| DOCKETED               |                                                                |
|------------------------|----------------------------------------------------------------|
| Docket Number:         | 08-AFC-08A                                                     |
| <b>Project Title:</b>  | Hydrogen Energy Center Application for Certification Amendment |
| TN #:                  | 201456                                                         |
| <b>Document Title:</b> | Comments on November 2013 Greenhouse Gas Workshop              |
| Description:           | N/A                                                            |
| Filer:                 | URS                                                            |
| Organization:          | URS Corporation                                                |
| Submitter Role:        | Applicant Consultant                                           |
| Submission Date:       | 12/19/2013 4:24:23 PM                                          |
| <b>Docketed Date:</b>  | 12/19/2013                                                     |

# **Comments on November 2013 Greenhouse Gas Workshop**

Amended Application for Certification for HYDROGEN ENERGY CALIFORNIA (08-AFC-8A) Kern County, California

### Prepared for: Hydrogen Energy California LLC



hydrogen energy california

### Submitted to:





U.S Department of Energy

Prepared by:



**December 2013** 

# COMMENTS ON NOVEMBER 2013 GREENHOUSE GAS WORKSHOP

During the Greenhouse Gas (GHG) Workshop in Sacramento on November 13, 2013, California Energy Commission (CEC) GHG staff presented calculations for a possible technique to estimate the State Bill (SB) 1368 emission performance standard for the HECA project. The following describes HECA's suggested modifications to the CEC spreadsheet calculations (Docket Number 201226).

Although HECA does not agree with all of the calculation techniques that CEC has used in estimating the EPS, the following are clarifications on the calculations presented by CEC during the November 13 GHG workshop. Attachment 1 provides the tables that correspond to the sections below. HECA proposes the following edits to these calculations:

# **Average Power Allocation**

- The ASU Power apportionment was corrected to properly weight the value according to 16 hours of maximum power production and 8 hours of maximum fertilizer production per day. Resulting value is 69.7 percent instead of 64.1 percent.
- EOR CO<sub>2</sub> Compression should be allocated (A or Apportioned) between power and fertilizer, not assigned entirely to power (P). This changes the "percent" column to 64.9 percent, the syngas power apportionment.
- The PSA and Ammonia Units allocation should be based on the amount of hydrogen in the PSA off-gas, as recommended by CEC Staff at the Workshop; the calculation was modified accordingly, resulting in 3.9 percent of the energy usage allocated to power production. The calculation technique is shown in the column to the right of the table.
- The Net Power Export (not including OEHI) should not include ASU power usage, thus it would be approximately 227 MW for this average power allocation. Although for the purposes of this table for CEC, Net Power Export (not including OEHI) should be calculated based on Gross Power Generation, not Power Generation Less Fertilizer Contribution.
  - "Fertilizer power consumption (MW) included in Net Power" was changed to subtract the power generated by the fertilizer unit.
- URS added a row for possible additional compression required to sequester the CO<sub>2</sub> at OEHI.

# Average Emissions Allocation and EP

- The CO<sub>2</sub> vent emissions should be allocated (A) not assigned entirely to power (P), since these emissions come from producing syngas, which is split in usage between power and fertilizer.
- All OEHI Emissions should be excluded from the calculation, as this is a separate industrial process, regulated in its own right under Assembly Bill 32. A portion of the Fugitive GHG Emissions may be included (as allocated emissions) since these may occur in the transfer of CO<sub>2</sub> from HECA to the OEHI process.
  - It is especially overreaching to include indirect emissions from EOR Component Power Consumption. These emissions will already be included in the SB1368 calculation at their generation source and should not also be included in HECA's SB1368 calculation, thus double counting the same emissions. Additionally, it is

impossible to know where these emissions came from – they could easily have come from a solar or wind source in the central valley which would not have any GHG emissions.

# **Max Power Allocation**

- Changes to this scenario are the same as in the Average Power Allocation described above, with the following addition:
  - The allocation of Water Treatment and Process Cooling Tower were corrected to account for the different Syngas Power apportionment under Max Power versus Average Power.

# Max Power Emissions and EP

• All changes made to this tab are the same as in the Average Emissions Allocation and EP tab.

# ATTACHMENT 1 CALCULATIONS

#### Average Power Allocation

### Net Power Allocation when Firing Syngas

| Power Balance                                   | Units       | Allocation | Daily<br>Average | Percent | Allocated<br>to Power |                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------|-------------|------------|------------------|---------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient Temperature                             | *Fahrenheit |            | 65               |         |                       |                                                                                                                                                                                                                                                                                                            |
| Gross Power Generation (CT/ST)                  | MW          |            | 382.4            |         |                       |                                                                                                                                                                                                                                                                                                            |
| Power Generation Fertilizer Contribution        | MW          |            | 6.1              |         |                       |                                                                                                                                                                                                                                                                                                            |
| Power Generation Less Fertilizer Contribution   | MW          | Р          | 376.3            | 100.0%  | 376.3                 | Common Apportionment Avg Daily                                                                                                                                                                                                                                                                             |
| Total Auxiliary Load                            | MW          |            | 155.0            |         |                       | Syngas Power 64.9%                                                                                                                                                                                                                                                                                         |
| Gasification                                    | MW          | A          | 12.1             | 64.9%   | 7.9                   |                                                                                                                                                                                                                                                                                                            |
| Shift and LTGC                                  | MW          | A          | 0.9              | 64.9%   | 0.6                   |                                                                                                                                                                                                                                                                                                            |
| AGR                                             | MW          | A          | 19.3             | 64.9%   | 12.5                  | ASU Power 69.7%                                                                                                                                                                                                                                                                                            |
| SRU                                             | MW          | A          | 2.0              | 64.9%   | 1.3                   |                                                                                                                                                                                                                                                                                                            |
| EOR CO <sub>2</sub> Compression                 | MW          | А          | 36.1             | 64.9%   | 23.4                  |                                                                                                                                                                                                                                                                                                            |
| PSA and Ammonia Units                           | MW          | A          | 37.8             | 3.9%    | 1.5                   | Power value from the PSA unit is 3.9% =<br>(1183 lb/hr of H2 * 16 + 1972 lb/hr of H2 *<br>8)/24 from PSA to CTG/HRSG for power<br>production (stream 15) /(41440 lb/hr of H2 *<br>16 + 29084 lb/hr total H2 * 8)/24 for power<br>production (stream 20)                                                    |
| CO <sub>2</sub> Purification                    | MW          | F          | 6.1              | 0.0%    | 0.0                   |                                                                                                                                                                                                                                                                                                            |
| Urea/UAN                                        | MW          | F          | 6.0              | 0.0%    | 0.0                   |                                                                                                                                                                                                                                                                                                            |
| Power Block                                     | MW          | P          | 5.6              | 100.0%  | 5.6                   |                                                                                                                                                                                                                                                                                                            |
| Water Treatment                                 | MW          | А          | 6.4              | 67.2%   | 4.3                   | Note allocation is mixed (common 2.0 MW<br>* 64.9% (syngas power allocation) + 3.0<br>MW * 100% all power allocation + 1.4 MW *<br>0% fertilizer no power allocation)/total wate<br>treatment load 6.4 MW = 67.2% overall<br>power allocation (directly from applicant<br>source data)                     |
| Power Cooling Tower                             | MW          | Р          | 4.0              | 100.0%  | 4.0                   |                                                                                                                                                                                                                                                                                                            |
| Process Cooling Tower                           | MW          | A          | 9.7              | 33.5%   | 3.2                   | Note allocation is mixed (common 5.0 MW<br>* 64.9% (syngas power allocation) + 4.6<br>MW * 0% fertilizer no power allocation)/tota<br>process cooling tower load 9.7 MW =<br>33.5% overall power allocation (directly<br>from applicant source data)                                                       |
| Fertilizer Storage/Handling                     | MW          | F          | 0.6              | 0.0%    | 0.0                   |                                                                                                                                                                                                                                                                                                            |
| Other Supporting Systems                        | MW          | A          | 8.4              | 64.9%   | 5.5                   |                                                                                                                                                                                                                                                                                                            |
| ASU                                             | MW          | A          | 106.9            | 69.7%   | 74.5                  | Note allocation is based on average daily<br>common (77 MW*16+76.7<br>MW*8)/24*64.9% (syngas power allocation)<br>+ (27.6 MW*16+18.6 MW*8)/24 * 100%<br>nitrogen for power allocation divided by<br>total average ASU consumption of (109<br>MW*16+102.6 MW*8)/24 = 106.87, so total<br>allocation = 69.7% |
| Net Power Export (not incl. OEHI)               | MW          |            | 120.5            |         |                       | Fertilizer power<br>consumption (MW)<br>111.5 included in Net Power                                                                                                                                                                                                                                        |
| Possible additional compression for CCS at OEHI | MW          | A          | 2.0              | 64.9%   | 1.3                   | 4                                                                                                                                                                                                                                                                                                          |
| SB 1368 Net Power                               | MW          |            |                  |         | 230.7                 |                                                                                                                                                                                                                                                                                                            |

Source: Power Generation and Consumption data from HECA 2013 TN200144 Figure CS-7-3; allocation to power percentage data from same source Attachment CS-7-1 for syngas allocation and same source derived from Table CS-7-4, Attachment CS-7-1, and Table CS-7-2 for ASU daily average MW consumption and allocation to power.

Notes:
P = Power
Notes:
F = Fertilizer
AGR = acid gas removal
A = Apportioned

| Notes:                             |
|------------------------------------|
| AGR = acid gas removal             |
| CO <sub>2</sub> = carbon dioxide   |
| CT = combustion turbine            |
| EOR = enhanced oil recovery        |
| LTGC = low-temperature gas cooling |
| PSA = Pressure Swing Adsorption    |
| SRU = sulfur recovery unit         |
| ST = steam turbine                 |
| UAN = urea ammonium nitrate        |
|                                    |

|                                  | MW/hr        | Hrs/Year | Total      |
|----------------------------------|--------------|----------|------------|
| Net Generation Totals for Syngas | 230.7        | 8000     | 1845961.23 |
| Net Generation for Natural Gas   | 300          | 336      | 100800     |
|                                  |              | Total    | 1946761.23 |
|                                  | <b>T</b> ( ) | o        | 1015001 00 |

Total Steady State 1845961.23

Sources for Hrs/Year and MW/hr for natural gas are HECA 2013 TN201026 Table 3.

| Items that may the potential for compromise are shown with yellow highlight - |  |
|-------------------------------------------------------------------------------|--|
| Items with orange highlight show modifications HECA made to CEC calculations  |  |

### Average Emissions Allocation and Emission Performance

| HECA Annual CO2 Emissions for SB 1368 Emission Performance Standard (Avg. Case |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

| Sources of CO <sub>2</sub>                | Annual CO2<br>(MT) | Allocation | Percent | Allocated |
|-------------------------------------------|--------------------|------------|---------|-----------|
| CTG/HRSG burning syngas/PSA off-gas       | 256,900            | Р          | 100.0%  | 256,900   |
| CTG/HRSG burning natural gas              | 44,729             | Р          | 100.0%  | 44,729    |
| CO <sub>2</sub> Vent                      | 175,493            | А          | 64.9%   | 113,895   |
| Flares pilot                              | 510                | А          | 64.9%   | 331       |
| Flares SU/SD                              | 7,742              | А          | 64.9%   | 5,025     |
| Thermal Oxidizer standby                  | 5,736              | А          | 64.9%   | 3,723     |
| Thermal Oxidizer SU/SD, maintenance       | 306                | А          | 64.9%   | 199       |
| Emergency Engines                         | 105                | exempt     | 0.0%    | 0         |
| Auxiliary Boiler                          | 24,758             | А          | 64.9%   | 16,068    |
| Ammonia Start-Up Heater                   | 416                | F          | 0.0%    | 0         |
| Urea Absorber Vents                       | 116                | F          | 0.0%    | 0         |
| Fugitives                                 | 36                 | А          | 64.9%   | 23        |
| Total Early Operations                    | 516,847            |            |         | 440,892   |
| Total Mature Operations                   | 383,138            |            |         | 354,115   |
| Total Steady State Operations             | 263,403            |            |         | 260,977   |
| OEHI CO <sub>2</sub> EOR Emission Sources | Annual CO2<br>(MT) | Allocation | Percent | Allocated |
| CO <sub>2</sub> Injection Heaters         | 34,483             | EOR        | 0.0%    | 0         |
| Regeneration Gas Heater                   | 5,747              | EOR        | 0.0%    | 0         |
| TEG Reboiler                              | 2,874              | EOR        | 0.0%    | 0         |
| Amine Unit                                | 575                | EOR        | 0.0%    | 0         |
| Fire Pump Engines                         | 3                  | EOR        | 0.0%    | 0         |
| CTB – Flare                               | 6,921              | EOR        | 0.0%    | 0         |
| RCF – Flare                               | 6,533              | EOR        | 0.0%    | 0         |
| Fugitive GHG Emissions                    | 43                 | A          | 64.9%   | 28        |
| Maintenance GHG                           | 50                 | EOR        | 0.0%    | 0         |
| Pressure Relief GHG                       | 1                  | EOR        | 0.0%    | 0         |
| Miscellaneous Small Tanks                 | 2                  | EOR        | 0.0%    | 0         |
| EOR Component Power Consumption           | 281,049            | EOR        | 0.0%    | 0         |
| Workers Commuting                         | 205                | EOR        | 0.0%    | 0         |
| Well Maintenance Activities               | 215                | EOR        | 0.0%    | 0         |
| Total FOR CO2 Emissions                   | 338 700            |            |         | 28        |

| Allocation for Apportione |       |  |  |  |  |
|---------------------------|-------|--|--|--|--|
| Power                     | 64.9% |  |  |  |  |

note that not all of the fugitives at OEHI would be attributible to CCS activities, most would be attributed to EOR

 I otal EOR CO2 Emissions
 338,700

 Sources: HECA emissions data from HECA 2013 TN 201026. Allocation to power value from HECA 2013 TN 200144;
 OEHI emissions information from AFC Appendix A, Oxy 2013 TN 69314, and Oxy 2013 TN 69487

| Average Daily Basis              | Early Ops | Mature Ops | Steady State |
|----------------------------------|-----------|------------|--------------|
| Total Emissions                  | 440,920   | 354,143    | 261,005      |
| Total Generation                 | 1,946,761 | 1,946,761  | 1,845,961    |
| Emissions Performance MT CO2/MWh | 0.226     | 0.182      | 0.141        |

Items that may the potential for compromise are shown with yellow highlight Items with orange highlight show modifications HECA made to CEC calculations

### **Maximum Power Allocation**

### Max Power Allocation when Firing Syngas

|                                                 |             |            | Maximum<br>Power |         |           |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
|-------------------------------------------------|-------------|------------|------------------|---------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                 |             |            | Production       |         | Allocated |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Power Balance                                   | Units       | Allocation | On-Peak          | Percent | to Power  |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Ambient Temperature                             | *Fahrenheit |            | 65               |         |           |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Gross Power Generation (C1/S1)                  | MVV         | -          | 416.0            |         |           |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Power Generation Fertilizer Contribution        | MW          |            | 3.5              |         |           |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Power Generation Less Fertilizer Contribution   | MW          | Р          | 412.5            | 100.0%  | 412.5     | Common Apporti                                                                                                                                                                                                                                                                     | onment                                                                               | Max Power                                                                                      |
| I otal Auxiliary Load                           | MVV         |            | 150.5            |         |           | Syngas Power                                                                                                                                                                                                                                                                       |                                                                                      | /1.3%                                                                                          |
| Gasification                                    | MVV         | A          | 12.1             | 71.3%   | 8.6       |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Shift and LIGC                                  | IVIVV       | A          | 0.9              | 71.3%   | 0.6       |                                                                                                                                                                                                                                                                                    |                                                                                      | 75 70/                                                                                         |
| AGR                                             | IVIVV       | A          | 19.3             | 71.3%   | 13.8      | ASU Power                                                                                                                                                                                                                                                                          |                                                                                      | /3./%                                                                                          |
| SRU<br>FOR CO. Compression                      | IVIVV       | A          | 2.0              | 71.3%   | 1.4       |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| EOR CO <sub>2</sub> Compression                 | IVIVV       | A          | 36.1             | 71.3%   | 25.7      |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| PSA and Ammonia Units                           | MW          | A          | 33.3             | 2.9%    | 1.0       | Power value from<br>1183 lb/hr of H2<br>power productior<br>total H2 for powe                                                                                                                                                                                                      | n the PSA unit<br>from PSA to C<br>n (stream 15) /<br>er production (s               | is 2.8% =<br>TG/HRSG for<br>41440 lb/hr<br>stream 20)                                          |
| CO <sub>2</sub> Purification                    | MW          | F          | 6.1              | 0.0%    | 0.0       |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Urea/UAN                                        | MW          | F          | 6.0              | 0.0%    | 0.0       |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Power Block                                     | MW          | P          | 5.7              | 100.0%  | 5.7       |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Water Treatment                                 | MW          | A          | 6.4              | 69.2%   | 4.4       | Note allocation is mixed (common 2.0 MW *<br>71.3% (syngas power allocation) + 3.0 MW *<br>100% all power allocation + 1.4 MW * 0%<br>fertilizer no power allocation)/total water<br>treatment load 6.4 MW = 69.2% overall powe<br>allocation (directly from applicant source data |                                                                                      | non 2.0 MW *<br>n) + 3.0 MW *<br>I MW * 0%<br>otal water<br>6 overall power<br>nt source data) |
| Power Cooling Tower                             | MW          | Р          | 4.0              | 100.0%  | 4.0       |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| Process Cooling Tower                           | MW          | A          | 9.7              | 36.8%   | 3.6       | Note allocation is<br>71.3% (syngas p<br>0% fertilizer no p<br>cooling tower loa<br>power allocation<br>source data)                                                                                                                                                               | s mixed (comm<br>ower allocatio<br>ower allocatio<br>d 9.7 MW = 30<br>(directly from | non 5.0 MW *<br>n) + 4.6 MW *<br>n)/total process<br>0.9% overall<br>applicant                 |
| Fertilizer Storage/Handling                     | MW          | F          | 0.6              | 0.0%    | 0.0       | ,                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                                                |
| Other Supporting Systems                        | MW          | А          | 8.3              | 71.3%   | 5.9       | 1                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                                                |
| ASU                                             | MW          | A          | 109.0            | 75.7%   | 82.5      | Note allocation is<br>common 77 MW <sup>3</sup><br>allocation) + 27.6<br>power allocation<br>consumption of 1                                                                                                                                                                      | based on ma<br>*71.3% (synga<br>MW *100% n<br>divided by tota<br>_09.0 MW = 75       | x power<br>is power<br>itrogen for<br>al ASU<br>5.7%                                           |
| Net Power Export (not incl. OEHI)               | MW          |            | 157              |         |           | 98.7                                                                                                                                                                                                                                                                               | Fertilizer pow<br>consumption<br>in Net Power                                        | ver<br>(MW) included                                                                           |
| Possible additional compression for CCS at OEHI | MW          | A          | 2.0              | 71.3%   | 1.4       |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |
| SB 1368 Net Power                               | MW          |            |                  |         | 253.8     |                                                                                                                                                                                                                                                                                    |                                                                                      |                                                                                                |

Source: Power Generation and Consumption data from HECA 2013 TN200144 Figure CS-7-3; allocation to power percentage data from same source Attachment CS-7-1 for syngas allocation and same source derived from Table CS-7-4, Attachment CS-7-1, and Table CS-7-2 for ASU daily average MW consumption and allocation to power. P = Power Notes: F = Fertilizer AGR = acid gas removal CO = conden direction

| Notes:                             |
|------------------------------------|
| AGR = acid gas removal             |
| CO <sub>2</sub> = carbon dioxide   |
| CT = combustion turbine            |
| EOR = enhanced oil recovery        |
| LTGC = low-temperature gas cooling |
| PSA = Pressure Swing Adsorption    |
| SRU = sulfur recovery unit         |
| ST = steam turbine                 |
| UAN = urea ammonium nitrate        |
|                                    |
| Net Generation Totals for Syngas   |
| Net Osesseties for Network Ose     |

| or a lice annonan maac           |       |              |           |
|----------------------------------|-------|--------------|-----------|
|                                  | MW/hr | Hrs/Year     | Total     |
| Net Generation Totals for Syngas | 253.8 | 8000         | 2030546.2 |
| Net Generation for Natural Gas   | 300   | 336          | 100800    |
|                                  |       | Total        | 2131346.2 |
|                                  | Total | Steady State | 2030546.2 |

Sources for Hrs/Year and MW/hr for natural gas are HECA 2013 TN201026 Table 3.

| Items that may the potential for compromise are shown with yellow highlight - |  |
|-------------------------------------------------------------------------------|--|
| Items with orange highlight show modifications HECA made to CEC calculations  |  |

### **Maximum Power Emisions and Emission Performance**

| HECA Annual CO2 Emissions for SB 1368 Emission Performance Standard    | mav   | nowor ( | (aaca |
|------------------------------------------------------------------------|-------|---------|-------|
| TIEGA Annual CO2 Enhissions for SD 1500 Enhission i enormance stanuaru | IIIan | powerv  | Jasej |

|                                           | 4 1000             | <u>,</u>   | , ,     |           |
|-------------------------------------------|--------------------|------------|---------|-----------|
| Sources of CO <sub>2</sub>                | Annual CO2<br>(MT) | Allocation | Percent | Allocated |
| CTG/HRSG burning syngas/PSA off-gas       | 256,900            | Р          | 100.0%  | 256,900   |
| CTG/HRSG burning natural gas              | 44,729             | Р          | 100.0%  | 44,729    |
| CO <sub>2</sub> Vent                      | 175,493            | A          | 71.3%   | 125,127   |
| Flares pilot                              | 510                | А          | 71.3%   | 364       |
| Flares SU/SD                              | 7,742              | А          | 71.3%   | 5,520     |
| Thermal Oxidizer standby                  | 5,736              | А          | 71.3%   | 4,090     |
| Thermal Oxidizer SU/SD, maintenance       | 306                | А          | 71.3%   | 218       |
| Emergency Engines                         | 105                | exempt     | 0.0%    | 0         |
| Auxiliary Boiler                          | 24,758             | А          | 71.3%   | 17,652    |
| Ammonia Start-Up Heater                   | 416                | F          | 0.0%    | 0         |
| Urea Absorber Vents                       | 116                | F          | 0.0%    | 0         |
| Fugitives                                 | 36                 | А          | 71.3%   | 26        |
|                                           |                    |            |         |           |
| Total Early Operations                    | 516,847            |            |         | 454,625   |
| Total Mature Operations                   | 383,138            |            |         | 359,291   |
| Total Steady State Operations             | 263,403            |            |         | 261,379   |
| OEHI CO <sub>2</sub> EOR Emission Sources | Annual CO2<br>(MT) | Allocation | Percent | Allocated |
| CO <sub>2</sub> Injection Heaters         | 34,483             | EOR        | 0.0%    | 0         |
| Regeneration Gas Heater                   | 5,747              | EOR        | 0.0%    | 0         |
| TEG Reboiler                              | 2,874              | EOR        | 0.0%    | 0         |
| Amine Unit                                | 575                | EOR        | 0.0%    | 0         |
| Fire Pump Engines                         | 3                  | EOR        | 0.0%    | 0         |
| CTB – Flare                               | 6,921              | EOR        | 0.0%    | 0         |
| RCF – Flare                               | 6,533              | EOR        | 0.0%    | 0         |
| Fugitive GHG Emissions                    | 43                 |            | 71.20/  |           |
| Maintenance GHG                           | 50                 | FOR        | 0.0%    | 31        |
| Pressure Relief GHG                       | 1                  | FOR        | 0.0%    | 0         |
| Miscellaneous Small Tanks                 | 2                  | FOR        | 0.0%    | 0         |
| EOR Component Power Consumption           | 281 049            | FOR        | 0.0%    | 0         |
| Workers Commuting                         | 205                | FOR        | 0.0%    | 0         |
| Well Maintenance Activities               | 215                | FOR        | 0.0%    | 0         |
| Total EOB CO2 Emissions                   | 210                | LOIN       | 0.070   | 21        |

Allocation for Apportioned Power 71.3%

note that not all of the fugitives at OEHI would be attributible to CCS activities, most would be attributed to EOR

 Total EOR CO2 Emissions
 338,700

 Sources: HECA emissions data from HECA 2013 TN 201026. Allocation to power value from HECA 2013 TN 200144;

 OEHI emissions information from AFC Appendix A, Oxy 2013 TN 69314, and Oxy 2013 TN 69487

| Max Power Basis                  | Early Ops | Mature Ops | Steady State |
|----------------------------------|-----------|------------|--------------|
| Total Emissions                  | 454,656   | 359,322    | 261,410      |
| Total Generation                 | 2,131,346 | 2,131,346  | 2,030,546    |
| Emissions Performance MT CO2/MWh | 0.213     | 0.169      | 0.129        |

| Items that may the potential for compromise are shown with yellow highlight - |  |
|-------------------------------------------------------------------------------|--|
| Items with orange highlight show modifications HECA made to CEC calculations  |  |