DOCKETED		
Docket Number:	15-IEPR-10	
Project Title:	Transportation	
TN #:	206225-2	
Document Title:	Medium and Heavy Duty Vehicle Attributes and Their Effect on Fuel Economy by Kevin Walkowicz of NREL	
Description:	9.30.2015 Staff Workshop Energy Demand Cases and Forecast of Vehicle Attributes for 2015 Transportation Energy Demand	
Filer:	Raquel Kravitz	
Organization:	National Renewable Energy Laboratory (NREL)	
Submitter Role:	Public	
Submission Date:	9/29/2015 11:11:59 AM	
Docketed Date:	9/29/2015	

Medium- and Heavy Duty Vehicle Attributes and Their Effect on Fuel Economy

Kevin Walkowicz National Renewable Energy Laboratory

Presented to the California Energy Commission September 30 2015

MD & HD Attributes Analysis – A Few Points

MD & HD vehicle market is much different than LD

- Commercial customers are almost always focused on ROI, cost & duty cycle
- Many, many different duty cycles, engines, chassis, combinations
- Small build sizes compared to LD very low volumes
- Fleets and OEMs would like to maximize profitability by using economy of scale, but 'Commonization' across platforms requires an in-depth understanding of vocational use and understanding of system performance across vocations
- Effects of vehicle parameters/attributes are different for each customer/vocation – don't expect same mileage for different fleets
- What works well in one application will not work well in another i.e.

NREL's Commercial Fleet Testing & Analysis Background

Using a proven protocol to deliver test results, aggregated data, and detailed analysis. Approach:

- 3rd party unbiased data: Provides data that would not normally be shared by industry in an aggregated and detailed manner
- Over 6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 600 different vehicles since 2002
- Data, Analysis, and Reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy.
- Results help:
 - Guide R&D for new technology development define barriers to better ROI/MPG
 - Help define intelligent usage of newly developed technology
 - Help fleets/users understand all aspects of advanced technology

NREL's Testing Approach: Effect of Variable Attributes

Evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles - in partnership with commercial and government fleets and industry groups vehicles.

Collect and Analyze:

- Drive cycle and system duty cycle analysis
- ☐ Subsystem performance data & metrics (ESS, engine, after-treatment, hybrid/EV drive focus)

To Assess:

- Operating cost/mile
- In-use fuel economy
- Chassis Dynamometer emissions and fuel economy
- Scheduled and unscheduled maintenance
- Warranty issues
- Reliability (% availability, MBRC)
- Implementation issues/barriers

Fleets

UPS, FedEx, Coke, Frito-Lay, Foothill Transit, PG&E, Miami-Dade, Verizon, Walmart, Waste Management

+

Vehicle & Equip Mfg's Proterra, Navistar, Smith EV, Eaton, Allison, BAE, EDI, Altec, International, PACCAR, Oshkosh, Odyne, Parker-Hannifin, Cummins

П

Useful
Data,
Analysis
and
Published
Reports

Current Projects – a broad portfolio

ARRA EV Fleet Data Current DOE Projects Collection Projects UPS HHV Miami HHV Smith Solazyme **Refuse Trucks** Newton biofuel Frito Lay EV **Natural Gas Navistar Refuse Trucks** eStar Fleet **Battery EV** Truck stop **Transit Bus** Electrification **Platooning** PG&E **EV - V2G** Odyne Electrified **School Bus PHEV Utility Trucks CA Air Resources Board (CARB) EPA SCAQMD** Fleet DNA Heavy Hybrid Vehicle Analysis Heavy-Duty Phase II GHG **Drive Cycle Development Zero Emissions Aerodynamics Device Testing Cargo Transport**

Next Up for Evaluation: Autonomous & Connected Vehicles

Field Data & Analysis Tools / Approach

Data from Field Evaluations helps populate FleetDNA Database – define usage

DOE Analysis Tools (Autonomie, DRIVE, FASTSim, AFleet, etc.) used to analyze and investigate impacts of vehicle attributes & technology in specific usage

Published information and data used to identify which attributes have biggest effect on mpg, emissions, ROI

Collect Lab and Field Data

Capture, Store and Analyze

Explore & Optimize

Communicate & Inform

Quantify
Technology
Attributes for
Individual
Vocations

Database of Usage Data

Drive Cycle Characterization Tool

System Simulation Tool

Lifecycle cost / GHG tool (ANL)

Vehicle Modeling/ Simulation (ANL)

Fleet DNA: Define the Usage

Objectives:

- Capture and quantify drive cycle and technology variation for the multitude of medium- and heavy-duty vocations
- Provide a common data storage warehouse for mediumand heavy-duty vehicle data across DOE activities and labs
 www.nrel.gov/fleetdna
- Integrate existing DOE tools, models, and analyses to provide data driven decision making capabilities

For Government : Provide in-use data for standard drive cycle development, R&D, tech targets, and rule making

For OEMs: Real-world usage datasets provide concrete examples of sustamer use profiles

examples of customer use profiles

For Fleets: Vocational datasets help illustrate how to maximize return on technology investments

For Funding Agencies: Reveal ways to optimize impact of financial incentive offers

For Researchers: Provides a data source for modeling and simulation

www.nrel.gov/fleetdna

Usage Analysis: DRIVE Tool

Data Fusion –other duty cycle inputs

Geography and Infrastructure	Vehicle Data	Population
DOHS US Infrastructure	CAN	RL Polk
Navteq Road Layer	GPS	US Census
Tom Tom Road Network	Standard Cycles	EPA Moves
Tom Tom Road Grade	Dyno Results	EMFAC
National Elevation Dataset		TEDB

Applying Tools + Data: understanding attributes across variable drive cycles and duty cycles

<u>F</u>uture <u>A</u>utomotive <u>S</u>ystems <u>T</u>echnology <u>Sim</u>ulator (FASTSim)

- Excel Based Modeling Software
- Speed vs. time drive cycles
- Drive cycle based results
- Fast and easy to use (2.5 seconds per run)

Simulated through a Drive Cycle

Acceleration

Variable Attributes – Exploring Benefits of Technologies

Attribute: Gear Ratios

Powertrain Design – Multi-Speed Transmissions for MD/HD PEVs

Accurate knowledge of duty cycle enables intelligent design

12

Attribute Options: CNG and Shift Points

Field Evaluations – City of Indianapolis Refuse Trucks

Inform vehicle investment decisions with vocation/route specific MPG and payback calculations

Attributes and Regulations

EPA P2 GHG Regulations – National Lab Support

Accurate measures of trucking activity help regulations reflect what happens in the real world and assess impacts on vehicle performance

NREL is working with **EPA** to refine MD/HD duty cycles to be used in GEM models for GHG regulation

- 1. Development of vocational duty cycles
- Generation of road grade profiles for highway cruise cycles

EPA GHG Certification of Medium- and Heavy-Duty Vehicles: Development of Road Grade Profiles Representative of US Controlled Access Highways

ORNL is working with **EPA**, and in cooperation with **NREL**, **CARB**, **Cummins**, **Eaton**, **Allison**, and **ICCT** to develop a host of proposed test procedures relating to "power pack" and engine-in-the-loop evaluation of MD and HD trucks

Attribute: Aerodynamic Drag

Advanced Powertrain & ITS Evaluations – Truck Platooning

Guide R/D process with real world estimations of expected benefit

Objectives:

 Evaluate fuel savings potential of semiautomated truck platooning of line haul trucks under controlled track testing;

Project Partners:

- NREL test design, project coordination, and analysis;
- Peloton vehicle platooning hardware and controls, technical data and information;
- Intertek vehicle procurement and track testing;
- PACCAR test trucks.

Results:

Significant line-haul fuel savings possible through platooning:

- Tests showed fuel savings for the lead (up to 5.3%) and trailing (up to 9.7%) trucks
- The demonstrated "team" savings of 6.4% could be an attractive return on investment for a fleet

Next Step:

Analysis of in-use fleet operationslogistics data to evaluate "Big Picture" fuel savings potential at fleet and national levels

SCAQMD Fleet DNA Approach: NOx

Task 1:
Identification of
Appropriate
Vocations &
Fleets

Task 2: Field
Instrumentation
for Drive Cycle
Data Collection

Task 3: Simulation and Analysis for Powertrain and Technology Assessment

Q4-CY2014

Q1-Q3 - CY2015

Q3-Q4 - CY2015

SCAQMD Fleet DNA Project : Task 1

Lead: Mike Lammert (PI), National Renewable Energy Laboratory (NREL)

Funded by:

Goals/Objectives

- Task 1: Identification of Appropriate Vocations & Fleets
 - Utilized registered vehicle population database, vehicle miles traveled (VMT) database, fuel consumption databases and emissions studies
- Task 2: Field Instrumentation for Drive Cycle Data Collection
 - Top 3 identified vocations from Task 1 chosen
 - At least 30 vehicles for 3 weeks from each vocation; multiple operators
 - Approximately <u>450 vehicle days</u> of operation for each vocation analyzed together using NREL's Drive Analysis Tool
 - Raw data stays with NREL not delivered to SCAQMD
 - Statistics and aggregates used to form a picture of the bell curve of real world operation for each vocation
 - Not looking at individual driving events & activities
- Task 3: Simulation and Analysis for Powertrain and Technology Assessment
 - Exercise models of vehicles on all real observed days of operation
 - Sweep technology solution options such as aerodynamics, low rolling resistance, engine sizing, EV, PHEV, HEV & HHV, B20 & natural gas to estimate impact, benefit & feasibility

Background and Value

- Identifies workable technology solutions for high impact vehicle populations from a data driven analysis view rather than a top down assumed vocation & technology fix view
 - Biggest bang for the buck approach

SCAQMD Fleet DNA Project : Task 2

Lead: Mike Lammert (PI), National Renewable Energy Laboratory (NREL)

Funded by:

Goals/Objectives

- Task 1: Identification of Appropriate Vocations & Fleets
 - Utilized registered vehicle population database, vehicle miles traveled (VMT) database, fuel consumption databases and emissions studies
- Task 2: Field Instrumentation for Drive Cycle Data Collection
 - Top 3 identified vocations from Task 1 chosen
 - At least 30 vehicles for 3 weeks from each vocation; multiple operators
 - Approximately <u>450 vehicle days</u> of operation for each vocation analyzed together using NREL's Drive Analysis Tool
 - Raw data stays with NREL not delivered to SCAQMD
 - Statistics and aggregates used to form a picture of the bell curve of real world operation for each vocation
 - Not looking at individual driving events & activities
- Task 3: Simulation and Analysis for Powertrain and Technology Assessment
 - Exercise models of vehicles on all real observed days of operation
 - Sweep technology solution options such as aerodynamics, low rolling resistance, engine sizing, EV, PHEV, HEV & HHV, B20 & natural gas to estimate impact, benefit & feasibility

Background and Value

- Identifies workable technology solutions for high impact vehicle populations from a data driven analysis view rather than a top down assumed vocation & technology fix view
 - Biggest bang for the buck approach

SCAQMD Fleet DNA Project : Task 3

Lead: Mike Lammert (PI), National Renewable Energy Laboratory (NREL)

Funded by:

Goals/Objectives

- Task 1: Identification of Appropriate Vocations & Fleets
 - Utilized registered vehicle population database, vehicle miles traveled (VMT) database, fuel consumption databases and emissions studies
- Task 2: Field Instrumentation for Drive Cycle Data Collection
 - Top 3 identified vocations from Task 1 chosen
 - At least 30 vehicles for 3 weeks from each vocation; multiple operators
 - Approximately <u>450 vehicle days</u> of operation for each vocation analyzed together using NREL's Drive Analysis Tool
 - Raw data stays with NREL not delivered to SCAQMD
 - Statistics and aggregates used to form a picture of the bell curve of real world operation for each vocation
 - Not looking at individual driving events & activities
- Task 3: Simulation and Analysis for Powertrain and Technology Assessment
 - Exercise models of vehicles on all real observed days of operation
 - Sweep technology solution options such as aerodynamics, low rolling resistance, engine sizing, EV, PHEV, HEV & HHV, B20 & natural gas to estimate impact, benefit & feasibility

Background and Value

- Identifies workable technology solutions for high impact vehicle populations from a data driven analysis view rather than a top down assumed vocation & technology fix view
 - Biggest bang for the buck approach

Follow on SCAQMD / NREL Project

SCAQMD Commercial Zero Emission Vehicles (ComZEV) Roadmap

Project Goals:

- NREL and Ricardo propose the development of a detailed commercial vehicle technology roadmap to accelerate adoption of near-zero and zero-emissions vehicles operating in Southern California that:
 - evaluates vehicle technology options
 - Identifies emissions benefits (both NO_x and CO₂)
 - Defines current cost and realistic expectations of future cost reductions
 - o Identifies *total cost of ownership* and other corporate benefits

- Enables prediction of potential *technology adoption rates* and impacts on fleet (vehicle parc)emissions, including NO_x and CO_2
- The time frame for the roadmap would focus on commercial vehicle technology options through 2023, 2032, 2050.

Data Driven Approach to Analyze Attributes

Data from Field Evaluations helps populate FleetDNA Database – define usage

DOE Analysis Tools (Autonomie, DRIVE, FASTSim, AFleet, etc.) used to analyze and investigate impacts of vehicle attributes & technology in specific usage

Published information and data used to identify which attributes have biggest effect on mpg, emissions, ROI

Collect Lab and Field Data

Capture, Store and Analyze

Explore & Optimize

Communicate & Inform

Quantify
Technology
Attributes for
Individual
Vocations

Database of Usage Data

Drive Cycle Tool

System Simulation Tool

Lifecycle cost / GHG tool (ANL)

Vehicle Modeling/ Simulation (ANL)

Thank You!

Questions?

Kevin.walkowicz@nrel.gov

