Docket Number:	08-AFC-08A
Project Title:	Hydrogen Energy Center Application for Certification Amendment
TN #:	200325
Document Title:	Greenhouse Gas Emissions for Alternative 2
Description:	N/A
Filer:	URS
Organization:	URS Corporation
Submitter Role:	Applicant's Consultant
Submission Date:	8/23/2013 1:05:55 PM
Docketed Date:	8/23/2013

August 23, 2013

CALIFORNIA ENERGY COMMISSION - DOCKET UNIT

Attn: Docket No. 08-AFC-08A 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512

Re: GHG Emissions for Alternative 2

This spreadsheet contains greenhouse gas (GHG) calculations for the transportation sources in Alternative 2. These calculations were provided in the Amended AFC, and are being provided here based on project refinements discussed in the Updated Emissions and Modeling Report, docketed on May 20, 2013. Sincerely,

URS Corporation

Dale Shileikis Project Manager

URS Corporation

Enclosure:

Operational Transportation Greenhouse Gas Emissions - Alternative 2

cc: Marisa Mascaro, HECA

()a Shakas

Hydrogen Energy California LLC HECA Project

Operational Transportation Greenhouse Gas Emissions - Alternative 2 August 20, 2013 Hydrogen Energy California LLC HECA Project

8/20/2013

Greenhouse Gas Emissions Associated with the Mobile Sources During Project Operations - Alternative 2

Source	Annual CO2e Emissions (tonne/year)
Onsite Trucks	947
Onsite Trains	0
Offsite Workers Commuting	824
Offsite Trucks	24,037
Offsite Trains	37,654
Total CO2e Annual Emissions	63,462

Notes:

Onsite worker travel and associated emissions are negligible

Emissions Summary

Hydrogen Energy California LLC HECA Project 8/20/2013

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Onsite LHD Gasoline Trucks

Number of Onsite	Trucks	10	trucks		EF CO ₂ =	1,175	g/mi
Total Annual VMT		10,000	miles/ truck	1	EF CH ₄ =	0.0157	g/mi
		-		-	EF N ₂ O =	0.0101	g/mi
			ı				
CO ₂ =	118	tonne/yr					
CH ₄ =	1.57E-03	tonne/yr =	3.E-02	tonne CO2e/yr			
$N_2O =$	1.01E-03	tonne/yr =	3.E-01	tonne CO₂e/yr	Total to	nne CO ₂ e/yr =	118

CO2 emissions from EMFAC2007 for fleet year 2010 for light heavy-duty gasoline trucks travelling at 15 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for light gasoline trucks.

Onsite LHD Diesel Trucks

	0						
Number of Onsite	Trucks	10	trucks		EF CO ₂ =	519	g/mi
Total Annual VMT		10,000	miles/ truck	1	EF CH ₄ =	0.001	g/mi
		•		•	EF N ₂ O =	0.0015	g/mi
			1				
CO ₂ =	52	tonne/yr					
CH ₄ =	1.00E-04	tonne/yr =	2.E-03	tonne CO ₂ e/yr			
N ₂ O =	1.50E-04	tonne/yr =	5.E-02	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	52

CO2 emissions from EMFAC2007 for fleet year 2010 for light heavy-duty diesel trucks travelling at 15 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for light diesel trucks.

Onsite Petcoke and Coal Trucks

Offsite Petcoke a	iliu coai irucks						
Number of Truck I	loads	76,240	truck loads		EF CO ₂ =	3,165	g/mi
Distrance Travelle	ed Onsite	1.0	mi/ load		EF CH ₄ =	0.0051	g/mi
Truck Idle Time		0.08	hr/load	1	EF N ₂ O =	0.0048	g/mi
		•		_			
					EF CO ₂ =	6,542	g/ idle hr
					EF CH ₄ =	0.011	g/ idle hr
					EF N ₂ O =	0.010	g/ idle hr
				·			
CO ₂ =	272	tonne/yr					
CH ₄ =	4.39E-04	tonne/yr =	9.E-03	tonne CO ₂ e/yr			
$N_2O =$	4.13E-04	tonne/yr =	1.E-01	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	272

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 10 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Onsite Fluxant & Product Trucks

Number of Truck loa	ads	58,000	truck loads		EF CO ₂ =	3,165	g/mi
Distrance Travelled	Distrance Travelled Onsite		mi/ load		EF CH ₄ =	0.0051	g/mi
Truck Idle Time		0.08	hr/load		EF N ₂ O =	0.0048	g/mi
				_			
					EF CO ₂ =	6,542	g/ idle hr
					EF CH ₄ =	0.011	g/ idle hr
					EF N ₂ O =	0.010	g/ idle hr
CO ₂ =	488	tonne/yr					
CH ₄ =	7.86E-04	tonne/yr =	2.E-02	tonne CO ₂ e/yr			
N ₂ O =	7.40E-04	tonne/yr =	2.E-01	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	488

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 10 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Onsite Miscellaneous Diesel Trucks

Onone miocona	ncous Bissoi irasks						
Number of Truck	loads	2,330	truck loads		EF CO ₂ =	3,165	g/mi
Distrance Travel	led Onsite	2.2	mi/ load		EF CH ₄ =	0.0051	g/mi
				_	EF N ₂ O =	0.0048	g/mi
	1		İ				
CO ₂ =	16	tonne/yr					
CH ₄ =	2.61E-05	tonne/yr =	5.E-04	tonne CO ₂ e/yr			
$N_2O =$	2.46E-05	tonne/yr =	8.E-03	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	16

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 10 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles.

GHG Emissions Summary for Mobile Sources

Emissions Summary

Hydrogen Energy California LLC HECA Project 8/20/2013

HECA Project							
Offsite Coal Trai	***			Т	I==		
Number of Trains	cars per year	13,100	per year		EF CO ₂ =	10,217	g/gal
Miles Traveled Pe	er Train	801	Miles one way		EF CH ₄ =	0.8	g/gal
Rail Freight Fuel (Consumption	480	ton-mile/gallon		EF N ₂ O =	0.26	g/gal
Loaded train car v	weight	142	ton		_		
Unloaded train ca	r weight	25	ton				
All Trains - Round	d Trip	1.75E+09	ton-miles/year				
Fuel Use for all Ti	rains - Round Trip	3,650,596	gal/year	1			
	_						
CO ₂ =	37,298	tonne/yr					
CH ₄ =	2.92	tonne/yr =	61.33	tonne CO2e/yr			
N ₂ O =	0.95	tonne/yr =	294.24	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	37,654

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Offsite Coal Trucks

Number of Trucks	3	61,040	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled	per Truck (Round Trip)	53	miles/ truck		EF CH ₄ =	0.0051	g/mi
Total Annual VMT	•	3,235,120	miles/ year	1	EF N ₂ O =	0.0048	g/mi
CO ₂ =	5,405	tonne/yr					
CH ₄ =	1.65E-02	tonne/yr =	3.E-01	tonne CO2e/yr			
$N_2O =$	1.55E-02	tonne/yr =	5.E+00	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	5,410

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Petcoke Trucks

Onone r otooke	TTUONO						
Number of Trucks	6	15,200	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled	per Truck (Round Trip)	280	miles/ truck	1	EF CH ₄ =	0.0051	g/mi
Total Annual VMT	-	4,256,000	miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	7,110	tonne/yr					
CH ₄ =	2.17E-02	tonne/yr =	5.E-01	tonne CO2e/yr			
N ₂ O =	2.04E-02	tonne/yr =	6.E+00	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	7,117

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Fluxant Trucks

Number of Trucks	3	2,360	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled per Truck (Round Trip) 404			miles/ truck		EF CH ₄ =	0.0051	g/mi
Total Annual VMT		953,440	miles/ year	1	EF N ₂ O =	0.0048	g/mi
CO ₂ =	1,593	tonne/yr					
CH ₄ =	4.86E-03	tonne/yr =	1.E-01	tonne CO2e/yr			
N ₂ O =	4.58E-03	tonne/yr =	1.E+00	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	1,594

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Liquid Sulfur Product Trucks

Onone Enquire of							
Number of Trucks	3	1,360	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled	per Truck (Round Trip)	284	miles/ truck	ĺ	EF CH ₄ =	0.0051	g/mi
Total Annual VMT	-	386,240	miles/ year	1	EF N ₂ O =	0.0048	g/mi
CO ₂ =	645	tonne/yr					
CH ₄ =	1.97E-03	tonne/yr =	4.E-02	tonne CO2e/yr			
$N_2O =$	1.85E-03	tonne/yr =	6.E-01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	646

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

GHG Emissions Summary for Mobile Sources

Emissions Summary

Hydrogen Energy California LLC

8/20/2013

HECA Project
Offsite Gasification Solids Product Trucks

Offsite Gasificat	tion Solias Product Trucks						
Number of Truck	s	12,680	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled	per Truck (Round Trip)	160	miles/ truck		EF CH ₄ =	0.0051	g/mi
Total Annual VM	Γ	2,028,800	miles/ year	ĺ	EF N ₂ O =	0.0048	g/mi
CO ₂ =	3,389	tonne/yr					
CH ₄ =	1.03E-02	tonne/yr =	2.E-01	tonne CO ₂ e/yr			
$N_2O =$	9.74E-03	tonne/yr =	3.E+00	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	3,393

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Ammonia Product Trucks

Number of Trucks	1	0	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled per Truck (Round Trip) 80			miles/ truck	ĺ	EF CH ₄ =	0.0051	g/mi
Total Annual VMT		0	miles/ year		EF N ₂ O =	0.0048	g/mi
				_			
CO ₂ =	0	tonne/yr					
CH ₄ =	0.00E+00	tonne/yr =	0.E+00	tonne CO2e/yr			
N ₂ O =	0.00E+00	tonne/yr =	0.E+00	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	0

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Urea Product Trucks

Number of Trucks	8	22,920	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled per Truck (Round Trip) 80			miles/ truck		EF CH ₄ =	0.0051	g/mi
Total Annual VMT		1,833,600	miles/ year		EF N ₂ O =	0.0048	g/mi
20	T		I				
CO ₂ =	3,063	tonne/yr					
CH ₄ =	9.35E-03	tonne/yr =	2.E-01	tonne CO ₂ e/yr			
N ₂ O =	8.80E-03	tonne/yr =	3.E+00	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	3,066

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite UAN Product Trucks

Number of Trucks	i	18,680	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled per Truck (Round Trip) 8			miles/ truck		EF CH ₄ =	0.0051	g/mi
Total Annual VMT	Total Annual VMT		miles/ year		EF N ₂ O =	0.0048	g/mi
				_			
CO ₂ =	2,497	tonne/yr					
CH ₄ =	7.62E-03	tonne/yr =	2.E-01	tonne CO ₂ e/yr]		
$N_2O =$	7.17E-03	tonne/yr =	2.E+00	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	2,499

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

GHG Emissions Summary for Mobile Sources

Emissions Summary

Hydrogen Energy California LLC HECA Project 8/20/2013

Offsite Equipment and Miscellaneous Trucks

Number of Trucks	3	2,330	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled per Truck (Round Trip) 80			miles/ truck	ĺ	EF CH ₄ =	0.0051	g/mi
Total Annual VMT	Total Annual VMT		miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	311	tonne/yr					
CH ₄ =	9.51E-04	tonne/yr =	2.E-02	tonne CO ₂ e/yr			
$N_2O =$	8.95E-04	tonne/yr =	3.E-01	tonne CO₂e/yr	Total to	nne CO ₂ e/yr =	312

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Employee Commute Vehicles

Total Number of E	mployee	200	employees/day		EF CO ₂ =	364	g/mi
Number of Worker per Commuter Vehicle		1.3			EF CH₄ =	0.0159	g/mi
Daily Vehicle Cour	nt	154	vehicles/day]	EF N ₂ O =	0.0093	g/mi
Distance traveled	per vehicle (Round Trip)	40	miles/ vehicle/ day				
Day of Commute per Month		365	days/yr				
Total Annual VMT		2,246,154	miles/year]			
CO ₂ =	817	tonne/yr			_		
CH ₄ =	3.57E-02	tonne/yr =	7.E-01	tonne CO ₂ e/yr			
N ₂ O =	2.09E-02	tonne/yr =	6.E+00	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	824

CO2 emission factor for CO2 is from EMFAC 2007 (average of light duty automobile and light duty truck) for the vehicle model year fro m1971 to 2015. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for average of gasoline passenger cars, gasoline light trucks, diesel passenger cars, and diesel light truck.

Total tonne CO	e/yr for Mobile Sources=	63,4	462