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Abstract Jurisdictions throughout the world are contemplating greenhouse gas (GHG) miti-
gation strategies that will enable meeting long-term GHG targets. Many jurisdictions are now
focusing on the 2020–2050 timeframe. We conduct an inter-model comparison of nine
California statewide energy models with GHG mitigation scenarios to 2050 to better under-
stand common insights across models, ranges of intermediate GHG targets (i.e., for 2030),
necessary technology deployment rates, and future modeling needs for the state. The models
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are diverse in their representation of the California economy: across scenarios with deep
reductions in GHGs, annual statewide GHG emissions are 8–46 % lower than 1990 levels
by 2030 and 59–84 % lower by 2050 (not including the Wind-Water-Solar model); the largest
cumulative reductions occur in scenarios that favor early mitigation; non-hydroelectric renew-
ables account for 30–58 % of electricity generated for the state in 2030 and 30–89 % by 2050
(not including the Wind-Water-Solar model) ; the transportation sector is decarbonized using a
mix of energy efficiency gains and alternative-fueled vehicles; and bioenergy is directed
almost exclusively towards the transportation sector, accounting for a maximum of 40 % of
transportation energy by 2050. Models suggest that without new policies, emissions from non-
energy sectors and from high-global-warming-potential gases may alone exceed California’s
2050 GHG goal. Finally, future modeling efforts should focus on the: economic impacts and
logistical feasibility of given scenarios, interactive effects between two or more climate
policies, role of uncertainty in the state’s long-term energy planning, and identification of
pathways that achieve the dual goals of criteria pollutant and GHG emission reduction.

1 Introduction

In 2006, California passed the Global Warming Solutions Act (AB32) which set the limit on
greenhouse gas (GHG) emissions at 1990 levels by 2020. California Governors Schwarzenegger
and Brown both passed Executive Orders providing further goals of limiting state-wide GHG
emissions to at most 20 % of 1990 levels by 2050. Like many jurisdictions throughout the world
with long-term GHG targets, California is now focusing on developing post-2020 climate
strategies (CARB 2014). To assist in this process, several research groups have built energy
planning models for California that estimate the future trajectories of technologies, fuels,
infrastructure, and/or economic impacts (Roland-Holst 2008; Williams et al. 2012; Greenblatt
2015; Jacobson et al. 2014; Nelson et al. 2014; Wei et al. 2014; Yang et al. 2015).

However, policymakers sometimes have difficulty distilling the pertinent insights
from energy models because of the diversity of model structures, differences in
scenario specifications, opaque underlying assumptions, and medley of model results.
In this paper, we perform a comparison of nine California energy planning models
with projections to 2050 that include 50 scenarios (including business-as-usual (BAU)
and Bdeep reduction^ scenarios1). Our focus is on the model results and we highlight
important model inputs in the Online Resource (OR) 1. Among many benefits, inter-
model comparisons can help policymakers by providing a range of conceivable
technology deployment rates and GHG trajectories. These comparisons also can be
useful to model developers in identifying model deficiencies and future modeling
needs.

The outline of this paper is as follows: Section 2 provides the methodology of the
comparison and an introduction to the nine models. In Section 3, we examine GHG trajecto-
ries, the electricity sector, the transportation sector, biofuel use, air quality, and non-energy
emissions. Finally, in Section 4 we provide a discussion on future modeling needs from both
the policymaker and model developer perspectives.

1 We define Bdeep reduction scenarios^ as scenarios that achieve one of the following: (1) greater than 75 percent
reduction in annual GHG emissions by 2050 relative to 1990 levels, (2) cumulatively similar reductions to those
in item 1 by 2050, or (3) 100 % renewable energy penetration by 2050.
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2 Methodology

2.1 Model comparisons

Past inter-model comparisons fall into two broad categories. The first category,
Bmodel discovery,^ uses common scenario assumptions (or projections) at a specific
point in time and compares the behaviors of the models (IPCC 2014a). Perhaps the
most well-known and enduring model discovery exercise is the Energy Modeling
Forum (e.g., Fawcett et al. 2014). Another type of comparison – as done here – is
to use existing model scenarios and projections to synthesize findings across models.
These model reviews help identify common insights and deficiencies across modeling
platforms but require less coordination than model discovery exercises (e.g., Beaver
and Huntington 1992). To our knowledge, ours is the first formal model review of
California-specific energy models. This review was not possible until now because
many of the models have been developed in the last 2 or 3 years.

To conduct this comparison, we distributed questionnaires to and solicited feedback
from 65 policymakers and energy stakeholders on the key topics, practices, and
modeling needs in the fall of 2013. We then held a two-day forum in December,
2013 (Morrison et al. 2014). Representation at the forum included high-level individ-
uals from the California Governor’s Office, California Air Resources Board, California
Energy Commission, electric utilities, public utility commission, and academia. We
limited attendance to a relatively small set of stakeholders so that the discussion could
be targeted and manageable. The bulk of the work for this paper and the collaboration
between modeling teams occurred after the forum. We focused this paper on five
topics of greatest interest to the policymakers: electricity, passenger transportation,
biofuels, criteria pollutants, and non-energy emissions. Other sectors or topics, such as
economic impacts, the industrial sector, or sustainability, were raised as possible
dimensions of comparison, but were saved for future exercises.

2.2 Background on models

These nine models are scenario-based tools built to understand the merits, constraints, and
timing of different mixes of policies, technologies, and energies in the future. All but the Wind,
Water, Solar (WWS) model (Jacobson et al. 2014) focus on achieving the state’s 2020 and
2050 climate goal. WWS examines the pathway to a 100 % renewable energy system by 2050.
No new scenarios were developed specifically for this model comparison.

The exact composition of future scenarios depends largely on the assumptions, storylines,
and analytical underpinnings of the scenarios. Some scenarios in these models emphasize
immature technologies such as hydrogen fuel cell vehicles, while others explore shifts in
energy service demand (e.g., reduction in vehicle miles traveled), or changes to key input
parameters (e.g., price elasticity of energy demand). Because most models have been devel-
oped over a number of years and have multiple versions, we limit this comparison to the most
recent model version (Table 1) unless otherwise noted.

Table 2 summarizes key characteristics of these nine models. Note that LEAP and SWIT
CH are soft-linked and are typically run together. For this paper, we also reviewed the 2008
and 2014 AB32 Scoping Plan from CARB (2008, 2014) and the CCST-Bioenergy report
(Youngs 2013).
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The models in this paper can be categorized into three broad model structures: optimization,
equilibrium, and inventory models (also known as Baccounting frameworks^). A model’s
structure is indicative of both the types of research questions that can be addressed with the
model, as well as the caveats to bear in mind when interpreting results. As others have noted
(Beaver 1993), heterogeneous model structures make model comparisons more difficult, but
also lead to a greater number of insights.

Table 1 Model versions used for this comparison

Model Abbreviation Version used in this
comparison

Other related versions/resources

ARB-VISION ARB-VISION CARB (2012)

Berkeley Energy and
Resources

BEAR Roland-Holst (2008) Roland-Holst (2011; 2012)

CA Energy Future
Project

CCST Greenblatt and Long,
(2012)

Youngs (2013) (biofuels-specific
report); CCST (2011)

CA-TIMES CA-TIMES Yang et al. (2015) McCollum et al. (2012)

CA GHG Analysis of
Policies Spreadsheet
(formerly GHGIS)

CALGAPS Greenblatt (2015)2 Greenblatt and Long (2012)

CA Long-Range Energy
Alternatives
Planning System

LEAP Wei et al. (2014) Wei et al. (2013)

SWITCH SWITCH Nelson et al. (2014) Fripp (2012); Nelson et al.
(2012); Mileva et al. (2013)

PATHWAYS PATHWAYS Williams et al. (2012)

Wind, Water,
Solar (WWS)

WWS Jacobson et al. (2014) Hart and Jacobson (2011);
www.thesolutionsproject.org

Table 2 Comparison of nine models across multiple dimensions
ARB-

VISION BEAR CCST CA-TIMES CALGAPS LEAP SWITCH PATHWAYS WWS

Development 
Software Excel GAMS Excel GAMS Excel LEAP AMPL Excel Excel

Structure 

Sectors modeled 
Transportation, 

well-to-tank 

electricity

All All All All All but electric Electric All All

Solution algorithm Scenario-based
Computable general 

equilibrium (CGE)
Threshold testing

Optimization

minimizing total 

cost or partial 

equilibrium

Scenario-based
“Potentials” 

analysis

Optimization

minimizing total 

energy cost

Backcasting Backcasting

Main model outputs

GHG/criteria 

emissions, fuel 

mix, technology 

mix, fuel 

economy

Employment, 

economic activity, 

GHG/criteria

emissions, energy 

mix, technology 

mix

GHG emissions, 

energy mix, 

technology mix

Net present costs, 

GHG/criteria

emissions, energy 

mix, technology

mix

GHG/criteria 

emissions, 

energy mix, 

technology mix

GHG emissions, 

energy mix, 

technology mix

Power plant 

locations/sizes, 

GHG emissions, 

energy mix, 

technology mix

Economic 

costs, 

GHG/criteria

emissions, 

energy mix, 

technology mix

Employment, 

health care costs, 

energy mix, 

technology mix

Time horizon 2000-50 2005-50 2010-50 2010-55 2010-50 2010-50 2010-50 2008-50 2010-50

Features 
Scenarios meet 2050 GHG target *

Endogenous technology learning 

Estimates non-energy emissions

Spatial disaggreg. within CA

Technology stock turnover

Greenhouse gas emissions *

Criteria pollutant emissions
and/or concentrations

Electricity dispatch model

Interactions with out-of-state 

Economics
Technology costs/mitigation 

costs assessment

Measures economic welfare 

effects of climate policy

Other
Documentation

Model available online

* WWS does not estimate GHG emissions but its mitigation scenario has an energy portfolio consistent with deep GHG reductions in 2050.

Yes/Represented Limited No/Not represented
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3 Comparison

3.1 GHG trajectories

Across models, reference scenarios have a wide range of emissions by 2050: over 800 million
metric tonnes CO2-equivalent per year (MMT CO2e/year) in the CCST and PATHWAYS
models to under 500 MMT CO2e/year in CA-TIMES.2 Reference scenarios help capture the
underlying assumptions of the models: for example, the models with the highest GHG
trajectories (PATHWAYS and CCST) had 10–20 % higher income and population assumptions
by 2050 than more recently developed models,3 .4

In scenarios that achieve deep reductions in GHGs by 2050, the GHG trajectories also vary
widely. Annual emissions decline to 8–46 % below 1990 levels by 2030 and 59–84 % by
2050, or to 230–396 MMTCO2e per year and 68–175 MMTCO2e per year, respectively
(Fig. 1a). Most deep reduction scenarios have lagged emission reductions, meaning they wait
until later years to make the steepest declines in reductions. Rates of change in annual GHG
emissions vary between −0.3 and −5.3 % per year from today to 2030 (average across
scenarios of −1.7 %), and −0.8 to −19.9 % per year from 2020 to 2050 (average of −5.2 %).

For ease of viewing in Fig. 1a/b, we only show the highest and lowest deep reduction
scenario from each model that projects GHG emissions. Also shown are the linear and
constant-percent reductions between the 2020 GHG target of 431 MMT CO2e/year

5 to the
2050 target of 86 MMT CO2e/year (black lines). A linear interpolation was used between time
steps. LEAP-SWITCH explores scenarios that achieve greater than 80 % reduction by 2050,
but these scenarios are not presented in this paper,6 .7

Figure 1a and b help demonstrate the importance of early emissions reductions using
a side-by-side comparison of annual and cumulative emissions.8 For example, CALG
APS (S3) only achieves a 59 % emission reduction in annual emissions by 2050
(Fig. 1a) but has the lowest cumulative emissions between 2010 and 2050 (Fig. 1b).
Conversely, the PATHWAYS (Hi Renew) scenario achieves an 80 % reduction by 2050
but has the highest cumulative emissions in 2050 due to its lagged reduction schedule.
Others have shown that the cumulative emissions of a scenario are a robust indictor for
whether that scenario stays below a particular level of global warming (Meinshausen
et al. 2009). Of course, Fig. 1a/b use 2050 as the end point – if these trajectories were
extended to 2070 the PATHWAYS scenario may have cumulatively lower emissions
than the CALGAPS scenario.

3.2 Power sector

Between 2001 and 2013, electricity generation in California (including both in-state and net
imports before transmission losses) increased from 267 TWh to 296 TWh and the

2 see Fig. OR.1 in OR-1 for time trends
3 See Fig OR.2 and OR.3 in OR-1
4 Data behind all figures in this paper are available in supplemental spreadsheet (OR-2).
5 CARB recently updated this 2020 value from 427 MMT CO2e/year
6 Two LEAP-SWITCH scenarios make use of bio-power with carbon capture and sequestration (CCS)
technology.
7 WWS does not estimate GHG emissions, but has the highest deployment of renewables of any model by 2050.
8 Note the start year is 2010 in both figures.
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corresponding renewable fraction of generated energy increased from 14 to 20 %,9 .10 In the
same years, the capacity of the grid powering California expanded from 60.8 GW to 88.5 GW
(CEC 2014).

The future expansion of the electricity grid poses both spatial and temporal challenges to energy
planners (Hart and Jacobson 2011; Williams et al. 2012; Nelson et al. 2012; Wei et al. 2013). The
models examined here differ widely in their geographic scope and resolution. For example, the
SWITCHmodel includes amulti-state region (theWestern Electricity Coordinating Council) which
allows for optimal solutions across state boundaries. Other models assume a certain fraction of out-
of-state generation is always available or, like CA-TIMES, assume all power generation after a
certain year is generated in-state. SWITCH also is the only model that determines the geographic
location and capacity of future power plants and transmission lines. The time dimension also differs
widely between models. The models that include time-of-day dispatch models to better understand
renewable intermittency problems include CA-TIMES, PATHWAYS, SWITCH, and WWS.11

In CCST, SWITCH,12 and WWS, demand for electricity is driven exogenously. PATH
WAYS estimates demand using a Bbottom-up^ approach in which the electricity requirements
of each individual end-use is first estimated then summed. CALGAPS estimates demand in a

9 see OR-2 for calculations
10 This percentages include small hydro-electric facilities, large-scale and distributed solar and wind, geothermal,
and bioelectricity and does not exactly conform to the state’s definition used in its Renewable Portfolio Standard
(RPS).
11 CA-TIMES disaggregates a year into 48 sub-annual time slices (every 2 months in a year and every 3 hours in
a day) which is far fewer than a true dispatch model. PATHWAYS uses 12 periods per year. SWITCH uses 144
slices per year or 576 per optimization period (2020, 2030, 2040, 2050). WWS is soft-linked to a least-cost,
hourly optimization-dispatch model described in Hart and Jacobson (2011).
12 SWITCH uses exogenous electricity demand values calculated by the LEAP model.

A B

Fig. 1 Annual GHG emissions (1a) in MMT CO2e /year and cumulative emissions from 2010 onward (1b) in
total CO2e for the select deep reduction scenarios (highest and lowest from each model)
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similar way as PATHWAYS, but electricity requirements are determined at the sector level
rather than by end use. In CA-TIMES, electricity demand is determined endogenously based
on the need to meet the 2050 GHG goal.

Across BAU scenarios, the total power generation from in-state plus imported electricity
generation increases by 20–31 % above the 2013 level by 2030 and 45–75 % by 2050. In all
deep reduction scenarios, the electricity grid shifts towards renewable generation – particularly
after 2030 – and most end-uses are electrified by 2050. Because some sectors cannot be
electrified or are difficult to decarbonize (e.g., aviation, marine, heavy duty road freight,
agricultural fertilizer, etc.), GHG emissions from the electricity grid will likely need to be
reduced beyond 80 % (Williams et al. 2012; Nelson et al. 2014; Yang et al. 2015).

As shown in Fig. 2, across deep reduction scenarios the total power generation increases by −2
to +40 % by 2030 and 8 to 226 % by 2050, relative to 2013. ForWWS, these increases are much
larger: 334 and 465 %. The renewable fraction of total generation is 30–58 % by 2030 and 30–
89 % by 2050, with the majority of new generation coming from wind and solar. For WWS, the
renewable fractions are 85 and 100 %, respectively. These renewable ranges include small but
exclude large hydroelectric generation and therefore are roughly consistent with California’s
definition of Brenewable electricity^ in its Renewable Portfolio Standard (RPS). In general, the
lower values in these ranges reflect scenarios with greater nuclear and/or CCS deployment.
Across scenarios, the implied build-out rate of in-state plus imported renewable electricity
(mostly solar and wind) ranges between 0.2 and 4.2 GW per year from 2013 until 2030, with
an average of 0.83 GW per year. The renewable build-out rate increases to between 1.5 and 10.4
GW per year from 2030 until 2050, with an average of 3.9 GW per year. Faster rates of grid
expansion are assumed in the WWS model: an average of 17 GW of nameplate renewable
capacity added per year from 2013 to 2050 to reach 652 GWof total renewable capacity by 2050.
For perspective, from 2001 to 2013 the renewable capacity used by the state (in-state and
imported electricity) expanded by 0.67 GW per year while non-renewable capacity expanded
by 1.6 GW per year (CEC 2014).

Fig. 2 2030 and 2050 electricity generation (TWh/year) in deep reduction scenarios. Figure includes in-state
production and imported generation. Individual scenarios shown. Percentages below points are percent renewable
(excluding large hydro) across mitigation scenarios. Note: CCST did not report 2030 generation

Climatic Change (2015) 131:545–557 551



3.3 Passenger transportation sector

A standard practice for modeling the transportation sector in energy models is to make
exogenous assumptions about future energy service demand (e.g., statewide vehicle-miles
travelled (VMT)) and then allow the model to estimate future fuel mix, vehicle/technology
mix, and emissions. The models in this study all follow this practice. The lower the future
demand assumptions, the less the need for low-GHG emitting fuels.

For example, in deep reduction scenarios statewide VMT for light-duty vehicles13 is
assumed to change from 293 billion miles per year in 2010 (CARB 2012) to 226–600 billion
miles in 2050. Therefore, the amount of near-zero CO2e emission energy used across these
models differs widely. Figure 3 shows the passenger light-duty vehicle (LDV) energy projec-
tions (stacked columns) and the total transportation sector energy (red triangles) for the model
reporting detailed LDV-specific results. Across deep reduction scenarios, total LDVenergy use
ranges from 8.6 to 25.2 billion gallons of gasoline equivalent (BGGE) in 2030 (1.1–3.3
exajoules (EJ)) and 8.1–19.6 BGGE in 2050 (1.1–2.6 EJ).

With the exception of the PATHWAYS-mitigation scenario, the passenger LDV energy
drops from 2010 to 2030, and again from 2030 to 2050 in deep reduction scenarios. This
decline results mainly from (1) the underlying assumptions about lower energy service demand
in future years and (2) the improved efficiency of LDV technology. Across deep reduction
scenarios, petroleum consumption declines 15–72 % by 2030 and 39–100 % by 2050 as the
light-duty-vehicle fleet moves primarily to battery electric, plug-in hybrid electric, and hydro-
gen fuel cell vehicles, although the composition and magnitude of change varies between
scenarios. For example, in CA-TIMES the combination of battery electric and hydrogen fuel
cell vehicles makes up between 50 and 96 % of the LDV fleet in 2050. In the ARB VISION
model’s mitigation scenario, these same technologies comprise over 80 % of the LDV fleet in
2050. Regardless of the exact fleet composition, hydrogen and electricity with near-zero life-
cycle GHGs (e.g., from wind, solar, biomass, NG with CCS) are needed to power virtually all
of the LDV fleet by 2050.

3.4 Contribution from bioenergy

Bioenergy assumptions are important drivers in energy planning models (Wei et al. 2013; Rose
et al. 2014). The more Blow-carbon^ bioenergy assumed to exist, the fewer mitigation
strategies that are needed in other sectors and technologies. Across models reviewed here
(except WWS), between 4 and 13 billion gallons of gasoline equivalent (BGGE) (0.4–1.7
exajoules) are used in 2050 – up from about 1.0 BGGE today.14 Models utilize biomass supply
curves from Parker et al. (2010) or De la Torre Ugarte and Ray (2000).

Most models make simple assumptions regarding the carbon content of bioenergy. For
example, SWITCH assumes bioenergy has 30 % lower carbon intensity than petroleum-based
fuels today and improves to 80 % lower by 2050. PATHWAYS only includes biomass
feedstocks produced in the U.S. that have a Bnet-zero^ carbon intensity15 on a lifecycle basis
including corn stover, wheat straw, forest residues, forest thinning, and switchgrass (Williams
et al. 2012). CA-TIMES assumes a carbon intensity of 75–80 gCO2e/MJ for corn ethanol, 25–

13 Light-duty vehicles are typically synonymous with private cars, or passenger vehicles.
14 see Fig. OR.4 in OR-1
15 Meaning these biofuels are assumed to exist without GHG emissions
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30 gCO2e/MJ for cellulosic ethanol, and 13–30 gCO2e/MJ for waste-based or Fischer-Tropsch
diesel. CALGAPS estimates net life-cycle GHG emissions for biofuels that include offsets
based on the assumed in-state portion of biofuels produced. ARB VISION assumes that the
average carbon intensity of all biofuel declines from 67 to 41 gCO2e/MJ. It should be
emphasized that all models here assume point estimates rather than distributions in carbon
intensity. A number of studies suggest that these carbon intensities are highly uncertain (e.g.,
Plevin et al. 2010).

Setting aside this concerns and assuming that bioenergy with low lifecycle GHG emissions
will in fact exist in the future, CA-TIMES suggests these fuels are best utilized in the
transportation sector (rather than in other sectors). This is mainly because fewer mitigation
options are available in the transportation sector compared to other sectors, in particular in
aviation, marine, and heavy duty road transport. Across scenarios, bioenergy accounts for a
maximum of about 40 % of transportation energy in 2050. Not all long-term energy modeling
suggests large quantities of biofuels are needed in the transportation sector. The WWS model,
presents a vision of 2050 without bioenergy, relying instead solely on batteries and hydrogen.
Biofuel and bioelectricity production with CCS are modeled in sensitivity analyses in the CA-
TIMES and SWITCH models but their results are not presented here.

3.5 Non-CO2 GHG and criteria emissions

Reducing non-CO2 GHGs and criteria emissions is a major policy focus in California;
however most energy planning models spend relatively little effort on characterizing their
future levels. The relative contribution of non-energy and High Global Warming Potential
(HGWP) GHGs to overall emissions levels is likely to increase in the coming decades.
Greenblatt (2015) and Wei et al. (2013) find that, absent further policy, these emissions alone
could exceed the 2050 emission goal.

For criteria emissions, California policymakers are contemplating how to transform the
energy system to simultaneously meet GHG targets and the near-term (2023) and midterm
(2032) National Ambient Air Quality Standards (NAAQS) for ozone. In particular, meeting

Fig. 3 Passenger LDV energy projections (stacked columns) and the total transportation sector energy (red
triangles) for the model reporting detailed LDV-specific results. Note that each fuel provides a different energy
intensity of travel (e.g., electric vehicles go 2–3 times as far as a gasoline vehicle per MJ of energy)
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the 2032 legally-binding NAAQS deadline will be challenging given historical vehicle
turnover rates and higher costs of clean technology. CARB (2014) reports that additional
strategies, early action, and more rapid development and adoption of zero-emission technol-
ogies is needed. How to do this while also meeting GHG targets remains a lively policy debate.
Table OR.2 of the OR-1 compares (1) the criteria pollutants estimated by each model and (2)
the spatial resolution of these estimations. The table shows that only three of the nine models
estimate NOx, ROG, and PM2.5 and none do so at a highly resolute level.16

4 Discussion and conclusions

Twenty states in the U.S. and the District of Columbia have adopted 2020 and/or longer-term
GHG targets (see table OR.3 in the Online Resources for a complete list). While the results
from this model comparison are California-specific, the insights may be useful to other
jurisdictions that have long-term climate targets or those considering such targets. Our
conclusions fall into two broad categories: (1) lessons for policymakers and (2) lessons for
model developers and those interested in facilitating model comparisons.

One of the more lucid takeaways for policymakers is the need to consider both
annual and cumulative emissions when setting GHG targets and building climate
strategies. Scenarios with aggressive and early emission reductions achieve far lower
cumulative emissions by 2050. In some BAU scenarios, California has more than
twice the cumulative emissions in 2050 as in the mitigation case. From a climate
perspective, the obvious implication is that near-term reductions are preferable to
delayed reductions (IPCC 2014b).

The model results also highlight how achieving deep GHG emission reductions in
the state will require further policy commitments beyond the current policy measures
(many of which stop in 2020). Rates of technology transitions in these models – such
as deployment of better vehicles or renewable electricity – exceed the historical rates
of change in California, often by two or three times. The optimization models (CA-
TIMES, SWITCH) suggest that the least expensive path to make these transitions
includes aggressive decarbonization of our electricity supply, electrification of most
end-uses, increases in energy efficiency, and deployment of low-carbon transportation
fuels and technologies.

Policymakers should also recognize their important role in model development. For
example, modelers at the December forum requested more up-to-date information about
upcoming policies and more access to the latest state-collected data to improve model
calibration/validation and to strengthen analysis of existing and future policies. The
December forum also served as a reminder to policymakers about limitations of energy
modeling. One cogent example given at the forum was that air quality models adequate
for state policy planning and regulation need to be highly spatially-disaggregated where-
as most energy models are at the regional or state-level. For example, California’s
statewide raw emissions inventory had a spatial resolution of 4×4 km on a Lambert
Conformal projection of the earth’s surface. The South Coast Air Quality Management
District (SCAQMD) raw emissions inventory had a spatial resolution of 5x5 km on a

16 nitrogen oxides (NO and NO2); ROG = reactive organic gases; PM2.5 = fine (≤2.5 μm) particulate
matter; SOx = sulfur oxides
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Universal Transverse Mercator (UTM) coordinate system. Exposure assessment studies
that seek to measure human health impacts are evaluated at even finer resolutions (e.g.,
1×1 km or at street or block level) (Zapata et al. 2013). Although some integrated
assessment models have linked energy projections with air quality to understand co-
benefits of climate policies (e.g., McCollum et al. 2013), the resolution of these models
is at most 1x1° (approximately 111×111 km at the equator). Despite requests from
policymakers, attempting to integrate air quality and energy models at a finer resolution
may not be practical in terms of model development and computing time.

There are also a number of important lessons for model developers and for those who
conduct model comparisons. Yang et al. (2015) report that results of scenarios in CA-
TIMES are highly sensitive to the assumed baseline, technology costs, and availability of
breakthroughs (such as advanced bio-liquids, nuclear, and CCS). By treating these
drivers of the models with distributions rather than point estimates, one can better
understand their impact on the future and design policy to be more robust to potential
outcomes.

Additionally, there is a need to better understand the shape of the GHG trajectories between
2020 and 2050 and how the shape contributes to the cumulative cost of scenarios. BBending^
the annual GHG curve downward in early years may provide technological, economic, and
risk management options if certain measures prove more difficult than anticipated. However,
this has not been adequately researched.

Model developers could also consider standardizing input assumptions in models,
such as population, income, elasticities, costs, emission factors, etc. This could be
achieved through close coordination between modeling teams, making the models
open-source, and by increasing the interoperability between research models and gov-
ernment models used by the state. Greater coherence/transparency of technology
adoption/diffusion assumptions, and more extensive data sharing, would likely improve
the insights gained from model comparisons. Indeed, having a set of standardized
scenarios as done by the Intergovernmental Panel on Climate Change in their Share
Socioeconomic Pathways (SSPs) could simplify the often-opaque black boxes of the
modeling world (O’Neill et al. 2014).

A final set of lessons for model developers was expressed by policymakers at the
December, 2013 forum. Policymakers involved asked for more modeling of: (1) individual
policies (i.e., rather than generic climate policies) in order to better understand the spatial,
temporal, and socio-economic effects of regulations, (2) interactive effects between two or
more policies, (3) non-emission impacts like water, land-use, and economic equity, and (4) the
optimal sequencing (i.e., timing) and prioritization of policies and technology deployment.
Lastly, policymakers requested that model output be reported in the same metrics as those used
in the policy arena. Policymakers specifically requested greater reporting of performance
metrics (such as gCO2e/mile for vehicles, average gCO2e/MJ for fuels, gCO2e/kWh for
electricity, percent renewables by year) and economic metrics (such as $/metric ton CO2e,
percent change of household expenditure on energy, and lifecycle costs of travel in $/vehicle
miles traveled).
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