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A GENERALIZATION OF SAMPLING WITHOUT 
REPLACEMENT FROM A FINITE UNIVERSE* 

D. G. HORVITZt AND D. J. THOMPSON 
Iowa State College 

This paper presents a general technique for the treatment 
of samples drawn without replacement from finite universes 
when unequal selection probabilities are used. Two sampling 
schemes are discussed in connection with the problem of de- 
termining optimum selection probabilities according to the 
information available in a supplementary variable. Ad- 
mittedly, these two schemes have limited application. They 
should prove useful, however, for the first stage of sampling 
with multi-stage designs, since both permit unbiased estima- 
tion of the sampling variance without resorting to additional 
assumptions. 

INTRODUCTION W HEN sampling a finite universe in which we can identify the indi- 
vidual elements, we are free to assign in a completely arbitrary 

manner the probability of selecting an element on any particular draw. 
By appropriate assignment of the selection probabilities it is possible 
to reduce considerably the sampling variances of unbiased sample 
estimates over those obtained when sampling with equal probabilities 
throughout. 

The possibility of using unequal probabilities for selecting the sample 
elements from the universe as a means of increasing precision perhaps 
received its first impetus for applied sampling from Hansen and 
Hurwitz [2] in 1943. They introduced the selection of primary units 
(in a subsampling scheme) with probabilities proportionate to some 
measure of their size and presented the appropriate theory. Their 
sampling scheme was confined (when sampling without replacement) 
to samples of one primary unit per stratum, however, the theory not 
having been extended beyond this point. More recently, Midzuno [6] 
has generalized the Hansen and Hurwitz approach to sampling a com- 
bination of n elements of the universe with probability proportionate 
to some measure of size of the combination. Madow [5] has made 
some contributions to the theory of the systematic selection of several 
clusters with probability proportionate to a measure of size. 

* Journal Paper No. J 2139 of the Iowa Agricultural Experiment Station, Ames, Iowa, Project 1005. 
Presented to the Institute of Mathematical Statistics, March 17, 1951. 

t Now at the University of Pittsburgh. 
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Research in the theory of sampling for surveys has been concerned 
with the development of more efficient sampling systems, the system 
including both the sample design and the method of estimation. One 
sampling system is said to be more efficient than another if the vari- 
ance or mean square error of the estimate with the first system is less 
than that of the second, provided the cost of obtaining the data and 
results is the same for both. The development of stratified, multi-stage, 
multiphase, cluster, systematic, and other sample designs beyond 
simple or unrestricted random sampling, as well as alternative meth- 
ods of estimation, have all resulted in increased efficiency in specific 
circumstances. As indicated above, the appropriate use of variable 
probabilities for the selection of the sample elements can lead to gains 
in efficiency over systems using equal probabilities of selection. 

It is well known that if samples of size one are drawn with prob- 
abilities proportionate to the exact measure of the characteristic 
under observation, unbiased estimates of means or totals for the popu- 
lation exist which have zero sampling error. Similarly, Midzuno pro- 
vides an unbiased estimator for his design which has zero sampling 
error when the samples are drawn with probabilities proportionate to 
the total measure of the elements in each for the characteristic observed. 
Since in practical situations the values of the characteristic under study 
are not known in advance, the problem arises of determining the selec- 
tion probabilities (from any additional information available) which 
have optimum propelties, i.e. maximize the efficiency. Midzuno [6] 
and Hansen and Hurwitz [3] have both considered this problem with 
some success. 

A limitation of the Hansen and Hurwitz scheme is that an unbiased 
estimate of the sampling variance of their estimator cannot be obtained 
from the sample elements. This difficulty appears to exist in Midzuno's 
system as well, except in the trivial case of equal probability for each 
sample combination. 

The purpose of this paper is twofold. First, it provides a general 
method for dealing with sampling without replacement from a finite 
universe when variable probabilities of selection are used for the ele- 
ments remaining prior to each draw. An unbiased linear estimator for 
the population total of the characteristic measured is given, as well as 
the sampling variance of this estimator. An unbiased estimator for the 
sampling variance is also given. This is for a one-stage design. An ex- 
tension of the use of this method for two-stage sampling is presented. 
Second, it examines and discusses some of the problems arising in 
the practical application of sampling with variable selection probabili- 
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ties. In this connection, two sampling schemes, for samples of size two, 
using unequal selection probabilities are presented. Although general 
use of these schemes is limited because of the small sample size, they 
should have wide application for the first stage of sampling with 
stratified two-stage designs. Either of the two schemes permits an un- 
biased estimate of the sampling variance to be made from the sample 
data without resorting to additional assumptions. 

SAMPLING WITH ARBITRARY PROBABILITIES OF SELECTION 

Let the universe, U, consist of N elements ul, U2, . . X UN. A sample 
of size n is to be drawn without replacement using arbitrary probabil- 
ities of selection for each draw. We denote the probability of selection 
associated with the ith element of the universe prior to the first draw 
by pi, (i = 1, 2, , N), where 

N 

Pi, _ 0, E pi, = 1. 

This, in a sense, defines a probability distribution (of selection) for 
the elements of the universe for samples of size one. We are sampling 
without replacement so that prior to each succeeding draw we must 
define a new probability distribution for the remaining elements. These 
may be based on the initial probabilities or, in fact, can be a com- 
pletely unrelated set. For the mth draw we shall designate the prob- 
abilities of selection by pim where, as above, 

Pim > 0 > Pim= 1 

but the summation now extends only over the N-m+1 remaining 
elements.' We will denote the n sets of selection probabilities by 

(1) {Pim}, m=1,2,***,n. 

Knowing the probability distributions used at each draw, it is pos- 
sible to compute the a priori probability that the ith element (i.e. ui) 
will be included in a sample of size n. This probability will be desig- 
nated notationally by P(ui). It is well known that 

N 

(2) E P(ui) = n 
i=l 

1 Actually, sampling without replacement as considered here is the special case of sampling with 
replacement which arises when the elements once selected have probability zero of being chosen on any 
succeeding draw. 
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rather than one since we are not summing probabilities of mutually 
exclusive events, except for samples of size one. 

There are (N) different samples when n elements are drawn with- n 
out replacement from a finite universe of N elements (assuming that 
at each stage of the draw all remaining undrawn elements have a 
probability greater than zero of being selected). Consider now the 
number of possible samples when the order of draw is taken into ac- 
count. Since each different sample could occur in n! different orders 

there are n! (N) =S possible samples, considering order. Denote by 

sn(s=1 . * S) the sth such sample of size n. The probability that 
Sn will be drawn is given by the product of the probabilities of selection 
of the elements in the sample considering the order of the draw. Thus, 
if sn contains the elements ui, uj, * , ut drawn in that order, then 

(3) Pr (Sn) = Pi&i2 *P n 

The probability, P(ui), of including element ui in the sample plays 
the fundamental role in the theory developed in the following sections. 
For a sample of size n, P(ui) reduces to a summation of the prob- 

abilities associated with the n! (N 1 l)=S(i) samples that contain ui. 

Notationally, we have 

(4) P(ui) = X Pr [S(n)] 

where we are designating a specific sample of size n which includes ui 
by Sn(i) 

The extension to the a priori probabilities of including both the ele- 
ments ui and uj in a sample of size n follows readily. Thus 

S(2i) 

(5) P(ujuj) - E Pr [Sn(ii)] 

since there will ben! (N _ n ) = S(ii) such samples, S(ii) designating a spe- 
cific one. 

EXPECTED VALUES OF SUMS AND PRODUCT-SUMS 

Suppose now that we are to measure a characteristic X for the n ele- 
ments in the sample. Denote by Xi the value of X assumed by element 
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ui. The Xi's are not necessarily all different, of course. The expected 
value of the sum of the observed values of X in the sample is then 

E ( xi) = Pr (Sn) ( xi) 
j=j 8=1 i 8n 

Factoring the xi common to the ith element ui and summing over the 
population, we have 

N s(i) 

Et xi) Xi E] Pr [S (')n] 
i=1 ) 

N 

= Z P(ui)Xi. 

Note that for sample sums, xi refers to the value of X for the element 
selected on the ith draw. It follows readily that 

n N 
E E Xqi= E P(ui) Xqi. 

j=j i=1 

The expected value of the sum of cross products xixi, i #j, is given by 

E( E xix)= E Pr (Sn) XiXi) 
iH j ~8=1 iHj 8n 

N 

= Z XiX2 E Pr [Sn] 
ioj 8 

N 

= E P(uju1)XiXj. 
iF^j 

Also, of course, 
n \ N 

E qixri) = EP(UUI)XqX 
46 j 46 j 

It is to be noted that the process of taking expected values of sums and 
product-sums reduces to summing the product of the particular func- 
tion of the observed values by the appropriate a priori probability 
over the elements of the universe. The extension to triple product- 
sums and higher should now be clear. 

ESTIMATION OF THE POPULATION TOTAL 

The question of what to use for the estimation of population char- 
acteristics when sampling with arbitrary probabilities of selection at 
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each draw naturally arises. We will restrict ourselves here to using an 
unbiased linear estimator of a certain class for the population total of 
the characteristic X. 

Actually a number of subclasses of linear estimators exist when 
sampling a finite universe without replacement. For example, for 
estimating (from a sample of size n) the population total of X, i.e. 

N 

T = Xi, 
i=l 

we could consider using either 
n 

T1 = a ajixi, 

where ai (i= 1, * , n) is a constant to be used as a weight for the 
element selected on the ith draw; or 

n 

T2= >E ii, 
i=l 

where f3i (i= 1, * , N) is a constant to be used as a weight for the ith 
element whenever it is selected for the sample; or 

T3 = 8n ( Xi) 
i=l 8n 

where 'Ysn is a constant to be used as a weight whenever the s,,th sample 
is selected. It should be noted that the a coefficients are independent 
of the particular sample that is selected. However, the i# and y coeffi- 
cients, although known constants for a specified sampling procedure, 
depend on the particular sample selected. 

It is the usual procedure, whenever a linear function of n inde- 
pendent random variables is desired as an estimator of some population 
parameter, to choose the one which has the smallest variance among 
those that are unbiased. The resulting estimator is then classed as the 
best linear unbiased estimator. We have indicated above only three 
of the possible subclasses of linear estimators of T when sampling a 
finite universe without replacement. The determination of the un- 
biased estimator which has minimum variance within each of these 
subclasses is straightforward. The general solution to the problem of 
determining the best linear unbiased estimator, however, when 
sampling a finite universe without replacement and with arbitrary 
probabilities of selection has not been considered by the authors. We 
observe here, if 
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(i) there is only one-stage of sampling, 
(ii) the individual elements of the universe can be identified in ad- 

vance, 
(iii) information on any supplementary variables for use in the esti- 

mation process is lacking, and 
(iv) there is no advance knowledge of the values of the characteristic 

to be measured, 
that a general solution is lacking even in the case of equal probabilities 
of selection. In connection with this remark, although it can be easily 
shown, when sampling with equal probabilities of selection for each 
draw, that the a's, O3's, and y's are all equal to N/n for the best linear 
unbiased estimators of T for each of the three subclasses, this is cer- 
tainly not sufficient to claim 

Nn 
T - EXi 

n j.i 

as the "best" among all possible linear unbiased estimators of T. 
We2 will restrict ourselves here to the subclass of linear estimators for 

the population total of X given by T2. In order that T2 be unbiased we 
must have 

E(T2) = T 

and, hence, 
N N 

E P(ui)fiXi = E Xi. 
i==1 i~=l 

In order for this equality to hold whatever be the values of the un- 
known X's, we must have 

P(ui)i3 = 1 

for all i. Therefore, 
n Xi 

(6) T = E 
i==1 P(uj) 

is the only unbiased linear estimator possible in the subclass under 
consideration and hence is "best" for that subclass. Note that if 

nXi 
(7) P(uj) = --X 

T 

T will have zero variance and the sampling will be optimum. 
2 Midzuno uses an estimator belonging to the subclass specified by T:. 
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Using the results obtained in the section on expected values the 
variance of T, say V(TFi), follows readily. Thus, 

V(T) = E(T- T)2 
(8) ~~N X2~ + N P(uiu1) 

(i P(ui) E P(ui)P(ui) X - 

N 1 - P(u;) N P(uiu;) - P(ui)P(uj) 
(9) = X,-+ > XiXj 

This formula applies only when every element has a positive probability 
of inclusion in the sample, however (i.e. P(ui) >0 for all i). 

An unbiased estimator of the variance of T in the general sampling 
procedure is also readily obtainable, provided n is greater than one. 
Thus, 

(10) V(~) 
n 

12 1-P(ui) 
n 

P(uiuj) - P(ui)P(u1) (1 0) V (T) = E 2i 
p2(U9 ) 

+ E xixj ) _ U) 

Again, this formula is restricted to those sampling schemes which yield 
positive probabilities of inclusion for every element and every pair of 
elements (i.e. both P(ui) and P(uiuj) greater than zero for all i and j). 
Alternatively, we may write (10) in the form 

n X 2. n X,Xi 
(11) rV(T) = T2 - 2 P Xix 

If an unbiased estimate of the population mean is desired, it is suffi- 
cient to divide the unbiased estimator of the population total, (6), by 
N. The sampling variance of this estimator is the same as (8) except 
for an additional factor of 1/N2. 

APPLICATION TO KNOWN SAMPLING DESIGNS 

The general nature of this approach to sampling a finite universe 
without replacement will be illustrated by considering the estimator 
and its sampling variance, as derived in the preceding section, for 
simple random, systematic, and stratified random sampling procedures. 

With simple random sampling or equal probabilities of selection for 
the elements remaining prior to each draw, we have 

n 
P(ui) = N (i =1, 2, .. * * N) N 

n(n-1) 
P(uivu) = n(n (i,j=1, 2, , N,i# i). 

N(N -1) 
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Substitution of these inclusion probabilities in formulas (6) and (8) 
yields the estimator 

1 N n 
T =- i 

n i 

with sampling variance 

V(T N(N-n) N (X T 2 

In addition, the estimator for the variance of T in the general case, 
formula (10), reduces to 

V (T) =- ) xi- -N 9 

These derived expressions agree with the formulas usually pre- 
scribed for the respective quantities when the sample is selected at 
random without replacement. 

To illustrate the application of the general results to systematic 
samples, we consider the simplified case of a universe of N=kn ele- 
ments. A systematic sample is obtained by selecting every kth ele- 
ment following the choice of a random starting point among the ele- 
ments numbered 1 through k. The measured value, of the characteristic 
of interest, associated with the jth element in the ith possible sample is 
denoted by Xij. 

It follows readily that 

P(uis)= k 

for all i and j, 

P(Uijui,i,)= 

for i=i', j#j', and 

P(ui3.liuip) = 0 
for all other pairs of elements. Formula (6) again yields the usual 
estimator 

n N n 

T = k E Xii = E Xii 
i=1 n j-1 
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for the population total, the subscript i denoting the sample chosen. 
The sampling variance of T, as given by (8), namely 

k n k n 

V(T) = k X2 i + kZ Z XijXi -T2 
i=1 j=1 i=l jA 

is also equivalent to the usual formula. This is most easily seen by ex- 
panding the particular form 

I- N2 k/T\2 
V(T) = k I- -N 

where 
ln 

Iii = E Xi, 
n j=j 

of the usual variance formula for systematic samples. (See, for example, 
L. H. Madow [4]). Since certain pairs of elements have no chance of 
being included together in a sample with this systematic design, 
formula (10) cannot be used to estimate the sampling variance of T 
from the sample data. 

The. variance formula (8), left in its expanded form, provides an inter- 
esting method for examining the conditions under which one sampling 
system will be more efficient than another disregarding costs. To 
examine the efficiency of a systematic sample versus a random sample 
we note that the respective variance formulas differ only in the middle 
term of (8). Thus a systematic sample will be more efficient (the par- 
ticular estimator chosen will have a smaller variance for systematic 
samples than for random samples) if 

k n n - 1 k n 

E E Xijiji, < E 2 E XijXijy. i=1 jsjl N -1I 4iH ixi 
Following some algebraic manipulation, this condition reduces to 

(12) k E I _= N j= E k_ 

where pi is the mean of the ith sample as defined above and 

(Xj-, 2 

n-1 
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Essentially, then, a systematic sample will be more efficient than a 
random sample if the variation between the possible systematic 
samples is less than the average variation within the possible samples. 
It should be noted in particular that (12) is exactly equivalent to the 
well-known condition of an intraclass (intrasample, in this case) cor- 
relation coefficient less than -1/(N-1) for an efficient systematic 
sample relative to a random sample. Further examination of (12) leads 
rapidly to several of the other known conditions for gains with a sys- 
tematic sample. 

When the universe elements have been classified into K strata and a 
random sample selected from each stratum, substitution of the inclu- 
sion probabilities for individual elements and pair of elements in (6) 
and (8) again yields the usual formulas for the appropriate linear un- 
biased estimator and its sampling variance. If uij denotes the jth ele- 
ment in the ith stratum, Ni the number of elements in the ith stratum, 
and ni the number of elements selected for the sample from that 
stratum, the inclusion probabilities are 

ni 
P(uii) N 

for all j 

n- n - 1) 
P( Niii N ) - ;- 1) 

for i=i', j=j', and 

P(jusi,it)= P(uij)P(ui'i') = n 

for all j and j', if i'. 
Whereas the above results point out that for the schemes considered 

the possible estimators Tl and T2 are equivalent, this will not be true 
in general. It should be noted that for each of these schemes the prob- 
ability of including a particular element in a sample is the same either 
for all the elements of the universe or for all the elements of the same 
sub-universe. 

EXTENSION TO A TWO-STAGE SAMPLING DESIGN 

The extension of the use of arbitrary probabilities of selection for 
each draw to designs involving more than one stage has been examined 
for a special case only. The universe now consists of K primary sampling 
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units with the ith such unit containing Ni secondary or subsampling 
units. Let Xij be the value of some characteristic X of the jth subsam- 
pling unit of the ith primary sampling unit. The population total 

K Ni 
(13) T= EExs 

i=1 j=l 

is to be estimated from a sample of k primary units, ni subsampling 
units to be drawn from the ith primary unit if it is in the sample. The 
primary units are drawn without replacement using arbitrary prob- 
abilities of selection for each draw. An over-all sampling rate, say t, 
is specified in advance and the ni determined from the relation 

tNi (14) ni (i = 1, 2 k), 
P(uj) 

where P(ui) now denotes the a priori probability that the ith primary 
unit will be included in a sample of k such units. The subsampling 
units are to be drawn without replacement with equal probabilities of 
selection for those remaining prior to each draw, i.e. at random. This 
sampling procedure is entirely analogous to that specified by Hansen 
and Hurwitz [2 ] (ignoring area substratification) when a single primary 
unit is drawn with probability proportionate to its estimated size. 

One difficulty that arises with this scheme concerns the ni as de- 
termined by (15). In most practical applications this relation will not 
yield integral subsampling sizes. We will neglect the bias introduced by 
choosing the closest integral value for ni in what follows. It should 
also be noted that the Ni need not be known in advance of the primary 
unit selection stage of the draw. 

Since every subsampling unit will have the same chance of being in- 
cluded in the sample, it follows that 

1 k ni 
(15) T = E Exii t i=1 i=1 
will provide an unbiased estimate of T. The variance of this estimator 
(provided P(ui) >0) follows readily from the previous results. Thus 

"I K 1 - P(uj) K P(uiuj) - P(ui)P(u1) 
V (T) =,T2,-p- + , TiTi () 

K Ni(Ni- ni) (16) + , i2 
i=1 niP(ui) 
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where 
Ni 

TX = E Xii = N,,uX 
j=1 

and 
2 NE (xii 2i 

i=1 (Ni - 1) 

The first two terms of the right member of (16) make up the usual be- 
tween primary unit component of variance, the last term being the 
within component. 

An estimate of this sampling variance may be computed from the 
elements in the sample, the estimator provided here having the prop- 
erty of unbiasedness. Thus (when the P(ui) and P(uiuj) are all 
greater than zero) 

k T 2 k T.T. 1 k 

(17) V(T) = 2 _ -j - _ +-X, (Ni- ni)s2i, 

where 

N>j ni 
TX = Nix, = E x, S 

ni j=, 

and 

2 (Xt 
2 

i.1 (ni - 1) 

An unbiased estimate of the between component of variance may be 
obtained by using V(T) in conjunction with an unbiased estimate of 
the within component, the latter being given by the quantity 

1k Nk -n 
2i. 

t j1 P(us) 

SOME ASPECTS OF THE PRACTICAL APPLICATION OF THE THEORY 

The remaining sections of this paper will be devoted to examining 
some aspects of the problems arising in connection with attempts to 
utilize the preceding theory in practical applications. To simplify the 
exposition, attention will be confined to a one stage sampling scheme; 
however, various extensions of the results to multi-stage stratified 
designs are evident. 

In the estimating functions (6) and (15) as well as the corresponding 
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expressions for the variance and sample estimates of the variance, it 
will be noticed that it is the quantities P(ui) and P(uiuj) that can be 
controlled by the sampler. Assume that a variable Y reasonably cor- 
related with X is known for each element of the universe, and that the 
sampler wishes to utilize the information in Y in assigning the selec- 
tion probabilities (1), so that the resulting P(ui) and P(uiuj) will lead 
to a reduction in variance. The three main problems that arise in this 
connection consist of 

(i) determining the quantities P(uiuj) that will minimize the vari- 
ance (9) (specifying the P(uiuj) determines the P(ui) since 
,j P(uiuj) = (n- 1)P(ui), as may be easily verified), 

(ii) defining the sets (1) to achieve the P(uiuj) thus determined, and 
(iii) investigating the conditions required on the relationship be- 

tween Y and X to obtain gains in efficiency over sampling sys- 
tems employing the information in Y in alternative ways. 

These three problems are not independent and a general solution has 
not been reached by the authors. Some progress has been made in par- 
ticular cases, however, and it is hoped that a discussion of these cases 
will provoke interest and stimulate others to investigate sampling sys- 
tems of the type here considered. 

Considering first the problem of assigning the P(uiuj), as a first ap- 
proximation to an "optimum" assignment, we may require only that 

1 N N 

(18) E P(uiui) = P(ui) = nYi E Yi. n-1 i=1 

If the Xi are approximately proportional to the Yi, this assignment may 
be expected to lead to an estimator with small variance, as may be seen 
by assuming strict proportionality between X and Y and noting that 
(6) is then identically T. From examination of (9), it appears that the 
assignment of the P(uiuj) (in terms of the Yi) that leads to minimum 
variance depends upon the joint distribution of X and Y. This compli- 
cates the problem. In the examples discussed in a later section, however, 
it will be demonstrated that a substantial reduction in variance can be 
achieved by an assignment of the type indicated in (18). 

The problem of determining the sets of selection probabilities (1) 
that will yield preassigned "optimum" values of P(uiuj), or P(ui) 
as in (18) above, can be illustrated by a sample example. Suppose a 
sample of size 2 is to be drawn without replacement from the universe 
of 6 elements given in Table 1 in such a manner that P(ui) 
=2 Yi/ t=16 Y,. In the notation of the previous sections, n sets I pi. 
(m= 1, 2, . . ., n), each satisfying 
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0 ?< Pim -< 1 

N-m+ 1 

E?Pim = 1, 

must be defined, so that when the n draws have been performed ac- 
cording to these sets, the probability that ui will be included in the 
sample will be the assigned probability P(ui). The notation adopted 
for the sets of selection probabilities is not entirely satisfactory since it 
does not indicate the dependence of the set used for selecting the mth 
element in the sample on the results of the previous m - 1 draws. In 
Table 1, columns 5 and 6, this dependence is explicitly indicated by 
using the notation commonly employed for a conditional probability. 
Thus, 

IP321 Ul1ES} 

is the probability assigned to the selection of U3 on the second draw, 
given that u1 has been obtained on the first draw. 

TABLE 1 

(1) (2) (3) (4) (5) (6) 
ui Yi 'P(ui) {pill {Pi2U1Ul Es} {Pi2fU2 es} 

1 32 .64 .6 0 .1 
2 23 .46 .4 .1 0 
3 17 .34 0 .3 .4 
4 13 .26 0 .3 .2 
5 10 .20 0 .2 .2 
6 5 .10 0 .1 .1 

100 2.00 1.0 1.0 1.0 

It may be easily verified that the selection probabilities defined in 
columns 4, 5, and 6 of Table 1 do achieve the inclusion probabilities in 
column 3. The solution indicated is one of an infinity of solutions and 
was chosen primarily for its simplicity. The authors are not aware of 
general methods for examining the consistency of systems of equations 
of the type used in obtaining columns 4, 5, and 6 or of finding simul- 
taneous positive solutions when they exist. For the solution given 
P(uiuj) = 0 for i#=3, 4, 5, 6, and formula (10) is therefore not ap- 
plicable. 

It should be noted that the P(ui) are probabilities satisfying 
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0 <P(ui) <1 
N 

E P(ui) = n, 

so that if the "measures of size" are such that for any element, say ut 
the quantity nYt/ E&=,N Yi is greater than unity, no method of draw- 
ing the sample exists which will give P(ut)/ Zi=IN Yi. This situation 
can be obviated in various ways (stratification, subdivision of the ele- 
ments of the universe, etc.) so that it need cause no difficulty. 

A secondary consideration of practical importance in defining the sets 
pim.} by the general method indicated above is that particular solu- 

tions may not facilitate the computation of the quantities P(uiuj) re- 
quired for estimating the variance (10). To calculate this expression the 

quantities P(uiuj) must be determined for the (2) combinations of the 

sample elements. For n of any considerable size the direct calcula- 
tion of the P(uiuj) by summing the probabilities associated with the 
samples containing ui and ui is impractical. It would thus seem ad- 
visable to restrict further the choice of selection schemes to those 
schemes that permit ready calculation of P(uiuj). 

A selection scheme that obviates the problem of explicitly defining 
the set (1) yet satisfies (18) is mentioned by Goodman and Kish [1]. 
The N universe elements are listed in a random order and their meas- 
ures of size are cumulated. A systematic selection of n elements 
from a random start is then made on the cumulation so that 
P(ut) =nYt Ei.1N Yi. This selection is easily performed, but there 
does not appear to be any simple way to determine the P(uiuj). 

Sampling Scheme 1 

A method of defining the set pim.} that yields an exact solution 
under certain conditions can be developed in the following way. 
Consider drawing a sample of n elements from a universe of N ele- 
ments without replacement, where the first element is selected accord- 
ing to the set pi,, (i= 1, 2, . . . , N) Ei=1N pil= 12 pil>0. At the sec- 
ond and all remaining (n-1) stages of the draw equal probabilities 
are assigned to the elements remaining, i.e. the set Pi2 consists of N -1 
equal elements 1/(N- 1), the set pi,, N-2 equal elements 1/(N-2), 
etc.3 By simple combinatorial analysis we find that 

3 Midzuno suggested using this scheme for drawing the sample in connection with his sampling 
system on a recent visit to the Statistical Laboratory, Iowa State College. It may be mentioned that 
with this method of drawing, each of the possible (N) different samples has a probability of being 
selected proportional to the total of the measures of size for the elements in the combination, which is 
desirable in his system. 
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PiN P(u1) = *( n- 1) 
(N-i () ... (N-n+l) n-1 

which upon simplification becomes 

N-n n-1 
(19) P(ui) = N 1Pi + 1 (i = 1,2, , N). 

Similarly, it may be shown that for this case 

n-1 -N-n n--2 
(20) P(uiuj) = N-1 N-2 (pi + Pi) + N 2J 

(i 5- j: i, j = 1, 2, N). 

Solving (19) for pi in terms of the P(ui), 

N-1 n-1 
(21) Pi = P(ui) - (i = 1, 2,. ,N). N-n N-n 

It should be noted that the pi are subject to the two conditions, 

(i) pi > O for all i, 
N 

(ii) E pi =1. 
i=l 

In a particular case when the P(ui) have been assigned such that one or 
more of the inequalities P(ui) < (n- 1)/(N- 1) are satisfied, the cor- 
responding solutions of (21) will be negative. This restriction is rather 
severe, in general, and limits the usefulness of this method. For a small 
sample size, however, the method may be satisfactory, as will be demon- 
strated in the example that follows, and approximate solutions based 
upon it for larger sample sizes can be obtained easily. For the case 
when all solutions of (21) are positive with P(ui) =nYi/ E,=,N Yi, the 
first element would be drawn according to the set of solutions of (21) 
and equal probabilities would be used for the remaining draws. 

Sampling Scheme 2 

There are undoubtedly many other ways of defining sets of selection 
probabilities such that condition (18) will be satisfied approximately. 
To be practical, the necessary computations should remain simple, 
however. At the same time, although such schemes yield only an ap- 
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proximate solution to the preassigned "optimum" values of the P(ui), 
they should include exact expressions for the actual values of these 
quantities and for the P(uiuj) as well. The scheme proposed here 
satisfies these requirements but is restricted to samples of size 2. It may 
lead to a better approximation to the desired P(ui) when the condi- 
tion for an exact solution with Sampling Scheme 1 is not satisfied. 

The particular scheme suggested here requires the prior determina- 
tion only of the set pit, (i = 1, 2, , N); that is the set of selection 
probabilities to be used on the first draw. The set to be usad for the 
second draw depends on the first element selected. Thus, if element uj 
is selected on the first draw, then 

pi = for i $ j 
1-P2 

Pi2= 0 for i =j 
defines the set of selection probabilities Pi2, (i = 1, 2, * * , N). In prac- 
tice the second element may be selected after adjusting the selection 
probabilities used on the first draw or the same set may be used 
throughout, the selection process continuing until two different ele- 
ments have been chosen. Since only the set of selection probabilities 
for the first draw needs to be determined in advance, the subscript indi- 
cating the draw will be dropped. 

If a sample of size 2 is to be drawn using one set of selection prob- 
abilities and with replacement, then the probability that element ui will 
be selected only once in the two draws is 2pi(1 -pi). If the conditions 
are such that sampling without replacement is not much different than 
sampling with replacement, this probability will be approximately 
equal to P(ui), the inclusion probability for sampling without replace- 
ment. This suggests that a set of selection probabilities which will 
lead to an approximation of the desired P(ui) with the prescribed 
sampling procedure may be determined from the solution to the system 
of equations 

/N 

(22) 2p i -2pi + 2Yi EYi = 0, (i = 1, 2, * * N) 

where, of course, the common coefficient 2 may be cancelled. Again, the 
solution must be such that 

pi >O0, for all 

and 
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N 

Ep= 1. 
pi1 

In practice, a satisfactory solution to this system may be obtained by 
solving each of the N quadratic equations separately, taking the smaller 
of the two roots. Since the selection probabilities must sum to unity, 
a simple adjustment is then made by dividing each of the pi obtained 
in this manner by their sum. This method was used in the example 
which follows where it proved quite adequate. It should be noted that 
this procedure for solving the system (22) breaks down if any of the 
desired P(ui) > ' since the solutions for the particular quadratic equa- 
tions will then be imaginary. 

The accuracy of whole method depends on the original assumption 
that a formula based on sampling with replacement will be adequate 
even though the sampling is without replacement. Although no de- 
tailed investigation has been made on this point, it appears that for N 
at least as large as 10 and the desired P(ui) not dominated entirely by 
one or two elements reasonable success will result. 

One additional point is necessary. Whatever the set of selection 
probabilities adopted with this sampling procedure, the exact formulas 
for the P(ui) and P(uiu1) are 

N 

(23) P(ui) = pi + PiE- 
j 1pj 

/ 1 - 1 
(24) P(Uiuu) = Pip _ + pi 1 - ) 

Example: 
The universe to be investigated consists of 20 blocks in Ames, Iowa, 

the data being given in columns 1 to 3 in Table 2. These data are taken 
from a survey conducted by the Statistical Laboratory of Iowa State 
College. The estimated number of households (column (3)) was ob- 
tained by a team of observers who drove through the portion of the 
city of Ames represented by these 20 blocks and made rapid eye- 
estimates of the number of households on each block. 

We shall consider drawing a sample of 2 blocks with probability 
proportionate to this measure of size (eye-estimated households) ac- 
cording to the two selection schemes previously developed. The exact 
values which the selection schemes are designed to achieve are listed in 
column (4) of Table 2, and the corresponding results of the two pro- 
posed selection schemes are shown in columns (6) and (8). Columns (5) 
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and (7) give the selection probabilities for the first draw with scheme 1 
and all draws with the second scheme respectively. When the sample 
has been drawn according to either of these schemes, the P(uiuj) re- 
quired in (10) to estimate the variance of T are easily computed from 
(20) or (24) respectively. 

TABLE 2 

Eye- 
Number estimated Selection Selection 

BlOCk of house- number Scheme 1 Scheme 2 
holds on of house- 
ith block holds on 

ith block 
(1) (2) (3) (4) (5) (6) (7) (8) 
W. Xi Y, 2Yil EY, P,* P(U,) Pi P(U,) 

1 19 18 .091 .040 .090 .045 .091 
2 9 9 .046 .003 .055 .022 .045 
3 17 14 .071 .019 .070 .035 .070 
4 14 12 .061 .008 .060 .029 .060 
5 21 24 .122 .072 .121 .061 122 
6 22 25 .127 .077 .126 .064 .127 
7 27 23 .117 .066 .116 .058 .117 
8 35 24 .122 .072 .121 .061 .122 
9 20 17 .086 .035 .085 .042 .086 

10 15 14 .071 .019 .070 .035 .070 
11 18 18 .091 .040 .090 .045 .091 
12 37 40 .203 .157 .201 .108 .209 
13 12 12 .061 .008 .060 .029 .060 
14 47 30 .152 .104 .151 .078 .154 
15 27 27 .137 .088 .136 .069 .138 
16 25 26 .132 .082 .131 .067 .133 
17 25 21 .107 .056 .106 .053 .106 
18 13 9 .046 .003 .055 .022 .045 
19 19 19 .096 .045 .096 .048 .096 
20 12 12 .061 .008 .060 .029 .060 

Totals 434 394 2.0 1.0 2.0 1.0 2.0 

* The two blocks (2 and 18) with the smallest eye-estimated size were arbitrarily assigned an eye- 
estimated value of 11 households to satisfy the condition 2Yi/iN_ Y >1/(N-1) in obtaining these 
results. 

COMPARISONS OF EFFICIENCY (IGNORING COST) 

A primary purpose of this paper has been to extend the theory of 
finite sampling with unequal probabilities to permit unbiased estima- 
tion of the sampling error without resorting to additional assumptions. 
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As mentioned previously, however, it is of interest to compare the rela- 
tive effectiveness of using the supplementary quantitative variable Y 
in alternative ways, e.g. stratification, other estimators, etc. No simple 
expressions for the relative efficiency of sampling systems of the type 
herein developed to alternative systems have as yet been obtained. 
As indicative of the type of results obtainable when the relationship 
between Y and X is one of approximate proportionality, the empirical 
comparisons with a number of alternatives included in Table 3 are of 
interest. 

TABLE 3 

(1) (2) (3) (4) (5) 
Sampling Method of Variance Relative 
system estimation of ( %) 

estimator (% 
1. Unrestricted random. Nt 16,219 100 
2. Unrestricted random. (x/y) ;i_N Y, 3 ,280? 497 
3. Stratified random; one ele- Nx 7,873 206 

ment from each of 2 strata 
with equal probability. 

4. Stratified; one element with Exi/P;* 3,934 412 
probability proportionate to 
measure of size from each of 
2 strata. 

5. Systematic sample; every kth N2 10,224 159 
from random start. 

6. Midzuno; pair of elements ( _/y) , 1N Yi 3,579 453 
with probability proportion- 
ate to the sum of the meas- 
ures for the pair. 

7. Scheme 1 Exi/Pit 3,095 524 
8. Scheme 2 Exi//P; 3,075 527 

* Pi proportional to Yi. 
t Pi as given in colunm 6, Table 2. 
$ Pi as given in colunm 8, Table 2. 
? The bias for this estimator equals 1.17 which has been neglected here. 

The quantity under estimate is the total number of households on the 
20 blocks in Table 2. A sample of size 2 is considered. For this small 
universe and sample size it was feasible to compute the exact variance 
of the estimator employed in each sampling system directly from the 
definition, so that, for example, the mean square error of the so called 
"ratio estimate" (line 2, Table 3) is not the usual approximation. 

For the sampling systems 3 and 4 the blocks are ranked according to 
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the measure of size Y, and the ten largest blocks were taken as stratum 
1 with the remaining 10 in stratum 2. The systematic sample is also to 
be considered as drawn from the blocks after ranking from large to 
small. It is of interest to note that the "ratio estimate" used in sampling 
system 2 is identical with the estimator in Midzuno's system (sampling 
system 6), and that it is an unbiased estimator for his method of 
selection. 

The data presented in Table 3 are, of course, far from conclusive, 
but they do indicate that substantial reductions in variance can be ob- 
tained through the use of unequal probabilities without forfeiting an 
unbiased estimate of the sampling variance. 

It is the opinion of the authors that the techniques suggested by this 
paper may be of greatest utility in specialized enquiries where the char- 
acteristics under measurement are few and related, or where selection 
with unequal probability arises naturally. The estimator (6) from a 
computational point of view is at a serious disadvantage when com- 
pared with self-weighting estimators. The estimated variance (9) has 
similar disadvantages when compared with designs that permit estima- 
tion of error by the use of an analysis of variance or other simple tech- 
nique. When an unbiased estimator of high precision and an unbiased 
sample estimate of its variance are required, however, the sampling 
system employing unequal probabilities, with the selection of two or 
more units at each stage of sampling, may be particularly appropriate. 
This is particularly true when the universe (at any stage) is small and 
the alternative use of the information in Y is a ratio-estimator (based 
on Y with equal probability selection) with its possible bias and un- 
known error. 

A modified formulation of the theory in connection with the tech- 
nique suggested by Hartley and Politz-Simmons [7] for the problem 
of the "not-at-homes" in an interview survey is possible along the lines 
suggested by this paper. It also appears that the technique of control 
beyond stratification suggested by Goodman and Kish [1] is closely 
related to the problem of the optimal assignment of the P(uiuj). 

Finally, the possibility of employing the sampling systems considered 
here in connection with "point sampling" is of considerable interest. By 
"point sampling" we have reference to the selection of farms in an 
agricultural survey by locating points at random on a map of the area 
to be surveyed, and including as sample elements the farms within 
whose boundaries the points happen to fall. (See, for example, F. Yates 
[8].) It is clear that the size of the farms will be related to their prob- 
ability of inclusion in the sample, and that unbiased estimates are 
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possible from samples drawn in this manner. The details for this case 
and similar cases in other types of investigations remain to be work out. 

The authors are grateful to Dr. R. J. Jessen for kindling our interest 
in this problem and to Professor 0. Kempthorne and Dr. P. C. Tang 
for their helpful criticisms and advice in the preparation of this paper. 
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ERRATUM: THE EFFECTIVENESS OF QUALITY 
CONTROL CHARTS 

LEO A. AROIAN AND HOWARD LEVTENE 

The following corrections should be made in the article published 
under the above title in this journal (Vol. 45, 1950, pp. 520-529). 

1) Page 521: 6th line from top, insert "it" between "that" and "is". 
N N-1 

2) Page 524: equation (9), replace "fr"by"H" and add "for 
;=1 i=1 

i= 1, f(N) =-y" 

3) Page 525: 6th line from top, replace "m." by "MN". 
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