| DOCKETED              |                                                                                |
|-----------------------|--------------------------------------------------------------------------------|
| Docket Number:        | 15-IEPR-11                                                                     |
| <b>Project Title:</b> | Climate Change                                                                 |
| <b>TN</b> #:          | 205469-2                                                                       |
| Document Title:       | Economic Implications of Climate Impacts on Energy: Adding Economics to Energy |
| Description:          | 07-24-2015 Solomon Hsiang Presentation                                         |
| Filer:                | Raquel Kravitz                                                                 |
| Organization:         | California Energy Commission                                                   |
| Submitter Role:       | Commission Staff                                                               |
| Submission<br>Date:   | 7/23/2015 7:35:56 AM                                                           |
| Docketed Date:        | 7/23/2015                                                                      |

Economic Implications of Climate Impacts on Energy: Adding Economics to Energy

> Solomon Hsiang UC Berkeley

### Uses for applied economics

- Statistical approaches simplify complex processes
- Causal inference
- Reality check for model assumptions
- Calibration based on real world behavior
- Behavior may not optimize
- Interlinked markets

#### Weaknesses

- Statistical approaches simplify complex processes
- Gaps in knowledge
- Future environment is unprecedented
- Future behavior may differ from past
- Innovations are unknowable
- Insufficient market linkages

### Calibrate against empirically measured energy demand, actual behavior



Auffhammer (2015)

### Not all CDDs are equal, AC adoption matters



#### Temperature

Auffhammer & Aroonruengsawat (2009)

### Warming will cause greater AC adoption

RCP 8.5



Auffhammer (2015)

### Warming will cause greater AC adoption

Figure 7: Extensive Margin Adjustment: Projected Percent Increases in Average Household Electricity Consumption 2080-2099 over 2000-2015



Auffhammer (2015)

# Probabilistic risk assessment for demand changes due to warming



Figure 10.2: National Change in Electricity Demand

Risky Business & American Climate Prospectus (2014)

# Probabilistic risk assessment for demand changes due to warming



Risky Business & American Climate Prospectus (2014)

#### Climate drives income drives energy use



Deryugina & Hsiang (NBER, 2014)

### Climate drives agricultural income



Deryugina & Hsiang (NBER, 2014)

#### Where will 40M more live? Housing, Jobs, and Population growth

![](_page_11_Figure_1.jpeg)

American Climate Prospectus (2014)

### Evaluation of actual efficiency gains

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

Fowlie, Greenstone, Wolfram (2015)

#### Accounting for transition costs

![](_page_13_Figure_1.jpeg)

Walker (QJE, 2013)

### Pursue innovation for export to emerging economies

![](_page_14_Figure_1.jpeg)

Income

Davis & Gertler (PNAS, 2015)

# What can empirical economics do for energy modeling in California?

- energy demand given capital (intensive margin)
- capital demand given climate (extensive margin)
- climate affects income affects energy demand
- population growth, migration & land markets
- measure actual efficiency gains
- identify transition costs of regulation
- identify opportunities for innovation (and its export)

Thank you

shsiang@berkeley.edu