DOCKETED				
Docket Number:	15-RETI-02			
Project Title:	Renewable Energy Transmission Initiative 2.0			
TN #:	206667			
Document Title:	CTC Global Comments to RETI 2.0			
Description:	N/A			
Filer:	System			
Organization:	CTC Global/Dave Bryant			
Submitter Role:	Public			
Submission Date:	11/18/2015 9:17:40 AM			
Docketed Date:	11/18/2015			

Comment Received From: Dave Bryant Submitted On: 11/18/2015 Docket Number: 15-RETI-02

CTC Global comments to RETI 2.0

Additional submitted attachment is included below.

CTC Global Comments regarding RETI 2.0

November 18, 2015

California Energy Commission Dockets Office, MS-4 1516 Ninth Street, MS-34 Sacramento, CA 95814

Dear Commissioners,

CTC Global appreciates the opportunity to comment on the Joint Agency Workshop on the Proposed Organization Structure and Work Plan for the Renewable Energy Transmission 2.0 Initiative. Our primary objective is to point out the importance of transmission line efficiency, capacity and reliability.

Following the Western Energy Crisis of 2000 and the Major East Coast Blackout of 2003 (that was ultimately linked with excessive conductor sag after telemetry errors, computer reboot failures and poor communications set the stage), CTC Global developed and commercialized a bare overhead conductor known as ACCC (Aluminum Conductor Composite Core) to mitigate the thermal sag. The reduced sag characteristic and other properties also allowed utilities to double the capacity of existing corridors to alleviate grid bottlenecks, reduce congestion costs and enable the integration of renewables without the need, in many cases, to build new transmission lines. To date nearly 35,000 km of ACCC conductor has been deployed to approximately 375 projects in more than 35 countries.

The reason that CTC is bringing this to your attention actually relates to this technology's efficiency. Because the ACCC conductor uses a carbon fiber core that is substantially stronger and lighter than steel, it is able to utilize approximately 28% more conductive aluminum. The improved efficiency serves to reduce line losses by 25 to 40% or more compared to any other conductor type of the same diameter and weight.

Though the importance of improved efficiency for generators, transformers and demand side appliances are well known, widely encouraged, and often subsidized, it seems strange that very little consideration is given to the electric wires themselves that connect all of these devices.

Line loss reductions not only serve to reduce fuel consumption - and electrical costs - they also reduce associated emissions and/or improve the economic viability of renewable resources. Additionally, line loss reductions also free-up existing generation capacity that is otherwise wasted.

CTC Global recently met with team members at the CEC and presented a case study. The case study considered an example that closely replicated a 240 circuit mile project nearing completion in Texas by American Electric Power. As an FYI, AEP's project was undertaken while the line remained energized. For simplification, the case study presented to the CEC team by CTC Global considered a 100 mile section of a 345 kV line that used double-bundled ACCC conductor to replace double-bundled ACSR conductor of the same diameter and weight. Not unlike the AEP project, the line considered a 3,200 amp peak load. A load factor of

62% was assumed. The actual capacity of the ACCC conductor in this configuration (with certain ambient assumptions made) is ~3,800 amps, meaning that there would be even more capacity available for emergency conditions.

The case study presented to the CEC staff offered the following findings:

- ACCC increased line capacity over ACSR by 57% (with additional capacity for growth or N-1 emergency conditions).
- ACCC reduced line losses by 30% compared to ACSR which saved ~300,000 MWh per year.
- The value of reduced line losses (@ \$0.06/kWh) = \$17,745,387 per year.
- The approximate cost of ACCC for this project = \$12,672,000.
- If the cost of installation was an additional \$20,000,000, the payback would be less than 2 years.
- Emission reduction saving (assuming the national average of all combined sources at 1.372 pounds of CO2 per kWh) = 184,060 Metric Tons per year. (One car = 3.75 MT per year)
- Improving the efficiency of this 100 mile section of a 345 kV line would have the same impact as taking 49,082 cars off the highway.
- Line loss reductions in this scenario would also free-up ~50 MW of generation that is otherwise wasted supporting line losses.
- Assuming the cost of installing new generation was \$1.2 million per MW, this would save ~\$60,000,000.

CTC encourages RETI 2.0 stakeholders to consider the importance of leveraging proven conductor technology to further improve the efficiency, capacity and reliability of the grid as RETI 2.0 plans evolve further. A screen shot of the case study analysis is shown below.

Respectfully Submitted,

/s/ Dave Bryant Director Technology CTC Global Corporation <u>dbryant@ctcglobal.com</u>

	ave Comparison to PDF	100 M	100 Mile 345 kV Reconductor Case Study			
Conductor Information		Base Conductor	Conductor #1	Conductor #2	Conductor #3	Version Language Voltage Type Select Units
Conductor Information	Type:	ACCC®	ACSS	ACSS/HS-285	ACSR	4.0 English AC US Units
	Size (kcmil Al - Code Word): kc		komil 795 - DRAKE	komil 795 - DRAKE	komil 795 - DRAKE	Environmental Inputs
	Aluminum Area (kcmil):	1025.6	795.0	795.0	795.0	89.9 Sun Radiation (Wift ²) Input Solar Radiation Parame
	Diameter (in.):	1.108	1.108	1.108	1.108	30.0 Ambient Temp. (*C)
Rated Strength (Ibf):		41,200.0	25,900.0	32,600.0	31,500.0	2.00 Wind (f∜sec) 150 Elevation (ft)
Weight (Iblkft): DC Resistance at 20°C (ohms/kft):		0.0163	0.0208	0.0208	0.0214	0.60 Solar Absorptivitu
DL Hesistance at 201L (onmsrkrt): AC Resistance at 25°C (ohmsrkrt):		0.0169	0.0215	0.0215	0.0221	0.60 Emissivity
AC Resistance at 75°C (ofmarkit). AC Resistance at 75°C (ofmarkit):		0.0202	0.0257	0.0257	0.0263	90 Wind Angle (deg.)
						0 Azimuth of Line (NS=0, EW=90)
	Conductors per phase: Circuits:	2	2	2	2	36Latitude (neg = South)
Ân	npacity (A) at Temperature (*C): 10	2,503	100 2,215	100 2,215	100 2,192	9 Day of Month
	at Rated Operating Temp (*C):		200 3,380	200 3,380	75 1.721	15 Time (24 hrs.)
	city (A) at Maximum Temp (*C): 2		250 3,810	250 3,810	100 2,192	Clear Atmosphere
Line Losses (100 miles, 3200 Peak Amps)						Load and Generation Cost Assumptions
	perature (®C) at Peak Ampacity:	146	181	181	184	100.0 Line Length (miles)
	ak Operating Amps (ohm/mile):	0.13093	0.18330	0.18336	0.18770	345 Voltage (kV)
	First Year Line Losses (MWh):	739,474	1,035,231 295,756	1,035,566 296.092	1,060,067 320,593	3,200 Peak Operating Amps
ACCC® 1026 - DRAKE - Reduces Fir: ACCC® 1026 - DRAKE - Reduces			235,756	296,092	320,593	62% Load Factor 42% Loss Factor
ACCC® 1026 - DRAKE - Reduces ACCC® 1026 - DRAKE - Reduces Firs			17,745,387	17,765,509	19,235,574	1912 Peak Power per Circuit (MW)
ACCC@ 1026 - DRAKE - Line Loss S			5.60	5.61	6.07	3 Phases/Circuit
ACCC® 1026 - DRAKE - R	educes 30 year line loss by (\$):		532,361,625	532,965,263	577,067,228	60 Cost of Energy Generation (\$MWh)
						0% Load Increase Year
ACCC® 1026 - DRAKE - Reduces Firs			184,060	184,268	199,516	US Average Select Generation Fuel Type
ACCC® 1026 - DRAKE - Reduces 3	0 year CO ₂ generation by (MT):		5,521,789	5,528,050	5,985,487	1.372 CO ₂ (Ib/kWh)
Generation Savings	d to Supply Line Losses (MW):	124.69	174.56	174.62	178.75	
	is generation capacity by (MW):		49.87	49.93	54.06	\$1,200 Installed Generation Cost (\$/kW)
	reduces cost of Capacity by (\$):		\$59.844,288	\$59,912,145	\$64,869,773	-38 Required Generation Reserve (%)
Initial Sag/Tension at Stringing Temperature (5C):	Ruling Span (ft):	1000.0	1000.0	1000.0	1000.0	Initial Sag/Tension at Stringing Temperature (5C):
midal Sagrension a Samging Temperature (Se).	% RTS:	15.0%	24.0%	19.0%	20.0%	mittal Sagirension at Stringing Temperature (SE).
Sag at li	nitial Sagging Temperature (ft):	21.30	22.00	22.10	21.70	5.0 Initial Sagging Temperature (*C)
Total Initial Tension at Towe	r at Sagging Temperature (Ibf):	12,360.0	12,432.0	12,388.0	12,600.0	34.0 Maximum Allowable Sag (ft)
	Conductor Weigh#phase (Ib/kft):	2103.6	2186.8	2186.8	2188.0	
Sag/Tension at Above Stringing Temperature:	T(8C);	110	101	101	10.4	Sag Comparison Graph
Sag at Peak Operating Amps	Temp(®C): Sag (ft):	146 28.10	181 36.29	181 36.35	184	45
Sag at Feak Operating Amps	Total Tower Tension (Ibf):	9,358.0	7,532.0	7,520.0	7,504.0	40 Click to See
	Temp([®] C):	180	200	200	75	35 Larger Sag/Temp. Chart
Sag at Rated Operating Temperature	Sag (ft):	28.33	37.23	37.30	29.65	30 Sagrenp, charc
bag at haled operating reinperature	Total Tower Tension (Ibf):	9,282.0	7,342.0	7,330.0	9,224.0	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>
	Temp([®] C);	200	250	250	100	Click to See
Sag at Maximum Temperature	Sag (ft):	28.46	39.65	39.71	32,19	15 ACCC*-1026 - DRAKE Amps/Temp. 15 AC55-793 - DRAKE Chart
	Total Tower Tension (Ibf):	9,238.0	6,894.0	6,884.0	8,498.0	10 ACS9/95-DRAKE
	Max. Temp(PC):	201	137	136	101	5 ACS9795 - DRAKE
Max Temperature at Max Allowable Sag of 34 ft.	Sag (ft):	28.47	34.06	34.08	32.24	
	Total Tower Tension (Ibf):	9,236.0	8,024.0	8,022.0	8,484.0	0 50 100 150 200 250
Ampacity Cells Turn Red if Max Capacity is not reached	Ampacity (A):	3,836	2,728	2,716	2,208	Temperature (°C)
Wind / Ice or Cold Temperature Sag/Tension						Wind / Ice Conditions
wind rice of Cold Temperature Sagriension	Total Sag (ft):	29.90	29.84	29.89	26.60	-20 Temperature (*C) NESC HEAVY
	Total Tower Tension (Ibf):	20,726	21,100	21,062	23,664	40.0 Windspeed (mph)
% RTS cells turn red when Max. % RTS is exceeded		25.2%	40.7%	32.3%	37.6%	0.30 K-Factor (Ibift)
Knee Point Temperature Sag/Tension:						0.50 Radial Ice Thickness (in.)
_	Knee Point Temperature (*C):	60	92	92	101	57.0 Ice Density (Ib/ft ^e)
	Sag (ft):	27.54	31.72	31.79	32.24 8484.0	60.0 Max. % RTS
	Total Tower Tension (Ibf):	9550.0	8618.0	8600.0	8484.0	
Environmental Inputs: Sun Radiation (Wift?) = 89.9, Ambient 1	[emp. (PC) = 30. Wind (fit/sec) = 2. F	levation (ft) = 150. Solar A	bsorptivity = 0.6. Emissivity =	0.6. Wind Angle (dec.) = 90		
Load and Generation Cost Assumptions: Line Length (miles) =						
Generation (\$M/Wh) = 60, CO ₂ (Ib/kWh) = 1.4, Load Increase/Y						
/ind/lce or Cold Temperature Sag/Tension: Temperature (*C)	=-20, Windspeed (mph)=40, K-Fac	tor (Ibift)=0.3.Radial Ice Th	hickness (in.)=0.5, Ice Densitu	(Ibft ^e)=57, Max. % RTS=60		