DOCKETED				
Docket Number:	14-AAER-02			
Project Title:	Computer, Computer Monitors, and Electronic Displays			
TN #:	206278			
Document Title:	ITI & Technet 9/29 F2F Presentation: ODD & Power Supplies			
Description:	N/A			
Filer:	System			
Organization:	Chris Hankin, Information Technology Industry Council			
Submitter Role:	Public			
Submission Date:	10/5/2015 6:38:54 AM			
Docketed Date:	10/5/2015			

Comment Received From: Chris Hankin, Information Technology Industry Council

Submitted On: 10/5/2015 Docket Number: 14-AAER-02

ITI & Technet 9/29 F2F Presentation: ODD & Power Supplies

Additional submitted attachment is included below.

ODD / PSU Idle Reduction

ODD Trends

- 4K (Ultra HD) is current limit of resolution capabilities in BD
- 66GB dual 100 GB triple layer
- Network bandwidth improvements and application/SW download are displacing software distribution on OD
- Music transition to download MP3 and cloud has displaced music application
- Movies transitioning to download / streaming displacing movie distribution over DVD/BD
- Attach rates in mobile and DT PC's continues to decline

ODD idle reduction opportunities

- Low power idle drives
- 200-500 mW idle power
- Zero Power ODD implementation
 - Design changes required to maintain functionality of drive open/close button
 - Alert / media change indication from drive (prevent OS from polling for media change)
 - Mobile / slim line drives with new connectors enable capability in DT other design changes needed

DT ZPODD change requirements

- Need to consider support
 - On Host (PCH) side
 - Make sure the host is connected to the right pins/ signal on the connector
 - BIOS/ Driver
 - BIOS has to properly configure and control GPIO's to turn ON/OFF power
 - Driver needs to make sure device is powered off appropriately
 - On Motherboard
 - Need the slimline connector
 - Power off circuitry (5V rail controlled by a FET connected to GPIO)
 - On Device
 - Need to use mobile slimline optical drives

ZPODD Platform Level Support

ZPODD Details

- Zero power ODD is implemented on mobile systems using a special type of connector standard called "slimline SATA"
- This new connector has a new power connection with 6 pins
- In addition to +5V and GND two new signals were added
 - Device Present (DP)
 - Manufacturing Diagnostic/ Device Attention (MD/ DA).

BOM Impact

- Drive Impact For moving to slimline ODD drive:
 - For DVD-RW drives: \$4 (\$15 for DT (or half height) and \$19 for Slimline)
 - For Blu-ray drives: (BD combo and BD writer) no cost difference.
- Cost impact to get the slimline connector on the motherboards:
 \$0.95
- Power off circuitry Impact: \$0.16
 - For signal Pull up
- Potential BOM impact could be an extension cable required for extending in DT chassis - \$7-\$10
- Total Cost Impact:
 - Considering DVD drives: \$4+\$0.95+\$0.16 -> \$5.11
 - Considering BD drives: \$0.95+\$0.16 -> \$1.11

TechNet Potential Energy cost savings

4yr energy cost – idle 4380 hrs/yr @ \$0.16/kWh

Conclusions / Next Steps

- With DVD still majority attach for ODD ZPODD costs exceed benefits
 - ZPODD on BD @ \$1.11 only cost effective if BD idle power > 0.4 W
 - ZPODD on DVD @ ~\$5 only cost effective if DVD idle power > ~1.8W
 - All systems capable of ODD will suffer much of the costs even if they don't ship with ODD

Short term

- select low idle power ODD's (ability t support customer needs TDB)
- Work with ODD Suppliers to minimize idle power <u>without</u> ZPODD implementation
- Medium term and long term
 - Smaller form factors implement slim line ODD drives

Concerns:

- Tight limits dependent upon idle power values of ODDs may add significant risk to production
 - Little data available on variability of these levels

DESK TOP PSU IDLE POWER EFFICIENCY STATUS AND IMPROVEMENTS

DT Trends

- Lower Energy consumption trends
 - Smaller form factors
 - Reduced TDP and max power Processors / chipsets
 - Reduced expansion capabilities
 - Natural silicon idle and active power reductions over time
 - Process improvements
 - Higher integration
- Increasing Energy Consumption trends
 - Higher bandwidth network connectivity
 - Addition of wireless connectivity
 - Larger numbers of expansion connectors / ports
 - Higher display resolution
 - Higher performance demands
 - More complicated code with similar responsiveness expectations
- Idle power reductions forcing lower PSU operating points
 - PSU design changes may be needed to prevent negative returns on idle power reduction investments

№ TechNet Load / Efficiency for 10W Idle

- Load power vs PSU Efficiency required to hit 10W wall power
- 6W Load Power point selected for further analysis in following slides

3 curves are 4, 6 and 10 watt idle load power Proposed Idle power limits forcing PSU operation below 6% rated load

TechNet Sample of PSU Eff. Vs Load

FechNet Sample of PSU Eff. Vs Load

FechNet Sample of PSU Eff. Vs Load

TechNet PSU Efficiency Survey data

- @ 6W Load power existing surveyed PSU's >= 300W have inadequate Efficiencies to hit 10W idle power limit
- PSU Changes will be essential to 10W or lower idle power (PSU >= 300w)
 - Achievable Efficiencies and resultant costs currently being evaluated

PSU Eff. Cost Estimates

Earlier PSU Cost data

Efficiency Baseline APFC 68% Efficient	300 Watts OEM Cost/ Consumer Cost	460 Watts OEM Cost/ Consumer Cost	270 Watts OEM Cost/ Consumer Cost
80+ Bronze	\$2.35/\$3.80	\$3.65/\$5.95	\$2.55/\$4.15
80+ Silver	\$5.00/\$8.15	\$7.10/\$11.55	\$4.85/\$7.90
80+ Gold	\$9.15/14.90	\$13.65/\$22.20	\$8.60/\$14.00
80+ Platinum	Not available in multi output format	Not available in multi output format	Not available in multi output format

- ITI aggregated costing information
- IOU part replacement analysis relied on Gold level PSU
- End User Cost should be at least 14.00 just for the PSU changes on systems with APFC PSU's
- \$10 cost adder required for systems that have to transition from Bronze to Gold
- APFC to Low load Eff. optimized GOLD PSU likely closer to 1.25*14 or \$17.5

TechNet PSU Development timeline

	Time (wks)	
Task	Best case	Typical-Long
Design new PSU	5	8
PCB Layout	2	2
Build Proto PSU	2	3
Testing / Validation	3	5
Design Changes / Optimizations	2	4
Preproduction layout/manufacture / test	5	6
Manufacture Production ready PSU proto systems	3	4
PSU Safety / regulatory certifications (Production quality hardware required)	12	20
Manufacture Volume production systems	2	3
Deliver to OEM	1	2
Manufactrure PC Systems	3	4
Ship to distribution / sales outlets	5	5
Time start to production ready systems in market (wks)	45	66
Time start to production ready systems in market (yrs)	0.9	1.32

Note: Changes to silicon controller add 9 to 18 months to this schedule Issues at any point in schedule may require iteration of design build (6-8wks)

TechNet PSU Light Load Eff. Cont.

- Opens/Concerns:
- Price data point based upon retail analysis
 - ~\$3.25 per % of increased eff. above 70% (retail, single unit purchase)
 - to the consumer, low cost PSU to Titanium jump = 24(%)*\$3.25 = +\$78ex: 700W: \$55 AVG to \$132 AVG (2.4x)
 - low cost PSU is not baseline. Energy Star/Bronze supply is baseline. ex: 11(%)*\$3.25 = +\$36, \$91 AVG to \$132 AVG (1.5x)
- Stability Some PSU's have minimum load power levels to maintain stability

PSU Light Load Cont:

- Looking Forward:
- Price super high eff. PSUs are very new time will bring cost deltas down, but not for free as advanced techniques and circuits required
- Titanium has very high and broad eff. (~94% over 10-90% load) this is not needed.
 - (80% eff. + light load efficiency would suffice) = less \$
- Traditional PSU optimizations is focused on 20-90% loading.
 - Light load focus could produce more optimal eff. curves at light load
- Stability need to work with PSU vendors to understand topology limitations requiring minimum loading
- Variability of light load implementations in production DT PSU's needs to be understood

PSU Light Load Eff.

- Light Load PSU Improvement Opportunities
 - Smaller transistors for reduced capacitance
 - Higher on resistance FETs Higher I^2 R losses
 - Magnetic / Capacitance improvements
 - Cost adders and may reduce Eff at other points.
 - *Reduced Operating Frequency @ light load
 - Complicates EMI emissions qualification
 - May prove problematic for pf correction in PSU's
 - Pulse skipping Discontinuous Operation
 - Risk losing ability to handle load steps

^{*} New Silicon likely needed requiring additional 9-18 mo. to implementation schedule

Next Steps

- Short Term 12-24 mo
 - Use existing PSU's on the market selecting good low load eff.
 - Transition to single output PSU (Common now but not pervasive)
- Medium Term 24-36 mo.
 - Low load optimization of existing PSU's using existing system architecture
 - Low load Eff. Optimization may sacrifice high load Eff.
 - Implementation costs still being evaluated
- Long Term 36mo. Plus
 - Low load optimization of PSU's requiring silicon changes
 - Variable frequency / pulse skipping ...
 - Evaluate Light load indication system to PSU
 - PSU redesign plus 6-9 mo min to evaluate opportunities for light load indication
 - Implementation costs still being evaluated
- Variability of light load efficiency in production may be significant
 - PSU losses become dominated by parameters insignificant in normal operation
 - Aggressive limits may drive significant yield loss driving up costs