| DOCKETED               |                                      |  |  |
|------------------------|--------------------------------------|--|--|
| Docket Number:         | 07-AFC-06C                           |  |  |
| Project Title:         | Carlsbad Energy Center - Compliance  |  |  |
| TN #:                  | 205996                               |  |  |
| <b>Document Title:</b> | Reconsideration Exhibit 3            |  |  |
| Description:           | 07-AFC-06C Reconsideration Exhibit 3 |  |  |
| Filer:                 | Robert Sarvey                        |  |  |
| Organization:          | Robert Sarvey                        |  |  |
| Submitter Role:        | Intervenor                           |  |  |
| Submission Date:       | 9/2/2015 11:05:53 AM                 |  |  |
| Docketed Date:         | 9/2/2015                             |  |  |



# SSS CLUTCHES

### **TECHNICAL SPECIFICATION**

### SIZE 272T SSS ENCASED CLUTCH FOR LMS100 DRIVEN GENERATOR/SYNCHRONOUS CONDENSER

Notes Ref:NR2295Dated:26 October 2011

Rev 1 dated: 23 December 2013

SSS Gears Limited Park Road Sunbury-on-Thames England : TW16 5BL

Telephone : +44 (0) 1932 780644 Telefax : +44 (0) 1932 780018 Email : engineering@sssgears.co.uk Web : http://www.sssgears.co.uk

#### SECTION

#### 1. INTRODUCTION

#### 2. GENERAL DESCRIPTION

- 2.1. SSS CLUTCH DESCRIPTION
- 2.2. SSS CLUTCH CASING
- 2.3 POWER TURBINE BRAKE
- 2.4. THE SSS PINION CLUTCH TURNING GEAR

#### 3. OPERATING SEQUENCE

- 3.1. POWER GENERATION REQUIRED FROM STANDSTILL
- 3.2. SPINNING RESERVE/SYNCHRONOUS CONDENSING FROM GENERATING
- 3.3. GENERATING FROM SPINNING RESERVE/SYNCHRONOUS CONDENSING
- 3.4. STOP FROM GENERATING
- 3.5. STOP FROM SPINNING RESERVE/SYNCHRONOUS CONDENSING

#### 4. CONTROL INTERLOCKS

- 4.1. TURBINE STOPPING BRAKE
- 4.2. TURBINE START
- 4.3. TURNING GEAR INTERLOCKS

#### 5. INSTRUMENTATION

- 5.1. CLUTCH POSITION INDICATION
- 5.2. VIBRATION MEASUREMENT
- 5.3. TEMPERATURE MEASUREMENT
- 5.4. BRAKE SWITCHES

#### 6. INTERFACES

- 6.1. INPUT AND OUTPUT FLANGES
- 6.2. FOUNDATION INTERFACES
- 6.3. LUBRICATION INTERFACES
- 6.4. ELECTRICAL INTERFACES
- 6.5. PNEUMATIC INTERFACE
- 6.6. TURNING GEAR INTERFACES
- 7. SCOPE OF SUPPLY
- 8. SCREW THREADS

#### 9. PAINTING

#### 10. QUALITY SYSTEM, TESTING AND CERTIFICATION

- 10.1. QUALITY SYSTEM
- 10.2. MATERIAL TESTING
- 10.3. BALANCING
- 10.4. FUNCTIONAL TESTING
- 10.5. CERTIFICATION

#### 11. TECHNICAL DATA

- 11.1. SPEED AND TORQUE
- 11.2. MISALIGNMENT
- 11.3. GENERATOR AXIAL LOCATION AND AXIAL MOVEMENTS
- 11.4. POWER LOSS AND DRAG

#### SECTION

- 11.5. LUBRICATION OIL
- 11.6. SHAFT BEARINGS
- 11.7. JACKING OIL
- 11.8 PNEUMATIC SUPPLY
- 11.9. DIRECTION OF ROTATION
- 11.10. MASS ELASTIC DATA
- 11.11 TURNING GEAR DATA
- 11.12 AMBIENT TEMPERATURE
- 11.13 HAZARDOUS AREA

### APPENDIX A SSS PINION CLUTCH

#### APPENDIX D REFERENCED DRAWINGS

| 19797/19989 |
|-------------|
| 19152       |
| 19802/19971 |
| 19556/19970 |
|             |

### ATTACHMENTS

SSS Operating Principles - 1A, 2A, 4, 5, 12C SSS Balancing Procedure Notes Ref 0585/4 Standard Inspection and Test Procedures for Forgings 0880/2 Test Certificate TC335.1 SSS Quality Manual Policy Statement, NR2199 Extract Quality Plan NR2068 Notes Ref NR2056 and NR2083 Bearing datasheet

#### SIZE 272T SSS ENCASED CLUTCH FOR LMS100 DRIVEN GENERATOR/SYNCHRONOUS CONDENSER

#### 1. INTRODUCTION

The Size 272T SSS Encased Clutch is fitted between the generator and the power turbine of the LMS100 gas turbine where its purpose is to allow the turbine to be automatically connected to or disconnected from the generator. This enables the turbine to be stopped whilst the generator continues to rotate at full speed for spinning reserve or acting as a synchronous condenser. When power generation is again required, the turbine can be accelerated to full speed and automatically reconnected to drive the generator.

The SSS Clutch is supplied in a fabricated steel casing complete with the clutch input and output shafts each with their two tilting pad type journal bearings. The SSS shaft system is axially located by the customer's flexible couplings.

A geared turning gear drive capable of driving the power turbine at low speed is included in this clutch package. The generator is turned by a separate turning gear not included in SSS supply. The turning gear drive is coupled to the main shaft line by an SSS Pinion Clutch to permit connection at rest and automatic disconnection at speed.

This specification covers various projects with different documents. For details of which documents refer to each project, please see Appendix B.

#### 2. <u>GENERAL DESCRIPTION, SEE DRAWING NO. 19797/19989</u>

#### 2.1. <u>SSS CLUTCH DESCRIPTION</u>

The basic SSS Clutch operating principle is described in leaflet "SSS Principle No. 1A". Clutch engagement automatically occurs whenever the speed of the power turbine tends to overtake that of the generator.

Engagement of the SSS Clutch is initiated by a pawl and ratchet mechanism. Two rows of pawls are used, termed Primary and Secondary Pawls, to ensure that no pawl operation occurs when there is a high relative speed between the clutch input and output. Primary and Secondary Pawls are described in "SSS Principle No.2".

At synchronism the pawls align and then engage the teeth of a small lightweight Relay Clutch. When these teeth are fully engaged, the teeth initiate engagement of the main clutch teeth. The relay clutch is described in "SSS Principle No.5".

In order to cushion the engagement of the clutch, an oil dashpot is used. The operation of this dashpot is described in "SSS Principle No.4".

The SSS Clutch incorporates an internal thrust bearing to axially position the output of the clutch from the input, thus making the clutch assembly of fixed length.

#### 2.2. <u>SSS CLUTCH CASING</u>

The SSS Clutch described in section 2.1 is contained within a fabricated steel casing which is split on the horizontal joint. Each end of the clutch casing is fitted with a labyrinth type shaft seal.

Both the input and output shafts of the SSS Clutch are each supported by two journal bearings within the casing. The clutch casing incorporates on one side of the lower half a separate cover on which the turning gear is mounted.

#### 2.3 POWER TURBINE BRAKE, SEE DRAWING NO. 19556/19970

A pneumatically operated brake is incorporated within the top cover of the clutch casing to hold the power turbine at rest whilst the generator is rotating as a synchronous condenser.

The brake must only be applied when the clutch is disengaged, the turbine fuel control is fully closed and the turbine is rotating below 500 rpm due to clutch drag and not being rotated by the turning gear.

Two switches are provided to indicate that the brake is in the off position. SSS supply includes a solenoid operated valve for brake operation (see attached datasheet) together with the piping between the valve and the brake cylinders. The valve will be 'fail-set' so that in the event of electrical failure, the brake will remain in the last selected position and visual indication of when the brake is off, when it is on and when the brake shoe is worn and needs to be replaced. SSS will also supply and fit the wiring from the valve and from the brake switches to a terminal box. The brake will be applied by air pressure and will be spring released, i.e. in the event of air pressure failure the brake will release.

SSS supply includes a cooling oil spray adjacent to the brake shoe.

#### 2.4. SSS PINION CLUTCH TURNING GEAR, SEE DRAWING NO. 19802/19971

The turning gear consists of an SSS Pinion Clutch which engages with a gear wheel mounted between the clutch input and the input shaft. The SSS pinion shaft is mounted on a cover attached to an opening on the side of the main casing.

See Appendix A for more details.

#### 3. OPERATING SEQUENCE

#### 3.1. POWER GENERATION REQUIRED FROM STANDSTILL

Start the gas turbine.

As soon as the power turbine begins to rotate, the SSS Clutch automatically engages to drive the generator.

When the power turbine/generator reaches full speed it is connected electrically to the grid and the power from the turbine can be increased to the power level required.

#### 3.2. SPINNING RESERVE/SYNCHRONOUS CONDENSING FROM GENERATING

Reduce the fuel to the turbine and thus the generating load. If, before shutdown, a high speed cooling period is required for the turbine, this should be with the power turbine at full speed and transmitting a small power to ensure that the clutch remains engaged.

As soon as the power turbine slows down relative to the generator, the SSS Clutch automatically disengages and the turbine decelerates to low speed while the generator remains in operation. NOTE: due to oil drag within the clutch, the turbine normally continues to turn at slow speed but it is assumed to be below 500 rpm.

After the low speed cooling period with the turbine being rotated by clutch drag, the turbine can be stopped if required by the brake (see Section 2.3).

#### 3.3. GENERATING FROM SPINNING RESERVE/SYNCHRONOUS CONDENSING

Start the gas turbine and accelerate to full speed. The acceleration rate of the power turbine alone should not generally exceed about 150 rpm/sec and about 20 rpm/sec when approaching full speed.

As soon as the power turbine attempts to rotate faster than the generator, the SSS Clutch engages automatically.

The turbine power can then be increased as required.

SSS should be informed of the detailed start sequence and any prolonged turbine operation at more than 50% of generator speed should be avoided.

#### 3.4. STOP FROM GENERATING

After any full speed cool down period, the generator is disconnected from the grid and the turbine is shutdown. The clutch will probably disengage because of the higher deceleration rate of the power turbine than of the generator.

When the turbine speed decelerates to zero rpm and remains at rest for say ten seconds minimum, the pinion turning gear is started by the turbine control system and the SSS Pinion Clutch will engage. The turbine and generator will then rotate on their respective turning gears with the 272T SSS Clutch disengaged. When the generator side decelerates to low speed, the turning gear (not of SSS supply) maintains the generator side at 6.3 rpm.

#### 3.5. STOP FROM SPINNING RESERVE/SYNCHRONOUS CONDENSING

The generator is disconnected from the grid and it decelerates. The power turbine will usually already be at rest and being held by the brake. If turning gear operation is then required for the generator, the generator side turning gear can be run to rotate the power turbine and the 272T SSS Clutch will remain disengaged and the power turbine stationary.

#### 4. <u>CONTROL INTERLOCKS</u>

#### 4.1. <u>Turbine Stopping Brake</u>

As stated in section 2.3, the brake must only be applied under the following conditions:-

- 1. The power turbine is not rotating above 500 rpm.
- 2. The turbine fuel control is fully closed.

Neither the turbine nor the turning gear should be started if the brake switches do not confirm that the brake is off.

When the brake is activated, both switches must show 'brake on'. In the event that one switch incorrectly indicated 'brake off', the switch must be corrected as soon as possible. Neither the turbine or turning gear should be started unless both switches confirm the brake is off.

A vertical cutout on the side of the brake housing allows you to see the brake piston rod and it is marked to show the position of brake off, brake on and when the brake shoe is worn and needs replacement.

#### 4.2 <u>Turbine Start</u>

The turbine will not be accelerated above 5 rpm unless both the turning gear disengaged switches show disengaged.

4.3. <u>Turning Gear Interlocks</u>

See Appendix A.

#### 5. **INSTRUMENTATION**

- 5.1 SSS will provide junction boxes into which all instrumentation and other electrical connections will be wired with flexible conduit. The terminal boxes will be as section 6.4.1 and as shown on 19797/19989.
- 5.2 <u>Clutch Position Indication</u>
- 5.2.1 Three switches will be provided to indicate when the clutch is engaged. The switches will be mounted inside of the casing but accessible through covers in the casing top cover.
- 5.3 <u>Vibration Measurement</u>
- 5.3.1 At each end of the casing there will be a suitable mounting point for velocity transducers of the Bentley Nevada type 350900. These transducers will be wired into an SSS junction box and continuously monitored by the plant control system.
- 5.3.2 The SSS casing will include eight mounting bosses for X-Y proximity probes; two located adjacent to each bearing. Optionally SSS can supply these probes which would only be used for investigation purposes in the event of problems.

#### 5.4. <u>Temperature Measurement</u>

5.4.1 One 100 Ohm platinum duplex RTD will be provided in each of the lower pads in each bearing. These RTD's will be wired to a terminal box on the exterior of the clutch casing.

#### 5.5. Brake Switches

- 5.5.1 The brake unit will be fitted with two switches, each to indicate that the brake is off and provide the necessary interlock with the turbine control system, as described in section 2.3. The brake will be positioned on the top cover of the clutch casing and will be wired to a small junction box mounted on the brake unit and that box is wired to a main casing junction box as shown on 19797/19989.
- 5.6. <u>Pinion Switches</u>
- 5.6.1 The pinion clutch will fitted with three switches, one to indicate pinion clutch engaged and two to indicate disengaged. These switches must also be interfaced with the turbine control system as described in section 4.2

#### 6. INTERFACES

#### 6.1. Input and Output Flanges

- 6.1.1 The holes for the coupling bolts in the clutch input and output shaft flanges will be machined to dimensions provided by the customer to suit their flexible coupling.
- 6.1.2 The driving bolts and nuts for connecting the SSS flanges to the turbine and generator flexible coupling flanges will be supplied by the customer.

#### 6.2. Foundation Interfaces

6.2.1 It is assumed that the clutch casing will be mounted on the customer's steel foundation plates on a concrete plinth. A pin and key device supplied by SSS is provided at the centre-line of the clutch casing base to maintain good alignment.

After achieving the correct alignment during installation, parts of the pin and key device should be welded to the customer's foundation plates.

Shim for height adjustment will be provided but the casing holding-down bolts are not supplied by SSS.

#### 6.3. <u>Lubrication Interfaces</u>

- 6.3.1 The clutch housing will be provided with two oil inlet connections and two oil drain connections to interface with the customer's oil supply piping. Identical flange connections will be provided on each side of the casing and one will be fitted with a blanking flange for which SSS will provide the necessary bolts. These connections will be fitted with ANSI Standard B16.5, 150 lb. RF flanges. The connecting flanges and bolts for connecting to the customer's oil system should be provided by the customer. All other piping etc required to distribute oil within the housing is provided by SSS.
- 6.3.2 The SSS casing will supplied with provision for shaft jacking oil as described in section 11.7. The casing will be provided with eight connections of size 1/2" SAE 3000 PSI code 61. The connecting flanges and bolts, pressure gauges and non-return valves for connecting to the customer's jacking oil system should be provided by the customer. Piping required to distribute jacking oil within the housing is provided by SSS.

#### 6.4. <u>Electrical Interfaces</u>

- 6.4.1 SSS will provide terminal boxes per the attached specification on the exterior of the clutch housing to contain all electrical connections to equipment of SSS supply, including the 272T clutch and pinion clutch position indicator switches, the pinion and brake solenoids, the brake switches and the RTD's. There are at least 20% extra connections provided. The switches are proximity switches of SSS supply for which an amplifier may be required, not of SSS supply.
- 6.5. <u>Pneumatic Interface</u>
- 6.5.1 Customer to connect directly to brake solenoid valve, see drawing no. 19556/19970.
- 6.5.2 Casing labyrinth seals have provision for customer sealing air if required.
- 6.6. <u>Turning Gear Interfaces</u>

SSS supply includes the SSS Pinion Clutch and wormdrive assembly, the chain drive connecting these, also the turning gear motor and flexible coupling. SSS provides the solenoid valve controlling pinion engagement but the control logic to operate this valve and start the motor would be provided from the turbine control.

For details, see Appendix A.

#### 7. <u>SCOPE OF SUPPLY</u>

7.1. The unit is supplied as a complete assembly as shown on drawing no. 19797/19989, and described in this specification. All parts of SSS supply are shown in full lines on the drawing.

#### 8. <u>SCREW THREADS</u>

All threads used in SSS equipment for screws are normally of imperial UNF type, but larger sizes may be UNC. All internal screws are normally locked by a plastic locking patch (see attached leaflet). It is recommended that such screws are replaced after five removals.

#### 9. PAINTING

The external surfaces of the SSS casing will be painted in accordance with GE specification 95953, rev T.

#### 10. QUALITY SYSTEM, TESTING AND CERTIFICATION

#### 10.1. <u>Quality System</u>

The quality procedures used would conform with the SSS Quality Manual (current issue). These procedures are generally comparable to the requirements of BS5750, Part 1 (ISO 9001). An extract from the SSS Quality Manual (NR2199) is attached, but it is not SSS policy to release the complete manual.

The Quality Plan will be to SSS standard NR2068 (copy attached).

- 10.2. <u>Material Testing</u>
- 10.2.1 The SSS shafts are made in AISI 4430 and all the main torque carrying parts of the SSS Clutch are in nitriding steel to BS970:1970:722M24.
- 10.2.2 All forged materials of the 272T SSS Clutch and shafts will be tested and certified as outlined in attached Notes Ref 0880/2. This is SSS standard procedure used for all SSS Clutches.
- 10.3. Balancing
- 10.3.1 The SSS Clutch comprises a number of sub-assemblies each of which will be individually balanced to SSS standard shown in SSS Notes Ref 0585/4 which is better than ISO 1940, Grade 2.5.
- 10.3.2 Any components normally recommended by SSS as spare parts will be individually balanced.
- 10.4. <u>Functional Testing</u>
- 10.4.1 Each complete clutch unit will be tested at light load up to full speed and 10% overspeed by driving each end of the unit by electric motors. The electric motor speeds will be varied to simulate the various operating modes of the actual plant and demonstrate correct functioning of the size 272T SSS Clutch. The pinion-type turning gear clutch, brake and other components will also be tested.
- 10.5. <u>Certification</u>
- 10.5.1 A test certificate, generally as per the attached draft copy of a certificate TC335.1, will be supplied for each clutch, confirming that tests have be satisfactorily completed and that all interface dimensions are correct. Each section of the SSS test certificate will only be signed at responsible manager level.
- 10.5.2 The steel forging test certificates referred to in the attached Notes Ref 0880/2 will be retained on file by SSS and may be inspected if necessary. In accordance with SSS standard policy copies will not be supplied.

#### 11. TECHNICAL DATA

- 11.1. <u>Speed and Torque</u>
- 11.1.1 Maximum mechanical rating: 132 MW @ 3600 rpm or 125MW at 3000 rpm. The clutch is designed to be used in both 50 Hz and 60 Hz installations.
- 11.1.2 The SSS Clutch will accept the maximum fault torque advised of 1,008,333 lb.ft which is 3.9 x full load torque at 132 MW/3600 rpm.

11.1.3 The SSS Clutch will accept an overspeed of 15% but due to test rig limitations, the SSS Clutch will be tested to only 10% overspeed, i.e. 4000 rpm.

#### 11.2 <u>Misalignment</u>

11.2.1 The Size 272T SSS Clutch itself is supported between two shafts, each supported in line with each other by two bearings so the clutch is not subjected to misalignment. The customer's flexible couplings will accept any misalignment between the clutch package and the turbine/generator.

#### 11.3. Generator Axial Location and Axial Movements

- 11.3.1 The clutch includes an internal thrust bearing. Due to this internal thrust bearing, the entire clutch with input and output shafts, will move axially relative to the casing due to turbine and generator shaft expansions. Note that the SSS internal thrust bearing will accept an axial force of 4800 lbs disengaged or 12000 lbs engaged which exceeds the customer's maximum possible load of 3125 lbs.
- 11.3.2 The SSS Clutch casing is designed to accommodate +/- 0.125" axial movements of the clutch and shafting including installation tolerances at site and when the turbine transitions from cold to hot condition.
- 11.3.3 For installation/maintenance purposes, the clutch input flange can be completely disconnected from the turbine and generator flexible coupling shafts and the clutch, with shafts moved approximately 8mm axially towards or away from the turbine to permit the input or output flexible coupling shafts to be disconnected and removed.

#### 11.4. Power Loss and Drag

|                             | 3000 rpm | 3600 rpm |
|-----------------------------|----------|----------|
| Generating mode             |          |          |
| Power loss:                 | 210 kW   | 300 kW   |
| Synchronous condensing mode |          |          |
| Power loss:                 | 215 kW   | 310 kW   |
| Clutch drag:                | 200 lbft | 300 lbft |

Note that the clutch drag is the torque tending to keep the power turbine in rotation produced by the SSS Clutch when the machine is operated as a synchronous condenser. This torque will tend to rotate the power turbine continuously until the brake is applied.

#### 11.5. <u>Lubrication Oil</u>

Oil type

11.5.1 It is understood that the turbine, generator and their clutch all have their own lubrication systems.

The following temperatures and pressure ranges have been advised:-

ISO VG32

| Chtype       |                                                                                                            |                                                                          |
|--------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Temperature: | Normal<br>Maximum trip<br>Normal start temperature<br>Minimum start temperature<br>Absolute minimum        | 140°F (60°C)<br>165°F (64°C)<br>70°F (21°C)<br>50°F (10°C)<br>40°F (5°C) |
| Pressures:   | Normal inlet oil pressure<br>Alarm pressure<br>Trip pressure<br>Trip lockout shut-down<br>Maximum pressure | 30 psi<br>25 psi<br>20 psi<br>12 psi<br>38 psi                           |

- 11.5.2 Oil system vacuum customer's oil system has 2" water vacuum on tank.
- 11.5.3 The total required oil flow is about 500 litres/min and should be supplied to the SSS Clutch through one of the two flanged oil inlet connections on the clutch housing. The oil flow must be continuous whenever the generator is rotating.

#### 11.6 <u>Shaft Bearings</u>

The four shaft bearings are four-pad tilting pad type orientated with load between pads. For further details, see attached data sheet.

#### 11.7. Jacking Oil

The journal bearings include two separate oil supplies to the lower half of each bearing for the customer's jacking oil supply (i.e. eight total). All eight jacking oil pipes will have separate external connections (see drawing no. 19543/19989). Non-return valves, external pipework, pressure gauges etc are not included in SSS supply.

#### 11.8. <u>Pneumatic Supply</u>

Customer to supply air for brake actuation and sealing air if required (100 psi +/- 20 psi).

#### 11.9. Direction of Rotation

See drawing no. 19797/19989.

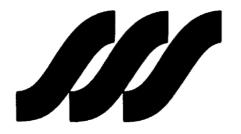
#### 11.10. Mass Elastic Data

Weight, inertia and torsional stiffness details of the complete unit have been added to SSS drawing no. 19543/19989. Although SSS has done a lateral analysis of the clutch shaft system and a casing analysis, it is the customer's responsibility to carry out lateral and torsional analysis of the complete machine configuration incorporating the SSS Clutch.

#### 11.11. <u>Turning Gear Data</u>

The SSS Pinion Turning Gear system has been designed to accept the following conditions:-

| Turning gear speed    | 3 rpm                     |
|-----------------------|---------------------------|
| Normal running torque | 121 lb.ft                 |
| Breakaway torque      | 671 lb.ft                 |
| Power turbine inertia | 14,078 lb.ft <sup>2</sup> |


Note: Turning gear data assumes Size 272T Encased SSS Clutch is disengaged and generator is being turned by its own turning gear.

#### 11.12 Ambient Temperature

GE has specified that the maximum transient air temperature surrounding the clutch is 250°F, however normal temperature is such that personnel can work in this area.

#### 11.13 <u>Hazardous Area</u>

The SSS Encased Clutch will not be installed in a hazardous area and therefore specifications associated with hazardous areas will not apply.



# SSS CLUTCHES

## **TECHNICAL SPECIFICATION**

## **APPENDIX A**

## LMS100 PROJECT

## **SSS PINION CLUTCH**

Notes Ref:NR2295Dated:26 October 2011

Rev 1 dated: 23 December 2013

SSS Gears Limited Park Road Sunbury-on-Thames England : TW16 5BL

Telephone : +44 (0) 1932 780644 Telefax : +44 (0) 1932 780018 Email : engineering@sssgears.co.uk Web : http://www.sssgears.co.uk

#### INDEX

#### APPENDIX A SPECIFICATION FOR SSS PINION TURNING GEAR CLUTCH LMS100 PROJECT

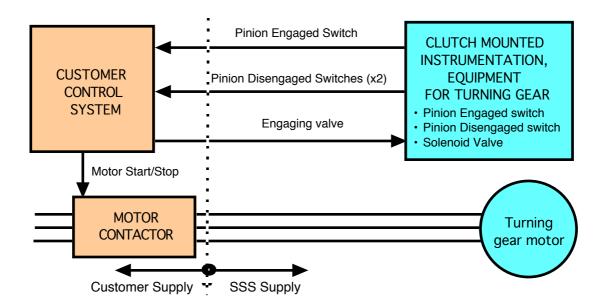
- 1. INTRODUCTION
- 2. GENERAL DESCRIPTION See Drawing 19802/19971
- 3. PINION CLUTCH OPERATING SEQUENCE
- 3.1 Pinion Clutch Engagement
- 3.2 Pinion Clutch Disengagement
- 4. OIL SUPPLY

#### 5. INSTRUMENTATION

- 5.1. Pinion Engaged Switch
- 5.2. Pinion Disengaged Switch
- 6. INTERFACES AND SCOPE OF SUPPLY
- 6.1 Motor and Primary Gearing
- 6.2 Solenoid Control Valve
- 7. FUNCTIONAL TESTING
- 8 MAINTENANCE AND SPARE PARTS

#### APPENDIX A SPECIFICATION FOR SSS PINION TURNING GEAR CLUTCH LMS100 PROJECT

#### 1. INTRODUCTION


The SSS Pinion Turning Gear (TG) described in this appendix is part of the Size 272T SSS Encased Clutch package shown on drawing no. 19797/19989. The purpose of TG is to turn the Power Turbine shaft (PT) and input side of the SSS Clutch: the generator and output side of the SSS Clutch are turned separately by a turning gear on the free end of the generator.

#### 2. GENERAL DESCRIPTION - See Drawing 19802/19971

The TG is mounted on the lower half of the SSS Clutch casing alongside the Size 272T SSS Clutch.

The engagement and disengagement of the TG is by an SSS Pinion Clutch which slides axially on a helically splined shaft to engage or disengage pinion teeth with a gearwheel on the input side of the Size 272T SSS Clutch. Engaging movement is initiated, whilst the turbine is stationary, by oil pressure in the bore of the pinion from a solenoid controlled valve. Disengagement is automatic whenever the torque reverses on the helical splines (eg due to PT acceleration). For full details of the principle of the engaging mechanism of the SSS Pinion Clutch see SSS Principle 12C.

The SSS Pinion shaft is driven by motor via a double reduction wormgear and a chain drive. SSS Supply also includes a motor soft start, the solenoid valve and switches indicating pinion engaged and disengaged. The motor and valve are controlled by the customer control according to the sequence in section 3.1. The basic interfaces are shown in Figure 1.



#### Figure 1

Note:

When the generator is operating at full speed with the GT shutdown the PT side brake will normally be applied. The turning gear should not be operated in this situation. If the brake is not applied the oil drag within the Size 272T SSS Clutch will keep the PT and gearwheel in continuous rotation and therefore the TG cannot be used .

#### 3. PINION CLUTCH OPERATING SEQUENCE

#### 3.1 Pinion Clutch Engagement

In this application the turning gear is arranged to engage and start only when the PT is stationary. The engaging sequence is controlled by the main plant control sytem as follows ...

- Confirm that the PT shaft is stationary, jacking oil is on, the brake is off and that the generator shaft is rotating on its turning gear.
- Energize the pinion solenoid valve to select engagement.
- The pinion will move towards engagement and the teeth will come into end contact and the pinion will cease to move.
- After a timed pause, typically 10 seconds, the plant control activates the turning gear motor contactor.
- The contactor engergizes the motor through a reduced voltage start and the pinion will accelerate slowly. As it rotates the teeth will align with the gearwheel and the oil pressure will cause the teeth to start to mesh.
- Further rotation of the motor will cause torque on the helical splines and complete engagement of the pinion teeth.
- During this movement the Pinion Engaged switch will indicate pinion engaged.
- As soon as the Pinion Engaged switch indicates engaged the main plant control system de-energizes the pinion solenoid valve.
- The engaging sequence is now complete and the turning can continue to rotate the PT or the GT can be started in which case the pinion will automatically disengage (see section 3.2).

#### 3.2 Pinion Clutch Disengagement

Disengagement of the pinion is due to torque reversal on the helical splines and is therefore completely automatic. As soon as the Pinion Disengaged switch shows 'Disengaged' the turbine control system must shutdown the TG motor so that the system is ready for re-engagement when the PT next comes to rest and the turning gear is required.

Pinion clutch disengagement will occur when either ...

- The PT accelerates.
- The Turning Gear Motor is stopped to shutdown the turning gear. Note that if the PT tends to stop faster than the turning gear motor the pinion will remain engaged but will disengage when the PT is next accelerated from the turning gear speed.

While the turning gear is shutdown oil pressure within the pinion applies a small force to keep the pinion in the fully disengaged position to ensure that it will not move towards the gearwheel causing contact and possible damage if there was a high differential speed.

#### 4. OIL SUPPLY

All oil is from the clutch oil system. For details see section 11.5.1 of SSS Clutch Specification NR2295.

There are two oil feeds to the pinion clutch shaft. One feed is used to apply the pressure to engage the clutch the other is for lubrication and to hold the pinion away from engagement whilst the pinion is disengaged.

Additional oil supplies for bearing lubrication and tooth lubrication are arranged within the main casing.

#### 5. INSTRUMENTATION

The following switches are supplied by SSS.

#### 5.1. Pinion Engaged Switch

One engaged switch is provided to indicate when the pinion is partially engaged. This signal is used for the turning gear control sequencing as described in section 3.

#### 5.2. Pinion Disengaged Switch

Two disengaged switches are provided to show that the pinion teeth are disengaged. These switches are used for interlock that the clutch is fully disengaged (see section 4.2 of SSS Clutch Specification NR2295).

#### 6. INTERFACES AND SCOPE OF SUPPLY

SSS Supply includes the pinion shaft line, external teeth on the turbine side of the clutch shaft line and motor driven wormgear and chaindrive assembly.

#### 6.1 Motor and Primary Gearing

The free end of the motor includes a manual drive for manual barring the turbine. A cover for the free end of the motor will be arranged but no limit switch is included.

#### 6.2 Solenoid Control Valve

A 4 port double acting, solenoid operated, spring return, control valve will be supplied mounted adjacent to the pinion. The valve is operated to apply oil and move the pinion clutch towards engagement with the shafting stationary. This valve will be controlled from the main control system in accordance with Section 3. It should be de-energised as soon as the pinion engaged signal is received.

In the event of an electrical failure this valve will return, due to the spring force, to the position where the engaging pressure is removed from the pinion clutch.

A key operated manual override valve will be fitted so that the pinion can be driven into mesh for emergency operation or for manual barring.

#### 7. FUNCTIONAL TESTING

The Pinion Clutch will be tested with the Size 272T SSS Clutch, engagements and disengagements will be carried out to confirm the correct function of the Pinion Clutch.

#### 8 MAINTENANCE AND SPARE PARTS

The SSS Pinion Clutch requires negligible maintenance and it is expected that all components will last the life of the power station in normal operation.

However in the event that the engaging valve is operated in error whilst the turbine is not at rest the Phasing Pinion and the Gear may come into end contact with high differential speed. In order to minimise the effect of such an occurrence the Phasing Pinion is 'soft' steel material so that this would become damaged before the main gearwheel. The Phasing Pinion is manufactured as a split component so that it can be replaced without dismantling the pinion shaft.

Recommended spare parts are listed in the instruction manual and include a phasing pinion.



SSS Gears Limited Park Road Sunbury-on-Thames England : TW16 5BL

Telephone : +44 (0) 1932 780644 Telefax : +44 (0) 1932 780018 Email : engineering@sssgears.co.uk Web : http://www.sssgears.co.uk

#### **APPENDIX B**

#### PROJECT LIST SIZE 272T ENCASED SSS CLUTCHES FOR LMS100

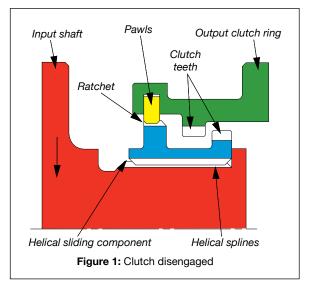
| Project             | Cumberland :        | Haynes, Lo | ong Beach :   | Scattergoo | d : LADWP |  |
|---------------------|---------------------|------------|---------------|------------|-----------|--|
|                     | Connective/Calpine  | LAD        | OWP           |            |           |  |
| SSS Technical       | NR2035 <sup>1</sup> | NR2        | NR2295 NR2295 |            | 295       |  |
| Specification       |                     |            |               |            |           |  |
| Package Drawing No. | 19543               | 19         | 797           | 199        | 989       |  |
| Clutch Drawing No.  | 19152               |            |               |            |           |  |
| Pinion Drawing No.  | 19555               | 198        | 19802         |            | 19971     |  |
| Brake Drawing No.   | 1                   | 19556      |               | 19970      |           |  |
| Clutch Serial No/s. | R21219              | R24209     | R24210        | R28218     | R28219    |  |
| Instruction Manual  | IB.1236             | IB.1326A   |               | IB.13      | 326B      |  |
| SSS Gears Reference | C11277              | C12927     |               | C14        | 385       |  |
| SSS Clutch Company  | 7835                | 8683       |               | 94         | 79        |  |
| Inc Order No.       |                     |            |               |            |           |  |
| SSS Inc Ref No.     | A6137               | A7048      | A7036         | A7733      | A7931     |  |
| GE Order No.        | 410060569           | 410130378  | 410128763     | 410218172  | 410219166 |  |

<sup>&</sup>lt;sup>1</sup> 272T Encased Clutch for Cumberland Station is described in Technical Specification NR2035 but for completeness is shown here.

## SSS Principle No.1a Sheet 1 of 2

## SSS Principle No.1a Basic SSS clutch

The initials SSS denote the 'Synchro-Self-Shifting' action of the clutch, whereby the clutch driving and driven teeth are phased and then automatically shifted axially into engagement when rotating at precisely the same speed. The clutch disengages as soon as the input speed slows down relative to the output speed.


The basic operating principle of the SSS clutch can be compared to the action of a nut screwed on to a bolt. If the bolt rotates with the nut free, the nut will rotate with the bolt. If the nut is prevented from rotating while the bolt

continues to turn, the nut will move in a straight line along the bolt.

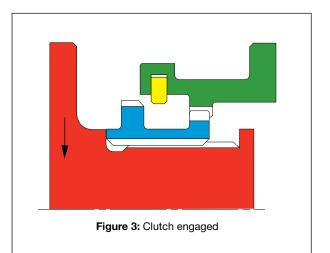
In an SSS clutch the input shaft has helical splines which correspond to the thread of the bolt. Mounted on the helical splines is a sliding component which simulates the nut. The sliding component has external clutch teeth at one end, and external ratchet teeth at the other (see Figure 1).

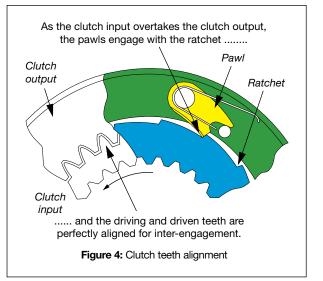
When the input shaft rotates, the sliding component rotates with it until a ratchet tooth contacts the tip of a pawl on the output clutch ring to prevent rotation of the sliding component relative to the output clutch ring, and align the driving and driven clutch teeth (see Figure 1 and Figure 4).

As the input shaft continues to rotate, the sliding component will move axially along the helical splines of the input shaft moving the clutch driving and driven teeth smoothly into engagement.






## SSS Principle No.1a Sheet 2 of 2


During this movement, the only load taken by the pawl is that required to shift the lightweight sliding component along the helical splines.

As the sliding component moves along the input shaft, the pawl passes out of contact with the ratchet tooth, allowing the driving teeth to come into flank contact with the driven teeth and continues the engaging travel (see Figure 2).

Driving torque from the input shaft will only be transmitted when the sliding component completes its travel by contacting an end stop on the input shaft, with the clutch teeth fully engaged and the pawls unloaded (see Figure 3).

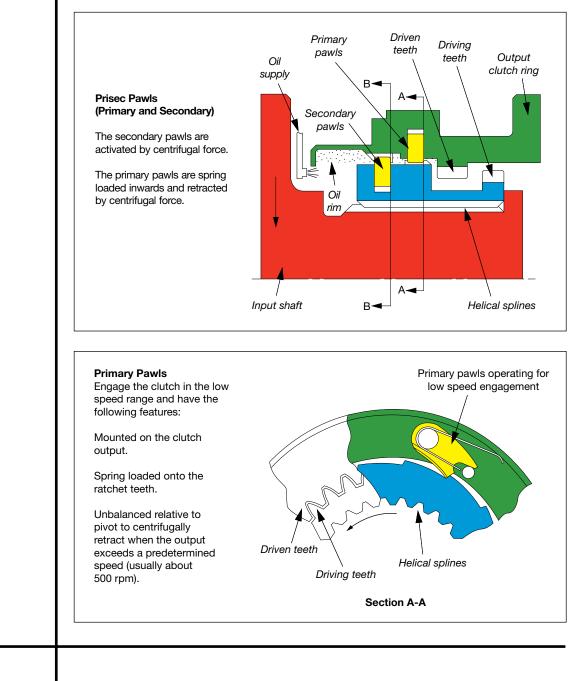
When a nut is screwed against the head of a bolt, no external thrust is produced. Similarly when the sliding component of an SSS clutch reaches its end stop and the clutch is transmitting driving torque,



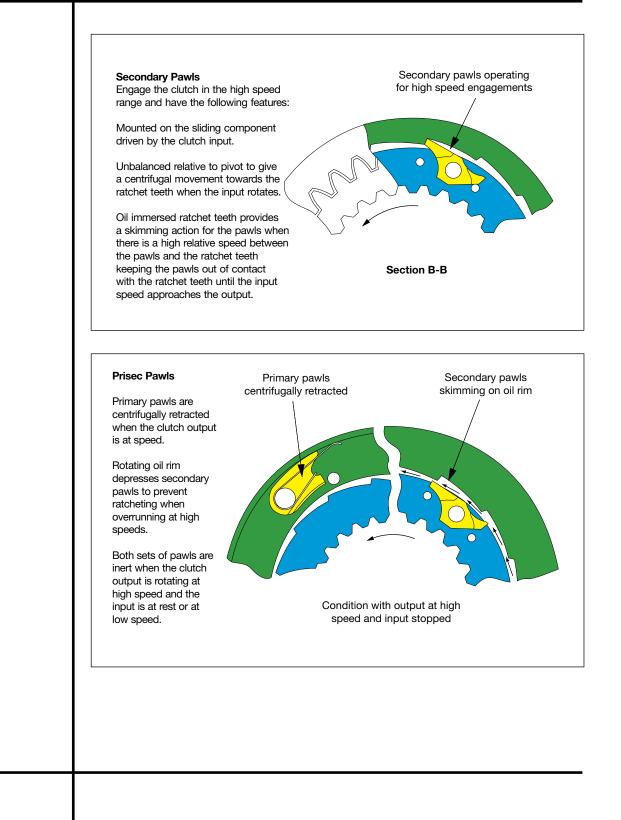


no external thrust loads are produced by the helical splines.

If the speed of the input shaft is reduced relative to the output shaft, the torque on the helical splines will reverse. This causes the sliding component to return to the disengaged position and the clutch will overrun. At high overrunning speeds, pawl ratcheting is prevented by a combination of centrifugal and hydrodynamic effects acting on the pawls.


The basic SSS clutch can operate continuously engaged or overrunning at maximum speed without wear occurring.

## SSS Principle No.2a Sheet 1 of 2

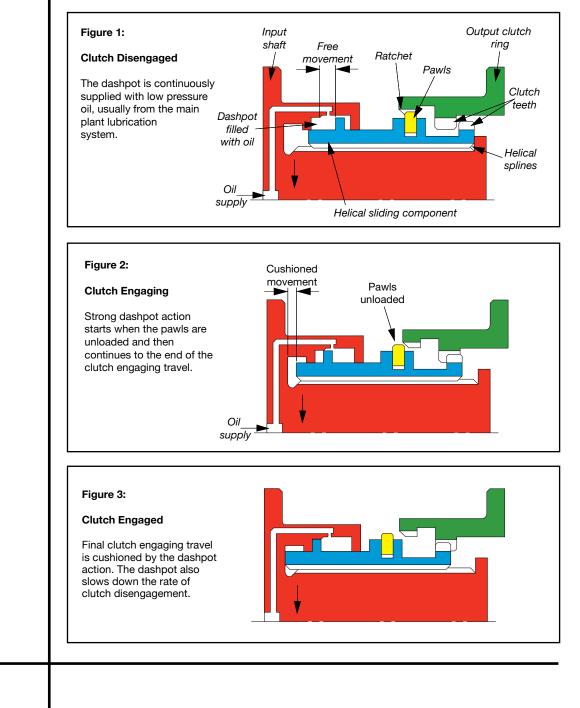

## SSS Principle No.2a

## Prisec pawls - Primary and Secondary

The purpose of Prisec pawls is to enable the clutch to engage both at low speed and at high speed but prevent sustained ratcheting action of the pawls with the clutch output at speed and the clutch input stopped.



## SSS Principle No.2a Sheet 2 of 2

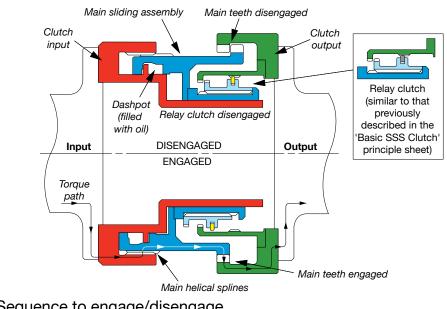



## SSS Principle No.4 Sheet 1 of 1

## SSS Principle No.4

### Dashpot - double acting type

The purpose of the double acting dashpot is to cushion clutch engagement at high acceleration and slow down the rate of disengagement.

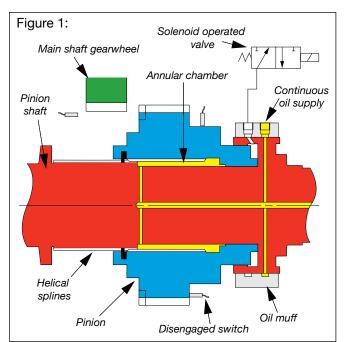



## SSS Principle No.5 Sheet 1 of 1

## SSS Principle No.5

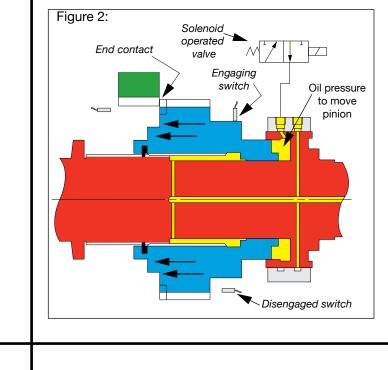
## Relay Type Clutch

For high power applications a relay clutch is used to initiate engagement of the main clutch. Lightweight pawls are used to first engage the small relay clutch. The more powerful teeth of the relay clutch then engage the larger mass of the main clutch.




Sequence to engage/disengage

- 1: With the output side of the clutch overrunning and the input side at rest, the clutch is disengaged as shown in the upper half of the illustration. The pawls are inactive.
- 2: The input side of the clutch is accelerated and, at the instant the input side overtakes the output side, the relay clutch is engaged by the pawls as described in the 'Basic SSS Cutch Principle' sheet.
- 3: When the relay clutch has engaged, the main teeth are still disengaged but are now aligned for inter-engagement.
- 4: The relay clutch teeth now move the main sliding assembly along the main helical splines to shift the main teeth smoothly into engagement. During this movement the relay teeth become unloaded when the main teeth are partially engaged.
- 5: The oil filled dashpot becomes effective whilst the main teeth are shifting the clutch fully into engagement.
- 6: The clutch is fully engaged as shown in the lower half of the drawing.
- 7: When the input side slows down relative to the output side, the torque is reversed on the main helical splines and the main sliding assembly moves to disengage the main teeth. The relay clutch then disengages so the input side is disengaged from the output side.

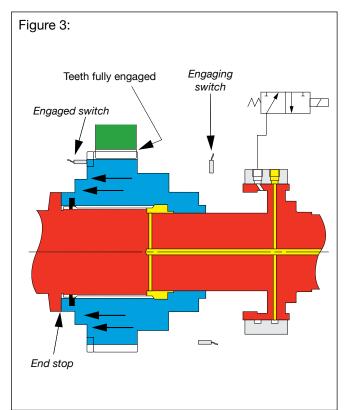

## SSS Principle No. 12c Pinion clutch - Direct Engagement

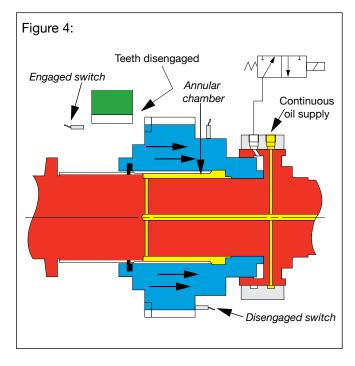
The SSS Pinion Clutch engages and disengages a pinion, driven by the turning gear motor, with a gearwheel on the turbine/generator shaft system to enable the turbine/generator to rotate at turning gear speed for cooling or inspection purposes.



### Disengaged:

Continuous oil pressure enters the oil muff for lubrication purposes. Also this oil pressure acts in the annular chamber between the outside diameter of the pinion shaft and the bore of the pinion to hold the pinion in the disengaged position. The disengaged switch is activated to show that the pinion is fully disengaged from the gearwheel.





## Engaging:

The turbine must be confirmed to be at rest for a period of, say, 10 seconds. Then when pinion engagement is required the solenoid control valve is energised. Oil pressure moves the pinion axially and the disengaged switch is

de-activated. The pinion continues to be moved axially towards engagement along helical splines until the pinion teeth make end contact with the teeth on the main shaft gear or partial engagement may take place.

### SSS Principle No. 12c





## Engaged:

After a short delay (10 seconds) the turning gear motor starts under low torque. Initial rotation causes the pinion teeth to align with the gearwheel teeth. Further rotation moves the pinion along the helical spline so the engaging switch is deactivated and the solenoid valve is de-energised to remove the oil pressure. Further rotation of the turning gear motor causes the pinion to move along the helical splines into full engagement. This movement is due only to torque

on the helical splines. Full engagement occurs when the pinion contacts an end stop and the engaged switch is activated.

### Disengaging:

Disengagement is fully automatic when the turbine speed overtakes that of the turning gear. At this time the reverse torque on the helical splines causes the pinion to move automatically away from engagement and the engaged switch is de-activated.

When the teeth are fully disengaged oil pressure in the annular chamber within the bore of the pinion moves the pinion fully clear of the gearwheel and the disengaged switch is activated. Balancing Procedure

An SSS Clutch has a sliding component which connects the input and output elements together before positive torque is applied through the clutch. This sliding element must have sliding clearances, therefore it is not possible to dynamically balance the complete clutch as a single assembly.

In general the input, sliding and output elements are each dynamically balanced as sub-assemblies. Where spare parts may be required, these parts are balanced as separate items.

For each design of SSS Clutch a balancing procedure is prepared detailing which components are to be dynamically balanced either as separate items or as sub-assemblies.

The majority of components/sub-assemblies have to be balanced using a central mandrel as it is not practicable to support the component/sub assembly on the balancing machine without such a mandrel due to the component size/shape. The mandrel itself is previously balanced.

Components are checked for concentricity when assembled to the mandrel and any fixings required are retained in match-weighed sets.

All balancing correction is carried out by removing metal - usually drilling holes. The SSS balancing procedure drawing will indicate where to drill and state the maximum size of holes that may be drilled to correct unbalance. When preparing the balancing procedure drawing, care is taken to ensure that any balancing holes are kept clear of stressed areas.

In general, SSS adopts the following balancing standard.

Maximum unbalance in each correction plane must not exceed the value given by the formulae:

u = 4W Imperial  $\binom{6350W}{N}$  Metric

- u = unbalance/plane in oz.-in (grams-mm)
- w = weight of component/sub-assembly (not including mandrel weight if used) in lbs (Kg)
- n = maximum operational speed

The above is based on a particular British Standard and is better than ISO 1940 Grade 2.5 and approaching Grade 1.

Dependant on the design and operating requirements other standards may be adopted to meet special operating requirements.

Balancing certificates for each component/sub-assembly are retained by SSS Gears Limited.



1. All forgings are supplied to SSS in a rough-machined condition.

2. Chemical analysis is provided for casts from which the forgings are produced.

3. All forgings have Brinell hardness tests to confirm satisfactory heat treatment/strength.

4. Where specified by SSS, forgings for components carrying full turbine torque are covered by mechanical testing. A separate test piece is provided from the same cast which is then heat treated with the forgings and used for mechanical testing purposes. SSS usually arranges for such mechanical testing of forgings for high-power and/or high-speed SSS Clutches such as naval main propulsion drives, and high-power, turbine-driven generator applications. Mechanical tests are not usually performed on torque-transmitting forgings of SSS Clutches for auxiliary drive applications; (turning gears, starting drives etc.).

5. All forgings are ultrasonically tested after rough-machining.

6. All forgings supplied to SSS must be to the steel specification requirements as each specific forging is not identified during subsequent machining operations to an individual finished component.

7. Certificates covering the tests in paragraphs 2, 3 and 5, and 4 where applicable, are retained by SSS and may be inspected by the customer if necessary. However, copies of these certificates are not supplied to the customer.

8. All surface hardened components made from steel forgings are finally crack tested by the magnetic particle or dye-penetrant method.



SSS Gears Limited Park Road Sunbury-on-Thames England: TW16 5BL Tel:+44(0)1932 780644 Fax:+44(0)1932 780018

#### SSS CLUTCH TEST CERTIFICATE

| Customer:                  | SSS Clutch Company Inc                |
|----------------------------|---------------------------------------|
| Customer Order Number:     | 8683                                  |
| Clutch Size:               | 272T Encased Clutch and Pinion Clutch |
| Clutch Serial Number:      | R24209                                |
| Pinion Clutch Drawing Numb | ber: SL19802/1                        |
| Clutch Drawing Number:     | SL19797/4                             |
| SSS Gears' Contract:       | C12927                                |
| Test Date:                 | 13 <sup>th</sup> September 2011       |

#### 1. QUALITY SYSTEM

The quality procedures used throughout this contract conform with the SSS Quality Manual (current issue). These procedures are generally comparable to the requirements of BS5750, Part 1 (ISO 9001).

#### SIGNED

#### PURCHASING MANAGER

.

#### 2. MATERIAL TESTS (Rotating Parts)

It is SSS policy to reject all material which does not conform with the relevant specification requirements regarding chemical composition, strength, etc. No concessions are permitted in this respect.

It is certified that Material Test Certificates held by SSS Gears Limited specified requirements. These test certificates are available for inspection, if necessary.

It is certified that all forgings have been tested for hardness and ultrasonic soundness. Chemical analysis has been carried out on casts from which the forgings were produced.

It is certified that, where components transmit full torque, mechanical test pieces taken from the forgings (or from the same cast) have undergone heat treatment with the forgings and have been tested for tensile strength.

SIGNED

#### PURCHASING MANAGER

#### 3. MAGNETIC CRACK DETECTION (Rotating Parts)

It is confirmed that all surface hardened components have been magnetically crack tested by a suitably qualified operator and no detectable flaws were apparent.

SIGNED

Test Certificate TC335.1

PURCHASING MANAGER



#### 4. INTERFACE DIMENSIONS

All interface dimensions have been measured, and are correct to SSS Gears Limited drawing number SL.19797

#### SIGNED

#### WORKS MANAGER

#### 5. DYNAMIC BALANCING

The SSS clutch has been dynamically balanced as a number of sub-assemblies and separate components in accordance with SSS standard procedure 0585/4, but to the accuracy required by ISO 1940, Class G2.5.

SIGNED

PURCHASING MANAGER

#### 6. LUBRICATING OIL

Oil used for all testing was ISO VG 32 turbine oil, which has a viscosity of 32 cSt at 40°C.

#### 7. CLUTCH ENGAGEMENT TESTS

With clutch output rotating at the following speeds, input was accelerated from 0 rpm and checked for satisfactory engagements at synchronism. A minimum of 10 engagements were made at 3600 rpm, and at least 2 engagements at the other speeds.

| Engagi | ing/Dise | ngaging | g speed |
|--------|----------|---------|---------|
|        |          |         |         |

No. of Engagements

| 0 rpm    | 2  |
|----------|----|
| 500 rpm  | 2  |
| 1000 rpm | 2  |
| 2000 rpm | 2  |
| 2500 rpm | 2  |
| 3000 rpm | 2  |
| 3600 rpm | 10 |
| 2.2.7    |    |

Clutch was engaged and rotated at 3600 rpm for 60 minutes.

#### 8. CLUTCH OVERSPEED TEST

Clutch was engaged and rotated at 3960 rpm for 5 minutes.

#### 9. OVERRUNNING TEST

With clutch disengaged and the input stationary, the output was rotated at 3600 rpm for 60 minutes.



#### **10. CLUTCH OIL FLOW TESTS**

The oil flows to the clutch package (including the turning gear)were measured under the following operating conditions:

Supply oil temperature approximately 140 °F, supply pressure 30 psi.

Oil Flow (USGPM)

| Clutch Engaged, 3600 rpm     | 23 | 134 |
|------------------------------|----|-----|
| Clutch Overrunning, 3600 rpm |    | 134 |

#### **11. CLUTCH OVERRUNNING DRAG TEST**

With the output rotated at 3600 rpm, the input was rotated at the following speeds and the drag torque tending to accelerate the input was measured.

Oil temperature 140 °F.

Oil pressure 30 psi.

Speed of Input

Drag Torque

0 rpm

292 lbft

The brake torque at 500 rpm was measured with a air supply pressure of 58 psi - 543 lbft

#### **12. PINION CLUTCH ENGAGEMENT TESTS**

Main shaft at rest:

With the main shaft stationary, the turning gear servo valve was operated and then the test rig turning gear motor started.

Satisfactory engagement of the pinion with the gearwheel and acceleration of the main shaft to turning speed was confirmed.

The main shaft was then accelerated, and satisfactory disengagement of the pinion from the gearwheel confirmed.

The above engagement sequence was carried out a minimum of 3 times at normal oil pressure and 2 times at minimum (alarm) pressure.

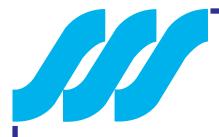
#### **13. TURNING TEST**

The pinion was engaged with the gearwheel and rotated to drive the main shaft at turning speed for 30 minutes.



#### **14. POST-TEST INSPECTION**

The clutch output end was dismantled, and the pawl and ratchet mechanism and internal bearing were inspected. The shaft bearing pads and pinion clutch were also inspected.


All were found to be in good order.

#### **15. CERTIFICATION**

SSS Gears Limited certifies that clutch serial Number R.24209 has been subjected to the tests detailed above, and proved to be satisfactory.

For and on behalf of SSS GEARS LIMITED

P.S.Bizzill Director



Part of Notes Reference NR2199 - Quality System Pages 1, 3, 4, 5, 6 & 13



## EXTRACT FROM QUALITY ASSURANCE SYSTEM

**NOTE:** Only these parts of SSS Quality System may be released outside of SSS Gears Ltd. For full details of this policy please see page 6 of 15 of NR2199 (attached).

SSS Gears Ltd. Park Road, Sunbury-on-Thames, Middlesex, TW16 5BL. England. Tel: +44 (0)1932 780644. Fax: +44 (0)1932 780018





## **Quality Management System**

## Part 1 – Quality Manual

### Abstract

The SSS Gears Ltd. Quality Management System is divided into four parts. This Quality Manual is Part 1 and describes the policies adopted by SSS Gears Limited (SSS). It defines:

- the overall Quality Management System adopted by SSS;
- the organisation that has been developed to implement that Quality Management System;
- the associated documentation (e.g. Quality Procedures, Quality Forms etc.) that have been designed to enable SSS to carry out the Quality Management System.

This manual and the information therein are the property of SSS Gears Limited. It will not be reproduced in whole or part otherwise disclosed without the prior consent in writing from the management of SSS except this page, the Quality Manual Contents Section, sections 1, 2 and appendix B - Organisation Chart.



## Contents

|      | Title                                                                                                                                                                     | Reference                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|      | Abstract<br>Amendments                                                                                                                                                    | Quality Manual<br>Quality Manual |
| 1.0  | Company Background                                                                                                                                                        | Quality Manual                   |
| 2.0  | Statement                                                                                                                                                                 | Quality Manual                   |
| 3.0  | Management Responsibility3.1Quality Policy3.2Organisation3.3Management Review                                                                                             | Quality Manual                   |
| 4.0  | Quality System4.1Quality System Procedures4.2Quality Planning                                                                                                             | Quality Manual                   |
| 5.0  | Contract Review                                                                                                                                                           | QP 02                            |
| 6.0  | Design Control                                                                                                                                                            | QP 03                            |
| 7.0  | Document and Data Control                                                                                                                                                 | QP 01                            |
| 8.0  | Purchasing8.1General8.2Evaluation of Subcontractors8.3Purchasing Data                                                                                                     | QP 04                            |
| 9.0  | Control of customer-supplied product                                                                                                                                      | Quality Manual                   |
| 10.0 | Product Identification and traceability                                                                                                                                   | QP 05                            |
| 11.0 | Process control                                                                                                                                                           | QP 05                            |
| 12.0 | Inspection and testing12.1General12.2Receiving Inspection and Testing12.3In-Process Inspection and Testing12.4Final Inspection and Testing12.5Inspection and Test Records | QP 05, QP 06                     |
| 13.0 | Calibration of inspection measuring and test equipment                                                                                                                    | QP 07                            |
| 14.0 | Inspection and test status                                                                                                                                                | QP 05, QP 06                     |



| 15.0  | Contro                             | ol of non-conforming product                                                                                                  | QP11           |
|-------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------|
| 16.0  | Corrective and preventative action |                                                                                                                               | QP11           |
| 17.0  | 17.1<br>17.2<br>17.3<br>17.4       | ing, storage, packaging, preservation and delivery<br>General<br>Handling<br>Storage<br>Packaging<br>Preservation<br>Delivery | QP 08, QP 10   |
| 18.0  | Control of quality records         |                                                                                                                               | QP 01          |
| 19.0  | Internal quality audits            |                                                                                                                               | Quality Manual |
| 20.0  | Training                           |                                                                                                                               | Quality Manual |
| 21.0  | Servicing                          |                                                                                                                               | QP02, QP05     |
| 22.0  | Statistical techniques             |                                                                                                                               | Quality Manual |
| Appen | dix A                              | SSS Gears Ltd Organisation and Responsibilities                                                                               |                |
| Appen | dix B                              | Company Structure Flow Chart                                                                                                  |                |
| Appen | dix C                              | Contract Flow Chart.                                                                                                          |                |

- ...
- Appendix D List of Quality Procedures



## 1.0 Company Background

Since its formation more than 60 years ago the overriding policy of SSS Gears Ltd has been to specialise in one product, the SSS Clutch, and to provide it to the highest quality, at a competitive price, supported by very efficient service.

SSS Clutches are used for the most arduous rotating equipment applications and are selected by most of the premier turbine and large gearbox manufacturers of the world.

The principle uses for SSS Clutches are, Power Generation, Auxiliary Drives, Marine Propulsion and Process applications. Powers transmitted by the SSS Clutches range from a few kW to 320MW and speeds from a few rpm to 16,000 rpm.

To achieve high quality, good internal communications are critical and it is a deliberate policy of SSS Gears Ltd to keep the number of employees to a minimum (preferably below 40). This is possible by sub-contracting all component manufacturing work to companies qualified to SSS Gears Ltd exacting quality standard but still assembling and testing all products 'in-house'.

The small size of SSS means that liaison between staff is simplified, it also means that management can give great "attention to detail" and be involved in all aspects of the product.

The company controls costs by keeping administration to a minimum, and by ensuring it operates efficiently. SSS always quotes firm prices and does not discount/negotiate so that customers have the opportunity to seek comparisons before placing their orders. As component manufacture is almost entirely sub-contracted to other organisations, SSS staff form a comprehensive quality assurance organisation, with the Managing Director as head of Quality Assurance.

By sub-contracting all manufacturing work, SSS Gears Ltd is able to select sub-contractors on the basis of their efficiency, capability and cost effectiveness consistent with their ability to meet the company's high quality standards.

SSS takes total responsibility for work done by the sub-contractors on its behalf and continuously monitors them, therefore it will not divulge to customers any sub-contractors names or issue copies of sub-contracted orders, or grant access to sub-contractors premises for any purpose.

SSS does not permit auditing of accounts by any customer as this would add extra administrative loads, which again would increase costs and detract from the concentration on engineering excellence.

The final measure of success for a Quality System is the reliability of the product itself and the Quality of SSS Clutches has been proved to be very high by the negligible requirements for service, spare parts or repairs after supplying more than 25,000 clutches over 60 years.



### 2.0 <u>Statement</u>

SSS Gears Ltd is committed to consistently supplying a high quality product and services in accordance with the needs and expectations of our customers. The purpose of this manual is to define the general organisation and procedures for the operation and administration of the Quality Management System within SSS Gears Ltd.

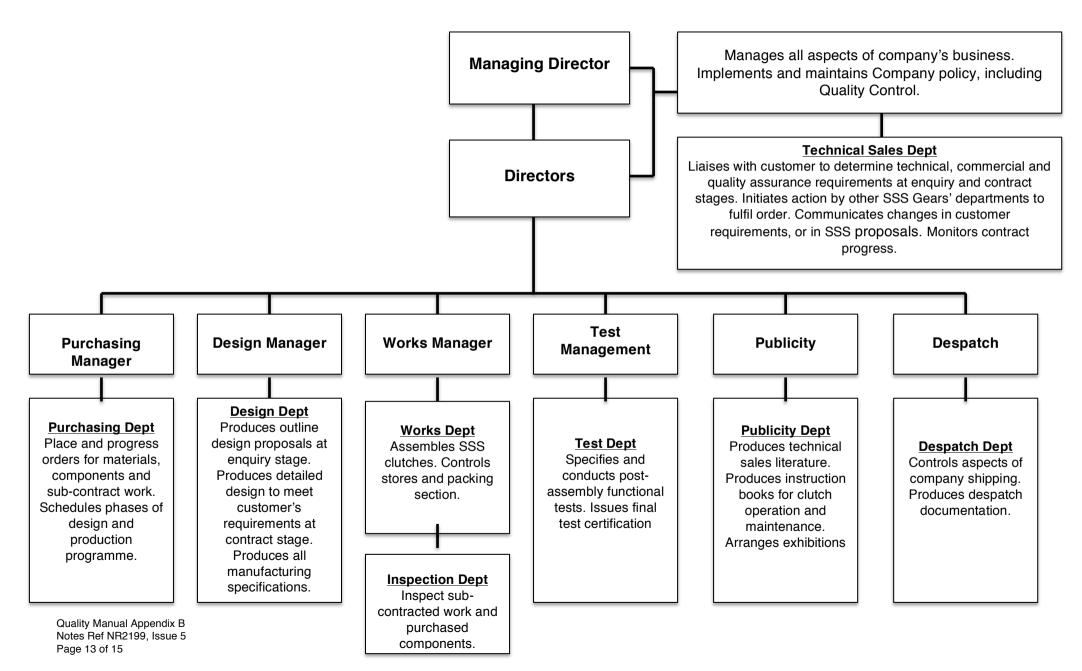
The Managing Director with the assistance of the management team takes executive responsibility for the successful operation of the Quality Management System.

The company actively encourages the involvement and co-operation of all employees in using the Quality Management System to continue to improve its products and services and to increase efficiency in all areas. SSS staff also gain a higher level of job satisfaction from their broader roles.

This quality policy and procedures are a mandatory requirement on all SSS Gears Ltd personnel and must therefore be adhered to.

It is the policy of SSS Gears Ltd to provide a high quality product supported by quick and effective Customer Service. SSS keeps costs to a minimum, and always quotes firm prices without negotiations or discount, so that customers have the opportunity to seek comparisons before placing their orders.

The quality procedures adopted by SSS have been developed over 60 years to suit proven operating practices within a small company. The procedures have always generally met or exceeded the intent of the published standards of the time, from AQAP1 and BS5750 through to the current edition of ISO 9001. The Quality Manual and associated procedures are continually reviewed by senior management and updated when the need arises. On this basis SSS has never sought to be assessed/audited to ISO 9001 or its predecessors.


When explanation of quality system is required, SSS will generally provide the Abstract, Contents list, Company Background and Quality Policy statement from this document, which together explain the basis of the SSS Quality procedures. SSS refrain from completing complex customer quality questionnaires as these can absorb much senior management time, detracting from important engineering liaison and actual quality checking time.


SSS is committed to the Health and Safety of employees and the public from risks caused by our activities. SSS will monitor and comply with our Health and Safety Policy to minimise such risks and ensure we exceed the requirements of relevant legislation.

SSS is committed to reducing the harmful effects our operations have on the environment. SSS will comply with all environmental legislation and where applicable exceed it. SSS will raise awareness of environmental issues amongst staff and enlist their support in reducing SSS' impact.



## SSS GEARS LIMITED ORGANISATION CHART Company Structure and Department Responsibilities

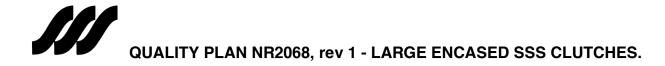




| Onemation                                      | On a sifi a shi an ( A sa su ban sa Onikaria                 | Varifiantian Deservert             | Inspection Code |          |  |
|------------------------------------------------|--------------------------------------------------------------|------------------------------------|-----------------|----------|--|
| Operation                                      | Operation Specification/ Acceptance Criteria Verification Do |                                    | SSS             | Customer |  |
| Contract review                                |                                                              |                                    |                 |          |  |
| Customer Order / Specification review          | -                                                            | SSS Contract Sheet                 | -               | -        |  |
| SSS Arrangement Drawing                        | -                                                            | Approval by customer               | Н               | A        |  |
| SSS Specification (Where applicable)           | -                                                            | Approval by customer               | Н               | A        |  |
| <b>Component Production (Torque transmitti</b> | ng)                                                          |                                    |                 |          |  |
| Material drawing production                    | SSS Quality Manual (P)                                       | Signed drawing (P)                 | Н               | -        |  |
| Forging production                             | BS970 Part 2:1970, SSS procedures 0880/2 & PS100 (P)         | -                                  | -               | -        |  |
| Chemical analysis                              | SSS procedure PS100 (P)                                      | Material Test Cert                 | C,H             | V*       |  |
|                                                |                                                              | SSS Q drg (P)                      | Н               | -        |  |
|                                                |                                                              | SSS final test certificate         | -               | V        |  |
| Mechanical test                                | SSS procedure PS100 (P)                                      | Material Test Cert                 | C,H             | V*       |  |
|                                                |                                                              | SSS Q drg (P)                      | Н               | -        |  |
|                                                |                                                              | SSS final test certificate         | -               | V        |  |
| Brinell hardness test                          | SSS Procedure PS100 (P)                                      | Material Test Cert                 | C,H             | V*       |  |
|                                                |                                                              | SSS Q drg (P)                      | Н               | -        |  |
|                                                |                                                              | SSS final test certificate         | -               | V        |  |
| Ultrasonic test                                | EN10228: 1998, SEP1923, SSS procedures<br>PS101 – 104 (P)    | Material Test Cert                 | C,H             | V*       |  |
|                                                |                                                              | SSS Q drg (P)                      | Н               | -        |  |
|                                                |                                                              | SSS final test certificate         | -               | V        |  |
| Machining drawing production                   | SSS Quality Manual (P)                                       | Drawing signed                     | Н               | -        |  |
| Component/ sub-assembly dimension check        | SSS Quality Manual (P)                                       | CMM report, SSS X & Y drgs (P)     | C,H             | -        |  |
| Magnetic particle crack detection              | SSS procedure PS105 (P) EN 9934-1: 2001                      | NDT cert, SSS Q drg (P)            | C,H             | V*       |  |
| Balancing                                      | SSS procedure PS106 (P) BS3853: 1996, ISO1940                | Balance certificate, SSS Q drg (P) | C,H             | -        |  |
|                                                |                                                              | SSS final test certificate         | -               | V*       |  |

**INSPECTION CODES** A = Customer approval required. C = Certificate required. H = Hold point. V = Review document.

V\* = Review document during witness of final tests, Copies not provided. W = Customer witness first unit (if required).


(P) = Document proprietary to SSS Gears.

| Ornerstier                                  | On a sifila shi su / A sa su kau sa Ouika si s                     |                                      | Inspection Code |          |  |
|---------------------------------------------|--------------------------------------------------------------------|--------------------------------------|-----------------|----------|--|
| Operation                                   | Specification/ Acceptance Criteria                                 | Verification Document                | SSS             | Customer |  |
| Component Production (not torque transmitti | ng)                                                                |                                      |                 |          |  |
| Material drawing production                 | SSS Quality Manual (P)                                             | Drawing signed (P)                   | Н               | -        |  |
| Forging production                          | BS970 Part 2: 1970, SSS procedures 0880/2 & PS100 (P)              | -                                    | -               | -        |  |
| Chemical analysis                           | SSS procedures PS100 (P)                                           | Material Test Cert                   | С, Н            | -        |  |
|                                             |                                                                    | SSS Q drg (P)                        | Н               | -        |  |
| Brinell hardness test                       | SSS procedures PS100 (P)                                           | Material Test Cert                   | С, Н            | -        |  |
|                                             |                                                                    | SSS Q drg (P)                        | Н               | -        |  |
| Ultrasonic testing                          | BS4124: 1991, EN10228: 1998, SEP1923, SSS procedures PS101-104 (P) | Material Test Cert                   | С, Н            | -        |  |
|                                             |                                                                    | SSS Q drg (P)                        | Н               | -        |  |
| Machining drawing production                | SSS Quality Manual (P)                                             | Drawing signed (P)                   | Н               | -        |  |
| Component / sub-assembly dimensional check  | SSS Quality Manual (P)                                             | CMM report, SSS X & Y drgs (P)       | С, Н            | -        |  |
| Magnetic particle crack detection           | SSS procedure PS105 (P) EN 9934-1:2001                             | NDT cert, SSS Q drg (P)              | С, Н            | -        |  |
| Balancing                                   | SSS procedure PS106 (P) BS3853: 1996,<br>ISO1940                   | Balancing certificate, SSS Q drg (P) | С, Н            | -        |  |
|                                             |                                                                    | SSS final test certificate           | -               | V        |  |
| Casing Production                           |                                                                    |                                      |                 |          |  |
| Welding                                     | SSS procedure 0293/1                                               |                                      | V               | -        |  |
| Casting (Size 30 only)                      | BS2789: 1985 350/22L40 + SSS detail drg.                           |                                      | V               | -        |  |
| Dimensional check                           | SSS Quality Manual (P)                                             | SSS X & Y drgs (P)                   | С, Н            | -        |  |
| Paint                                       | Project dependent                                                  | -                                    | V               | W        |  |
| Bearing production                          |                                                                    |                                      |                 | -        |  |
| Whitemetal bond ultrasonic test             | SSS procedure PS107 (P)                                            | SSS Q drg (P)                        | C, H            | -        |  |
|                                             |                                                                    |                                      |                 | +        |  |

**INSPECTION CODES** A = Customer approval required. C = Certificate required. H = Hold point. V = Review document.

V\* = Review document during witness of final tests, Copies not provided. W = Customer witness first unit (if required).

(P) = Document proprietary to SSS Gears.



| Onemation                     |                                    | Marifiantian Decompant     | Inspection Code |          |  |
|-------------------------------|------------------------------------|----------------------------|-----------------|----------|--|
| Operation                     | Specification/ Acceptance Criteria | Verification Document      | SSS             | Customer |  |
| Clutch / Casing Assembly      |                                    |                            |                 |          |  |
| Subassembly dimensional check | SSS Quality Manual (P)             | SSS Z drg (P)              | C, H            |          |  |
| Interface dimensional check   | SSS Quality Manual (P)             | SSS Quality Manual (P)     | Н               | С        |  |
| Dynamic running test          | SSS Test Procedure (P)             | SSS final test certificate | Н               | C, W     |  |
| Leak test                     | SSS Test Procedure (P)             | SSS final test certificate | Н               | W        |  |
| Post test inspection          | SSS Quality Manual (P)             | SSS final test certificate | Н               | C, W     |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |
|                               |                                    |                            |                 |          |  |

**INSPECTION CODES** A = Customer approval required. C = Certificate required. H = Hold point. V = Review document.

V\* = Review document during witness of final tests, Copies not provided. W = Customer witness first unit (if required).

(P) = Document proprietary to SSS Gears.



## NR2056 - SSS Clutches for Synchronous Condensing Large (65MW +) Industrial Type Gas Turbines

| SSS 0391/1      | SSS 'C'        |                           |                    | SSS Clutch      | Power             |              | No.       |                                   |              |
|-----------------|----------------|---------------------------|--------------------|-----------------|-------------------|--------------|-----------|-----------------------------------|--------------|
| Ref. No.        | No.            | Customer                  | Gas Turbine        | Size            | (MW)              | Speed        | Clutches  | Site Name                         | Date         |
| 29              | C374           | KWU (Siemens)             | V93                | 280T Integral   | 65                | 3000         | 1         | Malmoe, Sweden                    | 1970         |
| 29              | C421           | KWU (Siemens)             | V93                | 280T Integral   | 65                | 3000         | 1         | Malmoe, Sweden                    | 1970         |
| 39              | C511           | KWU (Siemens)             | V93                | 280T Integral   | 65                | 3000         | 1         | Kellosaari, Finland               | 1971         |
| 107             | C1216          | KWU (Siemens)             | V93.1              | 300T Semi Rigid | 70                | 3000         | 2         | Farahbad, Iran                    | 1976         |
| 128             | C1564          | KWU (Siemens)             | V93.1              | 300T Semi Rigid | 70                | 3000         | 1         | Shiraz, Iran                      | 1979         |
| 234             | C6255          | Siemens USA               | V84.3A             | 280T Encased    | 170               | 3600         | 1         | Kansas City, USA                  | 1996         |
| N/A             | C10273         | Siemens                   | SGT5-2000E (V94.2) | 280T Encased    | 176               | 3000         | 7         | South Africa                      | 2006         |
| 71              | C879           | GEC Gas Turbines          | EM510              | 310T Fluid      | 65                | 3000         | 1         | Leicester, UK                     | 1973         |
| 74              | C943           | Stal Laval                | GT120              | 280T            | 80                | 3000         | 2         | Stallbaca, Sweden                 | 1974         |
| 169             | C4020          | Ruston Gas Turbines       | EM610              | 320FT Fluid     | 70                | 3000         | 2         | Hok Un, Hong Kong                 | 1989         |
| 169             | C4020          | Ruston Gas Turbines       | EM610              | 320FT Fluid     | 70                | 3000         | 2         | Castle Peak, Hong Kong            | 1989         |
| 124             | C1514          | Fiat (Westinghouse)       | TG50C              | 340T            | 110               | 3000         | 2         | Pietrafitta, Italy                | 1978         |
| 129             | C1566          | Fiat (Westinghouse)       | TG50C              | 340T            | 110               | 3000         | 2         | Italy                             | 1979         |
| 133             | C1735          | Fiat (Westinghouse)       | TG50C              | 340T            | 110               | 3000         | 3         | Capri, Italy                      | 1979 / 1980  |
| 134             | C1761          | Fiat (Westinghouse)       | TG50C              | 340T            | 110               | 3000         | 2         | Italy                             | 1980         |
| 147             | C2463          | Fiat (Westinghouse)       | TG50C              | 340T            | 110               | 3000         | 2+1 spare | Abu Dhabi                         | 1983         |
| 165             | C3465          | Fiat (Westinghouse)       | TG50C              | 340T            | 110               | 3000         | 2         | Giugliano, Italy                  | 1987         |
| 259             | C6855          | Fiat (Westinghouse)       | TG50               | 280T            | 110               | 3000         | 2         | Giugliano, Italy                  | 1997         |
| 145             | C2344          | Westinghouse              | W501               | 300T            | 86                | 3600         | 3+2 spare | Hail, Saudia Arabia               | 1982         |
| 95              | C1067          | BBC (Alstom)              | GT13D              | 260T            | 110               | 3000         | 3         | Najaf, Iraq                       | 1975         |
| 111             | C1007<br>C1278 | Turbodyne (Alstom)        | GT11D              | 300T            | 80                | 3600         | 2         | São Luíz, Brazil                  | 1975         |
| 111             | C1278          | Turbodyne (Alstom)        | GT11D              | 300T            | 80                | 3600         | 3         | Salvador 1, Brazil                | 1977         |
| 111             | C1278          | Turbodyne (Alstom)        | GT11D              | 300T            | 80                | 3600         | 2         | Salvador 2, Brazil                | 1977         |
| 157             | C3036          | BBC (Alstom)              | GT13D              | 260T            | 115               | 3000         | 4         | Trakya, Turkey                    | 1985         |
| 160             | C3268          | BBC (Alstom)              | GT13D              | 260T            | 115               | 3000         | 2         | Trakya, Turkey                    | 1986         |
| 166             | C3508          | BBC (Alstom)              | GT13D              | 260T            | 115               | 3000         | 2         | Trakya, Turkey                    | 1987         |
| 126             | C2032          | Nuovo Dignono (CC)        | EDOD               | 2407            | 110               | 2000         | 2         | Troponiltaby                      | 1001         |
| 136<br>155      | C2032          | Nuovo Pignone, (GE)<br>GE | FR9B<br>FR9E       | 340T<br>375FT   | <u>110</u><br>116 | 3000<br>3000 | 2         | Trapani, Italy<br>Guddu, Pakistan | 1981<br>1985 |
| 185             | C2889<br>C4444 | GE                        | FR9E<br>FR9E       | 373FT<br>360FT  | 116               | 3000         | 4         | Montevideo, Uruguay               | 1985         |
| 228             | C6040          | GE                        | FR9E               | 360FT           | 140               | 3000         | 1         | Brennilis, France                 | 1990         |
| NR <b>20</b> 56 | C6215          | GE                        | FR9E               | 360FT           | 160               | 3000         | 1         | Indian Queens, England            | 1996         |
| 228             | C6040          | GE                        | FR9E               | 360FT           | 170               | 3000         | 1         | Vitry, France                     | 1997         |



# SSS Gears Notes ref. NR2083 SSS Clutches for Synchronous Condensing

Small and Medium Sized (up to 65MW) Industrial Gas Turbines and all Aero Derivative Gas Turbines

| 2         8         4         220 FT         30,000         3,000         1964         Early, Lister Drive - England         2         C106         R           3         4         4         280 FT         70,000         3,000         1964         Croydon B, Rye House - England         3         C105         R           4         4         4         280 FT         70,000         3,000         1965         Norwich, Hastings - England         4         C107         R           5         1         1         170 FT         10,000         3,000         1965         Johannesburg - South Africa         7         C187         R           6         2         2         200 FT         10,000         3,600         1966         Success - Canada         1         C202         S           8         4         4         208 FT         15,000         3,600         1967         Tundre Ray - Canada         11         C202 GT         R           10         1         1         275 FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C219         S           11         1         275 FT         50,000         3,000         1968                                                                                                                                                                                                     | GT TYPERR ProteusRR AvonRR OlympusRR AvonCreusotRR AvonStal FT4CEM Type 7RR AvonStal GT120Stal GT120Stal GT120Stal GT120Stal GT120RR AvonFiat TH18Fiat TG16CEM Type 7RR AvonJBE Fr.5Fiat TG16RR Avon                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REF. NO.         CUURCES         SETS         SLE         ITTPE         PER CLUTCH         (rpm)         DATE         C: NO.           1         1         1         1         66         T         3,000         1,500         1964         Pathway-England         1         C113         R           2         8         4         220 FT         30,000         3,000         1964         Early, Lister Drive - England         2         C106         R           3         4         4         280 FT         70,000         3,000         1965         Norwich, Hastings - England         3         C105         R           4         4         4         280 FT         70,000         3,000         1965         Norwich, Hastings - England         4         C107         R           5         1         1         1700 FT         10,000         3,000         1965         Norwich, Hastings - England         4         C107         R           6         2         2         200 FT         30,000         1966         Johannesburg - South Africa         7         C187         R           7         1         1         205 FT         20,000         3,000         1967                                                                                                                                                                                                            | RR Proteus RR Avon RR Olympus RR Avon Creusot RR Avon Stal FT4 CEM Type 7 RR Avon Stal GT120 Stal GT120 Stal GT120 RR Avon Fiat TH18 Fiat TG16 CEM Type 7 RR Avon JBE Fr.5 Fiat TG16                                                                     |
| 1         1         1         66 T         3,000         1,500         1964         Patchway-England         1         C113         R           2         8         4         220 FT         30,000         1,500         1964         Early, Lister Drive - England         2         C106         R           3         4         4         280 FT         70,000         3,000         1964         Croydon B, Rye House - England         3         C105         R           4         4         4         280 FT         55,000         3,000         1965         Norwich, Hastings - England         4         C107         R           5         1         1         170 FT         10,000         3,000         1966         Jonanesburg - South Africa         7         C187         R           7         1         1         2006 FT         16,000         3,000         1966         Success - Canada         1         C202         S           8         4         4         208 FT         20,000         3,000         1967         Thunder Bay - Canada         11         C250         R           10         1         1         275 FT         50,000         3,000         19                                                                                                                                                                                                        | RR Avon<br>RR Olympus<br>RR Avon<br>Creusot<br>RR Avon<br>Stal FT4<br>CEM Type 7<br>RR Avon<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16 |
| 2         8         4         220 FT         30,000         1964         Early, Lister Drive - England         2         C106         R           3         4         4         280 FT         70,000         3,000         1964         Croydon B, Rye House - England         3         C105         R           4         4         4         280 FT         55,000         3,000         1965         Norwich, Hastings - England         4         C107         R           5         1         1         170 FT         10,000         3,000         1965         Norwich, Hastings - England         4         C107         R           6         2         2         220 FT         30,000         3,000         1966         Jucenses - Canada         1         C202         S           7         1         1         200 FT         20,000         3,000         1967         Tundre Ray - Canada         11         C202         S           8         4         4         208 FT         50,000         3,000         1967         Tundre Ray - Canada         11         C202         S           10         1         1         275 FT         50,000         3,000         1966                                                                                                                                                                                                             | RR Avon<br>RR Olympus<br>RR Avon<br>Creusot<br>RR Avon<br>Stal FT4<br>CEM Type 7<br>RR Avon<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16 |
| 3         4         4         280 FT         70,000         3,000         1964         Croydon B, Rye House - England         3         C105         F           4         4         4         4         280 FT         55,000         3,000         1965         Norwich, Hastings - England         4         C107         R           5         1         1         170 FT         10,000         3,000         1965         Johannesburg - South Africa         7         C167         R           6         2         2         220 FT         30,000         3,000         1966         Success - Canada         1         C202         S           7         1         1         206 FT         16,000         3,000         1967         WAPDA Kotri - Pakistan         9         C229         C         2         160 FT         15,000         4,900         1967         Thunder Bay - Canada         11         C203         S           10         1         1         275 FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C219         S           11         1         1         275 FT         50,000         3,000         1966         Sucan                                                                                                                                                                                                  | RR Olympus RR Avon Creusot RR Avon Stal FT4 CEM Type 7 RR Avon Stal GT120 Stal GT120 Stal GT120 RR Avon Fiat TH18 Fiat TG16 CEM Type 7 RR Avon JBE Fr.5 Fiat TG16                                                                                        |
| 4         4         4         280         FT         55,000         3,000         1965         Norwich, Hastings - England         4         C 107         F           5         1         1         170         FT         10,000         3,000         1965         France         5         C 156         C           6         2         2         220         FT         30,000         3,000         1966         Johannesburg-South Africa         7         C 187         R           7         1         1         208         FT         20,000         3,000         1966         Success - Canada         1         C 202         S           8         4         4         208         FT         20,000         3,000         1967         Thunder Bay - Canada         11         C 202         S           9         2         2         160         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C 203         S           10         1         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C 219         S           11         1                                                                                                                                                                                                                                   | RR Avon<br>Creusot<br>RR Avon<br>Stal FT4<br>CEM Type 7<br>RR Avon<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                        |
| 5         1         1         170         FT         10,000         3,000         1965         France         5         C 156         C           6         2         2         220         FT         30,000         3,000         1966         Johannesburg - South Africa         7         C 187         R           7         1         1         200         FT         16,000         3,000         1966         Success - Canada         1         C 229         C           9         2         2         160         FT         15,000         4,900         1967         Thunder Bay - Canada         11         C 229         C           9         2         2         160         FT         15,000         3,000         1967         Thunder Bay - Canada         5         C 219         S           10         1         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C 219         S           11         1         1         275         FT         50,000         3,000         1968         Shiraz - Iran         9         C 285         F           14         1         1 </td <td>Creusot<br/>RR Avon<br/>Stal FT4<br/>CEM Type 7<br/>RR Avon<br/>Stal GT120<br/>Stal GT120<br/>Stal GT120<br/>Stal GT120<br/>RR Avon<br/>Fiat TH18<br/>Fiat TG16<br/>CEM Type 7<br/>RR Avon<br/>JBE Fr.5<br/>Fiat TG16</td> | Creusot<br>RR Avon<br>Stal FT4<br>CEM Type 7<br>RR Avon<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                   |
| 6         2         2         220         FT         30,000         3,000         1966         Johannesburg-South Africa         7         C187         R           7         1         1         208         FT         16,000         3,600         1966         Success - Canada         1         C202         S           9         2         2         160         FT         20,000         3,000         1967         Thunder Bay - Canada         11         C202         S           10         1         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C203         S           11         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C219         S           12         2         2         200         FT         30,000         3,000         1967         Peking - China         7         C282         F           13         1         1         275         FT         20,000         3,000         1968         Shiraz - Iran         9         C285         F           14         1         1         2                                                                                                                                                                                                                                   | RR Avon<br>Stal FT4<br>CEM Type 7<br>RR Avon<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                            |
| 7         1         1         208         FT         16,000         3,600         1966         Success - Canada         1         C202         S           8         4         4         208         FT         20,000         3,000         1967         WAPDA Koti - Pakistan         9         C290         C           9         2         2         160         FT         15,000         4,900         1967         Thunder Bay - Canada         11         C203         R           10         1         1         275         FT         50,000         3,000         1966-7         Otahuhu - New Zealand         5         C203         R           11         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C219         S           11         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C219         S           12         2         220         PT         30,000         3,000         1968         Shiraz - Iran         9         C285         Fr           14         1         1         208         FT                                                                                                                                                                                                                                    | Stal FT4<br>CEM Type 7<br>RR Avon<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                       |
| 8         4         4         208         FT         20,000         3,000         1967         WAPDA Kotri - Pakistan         9         C229         C           9         2         2         160         FT         15,000         4,900         1967         Thunder Bay - Canada         11         C250         R           10         1         1         275         FT         50,000         3,000         1966-7         Otahuhu - New Zealand         5         C203         S           11         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C218         S           11         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C211         S           12         2         2         220         FT         30,000         3,000         1968         Shiraz - Iran         9         C289         R           13         1         1         208         FT         20,000         3,000         1968         Sudan         9         C289         C           14         1         1         208         FT<                                                                                                                                                                                                                                   | CEM Type 7<br>RR Avon<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                   |
| 9         2         2         160         FT         15,000         4,900         1967         Thunder Bay - Canada         11         C250         R           10         1         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C203         S           N/A         3         3         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C219         S           11         1         1         275         FT         50,000         3,000         1967         Peking - China         5         C211         S           12         2         2         220         FT         30,000         3,000         1969         Zambia         7         C292         R           13         1         1         208         FT         20,000         3,000         1968         Shiraz - Iran         9         C285         F           14         1         1         208         FT         20,000         3,000         1968         Sudan         9         C289         C           15         1         1         208                                                                                                                                                                                                                                                  | RR Avon<br>Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                 |
| 10         1         275         FT         50,000         3,000         1966-7         Otahuhu - New Zealand         5         C203         S           N/A         3         3         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C203         S           11         1         1         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C203         S           12         2         2         200         FT         50,000         3,000         1967         Peking - China         5         C202         R           13         1         1         206         FT         20,000         3,000         1968         Sudan         9         C285         F           14         1         1         208         FT         20,000         3,000         1968         Sudan         9         C289         C           15         1         1         208         FT         20,000         3,000         1968         Middleridge - Australia         10         C299         R           16         2         1         208                                                                                                                                                                                                                                               | Stal GT120<br>Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                            |
| N/A         3         3         275         FT         50,000         3,000         1967         Otahuhu - New Zealand         5         C219         S           11         1         1         275         FT         50,000         3,000         1967         Peking - China         5         C211         S           12         2         2         220         FT         30,000         3,000         1967         Peking - China         7         C292         R           13         1         1         208         FT         20,000         3,000         1968         Shiraz - Iran         9         C285         F           14         1         1         208         FT         20,000         3,000         1968         Sudan         9         C289         C           15         1         1         208         FT         20,000         3,000         1968         Pakistan         9         C289         C           16         2         1         270         FT         20,000         3,000         1968         Yanhee - Thailand         9         C333         F           17         2         2         170                                                                                                                                                                                                                                                          | Stal GT120<br>Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                                          |
| 11         1         275         FT         50,000         3,000         1967         Peking - China         5         C211         S           12         2         2         220         FT         30,000         3,000         1969         Zambia         7         C292         R           13         1         1         208         FT         20,000         3,000         1968         Shiraz - Iran         9         C285         F           14         1         1         208         FT         20,000         3,000         1968         Shiraz - Iran         9         C285         F           15         1         1         208         FT         20,000         3,000         1968         Pakistan         9         C289         C           16         2         1         270         FT         20,000         3,000         1968         Yanhee - Thailand         9         C286         J           17         2         2         170         T         20,000         3,000         1968         Yanhee - Thailand         9         C333         F           18         1         1         205         FT         2                                                                                                                                                                                                                                                     | Stal GT120<br>RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                                                        |
| 12         2         220         FT         30,000         3,000         1969         Zambia         7         C292         R           13         1         1         208         FT         20,000         3,000         1968         Shiraz - Iran         9         C285         F           14         1         1         208         FT         20,000         3,000         1968         Sudan         9         C285         F           14         1         1         208         FT         20,000         3,000         1968         Sudan         9         C289         C           16         2         1         270         FT         20,000         3,000         1968         Pakistan         9         C289         C           16         2         1         270         FT         30,000         3,000         1968         Yankee - Thailand         9         C293         R           17         2         2         170         T         20,000         3,000         1968         Yankee - Thailand         9         C333         F           18         1         1         208         FT         20,000                                                                                                                                                                                                                                                                 | RR Avon<br>Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                                                                      |
| 13         1         1         208         FT         20,000         3,000         1968         Shiraz - Iran         9         C285         F           14         1         1         208         FT         20,000         3,000         1968         Sudan         9         C304         F           15         1         1         208         FT         20,000         3,000         1968         Sudan         9         C289         C           16         2         1         270         FT         30,000         3,000         1968         Pakistan         9         C293         R           17         2         2         170         T         20,000         3,000         1968         Yanke - Thailand         9         C296         J           18         1         1         208         FT         20,000         3,000         1968         Yanke - Thailand         9         C333         F           19         3         3         160         FT         15,000         4,900         1968         BosEd - USA         111         C310         R           20         1         1         275         FT                                                                                                                                                                                                                                                                 | Fiat TH18<br>Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                                                                                 |
| 14         1         1         208         FT         20,000         3,000         1968         Sudan         9         C304         F           15         1         1         208         FT         20,000         3,000         1968         Pakistan         9         C289         C           16         2         1         270         FT         30,000         3,000         1969         Middleridge - Australia         10         C293         R           17         2         2         170         T         20,000         3,000         1968         Yanhee - Thailand         9         C296         JI           18         1         1         208         FT         20,000         3,000         1968         Yanhee - Thailand         9         C333         F           19         3         3         160         FT         15,000         4,900         1968         BosEd - USA         11         C310         R           20         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         5         C349         S           21         2         1         1275                                                                                                                                                                                                                                                    | Fiat TG16<br>CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                                                                                              |
| 15         1         1         208         FT         20,000         3,000         1968         Pakistan         9         C289         C           16         2         1         270         FT         30,000         3,000         1969         Middleridge - Australia         10         C293         R           17         2         2         170         T         20,000         3,000         1968         Yanhee - Thailand         9         C296         JJ           18         1         1         208         FT         20,000         3,000         1968         Yanhee - Thailand         9         C333         Fi           19         3         3         160         FT         15,000         4,900         1968         BosEd - USA         11         C310         R           20         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         5         C349         S           21         2         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         10         C302         S           22         1                                                                                                                                                                                                                                                     | CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                                                                                                           |
| 15         1         1         208         FT         20,000         3,000         1968         Pakistan         9         C289         C           16         2         1         270         FT         30,000         3,000         1969         Middleridge - Australia         10         C293         R           17         2         2         170         T         20,000         3,000         1968         Yanhee - Thailand         9         C296         JJ           18         1         1         208         FT         20,000         3,000         1968         Yanhee - Thailand         9         C333         Fi           19         3         3         160         FT         15,000         4,900         1968         BosEd - USA         11         C310         R           20         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         5         C349         S           21         2         1         1205         FT         50,000         3,000         1969         Vartan - Sweden         10         C302         S           22         1         1 <td< td=""><td>CEM Type 7<br/>RR Avon<br/>JBE Fr.5<br/>Fiat TG16</td></td<>                                                                                                                                                                        | CEM Type 7<br>RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                                                                                                           |
| 16         2         1         270         FT         30,000         3,000         1969         Middleridge - Australia         10         C293         R           17         2         2         170         T         20,000         3,000         1968         Yanhee - Thailand         9         C296         JI           18         1         1         208         FT         20,000         3,000         1968         Yanhee - Thailand         9         C333         F           19         3         3         160         FT         15,000         4,900         1968         BosEd - USA         11         C310         R           20         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         5         C349         S           21         2         1         208         FT         20,000         3,000         1969         Vartan - Sweden         10         C302         S           22         1         1         275         FT         54,000         3,000         1969         Vanaja - Finland         5         C294         S           23         2         2                                                                                                                                                                                                                                              | RR Avon<br>JBE Fr.5<br>Fiat TG16                                                                                                                                                                                                                         |
| 17         2         2         170         T         20,000         3,000         1968         Yanhee - Thailand         9         C296         Jt           18         1         1         208         FT         20,000         3,000         1968         Yanhee - Thailand         9         C333         Fi           19         3         3         160         FT         15,000         4,900         1968         BosEd - USA         11         C310         R           20         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         5         C349         S           21         2         1         208         FT         20,000         3,000         1969         Vartan - Sweden         10         C302         S           21         2         1         208         FT         20,000         3,000         1969         Varian - Sweden         10         C302         S           22         1         1         275         FT         54,000         3,000         1969         Variaga - Finland         5         C294         S           23         2         2 <td< td=""><td>JBE Fr.5<br/>Fiat TG16</td></td<>                                                                                                                                                                                                   | JBE Fr.5<br>Fiat TG16                                                                                                                                                                                                                                    |
| 18         1         1         208         FT         20,000         3,000         1968         Yanhee - Thailand         9         C333         F           19         3         3         160         FT         15,000         4,900         1968         BosEd - USA         11         C310         R           20         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         5         C349         S           21         2         1         208         FT         20,000         3,000         1969         Stockholm - Sweden         10         C302         S           22         1         1         275         FT         54,000         3,000         1969         Vartan - Sweden         10         C302         S           23         2         2         170         T         20,000         3,000         1969         Varaja - Finland         9         C355         S           24         1         1         160         FT         15,000         4,900         1969         Kenya         11         C383         R           25         1         1         160                                                                                                                                                                                                                                                   | Fiat TG16                                                                                                                                                                                                                                                |
| 19         3         3         160         FT         15,000         4,900         1968         BosEd - USA         11         C310         R           20         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         5         C349         S           21         2         1         208         FT         20,000         3,000         1969         Stockholm - Sweden         10         C302         S           22         1         1         275         FT         54,000         3,000         1969         Variaja - Finland         5         C294         S           23         2         2         170         T         20,000         3,000         1969         Variaja - Finland         9         C355         S           24         1         1         160         FT         15,000         4,900         1969         Kenya         11         C383         R           25         1         1         160         FT         15,000         4,900         1969         Mount Isa - Australia         11         C383         R           26         6         3         220                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |
| 20         1         1         275         FT         50,000         3,000         1969         Vartan - Sweden         5         C349         S           21         2         1         208         FT         20,000         3,000         1969         Stockholm - Sweden         100         C302         S           22         1         1         275         FT         54,000         3,000         1969         Vanaja - Finland         5         C294         S           23         2         2         170         T         20,000         3,000         1969         Yanhee, Bangkok - Thailand         9         C355         S           24         1         1         160         FT         15,000         4,900         1969         Kenya         11         C383         R           25         1         1         160         FT         15,000         4,900         1969         Mount Isa - Australia         11         C383         R           26         6         3         220         FT         30,000         3,600         1970         BosEd - USA         2         C364         R                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                          |
| 21       2       1       208       FT       20,000       3,000       1969       Stockholm - Sweden       10       C302       S         22       1       1       275       FT       54,000       3,000       1969       Vanaja - Finland       5       C294       S         23       2       2       170       T       20,000       3,000       1969       Yanhee, Bangkok - Thailand       9       C355       S         24       1       1       160       FT       15,000       4,900       1969       Kenya       11       C383       R         25       1       1       160       FT       15,000       4,900       1969       Mount Isa - Australia       11       C383       R         26       6       3       220       FT       30,000       3,600       1970       BosEd - USA       2       C364       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stal GT120                                                                                                                                                                                                                                               |
| 22       1       1       275       FT       54,000       3,000       1969       Vanaja - Finland       5       C294       S         23       2       2       170       T       20,000       3,000       1969       Yanhee, Bangkok - Thailand       9       C355       S         24       1       1       160       FT       15,000       4,900       1969       Kenya       11       C383       R         25       1       1       160       FT       15,000       4,900       1969       Mount Isa - Australia       11       C383       R         26       6       3       220       FT       30,000       3,600       1970       BosEd - USA       2       C364       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stal PP3 / 4                                                                                                                                                                                                                                             |
| 23         2         2         170         T         20,000         3,000         1969         Yanhee, Bangkok - Thailand         9         C355         S           24         1         1         160         FT         15,000         4,900         1969         Kenya         11         C383         R           25         1         1         160         FT         15,000         4,900         1969         Mount Isa - Australia         11         C383         R           26         6         3         220         FT         30,000         3,600         1970         BosEd - USA         2         C364         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stal GT120                                                                                                                                                                                                                                               |
| 24         1         1         160         FT         15,000         4,900         1969         Kenya         11         C383         R           25         1         1         160         FT         15,000         4,900         1969         Mount Isa - Australia         11         C383         R           26         6         3         220         FT         30,000         3,600         1970         BosEd - USA         2         C364         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stal GT120                                                                                                                                                                                                                                               |
| 25         1         1         160         FT         15,000         4,900         1969         Mount Isa - Australia         11         C383         R           26         6         3         220         FT         30,000         3,600         1970         BosEd - USA         2         C364         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RR Avon                                                                                                                                                                                                                                                  |
| 26 6 3 220 FT 30,000 3,600 1970 BosEd - USA 2 C364 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RR Avon                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RR Avon                                                                                                                                                                                                                                                  |
| 27 4 4 1701 25,000 3,600 1970 PREPA, Puerto Rico 9 6401 J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JBE Fr.5                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stal PP3                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BBC                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JBE Fr.5                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RR Avon                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stal GT120                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RR Avon                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RR Avon                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RR Avon                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Curtis Wright UACL FT4                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JBE Fr.5                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stal PP3 / 4                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JBE Fr.5                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Curtis Wright UACL FT4                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alcatel Fr.5                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alcatel Fr.5                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alcatel Fr.5                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stal PP3 / 4                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RR Avon                                                                                                                                                                                                                                                  |
| 47 2 1 208 FT 20,000 3,000 1972 Stockholm - Sweden 10 C624 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RR Avon<br>GE Fr. 5                                                                                                                                                                                                                                      |
| 48 1 1 208 FT 9,000 3,000 1972 Czechoslovakia 5 C625 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RR Avon                                                                                                                                                                                                                                                  |

| 0201/1             | NO. OF   | NO. OF | CLUTCH     | CLUTCH | kW               | CLUTCH         | DELIVERY     |                                           |         | SSS          |                         |
|--------------------|----------|--------|------------|--------|------------------|----------------|--------------|-------------------------------------------|---------|--------------|-------------------------|
| 0391/1<br>REF. NO. | CLUTCHES | SETS   | SIZE       | TYPE   | TRANSMITTED      | SPEED          | DELIVERY     | PLANT NAME                                | DIAGRAM | GEARS        | GT TYPE                 |
|                    |          |        |            |        | PER CLUTCH       | (rpm)          |              |                                           |         | 'C' NO.      |                         |
| 49                 | 1        | 1      | 170        |        | 25,000           | 3,600          |              | Peru                                      | 9       |              | GE Fr. 5                |
| 50                 | 5        | 5      | 170        |        | 25,000           | 3,000          |              | China                                     | 9       | C689         | JBE Fr.5                |
| 51                 | 5        | 5      | 194        |        | 35,000           | 3,000          | 1972         | Iraq                                      | 9       | C698         | ALS Fr.5                |
| 52                 | 1        | 1      | 170        |        | 25,000           | 3,000          |              | Angola                                    | 9       | C713         | JBE Fr.5                |
| 53                 | 2        | 1      | 208        |        | 34,000           | 3,600          |              | Port Mann - Canada                        | 10      |              | Curtis Wright UACL FT4  |
| 54                 | 1        | 1      | 194<br>170 |        | 35,000           | 3,000          | 1972         | Iraq                                      | 9       |              | Alstom Fr.5<br>JBE Fr.5 |
| 55                 | 2        | 2      | 170        |        | 25,000           | 3,600          | 1972<br>1972 | Argentina                                 | 9<br>9  | C278         | JBE Fr.5<br>JBE Fr.5    |
| 56<br>57           | 1        | 1      | 170        |        | 25,000           | 3,600          |              | Canada                                    | 9       | C730<br>C730 | JBE Fr.5<br>JBE Fr.5    |
| 57                 | 1        | 1      | 170        |        | 25,000           | 3,600          | 1972<br>1972 | Syria                                     | 9       | C730<br>C730 | JBE Fr.5<br>JBE Fr.5    |
| 58<br>59           | 4        | 4      | 170        |        | 25,000<br>29,000 | 3,000<br>3,600 | 1972         | -<br>Canada                               | 9       |              | Curtis Wright UACL FT4  |
|                    | 2        | 2      | 170        |        | 35,000           | 3,000          | 1973         | Saarbrucken - Germany                     | 12      | C714<br>C756 | AEG Fr.5                |
| 60                 |          | 1      | 194        |        |                  |                |              | · · · · · · · · · · · · · · · · · · ·     |         |              | AEG FI.5<br>AEG Fr.5    |
| 60                 |          | 1      |            |        | 20,600           | 3,000          | 1973         | Saarbrucken - Germany                     | 12<br>9 | C757         | GE Fr. 5                |
| 61                 | 2        | 2      | 170        |        | 30,000           | 3,000          | 1973         | Portugal                                  |         | C765         |                         |
| 62                 | 2        | 2      | 194        |        | 35,000           | 3,000          | 1973         | Sarchesme, Iran                           | 9       | C793<br>C793 | Alstom Fr.5             |
| 63                 | 2        | 2      | 194        |        | 35,000           | 3,000          | 1973<br>1973 | Jebel Jelloudi, Tunisia<br>Malmo - Sweden | 9       |              | Alstom Fr.5<br>Stal PP3 |
| 64                 | 4        | 2      | 208        |        | 20,000           | 3,000          |              |                                           | 10      |              |                         |
| 65                 | 1        |        | 170        |        | 30,000           | 3,000          |              | Argentina                                 | 9       |              | GE Fr.5                 |
| 66                 | 4        | 2      | 220        |        | 30,000           | 3,000          | 1974         | Hallstavick 3 + 4 - Sweden                | 2       | C823         | RR Avon                 |
| 67                 | 4        | 4      | 220        |        | 30,000           | 3,000          | 1973         | Huntokoski - Finland                      | ,       | C824         | RR Avon                 |
| 68                 | 3        | 3      | 170        |        | 25,000           | 3,000          |              | Rey Power, Iran                           | 9       | C833         | JBE Fr.5                |
| 69                 | 2        | 2      | 208        |        | 20,000           | 3,000          |              | Finland                                   | 1       | C855         | STAL PP3                |
| 70                 | 1        | 1      | 170        |        | 30,000           | 3,000          | 1973         | -                                         | 9       |              | GE Fr.5                 |
| 72                 | 1        | 1      | 170        |        | 25,000           | 3,000          | 1973         | -                                         | 9       | C895         | GE Fr.5                 |
| 73                 | 4        | 2      | 220        |        | 35,000           | 3,000          | 1974         | Lahall - Sweden                           | 2       | C908         | RR Avon                 |
| 75                 | 2        | 2      | 194        |        | 35,000           | 3,000          | 1974         | Stuttgart, Germany                        | 9       | C944         | Alcatel Fr.5            |
| 75                 | 1        | 1      | 194        |        | 35,000           | 3,000          | 1974         | Santa Cruz, Bolivia                       | 9       |              | Alcatel Fr.5            |
| 75                 | 1        | 1      | 194        |        | 35,000           | 3,000          | 1974         | -                                         | 9       |              | Alcatel Fr.5            |
| 76                 | 4        | 2      | 208        |        | 20,000           | 3,000          | 1974         | -                                         | 10      |              | STAL PP3                |
| 77                 | 2        | 2      | 170        |        | 30,000           | 3,000          | 1974         | -                                         | 9       |              | GE Fr.5                 |
| 78                 | 2        | 1      | 220        |        | 35,000           | 3,000          |              | Ballylumford - N.Ireland                  |         |              | RR Avons                |
| 79                 | 8        | 8      | 194        |        | 35,000           | 3,000          | 1974         | Lyallpur - Pakistan                       | 9       | C967         | AEG Fr.5                |
| 80                 | 4        | 2      | 170        |        | 26,500           | 3,000          |              | Otahuhu - New Zealand                     | 10      | C975         | Parsons Peebles         |
| 81                 | 4        | 4      | 194        |        | 40,000           | 3,000          | 1974         | Turkey                                    | 9       | C986         | Fiat TG20B2             |
| 82                 | 1        | 1      | 194        |        | 16,000           | 1,500          |              | Nairobi - Kenya                           | 9       |              | Fiat TG16               |
| 83                 | 2        | 2      | 170        |        | 30,000           | 3,000          |              | Nova Scotia - Canada                      | 1       | C1012        | Brush UACL              |
| 84<br>05           | 2        | 1      | 220        |        | 35,000           | 3,000          | 1975         | Ballylumford - N.Ireland                  | 2       | C1013        | RR Avons                |
| 85                 | 2        | 2      | 208        |        | 20,000           | 3,000          | 1975         | -                                         | 1       |              | STAL PP3                |
| 86                 | 2        | 2      | 170        |        | 30,000           | 3,000          | 1975         | -<br>Now Foundland Conside                | 9       | C1027        | GE Fr.5                 |
| 87                 | 1        | 1      | 170        |        | 30,000           | 3,600          |              | New Foundland - Canada                    | 1       | C1028        | Curtis Wright UACL FT4  |
| 88                 | 3        | 3      | 194        |        | 35,000           | 3,000          |              | Argentina                                 | 9       | C1030        | Fiat TG20B2             |
| 89                 | 3        | 3      | 194        |        | 35,000           | 3,000          | 1974-5       | -<br>Whiringki, New Zeeland               | 9       | C1037        | Alcatel Fr.5            |
| 90                 | 8        | 4      | 170        |        | 32,000           | 3,000          | 1975         | Whirinaki - New Zealand                   | 10      | C1040        | Parson Peebles FT4      |
| 91                 | 1        | 1      | 194        |        | 35,000           | 3,000          | 1975         | -<br>Tunicio                              | 9       |              | Alcatel Fr.5            |
| 91                 | 1        | 1      | 194        |        | 35,000           | 3,000          | 1975         | Tunisia                                   | 9       | C1041        | Alcatel Fr.5            |
| 91                 | 1        | 1      | 194        |        | 35,000           | 3,000          | 1975         | Netherlands                               | 9       |              | Alcatel Fr.5            |
| 92                 | 2        | 1      | 170        |        | 30,000           | 3,600          | 1975         | Labrador - Canada                         | 10      |              | Curtis Wright UACL FT4  |
| 93                 | 3        | 3      | 170        |        | 19,000           | 3,600          | 1975         | Venezuela/Argentina                       | 9       | C1048        | Fiat TG16               |
| 94                 | 2        | 1      | 170        |        | 30,000           | 3,600          |              | BC Hydro Keogh - Canada                   | 10      | C1050        | Curtis Wright UACL FT4  |
| 96<br>07           |          | 1      | 170        |        | 25,000           | 3,000          | 1975         | Western Mining - Australia                | 1       | C1072        | RR Avon<br>Alcatel Fr.5 |
| 97                 | 3        | 3      | 194        |        | 35,000           | 3,000          | 1975         | Pakistan                                  | 9       | C1075        |                         |
| 98                 | 1        | 1      | 216        |        | 50,000           | 3,000          | 1974         | Otahuhu - New Zealand                     | 5       |              | STAL GT120              |
| 100                | 20       | 10     | 220        |        | 43,000           | 3,000          |              | Bulls Bridge - England                    | 2       |              |                         |
| 101                | 4        | 4      | 170        | I      | 30,000           | 3,600          | 1975         | Burnside - Canada                         | 1       | C1103        | TPM FT4                 |

| 0391/1   | NO. OF   | NO. OF | CLUTCH | CLUTCH | kW                        | CLUTCH         | DELIVERY |                                      |         | SSS              |                        |
|----------|----------|--------|--------|--------|---------------------------|----------------|----------|--------------------------------------|---------|------------------|------------------------|
| REF. NO. | CLUTCHES | SETS   | SIZE   | TYPE   | TRANSMITTED<br>PER CLUTCH | SPEED<br>(rpm) | DATE     | PLANT NAME                           | DIAGRAM | GEARS<br>'C' NO. | GT TYPE                |
| 102      | 10       | 5      | 170    | Т      | 30,000                    | 3,000          | 1975     | Cape Town - South Africa             | 10      |                  | TPM FT4                |
| 102      | 6        | 6      | 194    |        | 35,000                    | 3,000          | 1975     |                                      | 9       |                  | Alcatel Fr.5           |
| 103      | 6        | 3      | 208    |        | 25,000                    | 3,600          |          | Canada                               | 10      |                  | Curtis Wright UACL FT4 |
| 104      | 2        | 1      | 208    |        | 25,000                    | 3,600          |          | N&L Hydro, Labrador - Canada         | 10      |                  | Curtis Wright UACL FT4 |
| 105      | <u> </u> | 4      | 194    |        | 35,000                    | 3,000          | 1976     | Boufarik, Sonel - Algeria            | 9       |                  | Alcatel Fr.5           |
| 108      | 2        | 2      | 194    |        | 30,000                    | 3,000          |          | Rey Power - Iran                     | 9       |                  | Alcatel Fr.5           |
| 108      | 2        | 2      | 194    |        | 30,000                    | 3,000          | 1977     | Djeddah - Saudi Arabia               | 9       | C1270<br>C1270   | Alcatel Fr.5           |
| 108      | 1        | 1      | 194    |        | 30,000                    | 3,000          | 1977     | Agadira - Morocco                    | 9       | C1270<br>C1270   | Alcatel Fr.5           |
| 108      | 1        | 1      | 194    |        | 30,000                    | 3,000          | 1977     | Amperwerke - Germany                 | 9       |                  | Alcatel Fr.5           |
| 108      | 2        | 2      | 194    |        | 31,000                    | 3,000          | 1977     | Amperwerke - Germany                 | 9       |                  | BHS Fr.5               |
| 110      | <u> </u> | 2      | 194    |        | 25,000                    | 3,000          | 1970     | -                                    | 9       | C1272            | JBE Fr.5               |
| 110      | 8        | 4      | 170    |        | 50,000                    | 3,000          |          | -<br>Bulls Bridge - England          | 14      |                  | RR Olympus             |
| 112      | 3        | 3      | 194    |        | 30,000                    | 3,000          | 1978     | Reunion Island                       | 9       | C1359<br>C1357   | Alcatel Fr.5           |
| 113      | 3        | 3      | 194    |        | 25,000                    | 3,000          | 1977     |                                      | 9       | C1357<br>C1375   | EDP Fr.5               |
|          | 3        |        | 170    |        |                           |                | 1977     | Portugal<br>ETSA - Australia         | 9       |                  | Curtis Wright UACL FT4 |
| 115      |          | 3      |        |        | 30,000                    | 3,000          | 1977     | ETSA - Australia                     | 1       |                  | Fiat TG16              |
| 116      | 2        | 2      | 170    |        | 19,500                    | 3,600          |          | -<br>Oante Daag Ouinte - Foundar     | 9       |                  |                        |
| 117      | 3        | 3      | 194    |        | 31,000                    | 3,000          | 1977-8   | Santa Rosa, Quinto - Ecuador         | 9       |                  | AEG Fr.5               |
| 117      | '        | 1      | 194    |        | 31,000                    | 3,000          | 1977-8   | -                                    | 9       |                  | AEG Fr.5               |
| 118      | 6        | 6      | 194    |        | 31,000                    | 3,000          | 1977-8   | Iran                                 | 9       | C1418            | BHS Fr.5               |
| 119      | 2        | 2      | 170    |        | 25,000                    | 3,000          | 1977     | Pakistan                             | 9       | C1422            | JBE Fr.5               |
| 120      | 6        | 3      | 170    |        | 30,000                    | 3,000          | 1977-8   | Johannesburg - South Africa          | 10      |                  | Curtis Wright UACL FT4 |
| 121      | 2        | 2      | 194    |        | 31,000                    | 3,000          | 1978     | Shirvan Power - Iran                 | 9       |                  | Alcatel Fr.5           |
| 122      | 7        | 7      | 260    |        | 40,000                    | 3,000          | 1977-8   | Iran                                 | 9       |                  | Fiat TG20 B2           |
| 123      | 3        | 3      | 194    |        | 31,000                    | 3,000          | 1978     | Rey Power - Iran                     | 9       | C1507            | Alcatel Fr.5           |
| 125      | 2        | 2      | 170    |        | 20,000                    | 3,000          | 1978     | WAPDA Kotri - Pakistan               | 9       |                  | СЕМ Туре 7             |
| 126      | 1        | 1      | 194    |        | 31,000                    | 3,000          | 1978     | Jarry Sud Power - Guadalupe          | 9       |                  | Alcatel Fr.5           |
| 126      | 1        | 1      | 194    |        | 31,000                    | 3,000          |          | Shirvan Power - Iran                 | 9       |                  | Alcatel Fr.5           |
| 127      | 2        | 2      | 194    |        | 31,000                    | 3,000          | 1978     | -                                    | 9       |                  | Alcatel Fr.5           |
| 127      | 1        | 1      | 194    |        | 31,000                    | 3,000          | 1978     | Fr. Pointers des Carries             | 9       |                  | Alcatel Fr.5           |
| 130      | 2        | 1      | 194    | Т      | 50,000                    | 3,000          | 1979-80  | Cowes IOW - England                  | 14      |                  | RR Olympus             |
| 131      | 2        | 1      | 194    |        | 50,000                    | 3,000          |          | Cowes IOW - England                  | 14      |                  | RR Olympus             |
| 132      | 1        | 1      | 170    |        | 30,000                    | 3,000          |          | Pretoria - South Africa              | 1       |                  | RR Olympus             |
| 135      | 3        | 3      | 170    |        | 30,000                    | 3,000          |          | Sri Lanka                            | 9       | C1988            | JBE Fr.5               |
| 137      | 2        | 1      | 170    |        | 30,000                    | 3,000          |          | S.Africa                             | 10      |                  | Curtis Wright UACL FT4 |
| 138      | 9        | 9      | 170    |        | 25,000                    | 3,000          | 1981     | Iraq                                 | 9       | C2154            | JBE Fr.5               |
| 139      | 4        | 4      | 260    |        | 45,000                    | 3,000          | 1981     | Iraq                                 | 9       |                  | Fiat TG20 B2           |
| 140      | 1        | 1      | 170    |        | 25,000                    | 3,000          | 1981     | -                                    | 9       | C2222            | JBE Fr.5               |
| 141      | 1        | 1      | 170    |        | 25,000                    | 3,000          | 1981     | -                                    | 9       | C2225            | JBE Fr.5               |
| 142      | 1        | 1      | 194    |        | 31,000                    | 3,000          | 1981     | Iraq                                 | 9       |                  | Mosul - Iraq           |
| 143      | 5        | 5      | 260    |        | 45,000                    | 3,000          | 1982     | Iraq                                 | 9       |                  | Fiat TG20 B2           |
| 144      | 3        | 3      | 194    |        | 31,000                    | 3,000          | 1981-2   |                                      | 9       |                  | Alcatel Fr.5           |
| 146      | 2        | 1      | 170    |        | 30,000                    | 3,000          | 1982     | S.Africa                             | 10      |                  | TPM FT4                |
| 148      | 3        | 3      | 194    |        | 31,000                    | 3,000          | 1983     | -                                    | 9       |                  | BHS Fr.5               |
| 149      | 1        | 1      | 170    |        | 30,000                    | 3,000          | 1982     | Kipevu - Kenya                       | 9       | C2539            | JBE Fr.5               |
| 150      | 1        | 1      | 194    |        | 40,000                    | 3,000          | 1983     | Norway                               | 9       |                  | RENK Fr.5              |
| 151      | 1        | 1      | 260    | FT     | 32,000                    | 3,000          | 1984     | Pakistan                             | 9       |                  | Mitsubishi MW251       |
| 152      | 2        | 2      | 194    |        | 35,000                    | 3,000          | 1984     | -                                    | 9       |                  | Alcatel Fr.5           |
| 153      | 4        | 4      | 194    | Т      | 52,000                    | 3,000          | 1984     | India                                | 9       | C2825            | GE Fr.6                |
| 154      | 1        | 1      | 194    | Т      | 51,000                    | 3,600          | 1984     | Sask Power, Meadow Lake, SA - Canada | 9       | C2861            | GE Fr.6                |
| 158      | 1        | 1      | 170    | FT     | 15,000                    | 3,000          | 1985     | Broken Hill - Australia              | 1       | C3084            | Stal PP3               |
| 159      | 6        | 6      | 194    | T      | 52,000                    | 3,000          | 1985     | India                                | 9       | C3152            | GE Fr.6                |
| 161      | 1        | 1      | 194    |        | 35,000                    | 3,000          | 1986     | -                                    | 9       |                  | GE Fr.5                |
| 162      | 1        | 1      | 194    |        | 51,000                    | 3,000          | 1986     | Kenya                                | 9       |                  | GE Fr.6                |
| 163      | 3        | 3      | 194    |        | 51,000                    | 3,000          |          | India                                | 9       |                  | GE Fr.6                |

| 0201/1             | NO. OF    | NO. OF | CLUTCH | CLUTCH    | kW          | CLUTCH | DELIVERY |                                      |         | SSS     |                  |
|--------------------|-----------|--------|--------|-----------|-------------|--------|----------|--------------------------------------|---------|---------|------------------|
| 0391/1<br>REF. NO. | CLUTCHES  | SETS   | SIZE   | TYPE      | TRANSMITTED | SPEED  | DATE     | PLANT NAME                           | DIAGRAM | GEARS   | GT TYPE          |
| TIEL: NO.          | OLOTONILO | OLIO   | UIZE   |           | PER CLUTCH  | (rpm)  | DATE     |                                      |         | 'C' NO. |                  |
| 164                | 3         | 3      | 194    | Т         | 42,000      | 3,000  | 1987     | Bangladesh                           | 9       | C3429   | GE Fr.6          |
| 167                | 3         | 3      | 194    | Т         | 35,000      | 3,000  | 1987     |                                      | 9       | C3563   | GE Fr.5          |
| 168                | 4         | 4      | 194    |           | 46,000      | 3,000  | 1988-9   | Australia                            | 9       | C3974   | GE Fr.6          |
| 171                | 2         | 2      | 194    |           | 45,000      | 3,000  | 1989     | Australia                            | 9       |         | GE Fr.6          |
| 183                | 4         | 4      | 194    |           | 35,000      | 3,000  | 1989     | BHEL - India                         | 9       |         | BHEL Fr.5        |
|                    | 1         | 1      | 170    |           | 34,000      | 3,600  | 1990     | Peru                                 | 9       | C4626   | GE Fr.5          |
| 184                | 3         | 3      | 194    |           | 45,000      | 3,000  | 1990     | Australia                            | 9       | C4412   | GE Fr.6          |
| 188                | 2         | 2      | 170    |           | 34,000      | 3,600  | 1991     | Canada                               | 9       | C4661   | GE Fr.5          |
| 198                | 1         | 1      | 170    |           | 35,000      | 3,000  | 1992     | Egypt                                | 9       | C5198   | GE Fr.5          |
|                    | 2         | 2      |        | T Encased | 34,000      | 3,600  | 1993     | Buk Jeju Island, South Korea         | 1       | C5209   | FT4              |
| 208                | 3         | 3      | 194    |           | 51,000      | 3,000  | 1993     | Israel                               | 9       |         | GE Fr.6          |
| 209                | 2         | 2      | 194    |           | 45,000      | 3,000  | 1994     | BHEL - India                         | 9       | C5673   | GE Fr.6          |
| 211                | 1         | 1      | 194    |           | 51,000      | 3,000  | 1994     | Jordan                               | 9       | C5635   | GE Fr.6          |
| 218                | 2         | 2      | 194    |           | 51,000      | 3,000  | 1994     | India                                | 9       | C5525   | GE Fr.6          |
| 222                | 1         | 1      | 194    |           | 51,000      | 3,000  | 1994     | Jordan                               | 9       | C5821   | GE Fr.6          |
| 224                | 2         | 2      | 194    |           | 51,000      | 3,000  | 1994     | Malta                                | 9       |         | GE Fr.6          |
| 229                | 1         | 1      | 194    |           | 51,000      | 3,000  | 1995     | Могоссо                              | 9       |         | GE Fr.6          |
| 233                | 4         | 2      | 170    |           | 27,000      | 3,000  | 1996     | Germany                              | 10      | C6230   | GHH FT8          |
| 235                | 2         | 2      | 194    |           | 51,000      | 3,000  | 1995     | Jordan                               | 9       | C6264   | GE Fr.6          |
| 262                | 1         | 1      | 214    |           | 34,000      | 3,600  | 1997     | Pacific Gas and Electric - USA       | 36      | C6938   | FT4 Twinpack     |
|                    | 1         | 1      | 194    |           | 51,000      | 3,000  | 1986     | Kenya                                | 9       | C6770   | GE Fr.6          |
| 271                | 1         | 1      | 194    |           | 54,000      | 3,000  | 1997     | Panama                               | 9       |         | GE Fr.6          |
| 272                | 2         | 2      | 170    | T Encased | 25,000      | 3,600  | 1998     | Key West - USA                       | 9       | C7119   | GE Fr.5          |
| 279                | 1         | 1      |        | T Encased | 52,000      | 3,600  | 1999     | ATCO Grand Prairie - Canada          | 1       | C7600   | GE LM6000        |
|                    | 4         | 4      | 260    |           | 52,000      | 3,600  |          | PSE&G Burlington - USA               | 1       | C7816   | GE LM6000        |
|                    | 1         | 1      | 194    |           | 51,000      | 3,600  | 1999     | Israel                               | 9       | C7846   | GE Fr. 6         |
|                    | 2         | 2      |        | T Encased | 52,000      | 3,600  |          | GWF Lemore, CA - USA                 | 1       |         | GE LM6000        |
|                    | 4         | 4      |        | T Encased | 52,000      | 3,600  |          | PSE&G Kearny, NJ - USA               | 1       |         | GE LM6000        |
|                    | 4         | 4      |        | T Encased | 52,000      | 3,600  | 2001     | Chesapeake - USA                     | 1       |         | GE LM6000        |
|                    | 1         | 1      | 194    |           | 30,000      | 3,000  |          | Power Development Board - Bangladesh | 9       |         | GE Fr. 5         |
|                    | 1         | 1      | 170    |           | 34,000      | 3,000  | 2002     | Ogden, Utah - USA                    | 9       |         | GE Fr. 5         |
|                    | 1         | 1      |        | T Encased | 52,000      | 3,600  | 2002     | Atco Valley View - Canada            | 1       |         | GE LM6000        |
|                    | 1         | 1      | 194    |           | 30,000      | 3,000  | 2002     | Bangladesh                           | 9       |         | GE Fr. 5         |
|                    | 1         | 1      | 220    |           | 35,000      | 3,000  | 2003     | Coolkeeragh - N. Ireland             | 10      |         | RR Twin Avons    |
|                    | 1         | 1      | 194    |           | 30,000      | 3,000  | 2002     | Barisal - Bangladesh                 | 9       |         | GE Fr. 5         |
|                    | 2         | 1      | 214    |           | 34,000      | 3,600  | 2004     | Great River Energy - USA             | 10      | C9459   | FT4 Twinpack     |
|                    | 2         | 1      | 194    |           | 50,000      | 3,000  | 2004     | Cowes IOW - England                  | 14      |         | RR Twin Olympus  |
|                    | 1         | 1      | 194    |           | 30,000      | 3,000  | 2004     | Iraq                                 | 9       | C9693   | GE Fr. 5         |
|                    | 2         | 2      | 194    |           | 30,000      | 3,000  | 2004     | Bangladesh                           | 9       |         | GE Fr. 5         |
|                    | 1         | 1      | 194    |           | 51,000      | 3,600  | 2005     | Mexico                               | 9       |         | GE Fr. 6         |
|                    | 1         | 1      | 194    |           | 51,000      | 3,000  | 2005     | Могоссо                              | 9       |         | GE Fr. 6         |
|                    | 1         | 1      |        | T Encased | 52,000      | 3,600  | 2002     | Lafayette - USA                      | 1       |         | GE LM6000        |
|                    | 3         | 3      | 194    |           | 51,000      | 3,000  | 2006     | Pinjarra - Australia                 | 9       |         | GE Fr. 6         |
|                    | 1         | 1      | 194    |           | 51,000      | 3,000  | 2006     | MRP Southdown, Otahuhu - N. Zealand  | 9       |         | GE LM6000        |
|                    | 1         | 1      | 194    |           | 51,000      | 3,000  | 2007     | Могоссо                              | 9       |         | GE Fr. 6         |
|                    | 2         | 1      | 194    |           | 52,000      | 3,000  | 2007     | Den Haag, Netherlands                | 37      |         | GE LM6000 (twin) |
|                    | 1         | 1      |        | T Encased | 132,000     | 3,600  | 2008     | Calpine, Vineland, New Jersey, USA   | 1       |         | GE LMS100        |
|                    | 1         | 1      |        | T Encased | 52,000      | 3,600  | 2009     | SaskPower Ermine 1, Canada           | 1       |         | GE LM6000        |
|                    | 1         | 1      |        | T Encased | 52,000      | 3,600  | 2009     | SaskPower Ermine 2, Canada           | 1       |         | GE LM6000        |
|                    | 1         | 1      |        | T Encased | 52,000      | 3,600  | 2010     | SaskPower Yellowhead 1, USA          | 1       |         | GE LM6000        |
|                    | 1         | 1      |        | T Encased | 52,000      | 3,600  | 2010     | SaskPower Yellowhead 2, USA          | 1       |         | GE LM6000        |
|                    | 1         | 1      |        | T Encased | 52,000      | 3,600  | 2010     | SaskPower Yellowhead 3, USA          | 1       |         | GE LM6000        |
|                    | 1         | 1      | 194    |           | 51,000      | 3,000  | 2010     | Nairobi - Kenya                      | 9       | C6770A  | JBE Fr. 6        |
|                    | 1         | 1      | 260    | T Encased | 52,000      | 3,600  | 2011     | Northland Power Spy Hill 1, Canada   | 1       | C12500  | GE LM6000        |

| 0391/1<br>REF. NO. | NO. OF<br>CLUTCHES | NO. OF<br>SETS | CLUTCH<br>SIZE | CLUTCH<br>TYPE | kW<br>TRANSMITTED<br>PER CLUTCH | CLUTCH<br>SPEED<br>(rpm) | DELIVERY<br>DATE | PLANT NAME                         | DIAGRAM | SSS<br>GEARS<br>'C' NO. | GT TYPE         |
|--------------------|--------------------|----------------|----------------|----------------|---------------------------------|--------------------------|------------------|------------------------------------|---------|-------------------------|-----------------|
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | 2011             | Northland Power Spy Hill 2, Canada | 1       | C12500                  | GE LM6000       |
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | 2011             | Kearny 13-A, NJ, USA               | 1       | C12500                  | GE LM6000       |
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | 2011             | Kearny 13-B, NJ, USA               | 1       | C12500                  | GE LM6000       |
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | 2011             | Kearny 13-C, NJ, USA               | 1       | C12500                  | GE LM6000       |
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | 2011             | Kearny 13-D, NJ, USA               | 1       | C12500                  | GE LM6000       |
|                    | 2                  | 2              | 220            | Т              | 72,000                          | 3,600                    | 2011             | Dow Chemical, USA                  | 5       | C12925                  | Turbodyne GT11D |
|                    | 1                  | 1              | 170            | Т              | 34,000                          | 3,000                    | 2011             | Kelanitissa - Sri Lanka            | 9       | C10718A                 | GE Fr. 5        |
|                    | 2                  | 2              | 272            | T Encased      | 132,000                         | 3,600                    | 2012             | LADWP Long Beach, CA USA           | 1       | C12927                  | GE LMS100       |
|                    | 2                  | 2              | 260            | T Encased      | 52,000                          | 3,600                    | 2012             | DEMEC Smyrna, Delaware, USA        | 1       | C13040                  | GE LM6000       |
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | 2012             | Williston, North Dakota            | 1       | C13040                  | GE LM6000       |
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | 2012             | Williston, North Dakota            | 1       | C13040                  | GE LM6000       |
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | TBA              | Tioga, North Dakota                | 1       | C13040                  | GE LM6000       |
|                    | 1                  | 1              | 260            | T Encased      | 52,000                          | 3,600                    | TBA              | New Town North Dakota              | 1       | C13040                  | GE LM6000       |