	200	200	300	100	200	200	200	100	100	1,700	2,986,560	4.5%
Wind (MWh)	8,100,000	500,000	90,000	7,100,000	5,360,000	1,100,000	300,000	2,400,000	900,000	12,800,000	38,650,000	38,650,000	57.7%
Solar (MWh)	0	8,350,000	1,020,000	1,050,000	0	3,800,000	1,200,000	3,800,000	200,000	0	19,420,000	19,420,000	29.0%
EE (MWh)	0	200,000		0	0	180,000	100,000		100,000	0	680,000	, ,	
DR (MWh)	0	0	0	0	0	0	0	0	0	0	0	0	0.0%
Est. Total (MWh)	9,329,760	10,455,440	1,461,360	9,731,120	5,799,200	5,694,880	1,951,360	7,705,440	1,639,200	13,239,200	67,006,960	67,006,960	
Retired MWh	16,553,012	19,682,519	1,862,735	18,045,821	10,605,822	10,666,663	2,630,431	15,667,241	4,079,949	25,356,690	125,150,883		
Difference	7,223,252	9,227,079	401,375	8,314,701	4,806,622	4,971,783	679,071	7,961,801	2,440,749	12,117,490	58,143,923		
% Replaced	56.4%	53.1%	78.5%	53.9%	54.7%	53.4%	74.2%	49.2%	40.2%	52.2%	53.5%		
	Assumed Capacity Factors												
		CC	СТ	ES									
		60%	30%	20%									

The Retired MWh represents the energy produced by the PC21 retired coal resources in the 2024 v1.5 common case. The EE energy was modeled as a load reduction and resulted in a total reduction of about 1700 GWh. Note that the replacement assumptions only replace 53% of the energy that was retired.


WESTERN ELECTRICITY COORDINATING

Difference in Annual Energy - WECC

NESTERN ELECTRICITY COORDINATING


2024 CO₂ PC21 Coal Retirement Case

 $oldsymbol{\mathcal{N}}$ ESTERN ELECTRICITY $oldsymbol{\mathsf{C}}$ OORDINATING

OIINCII

Generation Change by State and Fuel

WESTERN ELECTRICITY COORDINATING

Thomas Carr

Western Interstate Energy Board 303-573-8910 tcarr@westernenergyboard.org

