Docket Number:	14-AAER-02
Project Title:	Computer, Computer Monitors, and Electronic Displays
TN #:	204162
Document Title:	ITI/Technet Computer Displays 2 Presentation
Description:	Displays Cost Effectiveness/Technical Barriers
Filer:	System
Organization:	CEC/Harinder Singh
Submitter Role:	Commission Staff
ubmission Date:	4/13/2015 4:18:42 PM
Docketed Date:	4/13/2015

Comment Received From: H.Singh

Submitted On: 4/13/2015 Docket Number: 14-AAER-02

ITI/Technet Computer Displays 2 presentation

Additional submitted attachment is included below.

Displays Cost Effectiveness/Technical Barriers

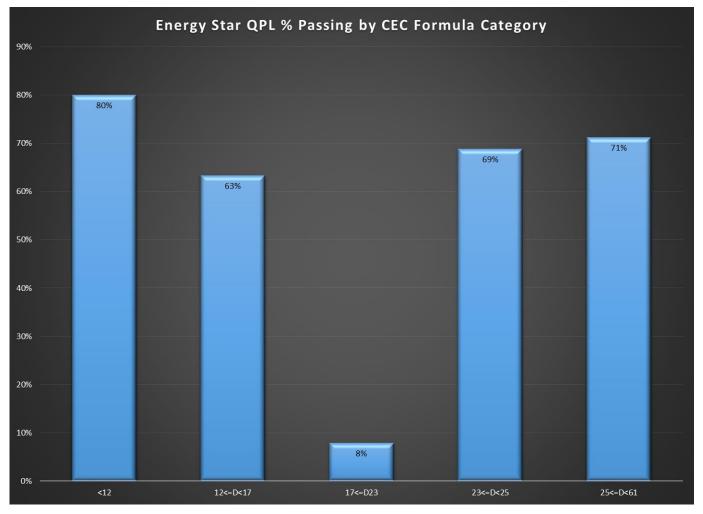
Cost Effectiveness

- CEC has provided no data or analysis to support technological feasibility or cost effectiveness of the proposed limits
 - Analysis performed to get from studies to CEC's limits has not been disclosed
 - Average selling price of passing 20in displays is \$20.50 above that of failing displays with estimated 5 year savings \$3.60
- CEC analysis states only about 14 percent of the current models meet the staff's proposed standards. However, monitors would only need to reduce their power consumption by 3 to 5 watts to comply
 - No cost analysis provided to show how 3-5W power reduction could be achieved cost effectively

Cost Effectiveness Cont.

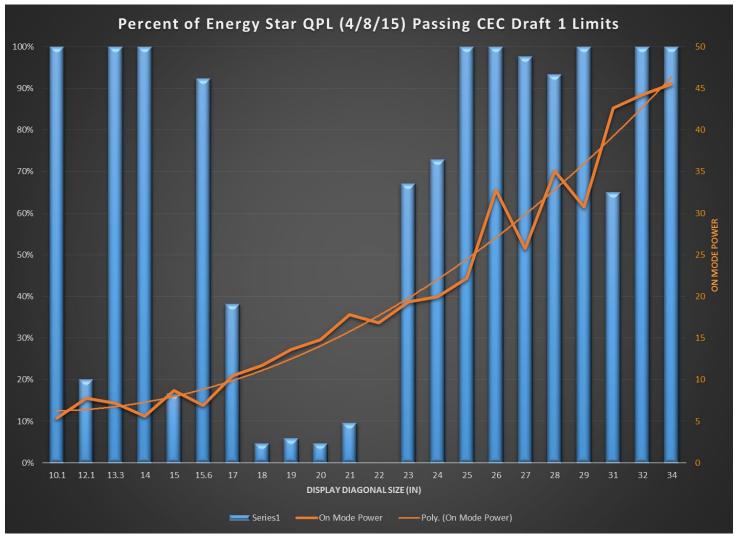
- CEC states use of higher Efficiency LED's will allow Displays to meet the more stringent requirements in the allotted time frame
 - No cost data or volume data or reference to a study is provided to validate the assumption
 - Use of higher efficiency LED's assumes ability to use fewer LED's
 - Not validated. (May require redesign of optical systems to prevent/eliminate hot spots)
 - Supply and demand for LED's not factored into analysis
 - Is there sufficient supply of the higher efficiency LED's
 - How will the price of these LED's change if significant volume shifted to more efficient ones?
 - Do the higher efficiency LED's meet all other design requirements of the system
 - New technology/components with advanced performance capabilities come at a cost premium to existing parts and <u>have limited production capabilities</u>.
 - Significant shift of volume to these parts will drive up prices

Cost Effectiveness



- Automatic Brightness Control (ABC) cost analysis of \$0.50 is not applicable to all products since it ignores implementation requirements
 - Need clear window in plastics to get light to the sensor and or a light pipe
 - Must have circuit board in the appropriate area for the sensor or need new PCB and cabling
 - Users much less likely to operate PC than watch TV in low light environment
 - If CEC believes ABC will save energy then PC's TEC analysis should change to allow for PC power management
 - Users can always turn it off or just increase the brightness to 100%
 - Cost remains savings eliminated and Industry later penalized

Energy Star QPL % Passing by CEC formula segmentation



- 17-23 in displays much more severely impacted by CEC proposed limits
 - Same technologies and suppliers used across most size ranges
- What Technology gap or design inefficiency identified in this size range by the studies justify more aggressive requirements

View of CEC proposal affect on Energy Star QPL

Inequitable application of limits incentivizes end user moving to higher power larger displays

Technical Feasibility

- Key Customer requirements are completely un accounted for in CEC limits
 - Color Gamut large driver of Power consumption but not in analysis
 - CEC regulation will eliminated high color gamut displays from the California market
 - Video editing among industries where color Gamut is essential
- Many of the Higher efficiency technologies described in the study Are not ready for mass production or do not have volume production capabilities.
 - Quantum Dots have yet to be validated for high volume production
 - Cost estimated may not be accurate
- Power Modeling for resolution differences in study questionable
 - Many variables left unaccounted for in this analysis and not held equal
 - Power supply efficiency
 - Other system capabilities / features unaccounted for
 - Cannot project onto entire industry what is measured on couple of systems from a single manufacturer.
 - Correlation to other manufacturers and or sizes in missing

THANK YOU