DOCKETED				
Docket Number:	15-OIR-02			
Project Title:	Modification of Alternative and Renewable Fuel and Vehicle Technology Program Funding Restrictions			
TN #:	204711			
Document Title:	California Environmental Protection Agency Air Resources Board Low Carbon Fuel Standard Re-Adoption:			
Description:	Natural Gas Carbon Intensity and other CA-GREET Model Adjustments, April 3, 2015 Presentation			
Filer:	Patty Paul			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	5/22/2015 4:39:40 PM			
Docketed Date:	5/22/2015			

Low Carbon Fuel Standard Re-Adoption: Natural Gas Carbon Intensity and other CA-GREET Model Adjustments

April 3, 2015

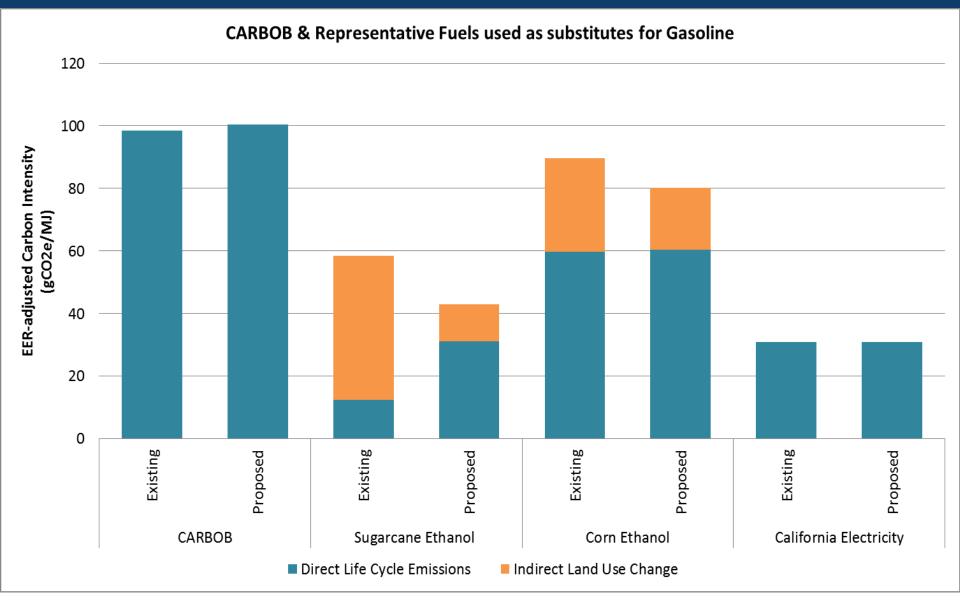
Agenda

- Review of the public process to date
- Comparison of CA-GREET 1.8b and estimated CA-GREET 2.0 carbon intensity values
- Discussion of natural gas and biomethane issues
- Discussion of other carbon intensity values
- Updates to the illustrative compliance scenario
- Next Steps

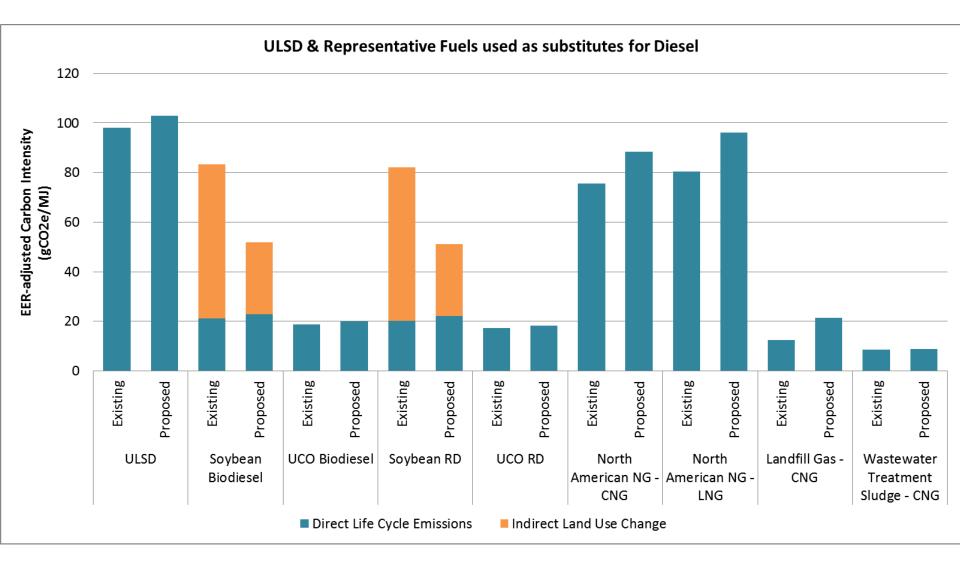
Public Process To Date

- Proposed CA-GREET update was continuously vetted during the rulemaking process
 - Initially proposed in March 2014 LCFS Concept Paper
 - Discussed in the following workshops:
 - March 11, 2014
 - April 4, 2014
 - Announced that CA-GREET 2.0 would be based on the *publicly* available GREET 1 2013 model from Argonne Laboratory
 - May 30, 2014
 - Presented two-tiered framework for pathway applications
 - August 22, 2014
 - Presented some preliminary CI comparisons
 - November 13, 2014
 - Addressed misunderstandings evident in stakeholder feedback; requested input on new regulatory proposals

Public Process To Date (Cont.)


- On October 10, 2014, we posted
 - The first release of the full CA-GREET 2.0 model (though GREET 1 2013 was always available), and
 - A comprehensive table of all the parameter decisions reached to date
- In conjunction with today's workshop we've posted:
 - Updated versions of CA-GREET 2.0 Tier 1 and Tier 2 calculators
 - A table comparing CA-GREET 1.8b and 2.0 CIs
 - A revised illustrative scenario
 - An updated denaturant calculator

CA-GREET 1.8b versus 2.0 CI Comparisons


Basis of comparison:

- Proposed regulation does not include an extensive lookup table of generic CA-GREET 2.0 values
 - Emphasis in the proposed regulation is on producer-specific values derived using the Tier 1 and Tier 2 versions of CA-GREET 2.0
 - CA-GREET 1.8b and 2.0 CIs are not straightforward to compare
- To improve clarity, the next two slides compare existing CA-GREET 1.8b CIs with our best estimates of corresponding values calculated with the proposed CA-GREET 2.0.
- These example CA-GREET 2.0 CIs are not part of the regulation—*only representative estimates for purposes of this workshop*

CA-GREET 1.8b versus 2.0 Comparisons

CA-GREET 1.8b versus 2.0 Comparisons

Proposed Changes to be Discussed Today

- Natural Gas
 - Methane leakage rate from well to distribution
 - NG vehicle tailpipe emissions
 - NG pipeline transmission distance
- Updated Brazilian average mix
- N₂O emissions from crop residues
- Heating values of NG
- Canola farming data
- Electricity generation GHG emission factors for non-U.S. sources

Well-to-Tank Methane Leakage from Natural Gas Systems

- Proposed CA-GREET 2.0 values are based on 2014 EPA Inventory and remain consistent with ANL's GREET 2014
- Emerging studies will be reviewed and considered for possible future model updates

Well-to-Tank Methane leakage rates in conventional NG and shale gas pathways

	g CH ₄ /MMBtu NG t	hroughput	vol. % of CH ₄ over N	vol. % of CH ₄ over NG throughput		
Life Cycle Stage	Conventional NG	Shale gas	Conventional NG	Shale gas		
Recovery - Completion CH ₄ Venting	0.543	12.384	0.0026%	0.06%		
Recovery - Workover CH ₄ Venting	0.008	2.477	0.000037%	0.01%		
Recovery - Liquid Unloading CH ₄ Venting	10.357	10.357	0.05%	0.05%		
Well Equipment - CH ₄ Venting and Leakage	51.345	51.345	0.25%	0.25%		
Processing - CH ₄ Venting and Leakage	26.710	26.710	0.13%	0.13%		
Transmission and Storage - CH ₄ Venting and Leakage [per 680 miles]	81.189	81.189	0.39%	0.39%		
Distribution - CH ₄ Venting and Leakage	63.635	63.635	0.31%	0.31%		
Life Cycle Leakage as vol. % of Throug	shput:	ł	1.14%	1.21%		
Shares of NA NG Supply	77.2%	22.8%				
Overall Contribution to Cl	+ 5.617		1.159	1.15%		

Methane Leakage in Landfill Gas Processing

- Model assumes one-step clean-up process with 1% leakage rate adapted from anaerobic digester studies
- No studies specific to landfill gas processing have been identified by staff or stakeholders
- Staff reviewed state¹ and federal² rules governing fugitive landfill emissions
 - Concluded state regulations do not translate to a quantifiable feed loss or emission limit. Federal regulations do not apply to processing systems
- In response to stakeholder feedback and due to the uncertainty and lack of data on these operations, staff has agreed to make methane leakage in RNG processing a user-modifiable input

¹ California Air Resources Board (2009). Methane Emissions from Municipal Solid Waste Landfills. 17 CCR § 95464 Gas Collection and Control System Requirement <u>http://www.arb.ca.gov/regact/2009/landfills09/landfillfinalfro.pdf</u> ² U.S. EPA (2014). Standards of Performance for New Stationary Sources. 40 CFR 60.753 Operational standards for collection and control systems. <u>https://www.law.cornell.edu/cfr/text/40/60.753</u>

Natural Gas – Tailpipe Emission: Vehicle Shares

Fuel consumption data by vehicle type is used to calculate a weighted average tailpipe emission factor that represents the CA NGV fleet.

- Previous model release used EIA¹ data from 2011
- Propose to use LCFS Reporting Tool data for 2014
 - Combines Light and Medium Duty vehicles
 - Distinguishes compression and spark-ignition engines

LCFS Reporting Tool - Vehicle Category	CNG (Diesel Gallon Equivalents)	% Share (LRT)	% Share (EIA) Previous Model Release	Corresponding GREET vehicle types:
Heavy Duty Vehicles - Compression Ignition Engines	348,193	0.40%	9F F00/	Class 8B Heavy-Heavy Duty Trucks and Class 6 Medium- Heavy Duty Trucks
Heavy Duty Vehicles - Spark Ignition Engines	71,672,554	82.80%	85.50%	Class 8B Heavy-Heavy Duty Trucks and Class 6 Medium- Heavy Duty Trucks
Medium and Light Duty			6.60%	Light Duty Trucks 2 (LDT2)
Vehicles - Pickups, Trucks, Vans,	14,521,266	16.80%	5.40%	Light Duty Trucks 1 (LDT1)
SUVs and Passenger cars			2.40%	Passenger Cars

CNG Total 86,542,013

¹U.S. Energy Information Administration, "Renewable & Alternative Fuels, Alternative Fuel Vehicle Data" website tool, Accessed October 21, 2014. <u>http://www.eia.gov/renewable/afv/users.cfm (</u>2011 data)

Natural Gas – Tailpipe Emission: Vehicle Shares

Fuel consumption data by vehicle type is used to calculate a weighted average tailpipe emission factor that represents the CA NGV fleet.

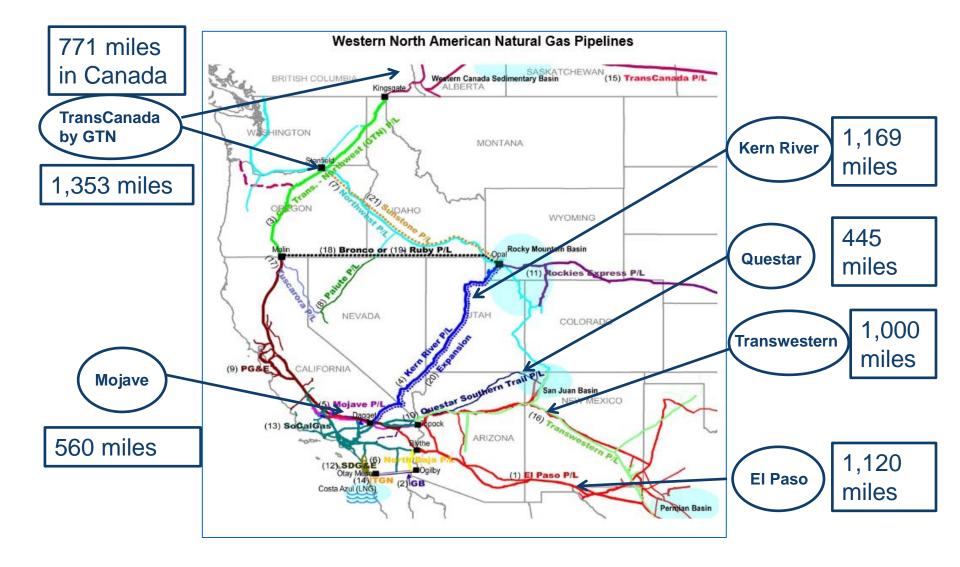
- Previous model release used EIA¹ data from 2011
- Propose to use LCFS Reporting Tool data for 2014

LCFS Reporting Tool - Vehicle Category	LNG (gallons)	% Share (LRT)	% Share (EIA) Previous Model Release	Corresponding GREET vehicle types:
Heavy Duty Vehicles - Compression Ignition Engines	0	0.00%	99.70%	Class 8B Heavy-Heavy Duty Trucks and Class 6 Medium- Heavy Duty Trucks
Heavy Duty Vehicles - Spark Ignition Engines	55,045,693	100.00%	99.70%	Class 8B Heavy-Heavy Duty Trucks and Class 6 Medium- Heavy Duty Trucks
Medium and Light Duty Vehicles - Pickups, Trucks,	0	0.00%	0.30%	Light Duty Trucks 2 (LDT2)
Vans, SUVs and Passenger cars			0.00%	Light Duty Trucks 1 (LDT1)
			0.00%	Passenger Cars

LNG Total 55,045,693

¹U.S. Energy Information Administration, "Renewable & Alternative Fuels, Alternative Fuel Vehicle Data" website tool, Accessed October 21, 2014. <u>http://www.eia.gov/renewable/afv/users.cfm (</u>2011 data)

Natural Gas – Tailpipe Emission: CH₄ and N₂O Factors


Staff expects to update tailpipe EFs as part of the 15-day package; update will be based on Argonne National Lab's forthcoming report on Heavy Duty NGV.

- Currently under industry & academic review
- Expected release of final report in April 2015
- No interim update to CA-GREET TTW emission factors until ANL HDV report publication
- A list of references supplied to ARB from ANL imply a decrease in these factors is likely
- 1. Gao, Z., LaClair, T., Daw, C.S., Smith, D.E., 2013. Fuel Consumption and Cost Savings of Class 8 Heavy-Duty Trucks Powered by Natural Gas. Presented at the Transportation Research Board 92nd Annual Meeting.
- Carder, D.K., Thiruvengadam, A., Besch, M.C., Gautam, M., 2014. In-Use Emissions Testing and Demonstration of Retrofit Technology for Control of On-Road Heavy-Duty Engines. Prepared for the South Coast Air Quality Management District (Contract No. 11611).
- 3. Hajbabaei, M., Karavalakis, G., Johnson, K.C., Lee, L., Durbin, T.D., 2013. Impact of Natural Gas Fuel Composition on Criteria, Toxic, and Particle Emissions from Transit Buses Equipped with Lean Burn and Stoichiometric Engines. Energy 62, 425–434. doi:10.1016/j.energy.2013.09.040.
- 4. Nylund, N.-O., Koponen, K., 2012. Fuel and Technology Alternatives for Buses: Overall Energy Efficiency and Emission Performance. <u>http://www2.vtt.fi/inf/pdf/technology/2012/T46.pdf</u>.
- Yoon, S., Hu, S., Kado, N.Y., Thiruvengadam, A., Collins, J.F., Gautam, M., Herner, J.D., Ayala, A., 2014. Chemical and Toxicological Properties of Emissions from CNG Transit Buses Equipped with Three-Way Catalysts Compared to Lean-Burn Engines and Oxidation Catalyst Technologies. Atmos. Environ. 83, 220–228. doi:10.1016/j.atmosenv.2013.11.003

Natural Gas - Pipeline Distances

- In CA-GREET 2.0, pipeline distance is currently a user-input cell for providers of natural gas as a transportation fuel
- This cell contains a "default" value of 1,000 mi. that can be used if no verifiable pathway-specific distance is known
- This "default" was a rough estimate of the average transmission distance to CA fueling stations
- We received comments requesting that we refine this estimate
- We consulted various government and utility sources to ascertain transport distances and volumes. The next slide summarizes the distances we found

Natural Gas - Pipeline Distances

Natural Gas - Pipeline Distances

- We found that the volume-weighted average transport distance to the CA border is almost 1,300 miles
- To that number must be added the transport distance to CA fueling stations
- Since some uncertainty surrounds this estimate, we propose
 - Sticking with a 1,000-mile default for the current rulemaking, and
 - Working with stakeholders to better refine this parameter for the next CA-GREET update

Electrical Energy Generation Mix

- Marginal mixes are currently used to estimate electricity CIs
- Marginal electricity comes from generation sources that would be built to supply new load
 - Natural gas
 - Renewables
 - Not large hydro and nuclear
 - Marginal mixes are often difficult to define
- We therefore propose using well-defined average mixes (actual on-the-ground generation portfolios)

Electrical Energy Generation Mix

- The impact for users of electricity is generally the inverse of the impact for exporters of electricity (e.g., Brazilian ethanol producers with cogeneration)
 - Many electricity consumers in the U.S. benefit from the average mix: hydroelectric and nuclear generation decrease the CI
 - In Brazil, the average is predominantly hydroelectric and the marginal is predominantly fossil-fuel based
 - Displacing marginal power with cogenerated electricity earns a higher credit

Electrical Energy Generation Mix

- Previously, staff proposed using the average Brazilian 2010 electricity mix from EIA
- Based on comments received we now propose using data from the Brazilian Energy Research Office (Average of 2011-2013 data)

	Current	Updated
Hydro	80%	76.42%
Nuclear	2%	2.6%
Biomass	7%	7%
Coal		1.87%
Petroleum Oil		3.4%
Natural Gas	11%	7.89%
Wind		0.83%

International Electricity Emission Factors

- Foreign fuel pathways currently use U.S. average electricity emission factors to calculate CI
- Staff proposes that foreign producers provide GHG emission factors from one of the following sources for use in CA-GREET 2.0:
 - **1.** Verifiable national or regional emission factors from the country's Energy Ministry or equivalent
 - 2. If data from the first source is unavailable, use data from **UNFCC** National Inventory Submissions

http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php

3. If data from neither of these sources is available, use data from either:

The International Energy Agency • **Electricity Statistics**

http://www.iea.org/statistics/topics/electricity

U.S. Energy Information Administration Voluntary Reporting

www.eia.gov/survey/form/eia 1605/emission factors.html

Correction to fuel properties of Natural Gas

- Updated lower heating value (LHV) and density of natural gas and methane (at 32°F and 1 atm)
- Table 3 in the regulation will be changed to reflect the CA-GREET 2.0 value
- Change aligns CA-GREET with ANL's GREET fuel properties at reference conditions
- Natural gas and pure methane properties are fixed values which are specified in the Regulation and cannot be changed in the model
- Impact to carbon intensity shown in table to the right:

	CA- GREET1.8b	CA- GREET2.0	Units	
Natural Ga	S			
LHV	930 (0.98)	983 (1.04)	Btu/ft ³ (MJ/ft ³)	
Density	20.4	22.0	g/ft ³	
Pure Methane				
LHV	N/A	962 (1.02)	Btu/ft ³ (MJ/ft ³)	
Density	N/A	20.3	g/ft ³	

	gCO2e/MJ
CARBOB	-0.05
ULSD	-0.06
Natural Gas	-0.37
Hydrogen	-0.55

Soil N₂O

- Disaggregated N₂O from two sources of Nitrogen (N) in response to stakeholder feedback
 - N Fertilizer (no change from 1.325%)
 - N-content of biomass crop residue (reduced to 1.225%)
- Using the 2006 IPCC GHG Inventory Guide¹
 - Tier 1 default emission factors for N_2O as a % of N in N-fertilizer and crop residues.
 - Determined using Equations 11.1, 11.6, and Table 11.3
- Applied to crop residues for all feedstocks.

	Corn Ethanol	Sugarcane	Sorghum	Corn Stover
EF _{CR} =1.325%	15.45	7.48	18.35	0
EF _{CR} =1.225%	15.15	7.2	18.04	0.58
change:	-0.29	-0.28	-0.31	+0.58

Soil N₂O emissions from N-fertilizer and Crop Residues (gCO2e/MJ)

¹ IPCC 2006 N₂O emissions from managed soils, and CO₂ emissions from lime and urea application 2006 IPCC Guidelines for National Greenhouse Gas Inventories vol 4 (Hayama: IGES) chapter 11 <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf</u>

Canola Farming Data

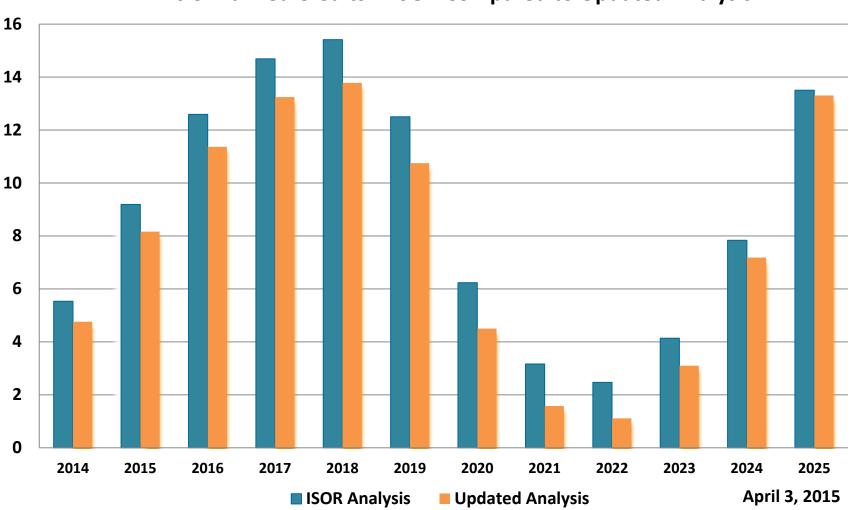
- Current GREET model uses Canola farming data from outside of North American
- Staff proposes to use the latest values from the Canadian Canola Council
- Based on a survey of more than 1,000 canola growers in North America
- Results are compared with current values in the next slide

Canola Farming Data (cont.)

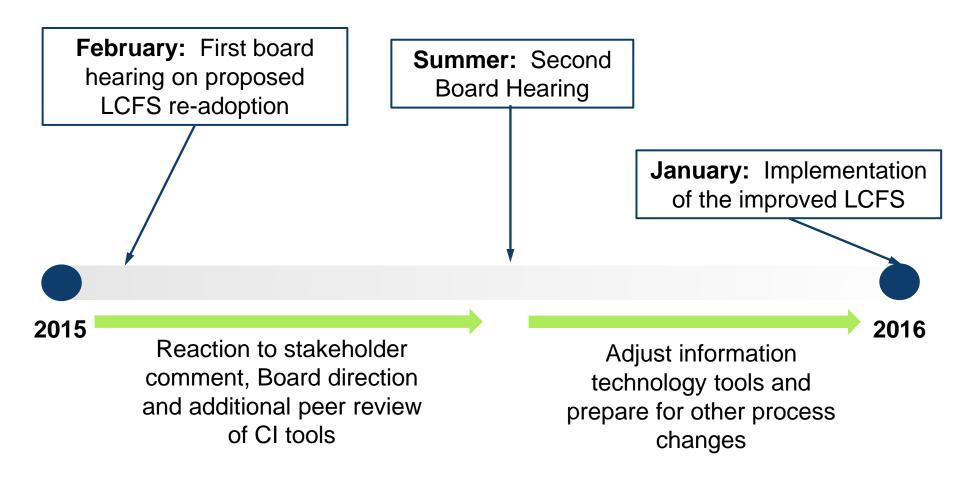
Parameters	GREET1 2013 values	Canadian Canola Council survey values	Proposed values for CA- GREET2.0
Farming			
Diesel	1,006,720 Btu/dry MT	13.55 liters/dry MT	459,791 Btu/dry MT
Electricity	0	3.40 kWh/dry MT	11,601 Btu/dry MT
NG	0	1.03 MJ/dry MT	976 Btu/dry MT
Agrochemical Inpu	Its		
Nitrogen	53.8 kg/dry MT	50.24 kg/dry MT	50.72 kg/dry MT
P ₂ O ₅	15.42 kg/dry MT	14.39 kg/dry MT	14.31 kg/dry MT
<i>K</i> ₂ O	14.11 kg/dry MT	2.68 kg/dry MT	2.93 kg/dry MT
Lime	0	0	0
Pesticide	0	0.289 kg/dry MT	0.289 kg/dry MT
Herbicides	0.75 kg/dry MT	0.373 kg/dry MT	0.373 kg/dry MT
N ₂ O from fertilizer	1.325%	0.998 %	1.325%
N_2O from residue	1.225%	0.898%	1.225%

Denaturant Calculator

- Denaturant calculation in CA-GREET1.8b did not account for the displacement of ethanol by gasoline blendstock
- Calculation of denaturant CI will now be ethanol pathway-specific


	Existing	Proposed
2010 Average Ethanol	0.80	1.78
Denaturant Cl	0.80	1.70

- California Reformulated Gasoline and Ethanol Denaturant Calculator (XLS)¹ provides a more comprehensive and clear explanation of the new approach to accounting for denaturant in ethanol
- Relies on a conservative assumption reflecting the legal requirement that denatured ethanol contains minimum of 94.6% vol. Remainder is assumed to be denaturant for the purposes of estimating emissions, consistent with CA GHG Inventory²


¹ Available from: <u>http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm</u>

² California Environmental Protection Agency, Air Resources Board, "2014 Edition of California's 2000-2012 Greenhouse Gas Emissions Inventory Technical Support Document" (May, 2014) <u>http://www.arb.ca.gov/cc/inventory/doc/methods_00-12/ghg_inventory_00-12_technical_support_document.pdf</u>

LCFS Illustrative Compliance Scenario

2015-2016 LCFS Timeline

Sam Wade, Chief, Transportation Fuels Branch (916) 322-8263 <u>Samuel.Wade@arb.ca.gov</u>

Wes Ingram, Manager, Fuels Evaluation Section 916-322-3984 wes.ingram@arb.ca.gov

Hafizur Chowdhury, Fuels Evaluation Section (916) 322-2275 hafizur.chowdhury@arb.ca.gov

Anthy Alexiades, Fuels Evaluation Section (916) 324-0368 <u>anthy.alexiades@arb.ca.gov</u>

Thank You