| DOCKETED                                                                       |                                                  |
|--------------------------------------------------------------------------------|--------------------------------------------------|
| Docket Number:                                                                 | 97-AFC-02C                                       |
| Project Title:                                                                 | Sutter Power Plant Application for Certification |
| TN #:                                                                          | 263221                                           |
| Document Title: Sutter Decarbonization Project Data Response Set 2 [REVISED]   |                                                  |
| <b>Description:</b> Responses to Data Requests A9 to A20. Supersedes TN 262906 |                                                  |
| Filer:                                                                         | Chase Maxwell                                    |
| Organization:                                                                  | Climate Edge Law Group                           |
| Submitter Role:                                                                | Applicant Representative                         |
| Submission Date:                                                               | 5/20/2025 1:51:04 PM                             |
| Docketed Date:                                                                 | 5/20/2025                                        |

# Data Response Set 2 (Responses to Data Requests A9 to A20)

Submitted to California Energy Commission

Prepared by Sutter CCUS, LLC

With assistance from **Jacobs** 

Sutter Decarbonization Project (97-AFC-02C) March 2025

# Contents

| Cont | ents                                                                                          |    |
|------|-----------------------------------------------------------------------------------------------|----|
|      | oduction                                                                                      |    |
| 1.   | Biological Resources (DR A9-A20)                                                              |    |
|      | Background: Project Area                                                                      |    |
|      | Background: Biological Resources Technical Memorandum                                         | 4  |
|      | Background: Carbon Dioxide Transport and Storage                                              | 6  |
| Atta | chment A. Coordination and Consultation with State and Federal Agencies (DR A10)              | 10 |
| Atta | chment B. Aquatic Resources Delineation Report (DR A12)                                       | 11 |
| Atta | chment C. Vegetation and Land Cover Types (DR A13)                                            | 12 |
| Atta | chment D. Crotch's Bumble Bee Habitat Assessment (DR A14)                                     | 13 |
| Atta | chment E. Conceptual Horizontal Directional Drilling (HDD) Inadvertent Release Protection and |    |
|      | Contingency (DR A17)                                                                          | 14 |
|      |                                                                                               |    |

# **Introduction**

Attached are Sutter CCUS LLC's<sup>1</sup> (Applicant) responses to the California Energy Commission (CEC) Staff's *Data Requests Set 2, A9 through A20* regarding the *Petition for Post-Certification Modification: Sutter Decarbonization Project* filed for the Sutter Energy Center (97-AFC-02)

The responses are grouped by individual discipline or topic area. Within each discipline area, the responses are presented in the same order as presented in CEC Staff's *Data Requests Set 2, A9 through A20* and are keyed to the Data Request numbers.

<sup>&</sup>lt;sup>1</sup> An indirect, wholly owned subsidiary of Calpine Corporation (Calpine).

# 1. Biological Resources (DR A9-A20)

# **Background: Project Area**

Staff has reviewed the Petition for Modification (Petition) (TN250246), including Appendix B Biological Resources (May 2023), and the Biological Resources Technical Memorandum Special-Status Species Habitat Assessment (BRTM) from November 2023 (TN257582); for the Sutter Decarbonization Project. There are differences between the project Biological Study Area (BSA) in the Petition and the BRTM. Specifically, the BRTM shows a Horizontal Directional Drilling (HDD) String (Figure 2, Map 1 of 6) and nine well pad locations (Figure 2, Map 5 of 6). The Petition states there would be three Class VI injection wells located on three well pads.

The BRTM states the carbon capture facility would be located at the site of the decommissioned Greenleaf 1 Cogeneration facility adjacent to the existing Sutter Energy Center. The location of the carbon capture facility is not provided on any of the figures in the BRTM or the Petition. Similarly, the location of the turbine performance improvements is not provided.

The BRTM discusses directionally drilling the pipeline under the Sutter Bypass to avoid disturbance to habitats for various special-status species. Figure 2 Maps 1-6 of the BRTM list pipeline and construction elements in the legend, including "Trenchless Pipeline Construction Area" and "Pipeline." The Petition states that the pipeline is expected to be underground for the majority of the pipeline route until it reaches the injection well location but does not provide details on the pipeline installation methods or staging areas.

#### **Data Requests:**

A9. Please explain the discrepancies in the project area between the Petition and the BRTM and provide additional information on the Project. Specifically, please provide the location of the carbon capture facility, the turbine improvements, and any staging or temporary laydown. Also, please provide additional background on the location of the HDD String and the location of the Class VI injection wells, including how many and type of wells are proposed for the project. Please provide clarification on the "Trenchless Pipeline Construction Area" shown in Figure 2 Maps 1-6 of the BRTM and whether this corresponds to areas where the pipeline will be directionally drilled underground. Lastly, please provide pipeline installation details for areas labeled as "Pipeline" in Figure 2 Maps 1-6 of the BRTM.

Response: The carbon capture facility will be located within the fence line of the decommissioned Greenleaf 1 Cogeneration facility. The perimeter fence line is outlined in the *Biological Resources Technical Memorandum Special-Status Species Habitat Assessment (BRTM)* from November 2023 (TN257582). The steam turbine improvements will take place within the existing Sutter Energy Center steam turbine. Laydown for the facility will be on the property directly to the north of the Sutter Energy Center on land controlled by the Project Owner.

Locations of the three proposed injection wells and associated monitoring wells are included in the Class VI application submitted to EPA Region IX in 2023. Final locations of the injection wells and the final number and location of monitoring wells will be determined using core data obtained from the stratigraphic well to be drilled in Q2 of 2025. The stratigraphic test well will provide core data that will be used to validate the locations for placement of injection wells.

The reference to "Trenchless Pipeline Construction Area" shown in Figure 2 Maps 1-6 of the *BRTM* from November 2023 (TN257582) corresponds to areas where the pipeline will be directionally drilled underground. Pipeline installation activities for areas labeled as "Pipeline" in Figure 2 Maps 1-6 of the *BRTM* from November 2023 (TN257582) will be determined by the construction contractor but are

expected to be typical for open trench pipeline installation. Pipeline installation activities may include site preparation, pipe stringing, excavation or trenching, placement of the pipeline components, backfilling, testing, and site restoration.

# Background: Biological Resources Technical Memorandum

In the BRTM, it states that appropriate avoidance and minimization measures for special-status fish and wildlife species will be developed through Endangered Species Act (ESA) consultation with the National Marine Fisheries Service (NMFS) and U.S. Fish and Wildlife Service (USFWS) in coordination with state permitting agencies, as appropriate. Many species discussed in the BRTM are either state listed or California Department of Fish and Wildlife (CDFW) Species of Special Concern. As such, appropriate avoidance and minimization measures will need to be included in the Staff Assessment as required by the California Environmental Quality Act (CEQA). In coordination with the resource agencies, staff may recommend additional conservation measures be incorporated in the staff assessment.

Appendix B Biological Resources of the Petition stated that an aquatic resources jurisdictional delineation was not performed but would be completed to determine the extent of wetlands that are potentially jurisdictional. The BRTR did not discuss the status of the jurisdictional delineation, the location of aquatic features, or potential impacts to aquatic features.

Appendix B Biological Resources of the Petition stated that the CDFW VegCAMP program for the Great Valley Ecoregion was reviewed to determine potential habitat occurrence within the BSA; and during the reconnaissance field survey, the data was further refined to better characterize habitat on-site. However, the BRTR did not discuss whether there were any vegetation and land use changes or refinements identified during the subsequent biological survey. Although general species habitat was identified on Figure 2 of the BRTR, vegetation types and land cover identified were not shown on the figures provided in Appendix B of the Petition or the BRTM.

The project is located within the historic and current range for Crotch's bumble bee (Bombus crotchii), which is currently a candidate species for listing under CESA. Under CESA, a candidate species for which notice has been given under Fish and Game Code, section 2074.4 is afforded the same protections as a threatened or endangered species (Fish & G. Code, § 2085), including the prohibition on take without appropriate authorization. Crotch's bumble bee was listed in Table 3-1 of the Petition but was not discussed in the BRTR. The Petition does not assess impacts to Crotch's bumble bee or request take coverage for this species. The closest Bumble Bee Watch observation is over 15 miles to the east and a 2007 CNDDB record occurs approximately 9 miles to the west. Crotch's bumble bee is a relatively new candidate for state listing and there is limited historical data. This does not preclude the potential for Crotch's bumble bee to occur in the area. Natural areas of the project layout may provide floral resources that could support Crotch's bumble bee. Project-related impacts to Crotch's bumble bee may require incidental take coverage or implementation of avoidance measures.

#### **Data Requests:**

A10. Please clarify whether coordination or consultation with state and federal agencies has been conducted, and whether any recommended avoidance and minimization measures were provided for federal, or state listed, special-status species.

**Response:** Preliminary discussions with the USFWS, CDFW and NMFS took place in 2023. Summaries of these discussions were provided to the CPM on September 9, 2023, and are included in this response as **Attachment A**. At this time, resource agencies have not provided any recommended avoidance and minimization measures. The Project Owner anticipates that ESA section 7 consultations with USFWS will be initiated by the DOE once the third party NEPA contractor has been selected.

A11. Please provide recommended avoidance and minimization measures for federal or state listed, or special-status species that are discussed in the biological reports.

**Response:** A biological assessment is currently being prepared. Avoidance and minimization measures for biological resources will be developed in parallel with the biological assessment.

A12. Please provide an aquatic resources jurisdictional delineation report for the project, including potential impacts from the project, the jurisdiction of aquatic features identified, restoration implementation for areas temporarily impacted, and mitigation approach for areas permanently impacted.

**Response:** An aquatic resources delineation was conducted for the Project by Jacobs in 2023-2024. The final Aquatic Resources Delineation Report is included as **Appendix C**. If any aquatic resources are temporarily impacted, they will be restored to pre-disturbance condition. No permanent impacts to aquatic resources are anticipated and therefore no mitigation is proposed. In the unlikely circumstance that permanent impacts cannot be avoided, mitigation would be provided through purchase of credits from the National Fish and Wildlife Foundation's Sacramento District California In-Lieu Fee Program.

A13. Please discuss vegetation and land use cover identified during the September 2023 focused surveys, and if the focused surveys resulted in any changes or refinements to the vegetation types described in the Petition. In addition, please provide a map showing the location of the vegetation types identified in the BSA during the desktop review and subsequent surveys.

Response: Vegetation and land cover types in the Project footprint and surrounding area are consistent with descriptions provided previously to CEC. The September 2023 focused assessments did not identify any new vegetation communities/habitat types within the Biological Study Area (BSA). Attachment C provides a map of the vegetation and land cover types in the BSA. The BSA is dominated by agriculture and other modified vegetation and land cover types. Approximately 50% of the land cover in the BSA is rice fields. Other major land cover types in the BSA include non-native grasslands, ruderal and sparsely vegetated areas, riparian habitat, Himalayan blackberry scrub blackberry thickets, and agricultural ditches (Attachment C).

A14. Please provide a habitat assessment evaluating the likelihood of bumble bees occurring within and adjacent to the project area. More information on the appropriate Crotch's bumble bee habitat assessment and survey protocol can be found in the Survey Considerations for California Endangered Species Act (CESA) Candidate Bumble Bee Species document located on the CDFW website at https://wildlife.ca.gov/Conservation/CESA. If the habitat assessment determines potential habitat is present, include a detailed impacts analysis for Crotch's bumble bee and recent results of a protocollevel survey. If this additional information for Crotch's bumble bee indicates that the project or activities proposed as part of the Petition may cause take of Crotch's bumble bee, staff recommends that the applicant revise the petition to request take coverage for this species. This additional request for take coverage must include all information that would be required in an Incidental Take Permit (ITP) application for CESA-listed or candidate species, including an impacts analysis and proposed mitigation measures (Cal. Code of Regs., tit.14, § 783.2).

Response: A habitat assessment for Crotch's bumble bee is provided in Attachment D. While Crotch's bumble bee was historically widespread in the Central Valley, modifications to the landscape, particularly agriculture, have extirpated this species from much of its historic range in California. Overall, the Project footprint and surrounding area offer marginal nesting and foraging opportunities for Crotch's bumble bee, and the presence of dispersal barriers between occurrences of this species and the Project footprint make it highly unlikely individual bees would occupy the Project footprint. Therefore, this species is unlikely to be present within the Project footprint during construction.

#### **Background: Carbon Dioxide Transport and Storage**

It is not clear how the carbon dioxide (CO2) would be transported between the termination of the CO2 Transport Pipeline Route and the location of the Class VI Injection Wells. In the BRTM, the closest distance between the termination of the pipeline and the nearest well pad is approximately 0.5 miles, and the farthest distance is approximately 2.5 miles.

Inadvertent drilling fluid release (i.e., a "frac-out") is discussed in the Petition and the BRTM as having the potential to damage individual plants and impact listed fish species. A frac-out could also potentially impact aquatic habitat and other species that utilize aquatic habitat. The project owner states the project does not intend to alter the bed, bank, or channel of existing aquatic features and would directionally drill the pipeline under potential habitat, which makes the potential for a frac-out to harm special status species unlikely. Though unlikely, the potential still exists for a frac-out to impact aquatic habitat.

The Petition states that the pipeline would be equipped with state-of-the-art fiber optic monitoring and automatic shutoff systems to ensure safe operations. Extensive details are provided on the monitoring for the Class VI Injection Wells, but only minimal information is provided for the 15.7-mile CO2 pipeline. There is a concern regarding the potential for pipeline failures and ruptures that could result in CO2 leakage and poisoning. Excessive CO2, which displaces oxygen in the air, can be highly toxic to humans and wildlife. CEC staff acknowledges that Public Resources Code, section 71465 prohibits pipelines from being utilized to transport carbon dioxide to or from a carbon dioxide capture, removal, or sequestration projects until the federal Pipeline and Hazardous Materials Safety Administration has concluded the rulemaking (RIN 2137-AF60) regarding minimum federal safety standards for transportation of carbon dioxide by pipeline (Parts 190 to 199, inclusive, of Title 49 of the Code of Federal Regulations).

The project owner is required to demonstrate that the pipeline meets those standards. Currently, the Pipeline and Hazardous Materials Safety Administration has not initiated the proposed rulemaking (RIN 2137-AF60) regarding minimum federal safety standards. However additional information is needed for CEC staff to evaluate how CO2 will be transported in pipelines.

The Petition states the pipeline would be operated at temperatures ranging from 60 to 120 degrees Fahrenheit at a depth of less than eight feet. It is unclear whether the pipeline would be insulated to reduce the exposure of the surrounding soil to high temperatures or whether the high temperatures would have an impact on surface resources.

The Petition states the geological storage complex for the SEC project is located approximately 10 miles southwest within an approximately 42 square-mile area and is currently used for saltwater disposal. The description does not elaborate on the storage capacity of this area or the expected lifespan of the injection wells and pipeline.

#### Data Requests:

A15. A15. Please provide details on how CO2 would be transported from the pipeline termination to the proposed well pads.

**Response:** The CO2 will be pressurized at the carbon capture facility. The CO2 will be transported via the pipeline and injected to the wellheads at 2200 psi.

A16. Please provide details on the boring methodology for the pipeline. For instance, would a tracking wire be used? Would a vacuum truck be on-site during HDD operations? Would the bore be sleeved? How would searches for inadvertent release be conducted? Would a jack and bore be used or other method, and what are the noise or vibration impacts on sensitive biological resources? What is the duration of boring activities (i.e., 24 hours a day)? If boring is anticipated at night, what would the impacts of night-lighting be on sensitive biological resources?

**Response:** The bore will be completed using Horizontal Direction Drill methods. This method consists of placing an HDD machine at the entry location and boring under the crossing area from the surface. A wired tracking system will be used for guiding the bore, which will consist of placing tracking wires along the bore path to allow for accurate tracking.

After placement of the bore machine and tracking system, the bore machine will push a drilling head with bore pipe to complete a pilot hole to establish the trajectory. Drill fluid consisting of bentonite mud and water will be added during the pilot hole to provide hole stabilization and lubrication during the boring process. After completion of the pilot hole is complete, a follow-up ream/swab pass will be completed to open and condition the hole to the proper size for the proposed carrier pipe.

The bore is not proposed to be sleeved since it is expected that soil conditions will not require it. A jack and bore is not proposed for any crossings since an HDD is considered less impactful and more efficient in these conditions. The noise level for the HDD equipment is considered typical of non-impact construction equipment. Other noise generating equipment includes the use of diesel engines and hydraulic components. Typically, vibrations on an HDD are the results of the bore pipe encountering hard soil conditions or obstructions. Given the alluvial nature of the soil in this area and lack of development, hard soil and obstructions are not expected to be encountered. The impact from noise and vibration to sensitive biological resources is expected to be minimal.

The duration of HDD operations will depend on the pipeline contractor's assessment of the soil conditions and difficulty of the drill. For all but the Sutter Bypass crossing, 24-hour operation or boring at night is highly unlikely. For the longer Sutter Bypass HDD, 24-hour operation or boring at night will depend on the contractor's assessment of the actual soil conditions and the stage of construction. For example, it is likely that during short but critical phases of the project, the contractor will go to 24-hour operations until the work is complete. There are no residences or sensitive receptors in the Sutter Bypass or the immediate area where this work would occur.

Avoidance and minimization measures addressing adverse effects of night-lighting on sensitive resources will be developed should night operation or construction be required.

A17. Please provide a Frac-Out Contingency Plan that establishes operating procedures and responsibilities for prevention, containment, clean-up, and disposal of drilling fluid if a frac-out were to occur; including specific measures if a frac-out were to occur in aquatic or another sensitive habitat.

**Response:** A conceptual horizontal directional drilling (HDD) inadvertent release protection and contingency plan for a sensitive water crossing is provided as **Attachment E**. A final plan will be provided by the pipeline contractor after selection and following detailed design.

A18. Please provide details on the steps that would be taken to monitor and avoid a rupture along the CO2 pipeline during operations. Please also provide a contingency plan if a rupture is detected along the pipeline or within the Class VI Injection Wells.

**Response:** A preliminary Emergency Response Plan was created during an initial Front End Engineering Design. A project specific, final ERP will be developed and include rupture scenarios. The basic steps that will be taken to monitor and avoid rupture during operations include the following:

- 1. Development of required operating and contingency plans.
- 2. Proper and continuous training of operations and maintenance personnel on the operation, and maintenance of the CO2 pipeline with emphasis on the special considerations for transporting CO2.
- 3. Installation and maintenance of pipeline control and safety equipment such as control valves, isolation/shutoff valves, pressure relief valves, and pressure/temperature monitoring instrumentation to ensure that the pipeline operates within the design parameters of the pipeline during all phases of operation including start-up and other abnormal conditions.

- 4. A SCADA system will monitor operating conditions during normal and abnormal operation allowing Calpine operators to safely monitor and operate the pipeline. Instrumentation will be installed to monitor pipeline pressure, temperature, valve positions, and other critical parameters.
- 5. A leak detection system will be installed to monitor for leaks and ruptures and be connected to an automatic shut off system in the event a leak is detected.
- 6. External CO2 monitoring devices along sensitive areas of the pipeline will be installed in compliance with newly developed regulations.
- 7. To protect against mechanical strike from agricultural equipment, the pipeline will be installed with additional cover than required by regulation
- 8. The pipeline will be installed with warning tape over the pipeline as an additional warning when excavating near the pipeline.
- 9. The pipeline will be installed via Horizontal Directional Drill with extra depth under irrigation canals and the Sutter Bypass levees to allow for maintenance of these areas without the risk of damaging the pipeline.
- 10. Operations personnel will conduct visual inspection along the pipeline route to identify any unauthorized excavation or activities near pipeline facilities and to monitor for any geophysical impacts.
- 11. The pipeline will be installed with external coating and cathodic protection to provide long term protection from external corrosion.
- 12. Operations personnel will complete regular internal inspections with smart pigs to assess internal and external corrosion and shall complete cathodic protection surveys to monitor the integrity of the coating system.
- A19. Please provide details regarding the 60 to 120-degree temperatures of the pipeline during operations, if there are any potential impacts to the surrounding soils or surface resources, and if there are any design measures to monitor, insulate, or alleviate those temperatures.

**Response:** The 60-degree temperature represents a winter operating condition and the 120-degree temperature represents a summer operating condition. There are expected to be no impacts to the surrounding soil or surface resources at these operating temperatures. Many existing liquid and gas pipelines operate within these ranges and because they are buried, the ground provides sufficient insulation so that there is no impact to surrounding resources or need for insulation. There will be temperature monitoring equipment at the metering facilities to properly operate and monitor the pipeline and for the operation of the leak detection system.

A20. Please provide details on the storage capacity of the geological storage complex and the expected lifespan of the pipeline and injection wells. For cumulative impacts, please provide information on other storage.

#### Response:

The geological storage area will be capable of storing at least 30 years of injection capacity in the Starkey Clean Sands. The initial design and modeling were conducted for a total of 16.28 metric tons for the initial 12 years injected into 3 Class VI injection wells. The geological storage location will be dedicated to the Sutter Decarbonization Project with no other planned injection sources. After the analytical data for the stratigraphic test well is available a final design of the well locations will be submitted to EPA Region IX for final action on the Class VI permit.

Properly designed pipelines are protected from both internal and external corrosion and can have an indefinite lifespan. For dense phase CO2, the biggest contributor to corrosion is the presence of free water in the fluid stream. The water content of the proposed fluid stream will be very low and typically soluble within the CO2 stream and continuously monitored, therefore internal corrosion is not expected to be a factor. The pipeline will be protected from external corrosion via the external coating and cathodic protection system. The coating system that will be applied is highly inert to the surrounding soil and would

| typically have negligible levels of degradation while the cathodic protection will ensure that there is minimal wall loss over time. Finally, regular internal inspections via smart pigs will confirm both internal external corrosion rates over time. | nal |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |
|                                                                                                                                                                                                                                                          |     |

| Attachment A. Coordination and Consultation with State and Federal Agencies (DR A10) |  |  |  |  |
|--------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |
|                                                                                      |  |  |  |  |

#### **Nadira Basdeo**

From: Nadira Basdeo

Sent: Wednesday, August 16, 2023 10:51 AM

To: ryan.

Cc: Parker, Karen; Lindemann, Scott; Madams, Sarah; Barbara McBride; Fisher, Kevin Subject: RE: Species of Concern - Sutter Energy Center, Calpine, Discussion with NMFS

Hi Ryan-

Thanks for meeting with the team last month to discuss the Sutter Decarbonization Project. We learned a lot and wanted to follow up and propose next steps.

• To recap, our call focused on impacts to the Sutter Bypass and Snake River which are mapped as critical habitat Central Valley Spring-run Chinook Salmon, Central Valley Steelhead, and Southern DPS Green Sturgeon. We discussed the importance of minimizing impacts up to the Ordinary High Water Mark (OHWM). During construction, site specific BMP's for containing spills and erosion as well as a frac-out plan are recommended. Further the BMPs should address maintaining a proper work distance from water (typically a 100-foot buffer).

Per NMFS NOAA this area is considered an Essential Fish Habitat (EFH) for chinook salmon. Any stream that has had historic connection to the Bypass could be considered an EFH (there are no maps of EFH) and will need to be addressed within an Aquatic Resources Delineation Report (ARDR) for this Project. If Horizontal Directional Drilling is used and the Project stays outside of impact areas, an informal consultation can be made to obtain a Letter of Concurrence. A BO will only be needed if there are impacts.

Via separate email received July 6, 2023, NMFS NOAA provided an example concurrence letter, and an example BO for use as a starting point. This example BO includes a suggested work window of July 31 – Oct 31. The email also included a list of species potentially in the Project area:

- Sacramento Winter-run Chinook Salmon- presence
- Central Valley Spring-run Chinook Salmon- presence and designated critical habitat
- Central Valley Steelhead- presence and designated critical habitat
- Southern DPS Green Sturgeon- presence and designated critical habitat
- Chinook Salmon Essential Fish Habitat- presence

Based on the call, we propose the following:

- Determine if there is a programmatic permit for these listed fish species in Sutter County and work window for Project area.
- As HDD will be used and the Project will stay outside of impact areas, Calpine will Initiate an informal Consultation to obtain a Letter of Concurrence
- Conduct wetlands surveys during late summer/early fall and prepare an Aquatic Resources Delineation Report (ARDR)

Please let us know if any of this summary is not accurate and if NMFS concurs with the proposed next steps.

Thanks,

Nadira Basdeo, PMP | EHS Program Manager



#### **Nadira Basdeo**

From: Nadira Basdeo

Sent: Wednesday, August 16, 2023 11:13 AM

**To:** alexander.

Cc: Parker, Karen; Madams, Sarah; Lindemann, Scott; Barbara McBride; Fisher, Kevin

**Subject:** RE: Species of Concern - Sutter Energy Center, Calpine

Hi Alex-

Thanks for meeting with the team last month to discuss the Sutter Decarbonization Project (SDP). We learned a lot and wanted to follow up and propose next steps.

To recap, our discussion focused on multiple species including to the Western pond turtle, Tricolored blackbird, Swainson's hawk (SWHA), and rare plants. As discussed, completing all surveys within the required survey windows are critical. Where possible CDFW confirmed that multiple protocol level surveys could be completed simultaneously for birds as long as surveys are completed within the appropriate survey window for each species, conducted within the required days prior to performing ground disturbing activities are met (preconstruction surveys), and adequate resources are available to complete the surveys.

Regarding specific species, surveys for the Western pond turtle were not necessary as there is presumed presence. However, when determining BMP measures during construction, the Western pond turtle will require species specific BMPs. In addition, SWHA surveys that were previously conducted by Jacobs in May 2023 can be provided as supplemental data and may count towards the SWHA protocol requirements, however the protocol shall be reviewed to determine if this is acceptable. Additionally there was discussion regarding presuming presence of SWHA.

CDFW concurs with USFWS that it is safe to presume presence of GGS.

Finally, CDFW will require a Rare Plant Survey to be completed. The survey report will specifically list or call out Rare Plants (which may include but is not limited to Hartweg's golden sunburst, Wright's trichocoronis, and Wooly rose mallow) within the report that are historically known to the area.

CDFW also mentioned there may be a need for a Streambed Alteration Agreement (SAA).

Based on our discussion, we propose the following next steps:

- Calpine team to conduct a habitat assessment to determine where appropriate habitat for special status species is located within project boundaries.
- Due to known SWHA populations in the area, preconstruction protocol surveys will be conducted prior to construction.
- Rare plant surveys will be conducted as identified in the attached.
- Our team will further evaluate the need for a SAA.

Please let us know if any of this summary is not accurate and if CDFW concurs with the proposed next steps.

Thanks,

Nadira Basdeo, PMP | EHS Program Manager



#### **Nadira Basdeo**

From: Nadira Basdeo

Sent: Wednesday, August 16, 2023 10:51 AM

To: lily\_

Cc: Parker, Karen; Lindemann, Scott; Madams, Sarah; Barbara McBride; Fisher, Kevin

**Subject:** RE: Species of Concern - Sutter Energy Center, Calpine

Hi Lily-

Thanks for meeting with the team last month to discuss the Sutter Decarbonization Project (SDP). We learned a lot and wanted to follow up and propose next steps.

To recap, we discussed an overview of the project and the three species under USFWS jurisdiction, the Western yellow-billed cuckoo, Giant garter snake (GGS), and Valley Elderberry Longhorn Beetle.

#### Key takeaways from our discussion

- A joint NEPA/CEQA document will be prepared for the Project; CEC will be the lead CEQA agency, however, it is unknown at this time which agency will be the Federal lead agency.
- The western yellow-billed cuckoo requires a minimum of 30 acres of suitable habitat for breeding. Riparian stands are sparse in the Project area. If habitat structure is not available, construction and operation of the Project will not adversely affect the cuckoo. This species requires 4 protocol level surveys conducted between June and August.
- We can presume GGS presence without the need for protocol level surveys. There is a preference for work outside of GGS dormant seasons.
- Given that Federal agency action will be involved, Calpine expects to address the potential take of endangered species through a Section 7 consultation, which can be completed within 135 days.

#### Moving forward, Calpine will:

- Conduct a habitat assessment for the project in late summer/early fall 2023.
- If potentially suitable breeding habitat for the western yellow-billed cuckoo is present, then the project will
  propose avoidance and minimization measures to reduce the potential for adverse effects. These measures may
  include avoiding impacts to suitable habitat, avoiding construction during the of the breeding season (June 1August 31) near suitable breeding habitat, and/or protocol surveys prior to construction if work will occur near
  suitable habitat during the breeding season.

Please let us know if any of this summary is not accurate and if USFWS concurs with the proposed next steps.

#### Thanks,

Nadira Basdeo, PMP | EHS Program Manager



----Original Appointment-----

From: Hughes, Chris

**Sent:** Friday, June 30, 2023 12:29 PM

**To:** Hughes, Chris; Barbara McBride; Nadira Basdeo; lily **Cc:** Parker, Karen; Lindemann, Scott; Madams, Sarah

| Attachment B. Aquatic Resources Delineation Report (DR A12) |
|-------------------------------------------------------------|
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |

# **Jacobs**

# **Aquatic Resources Delineation Report**

CCFC Sutter Energy, LLC

Sutter Decarbonization Project June 7, 2024





# **Aquatic Resources Delineation Report**

Client name: CCFC Sutter Energy, LLC

**Project name:** Sutter Decarbonization Project

Client reference: Barbara McBride

Document no:

Version: 2

**Date:** June 7, 2024

**Document status:** Final

Project no:

Project manager: Sarah Madams

Prepared by: Kevin Fisher

File name: SEC\_CCUS\_ARDR\_Final

#### Jacobs

2201 Broadway Street Suite 3W101 Oakland, CA 94612 United States

© Copyright 2024 Jacobs. All rights reserved. The content and information contained in this document are the property of the Jacobs group of companies ("Jacobs Group"). Publication, distribution, or reproduction of this document in whole or in part without the written permission of Jacobs Group constitutes an infringement of copyright. Jacobs, the Jacobs logo, and all other Jacobs Group trademarks are the property of Jacobs Group.

NOTICE: This document has been prepared exclusively for the use and benefit of Jacobs Group client. Jacobs Group accepts no liability or responsibility for any use or reliance upon this document by any third party.

# **Summary**

CCFC Sutter Energy, LLC is planning to construct a carbon capture and storage project for the Sutter Energy Center (SEC) in Sutter County, California. The Project consists of the following:

- Turbine performance improvements at the SEC
- Installation of a carbon capture facility at SEC
- An approximately 15.7-mile carbon dioxide (CO<sub>2</sub>) pipeline
- Up to 11 well sites including one test well, three wells to inject the CO<sub>2</sub> for permanent sequestration in a geological storage location, and seven monitoring wells

This report presents the methods and results of an aquatic resources delineation for a 693-acre study area that encompasses the Project site and all ancillary features. This delineation was conducted in accordance with the Corps of Engineers Wetland Delineation Manual (Environmental Laboratory 1987), the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0) (USACE 2008), and A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States (Lichvar and McColley 2008). The study area contained 59.64 acres of non-wetland waters and no wetlands.

240226084420\_e83455aa

# **Contents**

| Sumi | mary  |                                         | •••••       |
|------|-------|-----------------------------------------|-------------|
| Acro | nyms  | and Abbreviations                       | i\          |
| 1.   | Intro | oduction                                | <b>1</b> -1 |
|      | 1.1   | Project Location                        | <b>1</b> -1 |
|      | 1.2   | Project Overview                        | 1-2         |
| 2.   | Envi  | ronmental Setting                       | 2-1         |
|      | 2.1   | Regional Setting                        | 2-1         |
|      | 2.2   | Study Area Setting                      | 2-1         |
|      |       | 2.2.1 Topography                        | 2-1         |
|      |       | 2.2.2 Climate                           | 2-1         |
|      |       | 2.2.3 Hydrology                         | 2-1         |
|      |       | 2.2.4 Soils                             | 2-2         |
|      |       | 2.2.5 National Wetlands Inventory       | 2-4         |
|      |       | 2.2.6 Land Cover/Vegetation Communities | 2-4         |
| 3.   | Metl  | hods                                    | 3-1         |
|      | 3.1   | Desktop Review                          | 3-1         |
|      | 3.2   | Field Data Collection                   | 3-1         |
|      | 3.3   | Desktop Analysis                        | 3-2         |
|      | 3.4   | Limitations to Survey Accuracy          | 3-2         |
| 4.   | Resu  | ılts                                    | <b>4</b> -1 |
|      | 4.1   | Other Waters                            | 4-5         |
|      |       | 4.1.1 Canal (C)                         | 4-5         |
|      |       | 4.1.2 Ditches (D)                       | 4-6         |
|      |       | 4.1.3 Ponds (P)                         | 4-6         |
|      |       | 4.1.4 Rivers/Streams (R)                | 4-6         |
|      | 4.2   | Other Areas Investigated                | 4-7         |
| 5.   | Refe  | rences                                  | 5-1         |

# **Appendices**

- A Antecedent Precipitation Tool Results
- B Delineation Data Forms
- C Representative Photographs

# Aquatic Resources Delineation Report

# **Tables**

| Table 1. Location Information                     | 1-1 |
|---------------------------------------------------|-----|
| Table 2. Antecedent Precipitation Conditions      | 2-2 |
| Table 3. Soil Series Mapped Within the Study Area | 2-3 |
| Table 4. Aquatic Resources in the Study Area      | 4-1 |

# **Figures**

- 1 Vicinity Map
- 2 Soils Map (8 maps)
- 3 National Hydrography Dataset and National Wetlands Inventory Map (8 maps)
- 4 Aquatic Resources Delineation Map (34 maps)

240226084420\_e83455aa iii

# **Acronyms and Abbreviations**

°F degree(s) Fahrenheit

AOI area of interest

CO<sub>2</sub> carbon dioxide

HUC Hydrologic Unit Code

NRCS Natural Resources Conservation Service

NWI National Wetlands Inventory

OHWM ordinary high water mark

Project Sutter Carbon Capture and Storage Project

SEC Sutter Energy Center

USACE U.S. Army Corps of Engineers

USGS U.S. Geological Survey

240226084420\_e83455aa iv

#### 1. Introduction

CCFC Sutter Energy, LLC is planning to construct a carbon capture and storage project for the Sutter Energy Center (SEC) in Sutter County, California (Figure 1). The Sutter Decarbonization Project (Project) will capture carbon dioxide (CO<sub>2</sub>) emissions from the SEC and transport it, via a pipeline, to a permanent underground storage location.

This report presents the methods and results of an aquatic resource delineation conducted for a 693-acre aquatic resource study area (study area) (Figure 1). The study area includes areas where Project infrastructure may be located and where construction may occur, as well as a buffer around these areas to accommodate minor changes in design and execution. An overview of the Project is provided in this chapter. The environmental setting is provided in Chapter 2. Survey methods and results are provided in Chapters 3 and 4, respectively. References are provided in Chapter 5.

CCFC Sutter Energy, LLC is the applicant and can be contacted as follows:

Barbara McBride Sr. Director Origination and Development Calpine Corporation



Jacobs is the agent and can be contacted as follows:

Joe Aguirre 2600 Michelson Drive, Suite 500 Irvine, CA 92612



Location information for the study area is shown in Table 1.

**Table 1. Location Information** 

| Main Waterbodies                         | Sutter Bypass, Snake River                                                            |
|------------------------------------------|---------------------------------------------------------------------------------------|
| Tributary to and<br>Downstream Waterbody | Sacramento River                                                                      |
| Watershed HUC and<br>Name                | Gilsizer Slough-Snake River (180201590400), McGriff Lakes-Sutter Basin (180201041102) |
| Central Latitude and<br>Longitude (DD)   | 38.9924, -121.7468                                                                    |
| Township, Range, Section                 | Township 14N, Range 2E, Sections 13, 23, 24, 25, 26, 27, 33, 34, 35                   |

**Table 1. Location Information** 

| T                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                   | Township 13N, Range 2E, Sections 4, 5, 8, 17, 19, 20, 27, 28, 29, 30, 31, 32, 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                   | Township 12N, Range 2E, Sections 3, 4, 5, 6, 7, 8, 9, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| USGS Quadrangles                  | Gilsizer Slough, Kirkville, Sutter Causeway & Tisdale Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| County Assessor Parcel<br>Numbers | 21-230-004, 21-230-009, 21-230-011, 21-230-019, 21-230-023, 21-230-024, 21-230-026, 21-230-037, 21-230-038, 21-240-005, 21-240-007, 21-240-011, 21-240-012, 21-240-013, 21-240-016, 21-240-017, 21-240-019, 21-240-020, 21-240-039, 21-240-040, 21-240-043, 21-240-049, 21-240-050, 21-300-003, 21-300-004, 21-310-023, 21-310-043, 21-310-047, 21-310-048, 21-310-050,                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                   | 21-310-052, 21-310-056, 21-310-057, 21-310-058, 24-080-002, 24-080-004, 24-080-011, 24-080-012, 24-090-009, 24-090-010, 24-090-011, 24-090-012, 24-090-013, 24-090-015, 24-090-016, 24-100-003, 24-100-009, 24-100-011, 24-150-004, 24-150-005, 24-160-002, 24-160-004, 24-160-005, 24-200-002, 24-200-004, 24-200-005, 24-210-003, 24-210-004, 24-210-008, 24-220-003, 24-220-007, 24-220-008, 24-220-009, 24-230-002, 24-230-016, 24-250-011, 24-250-017, 24-250-019, 29-040-004, 29-040-005, 29-040-006, 29-040-008, 29-040-010, 29-040-011, 29-040-014, 29-040-015, 29-040-018, 29-040-032, 29-040-040, 29-040-041, 29-040-042, 29-050-002, 29-050-025, 29-050-046, 29-050-056, 29-260-017, 24-100-010, 21-240-009, 21-240-027 |  |  |  |
| Street Address                    | Sutter Energy Center<br>5029 S Township Rd<br>Yuba City, CA 95993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Directions                        | From the USACE Sacramento District office, take CA-99 northbound for approximately 32 miles. Take Obanion Road west to S Township Road. Turn north on S Township Road and travel 2 miles to the SEC. Access to the site is controlled. Please contact SEC for access.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |

HUC = Hydrologic Unit Code USACE = U.S. Army Corps of Engineers USGS = U.S. Geological Survey

# 1.2 Project Overview

The SEC is a natural gas-fired power plant that began operation in 2001. The Project will construct new infrastructure at the SEC to capture  $CO_2$  emissions from the existing power plant. The new carbon capture facility will capture  $CO_2$  with an amine-based solvent and compress the  $CO_2$  to a critical fluid. The fluid will be transported via a new pipeline to the geological storage complex, which is located approximately 10 miles southwest of the SEC. The storage complex area of interest (AOI) is approximately 6 miles by 7 miles (42 square miles). Up to 11 well sites—including one test well, three wells to inject the  $CO_2$  for permanent sequestration in a geological storage location, and seven monitoring wells—will be developed in the AOI.

# 2. Environmental Setting

#### 2.1 Regional Setting

The study area is within the Great Valley ecological section of California (262A) containing alluvial plains associated with the Sacramento River Valley (Miles and Goudey 1997). The study area spans the River Alluvium (262Af), and Butte Sink/ Sutter Basin (262Ac) subsections of the Great Valley section. Both subsections are characterized by recent alluvium on gentle slopes on the river floodplain and basin floor. Fluvial erosion and deposition are the main geomorphic drivers in these subsections, but these processes have been disrupted by the construction of artificial levees and irrigation diversion for agriculture.

### 2.2 Study Area Setting

The following sections describe the topography, climate, hydrology, soils, and habitat types associated with the study area.

### 2.2.1 Topography

The study area as a whole is mostly flat with a gentle, natural gradient sloping downward from northeast to southwest. Elevations in the study area range from approximately 56.5 feet<sup>1</sup> at the top of levees along the Sutter Bypass in the central portion of the study area to approximately 16 feet at the bottom of ditches in the southern portion of the study area.

#### 2.2.2 Climate

Climate within the study area is characterized by moderately cool winters and hot dry summers with average high temperatures of up to 95 degrees Fahrenheit (°F) in July, to as low as 37°F in December. Average annual temperatures range from a minimum of 47.6°F to 75°F (WRCC 2023). Annual precipitation within this area of the Sacramento Valley includes an average of 16.22 inches, peaking in January.

# 2.2.3 Hydrology

The study area is located within the Gilsizer Slough-Snake River (HUC 180201590400) and McGriff Lakes-Sutter Basin (HUC 180201041102) sub-basins within the larger Sutter Basin watershed, bounded on the east by the Sutter Bypass/East Side Canal, on the west by the Sacramento River, and on the north by the Tisdale Weir (USGS 2024a). Regionally, major surface water features include the Sacramento River and the Sutter Bypass. Aquatic features within the Sutter Basin were previously associated with large floodplains prior to construction of the Sutter

<sup>&</sup>lt;sup>1</sup> Elevations in this report are referenced to North American Vertical Datum 1988 (NAVD 88).

Bypass and Tisdale Weir for the Lower Sacramento Valley Flood-Control System in the early 1900s (James and Singer 2008, USGS 2024). Humanmade flood control levees and excavated canals were constructed to aid in drainage on flood prone parcels, and control seasonal flooding from the Sacramento River (James and Singer 2008). Excavated irrigation ditches were created for intensive water-use agricultural practices such as rice field and orchard irrigation.

Named surface water features in the study area include the Sutter Bypass and the Snake River, which is just east of the bypass. The study area also includes an intricate network of irrigation canals and ditches that border agricultural parcels. The hydrology of aquatic resources in the study area is primarily influenced by wet season precipitation and runoff and irrigation. Flows in the Sutter Bypass are highly variably interannually. In wet years, the bypass may be completely flooded during the winter and early spring; in normal and dry years, the bypass does not flood extensively. Irrigation flows in canals and flood irrigated fields is less variable.

Field work for the aquatic resource delineation was conducted from September 19 through 21, 2023, January 5, 2024, and April 12, 2024. The September 2023 surveys dates focused on the pipeline alignment and well pad portions of the study area; the January and April 2024 surveys focused on the SEC. USACE's Antecedent Precipitation Tool (2024) was used to define precipitation conditions over the time period preceding the survey. Precipitation conditions in the months preceding the field surveys are summarized in Table 2. The complete results of the Antecedent Precipitation Tool queries are provided in Appendix A. The wetness condition in the months preceding the September 2023 surveys was "normal" or "wetter than normal". The wetness condition in the months preceding the January 2024 survey was "drier than normal" (Table 2). The wetness condition in the months preceding the April 2024 survey was "normal" (Table 2).

**Table 2. Antecedent Precipitation Conditions** 

| Survey Date        | Reference Location     | Antecedent Precipitation Condition |  |
|--------------------|------------------------|------------------------------------|--|
| September 19, 2023 | 39.047035, -121.699742 | Wetter than normal                 |  |
| September 20, 2023 | 39.022763, -121.739217 | Normal                             |  |
| September 21, 2023 | 38.901747, -121.745767 | Normal                             |  |
| January 05, 2024   | 39.052517, -121.694901 | Drier than normal                  |  |
| April 12, 2024     | 39.051280, -121.693056 | Normal                             |  |

Source: USACE 2024

#### 2.2.4 **Soils**

Soils in the study area have been mapped by the Natural Resources Conservation Service (NRCS) and are described in the Soil Survey of Sutter County, California (SCS 1988, NRCS 2024a). Soil series mapped within the study area are summarized in Table 3 and shown on Figure 2.

Table 3. Soil Series Mapped Within the Study Area

| Type/<br>Series               | Texture            | Landscape Position and Parent<br>Material                                                                                                                                                                                                                             | Drainage and Permeability                                                                                                                                                                     | NRCS<br>Hydric<br>Rating |
|-------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Byington                      | Silt loam          | On flood plains in areas between natural river levees and basins. Formed in alluvium from mixed sources.                                                                                                                                                              | Poorly drained; very slow runoff; moderate permeability.                                                                                                                                      | Yes                      |
| Capay                         | Silty clay         | On flood basins, alluvial fans, interfan basins.                                                                                                                                                                                                                      | Moderately well and somewhat poorly drained; negligible to high runoff, slow to very slow permeability.                                                                                       | Yes                      |
| Clear<br>Lake                 | Clay               | In flood basins, floodplains, and in swales of drainageways.                                                                                                                                                                                                          | Poorly drained; negligible to high runoff (if assumed concave runoff is always negligible); slow to very slow permeability,                                                                   | Yes                      |
| Columbia                      | Fine sandy<br>loam | On floodplains with bar and channel topography in some natural areas or are on natural levees. Formed in alluvium from mixed sources.                                                                                                                                 | Moderately well drained;<br>negligible to medium runoff;<br>moderately rapid permeability                                                                                                     | Yes                      |
| Conejo-<br>Tisdale<br>complex | Clay loam          | Conejo: On alluvial fans and stream terraces at elevations of 30 to 2,000 feet, (9 to 610 meters). Slopes range from 0 to 9%. The soil formed in alluvium from basic igneous and sedimentary rocks.  Tisdale: refer to series description that follows in this table. | Conejo: Well drained; slow to medium runoff, moderately slow saturated hydraulic conductivity in the A and upper Bw horizons and moderately slow to moderately rapid in the lower Bw horizon. | Yes                      |
|                               |                    |                                                                                                                                                                                                                                                                       | Tisdale: refer to series description that follows in this table.                                                                                                                              |                          |
| Gridley                       | Clay loam          | On low terraces and basin rims. Slopes are 0 to 1%. The soils formed in alluvium from mixed sources deposited over unrelated siltstone.                                                                                                                               | Moderately well drained; slow runoff; slow permeability.                                                                                                                                      | Yes                      |
| Oswald                        | Clay               | Basins and on basin rims with slopes of less than 2%. They formed in alluvium from mixed sources deposited over unrelated siltstone                                                                                                                                   | Poorly drained; very slow runoff; slow permeability.                                                                                                                                          | Yes                      |

Table 3. Soil Series Mapped Within the Study Area

| Type/<br>Series | Texture                         | Landscape Position and Parent<br>Material                                                                                          | Drainage and Permeability                                                     | NRCS<br>Hydric<br>Rating |
|-----------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|
| Shanghai        | Fine sandy<br>loam/Silt<br>loam | On flood plains with slopes of 0 to 2%. Formed in alluvium from mixed sources.                                                     | Somewhat poorly drained;<br>runoff is very slow;<br>permeability is moderate. | Yes                      |
| Subaco          | Clay                            | On basin rims and in basins with slopes of 0 to 2%. They formed in alluvium from mixed sources deposited over unrelated siltstone. | Somewhat poorly drained; very slow runoff; slow permeability.                 | Yes                      |
| Tisdale         | Clay loam                       | On low terraces. Slopes are 0 to 2%. The soils formed in alluvium from mixed sources deposited over unrelated siltstone.           | Well drained; very slow runoff;<br>moderately slow permeability.              | Yes                      |

Sources: NRCS 2024a, 2024b

#### 2.2.5 National Wetlands Inventory

Figure 3 shows aquatic resources in the study area identified by the National Wetlands Inventory (NWI) (USFWS 2024) and the National Hydrography Dataset (USGS 2024a). The NWI identifies channels in the Sutter Bypass and the Snake River as Riverine, Lower Perennial, Unconsolidated Bottom, Permanently Flooded, Excavated (R2UBHx). There are wetlands in the Sutter Bypass mapped as Palustrine, Forested, Broad-Leaved Deciduous, Temporarily Flooded (PFO1A). Irrigation canals ditches throughout the study area are identified as R2UBHx and Riverine, Intermittent, Streambed, Seasonally Flooded, Excavated (R4SBCx).

# 2.2.6 Land Cover/Vegetation Communities

Land cover in the study area is predominantly rice fields with some orchards and row crops. An extensive network of irrigation canals and ditches supports the agricultural production. Other land cover types in the study area include transportation, flood control facilities, and energy production. Habitat conditions and vegetation communities associated with these land cover types are described in the following sections.

#### 2.2.6.1 Aquatic and Riparian Communities

#### Riverine

Riverine habitat is present in the Sutter Bypass, Snake River, and irrigation canals and ditches. The Sutter Bypass and Snake River are low-gradient, perennial channels with soft bottom

sediments. The irrigation canals are wide, shallow constructed waterways with a relatively uniform trapezoidal cross-section. The canals have earthen bed and banks. Vegetation along the canals is generally sparse, but some canals support vegetation in the bed and on the banks. Irrigation ditches are constructed features that are smaller than the canals and tend to have steeper banks. Some of the ditches are sparsely vegetated whereas others are densely vegetated with hydrophytes such as cattail (*Typha* spp.) and bulrushes (*Schoenoplectus* ssp.).

#### Himalayan Blackberry Scrub

Himalayan blackberry (*Rubus armeniacus*) scrub is present along the banks of many of the irrigation ditches in the study area. These areas are characterized by a dense monoculture of Himalayan blackberry; trees and forbs may be present at low cover.

#### Goodding's Willow Woodland and Forest (Riparian)

Within the study area, this vegetation community was observed along the eastern side of the Sutter Bypass. Goodding's willow or other willow species are dominant or co-dominant in the tree or shrub canopy with other riparian tree species including alder (*Alnus* sp.), and box elder (*Acer negundo*). Commonly associated shrubs include mulefat (*Baccharis salicifolia*), dogwood (*Cornus sericea*), and California rose (*Rosa californica*).

#### Fremont Cottonwood Forest and Woodland (Riparian)

This vegetation community was observed along the western side of the Sutter Bypass. Fremont cottonwood (*Populus fremontii*) is dominant or co-dominant in the tree canopy with other riparian tree species such as box elder, alder, Oregon ash (*Fraxinus latifolia*), black walnut (*Juglans hindsii*), and willow (Salix spp.). The understory and mid-story is dominated by California grape (*Vitis californica*).

#### 2.2.6.2 Terrestrial Communities

#### **Agriculture**

As mentioned previously, most of agricultural land in the study area is rice production. Some fields, particularly in the southwestern portion of the study area, are planted with tomatoes or corn. Crop production in agricultural fields may vary from year to year.

#### Non-native Grasslands

Within the study area, non-native grasslands occur at the SEC, along disturbed road shoulders, and other areas associated with high levels of human activity. Non-native grasses such as wild oat (*Avena* sp.), Bermuda grass (*Cynodon dactylon*), rattlesnake grass (*Briza maxima*), bromes (*Bromus spp.*), and Italian wildrye (*Festuca perennis*) are common in the herbaceous layer. Trees and shrubs may be present at low cover.

### 3. Methods

A routine aquatic resources delineation was conducted in accordance with the *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory 1987), the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0)* (USACE 2008), and *A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States* (Lichvar and McColley 2008).

# 3.1 Desktop Review

Resources relevant to site conditions and aquatic resources were collected and reviewed as part of the delineation. The following materials were included in this data review:

- NRCS soil maps and descriptions (NRCS 2024a)
- National Hydrography Dataset maps (USGS 2024a)
- NWI maps (USFWS 2024)
- Topographic data (OCM Partners 2024)
- USGS topographic maps from multiple years (USGS 2024b)

#### 3.2 Field Data Collection

The field data collection was conducted from September 19 through 21, 2023, January 5, 2024, and April 12, 2024. The September 2023 surveys dates focused on the pipeline alignment and well pad portions of the study area; the January and April 2024 surveys focused on the SEC parcel. Kevin Fisher, a Principal Wetland Scientist with Jacobs, led all surveys. Scott Lindemann and Samuel Wentworth (Jacobs) participated in the September 2023 surveys.

Riverine aquatic resources in the study area were delineated based on guidance from A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States (Lichvar and McColley 2008).

The study area was surveyed for locations where hydrophytic vegetation was dominant; evidence of inundation or saturation; or the landform indicated the potential for aquatic resources to occur. Wetland sample points were established in representative locations. At sample points, vegetation species within a 1-meter radius of the sample point were identified by stratum. Wetland indicator statuses for plants were taken from The National Wetland Plant List, version 3.5 (USACE 2020). The soil profile was examined to a depth of approximately 12 inches. Soils were characterized by evaluating texture and color within each distinct layer of the profile. Soil color was described using a Munsell Soil Color Chart (Munsell 2009). The vicinity of each sampling location was examined for evidence of wetland hydrology.

The locations of sample points and representative boundaries of aquatic resources were mapped in ArcGIS Field Maps using an Apple iOS device paired with a Trimble DA2 receiver using the Trimble Catalyst global navigation satellite system positioning service that provided 30-centimeter horizontal accuracy or better.

240226084420 e83455aa 3-1

# 3.3 Desktop Analysis

Field data were imported into ESRI ArcGIS software for developing aquatic resource maps. High-resolution aerial photographs and topographic data were used to refine the boundaries of aquatic resources in conjunction with the field-collected data.

### 3.4 Limitations to Survey Accuracy

The hydrology of the ditches in the study area is dependent on several factors including irrigation flows, field drainage, groundwater elevations, and precipitation. This makes it challenging to assign a hydrologic regime (e.g., perennial, intermittent) to each feature. The delineation of ditches in the pipeline alignment portion of the study area was conducted during the dry season. None of the ditches appeared to have an ephemeral flow regime, thus all features were assigned a classification of intermittent or perennial based on the dry season observations and analysis of aerial imagery (Google Earth 2024).

# 4. Results

The results of the aquatic resource delineation are presented in this chapter. Figure 4, Maps 1 through 34 shows the aquatic resource delineated in the study area, and Table 4 lists the aquatic resource. Delineation data forms are provided in Appendix B. Representative photographs are provided in Appendix C.

Table 4. Aquatic Resources in the Study Area

| Aquatic<br>Resource ID | Cowardin<br>Code <sup>[a]</sup> | Latitude    | Longitude    | Area<br>(Acres) | Length<br>(Linear Feet) |  |
|------------------------|---------------------------------|-------------|--------------|-----------------|-------------------------|--|
| Other Waters           |                                 |             |              |                 |                         |  |
| Canal                  |                                 |             |              |                 |                         |  |
| C-1                    | R2UB                            | 39.0221837  | -121.7422752 | 0.36            | 611                     |  |
| Ditches                |                                 |             |              |                 |                         |  |
| D-1                    | R4SB                            | 39.05287098 | -121.6948039 | 0.10            | 732                     |  |
| D-2                    | R2UB                            | 39.05177909 | -121.6974186 | 1.99            | 10,108                  |  |
| D-3                    | R4SB                            | 39.05243772 | -121.6985373 | 0.48            | 3,190                   |  |
| D-4                    | R4SB                            | 39.0471364  | -121.6991122 | 0.02            | 168                     |  |
| D-5                    | R4SB                            | 39.04671011 | -121.6991033 | 0.05            | 350                     |  |
| D-6                    | R2UB                            | 39.04671565 | -121.6992125 | 0.09            | 385                     |  |
| D-7                    | R4SB                            | 39.04704723 | -121.7038784 | 1.11            | 5,092                   |  |
| D-8                    | R4SB                            | 39.04669426 | -121.7084185 | 0.07            | 393                     |  |
| D-9                    | R4SB                            | 39.04714361 | -121.7085445 | 0.03            | 151                     |  |
| D-10                   | R4SB                            | 39.04669469 | -121.7085565 | 0.08            | 396                     |  |
| D-11                   | R4SB                            | 39.04719185 | -121.7154815 | 0.51            | 2,741                   |  |
| D-12                   | R4SB                            | 39.04366809 | -121.7177152 | 0.91            | 5,049                   |  |
| D-13                   | R2UB                            | 39.04650344 | -121.7178871 | 0.07            | 1,069                   |  |
| D-14                   | R2UB                            | 39.04298222 | -121.7178971 | 0.20            | 3,879                   |  |
| D-15                   | R4SB                            | 39.03994996 | -121.7174017 | 0.10            | 571                     |  |
| D-16                   | R4SB                            | 39.03392664 | -121.7177378 | 2.14            | 7,702                   |  |
| D-17                   | R2UB                            | 39.02619474 | -121.7150997 | 2.12            | 7,864                   |  |
| D-18                   | R2UB                            | 39.02509103 | -121.6941069 | 0.12            | 489                     |  |
| D-19                   | R2UB                            | 39.02508614 | -121.701211  | 2.31            | 7,800                   |  |
| D-20                   | R4SB                            | 39.02538687 | -121.6991202 | 0.06            | 286                     |  |
| D-21                   | R4SB                            | 39.02493797 | -121.6992119 | 0.01            | 82                      |  |

Table 4. Aquatic Resources in the Study Area

| Aquatic<br>Resource ID | Cowardin<br>Code <sup>[a]</sup> | Latitude    | Longitude    | Area<br>(Acres) | Length<br>(Linear Feet) |
|------------------------|---------------------------------|-------------|--------------|-----------------|-------------------------|
| D-22                   | R4SB                            | 39.02529417 | -121.7040173 | 1.10            | 5,314                   |
| D-23                   | R4SB                            | 39.02547453 | -121.7085759 | 0.02            | 133                     |
| D-24                   | R2UB                            | 39.02510321 | -121.7101613 | 0.54            | 2,046                   |
| D-25                   | R4SB                            | 39.02498553 | -121.7105954 | 0.26            | 2,422                   |
| D-26                   | R4SB                            | 39.0251445  | -121.7126906 | 0.18            | 800                     |
| D-27                   | R4SB                            | 39.02501631 | -121.7130388 | 0.01            | 89                      |
| D-28                   | R4SB                            | 39.025221   | -121.7133071 | 0.01            | 90                      |
| D-29                   | R2UB                            | 39.02527008 | -121.7167849 | 1.29            | 3,808                   |
| D-30                   | R4SB                            | 39.02568982 | -121.7263253 | 0.13            | 302                     |
| D-31                   | R4SB                            | 39.02518477 | -121.7261487 | 0.02            | 109                     |
| D-32                   | R4SB                            | 39.0228672  | -121.7391697 | 0.05            | 489                     |
| D-33                   | R2UB                            | 39.02130664 | -121.7458155 | 0.19            | 1,185                   |
| D-34                   | R4SB                            | 39.02108761 | -121.7468489 | 0.02            | 146                     |
| D-35                   | R2UB                            | 39.0161405  | -121.7515044 | 2.09            | 7964                    |
| D-36                   | R4SB                            | 39.01110238 | -121.7498136 | 0.04            | 377                     |
| D-37                   | R2UB                            | 39.0083145  | -121.7493329 | 1.96            | 8,399                   |
| D-38                   | R2UB                            | 39.00705153 | -121.7485252 | 1.96            | 6,092                   |
| D-39                   | R4SB                            | 39.00444732 | -121.7479234 | 0.06            | 507                     |
| D-40                   | R4SB                            | 39.00400331 | -121.7473394 | 0.01            | 74                      |
| D-41                   | R4SB                            | 39.00400028 | -121.7475577 | 0.00            | 62                      |
| D-42                   | R4SB                            | 39.00400862 | -121.7477967 | 0.01            | 111                     |
| D-43                   | R2UB                            | 39.00409392 | -121.7513152 | 1.11            | 3,833                   |
| D-44                   | R2UB                            | 39.00411868 | -121.7573703 | 1.13            | 3,179                   |
| D-45                   | R2UB                            | 39.00400967 | -121.7642751 | 1.32            | 5,109                   |
| D-46                   | R4SB                            | 39.004312   | -121.7685893 | 0.09            | 462                     |
| D-47                   | R4SB                            | 39.0042586  | -121.7687607 | 0.15            | 559                     |
| D-48                   | R4SB                            | 39.00404163 | -121.7709145 | 0.62            | 2,874                   |
| D-49                   | R4SB                            | 39.00450294 | -121.7733429 | 0.08            | 306                     |
| D-50                   | R4SB                            | 39.00406896 | -121.7738002 | 0.14            | 638                     |
| D-51                   | R4SB                            | 39.00438427 | -121.7749546 | 0.19            | 583                     |

Table 4. Aquatic Resources in the Study Area

| Aquatic<br>Resource ID | Cowardin<br>Code <sup>[a]</sup> | Latitude    | Longitude    | Area<br>(Acres) | Length<br>(Linear Feet) |
|------------------------|---------------------------------|-------------|--------------|-----------------|-------------------------|
| D-52                   | R2UB                            | 38.99980489 | -121.7732445 | 3.47            | 6,128                   |
| D-53                   | R4SB                            | 38.99657391 | -121.7712043 | 0.13            | 580                     |
| D-54                   | R4SB                            | 38.99506686 | -121.7782553 | 0.77            | 2,588                   |
| D-55                   | R4SB                            | 38.993398   | -121.7777577 | 0.08            | 393                     |
| D-56                   | R4SB                            | 38.9932595  | -121.7776003 | 0.06            | 298                     |
| D-57                   | R4SB                            | 38.9932665  | -121.7780696 | 0.03            | 150                     |
| D-58                   | R4SB                            | 38.99327287 | -121.7783415 | 0.01            | 82                      |
| D-59                   | R4SB                            | 38.98620426 | -121.7783266 | 1.06            | 5,396                   |
| D-60                   | R4SB                            | 38.98252847 | -121.7781287 | 0.05            | 244                     |
| D-61                   | R4SB                            | 38.98252663 | -121.7786701 | 0.14            | 652                     |
| D-62                   | R4SB                            | 38.98240492 | -121.7788816 | 0.12            | 504                     |
| D-63                   | R4SB                            | 38.98208191 | -121.7783146 | 0.07            | 335                     |
| D-64                   | R4SB                            | 38.9746989  | -121.7784419 | 1.82            | 9,466                   |
| D-65                   | R4SB                            | 38.96677311 | -121.7782958 | 0.94            | 3,555                   |
| D-66                   | R4SB                            | 38.96418702 | -121.7780945 | 0.01            | 66                      |
| D-67                   | R4SB                            | 38.96418751 | -121.7806225 | 0.85            | 2,604                   |
| D-68                   | R4SB                            | 38.96465011 | -121.7834554 | 0.17            | 691                     |
| D-69                   | R4SB                            | 38.96431239 | -121.782991  | 0.07            | 276                     |
| D-70                   | R4SB                            | 38.96432216 | -121.7834633 | 0.28            | 1,084                   |
| D-71                   | R4SB                            | 38.96388636 | -121.7830134 | 0.02            | 123                     |
| D-72                   | R4SB                            | 38.96088585 | -121.7828168 | 0.56            | 4,025                   |
| D-73                   | R4SB                            | 38.95821358 | -121.7829354 | 1.92            | 7,629                   |
| D-74                   | R2UB                            | 38.95310407 | -121.7826634 | 0.01            | 78                      |
| D-75                   | R2UB                            | 38.95310425 | -121.7832255 | 0.12            | 511                     |
| D-76                   | R2UB                            | 38.95287325 | -121.7827318 | 0.01            | 96                      |
| D-77                   | R2UB                            | 38.95287624 | -121.7832868 | 0.13            | 433                     |
| D-78                   | R4SB                            | 38.94965676 | -121.7827514 | 0.20            | 4,934                   |
| D-79                   | R2UB                            | 38.94588378 | -121.782894  | 2.53            | 10,109                  |
| D-80                   | R4SB                            | 38.93868471 | -121.783389  | 0.07            | 364                     |
| D-81                   | R4SB                            | 38.93854465 | -121.783434  | 0.05            | 315                     |

Table 4. Aquatic Resources in the Study Area

| Aquatic<br>Resource ID | Cowardin<br>Code <sup>[a]</sup> | Latitude    | Longitude    | Area<br>(Acres) | Length<br>(Linear Feet) |
|------------------------|---------------------------------|-------------|--------------|-----------------|-------------------------|
| D-82                   | R2UB                            | 38.93128147 | -121.782983  | 3.69            | 10,785                  |
| D-83                   | R4SB                            | 38.93130658 | -121.7834439 | 0.06            | 337                     |
| D-84                   | R2UB                            | 38.92411766 | -121.7834965 | 0.11            | 379                     |
| D-85                   | R2UB                            | 38.92409257 | -121.7828134 | 0.01            | 89                      |
| D-86                   | R4SB                            | 38.91974327 | -121.7829516 | 1.20            | 6,713                   |
| D-87                   | R4SB                            | 38.91525877 | -121.7829283 | 0.02            | 164                     |
| D-88                   | R4SB                            | 38.91465501 | -121.7833173 | 0.24            | 1,191                   |
| D-89                   | R4SB                            | 38.91478084 | -121.7826193 | 0.07            | 439                     |
| D-90                   | R4SB                            | 38.9122707  | -121.7739405 | 0.96            | 3,677                   |
| D-91                   | R4SB                            | 38.90968468 | -121.7737149 | 0.03            | 138                     |
| D-92                   | R4SB                            | 38.90971229 | -121.7739141 | 0.02            | 109                     |
| D-93                   | R4SB                            | 38.90970406 | -121.7743454 | 0.07            | 324                     |
| D-94                   | R4SB                            | 38.9071573  | -121.7739136 | 0.75            | 3,216                   |
| D-95                   | R4SB                            | 38.94649358 | -121.7458724 | 0.29            | 933                     |
| D-96                   | R4SB                            | 38.9457488  | -121.7454614 | 0.05            | 725                     |
| D-97                   | R2UB                            | 38.93844381 | -121.753963  | 0.32            | 1,045                   |
| D-98                   | R4SB                            | 38.93825927 | -121.7539612 | 0.24            | 1,090                   |
| D-99                   | R4SB                            | 38.93251015 | -121.7736679 | 0.31            | 1,051                   |
| D-100                  | R4SB                            | 38.93251484 | -121.773819  | 0.13            | 1,017                   |
| D-101                  | R4SB                            | 38.91658648 | -121.7498548 | 0.12            | 945                     |
| D-102                  | R4SB                            | 38.91670518 | -121.76805   | 0.25            | 1,032                   |
| D-103                  | R4SB                            | 38.90206507 | -121.7453541 | 0.10            | 657                     |
| D-104                  | R4SB                            | 38.90202948 | -121.7461325 | 0.01            | 95                      |
| D-105                  | R4SB                            | 38.90190753 | -121.7452764 | 0.16            | 779                     |
| D-106                  | R4SB                            | 38.90123524 | -121.7458902 | 0.16            | 789                     |
| D-107                  | R4SB                            | 38.90136164 | -121.7461585 | 0.20            | 850                     |
| D-108                  | R4SB                            | 38.90230727 | -121.7629196 | 0.17            | 999                     |
| D-109                  | R4SB                            | 38.90217122 | -121.7629721 | 0.29            | 1,043                   |
| D-110                  | R2UB                            | 38.9047865  | -121.7830052 | 0.24            | 1,032                   |
| D-111                  | R4SB                            | 38.90477016 | -121.7831608 | 0.18            | 1,021                   |

Table 4. Aquatic Resources in the Study Area

| Aquatic<br>Resource ID | Cowardin<br>Code <sup>[a]</sup> | Latitude    | Longitude    | Area<br>(Acres) | Length<br>(Linear Feet) |  |
|------------------------|---------------------------------|-------------|--------------|-----------------|-------------------------|--|
| Total Ditches          |                                 | 53.55       | 222,932      |                 |                         |  |
| Ponds                  |                                 |             |              |                 |                         |  |
| P-1                    | PUB                             | 39.05178655 | -121.6935107 | 0.31            | NA                      |  |
| P-2                    | PUB                             | 39.05160068 | -121.6934918 | 0.29            | NA                      |  |
| P-3                    | PUB                             | 39.05143407 | -121.6935043 | 0.29            | NA                      |  |
| P-4                    | PUB                             | 39.05124321 | -121.6935033 | 0.33            | NA                      |  |
| P-5                    | PUB                             | 39.05105461 | -121.693515  | 0.28            | NA                      |  |
| P-6                    | PUB                             | 39.0508824  | -121.6934938 | 0.25            | NA                      |  |
| P-7                    | PUB                             | 39.05177216 | -121.6944321 | 0.13            | NA                      |  |
| P-8                    | PUB                             | 39.0515998  | -121.6944283 | 0.14            | NA                      |  |
| P-9                    | PUB                             | 39.05142609 | -121.6944263 | 0.12            | NA                      |  |
| P-10                   | PUB                             | 39.05123208 | -121.6944273 | 0.11            | NA                      |  |
| P-11                   | PUB                             | 39.051064   | -121.6943892 | 0.11            | NA                      |  |
| P-12                   | PUB                             | 39.050879   | -121.6943619 | 0.12            | NA                      |  |
| Total Ponds            |                                 |             |              | 2.48            | NA                      |  |
| Rivers/Streams         |                                 |             |              |                 |                         |  |
| R-1                    | R2UB                            | 39.02562063 | -121.7231693 | 1.70            | 3,589                   |  |
| R-2                    | R2UB                            | 39.02532278 | -121.7274095 | 0.80            | 797                     |  |
| R-3                    | R2UB                            | 39.02242525 | -121.7411433 | 0.50            | 669                     |  |
| R-4                    | R2UB                            | 38.91509229 | -121.7833417 | 0.24            | 662                     |  |
| Total Rivers/Streams   |                                 |             |              | 3.25            | 5,717                   |  |

<sup>[</sup>a] Cowardin et al. 1979

#### 4.1 Other Waters

# 4.1.1 Canal (C)

One canal, feature C-1, was delineated just west of the Sutter Bypass (Figure 4, Map 22). This irrigation canal is a large, constructed feature with minimal vegetation on the bed and banks. A total of 0.36 acre of other waters were delineated in the canal (Table 4). The Cowardin classification assigned to these waters is Riverine, Lower Perennial, Unconsolidated Bottom (R2UB) (Cowardin et al. 1979).

#### 4.1.2 Ditches (D)

One hundred and eleven ditches, features D-1 through D-111, were delineated in the study area (Figure 4). These ditches are linear features that were constructed to convey irrigation water or provide drainage. Cover by hydrophytic vegetation in the ditches ranged from sparse to extremely dense. Soils along the banks of ditches were investigated for hydric indicators (e.g., sample points SP-1, SP-2), but none were found. The ditches were delineated as other waters based on indicators of an OHWM such as change in vegetation species cover and break in slope. A total of 53.55 acres of other waters were delineated in the ditches (Table 4). The Cowardin classifications assigned to these waters are R2UB and Riverine, Intermittent, Streambed (R4SB) (Cowardin et al. 1979).

#### 4.1.3 Ponds (P)

Twelve ponds, features P-1 through P-12, were delineated within the SEC parcel (Figure 4, Map 1). These ponds were constructed as part of a power plant process water treatment system that is no longer in use. Hydrophytic vegetation has established in some ponds and ranged from sparse to moderately dense. Soils in the ponds were investigated in representative locations for hydric indicators, but none were found (sample points SEC-4, SEC-6). The ponds were delineated as other waters based on indicators of an OHWM such as change in vegetation species composition and break in slope. A total of 2.48 acres of other waters were delineated in the ponds (Table 4). The Cowardin classification assigned to these waters is Palustrine, Unconsolidated Bottom (PUB) (Cowardin et al. 1979).

### 4.1.4 Rivers/Streams (R)

Four river or stream features were delineated in the study area. Feature R-1, just east of the Sutter Bypass, is identified as the Snake River on topographic maps (Figure 1). This section of the Snake River is highly modified and appears to convey irrigation flows and/or field drainage. An OHWM transect was established just south of the Obanion Road crossing (Figure 4, Map 8, OHWM-1). Indicators of OHWM included a break in bank slope and change in vegetation cover (Appendix B).

Features R-2 and R-3 are the east and west channels within the Sutter Bypass, respectively. An OHWM transect was established at the east channel were the pipeline alignment crosses the channel (Figure 4, Map 8, OHWM-2). Indicators of OHWM included a break in bank slope and mature trees rooted at the OHWM (Appendix B). The same indicators were used for delineating the OHWM at the west channel.

Feature R-4 is located in the southern portion of the study area near pipeline station 767+50 (Figure 4, Map 22). This feature has natural (sinuous) planform but has been highly modified for irrigation. It is not named on topographic maps. An OHWM transect was established where the pipeline alignment crosses the channel (Figure 4, Map 22, OHWM-3). Indicators of OHWM included change in vegetation cover and composition (Appendix B).

A total of 3.25 acres of other waters were delineated as river/stream features (Table 4). The Cowardin classification assigned to these waters is R2UB (Cowardin et al. 1979).

240226084420 e83455aa 4-6

## 4.2 Other Areas Investigated

Other areas investigated that were determined not to be aquatic resources included the following:

- Sample Point SP-3 was established in the Sutter Bypass in an area identified in the NWI as forested wetlands (Figures 3 and 4). This location was selected because it is representative of riparian habitat in the Sutter Bypass. The sample point had wetland hydrology and hydrophytic vegetation but lacked hydric soils. Indicators of wetland hydrology were due to high-flow events in the preceding wet season. No aquatic resources were delineated in this location.
- Sample Point SP-4 was established on the margins of a rice field in the southern portion of the study area. This sample point had wetland hydrology and hydrophytic vegetation but lacked hydric soils. Wetland hydrology was associated with seasonal flood irrigation. No aquatic resources were delineated in this location. This point is representative of the rice fields that cover much of the study area. These areas are flood irrigated and would revert to dryland in the absence of irrigation. There was no indication that wetlands would persist in these fields in the absence of irrigation. Thus, no irrigated or farmed wetlands were delineated in the rice fields.

240226084420\_e83455aa 4-7

#### 5. References

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. U.S. Fish and Wildlife Service Report No. FWS/OBS/-79/31. Washington, D.C.

Environmental Laboratory. 1987. *Corps of Engineers Wetland Delineation Manual*. Technical Report Y 87-1. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.

Google Earth. 2024. Aerial imagery form multiple years. Google Earth Pro version 7.3.6.

James, L. and Singer, M. 2008. "Development of the Lower Sacramento Valley Flood-Control System: Historical Perspective." *Natural Hazards Review*.

Lichvar, R.W. and S.M. McColley. 2008. A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States. ERDC/CRREL TR-08-12. Hanover, NH: U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory.

Miles, Scott and Charles Goudey, eds. 1998. *Ecological Subregions of California*. United States Department of Agriculture, Forest Service. Pacific Southwest Division. R5-EM-TP-005-Net. San Francisco.

Munsell Soil-Color Charts (Munsell). 2009. Munsell Soil Color Charts. Year 2009 Revised Edition. Grand Rapids, Michigan.

Natural Resources Conservation Service (NRCS). 2024a. Web Soil Survey 2.0 National Cooperative Soil Survey. Accessed February 14, 2024. <a href="http://websoilsurvey.nrcs.usda.gov/app/">http://websoilsurvey.nrcs.usda.gov/app/</a>.

Natural Resources Conservation Service (NRCS). 2024b. State Soil Data Access (SDA) Hydric Soils List. Accessed February 14, 2024. <a href="https://www.nrcs.usda.gov/publications/query-by-state.html">https://www.nrcs.usda.gov/publications/query-by-state.html</a>.

OCM Partners. 2024. 2018 - 2019 USGS QL2 Lidar: Northern California Wildfires from 2010-06-15 to 2010-08-15. NOAA National Centers for Environmental Information, <a href="https://www.fisheries.noaa.gov/inport/item/58957">https://www.fisheries.noaa.gov/inport/item/58957</a>.

Soil Conservation Service (SCS). 1988. Soil Survey of Sutter County, California. accessed February 12, 2024. https://archive.org/details/usda-general-soil-map-of-sutter-county-california

U.S. Army Corps of Engineers (USACE). 2008. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0)*. Vicksburg, MS: U.S. Army Engineer Research and Development Center ERDC/EL TR-08-28.

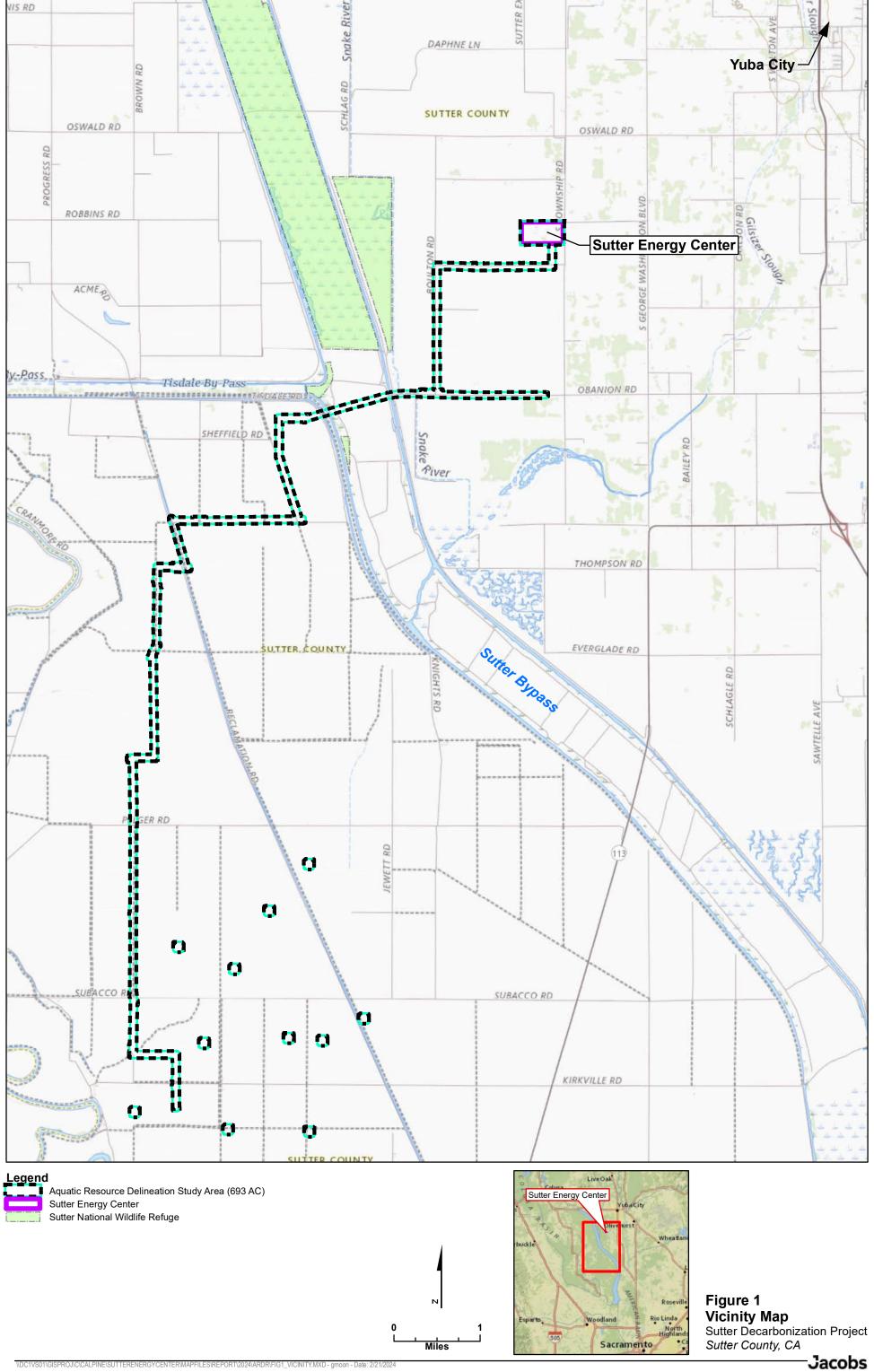
240226084420 e83455aa 5-1

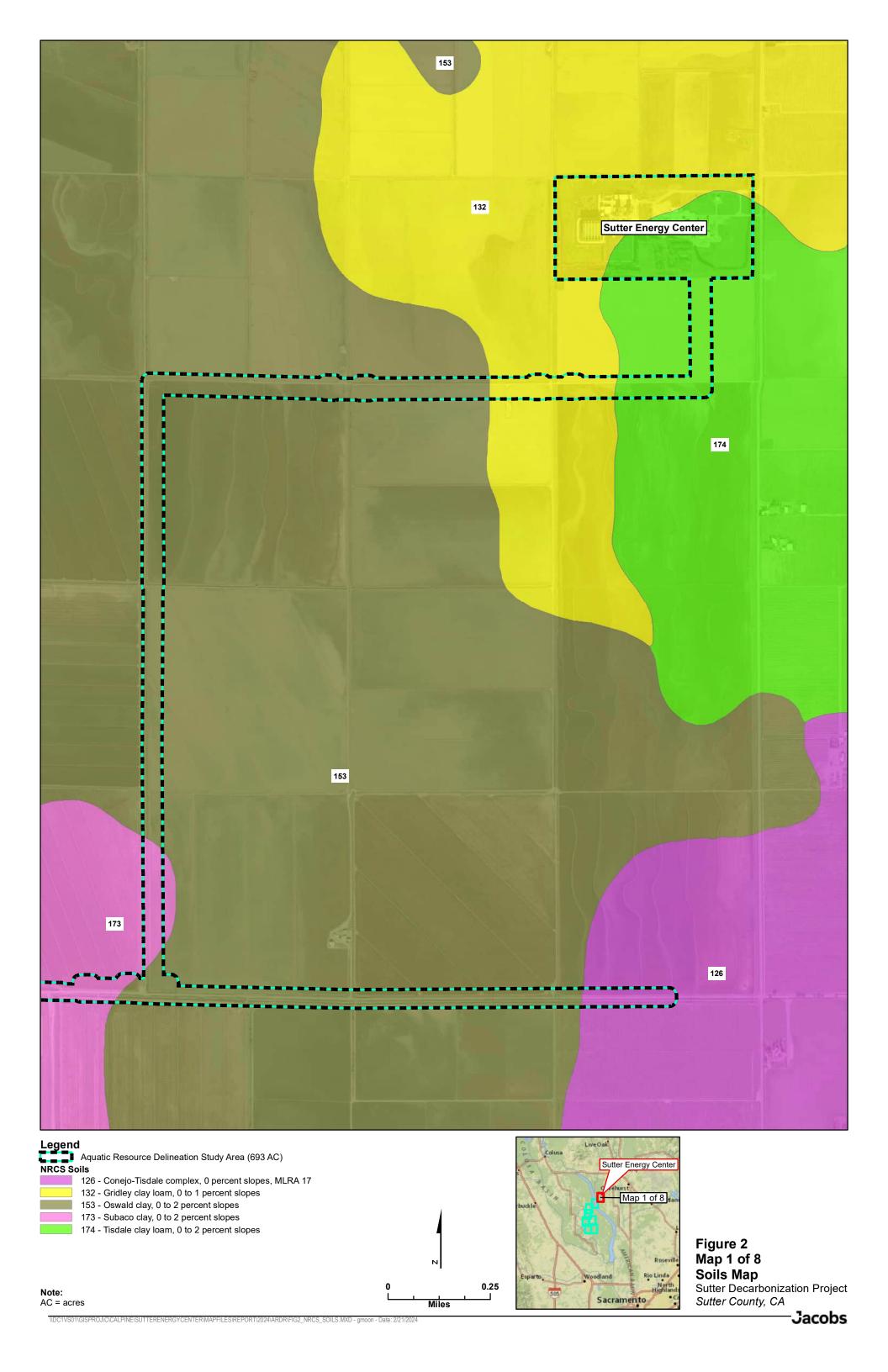
U.S. Army Corps of Engineers (USACE). 2020. *National Wetland Plant List, Version 3.5.* U.S. Army Corps of Engineers Engineer Research and Development Center Cold Regions Research and Engineering Laboratory, Hanover, NH. <a href="http://wetland-plants.usace.army.mil/">http://wetland-plants.usace.army.mil/</a>.

U.S. Army Corps of Engineers (USACE). 2024. The Antecedent Precipitation Tool. Version 2.0. <a href="https://github.com/erdc/Antecedent-Precipitation-Tool">https://github.com/erdc/Antecedent-Precipitation-Tool</a>.

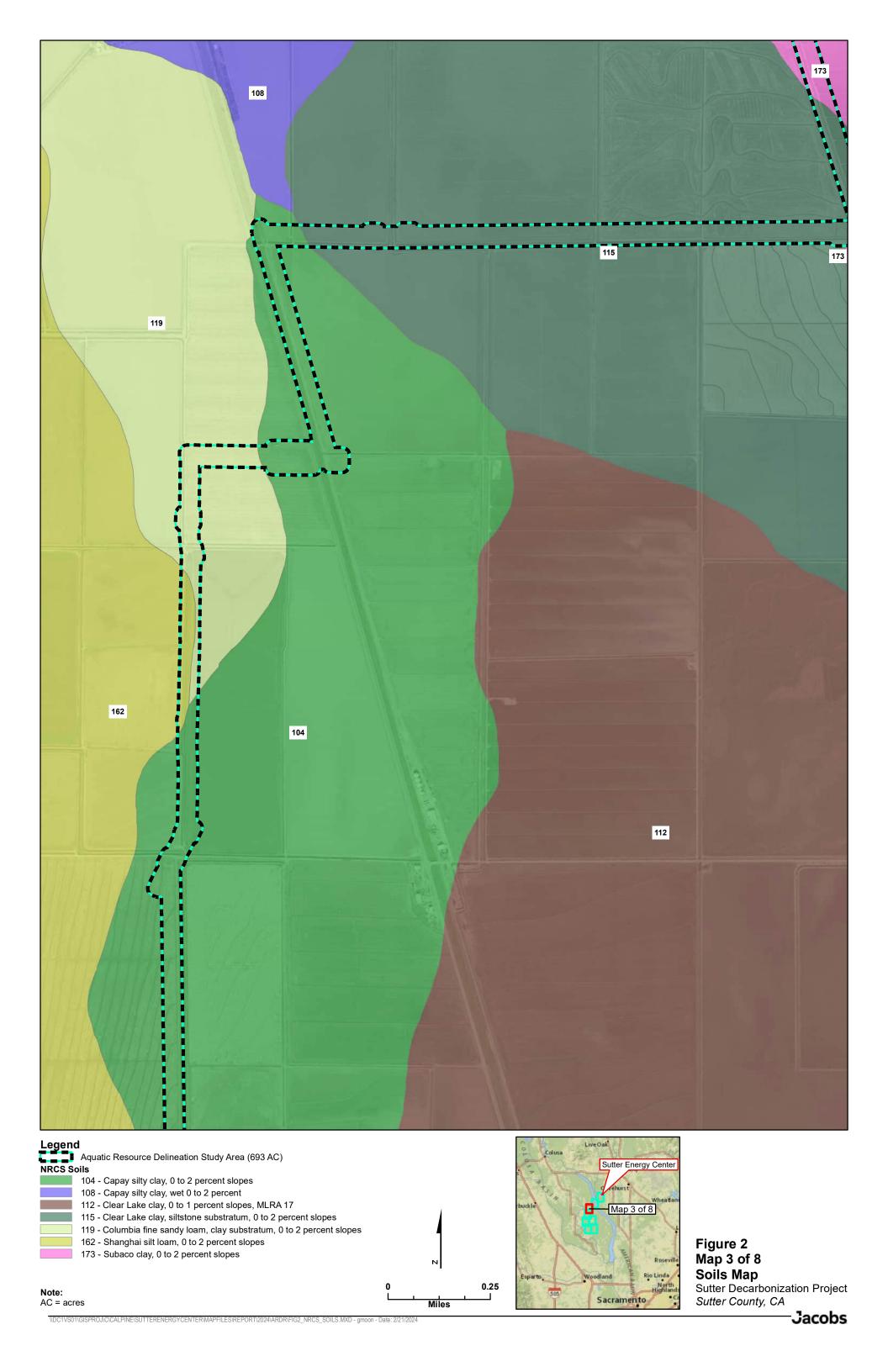
U.S. Fish and Wildlife Service (USFWS). 2024. National Wetlands Inventory Map. Accessed February 14, 2024. <a href="http://www.fws.gov/wetlands/Data/Mapper.html">http://www.fws.gov/wetlands/Data/Mapper.html</a>.

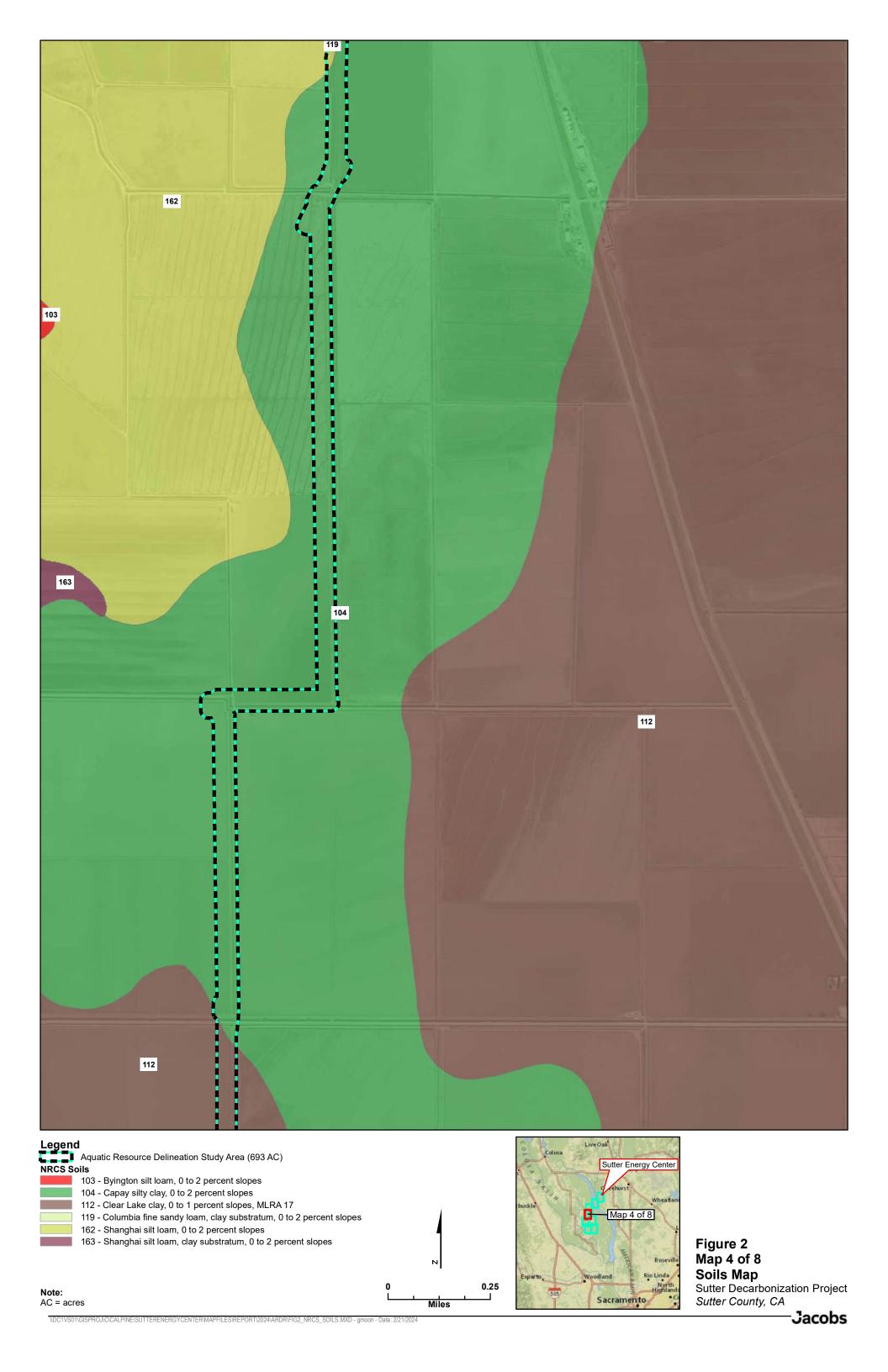
U.S. Geological Survey (USGS). 2024a. National Hydrography Dataset. Accessed February 14, 2024. https://www.usgs.gov/core-science-systems/ngp/national-hydrography.

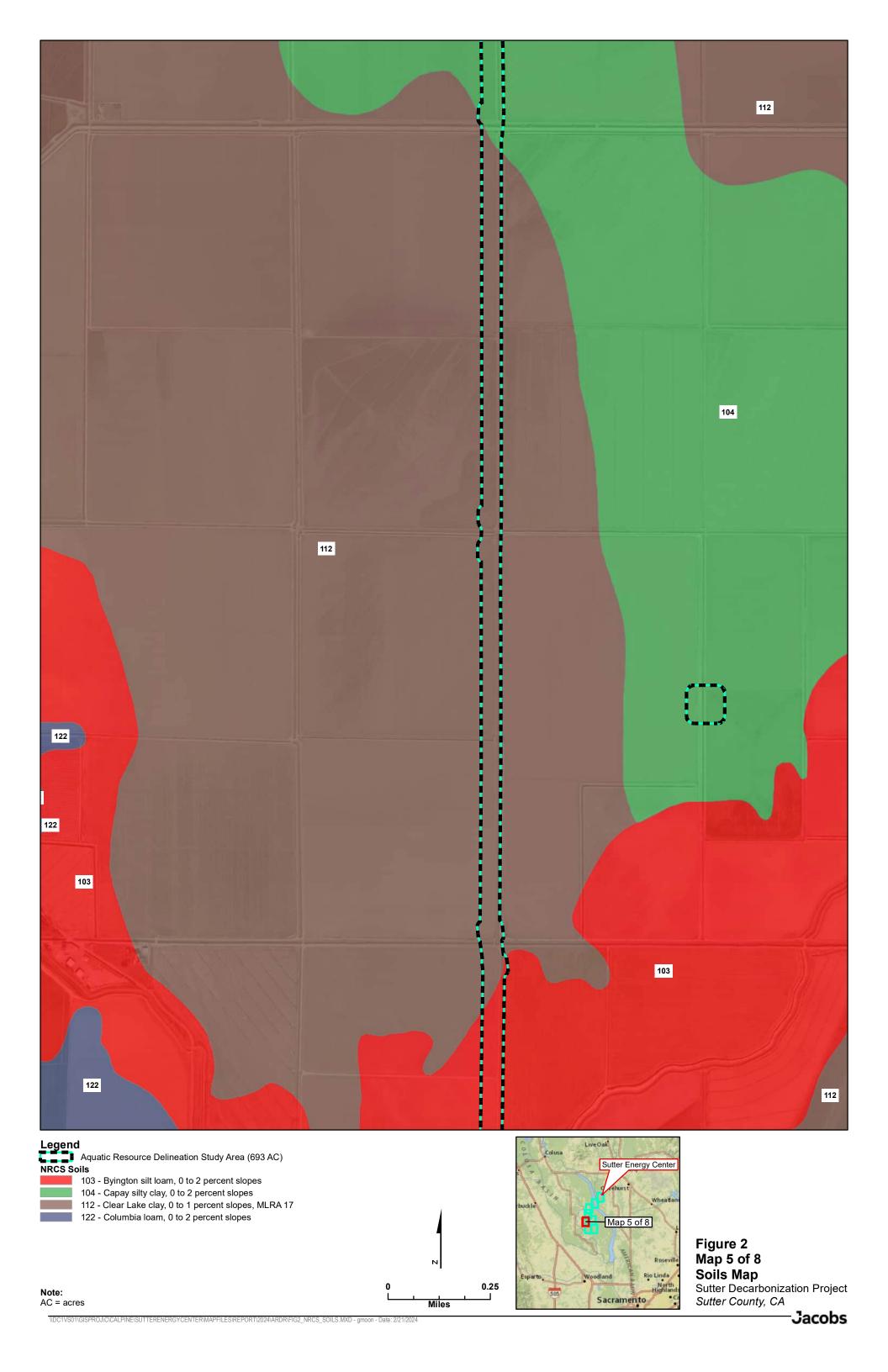

U.S. Geological Survey (USGS). 2024b. Topoview. United States Department of the Interior. Accessed February 14, 2024. <a href="https://ngmdb.usgs.gov/topoview/viewer/#4/40.01/-100.06">https://ngmdb.usgs.gov/topoview/viewer/#4/40.01/-100.06</a>.

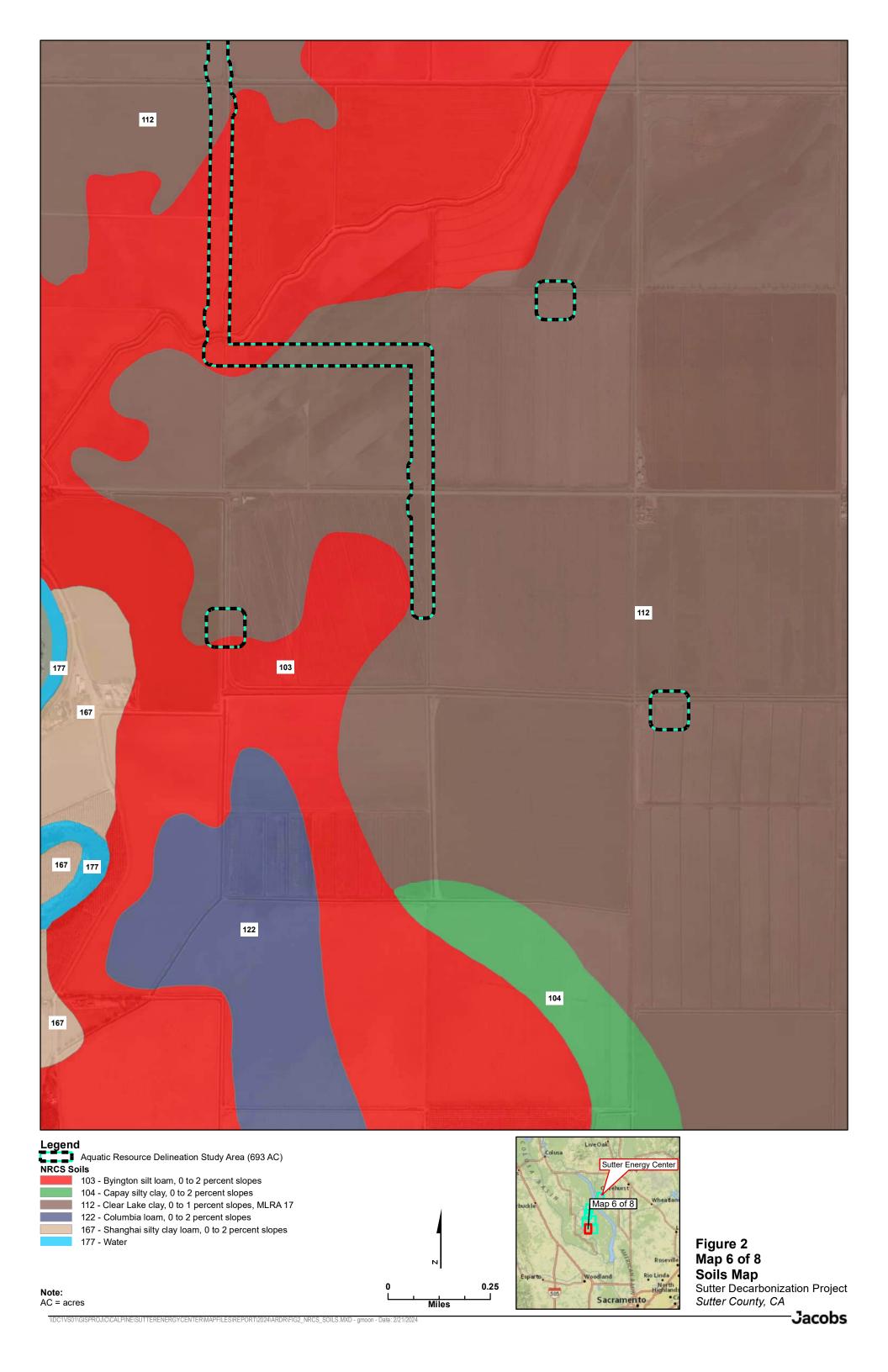

Western Regional Climate Center (WRCC). 2023. Recent Climate in The West. Desert Research Institute. https://wrcc.dri.edu/.

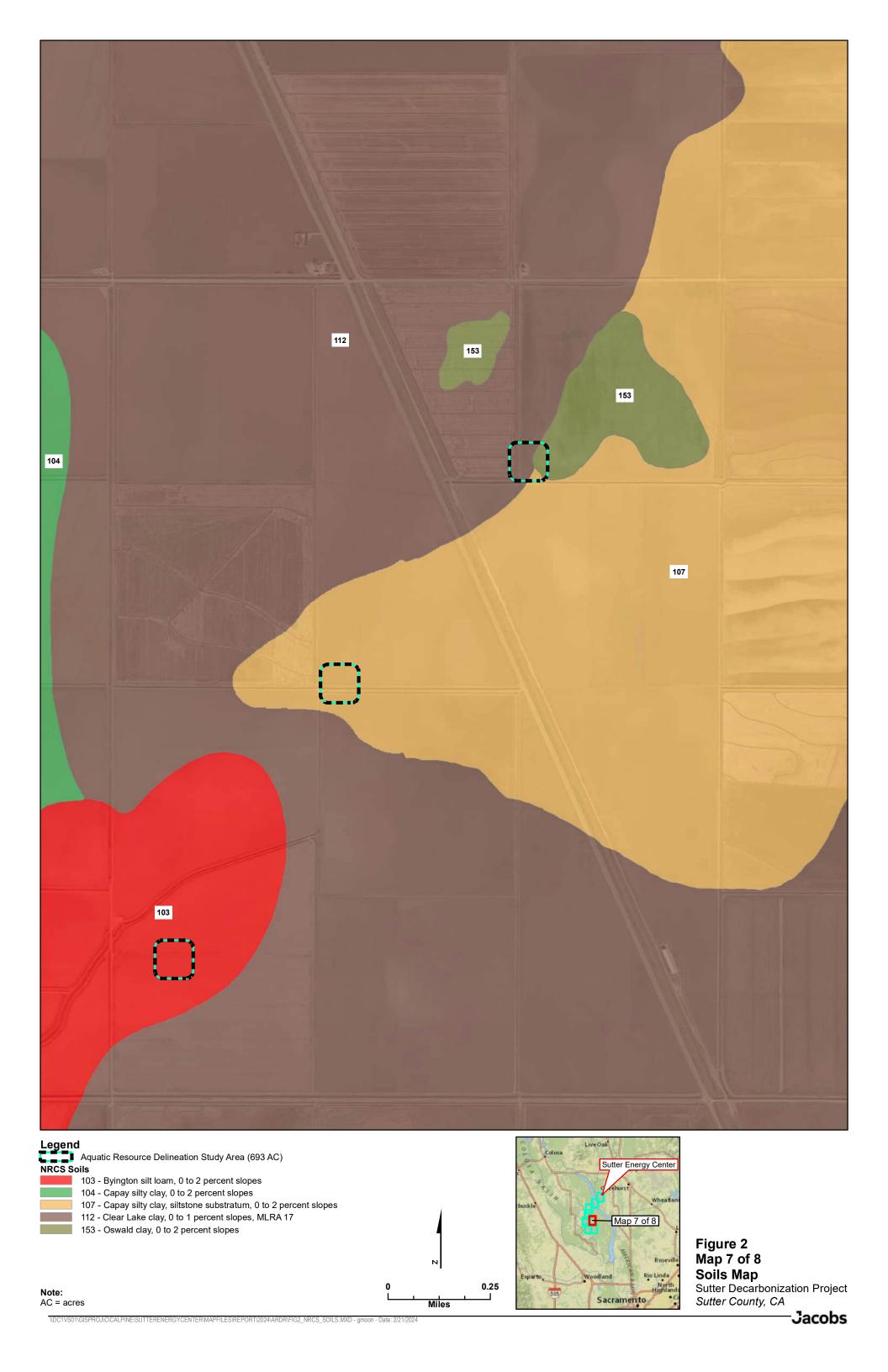
240226084420 e83455aa 5-2


# **Figures**


240226084420\_e83455aa 3


















112 - Clear Lake clay, 0 to 1 percent slopes, MLRA 17

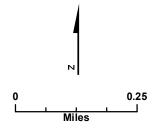
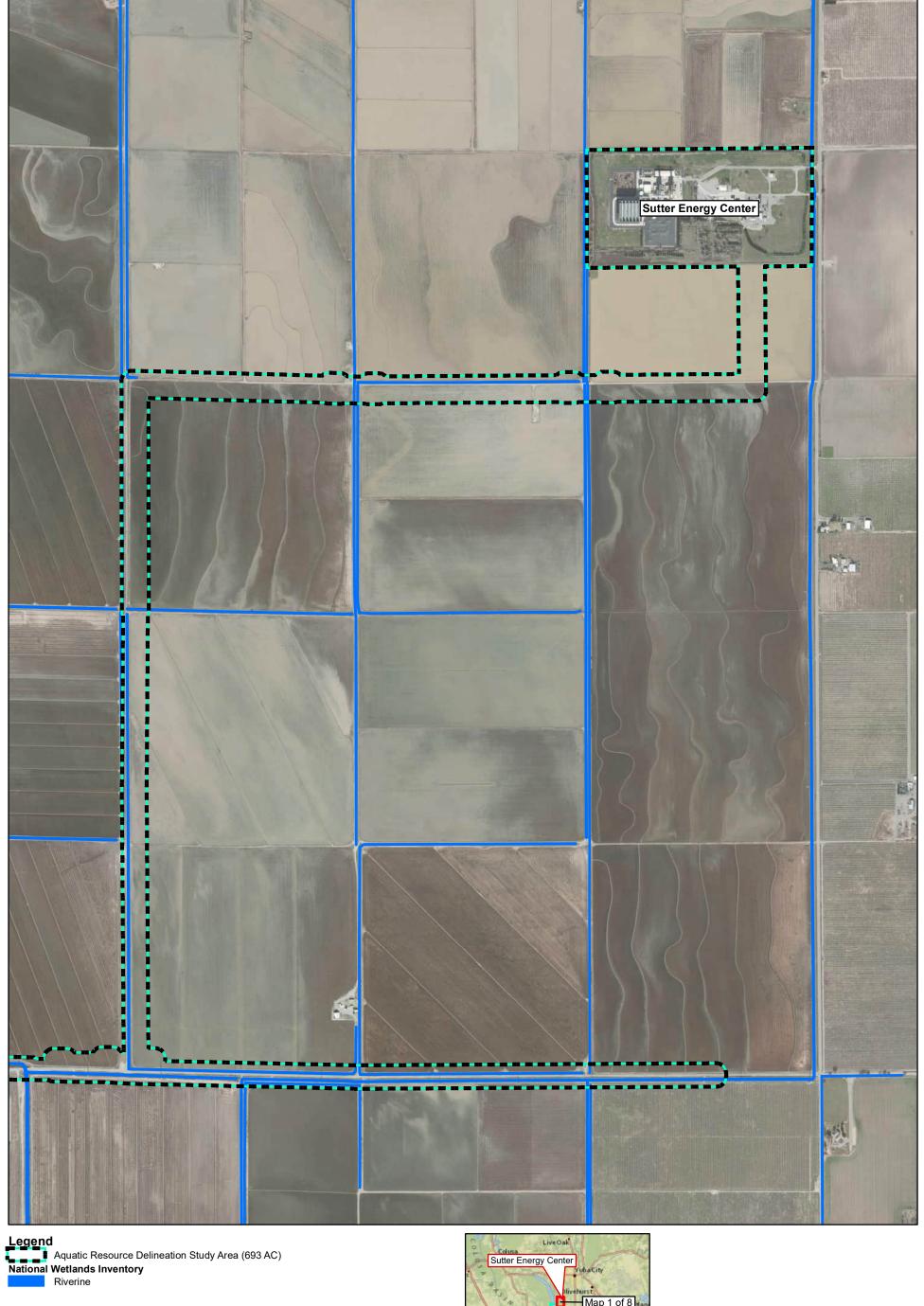






Figure 2
Map 8 of 8
Soils Map
Sutter Decarbonization Project
Sutter County, CA

Jacobs



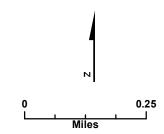
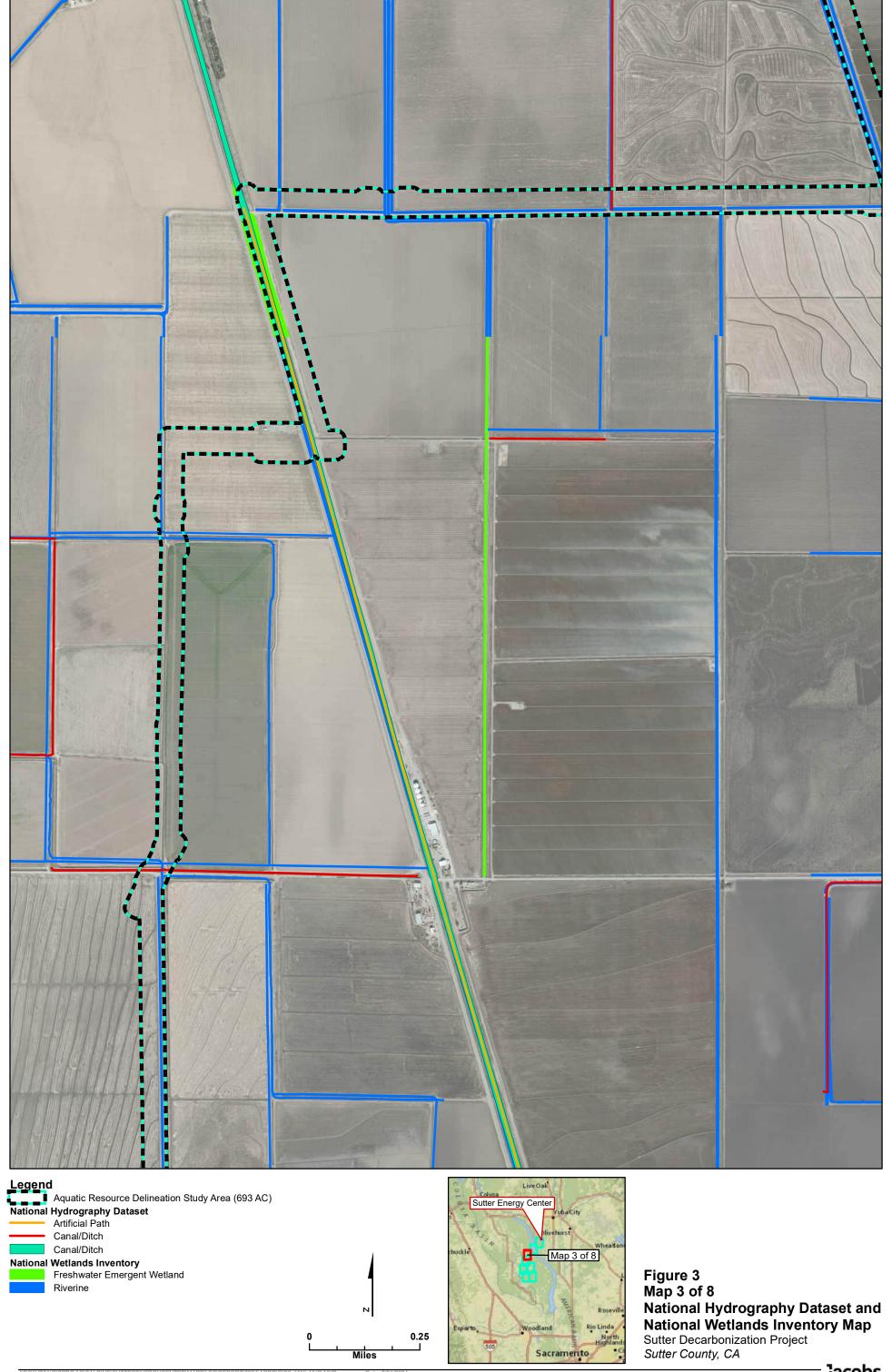
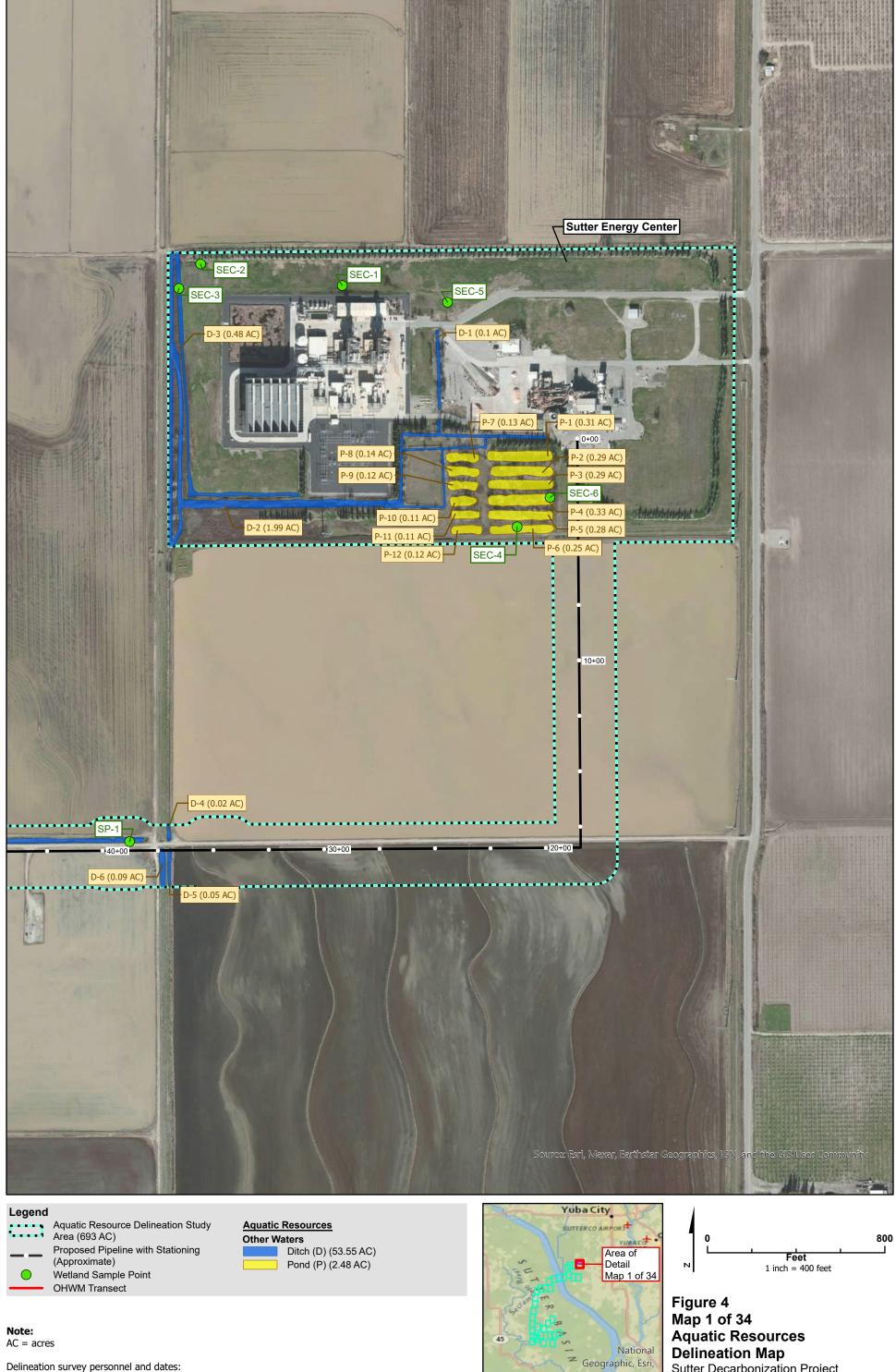






Figure 3
Map 1 of 8
National Hydrography Dataset and
National Wetlands Inventory Map
Sutter Decarbonization Project
Sutter County, CA





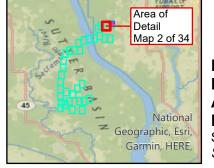


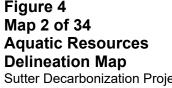










Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24


Garmin, HERE,

Sutter Decarbonization Project Sutter County, CA



Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24





Sutter Decarbonization Project Sutter County, CA



**Jacobs** 







AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24

OHWM Transect



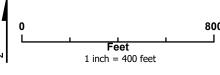



Figure 4
Map 5 of 34
Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA



Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24



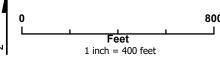



Figure 4 Map 6 of 34 Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA



Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24

Geographic, Esri, Garmin, HERE,

Sutter Decarbonization Project Sutter County, CA





Proposed Pipeline with Stationing (Approximate)
OHWM Transect

Ditch (D) (53.55 AC) River/Stream (R) (3.25 AC)

# Note:

AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24



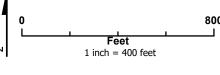
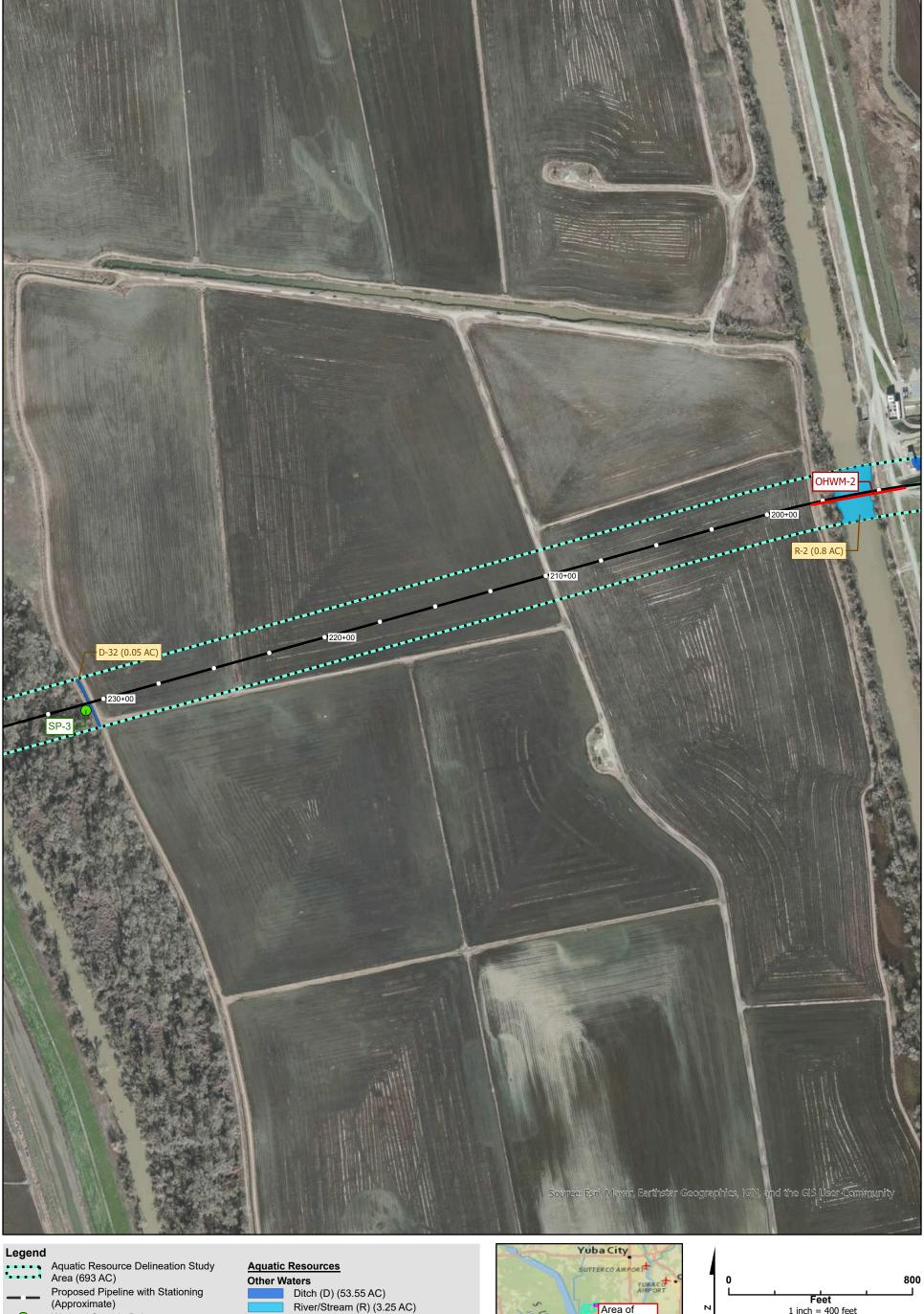




Figure 4
Map 8 of 34
Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA



Wetland Sample Point **OHWM Transect** 

Ditch (D) (53.55 AC) River/Stream (R) (3.25 AC)



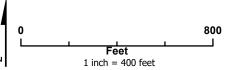
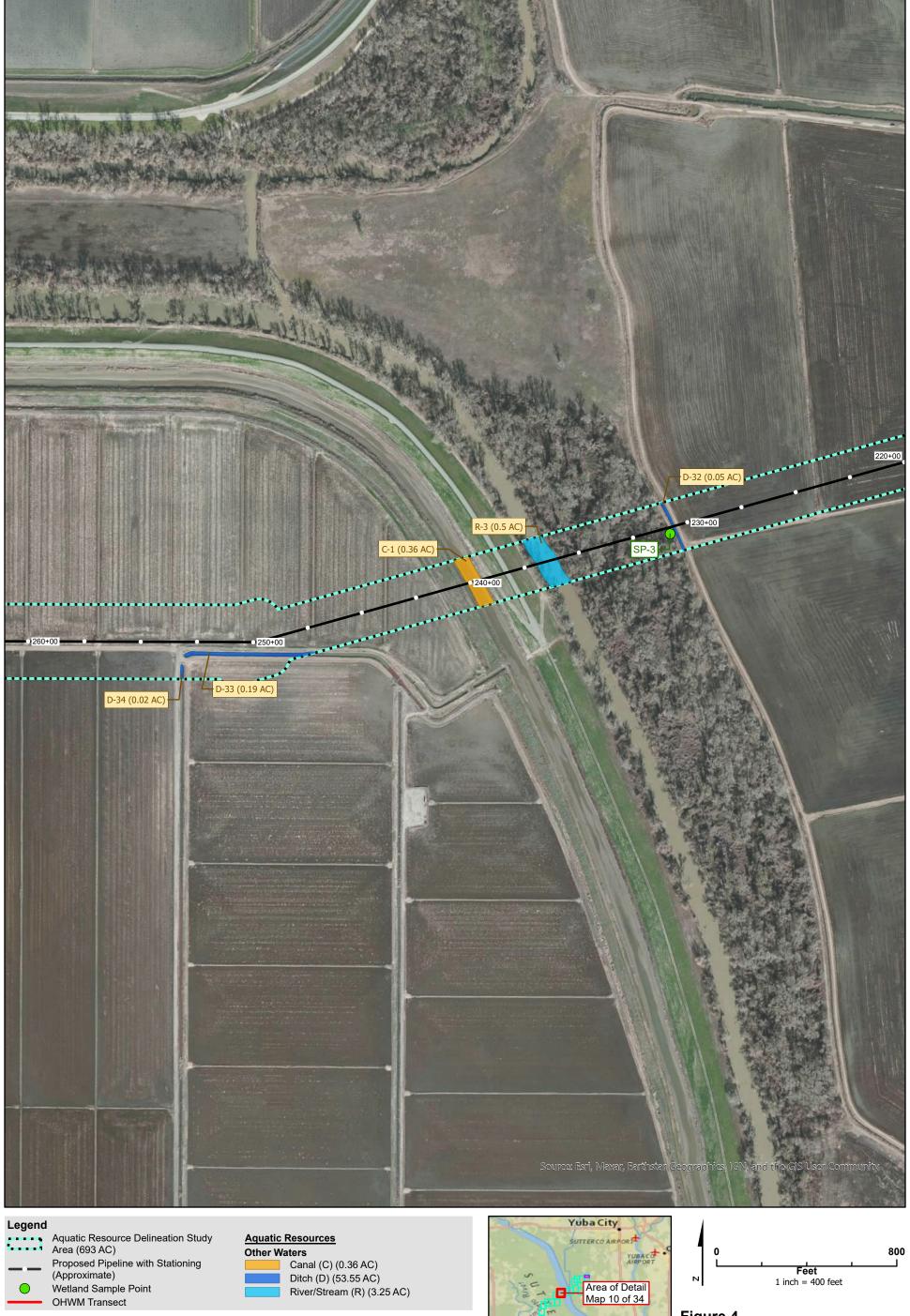
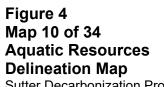




Figure 4
Map 9 of 34
Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA

# Note:

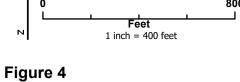

AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24



Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24






**Delineation Map**Sutter Decarbonization Project
Sutter County, CA

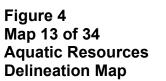


Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24

Area of Detail Map 11 of 34 National Geographic, Esri, Garmin, HERE,



Map 11 of 34 Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA



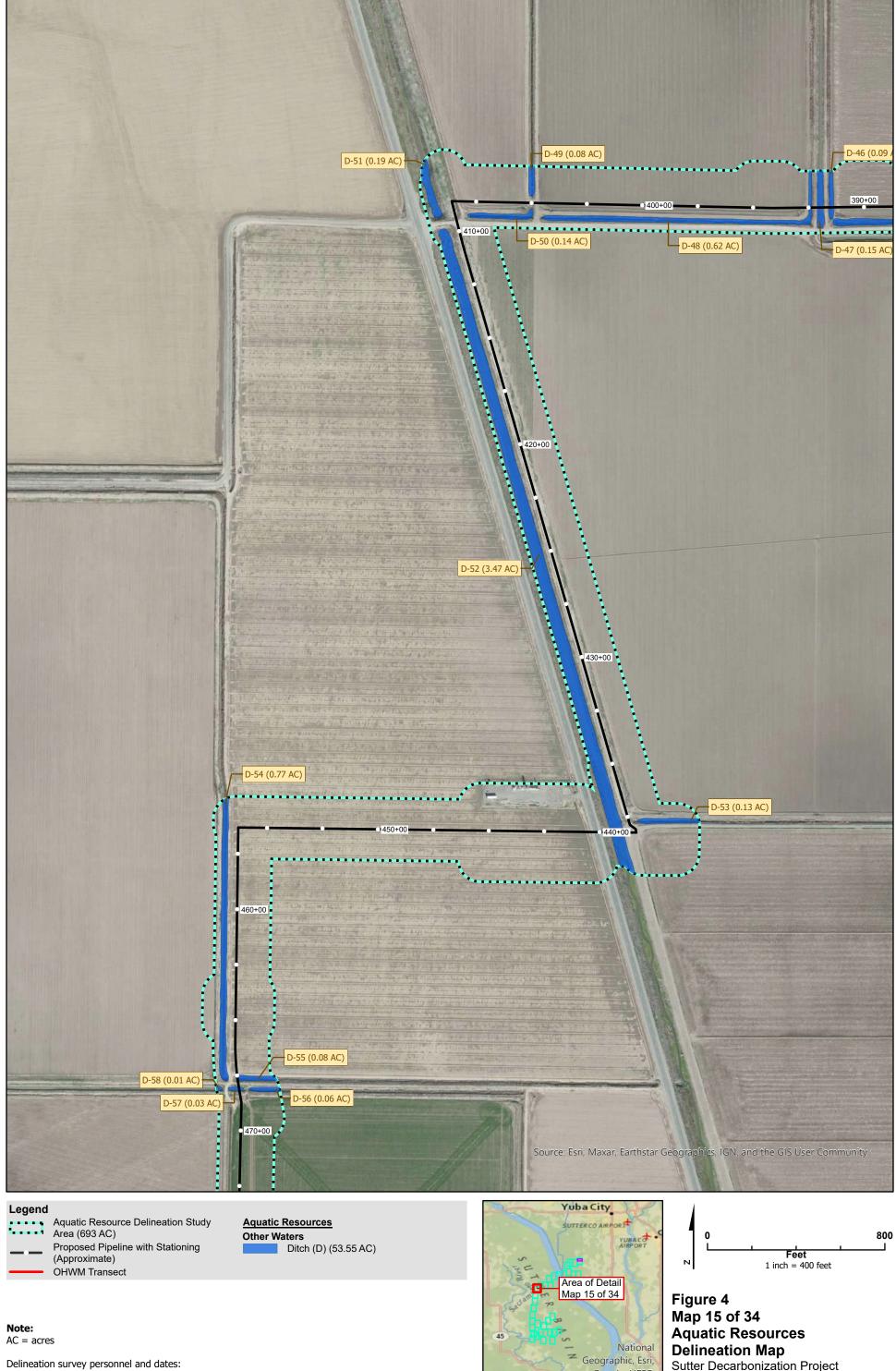



AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24






Sutter Decarbonization Project Sutter County, CA



Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth


09/19-21/2023, 01/05/24, 04/12/24

Sutter County, CA



**Delineation Map**Sutter Decarbonization Project
Sutter County, CA

Garmin, HERE,



Note:

AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24



Figure 4 Map 16 of 34 **Aquatic Resources Delineation Map** Sutter Decarbonization Project Sutter County, CA

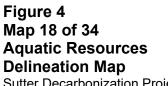


Note: AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24



Map 17 of 34 **Aquatic Resources Delineation Map** Sutter Decarbonization Project Sutter County, CA


**Jacobs** 



Note:

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24





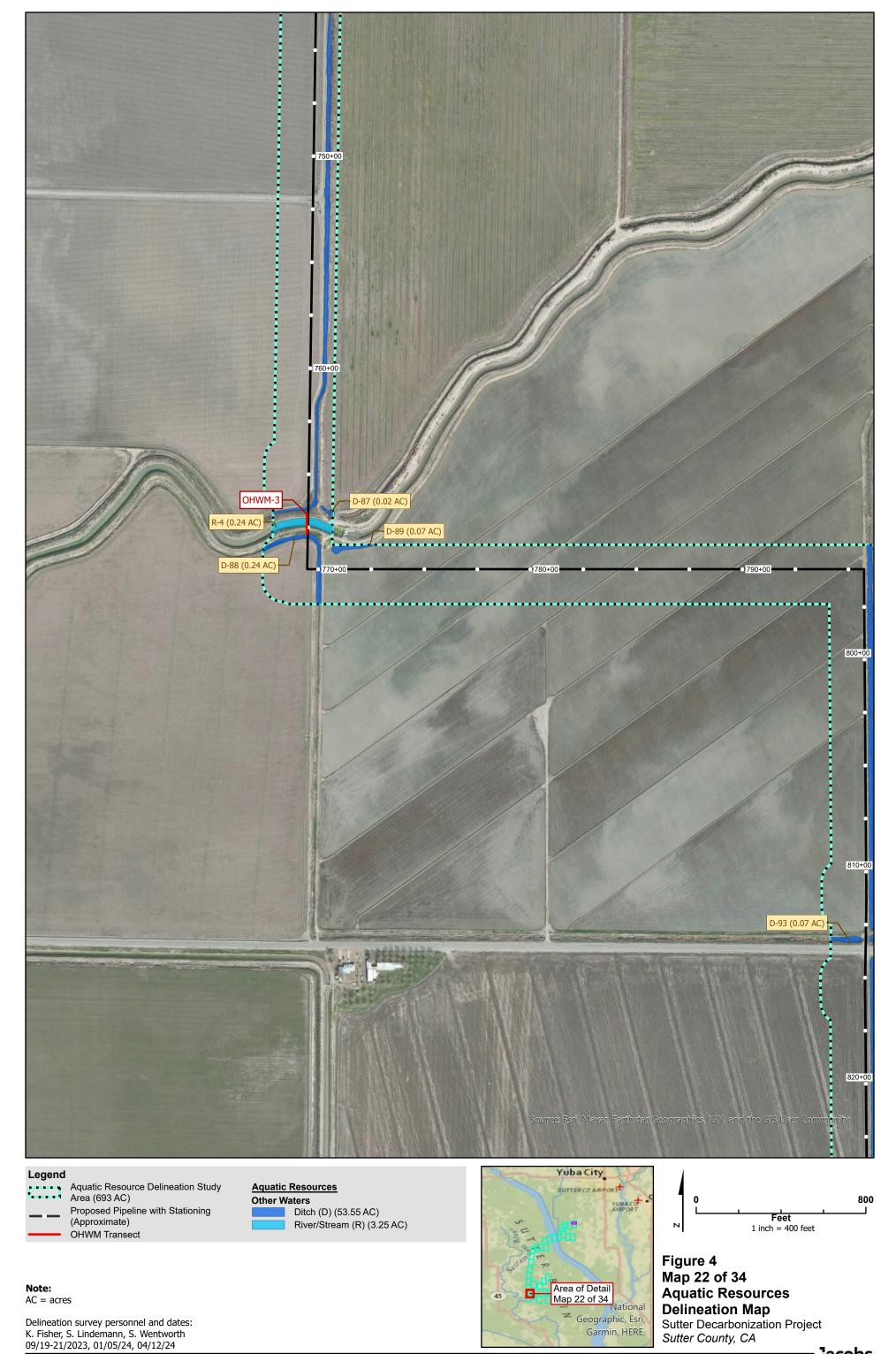
Sutter Decarbonization Project Sutter County, CA



Geographic, Esri, Sutter Decarbonization Project Garmin, HERE, Sutter County, CA






Sutter Decarbonization Project Sutter County, CA

**Jacobs** 





**Delineation Map**Sutter Decarbonization Project
Sutter County, CA



**Jacobs** 



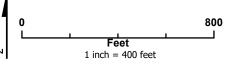
**Delineation Map** Geographic, Esri, Sutter Decarbonization Project Garmin, HERE, Sutter County, CA





Proposed Well (Location Approximate)

**OHWM Transect** 


Other Waters

Ditch (D) (53.55 AC)

Note: AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24





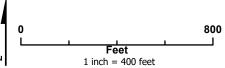
**Jacobs** 

Figure 4 Map 24 of 34 Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA



Proposed Well (Location Approximate)

Aquatic Resources Other Waters


Ditch (D) (53.55 AC)

Note: AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24

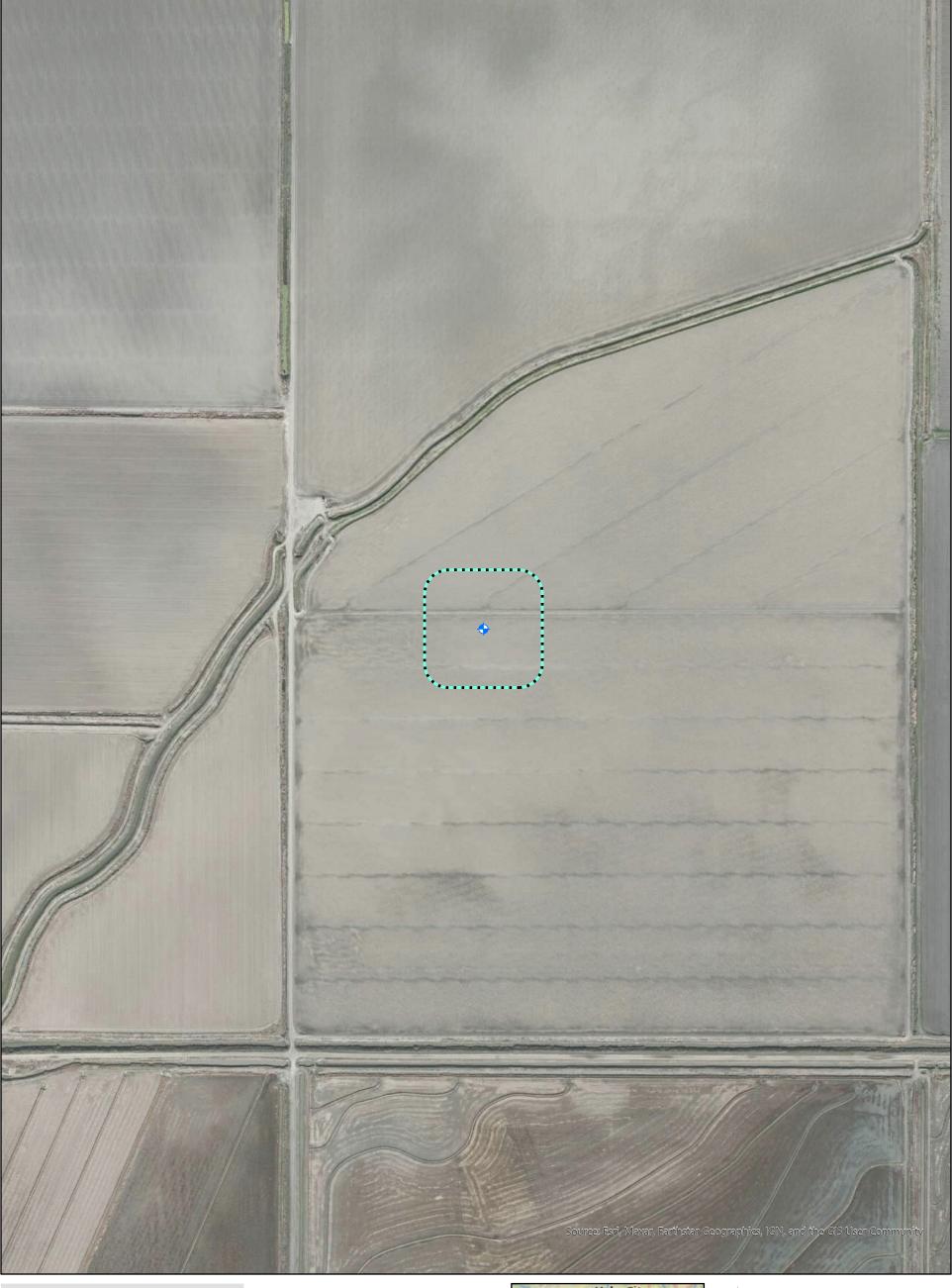
**OHWM Transect** 





**Jacobs** 

Figure 4
Map 25 of 34
Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA




Note: AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24



Figure 4
Map 26 of 34
Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA





Aquatic Resource Delineation Study Area (693 AC)

Proposed Well (Location Approximate) **OHWM Transect** 

#### Note: AC = acres



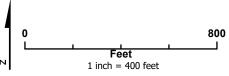
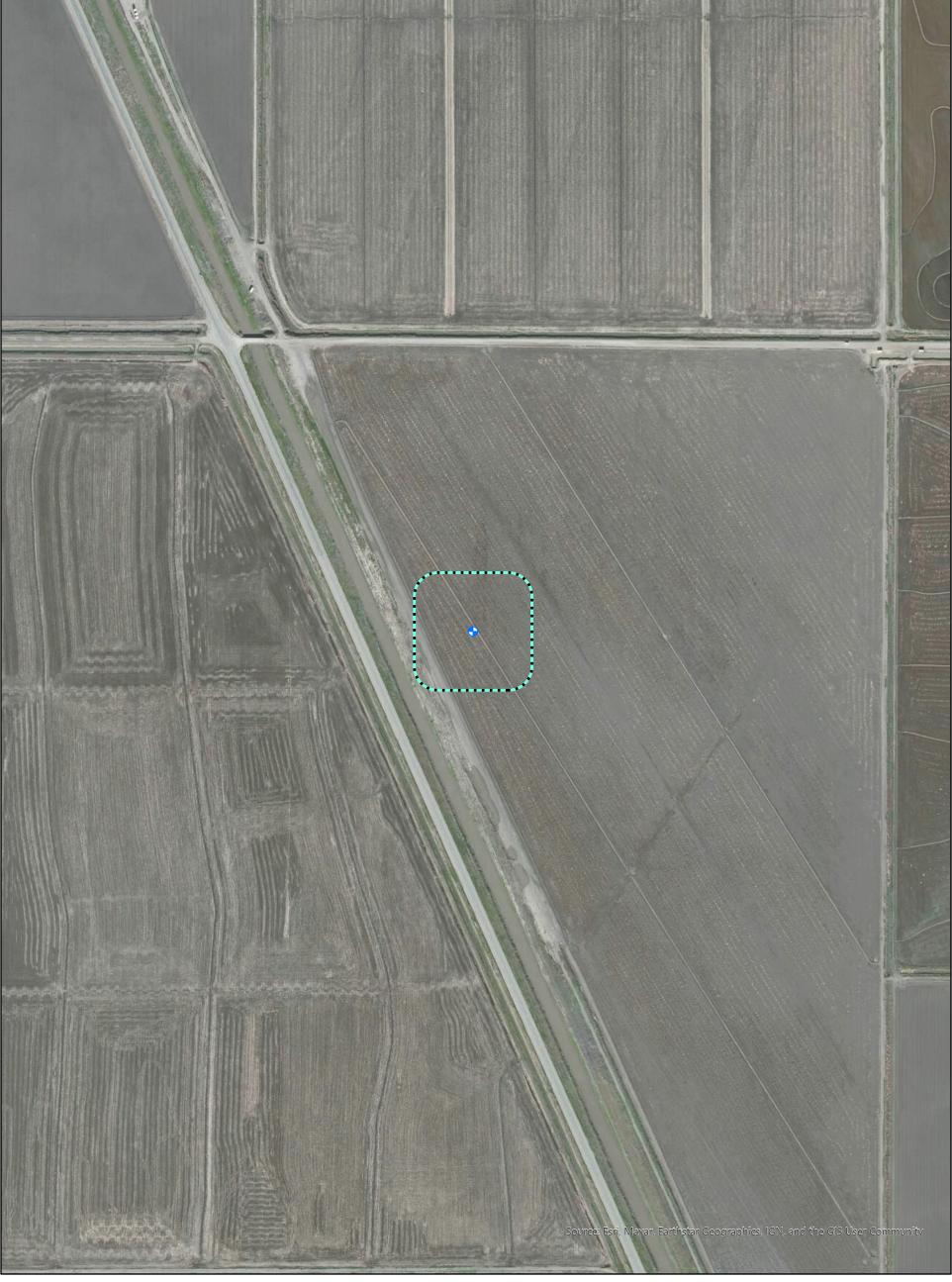
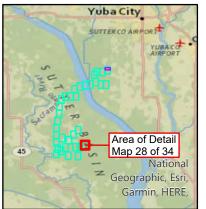




Figure 4
Map 27 of 34
Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA






Aquatic Resource Delineation Study
Area (693 AC)
Proposed Well (Location Approximate)

OHWM Transect





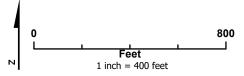
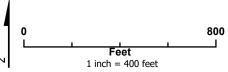



Figure 4
Map 28 of 34
Aquatic Resources
Delineation Map
Sutter Decarbonization Project
Sutter County, CA






Aquatic Resource Delineation Study Area (693 AC)

Aquatic Resources Other Waters Ditch (D) (53.55 AC)

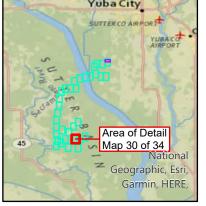
Proposed Well (Location Approximate) **OHWM Transect** 

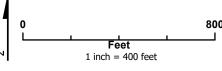
## YUBACO AIRPORT Area of Detail Map 29 of 34 National Geographic, Esri, Garmin, HERE,



**Jacobs** 

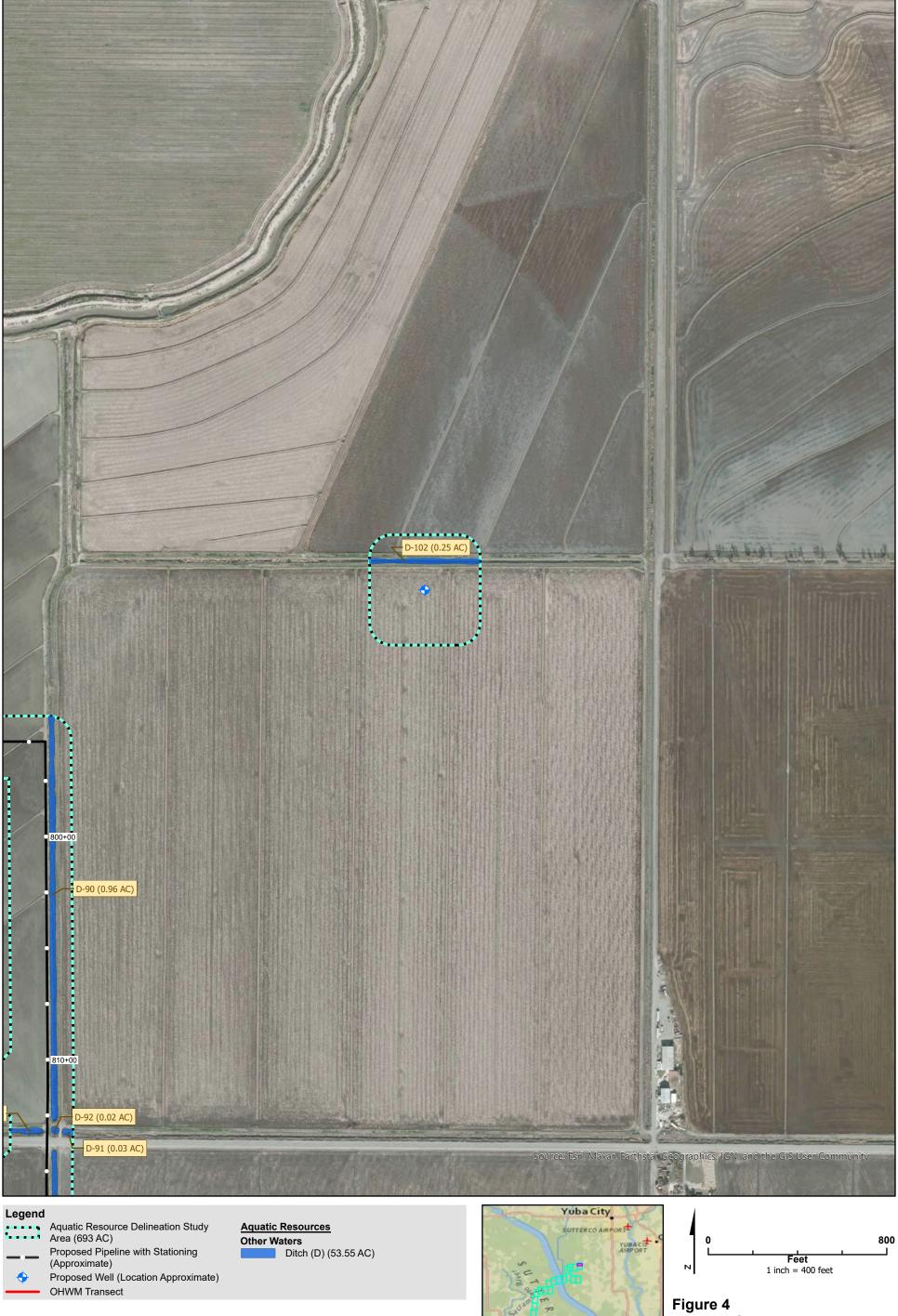
# Figure 4 Map 29 of 34 Aquatic Resources **Delineation Map**Sutter Decarbonization Project Sutter County, CA


Note: AC = acres






#### Note: AC = acres


Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24





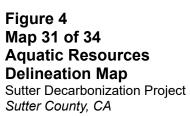
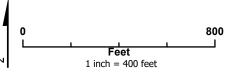

**Jacobs** 

Figure 4 Map 30 of 34 Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA



Note: AC = acres








Aquatic Resource Delineation Study Area (693 AC)

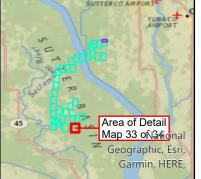
Aquatic Resources Other Waters

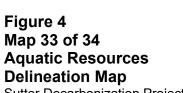




**Jacobs** 

Figure 4
Map 32 of 34
Aquatic Resources **Delineation Map**Sutter Decarbonization Project
Sutter County, CA


AC = acres


Note:



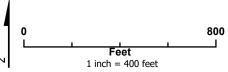
Note: AC = acres

Delineation survey personnel and dates: K. Fisher, S. Lindemann, S. Wentworth 09/19-21/2023, 01/05/24, 04/12/24





Sutter Decarbonization Project Sutter County, CA



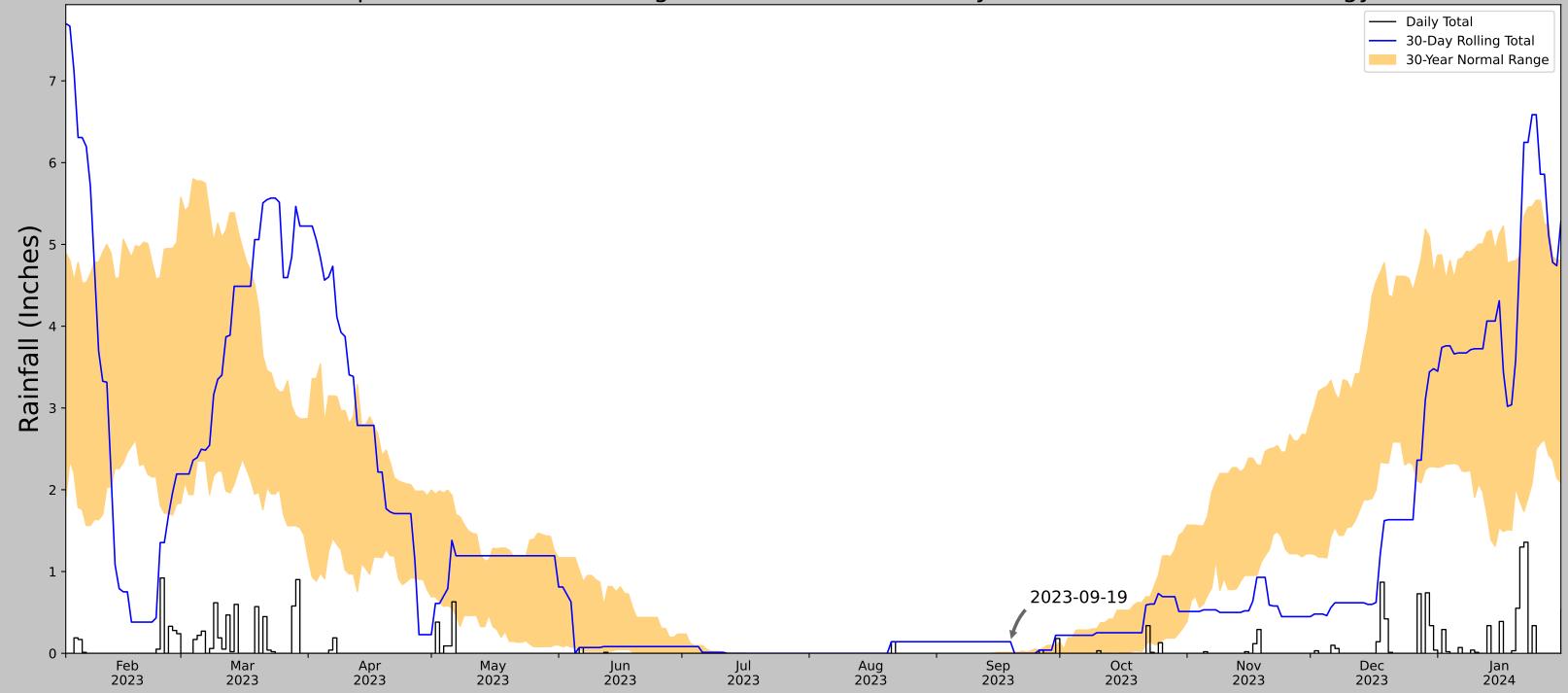



Aquatic Resource Delineation Study Area (693 AC) Proposed Well (Location Approximate) Aquatic Resources Other Waters Ditch (D) (53.55 AC)

**OHWM Transect** 

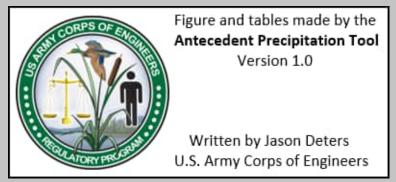
YUBACO AIRPORT Area of Detail Map 34 of 3√ational Geographic, Esri, Garmin, HERE,



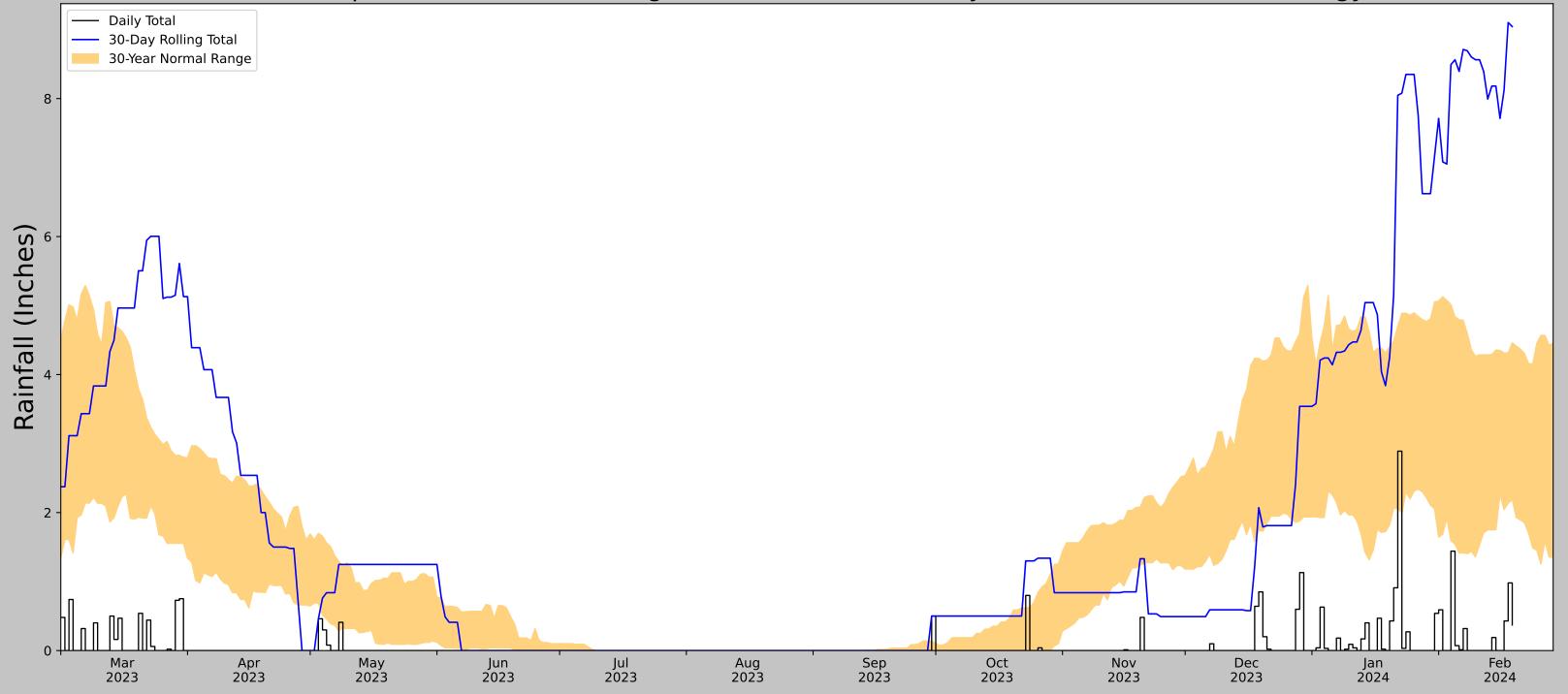

**Jacobs** 

# Figure 4 Map 34 of 34 Aquatic Resources **Delineation Map**Sutter Decarbonization Project Sutter County, CA

Note: AC = acres

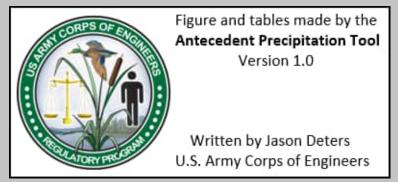

# **Appendix A Antecedent Precipitation Tool Results**

240226084420\_e83455aa

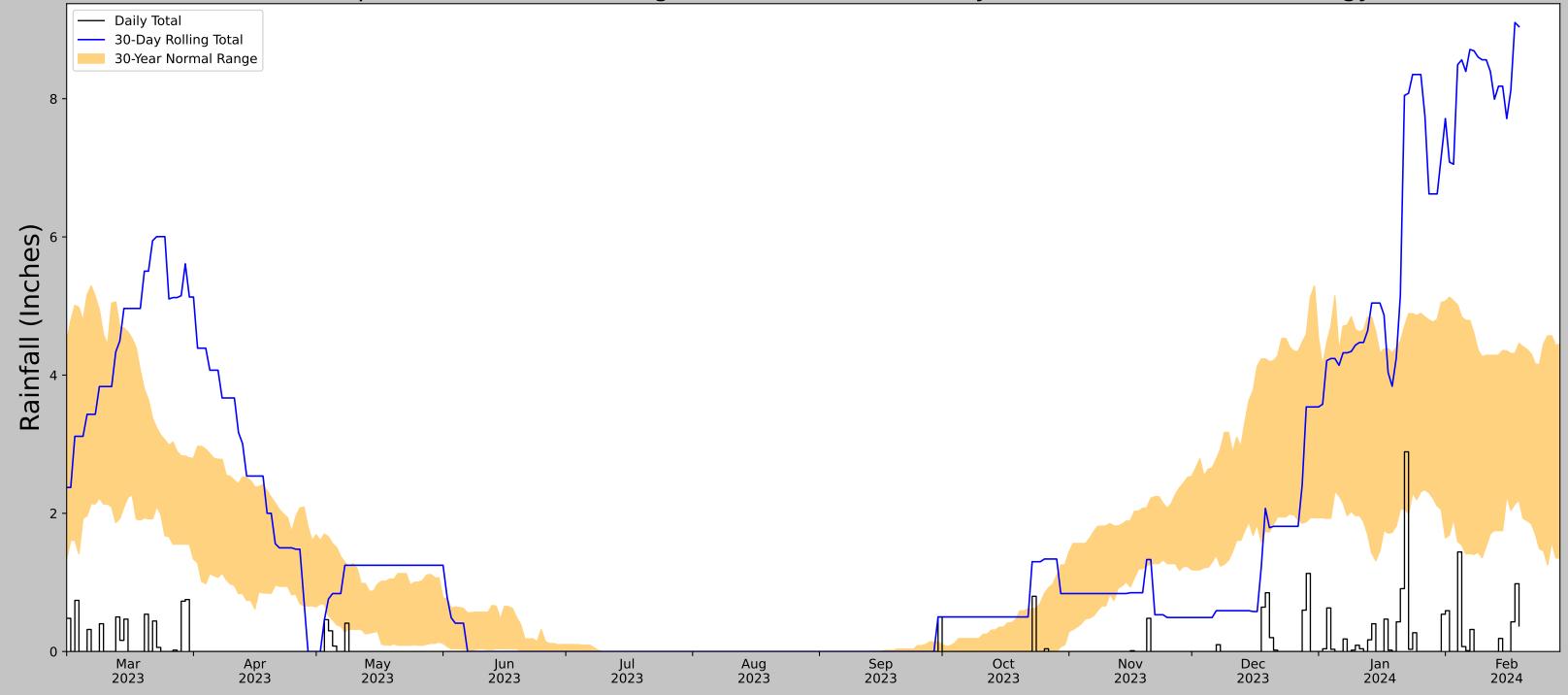



| Coordinates                      | 39.047035, -121.699742 |
|----------------------------------|------------------------|
| Observation Date                 | 2023-09-19             |
| Elevation (ft)                   | 40.087                 |
| Drought Index (PDSI)             | Incipient wetness      |
| WebWIMP H <sub>2</sub> O Balance | Dry Season             |
|                                  |                        |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2023-09-19     | 0.0                        | 0.011811                   | 0.141732      | Wet               | 3               | 3            | 9                       |
| 2023-08-20     | 0.0                        | 0.0                        | 0.0           | Normal            | 2               | 2            | 4                       |
| 2023-07-21     | 0.0                        | 0.0                        | 0.0           | Normal            | 2               | 1            | 2                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |

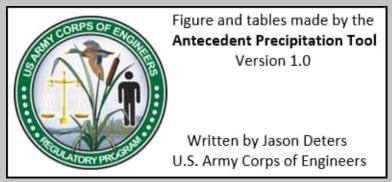



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| MARYSVILLE AP (ASOS) | 39.1019, -121.5689 | 62.008         | 7.977         | 21.921      | 3.764      | 8017        | 90              |
| MARYSVILLE           | 39.1458, -121.5853 | 57.087         | 3.158         | 4.921       | 1.437      | 3138        | 0               |
| MARYSVILLE 5.0 N     | 39.2241, -121.594  | 73.163         | 8.55          | 11.155      | 3.943      | 8           | 0               |
| NICOLAUS #2          | 38.9261, -121.5447 | 42.979         | 12.216        | 19.029      | 5.73       | 190         | 0               |

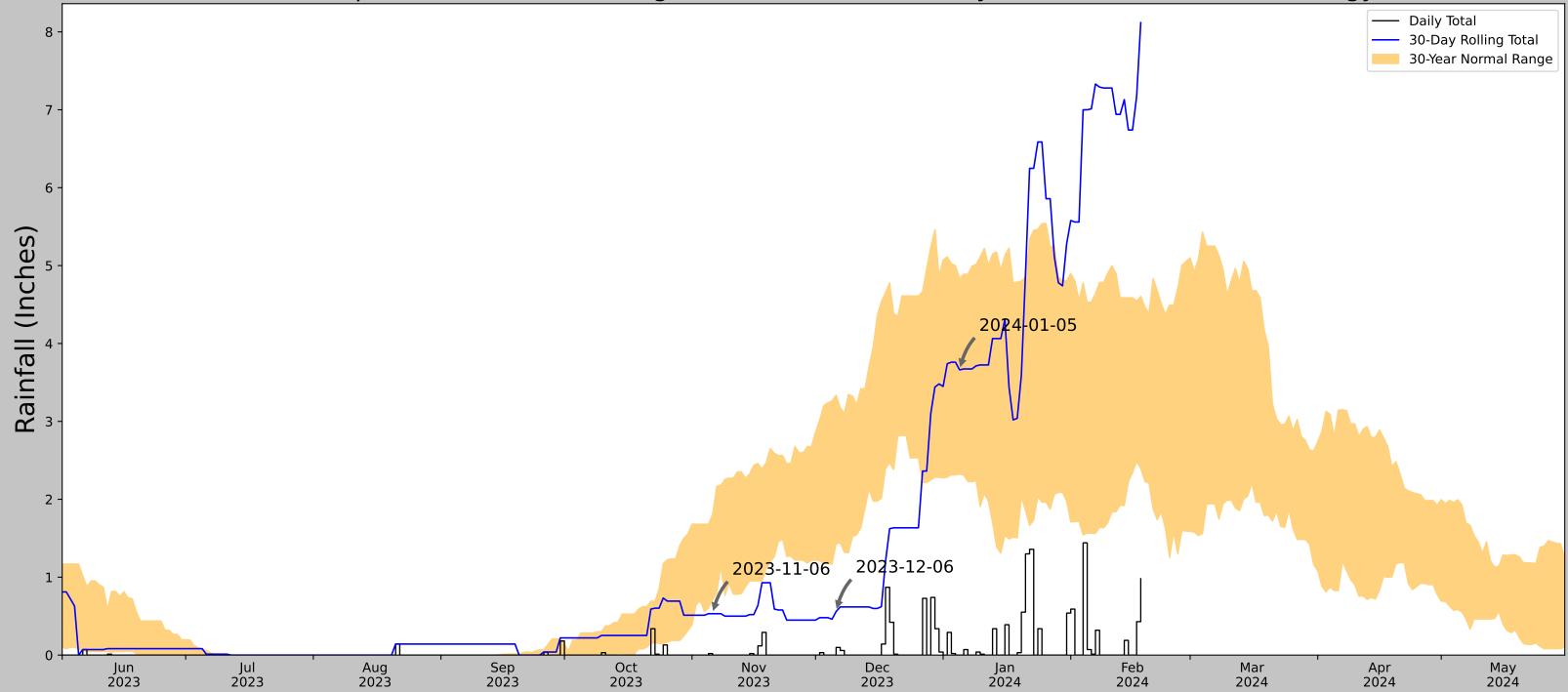



| Coordinates          | 39.022763, -121.739217 |
|----------------------|------------------------|
| Observation Date     | 2023-09-20             |
| Elevation (ft)       | 41.338                 |
| Drought Index (PDSI) | Incipient wetness      |
| WebWIMP H₂O Balance  | Dry Season             |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|------------------------|
| 2023-09-20     | 0.0                        | 0.035039                   | 0.0           | Normal            | 2               | 3            | 6                      |
| 2023-08-21     | 0.0                        | 0.0                        | 0.0           | Normal            | 2               | 2            | 4                      |
| 2023-07-22     | 0.0                        | 0.0                        | 0.0           | Normal            | 2               | 1            | 2                      |
| Result         |                            |                            |               |                   |                 |              | Normal Conditions - 12 |

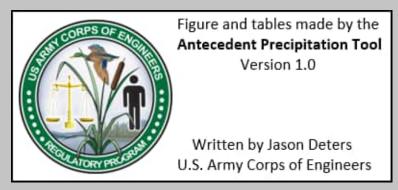



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| NICOLAUS #2          | 38.9261, -121.5447 | 42.979         | 12.401        | 1.641       | 5.601      | 10821       | 90              |
| WHEATLAND 0.1 ENE    | 39.0135, -121.4243 | 84.974         | 8.849         | 41.995      | 4.354      | 145         | 0               |
| MARYSVILLE AP (ASOS) | 39.1019, -121.5689 | 62.008         | 12.216        | 19.029      | 5.73       | 298         | 0               |
| MARYSVILLE           | 39.1458, -121.5853 | 57.087         | 15.335        | 14.108      | 7.117      | 89          | 0               |

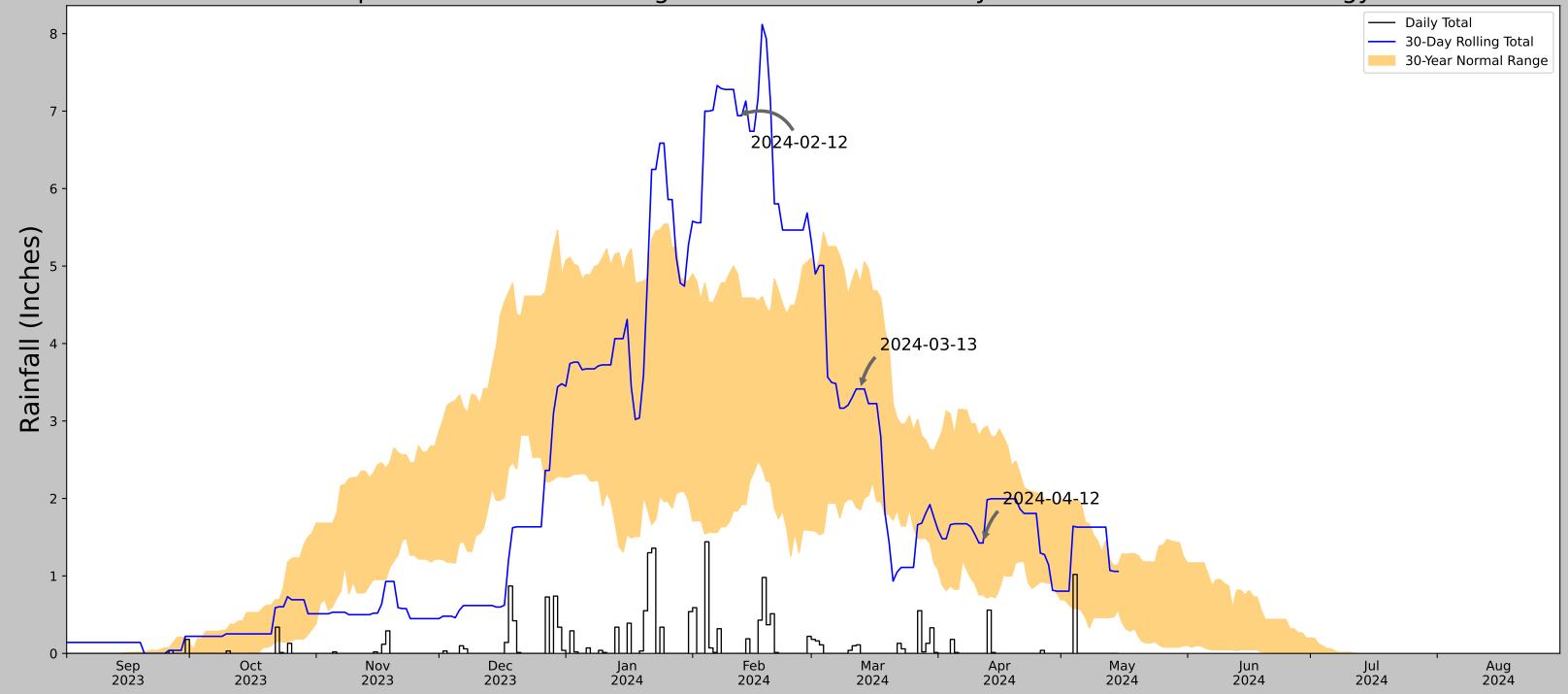



| Coordinates                      | 38.901747, -121.745767 |
|----------------------------------|------------------------|
| Observation Date                 | 2023-09-21             |
| Elevation (ft)                   | 21.021                 |
| Drought Index (PDSI)             | Incipient wetness      |
| WebWIMP H <sub>2</sub> O Balance | Dry Season             |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|------------------------|
| 2023-09-21     | 0.0                        | 0.035039                   | 0.0           | Normal            | 2               | 3            | 6                      |
| 2023-08-22     | 0.0                        | 0.0                        | 0.0           | Normal            | 2               | 2            | 4                      |
| 2023-07-23     | 0.0                        | 0.0                        | 0.0           | Normal            | 2               | 1            | 2                      |
| Result         |                            |                            |               |                   |                 |              | Normal Conditions - 12 |




| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| NICOLAUS #2          | 38.9261, -121.5447 | 42.979         | 10.94         | 21.958      | 5.163      | 10821       | 90              |
| WHEATLAND 0.1 ENE    | 39.0135, -121.4243 | 84.974         | 8.849         | 41.995      | 4.354      | 145         | 0               |
| MARYSVILLE AP (ASOS) | 39.1019, -121.5689 | 62.008         | 12.216        | 19.029      | 5.73       | 298         | 0               |
| MARYSVILLE           | 39.1458, -121.5853 | 57.087         | 15.335        | 14.108      | 7.117      | 89          | 0               |




| Coordinates                      | 39.052517, -121.694901 |
|----------------------------------|------------------------|
| Observation Date                 | 2024-01-05             |
| Elevation (ft)                   | 41.261                 |
| Drought Index (PDSI)             | Normal                 |
| WebWIMP H <sub>2</sub> O Balance | Wet Season             |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product               |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-----------------------|
| 2024-01-05     | 2.322835                   | 4.834646                   | 3.661417      | Normal            | 2               | 3            | 6                     |
| 2023-12-06     | 1.428347                   | 3.337402                   | 0.559055      | Dry               | 1               | 2            | 2                     |
| 2023-11-06     | 0.711417                   | 1.807087                   | 0.531496      | Dry               | 1               | 1            | 1                     |
| Result         |                            |                            |               |                   |                 |              | Drier than Normal - 9 |



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| MARYSVILLE AP (ASOS) | 39.1019, -121.5689 | 62.008         | 7.571         | 20.747      | 3.564      | 8381        | 90              |
| MARYSVILLE           | 39.1458, -121.5853 | 57.087         | 3.158         | 4.921       | 1.437      | 2803        | 0               |
| MARYSVILLE 5.0 N     | 39.2241, -121.594  | 73.163         | 8.55          | 11.155      | 3.943      | 9           | 0               |
| NICOLAUS #2          | 38.9261, -121.5447 | 42.979         | 12.216        | 19.029      | 5.73       | 159         | 0               |



| Coordinates                      | 39.05128, -121.693056 |
|----------------------------------|-----------------------|
| Observation Date                 | 2024-04-12            |
| Elevation (ft)                   | 39.474                |
| Drought Index (PDSI)             | Incipient wetness     |
| WebWIMP H <sub>2</sub> O Balance | Dry Season            |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|------------------------|
| 2024-04-12     | 0.756299                   | 2.898425                   | 1.425197      | Normal            | 2               | 3            | 6                      |
| 2024-03-13     | 1.85315                    | 4.78189                    | 3.413386      | Normal            | 2               | 2            | 4                      |
| 2024-02-12     | 1.83937                    | 4.896063                   | 6.940945      | Wet               | 3               | 1            | 3                      |
| Result         |                            |                            |               |                   |                 |              | Normal Conditions - 13 |



Figures and tables made by the Antecedent Precipitation Tool Version 2.0

Developed by: U.S. Army Corps of Engineers and U.S. Army Engineer Research and Development Center

| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| MARYSVILLE AP (ASOS) | 39.1019, -121.5689 | 62.008         | 7.522         | 22.534      | 3.554      | 8381        | 90              |
| MARYSVILLE           | 39.1458, -121.5853 | 57.087         | 3.158         | 4.921       | 1.437      | 2803        | 0               |
| MARYSVILLE 5.0 N     | 39.2241, -121.594  | 73.163         | 8.55          | 11.155      | 3.943      | 9           | 0               |
| NICOLAUS #2          | 38.9261, -121.5447 | 42.979         | 12.216        | 19.029      | 5.73       | 159         | 0               |

# **Appendix B Delineation Data Forms**

240226084420\_e83455aa 5

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: Sutter Decarbonization Project                    | (          | City/County | : Sutter Co   | ounty                                            | Sampling Date:                   | 1/05/2024           |
|-----------------------------------------------------------------|------------|-------------|---------------|--------------------------------------------------|----------------------------------|---------------------|
| Applicant/Owner: Calpine                                        |            |             |               | State: CA                                        | Sampling Point:                  | SEC-1               |
| Investigator(s): Kevin Fisher                                   | (          | Section, To | ownship, Rai  | nge: 24, 14N, 2E                                 |                                  |                     |
| Landform (hillslope, terrace, etc.): Valley                     |            | Local relie | f (concave, o | convex, none): none                              | Slope                            | e (%): <u>&lt;1</u> |
| Subregion (LRR): C                                              | Lat: 39.0  | 53923       |               | Long: -121.696372                                | Datum                            | : WGS84             |
| Soil Map Unit Name: Gridley                                     |            |             |               | NWI classific                                    | cation: None                     |                     |
| Are climatic / hydrologic conditions on the site typical for th |            |             |               |                                                  |                                  |                     |
| Are Vegetation, Soil, or Hydrology                              | -          |             |               | Normal Circumstances" p                          |                                  | No                  |
| Are Vegetation, Soil, or Hydrology                              |            |             |               | eded, explain any answe                          |                                  |                     |
| SUMMARY OF FINDINGS – Attach site map                           |            |             |               |                                                  |                                  | tures, etc.         |
| Hydrophytic Vegetation Present? Yes 1                           |            | ls ti       | ne Sampled    | Area                                             |                                  |                     |
| Hydric Soil Present? Yes N                                      |            | with        | nin a Wetlan  | nd? Yes                                          | No <u> </u>                      |                     |
| Wetland Hydrology Present? Yes N                                | NO         |             |               |                                                  |                                  |                     |
| remains.                                                        |            |             |               |                                                  |                                  |                     |
|                                                                 |            |             |               |                                                  |                                  |                     |
|                                                                 |            |             |               |                                                  |                                  |                     |
| <b>VEGETATION – Use scientific names of plan</b>                | nts.       |             |               |                                                  |                                  |                     |
| Trac Stratum (Diet size)                                        | Absolute   |             |               | Dominance Test work                              | sheet:                           |                     |
| Tree Stratum (Plot size:)  1                                    | % Cover    |             |               | Number of Dominant S<br>That Are OBL, FACW,      |                                  | (A)                 |
| 2                                                               |            |             |               |                                                  |                                  | (^)                 |
| 3                                                               |            |             |               | Total Number of Domir<br>Species Across All Stra |                                  | (B)                 |
| 4.                                                              |            |             |               |                                                  |                                  | (=)                 |
|                                                                 |            |             |               | Percent of Dominant S<br>That Are OBL, FACW,     |                                  | (A/B)               |
| Sapling/Shrub Stratum (Plot size:)                              |            |             |               | Prevalence Index wor                             | <u>-</u>                         |                     |
| 1                                                               |            |             |               | Total % Cover of:                                |                                  | hv:                 |
| 2                                                               |            |             |               | OBL species                                      | · ·                              | -                   |
| 4                                                               |            |             |               | FACW species                                     |                                  |                     |
| 5                                                               |            |             |               | FAC species                                      |                                  |                     |
|                                                                 |            |             |               | FACU species                                     | x 4 =                            |                     |
| Herb Stratum (Plot size: 1m                                     | 00         | V           | FAC           | UPL species                                      | x 5 =                            |                     |
| Hordeum sp.     Plantago lanceolata                             |            | Y<br>N      | FAC<br>FAC    | Column Totals:                                   | (A)                              | (B)                 |
| 3                                                               |            |             |               | Prevalence Index                                 | c = B/A =                        |                     |
| 4.                                                              |            |             |               | Hydrophytic Vegetation                           |                                  |                     |
| 5                                                               |            |             |               | <u> ✓</u> Dominance Test is                      | s >50%                           |                     |
| 6                                                               |            |             |               | Prevalence Index i                               | is ≤3.0 <sup>1</sup>             |                     |
| 7                                                               |            |             |               |                                                  | ptations <sup>1</sup> (Provide s |                     |
| 8                                                               |            |             |               | Problematic Hydro                                | s or on a separate s             | •                   |
| Woody Vine Stratum (Plot size:)                                 | 100        | = Total Co  | over          | 1 Toblematic Trydro                              | priyac vegetation (              | Explain)            |
| 1                                                               |            |             |               | <sup>1</sup> Indicators of hydric so             | il and wetland hydro             | logy must           |
| 2                                                               |            |             |               | be present, unless distr                         |                                  |                     |
|                                                                 |            |             |               | Hydrophytic                                      |                                  |                     |
| % Bare Ground in Herb Stratum % Cove                            | <u> </u>   |             |               | Vegetation Present? Ye                           | es <u> </u>                      |                     |
| Remarks:                                                        | C. C. D.O  |             |               |                                                  |                                  |                     |
|                                                                 |            |             | _             |                                                  |                                  |                     |
| Hordeum to early to identify to species le                      | vei. Assun | ned FAC     | <b>.</b> .    |                                                  |                                  |                     |
|                                                                 |            |             |               |                                                  |                                  |                     |
| 1                                                               |            |             |               |                                                  |                                  |                     |

SOIL Sampling Point: SEC-1

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| (inches)<br>0-12                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                 | Color (moist)                                                                                                       | %                                                                                                                                           | Type <sup>1</sup> Lo                                                 | oc² Textu                                            | ure Remarks                                                                                                                                                                                                                                                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0-12                                                                                                                                                                         | Color (moist)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 -                                                             | COLOR (INDIOL)                                                                                                      |                                                                                                                                             | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                              | CL                                                   | - Normanio                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                              | 10 YR 3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                                                     |                                                                                                                                             | <u> </u>                                                             |                                                      | <del>-</del>                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      | <u> </u>                                             |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     | ·                                                                                                                                           |                                                                      | <del></del>                                          |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      | 2 5. 5                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                                              | oncentration, D=Dep Indicators: (Applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      | <sup>2</sup> Location: PL=Pore Lining, M=Matrix.<br>eators for Problematic Hydric Soils <sup>3</sup> :                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | able to all LRI                                                   |                                                                                                                     |                                                                                                                                             | .)                                                                   |                                                      | ·                                                                                                                                                                                                                                                                   |  |  |  |  |
| Histosol                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | Sandy Red                                                                                                           |                                                                                                                                             |                                                                      |                                                      | 1 cm Muck (A9) (LRR C)                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                                              | pipedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | Stripped Ma                                                                                                         | ` '                                                                                                                                         | E4\                                                                  |                                                      | 2 cm Muck (A10) ( <b>LRR B</b> )                                                                                                                                                                                                                                    |  |  |  |  |
| Black Hi                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                                                                     | ky Mineral (I                                                                                                                               |                                                                      |                                                      | Reduced Vertic (F18)                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                              | en Sulfide (A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>C</b> \                                                        | Loamy Gley Depleted M                                                                                               | ed Matrix (F                                                                                                                                | -2)                                                                  |                                                      | Red Parent Material (TF2)                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                              | d Layers (A5) ( <b>LRR</b> (<br>uck (A9) ( <b>LRR D</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>C</b> )                                                        |                                                                                                                     | aแน (คร)<br>เ Surface (F6                                                                                                                   | 2)                                                                   | _ '                                                  | Other (Explain in Remarks)                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                              | וכא (A9) ( <b>באא ט</b> )<br>d Below Dark Surfac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | re (Δ11)                                                          |                                                                                                                     | с Surrace (Fo<br>ark Surface (                                                                                                              | ,                                                                    |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              | ark Surface (A12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CE (ATT)                                                          |                                                                                                                     | ressions (F8                                                                                                                                |                                                                      | <sup>3</sup> India                                   | cators of hydrophytic vegetation and                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                              | Mucky Mineral (S1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | Vernal Pool                                                                                                         | •                                                                                                                                           | ,                                                                    |                                                      | etland hydrology must be present,                                                                                                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                              | Gleyed Matrix (S4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | veman oo                                                                                                            | 3 (1 3)                                                                                                                                     |                                                                      |                                                      | unless disturbed or problematic.                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                              | Layer (if present):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      | rece distance of problematic.                                                                                                                                                                                                                                       |  |  |  |  |
| Type:                                                                                                                                                                        | _u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              | ches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   | <del>_</del>                                                                                                        |                                                                                                                                             |                                                                      | <b>U</b> vdri                                        | c Soil Present? Yes No                                                                                                                                                                                                                                              |  |  |  |  |
| Remarks:                                                                                                                                                                     | CHES).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   | _                                                                                                                   |                                                                                                                                             |                                                                      | пушт                                                 | C 3011 FTeSetit: TeS NO                                                                                                                                                                                                                                             |  |  |  |  |
| YDROLO                                                                                                                                                                       | CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              | Gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              | drology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                          |                                                                                                                     |                                                                                                                                             |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
| Wetland Hyd                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | neck all that appl                                                                                                  | y)                                                                                                                                          |                                                                      |                                                      | Secondary Indicators (2 or more required)                                                                                                                                                                                                                           |  |  |  |  |
| Netland Hyd<br>Primary Indic                                                                                                                                                 | drology Indicators:<br>cators (minimum of c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |                                                                                                                     | -                                                                                                                                           |                                                                      |                                                      |                                                                                                                                                                                                                                                                     |  |  |  |  |
| <b>Netland Hyd</b> Primary Indic  ✓ Surface                                                                                                                                  | drology Indicators:<br>cators (minimum of o<br>Water (A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | Salt Crust                                                                                                          | (B11)                                                                                                                                       |                                                                      |                                                      | Water Marks (B1) (Riverine)                                                                                                                                                                                                                                         |  |  |  |  |
| <b>Wetland Hyd</b><br>Primary Indic<br>✓ Surface<br>— High Wa                                                                                                                | drology Indicators:<br>cators (minimum of o<br>Water (A1)<br>ater Table (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | Salt Crust                                                                                                          | (B11)<br>st (B12)                                                                                                                           | (B13)                                                                |                                                      | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine)                                                                                                                                                                                                       |  |  |  |  |
| Netland Hyd<br>Primary Indic<br>✓ Surface<br>— High Wa<br>✓ Saturatio                                                                                                        | drology Indicators:<br>cators (minimum of o<br>Water (A1)<br>ater Table (A2)<br>on (A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | one required; cl                                                  | Salt Crust Biotic Crus Aquatic In                                                                                   | (B11)<br>st (B12)<br>vertebrates (                                                                                                          |                                                                      |                                                      | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine)                                                                                                                                                                        |  |  |  |  |
| Primary Indic Surface High Wa Saturatio Water M                                                                                                                              | drology Indicators:<br>cators (minimum of o<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>larks (B1) (Nonriver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | one required; cl                                                  | Salt Crust Biotic Crust Aquatic In Hydrogen                                                                         | (B11)<br>st (B12)<br>vertebrates (<br>Sulfide Odor                                                                                          | r (C1)                                                               |                                                      | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10)                                                                                                                                                |  |  |  |  |
| Wetland Hyd Primary Indic ✓ Surface — High Wa ✓ Saturatio — Water M — Sedimer                                                                                                | drology Indicators:<br>cators (minimum of o<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>darks (B1) (Nonriver<br>nt Deposits (B2) (No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | one required; cl<br>rine)<br>onriverine)                          | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F                                                              | (B11)<br>st (B12)<br>vertebrates (<br>Sulfide Odor<br>Rhizospheres                                                                          | r (C1)<br>s along Livin                                              | g Roots (C3)                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2)                                                                                                                    |  |  |  |  |
| Primary Indic Surface High Wa Saturatic Water M Sedimer Drift Dep                                                                                                            | drology Indicators:<br>cators (minimum of o<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>darks (B1) (Nonriver<br>of Deposits (B2) (No<br>posits (B3) (Nonriver)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | one required; cl<br>rine)<br>onriverine)                          | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence                                                     | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced                                                                           | r (C1)<br>s along Livin<br>Iron (C4)                                 | g Roots (C3)                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)                                                                                              |  |  |  |  |
| Primary Indic  ✓ Surface  — High Wa  ✓ Saturatio  — Water M  — Sedimer  — Drift Dep  — Surface                                                                               | drology Indicators:<br>cators (minimum of o<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>darks (B1) (Nonriver<br>nt Deposits (B2) (No<br>posits (B3) (Nonriver<br>Soil Cracks (B6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | one required; cl<br>rine)<br>onriverine)<br>orine)                | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro                                          | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced in Reduction                                                              | r (C1)<br>s along Livin<br>Iron (C4)<br>in Tilled Soi                | g Roots (C3)                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)                                                    |  |  |  |  |
| Primary Indic ✓ Surface ✓ High Wa ✓ Saturatic ✓ Water M ✓ Sedimer ✓ Drift Dep ✓ Surface ✓ Inundation                                                                         | drology Indicators:<br>cators (minimum of of<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>larks (B1) (Nonriver<br>nt Deposits (B2) (No<br>posits (B3) (Nonriver<br>Soil Cracks (B6)<br>on Visible on Aerial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | one required; cl<br>rine)<br>onriverine)<br>orine)                | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck                                | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7                                                | r (C1)<br>s along Livin<br>Iron (C4)<br>in Tilled Soi<br>7)          | g Roots (C3)<br>ls (C6)                              | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                              |  |  |  |  |
| Primary Indic ✓ Surface ✓ High Wa ✓ Saturatio ✓ Water M ✓ Sedimer ✓ Drift Dep ✓ Surface ✓ Inundatio ✓ Water-S                                                                | drology Indicators:<br>cators (minimum of of<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>darks (B1) (Nonriver<br>nt Deposits (B2) (No<br>posits (B3) (Nonriver<br>Soil Cracks (B6)<br>on Visible on Aerial<br>stained Leaves (B9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | one required; cl<br>rine)<br>onriverine)<br>orine)                | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck                                | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced in Reduction                                                              | r (C1)<br>s along Livin<br>Iron (C4)<br>in Tilled Soi<br>7)          | g Roots (C3)<br>ls (C6)                              | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)                                                    |  |  |  |  |
| Primary Indic  ✓ Surface  High Wa  ✓ Saturatio  Water M  Sedimer  Drift Dep  Surface  Inundatio  Water-S  Field Obser                                                        | drology Indicators: cators (minimum of of of other (A1) ater Table (A2) on (A3) darks (B1) (Nonriver of Deposits (B2) (Nonriver of Deposits (B3) (Nonriver of Cracks (B6) on Visible on Aerial of tained Leaves (B9) vations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rine) priverine) priverine) prine) Imagery (B7)                   | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp                     | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 blain in Rema                                  | r (C1)<br>s along Livin<br>Iron (C4)<br>in Tilled Soi<br>7)<br>arks) | g Roots (C3)<br>ls (C6)                              | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3)                               |  |  |  |  |
| Primary Indic Surface High Wa Saturatic Water M Sedimer Drift Dep Surface Inundatic Water-S Field Obser                                                                      | drology Indicators: cators (minimum of o Water (A1) ater Table (A2) on (A3) darks (B1) (Nonriver nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) on Visible on Aerial stained Leaves (B9) vations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rine) enriverine) erine) Imagery (B7)                             | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp                     | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction : Surface (C7 clain in Remain                                | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)                | g Roots (C3)<br>ls (C6)                              | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3)                               |  |  |  |  |
| Primary Indic  ✓ Surface  High Wa  ✓ Saturatio  Water M  Sedimer  Drift Dep  Surface  Inundatio  Water-S  Field Obser                                                        | drology Indicators: cators (minimum of of of other (A1) ater Table (A2) on (A3) larks (B1) (Nonriver of the Deposits (B2) (Nonriver of Deposits (B3) (Nonriver of Cracks (B6) on Visible on Aerial stained Leaves (B9) vations: er Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rine) Imagery (B7)  Yes No                                        | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp                     | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 blain in Remainance): ches):                   | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)                | g Roots (C3)<br>ls (C6)                              | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)         |  |  |  |  |
| Primary Indic Surface High Wa Saturatio Water M Sedimer Drift Dep Surface Inundatio Water-S Field Obser Surface Water Water Table Saturation Po                              | drology Indicators: cators (minimum of of of other (A1) ater Table (A2) on (A3) darks (B1) (Nonriver of other of other (B2) (No other (B3) (Nonriver of other othe | rine) Imagery (B7)  Yes No                                        | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp                     | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 blain in Remainance): ches):                   | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)                | g Roots (C3)<br>ls (C6)                              | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)         |  |  |  |  |
| Primary Indic Surface High Wa Saturatio Water M Sedimer Drift Dep Surface Inundatio Water-S Field Obser Surface Water Vater Table Saturation Princludes cap                  | drology Indicators: cators (minimum of of of other (A1) ater Table (A2) on (A3) larks (B1) (Nonriver of the Deposits (B2) (Nonriver of Deposits (B3) (Nonriver of Cracks (B6)) on Visible on Aerial of the Deposits (B9) vations: er Present? Present? Yesent? Yesent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rine) priverine) priverine) lmagery (B7)  //es No //es No //es No | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp Depth (in Depth (in | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 blain in Remainance): ches): ches): ches): 0-3 | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)                | g Roots (C3) ls (C6)  Wetland Hyd                    | Water Marks (B1) (Riverine)  Sediment Deposits (B2) (Riverine)  Drift Deposits (B3) (Riverine)  Drainage Patterns (B10)  Dry-Season Water Table (C2)  Crayfish Burrows (C8)  Saturation Visible on Aerial Imagery (C9  Shallow Aquitard (D3)  FAC-Neutral Test (D5) |  |  |  |  |
| Primary Indic Surface High Wa Saturatio Water M Sedimer Drift Dep Surface Inundatio Water-S Field Obser Surface Water Vater Table Saturation Princludes cap                  | drology Indicators: cators (minimum of of of other (A1) ater Table (A2) on (A3) darks (B1) (Nonriver of other of other (B2) (No other (B3) (Nonriver of other othe | rine) priverine) priverine) lmagery (B7)  //es No //es No //es No | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp Depth (in Depth (in | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 blain in Remainance): ches): ches): ches): 0-3 | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)                | g Roots (C3) ls (C6)  Wetland Hyd                    | Water Marks (B1) (Riverine)  Sediment Deposits (B2) (Riverine)  Drift Deposits (B3) (Riverine)  Drainage Patterns (B10)  Dry-Season Water Table (C2)  Crayfish Burrows (C8)  Saturation Visible on Aerial Imagery (C9  Shallow Aquitard (D3)  FAC-Neutral Test (D5) |  |  |  |  |
| Primary Indic Surface High Wa Saturatio Water M Sedimer Drift Dep Surface Inundatio Water-S Field Obser Surface Water Vater Table Saturation Princludes cap                  | drology Indicators: cators (minimum of of of other (A1) ater Table (A2) on (A3) larks (B1) (Nonriver of the Deposits (B2) (Nonriver of Deposits (B3) (Nonriver of Cracks (B6)) on Visible on Aerial of the Deposits (B9) vations: er Present? Present? Yesent? Yesent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rine) priverine) priverine) lmagery (B7)  //es No //es No //es No | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp Depth (in Depth (in | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 blain in Remainance): ches): ches): ches): 0-3 | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)                | g Roots (C3) ls (C6)  Wetland Hyd                    | Water Marks (B1) (Riverine)  Sediment Deposits (B2) (Riverine)  Drift Deposits (B3) (Riverine)  Drainage Patterns (B10)  Dry-Season Water Table (C2)  Crayfish Burrows (C8)  Saturation Visible on Aerial Imagery (C9  Shallow Aquitard (D3)  FAC-Neutral Test (D5) |  |  |  |  |
| Primary Indic V Surface High Wa V Saturatio Water M Sedimer Drift Dep Surface Inundatio Water-S Field Obser Surface Water Water Table Saturation Princludes cap Describe Ren | drology Indicators: cators (minimum of of or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rine) Imagery (B7)  /es No /es No                                 | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp Depth (in Depth (in | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 plain in Rema ches): ches): photos, prev       | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)  ious inspecti | g Roots (C3)  Is (C6)  Wetland Hyd  ons), if availab | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)         |  |  |  |  |
| Primary Indic V Surface High Wa V Saturatio Water M Sedimer Drift Dep Surface Inundatio Water-S Field Obser Surface Water Water Table Saturation Princludes cap Describe Ren | drology Indicators: cators (minimum of of of other (A1) ater Table (A2) on (A3) larks (B1) (Nonriver of the Deposits (B2) (Nonriver of Deposits (B3) (Nonriver of Cracks (B6)) on Visible on Aerial of the Deposits (B9) vations: er Present? Present? Yesent? Yesent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rine) Imagery (B7)  /es No /es No                                 | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp Depth (in Depth (in | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 plain in Rema ches): ches): photos, prev       | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)  ious inspecti | g Roots (C3)  Is (C6)  Wetland Hyd  ons), if availab | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)         |  |  |  |  |
| Primary Indic V Surface High Wa V Saturatio Water M Sedimer Drift Dep Surface Inundatio Water-S Field Obser Surface Water Water Table Saturation Princludes cap Describe Ren | drology Indicators: cators (minimum of of or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rine) Imagery (B7)  /es No /es No                                 | Salt Crust Biotic Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro Thin Muck Other (Exp Depth (in Depth (in | (B11) st (B12) vertebrates ( Sulfide Odor Rhizospheres of Reduced on Reduction s Surface (C7 plain in Rema ches): ches): photos, prev       | r (C1) s along Livin lron (C4) in Tilled Soi 7) arks)  ious inspecti | g Roots (C3)  Is (C6)  Wetland Hyd  ons), if availab | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)         |  |  |  |  |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: Sutter Decarbonization Project                 | City/County: Sutter                                        | County                    | Sampling Date:1/05/2024                  |
|--------------------------------------------------------------|------------------------------------------------------------|---------------------------|------------------------------------------|
| Applicant/Owner: Calpine                                     |                                                            | State: CA                 | Sampling Point: SEC-2                    |
| Investigator(s): Kevin Fisher                                | Section, Township, R                                       | tange: 24, 14N, 2E        |                                          |
| Landform (hillslope, terrace, etc.): Valley                  | Local relief (concave                                      | e, convex, none): none    | Slope (%):<1_                            |
| Subregion (LRR): C                                           | Lat: 39.054239                                             | Long: -121.698583         | Datum: WGS 84                            |
| Soil Map Unit Name: Gridley                                  |                                                            | NWI classific             | ation: None                              |
| Are climatic / hydrologic conditions on the site typical for |                                                            |                           |                                          |
| Are Vegetation, Soil, or Hydrology                           | •                                                          |                           | oresent? Yes <u> </u>                    |
| Are Vegetation, Soil, or Hydrology                           | -                                                          | needed, explain any answe |                                          |
| SUMMARY OF FINDINGS – Attach site ma                         |                                                            | -                         |                                          |
|                                                              |                                                            | Totalions, transcols      | , important routures, etc.               |
|                                                              | No / Is the Sample                                         | ed Area                   |                                          |
| Hydric Soil Present? Yes  Wetland Hydrology Present? Yes✓    |                                                            | and? Yes                  | No <u> </u>                              |
| Remarks:                                                     | <u> </u>                                                   |                           |                                          |
| Sample point established in swale with s                     | surface nonding/saturation                                 | n                         |                                          |
| Sample point established in swale with s                     | surface portuing/saturation                                | 1                         |                                          |
|                                                              |                                                            |                           |                                          |
| VEGETATION – Use scientific names of pl                      |                                                            | Donalis and Tables of     | -14                                      |
| Tree Stratum (Plot size:)                                    | Absolute Dominant Indicator <u>% Cover Species? Status</u> |                           |                                          |
| 1.                                                           |                                                            | That Are OBL, FACW,       |                                          |
| 2                                                            |                                                            | Total Number of Domin     | ant                                      |
| 3                                                            |                                                            |                           |                                          |
| 4                                                            |                                                            | Percent of Dominant S     | pecies                                   |
| Sapling/Shrub Stratum (Plot size:)                           | = Total Cover                                              | That Are OBL, FACW,       | or FAC:0% (A/B)                          |
| 1                                                            |                                                            | Prevalence Index wor      | ksheet:                                  |
| 2.                                                           |                                                            |                           | Multiply by:                             |
| 3                                                            |                                                            |                           | x 1 =                                    |
| 4                                                            |                                                            | - I                       | x 2 =                                    |
| 5                                                            |                                                            | _                         | x 3 =                                    |
| Herb Stratum (Plot size: 1m )                                | = Total Cover                                              | •                         | x 4 =                                    |
| 1. Cynodon dactylon                                          |                                                            | UPL species               |                                          |
| 2. Avena sp.                                                 |                                                            | Column rotals.            | (A) (B)                                  |
| 3                                                            |                                                            | Prevalence Index          | = B/A =                                  |
| 4                                                            |                                                            | Hydrophytic Vegetation    |                                          |
| 5                                                            |                                                            | Dominance Test is         |                                          |
| 6                                                            |                                                            | Prevalence Index is       | s ≤3.0°<br>ptations¹ (Provide supporting |
| 7                                                            |                                                            |                           | s or on a separate sheet)                |
| 8                                                            | = Total Cover                                              | Problematic Hydro         | phytic Vegetation <sup>1</sup> (Explain) |
| Woody Vine Stratum (Plot size:)                              |                                                            |                           |                                          |
| 1                                                            |                                                            | Indicators of hydric soi  | l and wetland hydrology must             |
| 2                                                            |                                                            | -                         | inded of problematic.                    |
|                                                              | = Total Cover                                              | Hydrophytic<br>Vegetation |                                          |
| % Bare Ground in Herb Stratum                                | over of Biotic Crust                                       |                           | s No <u> </u>                            |
| Remarks:                                                     |                                                            |                           |                                          |
|                                                              |                                                            |                           |                                          |
|                                                              |                                                            |                           |                                          |
|                                                              |                                                            |                           |                                          |

SOIL Sampling Point: SEC-2

| Profile Description: (Describe to the depth needed to docum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nent the indicator                                                                                                                                                                                  | or confirm       | i the absence                            | or marcators.                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x Features                                                                                                                                                                                          |                  |                                          |                                                                                                                                                                                                                                                              |
| (inches) Color (moist) % Color (moist)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>%</u> Type <sup>1</sup>                                                                                                                                                                          | Loc <sup>2</sup> | <u>Texture</u>                           | Remarks                                                                                                                                                                                                                                                      |
| 0-12 10 YR 3/2 100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | -                | _                                        | -                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · <del></del>                                                                                                                                                                                       | - ——             |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · <del></del>                                                                                                                                                                                       | - ——             |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · <del></del>                                                                                                                                                                                       |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · ·                                                                                                                                                                                                 | <u> </u>         |                                          |                                                                                                                                                                                                                                                              |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     |                  | 21 -                                     | estion Di Dona Linia M Matrix                                                                                                                                                                                                                                |
| <sup>1</sup> Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS Hydric Soil Indicators: (Applicable to all LRRs, unless other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | ed Sand Gr       |                                          | cation: PL=Pore Lining, M=Matrix.  for Problematic Hydric Soils <sup>3</sup> :                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          | ·                                                                                                                                                                                                                                                            |
| Histosol (A1) Sandy Redo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ,                                                                                                                                                                                                 |                  |                                          | Muck (A9) (LRR C)                                                                                                                                                                                                                                            |
| Histic Epipedon (A2) Stripped Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                     |                  |                                          | Muck (A10) (LRR B)                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ky Mineral (F1)                                                                                                                                                                                     |                  |                                          | ed Vertic (F18)                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | red Matrix (F2)                                                                                                                                                                                     |                  |                                          | arent Material (TF2)                                                                                                                                                                                                                                         |
| Stratified Layers (A5) (LRR C) Depleted Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,                                                                                                                                                                                                 |                  | Other                                    | (Explain in Remarks)                                                                                                                                                                                                                                         |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surface (F6)                                                                                                                                                                                        |                  |                                          |                                                                                                                                                                                                                                                              |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ark Surface (F7)                                                                                                                                                                                    |                  | 31                                       | -florida-abotic constation and                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ressions (F8)                                                                                                                                                                                       |                  |                                          | of hydrophytic vegetation and                                                                                                                                                                                                                                |
| Sandy Mucky Mineral (S1) Vernal Pools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s (F9)                                                                                                                                                                                              |                  |                                          | hydrology must be present, isturbed or problematic.                                                                                                                                                                                                          |
| Sandy Gleyed Matrix (S4)  Restrictive Layer (if present):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |                  | uniess d                                 | isturbed or problematic.                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
| Depth (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  | Hydric Soil                              | Present? Yes No                                                                                                                                                                                                                                              |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
| HYDROLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
| HYDROLOGY Wetland Hydrology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                  |                                          |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y)                                                                                                                                                                                                  |                  | Secor                                    | ndary Indicators (2 or more required)                                                                                                                                                                                                                        |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                   |                  |                                          | ndary Indicators (2 or more required)                                                                                                                                                                                                                        |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply  ✓ Surface Water (A1) Salt Crust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B11)                                                                                                                                                                                               |                  | v                                        | Vater Marks (B1) (Riverine)                                                                                                                                                                                                                                  |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust         High Water Table (A2)       Biotic Crust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B11)<br>et (B12)                                                                                                                                                                                   |                  | v<br>s                                   | Vater Marks (B1) ( <b>Riverine</b> )<br>dediment Deposits (B2) ( <b>Riverine</b> )                                                                                                                                                                           |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust         High Water Table (A2)       Biotic Crust         ✓ Saturation (A3)       Aquatic Inv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B11)<br>st (B12)<br>vertebrates (B13)                                                                                                                                                              |                  | v<br>s<br>c                              | Vater Marks (B1) ( <b>Riverine</b> )<br>sediment Deposits (B2) ( <b>Riverine</b> )<br>orift Deposits (B3) ( <b>Riverine</b> )                                                                                                                                |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust of the solid properties of                                                                                        | (B11)<br>st (B12)<br>vertebrates (B13)<br>Sulfide Odor (C1)                                                                                                                                         |                  | v<br>s<br>d                              | Vater Marks (B1) ( <b>Riverine</b> ) sediment Deposits (B2) ( <b>Riverine</b> ) prift Deposits (B3) ( <b>Riverine</b> ) prainage Patterns (B10)                                                                                                              |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust of Salt                                                                                                         | (B11)<br>st (B12)<br>vertebrates (B13)<br>Sulfide Odor (C1)<br>khizospheres along                                                                                                                   | _                | V<br>S<br>D<br>D                         | Vater Marks (B1) ( <b>Riverine</b> ) sediment Deposits (B2) ( <b>Riverine</b> ) strift Deposits (B3) ( <b>Riverine</b> ) strainage Patterns (B10) stry-Season Water Table (C2)                                                                               |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust         — High Water Table (A2)       Biotic Crust         ✓ Saturation (A3)       Aquatic Inv         — Water Marks (B1) (Nonriverine)       Hydrogen Stediment Deposits (B2) (Nonriverine)         — Drift Deposits (B3) (Nonriverine)       Presence of the color                                                                                                                                                                                                                                               | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C                                                                                                            | 4)               | V<br>S<br>D<br>D<br>ats (C3) D           | Vater Marks (B1) ( <b>Riverine</b> ) sediment Deposits (B2) ( <b>Riverine</b> ) brift Deposits (B3) ( <b>Riverine</b> ) brainage Patterns (B10) bry-Season Water Table (C2) brayfish Burrows (C8)                                                            |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust         — High Water Table (A2)       Biotic Crust         ✓ Saturation (A3)       Aquatic Inv         — Water Marks (B1) (Nonriverine)       Hydrogen Stediment Deposits (B2) (Nonriverine)         — Drift Deposits (B3) (Nonriverine)       Presence of the color                                                                                                                                                                                                                                               | (B11)<br>st (B12)<br>vertebrates (B13)<br>Sulfide Odor (C1)<br>khizospheres along                                                                                                                   | 4)               | V<br>S<br>D<br>D<br>ats (C3) D           | Vater Marks (B1) ( <b>Riverine</b> ) sediment Deposits (B2) ( <b>Riverine</b> ) strift Deposits (B3) ( <b>Riverine</b> ) strainage Patterns (B10) stry-Season Water Table (C2)                                                                               |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust         — High Water Table (A2)       Biotic Crust         ✓ Saturation (A3)       Aquatic Inv         — Water Marks (B1) (Nonriverine)       Hydrogen Stediment Deposits (B2) (Nonriverine)         — Drift Deposits (B3) (Nonriverine)       Presence of the color                                                                                                                                                                                                                                               | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Till                                                                                        | 4)               | V<br>C<br>C<br>C<br>C<br>C               | Vater Marks (B1) ( <b>Riverine</b> ) sediment Deposits (B2) ( <b>Riverine</b> ) brift Deposits (B3) ( <b>Riverine</b> ) brainage Patterns (B10) bry-Season Water Table (C2) brayfish Burrows (C8)                                                            |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply  ✓ Surface Water (A1) Salt Crust  High Water Table (A2) Biotic Crust  ✓ Saturation (A3) Aquatic Inv  Water Marks (B1) (Nonriverine) Hydrogen S  Sediment Deposits (B2) (Nonriverine) Oxidized R  Drift Deposits (B3) (Nonriverine) Presence C  Surface Soil Cracks (B6) Recent Iron  Inundation Visible on Aerial Imagery (B7) Thin Muck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Till                                                                                        | 4)               | V<br>S<br>C<br>C<br>sts (C3) C<br>C      | Vater Marks (B1) ( <b>Riverine</b> ) Rediment Deposits (B2) ( <b>Riverine</b> ) Orift Deposits (B3) ( <b>Riverine</b> ) Originage Patterns (B10) Ory-Season Water Table (C2) Crayfish Burrows (C8) Reduction Visible on Aerial Imagery (C9)                  |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply  ✓ Surface Water (A1) Salt Crust  High Water Table (A2) Biotic Crust  ✓ Saturation (A3) Aquatic Inv  Water Marks (B1) (Nonriverine) Hydrogen S  Sediment Deposits (B2) (Nonriverine) Oxidized R  Drift Deposits (B3) (Nonriverine) Presence C  Surface Soil Cracks (B6) Recent Iron  Inundation Visible on Aerial Imagery (B7) Thin Muck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Tille Surface (C7)                                                                          | 4)               | V<br>S<br>C<br>C<br>sts (C3) C<br>C      | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Porattanton Visible on Aerial Imagery (C9) Porallow Aquitard (D3)                 |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply  ✓ Surface Water (A1) Salt Crust of the salt o | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Tille Surface (C7) plain in Remarks)                                                        | 4)               | V<br>S<br>C<br>C<br>sts (C3) C<br>C      | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Porattanton Visible on Aerial Imagery (C9) Porallow Aquitard (D3)                 |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply  ✓ Surface Water (A1) Salt Crust  — High Water Table (A2) Biotic Crust  ✓ Saturation (A3) Aquatic Inv  — Water Marks (B1) (Nonriverine) Hydrogen Sediment Deposits (B2) (Nonriverine) Oxidized R  — Drift Deposits (B3) (Nonriverine) Presence Compared to the property of the property of the property (B7) Thin Muck  — Water-Stained Leaves (B9) Other (Exp. Field Observations:  Surface Water Present? Yes No Depth (incompared to the property of the pro                                                        | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Tille Surface (C7) plain in Remarks) ches): 3                                               | ed Soils (C6     | V<br>S<br>C<br>C<br>sts (C3) C<br>C      | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Porattanton Visible on Aerial Imagery (C9) Porallow Aquitard (D3)                 |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust         High Water Table (A2)       Biotic Crust         ✓ Saturation (A3)       Aquatic Inv         Water Marks (B1) (Nonriverine)       Hydrogen Salt (B2) (Nonriverine)         Sediment Deposits (B2) (Nonriverine)       Presence Call (B3) (Nonriverine)         Surface Soil Cracks (B6)       Recent Iron (B7)         Inundation Visible on Aerial Imagery (B7)       Thin Muck (Exp         Water-Stained Leaves (B9)       Other (Exp         Field Observations:         Surface Water Present?       Yes No Depth (incompared)         Water Table Present?       Yes No Depth (incompared)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Tillo Surface (C7) plain in Remarks) ches):                                                 | ed Soils (C6     | V<br>S<br>C<br>C<br>sts (C3) C<br>S<br>S | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Poraturation Visible on Aerial Imagery (C9) Porallow Aquitard (D3) Poraction (D5) |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply  ✓ Surface Water (A1) Salt Crust  — High Water Table (A2) Biotic Crust  ✓ Saturation (A3) Aquatic Inv  — Water Marks (B1) (Nonriverine) Hydrogen Sediment Deposits (B2) (Nonriverine) Oxidized R  — Drift Deposits (B3) (Nonriverine) Presence Compared to the property of the property of the property (B7) Thin Muck  — Water-Stained Leaves (B9) Other (Exp. Field Observations:  Surface Water Present? Yes No Depth (incompared to the property of the pro                                                        | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Tillo Surface (C7) plain in Remarks) ches):                                                 | ed Soils (C6     | V<br>S<br>C<br>C<br>sts (C3) C<br>S<br>S | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Porattanton Visible on Aerial Imagery (C9) Porallow Aquitard (D3)                 |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply  ✓ Surface Water (A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Tillo Surface (C7) plain in Remarks) ches): ches):                                          | 4) ed Soils (C6  | V<br>S<br>D<br>ats (C3) D<br>S<br>S<br>F | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Poraturation Visible on Aerial Imagery (C9) Porallow Aquitard (D3) Poraction (D5) |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust         High Water Table (A2)       Biotic Crust         ✓ Saturation (A3)       Aquatic Inv         Water Marks (B1) (Nonriverine)       Hydrogen Strongen Structure         Sediment Deposits (B2) (Nonriverine)       Oxidized R         Drift Deposits (B3) (Nonriverine)       Presence of Recent Irongental Involvential Involv                                                                                                                                                                                                                                                                                                                                          | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Tillo Surface (C7) plain in Remarks) ches): ches):                                          | 4) ed Soils (C6  | V<br>S<br>D<br>ats (C3) D<br>S<br>S<br>F | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Poraturation Visible on Aerial Imagery (C9) Porallow Aquitard (D3) Poraction (D5) |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust         High Water Table (A2)       Biotic Crust         ✓ Saturation (A3)       Aquatic Inv         Water Marks (B1) (Nonriverine)       Hydrogen Strongen Structure         Sediment Deposits (B2) (Nonriverine)       Oxidized R         Drift Deposits (B3) (Nonriverine)       Presence of Recent Irongental Involvential Involv                                                                                                                                                                                                                                                                                                                                          | (B11) st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C n Reduction in Tillo Surface (C7) plain in Remarks) ches): ches):                                          | 4) ed Soils (C6  | V<br>S<br>D<br>ats (C3) D<br>S<br>S<br>F | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Poraturation Visible on Aerial Imagery (C9) Porallow Aquitard (D3) Poraction (D5) |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B11)  It (B12)  Vertebrates (B13)  Sulfide Odor (C1)  Rhizospheres along of Reduced Iron (C In Reduction in Tille Surface (C7)  Islain in Remarks)  Ches):  Ches):  Ches):  O  Ohotos, previous in | 4) ed Soils (C6  | V<br>S<br>D<br>ats (C3) D<br>S<br>S<br>F | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Poraturation Visible on Aerial Imagery (C9) Porallow Aquitard (D3) Poraction (D5) |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust or         High Water Table (A2)       Biotic Crust or         Saturation (A3)       Aquatic Inv.         Water Marks (B1) (Nonriverine)       Hydrogen in the property of the                                                                                                                                                                                                                                                    | (B11)  It (B12)  Vertebrates (B13)  Sulfide Odor (C1)  Rhizospheres along of Reduced Iron (C In Reduction in Tille Surface (C7)  Islain in Remarks)  Ches):  Ches):  Ches):  O  Ohotos, previous in | 4) ed Soils (C6  | V<br>S<br>D<br>ats (C3) D<br>S<br>S<br>F | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Poraturation Visible on Aerial Imagery (C9) Porallow Aquitard (D3) Poraction (D5) |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B11)  It (B12)  Vertebrates (B13)  Sulfide Odor (C1)  Rhizospheres along of Reduced Iron (C In Reduction in Tille Surface (C7)  Islain in Remarks)  Ches):  Ches):  Ches):  O  Ohotos, previous in | 4) ed Soils (C6  | V<br>S<br>D<br>ats (C3) D<br>S<br>S<br>F | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Poraturation Visible on Aerial Imagery (C9) Porallow Aquitard (D3) Poraction (D5) |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; check all that apply         ✓ Surface Water (A1)       Salt Crust or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B11)  It (B12)  Vertebrates (B13)  Sulfide Odor (C1)  Rhizospheres along of Reduced Iron (C In Reduction in Tille Surface (C7)  Islain in Remarks)  Ches):  Ches):  Ches):  O  Ohotos, previous in | 4) ed Soils (C6  | V<br>S<br>D<br>ats (C3) D<br>S<br>S<br>F | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Porift Deposits (B3) (Riverine) Porainage Patterns (B10) Pory-Season Water Table (C2) Porayfish Burrows (C8) Poraturation Visible on Aerial Imagery (C9) Porallow Aquitard (D3) Poraction (D5) |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: Sutter Decarbonization Project                 | Ci                 | ty/County: Sutte                     | r County                                                           | _ Sampling Date: _   | 1/05/2024    |
|--------------------------------------------------------------|--------------------|--------------------------------------|--------------------------------------------------------------------|----------------------|--------------|
| Applicant/Owner: Calpine                                     |                    |                                      | State: CA                                                          | _ Sampling Point: _  | SEC-3        |
| Investigator(s): Kevin Fisher                                | Se                 | ection, Township,                    | Range: 24, 14N, 2E                                                 |                      |              |
| Landform (hillslope, terrace, etc.): Valley                  | L                  | ocal relief (concav                  | ve, convex, none): none                                            | Slop                 | oe (%): <1   |
| Subregion (LRR): C                                           | Lat: 39.05         | 5388                                 | Long: -121.698928                                                  | Datur                | n: WGS 84    |
|                                                              |                    |                                      | NWI classifi                                                       | ication: None        |              |
| Are climatic / hydrologic conditions on the site typical for |                    | _                                    |                                                                    |                      |              |
| Are Vegetation, Soil, or Hydrology                           | -                  |                                      | are "Normal Circumstances"                                         |                      | <b>N</b> o   |
| Are Vegetation, Soil, or Hydrology                           |                    |                                      | If needed, explain any answ                                        |                      |              |
| SUMMARY OF FINDINGS – Attach site ma                         |                    |                                      |                                                                    |                      | atures, etc. |
|                                                              | <u> </u>           |                                      |                                                                    | •                    | ,            |
|                                                              | No                 | Is the Samp                          |                                                                    |                      |              |
|                                                              | No                 | within a We                          | tland? Yes                                                         | No <u> </u>          |              |
| Remarks:                                                     |                    |                                      |                                                                    |                      |              |
| <br>  Sample point established in shallow dito               | ch with surfa      | ce nonding/s                         | aturation                                                          |                      |              |
| Sample point established in shallow dite                     | cii witti saria    | cc portaing/s                        | ataration                                                          |                      |              |
| VEGETATION II : (if)                                         |                    |                                      |                                                                    |                      |              |
| VEGETATION – Use scientific names of p                       |                    |                                      |                                                                    |                      |              |
| Tree Stratum (Plot size:)                                    |                    | Dominant Indicate<br>Species? Status |                                                                    |                      |              |
| 1                                                            |                    |                                      | <ul><li>Number of Dominant S</li><li>That Are OBL, FACW,</li></ul> |                      | (A)          |
| 2                                                            |                    |                                      | Total Number of Domi                                               |                      | ` ,          |
| 3                                                            |                    |                                      |                                                                    |                      | (B)          |
| 4                                                            |                    |                                      | Percent of Dominant S                                              | Snecies              |              |
| Capling/Chrush Stratum / Dlat aires                          | =                  | Total Cover                          | That Are OBL, FACW,                                                |                      | (A/B)        |
| Sapling/Shrub Stratum (Plot size:)  1                        |                    |                                      | Prevalence Index wo                                                | rksheet              |              |
| 2.                                                           |                    |                                      | Total % Cover of:                                                  |                      | bv:          |
| 3.                                                           |                    |                                      | OBL species                                                        |                      | -            |
| 4.                                                           |                    |                                      | FACW species                                                       |                      |              |
| 5                                                            |                    |                                      | FAC species                                                        | x 3 =                |              |
|                                                              |                    | Total Cover                          | FACU species                                                       | x 4 =                |              |
| Herb Stratum (Plot size: 1m )                                | O.F.               | V                                    | UPL species                                                        | x 5 =                |              |
| Cynodon dactylon     Cyperus eragrostis                      |                    | Y FACU<br>N FACV                     | Column rotals.                                                     | (A)                  | (B)          |
| 3.                                                           |                    |                                      |                                                                    | x = B/A =            |              |
| 4                                                            |                    |                                      | Hydrophytic Vegetat                                                |                      |              |
| 5.                                                           |                    |                                      | Dominance Test is                                                  | s >50%               |              |
| 6.                                                           |                    |                                      | Prevalence Index                                                   | is ≤3.0 <sup>1</sup> |              |
| 7                                                            |                    |                                      |                                                                    | aptations¹ (Provide  |              |
| 8                                                            |                    |                                      | data in Remari                                                     | ks or on a separate  |              |
| Manda Vina Otratura (District                                | 100 =              | Total Cover                          | Problematic Hydro                                                  | opriyiic vegetation  | (⊏xpiairi)   |
| Woody Vine Stratum (Plot size:)                              |                    |                                      | <sup>1</sup> Indicators of hydric so                               | oil and wetland hydr | ology must   |
| 1                                                            |                    |                                      | be present, unless dis                                             |                      |              |
| 2                                                            |                    | Total Cover                          | Hydrophytic                                                        |                      |              |
| N/ Page Occupation Harth Objections                          |                    |                                      | Vegetation                                                         | a. Na                |              |
| % Bare Ground in Herb Stratum % C                            | over of Blotic Cru | SI                                   | Present? Yo                                                        | es No                |              |
| Remarks:                                                     |                    |                                      |                                                                    |                      |              |
|                                                              |                    |                                      |                                                                    |                      |              |
|                                                              |                    |                                      |                                                                    |                      |              |
|                                                              |                    |                                      |                                                                    |                      |              |

SOIL Sampling Point: SEC-3

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| Depth                          | Matrix                    |               |                       | x Features       |                   |                  |                         |                                                |
|--------------------------------|---------------------------|---------------|-----------------------|------------------|-------------------|------------------|-------------------------|------------------------------------------------|
| (inches)                       | Color (moist)             | <u>%</u>      | Color (moist)         | %                | Type <sup>1</sup> | Loc <sup>2</sup> | Texture                 | Remarks                                        |
| 0-12                           | 10 YR 3/2                 | 100           | <u>-</u>              |                  |                   |                  | CL                      | <u>-                                      </u> |
|                                | •                         |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  | -                       |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  | -                       |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
| ¹Type: C=Co                    | oncentration, D=Dep       | oletion RM=   | Reduced Matrix CS     | S=Covered        | d or Coate        | ed Sand G        | raine <sup>2</sup> l o  | cation: PL=Pore Lining, M=Matrix.              |
|                                | ndicators: (Applic        |               |                       |                  |                   | od Odrid O       |                         | for Problematic Hydric Soils <sup>3</sup> :    |
| Histosol                       |                           |               | Sandy Red             |                  | ou.,              |                  |                         | Muck (A9) ( <b>LRR C</b> )                     |
|                                | oipedon (A2)              |               | Stripped Ma           | . ,              |                   |                  | ·                       | Muck (A10) ( <b>LRR B</b> )                    |
| Black His                      |                           |               | Loamy Muc             |                  | l (F1)            |                  |                         | eed Vertic (F18)                               |
|                                | n Sulfide (A4)            |               | Loamy Gley            | -                | . ,               |                  | ·                       | arent Material (TF2)                           |
|                                | Layers (A5) (LRR          | C)            | Depleted M            |                  | (1 2)             |                  |                         | (Explain in Remarks)                           |
| · <del></del>                  | ick (A9) ( <b>LRR D</b> ) | •,            | Redox Dark            | . ,              | F6)               |                  | 001                     | (Explain in Femalite)                          |
|                                | Below Dark Surfac         | e (A11)       | Depleted D            |                  | ,                 |                  |                         |                                                |
|                                | ark Surface (A12)         | ,             | Redox Dep             |                  |                   |                  | <sup>3</sup> Indicators | of hydrophytic vegetation and                  |
|                                | lucky Mineral (S1)        |               | Vernal Pool           |                  | ,                 |                  |                         | hydrology must be present,                     |
| Sandy G                        | Bleyed Matrix (S4)        |               |                       |                  |                   |                  | unless d                | listurbed or problematic.                      |
| Restrictive L                  | ayer (if present):        |               |                       |                  |                   |                  |                         |                                                |
| Type:                          |                           |               |                       |                  |                   |                  |                         |                                                |
| Depth (inc                     | ches):                    |               |                       |                  |                   |                  | Hydric Soil             | Present? Yes No                                |
| Remarks:                       |                           |               |                       |                  |                   |                  | ,                       |                                                |
| No hydrid                      | c soil indicator          | s. Soil wa    | s allowed to d        | ry to ok         | oserve            | if redox         | was prese               | nt.                                            |
| HYDROLO                        |                           |               |                       |                  |                   |                  |                         |                                                |
| _                              | drology Indicators:       |               |                       |                  |                   |                  |                         |                                                |
| Primary Indic                  | cators (minimum of o      | one required: | check all that appl   | <u>y)</u>        |                   |                  | <u>Seco</u>             | ndary Indicators (2 or more required)          |
| Surface                        | Water (A1)                |               | Salt Crust            | (B11)            |                   |                  | V                       | Vater Marks (B1) ( <b>Riverine</b> )           |
| <u></u> High Wa                | ter Table (A2)            |               | Biotic Crus           |                  |                   |                  |                         | Sediment Deposits (B2) (Riverine)              |
| ✓ Saturation                   | on (A3)                   |               | Aquatic In            | vertebrate       | s (B13)           |                  | [                       | Orift Deposits (B3) (Riverine)                 |
| Water M                        | arks (B1) (Nonrive        | rine)         | Hydrogen              | Sulfide O        | dor (C1)          |                  | [                       | Prainage Patterns (B10)                        |
| Sedimer                        | nt Deposits (B2) (No      | nriverine)    | Oxidized F            | Rhizosphe        | res along         | Living Ro        | ots (C3) D              | Ory-Season Water Table (C2)                    |
| Drift Dep                      | oosits (B3) (Nonrive      | rine)         | Presence              | of Reduce        | d Iron (C         | 4)               | c                       | Crayfish Burrows (C8)                          |
| Surface                        | Soil Cracks (B6)          |               | Recent Iro            | n Reducti        | on in Tille       | d Soils (Co      | 6) <u> </u>             | Saturation Visible on Aerial Imagery (C9)      |
| Inundation                     | on Visible on Aerial      | Imagery (B7   | ) Thin Muck           | Surface (        | C7)               |                  | s                       | Shallow Aquitard (D3)                          |
| Water-St                       | tained Leaves (B9)        |               | Other (Exp            | olain in Re      | marks)            |                  | F                       | AC-Neutral Test (D5)                           |
| Field Observ                   | vations:                  |               |                       |                  |                   |                  |                         |                                                |
| Surface Water                  | er Present?               | ′es N         | lo <u> </u>           | ches):           |                   |                  |                         |                                                |
| Water Table                    |                           |               | lo Depth (in          |                  |                   | _                |                         |                                                |
|                                |                           |               | lo Depth (in          |                  |                   |                  | and Hudralag            | y Present? Ves V No                            |
| Saturation Pr<br>(includes cap |                           | res iv        | io Deptii (iii        | cries). <u>U</u> |                   | _   well         | and Hydrolog            | y Present? Yes No                              |
|                                | corded Data (stream       | n gauge, mor  | nitoring well, aerial | photos, pr       | evious ins        | spections),      | if available:           |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
| Remarks:                       |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
| Shallow p                      | onding immed              | liately ad    | jacent to samp        | ole poin         | it.               |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |
|                                |                           |               |                       |                  |                   |                  |                         |                                                |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: Sutter Decarbonization Project                                                              | (             | City/Count  | ty: Sutter Co            | ounty                                          |           | Sampling Date: _                   | 1/05/2024    |
|-----------------------------------------------------------------------------------------------------------|---------------|-------------|--------------------------|------------------------------------------------|-----------|------------------------------------|--------------|
| Applicant/Owner: Calpine                                                                                  |               |             |                          | State:                                         | CA        | Sampling Point: _                  | SEC-4        |
| Investigator(s): Kevin Fisher                                                                             |               | Section, T  | ownship, Ra              | nge: <u>24, 14N, 2</u> I                       | E         |                                    |              |
| Landform (hillslope, terrace, etc.): Valley                                                               |               | Local relie | ef (concave,             | convex, none): <u>co</u>                       | oncave    | Slop                               | e (%): <1    |
| Subregion (LRR): C                                                                                        | Lat: 39.0     | 050920      |                          | Long: -121.69                                  | 3564      | Datur                              | n: WGS 84    |
|                                                                                                           |               |             |                          | NWI                                            |           |                                    |              |
| Are climatic / hydrologic conditions on the site typical for this                                         |               |             | _                        |                                                |           |                                    |              |
| Are Vegetation, Soil, or Hydrologys                                                                       | -             |             |                          |                                                |           | resent? Yes                        | , No         |
| Are Vegetation, Soil, or Hydrology r                                                                      |               |             |                          | eded, explain any                              | -         |                                    |              |
| SUMMARY OF FINDINGS – Attach site map                                                                     |               |             |                          |                                                |           |                                    | atures, etc. |
| Hydrophytic Vegetation Present?  Hydric Soil Present?  Wetland Hydrology Present?  Remarks:  Yes N  Yes N | lo <u> </u>   |             | the Sampled              |                                                | es        | No <u> </u>                        |              |
| Sample point established in abandoned pr<br>but did not appear significantly disturbed.                   |               | ater tre    | atment po                | ond. Soil had                                  | been      | excavated in                       | the past,    |
| VEGETATION – Use scientific names of plan                                                                 | its.          |             |                          |                                                |           |                                    |              |
| Tree Stratum (Plot size:) 1                                                                               | % Cover       | Species'    | nt Indicator<br>? Status | Dominance Te<br>Number of Dom<br>That Are OBL, | ninant Sp | ecies                              | (A)          |
| 2                                                                                                         |               |             |                          | Total Number of Species Across                 |           |                                    | (B)          |
| 4                                                                                                         |               |             |                          | Percent of Dom<br>That Are OBL,                |           | ecies<br>or FAC: <u>100</u>        | % (A/B)      |
| 1. Salix exigua                                                                                           | FACW          | Y           | 20                       | Prevalence Inc                                 | dex work  | sheet:                             |              |
| 2                                                                                                         |               |             |                          | Total % Co                                     | ver of:   | <u>Multiply</u>                    | by:          |
| 3                                                                                                         |               |             |                          | OBL species                                    |           | x 1 =                              |              |
| 4                                                                                                         |               |             |                          |                                                |           | x 2 =                              |              |
| 5                                                                                                         |               |             |                          | *                                              |           | x 3 =                              |              |
| Herb Stratum (Plot size: 1m )                                                                             | 20            | = Total C   | Cover                    | -                                              |           | x 4 =<br>x 5 =                     |              |
| 1. Rumex                                                                                                  |               | Y           |                          |                                                |           | (A)                                |              |
| 2                                                                                                         |               |             |                          | Prevalenc                                      | e Index   | = B/A =                            |              |
| 3                                                                                                         |               |             |                          | Hydrophytic V                                  |           |                                    |              |
| 4.       5.                                                                                               |               |             |                          | Dominance                                      | _         |                                    |              |
| 6.                                                                                                        |               |             |                          | Prevalence                                     |           |                                    |              |
| 7.                                                                                                        |               |             |                          |                                                |           | otations <sup>1</sup> (Provide     |              |
| 8                                                                                                         |               |             |                          |                                                |           | or on a separate                   |              |
| W 1 15 01 1 (D) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                     | 40            | = Total C   | Cover                    | Problemati                                     | с нуагор  | hytic Vegetation <sup>1</sup>      | (Explain)    |
| Woody Vine Stratum (Plot size:1m)  1. Rubus armeniacus                                                    |               | <u> </u>    | FAC                      |                                                |           | and wetland hydrorbed or problemat |              |
| 2                                                                                                         |               | = Total C   | Cover                    | Hydrophytic                                    |           |                                    |              |
| % Bare Ground in Herb Stratum 60 % Cove                                                                   | r of Biotic C | ='          |                          | Vegetation<br>Present?                         | Yes       | s_ ✓ No                            |              |
| Remarks:                                                                                                  | 2. 2.0        | <u></u>     |                          |                                                |           |                                    | _            |
|                                                                                                           |               |             |                          |                                                |           |                                    |              |
|                                                                                                           |               |             |                          |                                                |           |                                    |              |
|                                                                                                           |               |             |                          |                                                |           |                                    |              |

SOIL Sampling Point: SEC-4

| ¹Type: C=Cor Hydric Soil Ir  Histosol ( Histic Epi Black His Hydrogen                                                                    | ncentration, D=Depletic<br>dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on, RM=Redu        | lor (moist)                                              | =Covered o                                                  | or Coated   | ·          | ns. <sup>2</sup> Locati                                                | Remarks  on: PL=Pore Lining, M=Matrix.                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------|-------------------------------------------------------------|-------------|------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| ¹Type: C=Cor Hydric Soil Ir  Histosol ( Histic Epi Black His Hydrogen                                                                    | ncentration, D=Depletic<br>dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on, RM=Redu        | ced Matrix, CS                                           | =Covered o                                                  | or Coated   | ·          | ns. <sup>2</sup> Locati                                                |                                                                                 |  |  |
| ¹Type: C=Cor Hydric Soil Ir  Histosol ( Histic Epi Black His Hydrogen                                                                    | ncentration, D=Depletic<br>dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on, RM=Redu        | ced Matrix, CS                                           | =Covered o                                                  | or Coated   |            | ns. <sup>2</sup> Locati                                                |                                                                                 |  |  |
| Hydric Soil In Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Sand Grair |                                                                        |                                                                                 |  |  |
| Hydric Soil In Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Sand Grair |                                                                        |                                                                                 |  |  |
| Hydric Soil In Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Sand Grair |                                                                        |                                                                                 |  |  |
| Hydric Soil In Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Sand Grain |                                                                        |                                                                                 |  |  |
| Hydric Soil In Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Sand Grain |                                                                        |                                                                                 |  |  |
| Hydric Soil In Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Sand Grair |                                                                        |                                                                                 |  |  |
| Hydric Soil In Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Sand Grair |                                                                        |                                                                                 |  |  |
| Hydric Soil In Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Sand Grair |                                                                        |                                                                                 |  |  |
| Hydric Soil Ir Histosol ( Histic Epi Black His Hydrogen                                                                                  | dicators: (Applicable<br>A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to all LRRs        | , unless other                                           | wise noted                                                  |             | Janu Gran  |                                                                        |                                                                                 |  |  |
| Histosol (. Histic Epi Black His Hydrogen                                                                                                | A1)<br>pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                          |                                                             | ,           |            | Indicators for                                                         | r Problematic Hydric Soils <sup>3</sup> :                                       |  |  |
| Histic Epi Black His Hydrogen                                                                                                            | pedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                  |                                                          | x (S5)                                                      |             |            |                                                                        | k (A9) ( <b>LRR C</b> )                                                         |  |  |
| Black His<br>Hydrogen                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Stripped Mat                                             | , ,                                                         |             |            |                                                                        | k (A10) ( <b>LRR B</b> )                                                        |  |  |
|                                                                                                                                          | 10 (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                  | _ Loamy Muck                                             | , ,                                                         | F1)         |            |                                                                        | Vertic (F18)                                                                    |  |  |
|                                                                                                                                          | Sulfide (A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                  | _ Loamy Gleye                                            |                                                             |             |            | Red Pare                                                               | nt Material (TF2)                                                               |  |  |
| Stratified                                                                                                                               | Layers (A5) (LRR C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                  | _ Depleted Ma                                            | trix (F3)                                                   |             |            |                                                                        | plain in Remarks)                                                               |  |  |
| 1 cm Muc                                                                                                                                 | k (A9) ( <b>LRR D</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                  | _ Redox Dark                                             | Surface (F6                                                 | 3)          |            |                                                                        |                                                                                 |  |  |
|                                                                                                                                          | Below Dark Surface (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .11)               | _ Depleted Da                                            |                                                             |             |            | 2                                                                      |                                                                                 |  |  |
|                                                                                                                                          | k Surface (A12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                  | _ Redox Depre                                            | •                                                           | )           |            |                                                                        | hydrophytic vegetation and                                                      |  |  |
| -                                                                                                                                        | icky Mineral (S1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                  | _ Vernal Pools                                           | s (F9)                                                      |             |            | wetland hydrology must be present,<br>unless disturbed or problematic. |                                                                                 |  |  |
|                                                                                                                                          | eyed Matrix (S4)  ayer (if present):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                                          |                                                             |             | -          | uniess distu                                                           | irbed or problematic.                                                           |  |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                          |                                                             |             |            |                                                                        |                                                                                 |  |  |
| • • • • • • • • • • • • • • • • • • • •                                                                                                  | 200):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                          |                                                             |             |            | Uvdria Cail Dr                                                         | nont? Von No W                                                                  |  |  |
| Remarks:                                                                                                                                 | nes):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                          |                                                             |             |            | Hydric Soil Pr                                                         | esent? Yes No <u> </u>                                                          |  |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                          |                                                             |             |            |                                                                        |                                                                                 |  |  |
| IYDROLOG                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                          |                                                             |             |            |                                                                        |                                                                                 |  |  |
| _                                                                                                                                        | rology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                          |                                                             |             |            |                                                                        |                                                                                 |  |  |
| Primary Indica                                                                                                                           | tors (minimum of one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | required; chea     | ck all that apply                                        | )                                                           |             |            |                                                                        | ry Indicators (2 or more required)                                              |  |  |
| Surface V                                                                                                                                | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                  | Salt Crust (                                             | ,                                                           |             |            |                                                                        | er Marks (B1) ( <b>Riverine</b> )                                               |  |  |
| ✓ High Wate                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                  | Biotic Crust                                             |                                                             |             |            |                                                                        | ment Deposits (B2) (Riverine)                                                   |  |  |
| <u>✓</u> Saturation                                                                                                                      | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                  | Aquatic Inv                                              |                                                             | '           |            | · <del></del>                                                          | Deposits (B3) (Riverine)                                                        |  |  |
| Water Ma                                                                                                                                 | rks (B1) (Nonriverine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Hydrogen S                                               |                                                             |             |            |                                                                        | nage Patterns (B10)                                                             |  |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erine)             | Oxidized R                                               | •                                                           | -           | ing Roots  |                                                                        | Season Water Table (C2)                                                         |  |  |
| Sediment                                                                                                                                 | Deposits (B2) (Nonriv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                  |                                                          |                                                             |             |            |                                                                        |                                                                                 |  |  |
| Sediment Drift Depo                                                                                                                      | osits (B3) (Nonriverine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  | Presence o                                               |                                                             | ` '         |            |                                                                        | fish Burrows (C8)                                                               |  |  |
| Sediment Drift Depo                                                                                                                      | osits (B3) ( <b>Nonriverine</b><br>oil Cracks (B6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) _                | Recent Iron                                              | Reduction                                                   | in Tilled S | Soils (C6) | Satu                                                                   | ration Visible on Aerial Imagery (CS                                            |  |  |
| Sediment Drift Depo                                                                                                                      | osits (B3) ( <b>Nonriverine</b><br>oil Cracks (B6)<br>n Visible on Aerial Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) _                | Recent Iron Thin Muck                                    | Reduction<br>Surface (C7                                    | in Tilled S | Soils (C6) | Satu<br>Shal                                                           | ration Visible on Aerial Imagery (Cs<br>low Aquitard (D3)                       |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta                                                                                       | osits (B3) ( <b>Nonriverine</b><br>oil Cracks (B6)<br>n Visible on Aerial Imaq<br>nined Leaves (B9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) _                | Recent Iron                                              | Reduction<br>Surface (C7                                    | in Tilled S | Soils (C6) | Satu<br>Shal                                                           | ration Visible on Aerial Imagery (CS                                            |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta                                                                                       | osits (B3) (Nonriverine<br>oil Cracks (B6)<br>in Visible on Aerial Imagained Leaves (B9)<br>ations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                  | Recent Iror Thin Muck Other (Expl                        | n Reduction<br>Surface (C7<br>ain in Rema                   | in Tilled S | Soils (C6) | Satu<br>Shal                                                           | ration Visible on Aerial Imagery (Cs<br>low Aquitard (D3)                       |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta Field Observe Surface Water                                                           | osits (B3) (Nonriverine coil Cracks (B6) In Visible on Aerial Imaginined Leaves (B9) In Visible on Aerial Imag | gery (B7)          | Recent Iror Thin Muck Other (Expl                        | n Reduction<br>Surface (C7<br>lain in Rema                  | in Tilled S | Soils (C6) | Satu<br>Shal                                                           | ration Visible on Aerial Imagery (Cs<br>low Aquitard (D3)                       |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta                                                                                       | osits (B3) (Nonriverine coil Cracks (B6) In Visible on Aerial Imagined Leaves (B9) In Visible on Aerial Imagined L | gery (B7)<br>      | Recent Iror Thin Muck Other (Expl                        | n Reduction<br>Surface (C7<br>dain in Remains):<br>hes):    | in Tilled S | Goils (C6) | Satu<br>Shal                                                           | ration Visible on Aerial Imagery (Cs<br>low Aquitard (D3)                       |  |  |
| Sediment Drift Depc Surface S Inundation Water-Sta Field Observ: Surface Water Water Table F Saturation Pre                              | osits (B3) (Nonriverine coil Cracks (B6) In Visible on Aerial Imagained Leaves (B9) In Visible on Aerial Imagai | gery (B7)<br>      | Recent Iror Thin Muck Other (Expl                        | n Reduction<br>Surface (C7<br>dain in Remains):<br>hes):    | in Tilled S |            | Satu<br>Shal<br>FAC                                                    | ration Visible on Aerial Imagery (Cs<br>low Aquitard (D3)                       |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta Field Observa Surface Water Water Table F Saturation Pre (includes capi               | osits (B3) (Nonriverine coil Cracks (B6) in Visible on Aerial Imagined Leaves (B9) ations:  Present? Yes_esent? Yes_elary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gery (B7) No No No | Recent Iror Thin Muck Other (Expl  Depth (inc Depth (inc | n Reduction Surface (C7 ain in Remaines): hes): 8.5 hes): 8 | in Tilled S | Wetland    | Satu Shal FAC                                                          | ration Visible on Aerial Imagery (Ct<br>low Aquitard (D3)<br>-Neutral Test (D5) |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta Field Observa Surface Water Water Table F Saturation Pre (includes capi               | osits (B3) (Nonriverine coil Cracks (B6) In Visible on Aerial Imagained Leaves (B9) In Visible on Aerial Imagai | gery (B7)          | Recent Iror Thin Muck Other (Expl  Depth (inc Depth (inc | n Reduction Surface (C7 ain in Remaines): hes): 8.5 hes): 8 | in Tilled S | Wetland    | Satu Shal FAC                                                          | ration Visible on Aerial Imagery (Ct<br>low Aquitard (D3)<br>-Neutral Test (D5) |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta Field Observa Surface Water Water Table F Saturation Pre (includes capi               | osits (B3) (Nonriverine coil Cracks (B6) in Visible on Aerial Imagined Leaves (B9) ations:  Present? Yes_esent? Yes_elary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gery (B7)          | Recent Iror Thin Muck Other (Expl  Depth (inc Depth (inc | n Reduction Surface (C7 ain in Remaines): hes): 8.5 hes): 8 | in Tilled S | Wetland    | Satu Shal FAC                                                          | ration Visible on Aerial Imagery (Ct<br>low Aquitard (D3)<br>-Neutral Test (D5) |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta Field Observe Surface Water Water Table F Saturation Pre (includes capi Describe Reco | osits (B3) (Nonriverine coil Cracks (B6) in Visible on Aerial Imagined Leaves (B9) ations:  Present? Yes_esent? Yes_elary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gery (B7)          | Recent Iror Thin Muck Other (Expl  Depth (inc Depth (inc | n Reduction Surface (C7 ain in Remaines): hes): 8.5 hes): 8 | in Tilled S | Wetland    | Satu Shal FAC                                                          | ration Visible on Aerial Imagery (Ct<br>low Aquitard (D3)<br>-Neutral Test (D5) |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta Field Observe Surface Water Water Table F Saturation Pre (includes capi Describe Reco | osits (B3) (Nonriverine coil Cracks (B6) in Visible on Aerial Imagined Leaves (B9) ations:  Present? Yes_esent? Yes_elary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gery (B7)          | Recent Iror Thin Muck Other (Expl  Depth (inc Depth (inc | n Reduction Surface (C7 ain in Remaines): hes): 8.5 hes): 8 | in Tilled S | Wetland    | Satu Shal FAC                                                          | ration Visible on Aerial Imagery (Ct<br>low Aquitard (D3)<br>-Neutral Test (D5) |  |  |
| Sediment Drift Depo Surface S Inundation Water-Sta Field Observe Surface Water Water Table F Saturation Pre (includes capi Describe Reco | osits (B3) (Nonriverine coil Cracks (B6) in Visible on Aerial Imagined Leaves (B9) ations:  Present? Yes_esent? Yes_elary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gery (B7)          | Recent Iror Thin Muck Other (Expl  Depth (inc Depth (inc | n Reduction Surface (C7 ain in Remaines): hes): 8.5 hes): 8 | in Tilled S | Wetland    | Satu Shal FAC                                                          | ration Visible on Aerial Imagery (Ct<br>low Aquitard (D3)<br>-Neutral Test (D5) |  |  |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: Sutter Decarbonization Project                 | C                 | ity/County  | : Sutter Co                | ounty                             |            | Sampling Date:                 | 1/05/2024            |
|--------------------------------------------------------------|-------------------|-------------|----------------------------|-----------------------------------|------------|--------------------------------|----------------------|
| Applicant/Owner: Calpine                                     |                   |             | Sampling Point:            | SEC-5                             |            |                                |                      |
| Investigator(s): Kevin Fisher                                |                   | Section, To | ownship, Ra                | nge: <u>24, 14N, 2</u>            | Ē          |                                |                      |
| Landform (hillslope, terrace, etc.): Valley                  | I                 | _ocal relie | f (concave,                | convex, none): <u>co</u>          | oncave     | Slo                            | pe (%): <u>&lt;1</u> |
| Subregion (LRR): C                                           | Lat: 39.0         | 53707       |                            | Long: -121.69                     | 4669       | Datu                           | ım: WGS 84           |
| Soil Map Unit Name: Gridley                                  |                   |             |                            | NWI                               | classifica | ation: None                    |                      |
| Are climatic / hydrologic conditions on the site typical for |                   |             |                            |                                   |            |                                |                      |
| Are Vegetation, Soil, or Hydrology                           | significantly d   | isturbed?   | Are '                      | Normal Circumst                   | ances" p   | resent? Yes                    | ✓ No                 |
| Are Vegetation, Soil, or Hydrology                           |                   |             |                            | eded, explain an                  | y answer   | s in Remarks.)                 |                      |
| SUMMARY OF FINDINGS - Attach site ma                         |                   |             | g point l                  | ocations, trar                    | nsects     | important fe                   | eatures, etc.        |
|                                                              | No V<br>No V      |             | ne Sampled<br>nin a Wetlar |                                   | es         | No                             | -                    |
| Sample point established in swale with s                     | surface pon       | ding/sa     | turation                   |                                   |            |                                |                      |
| VEGETATION – Use scientific names of pl                      | ants.             |             |                            |                                   |            |                                |                      |
| Tree Stratum (Plot size:)                                    | Absolute          |             |                            | Dominance Te                      |            |                                |                      |
| 1                                                            | <u>% Cover</u>    | -           |                            | Number of Don<br>That Are OBL,    |            |                                | L (A)                |
| 2                                                            |                   |             |                            |                                   |            |                                | (/ //                |
| 3.                                                           |                   |             |                            | Total Number of<br>Species Across |            |                                | <u>2</u> (B)         |
| 4                                                            |                   |             |                            | Percent of Dom                    | ninant Sn  | arias                          |                      |
| Capling/Shrub Stratum (Diet size:                            |                   | = Total Co  | over                       | That Are OBL,                     |            | or FAC:50                      | 0% (A/B)             |
| Sapling/Shrub Stratum (Plot size:)  1                        |                   |             |                            | Prevalence Inc                    | dex work   | sheet:                         |                      |
| 2.                                                           |                   |             |                            |                                   |            | Multip                         | ly by:               |
| 3.                                                           |                   |             |                            | OBL species                       |            | x 1 =                          |                      |
| 4.                                                           |                   |             |                            |                                   |            | x 2 =                          |                      |
| 5                                                            |                   |             |                            | FAC species                       | 25         | x 3 =                          | 75                   |
|                                                              |                   |             | over                       | FACU species                      | 75         | x 4 =                          | 300                  |
| Herb Stratum (Plot size: 1m )                                | 75                | V           | FACIL                      |                                   |            | x 5 =                          |                      |
| Cynodon dactylon     Hordeum sp.                             |                   |             | FACU<br>FAC                | Column Totals:                    | 10         | <u>0</u> (A)                   | 375 (B)              |
| 3.                                                           |                   |             |                            | Prevalenc                         | e Index    | = B/A = <u>3</u>               | .75                  |
| 4                                                            |                   |             |                            | Hydrophytic V                     |            |                                |                      |
| 5                                                            |                   |             |                            | Dominance                         | _          |                                |                      |
| 6.                                                           |                   |             |                            | Prevalence                        |            |                                |                      |
| 7.                                                           |                   |             |                            |                                   |            | otations <sup>1</sup> (Provide |                      |
| 8.                                                           |                   |             |                            |                                   |            | or on a separate               | ,                    |
|                                                              |                   | = Total Co  | over                       | Problemati                        | c Hyarop   | hytic Vegetation               | (Explain)            |
| Woody Vine Stratum (Plot size:)  1                           |                   |             |                            |                                   |            | and wetland hyd                |                      |
| 2                                                            |                   |             |                            | Hydrophytic                       |            | · ·                            |                      |
|                                                              |                   |             |                            | Vegetation                        |            |                                |                      |
| % Bare Ground in Herb Stratum % Co                           | over of Biotic Cr | ust         |                            | Present?                          | Yes        | No _                           | <u> </u>             |
| Remarks:                                                     |                   |             |                            |                                   |            |                                |                      |
| Hordeum not identifiable to species leve                     | el. Assumed       | FAC.        |                            |                                   |            |                                |                      |
|                                                              |                   |             |                            |                                   |            |                                |                      |
|                                                              |                   |             |                            |                                   |            |                                |                      |

SOIL Sampling Point: SEC-5

| Profile Desc       | ription: (Describe                       | to the dept     | h needed to docu        | ment the i  | ndicator          | or confirn       | n the absence  | e of indicators.)                             |
|--------------------|------------------------------------------|-----------------|-------------------------|-------------|-------------------|------------------|----------------|-----------------------------------------------|
| Depth              | Matrix                                   |                 |                         | x Feature   |                   |                  |                |                                               |
| (inches)           | Color (moist)                            | <u>%</u>        | Color (moist)           | %           | Type <sup>1</sup> | Loc <sup>2</sup> | <u>Texture</u> | Remarks                                       |
| 0-12               | 10 YR 3/2                                | 100             | -                       |             | _                 |                  | CL             | . <u>-</u>                                    |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             | ,                 |                  |                |                                               |
|                    |                                          |                 |                         | <del></del> |                   | ·                |                |                                               |
|                    |                                          |                 |                         |             |                   | <del></del>      |                |                                               |
|                    |                                          | - <del></del> - |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             | -                 | · ——             | -              | ·                                             |
|                    |                                          |                 |                         |             | -                 | ·                | -              |                                               |
|                    | oncentration, D=Dep                      |                 |                         |             |                   | ed Sand G        |                | ocation: PL=Pore Lining, M=Matrix.            |
| Hydric Soil I      | ndicators: (Applic                       | able to all L   | RRs, unless othe        | rwise not   | ed.)              |                  | Indicator      | s for Problematic Hydric Soils <sup>3</sup> : |
| Histosol           |                                          |                 | Sandy Red               |             |                   |                  |                | Muck (A9) (LRR C)                             |
|                    | ipedon (A2)                              |                 | Stripped M              | , ,         |                   |                  |                | Muck (A10) ( <b>LRR B</b> )                   |
| Black His          |                                          |                 | Loamy Mud               | -           |                   |                  |                | ced Vertic (F18)                              |
|                    | n Sulfide (A4)                           | _`              | Loamy Gle               |             | (F2)              |                  |                | Parent Material (TF2)                         |
|                    | Layers (A5) (LRR                         | C)              | Depleted M              | ` ,         | ( <b>F</b> 0)     |                  | Other          | (Explain in Remarks)                          |
|                    | ck (A9) ( <b>LRR D</b> )                 | o (A11)         | Redox Darl              |             | . ,               |                  |                |                                               |
|                    | l Below Dark Surfac<br>Irk Surface (A12) | e (ATT)         | Depleted D<br>Redox Dep |             |                   |                  | 3Indicators    | s of hydrophytic vegetation and               |
|                    | lucky Mineral (S1)                       |                 | Vernal Poo              |             | 10)               |                  |                | I hydrology must be present,                  |
| -                  | leyed Matrix (S4)                        |                 | vernari oo              | 13 (1 3)    |                   |                  |                | disturbed or problematic.                     |
|                    | ayer (if present):                       |                 |                         |             |                   |                  | 1              | arctarboa or problematic.                     |
|                    | auger (ii precesso).                     |                 |                         |             |                   |                  |                |                                               |
| • • •              |                                          |                 |                         |             |                   |                  | Hydric Soi     | Il Present? Yes No ✔                          |
| . `                | ches):                                   |                 |                         |             |                   |                  | nyuric 30i     | I Present? Yes No                             |
| Remarks:           |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
| HYDROLO            | GY                                       |                 |                         |             |                   |                  |                |                                               |
| Wetland Hyd        | drology Indicators:                      |                 |                         |             |                   |                  |                |                                               |
|                    | ators (minimum of o                      |                 | check all that ann      | (v)         |                   |                  | Seco           | andary Indicators (2 or more required)        |
| Surface \          | •                                        | one required    | Salt Crust              |             |                   |                  |                | · · · · · · · · · · · · · · · · · · ·         |
|                    | ` '                                      |                 | <del></del>             | ` '         |                   |                  |                | Water Marks (B1) (Riverine)                   |
|                    | ter Table (A2)                           |                 | Biotic Cru              |             | - (D40)           |                  |                | Sediment Deposits (B2) (Riverine)             |
| <u>✓</u> Saturatio | ` ,                                      | • \             | Aquatic In              |             |                   |                  |                | Drift Deposits (B3) (Riverine)                |
|                    | arks (B1) (Nonriver                      |                 | Hydrogen                |             |                   | Linda a Da       |                | Drainage Patterns (B10)                       |
|                    | t Deposits (B2) (No                      |                 |                         |             | -                 | _                |                | Dry-Season Water Table (C2)                   |
|                    | osits (B3) (Nonrive                      | rine)           | Presence                |             | •                 | •                |                | Crayfish Burrows (C8)                         |
|                    | Soil Cracks (B6)                         |                 | Recent Iro              |             |                   | ed Soils (C      |                | Saturation Visible on Aerial Imagery (C9)     |
|                    | on Visible on Aerial                     | Imagery (B7     |                         |             |                   |                  |                | Shallow Aquitard (D3)                         |
| <u> </u>           | tained Leaves (B9)                       |                 | Other (Ex               | plain in Re | emarks)           |                  |                | FAC-Neutral Test (D5)                         |
| Field Observ       |                                          |                 |                         |             |                   |                  |                |                                               |
| Surface Water      | er Present?                              | 'es N           | lo 🔽 Depth (in          | ches):      |                   |                  |                |                                               |
| Water Table        | Present? Y                               | 'es N           | lo 🔽 Depth (in          | ches):      |                   |                  |                |                                               |
| Saturation Pr      | resent?                                  | ′es <u> </u>    | lo Depth (in            | ches): 9    |                   | Wetl             | and Hydrolog   | gy Present? Yes 🔽 No                          |
| (includes cap      | illary fringe)                           |                 |                         |             |                   |                  |                |                                               |
| Describe Rec       | corded Data (stream                      | n gauge, moi    | nitoring well, aerial   | photos, pr  | evious in         | spections),      | if available:  |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
| Remarks:           |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |
|                    |                                          |                 |                         |             |                   |                  |                |                                               |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site:                          |                        | C                    | ity/County:                        |                                | Sam                                                 | pling Date:                      |                      |
|----------------------------------------|------------------------|----------------------|------------------------------------|--------------------------------|-----------------------------------------------------|----------------------------------|----------------------|
| Applicant/Owner:                       | State:                 |                      |                                    |                                | Sam                                                 | pling Point: _                   |                      |
| Investigator(s):                       |                        | S                    | ection, Township, Ra               | inge:                          |                                                     |                                  |                      |
| Landform (hillslope, terrace, etc.): _ |                        | L                    | ocal relief (concave,              | e, convex, none): Slope (%): _ |                                                     |                                  |                      |
| Subregion (LRR):                       |                        | Lat:                 |                                    | _ Long:                        |                                                     | Datum                            | n:                   |
| Soil Map Unit Name:                    |                        |                      |                                    | NV                             | VI classification:                                  |                                  |                      |
| Are climatic / hydrologic conditions   | on the site typical fo | or this time of year | r? Yes No _                        | (If no, ex                     | xplain in Remar                                     | ks.)                             |                      |
| Are Vegetation, Soil                   | _, or Hydrology        | significantly d      | isturbed? Are                      | "Normal Circum                 | stances" preser                                     | nt? Yes                          | No                   |
| Are Vegetation, Soil                   | , or Hydrology         | naturally prob       | lematic? (If no                    | eeded, explain a               | any answers in f                                    | Remarks.)                        |                      |
| SUMMARY OF FINDINGS -                  | - Attach site m        | nap showing s        | sampling point l                   | ocations, tra                  | ansects, im                                         | portant fea                      | itures, etc          |
| Hydrophytic Vegetation Present?        | Yes                    | No                   | Is the Sample                      | d Aroo                         |                                                     |                                  |                      |
| Hydric Soil Present?                   |                        | No                   | within a Wetla                     |                                | Yes                                                 | No                               |                      |
| Wetland Hydrology Present?  Remarks:   | Yes                    | No                   | within a wetta                     |                                | 163                                                 | NO                               |                      |
| VEGETATION – Use scient                | tific names of p       |                      |                                    |                                |                                                     |                                  |                      |
| Tree Stratum (Plot size:1.             |                        | % Cover              | Dominant Indicator Species? Status | Number of Do                   | Test worksheem<br>ominant Species<br>L, FACW, or FA | S                                | (A)                  |
| 2<br>3                                 |                        |                      |                                    | Total Number<br>Species Acro   | r of Dominant<br>oss All Strata:                    |                                  | (B)                  |
| 4. Sapling/Shrub Stratum (Plot size    |                        | =                    | = Total Cover                      |                                | ominant Species<br>L, FACW, or FA                   |                                  | (A/B)                |
| 1                                      |                        |                      |                                    | Prevalence I                   | ndex workshee                                       | et:                              |                      |
| 2.                                     |                        |                      |                                    | Total % (                      | Cover of:                                           | Multiply                         | by:                  |
| 3.                                     |                        |                      |                                    | OBL species                    |                                                     | x 1 =                            |                      |
| 4                                      |                        |                      |                                    | FACW specie                    | es                                                  | x 2 =                            |                      |
| 5                                      |                        |                      |                                    |                                |                                                     |                                  |                      |
| Harb Stratum (Diet size)               | `                      | =                    | = Total Cover                      |                                | es                                                  |                                  |                      |
| Herb Stratum (Plot size:1              | )                      |                      |                                    |                                |                                                     |                                  |                      |
| 2                                      |                        |                      |                                    | Column Total                   | ls:                                                 | (A)                              | (B)                  |
| 3.                                     |                        |                      |                                    | Prevale                        | ence Index = B/                                     | A =                              |                      |
| 4.                                     |                        |                      |                                    | Hydrophytic                    | Vegetation Inc                                      | dicators:                        |                      |
| 5                                      |                        |                      |                                    | l —                            | nce Test is >50%                                    |                                  |                      |
| 6                                      |                        |                      |                                    |                                | ice Index is ≤3.0                                   |                                  |                      |
| 7<br>8                                 |                        |                      |                                    | Morpholo data i                | ogical Adaptatio<br>n Remarks or o                  | ns¹ (Provide s<br>n a separate s | supporting<br>sheet) |
| Woody Vine Stratum (Plot size:         |                        |                      | = Total Cover                      | Problema                       | atic Hydrophytic                                    | : Vegetation <sup>1</sup> (      | Explain)             |
| 1                                      |                        |                      |                                    |                                | hydric soil and nless disturbed                     |                                  |                      |
| · <del>-</del> ·.                      | -                      |                      | = Total Cover                      | Hydrophytic                    | ;                                                   |                                  |                      |
| % Bare Ground in Herb Stratum _        | % (                    | Cover of Biotic Cru  | ust                                | Vegetation Present?            | Yes                                                 | No                               |                      |
| Remarks:                               |                        |                      |                                    | 1                              |                                                     |                                  |                      |
|                                        |                        |                      |                                    |                                |                                                     |                                  |                      |
|                                        |                        |                      |                                    |                                |                                                     |                                  |                      |
|                                        |                        |                      |                                    |                                |                                                     |                                  |                      |

SOIL Sampling Point: \_\_\_\_\_

| Profile Description         | on: (Describe to the o    | lepth needed to    | docume       | nt the indicato     | r or confirm     | the absence of indicators.)                             |
|-----------------------------|---------------------------|--------------------|--------------|---------------------|------------------|---------------------------------------------------------|
| Depth                       | Matrix                    |                    | Redox F      | eatures             |                  |                                                         |
| (inches) C                  | Color (moist) %           | Color (mo          | oist)        | % Type <sup>1</sup> | Loc <sup>2</sup> | Texture Remarks                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             | ·                         | _                  |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           | _                  |              |                     |                  |                                                         |
| ·                           |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
| <sup>1</sup> Type: C=Concen | tration, D=Depletion, F   | RM=Reduced Ma      | atrix, CS=0  | Covered or Coa      | ited Sand Gr     | rains. <sup>2</sup> Location: PL=Pore Lining, M=Matrix. |
|                             | ators: (Applicable to     |                    |              |                     |                  | Indicators for Problematic Hydric Soils <sup>3</sup> :  |
| Histosol (A1)               | `                         |                    | dy Redox     |                     |                  | 1 cm Muck (A9) ( <b>LRR C</b> )                         |
| Histic Epipedo              | on (A2)                   |                    | ped Matrix   | . ,                 |                  | 2 cm Muck (A10) (LRR B)                                 |
| Black Histic (A             |                           |                    |              | Mineral (F1)        |                  | Reduced Vertic (F18)                                    |
| Hydrogen Sul                | ,                         |                    |              | Matrix (F2)         |                  | Red Parent Material (TF2)                               |
|                             | ers (A5) ( <b>LRR C</b> ) |                    | leted Matri  |                     |                  | Other (Explain in Remarks)                              |
| 1 cm Muck (A                |                           |                    |              | urface (F6)         |                  |                                                         |
|                             | ow Dark Surface (A11)     | Dep                | leted Dark   | Surface (F7)        |                  |                                                         |
| Thick Dark Su               | ırface (A12)              | Red                | ox Depres    | sions (F8)          |                  | <sup>3</sup> Indicators of hydrophytic vegetation and   |
| Sandy Mucky                 | Mineral (S1)              | Vern               | nal Pools (l | F9)                 |                  | wetland hydrology must be present,                      |
| Sandy Gleyed                | l Matrix (S4)             |                    |              |                     |                  | unless disturbed or problematic.                        |
| Restrictive Layer           | (if present):             |                    |              |                     |                  |                                                         |
| Type:                       |                           |                    |              |                     |                  |                                                         |
| Depth (inches):             | :                         |                    |              |                     |                  | Hydric Soil Present? Yes No                             |
| Remarks:                    |                           |                    |              |                     |                  | I.                                                      |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
| HYDROLOGY                   |                           |                    |              |                     |                  |                                                         |
| Wetland Hydrolo             | gy Indicators:            |                    |              |                     |                  |                                                         |
| -                           | (minimum of one regu      | ired: check all th | nat annly)   |                     |                  | Secondary Indicators (2 or more required)               |
| -                           |                           |                    |              | 11)                 |                  |                                                         |
| Surface Wate                |                           |                    | It Crust (B  |                     |                  | Water Marks (B1) (Riverine)                             |
| High Water Ta               |                           |                    | tic Crust (l |                     |                  | Sediment Deposits (B2) (Riverine)                       |
| Saturation (A3              | •                         |                    |              | tebrates (B13)      |                  | Drift Deposits (B3) (Riverine)                          |
|                             | (B1) (Nonriverine)        | <del></del> -      | -            | Ifide Odor (C1)     |                  | Drainage Patterns (B10)                                 |
| -                           | oosits (B2) (Nonriverin   |                    |              |                     |                  | ots (C3) Dry-Season Water Table (C2)                    |
| -                           | (B3) (Nonriverine)        |                    |              | Reduced Iron (      |                  | Crayfish Burrows (C8)                                   |
| Surface Soil C              |                           |                    |              | Reduction in Til    | led Soils (C6    |                                                         |
|                             | sible on Aerial Imagery   |                    |              | urface (C7)         |                  | Shallow Aquitard (D3)                                   |
| Water-Stained               | d Leaves (B9)             | Oth                | ner (Explai  | n in Remarks)       |                  | FAC-Neutral Test (D5)                                   |
| Field Observation           | ns:                       |                    |              |                     |                  |                                                         |
| Surface Water Pre           | esent? Yes                | No De              | epth (inche  | es):                |                  |                                                         |
| Water Table Prese           | ent? Yes                  | No De              | epth (inche  | es):                |                  |                                                         |
| Saturation Presen           |                           | No De              |              |                     |                  | and Hydrology Present? Yes No                           |
| (includes capillary         | fringe)                   |                    |              |                     |                  |                                                         |
| Describe Recorde            | d Data (stream gauge,     | monitoring well,   | aerial pho   | otos, previous i    | nspections), i   | if available:                                           |
|                             |                           |                    |              |                     |                  |                                                         |
| Remarks:                    |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |
|                             |                           |                    |              |                     |                  |                                                         |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Subregion (LRR): C Lat: 39.047035 Long: -121.699742 Datum: WGS 84  Soil Map Unit Name: Gridley NWI classification: R4SBCx  Are climatic / hydrologic conditions on the site typical for this time of year? Yes Vogetation No (If no, explain in Remarks.)  Are Vegetation No (If no, explain in Remarks.)  Are Vegetation No (If needed, explain any answers in Remarks.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project/Site: Sutter Decarbonization Project | City/County: Sutter County Sampling Date: 9/19/202 |                                                       |             |                                      |                     | 9/19/2023   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------|--------------------------------------|---------------------|-------------|
| Landform (hillslope, terrace, etc.): Ditch  Lat: 39.047035  La | Applicant/Owner: Calpine                     | State: <u>CA</u> Sampling Point: <u>SP-1</u>       |                                                       |             |                                      |                     |             |
| Are climate in the conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)  Are Vegetation Soil or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes No Are Vegetation Soil or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)  SUMMARY OF FINDINGS — Attach site map showing sampling point locations, transects, important features, etc.  Hydrophytic Vegetation Present? Yes No is the Sampled Area within a Wetland Pydrology Present? Yes No within a Wetland? Yes No /_ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Investigator(s): Kevin Fisher, Sam Wentworth | Section, Township, Range: 24, 14N, 2E              |                                                       |             |                                      |                     |             |
| Are climate in the conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)  Are Vegetation Soil or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes No Are Vegetation Soil or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)  SUMMARY OF FINDINGS — Attach site map showing sampling point locations, transects, important features, etc.  Hydrophytic Vegetation Present? Yes No is the Sampled Area within a Wetland Pydrology Present? Yes No within a Wetland? Yes No /_ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Landform (hillslope, terrace, etc.): Ditch   |                                                    | Local relief (concave, convex, none): none Slope (%): |             |                                      |                     |             |
| Are climate in the conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)  Are Vegetation Soil or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes No Are Vegetation Soil or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)  SUMMARY OF FINDINGS — Attach site map showing sampling point locations, transects, important features, etc.  Hydrophytic Vegetation Present? Yes No is the Sampled Area within a Wetland Pydrology Present? Yes No within a Wetland? Yes No /_ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Subregion (LRR): C                           | Lat: 39.0                                          | 47035                                                 |             | Long: <u>-121.699742</u>             | Datui               | m: WGS 84   |
| Are climatic / hydrologic conditions on the site typical for this time of year? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                    |                                                       |             |                                      |                     |             |
| Are Vegetation Soil or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes No No Northydrology naturally problematic? (If needed, explain any answers in Remarks.)  SUMMARY OF FINDINGS — Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No No Within a Wetland? Yes No No No Within a Wetland? Yes No No No Within a Wetland? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                    |                                                       |             |                                      |                     |             |
| Are Vegetation, Soll, or Hydrologynaturally problematic?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | -                                                  |                                                       |             |                                      |                     | <b>/</b> No |
| SUMMARY OF FINDINGS — Attach site map showing sampling point locations, transects, important features, etc.  Hydrophytic Vegetation Present? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                    |                                                       |             |                                      |                     |             |
| Hydrophytic Vegetation Present? Yes No Welland Hydrology Present? Yes No No Welland Hydrophytic Vegetation in Welland? Yes No No Welland Hydrophytic Vegetation in Welland Hydrophytic Vegetation in Welland Hydrology must be present, unless disturbed or problematic.    Hydrophytic Vegetation Present? Yes No Welland Hydrophytic Vegetation in Welland Hydrophytic Vegetation Vegetation In Welland Hydrophytic Vegetation In Welland Hydrophytic Vegetation In Welland Hydrophytic Vegetation In Welland Hydro |                                              |                                                    |                                                       |             |                                      |                     | atures etc  |
| Hydro Soil Present?   Yes   No   Welland Hydrology Present?   Yes   V No   Welland Hydrology Present?   Yes   V No   Welland Hydrology Present?   Yes   No   V   Welland Hydrology Present?   Yes   No   No   No   Welland Hydrology Present?   Yes   No   No   Wella   |                                              |                                                    | Jampini                                               | g ponit i   |                                      | s, important io     |             |
| Wetland Hydrology Present?   Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                    | Is th                                                 | e Sampled   | l Area                               |                     |             |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                                    | with                                                  | in a Wetlar | nd? Yes                              | No <u> </u>         | <u>-</u>    |
| VEGETATION – Use scientific names of plants.           Tree Stratum (Plot size: 1m )         Absolute % Cover Species? Secies? Status 1. Salix exigua         Dominant Indicator Species 1. Number of Dominant Species 1. That Are OBL, FACW, or FAC: 3 (A)           2. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                    |                                                       |             |                                      |                     |             |
| VEGETATION – Use scientific names of plants.           Tree Stratum (Plot size: 1m )         Absolute % Cover Species? Species? Status 1. Salix exigua         Dominant Indicator Species 1. Number of Dominant Species 1. That Are OBL, FACW, or FAC: 3 (A)           2. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Irrigation ditch with emergent vegetation    |                                                    |                                                       |             |                                      |                     |             |
| Dominant Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | inigation ditch with emergent vegetation.    |                                                    |                                                       |             |                                      |                     |             |
| Dominant Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                    |                                                       |             |                                      |                     |             |
| Tree Stratum (Plot size: 1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VEGETATION – Use scientific names of plan    |                                                    |                                                       |             |                                      |                     |             |
| 1. Salix exigua  2. 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tree Stratum (Plot size: 1m )                |                                                    |                                                       |             |                                      |                     |             |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | 10                                                 | Υ                                                     | FACW        |                                      |                     | (A)         |
| Species Across All Strata:   3   (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                                    |                                                       |             | Total Number of Domi                 | nant                |             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                            |                                                    |                                                       |             |                                      |                     | (B)         |
| Sapling/Shrub Stratum (Plot size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                            |                                                    |                                                       |             | Percent of Dominant S                | inecies             |             |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sanlina/Shruh Stratum (Plot sizo:            | 10                                                 | = Total Co                                            | ver         |                                      |                     | 0% (A/B)    |
| Total % Cover of:    Multiply by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                    |                                                       |             | Prevalence Index wor                 | rksheet:            |             |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                    |                                                       |             |                                      |                     | y by:       |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                    |                                                       |             |                                      |                     | -           |
| Herb Stratum (Plot size: 1m   1   Typha angustifolia   95    Y   OBL   Column Totals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                                    |                                                       |             | FACW species                         | x 2 =               |             |
| Herb Stratum (Plot size: 1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                            |                                                    |                                                       | -           | FAC species                          | x 3 =               |             |
| 1. Typha angustifolia 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Harb Charture (District) 1m                  |                                                    | = Total Co                                            | ver         |                                      |                     |             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (                                            |                                                    | ٧                                                     | OBI         |                                      |                     |             |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                    |                                                       | · ·         | Column Totals:                       | (A)                 | (B)         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                    |                                                       |             | Prevalence Index                     | c = B/A =           |             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                    |                                                       |             | Hydrophytic Vegetati                 | on Indicators:      |             |
| 7 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)  Woody Vine Stratum (Plot size: 1m )  1. Rubus armeniacus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                    |                                                       |             |                                      |                     |             |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                            |                                                    |                                                       | -           |                                      |                     |             |
| 8 Problematic Hydrophytic Vegetation¹ (Explain)  1. Rubus armeniacus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                            |                                                    |                                                       |             |                                      |                     |             |
| Woody Vine Stratum (Plot size: 1m )       1. Rubus armeniacus       10 Y FAC       ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                            |                                                    |                                                       |             |                                      | •                   |             |
| 1. Rubus armeniacus 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Woody Vine Stratum (Plot size: 1m )          | 95                                                 | = Total Co                                            | ver         |                                      | pring regetation    | (=/(p.d)    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | 10                                                 | Υ                                                     | FAC         | <sup>1</sup> Indicators of hydric so | il and wetland hydr | ology must  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                    |                                                       |             | be present, unless dist              | urbed or problemat  | tic.        |
| % Bare Ground in Herb Stratum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                                    | = Total Co                                            | ver         |                                      |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Bare Ground in Herb Stratum - % Cove       | er of Biotic Cr                                    | ust -                                                 |             |                                      | es 🗸 No             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                    |                                                       |             | 1 1 2 2 3 1 1                        |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                    |                                                       |             |                                      |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                    |                                                       |             |                                      |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                    |                                                       |             |                                      |                     |             |

SOIL

Sampling Point: SP-1

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 16  Histic Epipedon (A2) Stripped Matrix (S6) 26  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A5) LRR C) Depleted Matrix (F2) Reference (A5) LRR C) Depleted Matrix (F3) Or 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) And Indicators (A5) Matrix (S4) Wetland Hydrology Indicators:    Type: Depth (inches): Hydric   Remarks:     Surface Water (A1) Salt Crust (B11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remarks  Remarks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains.  Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indica Histosol (A1) Sandy Redox (S5) 1 Histic Epipedon (A2) Stripped Matrix (S6) 2 Black Histic (A3) Loamy Mucky Mineral (F1) Re Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Re Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Of 1 Tom Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Vernal Pools (F9) wetter Sandy Gleyed Matrix (S4) Restrictive Layer (if present): Type: Depth (inches): Hydric Remarks:    Water Marks (B1) Salt Crust (B11) Hydric   High Water Table (A2) Redox Depth (Inches) Hydrogen Sulfide Odor (C1)   Sediment Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 16  Histic Epipedon (A2) Stripped Matrix (S6) 26  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A2) 17  Thick Dark Surface (A12) Redox Dark Surface (F6) Popleted Below Dark Surface (A11) Depleted Dark Surface (F7) Popleted Below Dark Surface (A11) Popleted Dark Surface (F7) Popleted Dark Surface (F8) Popleted Dark Surface (F8) Popleted D | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 10  Histic Epipedon (A2) Stripped Matrix (S6) 20  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A5) (LRR C) Depleted Matrix (F2) Reference (A5) (LRR D) Redox Dark Surface (F6)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)  Thick Dark Surface (A12) Redox Depressions (F8) 3 Indicators (F9) Wett (F7)  Thick Dark Surface (A12) Redox Depressions (F8) Wett (F8) Unless (F8) Wett ( | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 10  Histic Epipedon (A2) Stripped Matrix (S6) 20  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A5) (LRR C) Depleted Matrix (F2) Reference (A5) (LRR D) Redox Dark Surface (F6)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)  Thick Dark Surface (A12) Redox Depressions (F8) 3 Indicators (Mineral (S4) Restrictive Layer (if present):  Type: Depth (inches): Hydric Remarks:   YDROLOGY  Netland Hydrology Indicators: Perimary Indicators (minimum of one required; check all that apply) Salt Crust (B11) Pilip Water Table (A2) Biotic Crust (B12) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Pirit Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 10  Histic Epipedon (A2) Stripped Matrix (S6) 20  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A5) (LRR C) Depleted Matrix (F2) Reference (A5) (LRR D) Redox Dark Surface (F6)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)  Thick Dark Surface (A12) Redox Depressions (F8) 3 Indicators (Mineral (S4) Restrictive Layer (if present):  Type: Depth (inches): Hydric Remarks:   YDROLOGY  Netland Hydrology Indicators: Perimary Indicators (minimum of one required; check all that apply) Salt Crust (B11) Pilip Water Table (A2) Biotic Crust (B12) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Pirit Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 16  Histic Epipedon (A2) Stripped Matrix (S6) 26  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A2) 17  Thick Dark Surface (A12) Redox Dark Surface (F6) Popleted Below Dark Surface (A11) Depleted Dark Surface (F7) Popleted Below Dark Surface (A11) Popleted Dark Surface (F7) Popleted Dark Surface (F8) Popleted Dark Surface (F8) Popleted D | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 16  Histic Epipedon (A2) Stripped Matrix (S6) 26  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A1)  To m Muck (A9) (LRR C) Depleted Matrix (F2) Reference (A1)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F6)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)  Thick Dark Surface (A12) Redox Depressions (F8) 3 Indicators (F9) Wetling (F9) Wetling (F9) Wetling (F9)  Bestrictive Layer (if present):  Type: Depth (inches): Hydric  Remarks:   YDROLOGY  Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply) Salt Crust (B11)  High Water Table (A2) Biotic Crust (B12)  Salt Salt Crust (B12)  Salt Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1)  Sediment Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 16  Histic Epipedon (A2) Stripped Matrix (S6) 26  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A1)  To m Muck (A9) (LRR C) Depleted Matrix (F2) Reference (A1)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F6)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)  Thick Dark Surface (A12) Redox Depressions (F8) 3 Indicators (F9) Wetling (F9) Wetling (F9) Wetling (F9)  Bestrictive Layer (if present):  Type: Depth (inches): Hydric  Remarks:   YDROLOGY  Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply) Salt Crust (B11)  High Water Table (A2) Biotic Crust (B12)  Salt Salt Crust (B12)  Salt Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1)  Sediment Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 10  Histic Epipedon (A2) Stripped Matrix (S6) 20  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A5) (LRR C) Depleted Matrix (F2) Reference (A5) (LRR D) Redox Dark Surface (F6)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)  Thick Dark Surface (A12) Redox Depressions (F8) Indicators (A5) Wetland Hydrology Indicators:  Type: Depth (inches): Hydric  Remarks:    YDROLOGY   Primary Indicators (minimum of one required; check all that apply) Sandy Captage (A1) Salt Crust (B11) High Water Table (A2) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4) Sandy Roots (C3) Depresence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1)  Histosol (A2)  Sandy Redox (S5)  Histic Epipedon (A2)  Stripped Matrix (S6)  Black Histic (A3)  Loamy Mucky Mineral (F1)  Stratified Layers (A5) (LRR C)  Depleted Matrix (F3)  1 cm Muck (A9) (LRR D)  Redox Dark Surface (F6)  Depleted Below Dark Surface (A11)  Thick Dark Surface (A12)  Sandy Mucky Mineral (S1)  Sandy Gleyed Matrix (S4)  Restrictive Layer (if present):  Type:  Depth (inches):  Hydric  Remarks:    VPDROLOGY    Wetland Hydrology Indicators:   Primary Indicators (minimum of one required; check all that apply)  Surface Water (A1)  High Water Table (A2)  Salt Crust (B12)  Salt Crust (B12)  Salt Crust (B12)  Salt Water Marks (B1) (Nonriverine)  Hydrogen Sulfide Odor (C1)  Sediment Deposits (B2) (Nonriverine)  Drift Deposits (B3) (Nonriverine)  Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 10  Histic Epipedon (A2) Stripped Matrix (S6) 20  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A5) (LRR C) Depleted Matrix (F2) Reference (A5) (LRR D) Redox Dark Surface (F6)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)  Thick Dark Surface (A12) Redox Depressions (F8) Indicators (A5) Wetland Hydrology Indicators:  Type: Depth (inches): Hydric  Remarks:    YDROLOGY   Primary Indicators (minimum of one required; check all that apply) Sandy Captage (A1) Salt Crust (B11) High Water Table (A2) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4) Sandy Roots (C3) Depresence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)  Histosol (A1) Sandy Redox (S5) 10  Histic Epipedon (A2) Stripped Matrix (S6) 20  Black Histic (A3) Loamy Mucky Mineral (F1) Reference (A5) (LRR C) Depleted Matrix (F2) Reference (A5) (LRR D) Redox Dark Surface (F6)  Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)  Thick Dark Surface (A12) Redox Depressions (F8) Indicators (A5) Wetland Hydrology Indicators:  Type: Depth (inches): Hydric  Remarks:    YDROLOGY   Primary Indicators (minimum of one required; check all that apply) Sandy Captage (A1) Salt Crust (B11) High Water Table (A2) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4) Sandy Roots (C3) Depresence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ors for Problematic Hydric Soils <sup>3</sup> : m Muck (A9) (LRR C) m Muck (A10) (LRR B) duced Vertic (F18) d Parent Material (TF2)                                                                                                                                                                     |
| Histosol (A1) Sandy Redox (S5) 10 Histic Epipedon (A2) Stripped Matrix (S6) 20 Black Histic (A3) Loamy Mucky Mineral (F1) Re Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Re Stratified Layers (A5) (LRR C) Depleted Matrix (F3) OI 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Indicators (Mineral (S1) Vernal Pools (F9) Wett Sandy Mucky Mineral (S1) Vernal Pools (F9) Wett Sandy Gleyed Matrix (S4) Unle  Restrictive Layer (if present): Type: Depth (inches): Hydric  Remarks:    YDROLOGY   Primary Indicators (minimum of one required; check all that apply) Surface (Matrix (B1) Salt Crust (B11) Salt Crust (B12) Salt Crust (B13) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4) Stripped Matrix (S6) Pelected Matrix (S6) Stripped Matrix (F3) Presence of Reduced Iron (C4) Stripped Matrix (S6) Pelected Matrix (F3) Stripped Matrix (F3) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m Muck (A9) ( <b>LRR C</b> )<br>m Muck (A10) ( <b>LRR B</b> )<br>duced Vertic (F18)<br>d Parent Material (TF2)                                                                                                                                                                                          |
| Histic Epipedon (A2) Stripped Matrix (S6) 2 C Black Histic (A3) Loamy Mucky Mineral (F1) Re Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Re Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Ot 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Indicators (A12) Sandy Mucky Mineral (S1) Vernal Pools (F9) Wetl Sandy Gleyed Matrix (S4) Unlee Restrictive Layer (if present):  Type: Depth (inches): Hydric Remarks:   YDROLOGY  Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply) Septimary Indicators (minimum of one required; check all that apply) Septimary Indicators (Minimum of One Indicat        | m Muck (A10) ( <b>LRR B</b> )<br>duced Vertic (F18)<br>d Parent Material (TF2)                                                                                                                                                                                                                          |
| Black Histic (A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | duced Vertic (F18)<br>d Parent Material (TF2)                                                                                                                                                                                                                                                           |
| Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Re Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Ot  1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Indicated Sandy Mucky Mineral (S1) Vernal Pools (F9) wetled Sandy Gleyed Matrix (S4) Unlee  Restrictive Layer (if present): Type: Depth (inches): Depth (inches):  Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Suter Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) (Nonriverine) Drift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d Parent Material (TF2)                                                                                                                                                                                                                                                                                 |
| Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         |
| 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) wetl Sandy Gleyed Matrix (S4) Unle  Restrictive Layer (if present): Type: Depth (inches): Hydric  Remarks:    Vernal Pools (F9) Wetland Hydrology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |
| Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Wetl Sandy Gleyed Matrix (S4)  Restrictive Layer (if present): Type: Depth (inches): Hydric  Remarks:    VPROLOGY   Wetland Hydrology Indicators:   Primary Indicators (minimum of one required; check all that apply)   Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12)   Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) (Nonriverine) Presence of Reduced Iron (C4) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         |
| Thick Dark Surface (A12) Redox Depressions (F8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                         |
| Sandy Mucky Mineral (S1) Vernal Pools (F9) wetl Sandy Gleyed Matrix (S4) unle  Restrictive Layer (if present): Depth (inches): Hydric  Remarks:    VPDROLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ors of hydrophytic vegetation and                                                                                                                                                                                                                                                                       |
| Sandy Gleyed Matrix (S4) unle  Restrictive Layer (if present):  Type: Depth (inches): Hydric  Remarks:    YDROLOGY   Hydric   Hydric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and hydrology must be present,                                                                                                                                                                                                                                                                          |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ss disturbed or problematic.                                                                                                                                                                                                                                                                            |
| Depth (inches): Hydric  Remarks:    Primary Indicators (minimum of one required; check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                       |
| Depth (inches): Hydric  Remarks:    Primary Indicators (minimum of one required; check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         |
| Primary Indicators (minimum of one required; check all that apply)  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil Present? Yes No 🔽                                                                                                                                                                                                                                                                                  |
| YDROLOGY  Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; check all that apply)  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                         |
| Primary Indicators (minimum of one required; check all that apply)  Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Drift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                         |
| ✓       Surface Water (A1)       Salt Crust (B11)         High Water Table (A2)       Biotic Crust (B12)         Saturation (A3)       Aquatic Invertebrates (B13)         Water Marks (B1) (Nonriverine)       Hydrogen Sulfide Odor (C1)         Sediment Deposits (B2) (Nonriverine)       Oxidized Rhizospheres along Living Roots (C3)         Drift Deposits (B3) (Nonriverine)       Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                         |
| High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Drift Deposits (B3) (Nonriverine)  High Water (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Roots (C3) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | econdary Indicators (2 or more required)                                                                                                                                                                                                                                                                |
| High Water Table (A2)  Saturation (A3)  Water Marks (B1) (Nonriverine)  Sediment Deposits (B2) (Nonriverine)  Drift Deposits (B3) (Nonriverine)  Might Water (B12)  Aquatic Invertebrates (B13)  Hydrogen Sulfide Odor (C1)  Oxidized Rhizospheres along Living Roots (C3)  Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Marks (B1) (Riverine)                                                                                                                                                                                                                                                                             |
| ✓       Saturation (A3)       Aquatic Invertebrates (B13)         Water Marks (B1) (Nonriverine)       Hydrogen Sulfide Odor (C1)         Sediment Deposits (B2) (Nonriverine)       Oxidized Rhizospheres along Living Roots (C3)         Drift Deposits (B3) (Nonriverine)       Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sediment Deposits (B2) (Riverine)                                                                                                                                                                                                                                                                       |
| <ul> <li>Water Marks (B1) (Nonriverine)</li> <li>Sediment Deposits (B2) (Nonriverine)</li> <li>Drift Deposits (B3) (Nonriverine)</li> <li>Hydrogen Sulfide Odor (C1)</li> <li>Oxidized Rhizospheres along Living Roots (C3)</li> <li>Presence of Reduced Iron (C4)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drift Deposits (B3) ( <b>Riverine</b> )                                                                                                                                                                                                                                                                 |
| Sediment Deposits (B2) (Nonriverine)  Oxidized Rhizospheres along Living Roots (C3)  Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drainage Patterns (B10)                                                                                                                                                                                                                                                                                 |
| Drift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Crayfish Burrows (C8)                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ Claylish Bullows (Co)<br>_ Saturation Visible on Aerial Imagery (C9                                                                                                                                                                                                                                   |
| <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                       |
| <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Shallow Aquitard (D3)                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ FAC-Neutral Test (D5)                                                                                                                                                                                                                                                                                 |
| Field Observations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |
| Surface Water Present? Yes <u>✓</u> No Depth (inches): <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                         |
| Water Table Present? Yes No Depth (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         |
| Saturation Present? Yes 🗸 No Depth (inches): 0 Wetland Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | logy Present? Yes No                                                                                                                                                                                                                                                                                    |
| (includes capillary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                       |
| Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                         |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                         |
| Saturation at sample point. Surface water present adjacent to sample point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                         |
| Saturation at sample point. Surface water present adjacent to sample point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         |
| Saturation at sample point. Surface water present adjacent to sample point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                         |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: <u>Sutter Decarbonization Project</u>          | (                | City/Count  | y: Sutter C  | ounty                                            | Sampling Date: 9/19/2023                              |  |  |
|--------------------------------------------------------------|------------------|-------------|--------------|--------------------------------------------------|-------------------------------------------------------|--|--|
| Applicant/Owner: Calpine                                     |                  |             |              | State: CA                                        | Sampling Point: SP-2                                  |  |  |
| Investigator(s): Kevin Fisher, Sam Wentworth                 |                  |             |              |                                                  |                                                       |  |  |
| Landform (hillslope, terrace, etc.): Ditch                   |                  | Local relie | ef (concave, | convex, none): None Slope (%): 1                 |                                                       |  |  |
| Subregion (LRR): C                                           | Lat: 39.0        | 025451      |              | Long: -121.699122                                | Datum: WGS 84                                         |  |  |
|                                                              |                  |             |              |                                                  | cation: R2UBHx                                        |  |  |
| Are climatic / hydrologic conditions on the site typical for |                  |             |              |                                                  |                                                       |  |  |
| Are Vegetation, Soil, or Hydrology                           | -                |             |              |                                                  | present? Yes V No No                                  |  |  |
| Are Vegetation, Soil, or Hydrology                           |                  |             |              | eeded, explain any answe                         |                                                       |  |  |
| SUMMARY OF FINDINGS – Attach site ma                         |                  |             |              |                                                  |                                                       |  |  |
| Hydrophytic Vegetation Present? Yes                          | No               | ls t        | he Sampled   | l Area                                           |                                                       |  |  |
|                                                              | No               |             | hin a Wetlaı |                                                  | No <u> </u>                                           |  |  |
| Wetland Hydrology Present? Yes                               | No               |             |              |                                                  |                                                       |  |  |
| Remarks:                                                     |                  |             |              |                                                  |                                                       |  |  |
|                                                              |                  |             |              |                                                  |                                                       |  |  |
|                                                              |                  |             |              |                                                  |                                                       |  |  |
| <b>VEGETATION – Use scientific names of pl</b>               | ants.            |             |              |                                                  |                                                       |  |  |
| T 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                      |                  |             | t Indicator  | Dominance Test work                              | ksheet:                                               |  |  |
| Tree Stratum (Plot size: 1m )                                | % Cover          |             |              | Number of Dominant S                             |                                                       |  |  |
| 1. Quercus lobata                                            |                  |             | FACU         | That Are OBL, FACW,                              | or FAC:1 (A)                                          |  |  |
| 2                                                            |                  |             |              | Total Number of Domir<br>Species Across All Stra |                                                       |  |  |
| 4                                                            |                  |             |              |                                                  | ` ` ,                                                 |  |  |
|                                                              |                  | = Total C   |              | Percent of Dominant S<br>That Are OBL, FACW,     |                                                       |  |  |
| Sapling/Shrub Stratum (Plot size:)                           |                  |             |              |                                                  |                                                       |  |  |
| 1                                                            |                  |             |              | Prevalence Index wor                             |                                                       |  |  |
| 2                                                            |                  |             |              | Total % Cover of:                                |                                                       |  |  |
| 3                                                            |                  |             |              |                                                  | x 1 = 60<br>x 2 =                                     |  |  |
| 4                                                            |                  | -           | <del>-</del> | FAC species 10                                   |                                                       |  |  |
| o                                                            |                  | = Total C   | over         |                                                  | x 4 = 380                                             |  |  |
| Herb Stratum (Plot size: 1m )                                |                  |             |              | UPL species                                      | x 5 =                                                 |  |  |
| Typha angustifolia                                           |                  | Y           | OBL          | Column Totals:10                                 | 65 (A) <u>470</u> (B)                                 |  |  |
| 2. <u>Verbena hastata</u>                                    |                  | N           | <u>FAC</u>   | Dravalance Index                                 | v = D/A = 2.85                                        |  |  |
| 3                                                            |                  |             |              | Hydrophytic Vegetati                             | x = B/A = 2.85                                        |  |  |
| 4                                                            |                  |             |              | Dominance Test is                                |                                                       |  |  |
| 5<br>6                                                       |                  |             |              | ✓ Prevalence Index                               |                                                       |  |  |
| 7                                                            |                  |             |              | <del></del>                                      | aptations <sup>1</sup> (Provide supporting            |  |  |
| 8                                                            |                  |             |              |                                                  | ks or on a separate sheet)                            |  |  |
|                                                              |                  | = Total C   | over         | Problematic Hydro                                | ophytic Vegetation <sup>1</sup> (Explain)             |  |  |
| Woody Vine Stratum (Plot size:)                              |                  |             |              | 1 Indicators of budgie on                        | sil and watland budralagy must                        |  |  |
| 1                                                            |                  |             |              | be present, unless dist                          | oil and wetland hydrology must turbed or problematic. |  |  |
| 2                                                            |                  | = Total C   | over         | Hydrophytic                                      |                                                       |  |  |
| 20                                                           |                  |             |              | Vegetation                                       |                                                       |  |  |
|                                                              | over of Biotic C | rust        |              | Present? Ye                                      | es <u>/</u> No                                        |  |  |
| Remarks:                                                     |                  |             |              |                                                  |                                                       |  |  |
| Emergent vegetation in ditch. Open wat                       | er present       | as "bar     | e ground     | " and overstory co                               | nsisting of valley oak                                |  |  |
| rooted above the channel.                                    |                  |             |              |                                                  |                                                       |  |  |
|                                                              |                  |             |              |                                                  |                                                       |  |  |

SOIL Sampling Point: SP-2

| Profile Description: (Describe to the depth ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                      | or commi          | i the absence                               | of indicators.)                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth Matrix (inches) Color (moist) % C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Redox Feat                                                                                                                                                                                   |                                                                                      | Loc <sup>2</sup>  | Ta                                          | Demode                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olor (moist) %                                                                                                                                                                               | <u>rype</u>                                                                          | LOC               | <u>Texture</u>                              | Remarks                                                                                                                                                                                                                                                                |
| <u>0-12</u> <u>10YR 2/2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>-</del>                                                                                                                                                                                 |                                                                                      |                   | <del>-</del>                                | -                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              | <del></del> -                                                                        |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
| <sup>1</sup> Type: C=Concentration, D=Depletion, RM=Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ucod Matrix, CS=Cov                                                                                                                                                                          | orod or Coat                                                                         | nd Sand Gr        | rains <sup>2</sup> Lo                       | cation: PL=Pore Lining, M=Matrix.                                                                                                                                                                                                                                      |
| Hydric Soil Indicators: (Applicable to all LRR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      | d Saliu Gi        |                                             | for Problematic Hydric Soils <sup>3</sup> :                                                                                                                                                                                                                            |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sandy Redox (S5)                                                                                                                                                                             | •                                                                                    |                   |                                             | Muck (A9) ( <b>LRR C</b> )                                                                                                                                                                                                                                             |
| Histic Epipedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stripped Matrix (S)                                                                                                                                                                          |                                                                                      |                   |                                             | Muck (A10) ( <b>LRR B</b> )                                                                                                                                                                                                                                            |
| Black Histic (A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Complete Matrix (C<br>Loamy Mucky Min                                                                                                                                                        |                                                                                      |                   |                                             | ed Vertic (F18)                                                                                                                                                                                                                                                        |
| Hydrogen Sulfide (A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Loamy Gleyed Ma                                                                                                                                                                              |                                                                                      |                   |                                             | arent Material (TF2)                                                                                                                                                                                                                                                   |
| Stratified Layers (A5) (LRR C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depleted Matrix (F                                                                                                                                                                           | , ,                                                                                  |                   |                                             | (Explain in Remarks)                                                                                                                                                                                                                                                   |
| 1 cm Muck (A9) ( <b>LRR D</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Redox Dark Surfa                                                                                                                                                                             | ,                                                                                    |                   | <del></del>                                 |                                                                                                                                                                                                                                                                        |
| Depleted Below Dark Surface (A11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depleted Dark Sui                                                                                                                                                                            | face (F7)                                                                            |                   |                                             |                                                                                                                                                                                                                                                                        |
| Thick Dark Surface (A12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Redox Depression                                                                                                                                                                             | ıs (F8)                                                                              |                   | <sup>3</sup> Indicators                     | of hydrophytic vegetation and                                                                                                                                                                                                                                          |
| Sandy Mucky Mineral (S1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vernal Pools (F9)                                                                                                                                                                            |                                                                                      |                   |                                             | hydrology must be present,                                                                                                                                                                                                                                             |
| Sandy Gleyed Matrix (S4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                      |                   | unless o                                    | listurbed or problematic.                                                                                                                                                                                                                                              |
| Restrictive Layer (if present):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
| Depth (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   | Hydric Soil                                 | Present? Yes No                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
| HYDROLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
| . HYDROLOGY Wetland Hydrology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                      |                   |                                             |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eck all that apply)                                                                                                                                                                          |                                                                                      |                   | Seco                                        | ndary Indicators (2 or more required)                                                                                                                                                                                                                                  |
| Wetland Hydrology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eck all that apply) Salt Crust (B11)                                                                                                                                                         |                                                                                      |                   |                                             | ndary Indicators (2 or more required) Vater Marks (B1) ( <b>Riverine</b> )                                                                                                                                                                                             |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              | )                                                                                    |                   | V                                           |                                                                                                                                                                                                                                                                        |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  V Surface Water (A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Salt Crust (B11)                                                                                                                                                                             |                                                                                      |                   | v                                           | Vater Marks (B1) (Riverine)                                                                                                                                                                                                                                            |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Salt Crust (B11)<br>Biotic Crust (B12                                                                                                                                                        | ates (B13)                                                                           |                   | v<br>s<br>c                                 | Vater Marks (B1) ( <b>Riverine</b> ) sediment Deposits (B2) ( <b>Riverine</b> )                                                                                                                                                                                        |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Salt Crust (B11) Biotic Crust (B12 Aquatic Invertebr Hydrogen Sulfide                                                                                                                        | ates (B13)<br>Odor (C1)                                                              | Living Roc        | v<br>s<br>c                                 | Vater Marks (B1) (Riverine) sediment Deposits (B2) (Riverine) prift Deposits (B3) (Riverine)                                                                                                                                                                           |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Salt Crust (B11) Biotic Crust (B12 Aquatic Invertebr Hydrogen Sulfide                                                                                                                        | ates (B13)<br>Odor (C1)<br>oheres along                                              | _                 | V<br>S<br>C<br>C                            | Vater Marks (B1) ( <b>Riverine</b> ) sediment Deposits (B2) ( <b>Riverine</b> ) prift Deposits (B3) ( <b>Riverine</b> ) prainage Patterns (B10)                                                                                                                        |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Salt Crust (B11) Biotic Crust (B12 Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp                                                                                                       | ates (B13) c Odor (C1) cheres along uced Iron (C                                     | 4)                | V<br>C<br>C<br>ots (C3) C                   | Vater Marks (B1) (Riverine) sediment Deposits (B2) (Riverine) brift Deposits (B3) (Riverine) brainage Patterns (B10) bry-Season Water Table (C2)                                                                                                                       |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Salt Crust (B11) Biotic Crust (B12 Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red                                                                                       | ates (B13) Codor (C1) Cheres along Luced Iron (Couction in Tille                     | 4)                | V<br>C<br>C<br>ots (C3) C<br>C              | Vater Marks (B1) (Riverine) sediment Deposits (B2) (Riverine) virift Deposits (B3) (Riverine) virainage Patterns (B10) viry-Season Water Table (C2) virayfish Burrows (C8)                                                                                             |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Surface Soil Cracks (B6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red Recent Iron Red                                                                      | ates (B13) c Odor (C1) cheres along uced Iron (Couction in Tille ce (C7)             | 4)                | V S C C C C S S) S                          | Vater Marks (B1) ( <b>Riverine</b> ) sediment Deposits (B2) ( <b>Riverine</b> ) virit Deposits (B3) ( <b>Riverine</b> ) virit Deposits (B10) viry-Season Water Table (C2) viry-Season Water Table (C2) viry-Season Visible on Aerial Imagery (C9)                      |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Surface Soil Cracks (B6)  — Inundation Visible on Aerial Imagery (B7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red Recent Iron Redo                                                                     | ates (B13) c Odor (C1) cheres along uced Iron (Couction in Tille ce (C7)             | 4)                | V S C C C C S S) S                          | Vater Marks (B1) ( <b>Riverine</b> ) dediment Deposits (B2) ( <b>Riverine</b> ) derift Deposits (B3) ( <b>Riverine</b> ) derinage Patterns (B10) dery-Season Water Table (C2) derayfish Burrows (C8) deaturation Visible on Aerial Imagery (C9) dehallow Aquitard (D3) |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Drift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9)  Field Observations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red Recent Iron Redo                                                                     | ates (B13) c Odor (C1) cheres along uced Iron (C- uction in Tille ce (C7) Remarks)   | 4)<br>d Soils (C6 | V S C C C C S S) S                          | Vater Marks (B1) ( <b>Riverine</b> ) dediment Deposits (B2) ( <b>Riverine</b> ) derift Deposits (B3) ( <b>Riverine</b> ) derinage Patterns (B10) dery-Season Water Table (C2) derayfish Burrows (C8) deaturation Visible on Aerial Imagery (C9) dehallow Aquitard (D3) |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Surface Soil Cracks (B6)  — Inundation Visible on Aerial Imagery (B7)  — Water-Stained Leaves (B9)  Field Observations:  Surface Water Present? Yes   ✓ No   —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red Recent Iron Redi Thin Muck Surfac                                                    | ates (B13) c Odor (C1) cheres along uced Iron (Couction in Tille te (C7) Remarks)    | 4)<br>d Soils (C6 | V S C C C C S S) S                          | Vater Marks (B1) ( <b>Riverine</b> ) dediment Deposits (B2) ( <b>Riverine</b> ) derift Deposits (B3) ( <b>Riverine</b> ) derinage Patterns (B10) dery-Season Water Table (C2) derayfish Burrows (C8) deaturation Visible on Aerial Imagery (C9) dehallow Aquitard (D3) |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Surface Soil Cracks (B6)  — Inundation Visible on Aerial Imagery (B7)  — Water-Stained Leaves (B9)  Field Observations:  Surface Water Present? Yes ✓ No —  Water Table Present? Yes _ No —  Saturation Present? Yes _ No —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red Recent Iron Redi Thin Muck Surfac Other (Explain in                                  | ates (B13) c Odor (C1) cheres along uced Iron (C- uction in Tille ce (C7) Remarks)   | 4)<br>d Soils (C6 | V<br>C<br>C<br>ots (C3) C<br>C<br>S) S<br>F | Vater Marks (B1) ( <b>Riverine</b> ) dediment Deposits (B2) ( <b>Riverine</b> ) derift Deposits (B3) ( <b>Riverine</b> ) derinage Patterns (B10) dery-Season Water Table (C2) derayfish Burrows (C8) deaturation Visible on Aerial Imagery (C9) dehallow Aquitard (D3) |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Surface Soil Cracks (B6)  — Inundation Visible on Aerial Imagery (B7)  — Water-Stained Leaves (B9)  Field Observations:  Surface Water Present? Yes _ ✓ No _  Water Table Present? Yes _ ✓ No _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red Recent Iron Redu Thin Muck Surfac Other (Explain in  Depth (inches): Depth (inches): | ates (B13) c Odor (C1) cheres along uced Iron (Couction in Tille ce (C7) Remarks)    | 4) d Soils (C6    | V                                           | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine) Prainage Patterns (B10) Pry-Season Water Table (C2) Prayfish Burrows (C8) Raturation Visible on Aerial Imagery (C9) Prihallow Aquitard (D3) AC-Neutral Test (D5)          |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Surface Soil Cracks (B6)  — Inundation Visible on Aerial Imagery (B7)  — Water-Stained Leaves (B9)  Field Observations:  Surface Water Present? Yes No  Water Table Present? Yes No  Saturation Present? Yes No  (includes capillary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red Recent Iron Redu Thin Muck Surfac Other (Explain in  Depth (inches): Depth (inches): | ates (B13) c Odor (C1) cheres along uced Iron (Couction in Tille ce (C7) Remarks)    | 4) d Soils (C6    | V                                           | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine) Prainage Patterns (B10) Pry-Season Water Table (C2) Prayfish Burrows (C8) Raturation Visible on Aerial Imagery (C9) Prihallow Aquitard (D3) AC-Neutral Test (D5)          |
| Wetland Hydrology Indicators:  Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Surface Soil Cracks (B6)  — Inundation Visible on Aerial Imagery (B7)  — Water-Stained Leaves (B9)  Field Observations:  Surface Water Present? Yes No  Water Table Present? Yes No  Saturation Present? Yes No  (includes capillary fringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosp Presence of Red Recent Iron Redu Thin Muck Surfac Other (Explain in  Depth (inches): Depth (inches): | ates (B13) c Odor (C1) cheres along uced Iron (Couction in Tille ce (C7) Remarks)    | 4) d Soils (C6    | V                                           | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine) Prainage Patterns (B10) Pry-Season Water Table (C2) Prayfish Burrows (C8) Raturation Visible on Aerial Imagery (C9) Prihallow Aquitard (D3) AC-Neutral Test (D5)          |
| Primary Indicators (minimum of one required; che  ✓ Surface Water (A1)  — High Water Table (A2)  — Saturation (A3)  — Water Marks (B1) (Nonriverine)  — Sediment Deposits (B2) (Nonriverine)  — Drift Deposits (B3) (Nonriverine)  — Surface Soil Cracks (B6)  — Inundation Visible on Aerial Imagery (B7)  — Water-Stained Leaves (B9)  Field Observations:  Surface Water Present? Yes ✓ No  Water Table Present? Yes No  Saturation Present? Yes No  (includes capillary fringe)  Describe Recorded Data (stream gauge, monitor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosg Presence of Red Recent Iron Redu Thin Muck Surfac Other (Explain in Depth (inches): Depth (inches):  | ates (B13) c Odor (C1) cheres along uced Iron (C- uction in Tille ce (C7) Remarks) 6 | 4) d Soils (C6    | V                                           | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine) Prainage Patterns (B10) Pry-Season Water Table (C2) Prayfish Burrows (C8) Raturation Visible on Aerial Imagery (C9) Prihallow Aquitard (D3) AC-Neutral Test (D5)          |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; che         ✓ Surface Water (A1)         — High Water Table (A2)         — Saturation (A3)         — Water Marks (B1) (Nonriverine)         — Sediment Deposits (B2) (Nonriverine)         — Drift Deposits (B3) (Nonriverine)         — Surface Soil Cracks (B6)         — Inundation Visible on Aerial Imagery (B7)         — Water-Stained Leaves (B9)         Field Observations:         Surface Water Present? Yes No _         Water Table Present? Yes No _         (includes capillary fringe)         Describe Recorded Data (stream gauge, monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosg Presence of Red Recent Iron Redu Thin Muck Surfac Other (Explain in Depth (inches): Depth (inches):  | ates (B13) c Odor (C1) cheres along uced Iron (C- uction in Tille ce (C7) Remarks) 6 | 4) d Soils (C6    | V                                           | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine) Prainage Patterns (B10) Pry-Season Water Table (C2) Prayfish Burrows (C8) Raturation Visible on Aerial Imagery (C9) Prihallow Aquitard (D3) AC-Neutral Test (D5)          |
| Wetland Hydrology Indicators:         Primary Indicators (minimum of one required; cheed of the primary Indicators (minimum of one required; cheed of the primary Indicators (minimum of one required; cheed of the primary Indicators (minimum of one required; cheed of the primary Indicators (minimum of one required; cheed of the primary Indicators (minimum of one required; cheed of the primary Indicators (minimum of one required; cheed of the primary Indicators (minimum of one required; cheed one required; cheed of one required; cheed one required; cheed of one required; cheed of one required; cheed of one required; cheed | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebr Hydrogen Sulfide Oxidized Rhizosg Presence of Red Recent Iron Redu Thin Muck Surfac Other (Explain in Depth (inches): Depth (inches):  | ates (B13) c Odor (C1) cheres along uced Iron (C- uction in Tille ce (C7) Remarks) 6 | 4) d Soils (C6    | V                                           | Vater Marks (B1) (Riverine) Rediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine) Prainage Patterns (B10) Pry-Season Water Table (C2) Prayfish Burrows (C8) Raturation Visible on Aerial Imagery (C9) Prihallow Aquitard (D3) AC-Neutral Test (D5)          |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: Sutter Decarbonization Project                                                       |                                                             | City/Cou | unty: Sutter C | County                                           | Sampling Date: 9/20/2023                   |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------|----------------|--------------------------------------------------|--------------------------------------------|--|
| Applicant/Owner: Calpine                                                                           | State: <u>CA</u> Sampling Point: <u>SP-3</u>                |          |                |                                                  |                                            |  |
| Investigator(s): Kevin Fisher, Sam Wentworth                                                       | Section, Township, Range: 34, 14N, 2E                       |          |                |                                                  |                                            |  |
| Landform (hillslope, terrace, etc.): Floodplain                                                    | Local relief (concave, convex, none): Convex Slope (%): _ < |          |                |                                                  |                                            |  |
| Subregion (LRR): C                                                                                 | Lat: <u>39</u> .                                            | 022763   | 3              | _ Long: -121.739217                              | Datum: WGS 84                              |  |
|                                                                                                    |                                                             |          |                |                                                  | cation: PFO1A                              |  |
| Are climatic / hydrologic conditions on the site typical for thi                                   |                                                             |          |                |                                                  |                                            |  |
| Are Vegetation, Soil, or Hydrology                                                                 | significantly                                               | disturbe | ed? Are        | "Normal Circumstances" p                         | present? Yes 🗸 No                          |  |
| Are Vegetation, Soil, or Hydrology                                                                 |                                                             |          |                | eeded, explain any answe                         | ers in Remarks.)                           |  |
| SUMMARY OF FINDINGS - Attach site map                                                              | showing                                                     | samp     | oling point    | locations, transects                             | s, important features, etc.                |  |
| Hydrophytic Vegetation Present?  Hydric Soil Present?  Wetland Hydrology Present?  Yes N  Remarks: | lo <u>     /                               </u>             |          | s the Sample   |                                                  | No <u> </u>                                |  |
| Floodplain/riparian corridor.                                                                      |                                                             |          |                |                                                  |                                            |  |
| VEGETATION – Use scientific names of plan                                                          | nte.                                                        |          |                |                                                  |                                            |  |
| VEGETATION – Use scientific frames of plan                                                         |                                                             | Domin    | nant Indicator | Dominance Test work                              | (shoot:                                    |  |
| Tree Stratum (Plot size:) 1                                                                        | % Cover                                                     | Specie   | es? Status     | Number of Dominant S<br>That Are OBL, FACW,      | pecies                                     |  |
| 2.<br>3.                                                                                           |                                                             |          |                | Total Number of Domir<br>Species Across All Stra |                                            |  |
| 4                                                                                                  | - <del></del>                                               |          |                | Percent of Dominant S<br>That Are OBL, FACW,     |                                            |  |
| Sapling/Shrub Stratum (Plot size:)                                                                 |                                                             |          |                | Prevalence Index wor                             |                                            |  |
| 1                                                                                                  |                                                             |          |                |                                                  | Multiply by:                               |  |
| 3                                                                                                  |                                                             |          |                |                                                  | x 1 =                                      |  |
| 4                                                                                                  |                                                             |          |                |                                                  | x 2 =                                      |  |
| 5.                                                                                                 |                                                             |          |                |                                                  | x 3 =                                      |  |
|                                                                                                    | - '                                                         | = Tota   | l Cover        | FACU species                                     | x 4 =                                      |  |
| Herb Stratum (Plot size: 1m )                                                                      | _                                                           | .,       | =              | UPL species                                      | x 5 =                                      |  |
| 1. Lepidium latifolium                                                                             |                                                             | <u>Y</u> |                | Column Totals:                                   | (A) (B)                                    |  |
| Rumex crispus     Anthium strumarium                                                               |                                                             |          |                | Prevalence Index                                 | c = B/A =                                  |  |
| 4                                                                                                  |                                                             |          |                | Hydrophytic Vegetation                           |                                            |  |
| 5                                                                                                  |                                                             |          |                | <u>✓</u> Dominance Test is                       |                                            |  |
| 6                                                                                                  |                                                             |          |                | Prevalence Index i                               |                                            |  |
| 7                                                                                                  |                                                             |          |                | Morphological Ada                                | aptations <sup>1</sup> (Provide supporting |  |
| 8.                                                                                                 |                                                             |          |                |                                                  | s or on a separate sheet)                  |  |
|                                                                                                    | 12                                                          |          |                | Problematic Hydro                                | phytic Vegetation <sup>1</sup> (Explain)   |  |
| Woody Vine Stratum (Plot size:1m)  1. Vitis californica                                            | 100                                                         | Υ        | FACU           | <sup>1</sup> Indicators of hydric so             | il and wetland hydrology must              |  |
| 2                                                                                                  | 100                                                         |          |                | <u>'</u>                                         |                                            |  |
| % Bare Ground in Herb Stratum 78 % Cove                                                            | r of Biotic C                                               | =        | l Cover        | Hydrophytic Vegetation Present? Ye               | esNo                                       |  |
| Remarks:                                                                                           |                                                             |          |                | 1                                                | <u> </u>                                   |  |
| Dense cover of Vitis over emergent herbs.                                                          |                                                             |          |                |                                                  |                                            |  |

SOIL Sampling Point: SP-3

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| (inches)                                                                                                                                                                                                                                            | Calan (maaint)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0/                                                               | Redox Features                                                                                                                                                                                                                                                                                              | Z Tarabana Danasaka                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                     | Color (moist)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  | color (moist) % Type <sup>1</sup> Loc                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |
| 0-12                                                                                                                                                                                                                                                | 10YR 3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 -                                                            |                                                                                                                                                                                                                                                                                                             | Silty loam -                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <u></u>                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <del></del>                                                    |                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · — —                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <del></del>                                                    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
| 17                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | leties DM-Ded                                                    | used Matrix CC-Cavarad as Castad Cas                                                                                                                                                                                                                                                                        | d Crains 21 agation, DI – Dans Lining, MA-Matrix                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | uced Matrix, CS=Covered or Coated San<br>s, unless otherwise noted.)                                                                                                                                                                                                                                        | d Grains. <sup>2</sup> Location: PL=Pore Lining, M=Matrix.  Indicators for Problematic Hydric Soils <sup>3</sup> :                                                                                                                                                                                         |
| •                                                                                                                                                                                                                                                   | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | able to all LKK                                                  | •                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |
| Histosol                                                                                                                                                                                                                                            | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                | Sandy Redox (S5)                                                                                                                                                                                                                                                                                            | 1 cm Muck (A9) ( <b>LRR C</b> )                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     | pipedon (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                | Stripped Matrix (S6)                                                                                                                                                                                                                                                                                        | 2 cm Muck (A10) ( <b>LRR B</b> )                                                                                                                                                                                                                                                                           |
| Black His                                                                                                                                                                                                                                           | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                | Loamy Mucky Mineral (F1)                                                                                                                                                                                                                                                                                    | Reduced Vertic (F18)                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                     | n Sulfide (A4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                | Loamy Gleyed Matrix (F2)                                                                                                                                                                                                                                                                                    | Red Parent Material (TF2)                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                     | Layers (A5) (LRR C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>-</b> )                                                       | Depleted Matrix (F3)                                                                                                                                                                                                                                                                                        | Other (Explain in Remarks)                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                     | ck (A9) ( <b>LRR D</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                | Redox Dark Surface (F6)                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     | Below Dark Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e (A11)                                                          | Depleted Dark Surface (F7)                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                     | rk Surface (A12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                | Redox Depressions (F8)                                                                                                                                                                                                                                                                                      | <sup>3</sup> Indicators of hydrophytic vegetation and                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                     | lucky Mineral (S1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                | Vernal Pools (F9)                                                                                                                                                                                                                                                                                           | wetland hydrology must be present,                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                     | leyed Matrix (S4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                             | unless disturbed or problematic.                                                                                                                                                                                                                                                                           |
| Restrictive L                                                                                                                                                                                                                                       | ayer (if present):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
| Type:                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
| Depth (inc                                                                                                                                                                                                                                          | ches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                                                                                                                                                                                                                                                                             | Hydric Soil Present? Yes No _ ✓                                                                                                                                                                                                                                                                            |
| Remarks:                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
| HYDROLO(                                                                                                                                                                                                                                            | GY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                     | GY<br>drology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |
| Wetland Hyd                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne required; che                                                 | eck all that apply)                                                                                                                                                                                                                                                                                         | Secondary Indicators (2 or more required)                                                                                                                                                                                                                                                                  |
| Wetland Hyd<br>Primary Indic                                                                                                                                                                                                                        | drology Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne required; che                                                 | eck all that apply) Salt Crust (B11)                                                                                                                                                                                                                                                                        | Secondary Indicators (2 or more required)  Water Marks (B1) (Riverine)                                                                                                                                                                                                                                     |
| Wetland Hyder Primary Indicate Surface                                                                                                                                                                                                              | drology Indicators:<br>eators (minimum of o<br>Water (A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne required; che                                                 | Salt Crust (B11)                                                                                                                                                                                                                                                                                            | Water Marks (B1) (Riverine)                                                                                                                                                                                                                                                                                |
| Wetland Hyderimary Indice Surface ' High Wa                                                                                                                                                                                                         | drology Indicators:<br>eators (minimum of o<br>Water (A1)<br>ter Table (A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne required; che                                                 | Salt Crust (B11) Biotic Crust (B12)                                                                                                                                                                                                                                                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine)                                                                                                                                                                                                                                              |
| Wetland Hyder Primary Indice Surface High Wa Saturation                                                                                                                                                                                             | drology Indicators:<br>eators (minimum of o<br>Water (A1)<br>ter Table (A2)<br>on (A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13)                                                                                                                                                                                                                                             | <ul> <li>Water Marks (B1) (Riverine)</li> <li>Sediment Deposits (B2) (Riverine)</li> <li>Drift Deposits (B3) (Riverine)</li> </ul>                                                                                                                                                                         |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M                                                                                                                                                                                         | drology Indicators:<br>eators (minimum of o<br>Water (A1)<br>ter Table (A2)<br>on (A3)<br>arks (B1) (Nonriveri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ine)                                                             | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1)                                                                                                                                                                                                                  | <ul> <li>Water Marks (B1) (Riverine)</li> <li>Sediment Deposits (B2) (Riverine)</li> <li>Drift Deposits (B3) (Riverine)</li> <li>Drainage Patterns (B10)</li> </ul>                                                                                                                                        |
| Wetland Hyd Primary Indic Surface High Wa Saturatio Water M Sedimen                                                                                                                                                                                 | drology Indicators: ators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ine)<br>nriverine)                                               | <ul> <li>Salt Crust (B11)</li> <li>Biotic Crust (B12)</li> <li>Aquatic Invertebrates (B13)</li> <li>Hydrogen Sulfide Odor (C1)</li> <li>Oxidized Rhizospheres along Living</li> </ul>                                                                                                                       | <ul> <li>Water Marks (B1) (Riverine)</li> <li>Sediment Deposits (B2) (Riverine)</li> <li>Drift Deposits (B3) (Riverine)</li> <li>Drainage Patterns (B10)</li> <li>Roots (C3)</li> <li>Dry-Season Water Table (C2)</li> </ul>                                                                               |
| Wetland Hyd  Primary Indic  Surface '  High Wa  Saturatio  Water M  Sedimen  Drift Dep                                                                                                                                                              | drology Indicators: cators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Nor cosits (B3) (Nonriveri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ine)<br>nriverine)                                               | <ul> <li>Salt Crust (B11)</li> <li>Biotic Crust (B12)</li> <li>Aquatic Invertebrates (B13)</li> <li>Hydrogen Sulfide Odor (C1)</li> <li>Oxidized Rhizospheres along Living</li> <li>Presence of Reduced Iron (C4)</li> </ul>                                                                                | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8)                                                                                                                          |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M Sedimen Drift Dep                                                                                                                                                                       | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Noriveri cosits (B3) (Nonriveri Soil Cracks (B6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ine)<br>nriverine)<br>rine)                                      | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils                                                                                                           | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)                                                                                |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundation                                                                                                                                                    | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Non cosits (B3) (Nonriver Soil Cracks (B6) on Visible on Aerial II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ine)<br>nriverine)<br>rine)                                      | <ul> <li>Salt Crust (B11)</li> <li>Biotic Crust (B12)</li> <li>Aquatic Invertebrates (B13)</li> <li>Hydrogen Sulfide Odor (C1)</li> <li>Oxidized Rhizospheres along Living</li> <li>Presence of Reduced Iron (C4)</li> <li>Recent Iron Reduction in Tilled Soils</li> <li>Thin Muck Surface (C7)</li> </ul> | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                                                          |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-St                                                                                                                                            | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Non cosits (B3) (Nonriveri Soil Cracks (B6) on Visible on Aerial In tained Leaves (B9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ine)<br>nriverine)<br>rine)                                      | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils                                                                                                           | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)                                                                                |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-St                                                                                                                                            | drology Indicators: ators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Nor cosits (B3) (Nonriver Soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ine)<br>nriverine)<br>rine)<br>magery (B7)                       | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)                                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10)  Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                                                         |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-St                                                                                                                                            | drology Indicators: ators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Nor cosits (B3) (Nonriver Soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ine)<br>nriverine)<br>rine)<br>magery (B7)                       | <ul> <li>Salt Crust (B11)</li> <li>Biotic Crust (B12)</li> <li>Aquatic Invertebrates (B13)</li> <li>Hydrogen Sulfide Odor (C1)</li> <li>Oxidized Rhizospheres along Living</li> <li>Presence of Reduced Iron (C4)</li> <li>Recent Iron Reduction in Tilled Soils</li> <li>Thin Muck Surface (C7)</li> </ul> | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10)  Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                                                         |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-St Field Observ Surface Water                                                                                                                 | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Non posits (B3) (Nonriveri Soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ine) nriverine) rine) magery (B7) es No _                        | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)                                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10)  Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                                                         |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-St Field Observ Surface Water | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Non cosits (B3) (Nonriveri Soil Cracks (B6) on Visible on Aerial Intained Leaves (B9) vations: er Present? Present? Yesent? Yesent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ine) nriverine) rine) magery (B7) es No _ es No _                | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)                                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10)  Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                                                         |
| Primary Indice  Surface  High Wa  Saturatio  Water M  Sedimen  Drift Dep  Surface  Inundatio  Water-Si  Field Observ  Surface Water  Water Table  Saturation Pr (includes cap                                                                       | drology Indicators: eators (minimum of or Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Nonriveri soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations: er Present? Present? Sesent? Viewer estators (Management) vations: er Present? Present? Viewer estators (Management) Viewer estators (Managem | ine) nriverine) rine) magery (B7) es No _ es No _ es No _        | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)                                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)                                    |
| Wetland Hyd Primary Indio Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-Si Field Observ Surface Water Table Saturation Pr (includes cap                                                                               | drology Indicators: eators (minimum of or Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Nonriveri soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations: er Present? Present? Sesent? Viewer estators (Management) vations: er Present? Present? Viewer estators (Management) Viewer estators (Managem | ine) nriverine) rine) magery (B7) es No _ es No _ es No _        | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)                                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)                                    |
| Primary Indic Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-Si Field Observ Surface Water Water Table Saturation Pr (includes cap                                                                                     | drology Indicators: eators (minimum of or Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Nonriveri soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations: er Present? Present? Sesent? Viewer estators (Management) vations: er Present? Present? Viewer estators (Management) Viewer estators (Managem | ine) nriverine) rine) magery (B7) es No _ es No _ es No _        | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)                                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)                                    |
| Primary Indice Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-Si Field Observ Surface Water Surface Water Concludes cap Describe Reco                                                                                  | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Non cosits (B3) (Nonriveri Soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations: er Present? Present? You corded Data (stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ine) nriverine) rine) magery (B7) es No _ es No _ gauge, monitor | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)  Pepth (inches): Depth (inches): Depth (inches):        | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)  Wetland Hydrology Present? Yes No |
| Primary Indice Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-St Field Observ Surface Water Table Saturation Pr (includes cap Describe Rec                                                                             | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Non cosits (B3) (Nonriveri Soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations: er Present? Present? You corded Data (stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ine) nriverine) rine) magery (B7) es No _ es No _ gauge, monitor | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)                                                         | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)  Wetland Hydrology Present? Yes No |
| Wetland Hyd Primary Indice Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-St Field Observ Surface Water Surface Water Table Saturation Pr (includes cap Describe Rec                                                   | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Non cosits (B3) (Nonriveri Soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations: er Present? Present? You corded Data (stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ine) nriverine) rine) magery (B7) es No _ es No _ gauge, monitor | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)  Pepth (inches): Depth (inches): Depth (inches):        | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)  Wetland Hydrology Present? Yes No |
| Primary Indice Surface High Wa Saturatio Water M Sedimen Drift Dep Surface Inundatio Water-St Field Observ Surface Water Table Saturation Pr (includes cap Describe Rec                                                                             | drology Indicators: eators (minimum of o Water (A1) ter Table (A2) on (A3) arks (B1) (Nonriveri at Deposits (B2) (Non cosits (B3) (Nonriveri Soil Cracks (B6) on Visible on Aerial In tained Leaves (B9) vations: er Present? Present? You corded Data (stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ine) nriverine) rine) magery (B7) es No _ es No _ gauge, monitor | Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils Thin Muck Surface (C7) Other (Explain in Remarks)  Pepth (inches): Depth (inches): Depth (inches):        | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Roots (C3) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5)  Wetland Hydrology Present? Yes No |

### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: Sutter Decarbonization Project                                                     | (                                            | City/County  | Sutter Co                | ounty                                                             | Sampling Date: 9/                                 | /20/2023     |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|--------------------------|-------------------------------------------------------------------|---------------------------------------------------|--------------|--|
| Applicant/Owner: Calpine                                                                         | State: <u>CA</u> Sampling Point: <u>SP-4</u> |              |                          |                                                                   |                                                   |              |  |
| Investigator(s): Kevin Fisher, Sam Wentworth                                                     | ;                                            | Section, To  | wnship, Raı              | nge: <u>10, 12N, 2E</u>                                           |                                                   |              |  |
| Landform (hillslope, terrace, etc.): Valley                                                      |                                              | Local relief | (concave, o              | convex, none): flat                                               | Slope (                                           | %): <u>1</u> |  |
| Subregion (LRR): C                                                                               | Lat: _38.9                                   | 01747        |                          |                                                                   |                                                   |              |  |
|                                                                                                  |                                              |              |                          | NWI classific                                                     |                                                   |              |  |
| Are climatic / hydrologic conditions on the site typical for th                                  |                                              |              |                          |                                                                   |                                                   |              |  |
| Are Vegetation, Soil, or Hydrology                                                               | -                                            |              |                          | Normal Circumstances" p                                           |                                                   | No           |  |
| Are Vegetation, Soil, or Hydrology                                                               |                                              |              |                          | eded, explain any answe                                           |                                                   | · -          |  |
| SUMMARY OF FINDINGS - Attach site map                                                            | showing                                      | samplin      | g point le               | ocations, transects                                               | s, important featu                                | ıres, etc.   |  |
| Hydrophytic Vegetation Present?  Hydric Soil Present?  Wetland Hydrology Present?  Remarks:  Yes | No                                           | with         | e Sampled<br>in a Wetlar | nd? Yes                                                           | No                                                |              |  |
| Corner area of a rice field adjacent to irrig                                                    | gation dito                                  | hes. Are     | a is artif               | icially flooded and                                               | l regularly tilled.                               |              |  |
| VEGETATION – Use scientific names of plan                                                        | nts.                                         |              |                          |                                                                   |                                                   |              |  |
| <u>Tree Stratum</u> (Plot size:) 1                                                               | % Cover                                      |              | Status                   | Dominance Test work  Number of Dominant S That Are OBL, FACW, 6   | pecies                                            | (A)          |  |
| 2                                                                                                |                                              |              |                          | Total Number of Domin<br>Species Across All Stra                  | _                                                 | (B)          |  |
| 4                                                                                                |                                              |              |                          | Percent of Dominant Sp<br>That Are OBL, FACW,                     |                                                   | (A/B)        |  |
| 1                                                                                                |                                              |              |                          | Prevalence Index wor                                              | ksheet:                                           |              |  |
| 2                                                                                                |                                              |              |                          | Total % Cover of:                                                 | Multiply by                                       | ' <u>:</u>   |  |
| 3.                                                                                               |                                              |              |                          | OBL species 10                                                    | x 1 =10                                           |              |  |
| 4                                                                                                |                                              |              |                          | FACW species                                                      | x 2 =                                             |              |  |
| 5                                                                                                |                                              |              |                          | FAC species                                                       |                                                   |              |  |
| Hart Otation (Blatains 1m                                                                        |                                              | = Total Co   | ver                      | FACU species 5                                                    |                                                   |              |  |
| Herb Stratum (Plot size: 1m )  1. Oryza sativa                                                   | 10                                           | ٧            | OBL                      | UPL species                                                       | x 5 =                                             | — <u></u> .  |  |
| Oryza sativa     Sorghum bicolor                                                                 |                                              | Y            | FACU                     | Column Totals:1                                                   | 5 (A) <u>30</u>                                   | (B)          |  |
| 3                                                                                                |                                              |              |                          | Prevalence Index                                                  | x = B/A =2                                        |              |  |
| 4.                                                                                               |                                              |              |                          | Hydrophytic Vegetation                                            | on Indicators:                                    |              |  |
| 5                                                                                                |                                              |              |                          | Dominance Test is                                                 | >50%                                              |              |  |
| 6                                                                                                |                                              |              |                          | <u>✓</u> Prevalence Index is                                      |                                                   |              |  |
| 7                                                                                                |                                              |              |                          | Morphological Ada                                                 | iptations¹ (Provide sup<br>s or on a separate she |              |  |
| 8                                                                                                |                                              |              |                          | Problematic Hydro                                                 | •                                                 | <i>'</i>     |  |
| Woody Vine Stratum (Plot size: )                                                                 | 15                                           | = Total Co   | ver                      |                                                                   | priyuo vogotation (Ex                             | piani)       |  |
| 1                                                                                                |                                              |              |                          | <sup>1</sup> Indicators of hydric soi<br>be present, unless distu |                                                   | gy must      |  |
|                                                                                                  |                                              | = Total Co   |                          | Hydrophytic<br>Vegetation                                         |                                                   |              |  |
|                                                                                                  | er of Biotic Cr                              | ust1!        | <u> </u>                 | Present? Yes                                                      | es <u> </u>                                       |              |  |
| Remarks:                                                                                         |                                              |              |                          |                                                                   |                                                   |              |  |
| Corner of a flooded rice field, salt crust ar planted.                                           | nd dried a                                   | lgae pre     | sent at f                | ield margins. Area                                                | regularly tilled a                                | and          |  |

SOIL Sampling Point: SP-4

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| Depth                      | Matrix                                   |             |                                           | x Feature | es                |                  |                                       |                                       |                        |
|----------------------------|------------------------------------------|-------------|-------------------------------------------|-----------|-------------------|------------------|---------------------------------------|---------------------------------------|------------------------|
| (inches)                   | Color (moist)                            | %           | Color (moist)                             | %         | Type <sup>1</sup> | Loc <sup>2</sup> | <u>Texture</u>                        | Re                                    | emarks                 |
| 0-14                       | 10YR 2/1                                 | 100         | -                                         |           |                   |                  | clay loam                             | <u>-</u>                              | _                      |
|                            |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
|                            |                                          |             |                                           | · -       |                   |                  |                                       |                                       |                        |
|                            | -                                        |             |                                           | -         | _                 |                  |                                       |                                       |                        |
|                            | -                                        |             |                                           |           |                   |                  |                                       |                                       |                        |
|                            |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
|                            |                                          |             |                                           |           | _                 |                  |                                       |                                       |                        |
|                            |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
|                            |                                          |             |                                           | -         | _                 |                  |                                       |                                       |                        |
| 1Tunor C=C                 | oncentration D-Dec                       | lotion DM-  | -Dadwood Motrix, CG                       |           | - Coot            |                  | roino 21                              | acation: DI =Doro I                   | ining M-Matrix         |
|                            |                                          |             | =Reduced Matrix, CS<br>LRRs, unless other |           |                   | eu Sanu Gi       |                                       | ocation: PL=Pore L                    | _                      |
| Histosol                   |                                          | able to all | Sandy Red                                 |           | teu.,             |                  |                                       | n Muck (A9) ( <b>LRR C</b>            | -                      |
|                            | pipedon (A2)                             |             | Stripped Ma                               | . ,       |                   |                  |                                       | n Muck (A10) ( <b>LRR</b> I           |                        |
|                            | istic (A3)                               |             | Loamy Muc                                 |           | al (F1)           |                  |                                       | uced Vertic (F18)                     | )                      |
|                            | en Sulfide (A4)                          |             | Loamy Gley                                | -         |                   |                  |                                       | Parent Material (TF                   | -2)                    |
|                            | d Layers (A5) (LRR                       | C)          | Depleted M                                |           | . ,               |                  | · · · · · · · · · · · · · · · · · · · | er (Explain in Remar                  | *                      |
| 1 cm Mu                    | uck (A9) ( <b>LRR D</b> )                |             | Redox Dark                                | Surface   | (F6)              |                  |                                       |                                       |                        |
| Deplete                    | d Below Dark Surfac                      | e (A11)     | Depleted D                                | ark Surfa | ce (F7)           |                  |                                       |                                       |                        |
|                            | ark Surface (A12)                        |             | Redox Dep                                 |           | (F8)              |                  |                                       | rs of hydrophytic ve                  | =                      |
|                            | Mucky Mineral (S1)                       |             | Vernal Pool                               | s (F9)    |                   |                  |                                       | d hydrology must b                    |                        |
|                            | Gleyed Matrix (S4)                       |             |                                           |           |                   |                  | uniess                                | disturbed or proble                   | ematic.                |
|                            | Layer (if present):                      |             |                                           |           |                   |                  |                                       |                                       |                        |
| Type:                      | -l \.                                    |             |                                           |           |                   |                  | Unadala O                             | . !! D                                | No. of                 |
| Depth (in                  | cnes):                                   |             |                                           |           |                   |                  | Hyaric Sc                             | oil Present? Yes                      | No                     |
| Remarks:                   |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
| Plowed/                    | disturbed regu                           | larlv       |                                           |           |                   |                  |                                       |                                       |                        |
|                            |                                          | ,           |                                           |           |                   |                  |                                       |                                       |                        |
|                            |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
| HYDROLO                    | GY                                       |             |                                           |           |                   |                  |                                       |                                       |                        |
| Wetland Hy                 | drology Indicators                       | !           |                                           |           |                   |                  |                                       |                                       |                        |
| -                          |                                          |             | d; check all that appl                    | v)        |                   |                  | Sec                                   | ondary Indicators (2                  | or more required)      |
|                            |                                          | one require |                                           |           |                   |                  |                                       | •                                     |                        |
| <del></del>                | Water (A1)                               |             | ✓ Salt Crust                              | , ,       |                   |                  | _                                     | Water Marks (B1) (                    |                        |
| Saturati                   | ater Table (A2)                          |             | <u>✓</u> Biotic Crus                      |           | oc (P13)          |                  | _                                     | Sediment Deposits                     |                        |
|                            | on (A3)<br>farks (B1) ( <b>Nonrive</b> i | rino)       | Aquatic In<br>Hydrogen                    |           |                   |                  |                                       | Drift Deposits (B3) Drainage Patterns |                        |
|                            | nt Deposits (B2) ( <b>No</b>             | •           |                                           |           |                   | Living Poo       |                                       | Dry-Season Water                      |                        |
|                            | posits (B3) ( <b>Nonrive</b>             |             | Presence                                  |           | _                 | _                |                                       | Crayfish Burrows (                    |                        |
|                            | Soil Cracks (B6)                         | 11110)      | Recent Iro                                |           |                   |                  | · · · · · · · · · · · · · · · · · · · | • ,                                   | on Aerial Imagery (C9) |
|                            | ion Visible on Aerial                    | Imagery (B  |                                           |           |                   | 0010 (00         |                                       | Shallow Aquitard (I                   |                        |
|                            | Stained Leaves (B9)                      | agory (D    | Other (Exp                                |           | ` '               |                  |                                       | FAC-Neutral Test (                    |                        |
| Field Obser                | , ,                                      |             |                                           |           |                   |                  |                                       |                                       |                        |
| Surface Wat                |                                          | /ec         | No <u> </u>                               | ches).    |                   |                  |                                       |                                       |                        |
| Water Table                |                                          |             | No <u> </u>                               |           |                   |                  |                                       |                                       |                        |
|                            |                                          |             |                                           |           |                   |                  | land Uselvale                         | www.Dreasent2 Vas                     | No                     |
| Saturation P (includes car | riesent?<br>pillary fringe)              | es          | No V Depth (in                            | cnes):    |                   | vveu             | iana nyaroid                          | gy Present? Tes                       | S No                   |
|                            |                                          | n gauge, mo | onitoring well, aerial                    | photos, p | revious ins       | spections),      | if available:                         |                                       |                        |
|                            |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
| Remarks:                   |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
|                            | ınd adicasat ta                          | o flood     | مطينوه النماط ح                           |           | ممط محا           | +/b:^+:-         | ownet ele                             | مصيمط مامصح بال                       | ha fiald marries       |
| bare grot                  | ina adjacent to                          | a 11000     | eu rice neia. Cr                          | acking    | anu Sāl           | טוסנוכ           | Litust obs                            | served along t                        | he field margins.      |
|                            |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
|                            |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |
|                            |                                          |             |                                           |           |                   |                  |                                       |                                       |                        |

| OHWM Delineation Cover Sheet OHWM-1 Page _ l_ of _ 2                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project: Satter Energy Center Date: 9/19/23                                                                                                                                                                                                                                                                 |
| Location: Snake Riverat Obanian Rd Investigator(s): Kerin Fisher Scott Lind, Samle                                                                                                                                                                                                                          |
| Project Description:                                                                                                                                                                                                                                                                                        |
| Proposed pipeline alignment to transport aptered                                                                                                                                                                                                                                                            |
| Coz for Carbon Sequestration.                                                                                                                                                                                                                                                                               |
| Describe the river or stream's condition (disturbances, in-stream structures, etc.):                                                                                                                                                                                                                        |
| Obanion Rd Crosser the Snake river in a Small free                                                                                                                                                                                                                                                          |
| Span two lane bodge. Snake River connects to various                                                                                                                                                                                                                                                        |
| Constructed irrigation canals that irrigate rearby rice fields.                                                                                                                                                                                                                                             |
| Off-site Information                                                                                                                                                                                                                                                                                        |
| Remotely sensed image(s) acquired?  Yes  No [If yes, attach image(s) to datasheet(s) and indicate approx. locations of transects, OHWM, and any other features of interest on the image(s); describe below] Description:                                                                                    |
| Aerial imagery used via ESRI Field Maps + AICGIS                                                                                                                                                                                                                                                            |
| destitop.                                                                                                                                                                                                                                                                                                   |
| Hydrologic/hydraulic information acquired?                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                             |
| List and describe any other supporting information received/acquired:                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                             |
| Instructions: Complete one cover sheet and one or more datasheets for each project site. Each datasheet should capture the dominant                                                                                                                                                                         |
| characteristics of the OHWM along some length of a given stream. Complete enough datasheets to adequately document up- and/or downstream variability in OHWM indicators, stream conditions, etc. Transect locations can be marked on a recent aerial image or their GPS coordinates noted on the datasheet. |

-119123 , com W. Sheet # **OHWM Delineation Datasheet** OHWM-1 fansect (cross-section) drawing: (choose a location that is representative of the dominant stream characteristics over Page 2 of 2 some distance; label the OHWM and other features of interest along the transect; include an estimate of transect length) Top of Bank 59Ft WY Distle Ccirsiam) Mark 40 Ex Dach Raid Facing North (Danstream) Break in Slope at OHWM: Sharp (> 60°) | Moderate (30-60°) | Gentle (< 30°) | None Notes/Description: Break in slope used to define off WM. Sediment Texture: Estimate percentages to describe the general sediment texture above and below the OHWM Clay/Silt Sand Gravel Cobbles Boulders Developed Soil <0.05mm 0.05 - 2mm1 - 10cm 2mm - 1cm >10cm Horizons (Y/N) DO 15 80 Above OHWM 20 20 Below OHWM Notes/Description: Change in vegetation cover used to define office. Vegetation: Estimate absolute percent cover to describe general vegetation characteristics above and below the OHWM Tree (%) Shrub (%) Herb (%) Bare (%) Above OHWM 100 80 20 Below OHWM 100 ites/Description: Herb Strata includes thitle on wild grape on mest bank. Notes/Description: Other Evidence: List/describe any additional field evidence and/or lines of reasoning used to support your delineation

6.

果奶

72

| OHWM Delineation Cover Sheet OHWM-2 Page 1 of 2                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project: Satter Energy Center Date: 9/19/23                                                                                                                                                                                |
| Location: Sutter Bypass at OBanion Rd Investigator(s): Wevin F, Scott C., Sam W.                                                                                                                                           |
| Project Description:                                                                                                                                                                                                       |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
| Describe the river or stream's condition (disturbances, in-stream structures, etc.):                                                                                                                                       |
| Sutter Bypass is a constructed/ chancized river                                                                                                                                                                            |
| carrying regionally significant water flows I agricultural                                                                                                                                                                 |
| water delivier                                                                                                                                                                                                             |
|                                                                                                                                                                                                                            |
| Off-site Information                                                                                                                                                                                                       |
| Remotely sensed image(s) acquired? 💹 Yes 🔲 No [If yes, attach image(s) to datasheet(s) and indicate approx. locations of transects, OHWM, and any other features of interest on the image(s); describe below] Description: |
| Aerial + historial aerial imagey used him                                                                                                                                                                                  |
| Google Earth, ESRI Field Maps, & ESRI ArcGIS                                                                                                                                                                               |
| Hydrologic/hydraulic information acquired?  Yes No [If yes, attach information to datasheet(s) and describe below.] Description:                                                                                           |
| Flood guage data consulted.                                                                                                                                                                                                |
|                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                            |
| List and describe any other supporting information received/acquired:                                                                                                                                                      |
| Visited Satter Rypass during fooding from                                                                                                                                                                                  |
| heavy rainfalls in 2022/2027 winter.                                                                                                                                                                                       |
|                                                                                                                                                                                                                            |
| Instructions: Complete one cover sheet and one or more datasheets for each project site. Each datasheet should capture the dominant                                                                                        |

Instructions: Complete one cover sheet and one or more datasheets for each project site. Each datasheet should capture the dominant characteristics of the OHWM along some length of a given stream. Complete enough datasheets to adequately document up- and/or downstream variability in OHWM indicators, stream conditions, etc. Transect locations can be marked on a recent aerial image or their GPS coordinates noted on the datasheet.

| eet#               |                          | OHW                | M Doling at                           |                |                      |                         |
|--------------------|--------------------------|--------------------|---------------------------------------|----------------|----------------------|-------------------------|
| fransect (cross-s  | ection) drawing          |                    | M Delineation l                       |                | OHWM-2               | Page 2 of 2             |
| some distance; lab | el the OHWM ar           | d other features   | on that is represe                    | ntative of the | dominant stream      | Page 2 of 2             |
|                    | 14. 100 4000 400 100 100 |                    |                                       |                | clude an estima      | n characteristics over  |
|                    |                          | h                  | ollow, box eld                        | v              |                      | (all                    |
| 1                  | Dirt                     | 1                  |                                       | Topo           | + Rat                | Cothermos               |
|                    | Road                     |                    | 62                                    |                | O. M.                |                         |
| E                  | arther loss              | 5,                 | 1 2/7                                 |                |                      | K. A. S.                |
| No.                | lam                      | Sec.               | Sel                                   |                |                      | (IN (O/r )              |
| 2//                | and the second           | - /                | 8 m                                   |                |                      |                         |
| Doct Le            | vee \                    | Dr.F               | 1000 ((5)                             | Ordinary 1     | 4.9 h hater          | Bulle                   |
| Kom                |                          | Road               |                                       | ( )            | 0                    | IN DER                  |
|                    |                          | bert               | you down                              | SUHR           | 4.gh huter<br>Sypass | - Ward wild             |
| Break in Slope at  | OHWA                     | 01 / 200 1 5       | 775- Y                                | Ch,            | annel                | Emergent ( Dac          |
| Notes/Description  | : CHWM:                  | Sharp (> 60°)   [  | Moderate (30                          | -60°)   🗌 G    | entle (< 30°)        | None                    |
| Frenk in           | 11200 1-1-               | d to defin         | e top of                              | - 1- (- )      | 014 10               |                         |
| Ordare ()          | siope use                | a to go            | 10/5 01                               | BEN E Y        | Cirwin               |                         |
| Sediment Textur    | e. Estimate perce        | entages to describ |                                       |                |                      |                         |
| Sediment Textur    | Clay/Silt                | Sand               | Gravel                                | Cobbles        | Boulder              |                         |
|                    | <0.05mm                  | 0.05 – 2mm         | 2mm – 1cm                             | 1 – 10cm       | >10cm                |                         |
| Above OHWM         | 90                       | pre 5              | 5                                     |                |                      |                         |
| Below OHWM         | 90                       | 10                 |                                       |                |                      |                         |
| Notes/Description  | :                        | <u> </u>           | · · · · · · · · · · · · · · · · · · · |                | *                    |                         |
| Each               | ~ banks                  | u.th s             | one grai                              | el             |                      |                         |
| p-sti to           |                          |                    | ,                                     |                |                      |                         |
|                    |                          |                    |                                       |                |                      |                         |
| Vegetation: Estin  | nate absolute pero       | cent cover to desc | ribe general veg                      | etation charac | teristics above      | and below the OHWN      |
|                    | Tree (%)                 | Shrub (%)          | Herb (%)                              |                |                      |                         |
| Above OHWM         | 40                       | 40                 | 80                                    | 5              |                      |                         |
| Below OHWM         | 40                       | 40                 | 20                                    | 8              | O                    |                         |
| Notes/Description: |                          |                    |                                       |                |                      |                         |
| Mature             | - frees                  | rooted a           | 1 + nb                                | are OH         | wh.                  |                         |
| ,                  |                          |                    |                                       |                |                      |                         |
|                    |                          |                    |                                       |                |                      |                         |
| Other Evidence:    | List/describe any        | additional field   | evidence and/or                       | lines of reaso | ning used to su      | upport your delineation |

stem:

OHWM-3

| And west Ephemeral and Interm                                                                                                                                                                                                                                                                                                                                                                                                      | ittent Streams OHWM Datasheet                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project: Sher Energy Center Project Number: Stream: Investigator(s): Kerin F., Sun W., Scott L.                                                                                                                                                                                                                                                                                                                                    | Date: 9/20/23 Time: 16 38  Town: 4.6. City State: CA  Photo begin file#: Photo end file#:                                                                                                                          |
| Y / N Do normal circumstances exist on the site?                                                                                                                                                                                                                                                                                                                                                                                   | Location Details:                                                                                                                                                                                                  |
| Y ☐ / N ☐ Is the site significantly disturbed?                                                                                                                                                                                                                                                                                                                                                                                     | Projection: Datum:<br>Coordinates:                                                                                                                                                                                 |
| Potential anthropogenic influences on the channel sys                                                                                                                                                                                                                                                                                                                                                                              | stem:                                                                                                                                                                                                              |
| Perennial Kligation canal, flow (east) of OHWM                                                                                                                                                                                                                                                                                                                                                                                     | Control device a 40 ft dansmen                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |
| Brief site description: Agricultural site, rice puddres.                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                    |
| ✓ Vegetation maps  ✓ Soils maps  ✓ Soils maps  ✓ Gage                                                                                                                                                                                                                                                                                                                                                                              | nber:                                                                                                                                                                                                              |
| Hydrogeomorphic                                                                                                                                                                                                                                                                                                                                                                                                                    | Floodplain Units                                                                                                                                                                                                   |
| Active Floodplain  Low-Flow Channels                                                                                                                                                                                                                                                                                                                                                                                               | OHWM Paleo Channel                                                                                                                                                                                                 |
| Procedure for identifying and characterizing the floo                                                                                                                                                                                                                                                                                                                                                                              | dplain units to assist in identifying the OH was                                                                                                                                                                   |
| <ol> <li>Walk the channel and floodplain within the study area vegetation present at the site.</li> <li>Select a representative cross section across the channel</li> <li>Determine a point on the cross section that is characte a) Record the floodplain unit and GPS position.</li> <li>Describe the sediment texture (using the Wentwort floodplain unit.</li> <li>Identify any indicators present at the location.</li> </ol> | Draw the cross section and label the floodplain units. ristic of one of the hydrogeomorphic floodplain units. the class size) and the vegetation characteristics of the floodplain units across the cross section. |
| 4. Repeat for other points in different hydrogeomorphic  5. Identify the OHWM and record the indicators. Record  Mapping on aerial photograph  Digitized on computer                                                                                                                                                                                                                                                               | Z GPS Other:                                                                                                                                                                                                       |

|   | eject ID:                                                                                                       | Cross section ID:                | OHWM-3                | Date:         | Time:                                  | 1 |
|---|-----------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|---------------|----------------------------------------|---|
|   | Cross section drawin                                                                                            | Site of Q ak                     | HOFF                  |               |                                        |   |
|   | Cross section drawing  Och  Road  Cattail                                                                       | y High Water<br>Mark             | 38F+                  | Catta         | Dist<br>Road                           |   |
|   |                                                                                                                 |                                  |                       |               |                                        |   |
|   | OHWM                                                                                                            |                                  |                       |               |                                        |   |
|   | GPS point: 38.919                                                                                               | -12, -121.78311                  | 1                     |               |                                        |   |
|   | Indicators: Change in avera Change in veget Change in veget                                                     | ation species                    | Other:                | in bank slope |                                        |   |
|   | Comments: Top of bank of Other M defined                                                                        | letraced by bream to by presence | 4 in slop<br>of Cata  | re.<br>tails  |                                        |   |
| Į |                                                                                                                 |                                  |                       |               |                                        |   |
|   | Floodplain unit:                                                                                                | Low-Flow Channel                 | ☐ Active              | Floodplain    | ☐ Low Terrace                          |   |
|   |                                                                                                                 |                                  |                       |               |                                        |   |
|   | GPS point:                                                                                                      |                                  |                       |               |                                        |   |
|   | Characteristics of the flo Average sediment texture Total veg cover: Community successional NA Early (herbaceon | ::% Sh<br>stage:                 | ☐ Mid (he             | erbaceous, sh | _% rubs, saplings) rubs, mature trees) |   |
|   | Indicators:  Mudcracks Ripples Drift and/or deb                                                                 |                                  | Surface Other: Other: | velopment     |                                        |   |
|   | Comments:                                                                                                       |                                  |                       |               |                                        |   |
|   |                                                                                                                 |                                  |                       |               |                                        |   |

# **Appendix C Representative Photographs**

240226084420\_e83455aa 6

Date: January 5, 2024

Location:

Sutter Energy Center

Description:
View of sample
point SEC-1. This
area had shallow
ponding at the time
of survey but lacked
hydric soils. No
aquatic resources
were delineated in
this location. Photo
taken facing west.



Photo ID: 2

Date: January 5, 2024

Location:

Sutter Energy Center

Description: View of sample point SEC-2 located in a swale on the western side of the Sutter Energy Center. This swale had shallow ponding at the time of survey but lacked hydric soils and hydrophytic vegetation. No aquatic resources were delineated in this location. Photo taken facing east.



Date: January 5, 2024

Location:

Sutter Energy Center

Description:

View of sample point SEC-3 located in a shallow ditch on the western side of the Sutter Energy Center. This ditch had shallow ponding at the time of survey but lacked hydric soils and hydrophytic vegetation. The ditch was delineated as non-wetland waters based on indicators of an ordinary high water mark (OHWM). Photo taken facing northwest.



Photo ID: 4

Date: January 5, 2024

Location:

**Sutter Energy Center** 

Description: View of sample point SEC-4 located in a shallow, abandoned process water treatment pond. The pond had wetland hydrology and was dominated by hydrophytes but lacked hydric soils. The pond was delineated as nonwetland waters based on indicators of an OHWM. Photo

taken facing north.



Date: April 12, 2024

Location:

Sutter Energy Center

Description:

View of sample point SEC-6 in abandoned process water treatment pond. The pond was inundated in January 2024. The wetland sample point established in April 2024 lacked hydric soil indicators. The pond was delineated as non-wetland waters based on indicators of an OHWM. Photo taken facing southwest.



Photo ID: 6

Date: January 5, 2024

Location:

Sutter Energy Center Description:

View of sample point SEC-5. This area had wetland hydrology at the time of survey but lacked hydric soils and hydrophytic vegetation. No aquatic resources were delineated in this location. Photo taken facing north.



Date: September 19, 2023

Location: Pipeline station 36+90

Description:

View of sample point SP-1. The sample point was established in the ditch to the right of the shovel. The sample point had wetland hydrology and hydrophytic vegetation but lacked hydric soils. The ditch was delineated as non-wetland waters based on indicators of an OHWM. Photo taken facing northwest.



Photo ID: 8 Date: September 19, 2023

Location:

Horizontal directional drill (HDD) string area east of pipeline station 170+00

Description:

View of sample point SP-2. The sample point was established in the ditch behind the shovel. The sample point had wetland hydrology and hydrophytic vegetation but lacked hydric soils. The ditch was delineated as non-wetland waters based on indicators of an OHWM. Photo taken facing southeast.



Date: September 19, 2023

Location:

Snake River, Pipeline station 180+00

Description:

View of the Snake
River at the Obanion
Road crossing and
the location of the
OHWM-1 transect.
This riverine feature
is highly modified
and appears to
primarily convey
irrigation water.
Photo taken facing
south.



Photo ID: 10 Date: September 19, 2023

Location: Sutter Bypass, Pipeline station 195+00

Description:

View of the channel on the east side of the Sutter Bypass and the location of the OHWM-2 transect. The OHWM was delineated based on a break in slope the elevation of mature trees. Photo taken facing west.



Date: September 20, 2023

Location: Sutter Bypass, Pipeline station 231+00

Description:

View of sample point SP-3. The sample point was established in riparian habitat on the west side of the Sutter Bypass. The sample point had wetland hydrology and hydrophytic vegetation but lacked hydric soils. Indicators of wetland hydrology were due to high flow events in the preceding wet season. No aquatic resources were delineated in this location. Photo taken facing west.



Photo ID: 12 Date: September 20, 2023

Location: Intersection of Tudor Road and Reclamation Road, Pipeline station 410+00

Description:
View of irrigation
canal at the
intersection of Tudor
Road and
Reclamation Road.
Photo taken facing
south.



Date: September 20, 2023

Location: Pipeline station 767+50

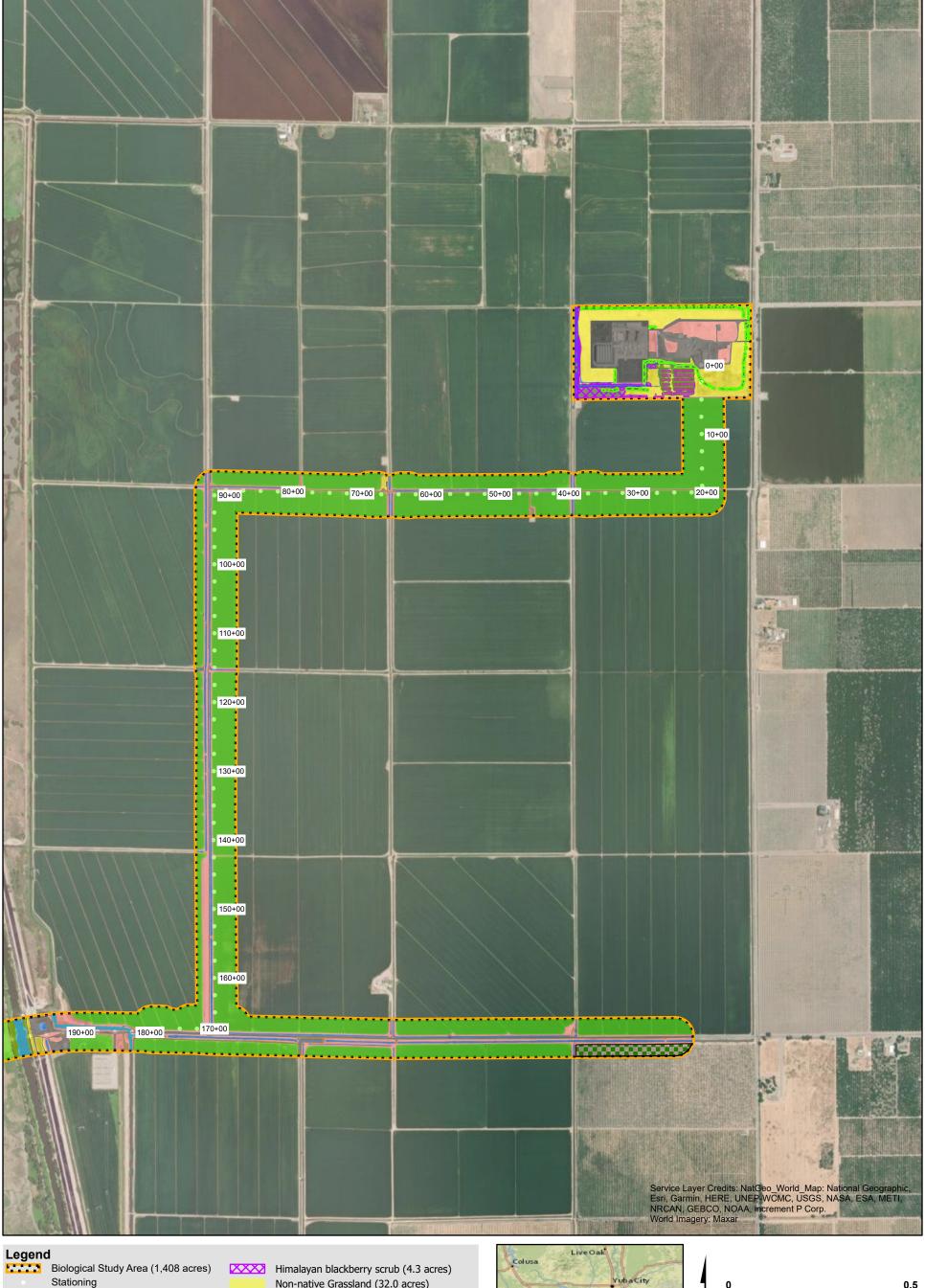
Description:

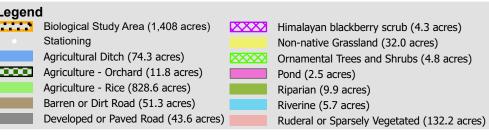
View of feature R-3. This feature appears to be a remanent of a natural channel that is now used to manage irrigation water. Photo taken facing southwest.



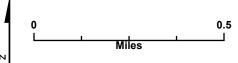
Photo ID: 14 Date: September 20, 2023

Location: Vicinity of potential


well pad (38.901747, -121.745767).

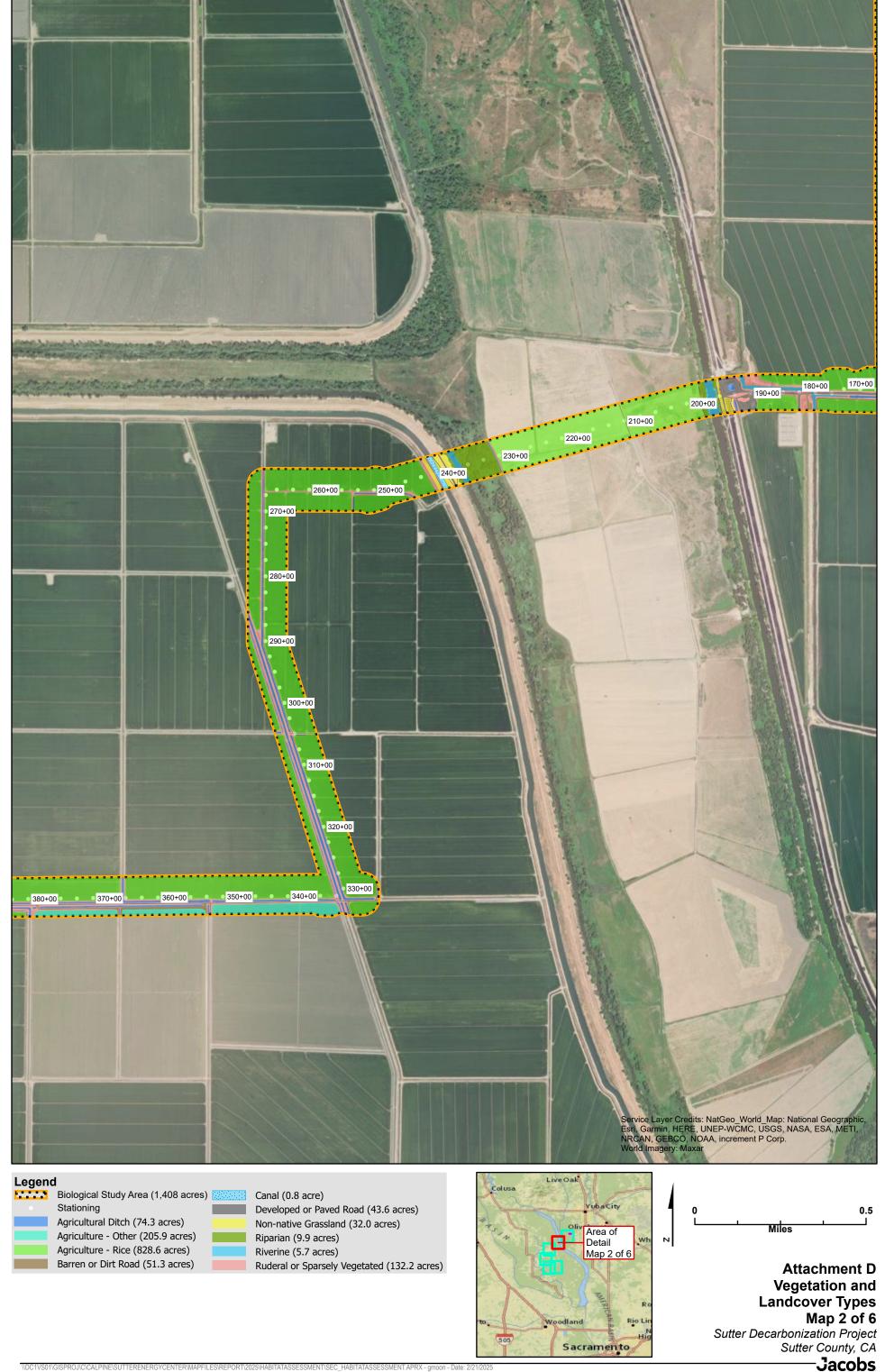

Description:

View of sample point SP-4 located on the margins of a rice field. This sample point had wetland hydrology and hydrophytic vegetation but lacked hydric soils. Wetland hydrology was associated with seasonal flood irrigation. No aquatic resources were delineated in this location. Photo taken facing southeast.



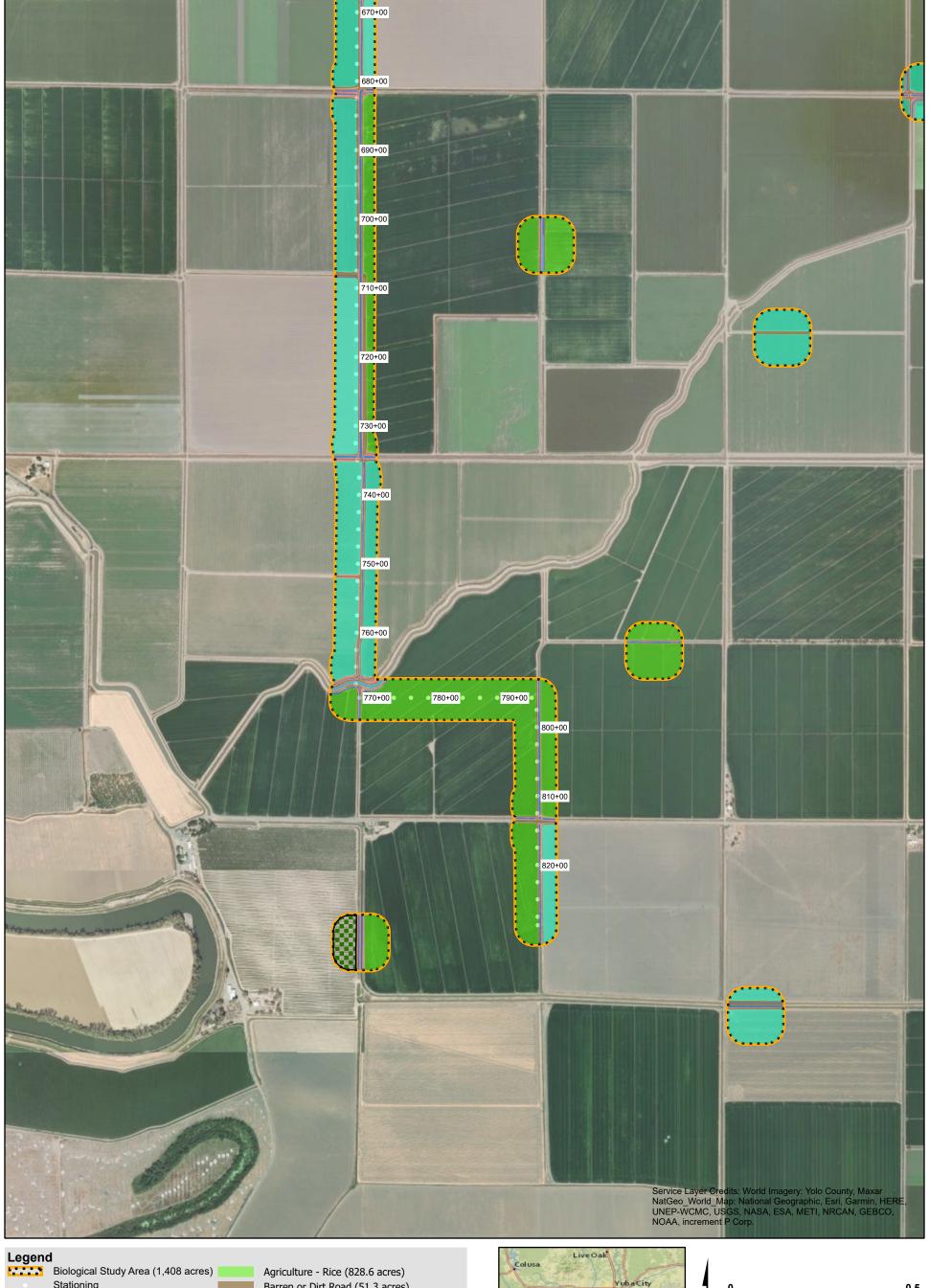

| Attachment C. Vegetation and Land Cover Types (DR A13) |  |
|--------------------------------------------------------|--|
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |

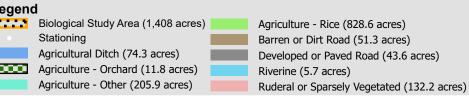




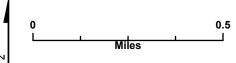






Attachment D
Vegetation and
Landcover Types
Map 1 of 6
Decarbonization Project


Map 1 of 6
Sutter Decarbonization Project
Sutter County, CA
















Attachment D
Vegetation and
Landcover Types
Map 5 of 6
Decarbonization Project

Map 5 of 6
Sutter Decarbonization Project
Sutter County, CA



| Attachment D. Crotch's Bumble Bee Habitat Assessment (DR A14) |
|---------------------------------------------------------------|
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |



#### Crotch's Bumble Bee Habitat Assessment

Date: February 19, 2025

**Project Name:** Sutter Decarbonization Project

**Project No.:** D3854300

Company: CCFC Sutter Energy, LLC Prepared By: Kyle Brown, Sean O'Neil

Document No.: I

Jacobs Engineering Group Inc.

4 Embarcadero Center

Suite 3800

San Francisco, CA 94612

**United States** 

T +1.510.251.2426 F +1.510.451.5507

www.jacobs.com

#### 1. Introduction

CCFC Sutter Energy, LLC proposes the Sutter Energy Center (SEC) Decarbonization Project (Project) in Sutter County, California. The Project consists of the following:

- Turbine performance improvements
- Installation of a carbon capture facility at SEC
- An approximately 16-mile carbon dioxide (CO₂) pipeline
- Class VI injection wells to sequester the CO<sub>2</sub> in a geological storage location

Details regarding the Project description are provided in the Petition for Modification submitted to the California Energy Commission (CEC) in May 2023 (CCFC Sutter Energy 2023), as amended.

On January 21, 2025, CCFC Sutter Energy, LLC received a data request A14 from CEC regarding the potential for Crotch's bumble bee (*Bombus crotchii*) and its associated habitat to be impacted by the Project (CEC 2025). The full text of data request A14 is presented as follows:

"Please provide a habitat assessment evaluating the likelihood of bumble bees occurring within and adjacent to the project area. More information on the appropriate Crotch's bumble bee habitat assessment and survey protocol can be found in the Survey Considerations for California Endangered Species Act (CESA) Candidate Bumble Bee Species document located on the CDFW website at https://wildlife.ca.gov/Conservation/CESA. If the habitat assessment determines potential habitat is present, include a detailed impacts analysis for Crotch's bumble bee and recent results of a protocollevel survey. If this additional information for Crotch's bumble bee indicates that the project or activities proposed as part of the Petition may cause take of Crotch's bumble bee, staff recommends that the applicant revise the petition to request take coverage for this species. This additional request for take coverage must include all information that would be required in an Incidental Take Permit (ITP) application for CESA-listed or candidate species, including an impacts analysis and proposed mitigation measures (Cal. Code of Regs., tit.14, § 783.2)."

This memorandum addresses data request A14 from the CEC. The following sections present information on the life history, habitat requirements, survey methods, and habitat suitability for Crotch's bumble bee within the Project footprint.

# 2. Species Overview

# 2.1 Legal Status and Distribution

Crotch's bumble bee is a candidate species under the California Endangered Species Act (CDFW 2025a). The historical range of Crotch's bumble bee extends from central California south to Mexico and includes coastal areas east to the edges of the deserts and the Central Valley but typically excludes mountainous areas of California (Thorp et al. 1983, Williams et al. 2014).

#### 2.2 Life History and Habitat Characteristics

Crotch's bumble bees are social insects with a colonial hierarchy consisting of a queen, workers (females), and drones (males). Nest sites are often underground in cavities or abandoned mammal burrows within dry grassland and scrub habitats. Worker bumble bees are often generalist foragers and are not restricted to specific floral hosts during foraging bouts, but individuals forage frequently at sages (*Salvia* spp.), lupines (*Lupinus* spp.), medics (*Medicago* spp.), phacelias (*Phacelia* spp.), and milkweeds (*Asclepias* spp.) (Williams et al. 2014).

In California, queens of the Crotch's bumble bee typically emerge in February or March and with an initial peak emergence in April and a second in July. Workers and drones typically emerge in early March with a peak emergence in July. Mating season occurs in late summer to early fall.

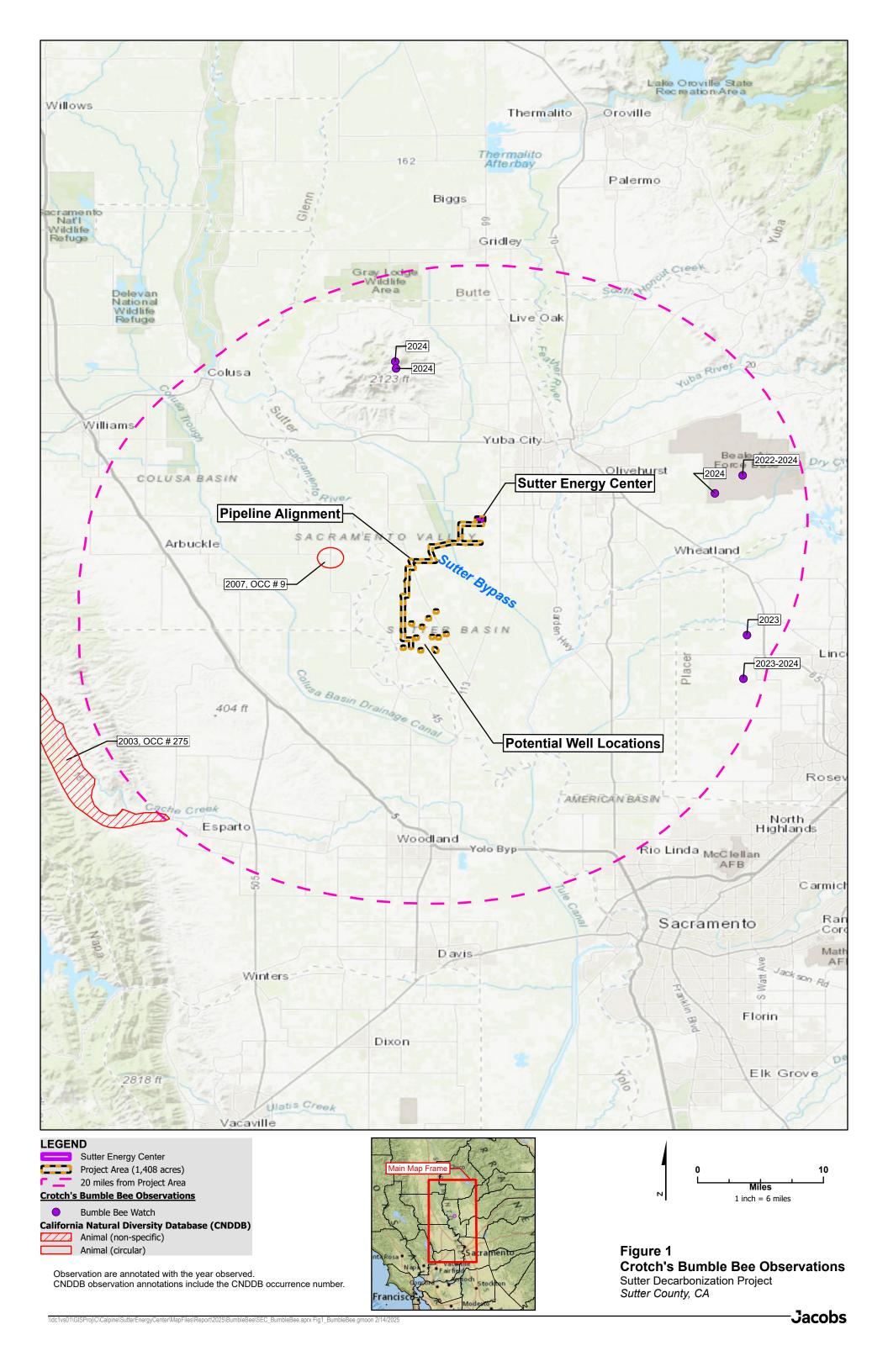
#### 2.3 Population Threats

Populations of Crotch's bumble bee have shown a sharp decline in relative abundance and persistence over the past 10 years. Intensive agricultural development and rapid urbanization in the Central Valley have contributed to declining populations by reducing preferred nesting substrate and available floral resources (Xerces et al. 2018). Negative atypical behavior of workers (such as leaving the colony or joining foreign colonies) results from inbreeding caused by a drastic reduction of geographic range.

#### 3. Methods

The following desktop resources were queried for occurrences of Crotch's bumble bee within 20 miles of the Project footprint:

- California Department of Fish and Wildlife California Natural Diversity Database (CNDDB)
- The Xerxes Society for Invertebrate Conservation's Bumble Bee Watch Dataset


In support of the Petition for Modification, Jacobs biologists completed a review of biological conditions in the Project area. While a focused field survey for Crotch's bumble bee habitat suitability was not conducted in support of this habitat assessment, previous biological resource surveys that documented vegetation, floral resources, and general habitat conditions onsite across all seasons were used in support of this habitat assessment. Biological resource surveys conducted for this Project include reconnaissance habitat assessments, an aquatic resource delineation, and protocol-level Swainson's hawk surveys, conducted between May 2023 and April 2024.

# 4. Results

This section presents the results of the review, including the desktop assessment and habitat suitability.

# 4.1 Desktop Assessment

As referenced in the CEC's data request, there are documented occurrences of Crotch's bumble bee 15 miles east of the Project and 9 miles west of the Project (Figure 1). The record of Crotch's bumble bee



east of the Project is associated with multiple observations between June 2022 and June 2024 of male and female bees foraging on woollypod milkweed (*Asclepias eriocarpa*) at two locations on Beale Air Force Base east of Yuba City (Xerxes 2025). Beale Air Force Base supports thousands of acres of grassland and scrubland habitat on the western Sierra foothills, which are highly suitable for Crotch's bumble bee. Significant dispersal barriers separate these occurrences and habitats from the Project, including the Feather River, urban development associated with Yuba City, and large tracts of agricultural lands.

The western occurrence is from 2007, documented in the CNDDB, and is roughly mapped to the general vicinity of the Pacific Gas & Electric Company Wilkins Slough Substation. There are few details associated with this occurrence aside from a collection being made on May 27, 2007 (CDFW 2025b). Because of the difficulty in identifying bees to the species level, the lack of specificity in the occurrence location, and minimal details associated with this occurrence, this occurrence may not be a reliable of Crotch's bumble bee presence in the region. Habitats in the vicinity of this occurrence are largely dominated by agricultural lands (rice fields) and ruderal grasses along irrigation canals, which offer marginal habitat quality for Crotch's bumble bees.

Two additional observations of Crotch's bumble bee have also been documented on the north side of Sutter Butte, 14 miles north of the Project footprint. These observations document a queen as well as seven individuals foraging on *Phacelia* spp. during the spring and late summer of 2024 (Xerxes 2025). Two more occurrences are located west of the city of Lincoln, 18 miles southeast of the Project footprint and are associated with 2023 to 2024 observations of male and female bees foraging on woollypod milkweed in grassland meadows (Xerxes 2025). One 2003 CNDDB occurrence is mapped roughly around the town of Guinda in the Capay Valley, 20 miles southwest of the Project footprint. This occurrence mentions that Crotch's bumble bees were infrequent visitors of the sunflower fields during ground-nesting bee surveys conducted in the summer of 2003 (CDFW 2025b). All of these occurrences are separated from the Project footprint by significant dispersal barriers, including large tracts of agricultural land and major waterways, including the Sutter Bypass, Yuba River, and Sacramento River.

## 4.2 Habitat Suitability

Terrestrial habitat in the Project footprint is primarily dominated by agriculture, specifically rice production. Some fields in the southwestern portion of the Project footprint are planted with tomatoes or corn, but crop production in agricultural fields may vary from year to year. The remaining terrestrial habitat consists of barren areas, ruderal, and non-native grasslands, which occur at the SEC, along disturbed road shoulders, and other areas associated with high levels of human activity. Non-native grasses such as wild oat (*Avena* sp.), Bermuda grass (*Cynodon dactylon*), rattlesnake grass (*Briza maxima*), bromes (*Bromus spp.*), and Italian wildrye (*Festuca perennis*) are common in the herbaceous layer. Trees and shrubs are present in sparse pockets at low cover.

The habitats within the proposed pipeline alignment and wells pads are dominated by intensive agriculture, which reduces the quality of habitat for species that Crotch's bumble bee rely on for nesting substrates in the form of burrows. Additionally, frequent flooding of agricultural fields, particularly for rice production, exclude the possibility of bees nesting within these portions of the Project footprint (Appendix A; Photos 2, 5, and 6). Similarly, riparian areas within the Project footprint, including those within the SEC site and those associated with the Sutter Bypass, are considered unsuitable nesting areas because of the lack of suitable nesting substrate. While ruderal and barren areas along the proposed pipeline alignment and within the SEC facility may contain potentially suitable burrows for nesting, because of vehicle traffic, routine mowing, proximity to irrigation canals with variable seasonally water levels, and proximity to disturbance associated with agricultural operations, it is highly unlikely Crotch's bumble bee would select nest sites in these small, narrow strips of potentially suitable habitat (Appendix A; Photos 1 and 3).

As specified previously, Crotch's bumble bee is a generalist forager and uses a wide variety of floral resources but frequents sages, lupines, medics, phacelias, and milkweeds. Floral resources within the Project footprint are largely limited to ruderal forbs, such as mustard (*Brassicaceae* spp.), along the boundaries of agricultural roads and fields, small patches of wild sunflower (*Helianthus annus*) around the riparian corridor of the Sutter Bypass (Photo 4), and field bindweed (*Convolvulus arvensis*) within the SEC

facility. While mustards, sunflowers, and bindweed provide marginal foraging opportunities for Crotch's bumble bees, these plants are not preferred and are widespread in the region. Crotch's bumble bees are much more likely to forage in areas with abundant floral resources, particularly areas with the preferred flowering species mentioned previously. The lack of abundant floral resources within the Project footprint further reduces the potential for nesting.

## 5. Conclusion

While Crotch's bumble bee was historically widespread in the Central Valley, modifications to the landscape, particularly agriculture, have extirpated this species from much of its historic range in California. Reliable occurrence data in the region shows this species is largely limited to the eastern and western peripheries of the Central Valley, where the landscape has not been subjected to heavy disturbance associated with agriculture. Overall, the Project footprint and surrounding area offer marginal nesting and foraging opportunities for Crotch's bumble bee, and the presence of dispersal barriers between occurrences of this species and the Project footprint make it highly unlikely individual bees would occupy the Project footprint. Therefore, this species is unlikely to be present within the Project footprint during construction.

## 6. References

California Department of Fish and Wildlife (CDFW). 2025a. Special Animals List. January.

California Department of Fish and Wildlife (CDFW). 2025b. California Natural Diversity Database, Biogeographic Data Branch. Sacramento, California. January 2025 dataset.

California Energy Commission (CEC). 2025. Petition for Post-Certification Modification for Sutter Energy Center (97-AFC-02C) Decarbonization Capture Project Staff's Data Request Set 2, A9 through A20. Sacramento, California. January 21.

CCFC Sutter Energy, LLC. 2023. Petition for Modification - Sutter Decarbonization Project. Submitted to California Energy Commission. May 19.

Thorp, R.W., D.S. Horning, and L.L. Dunning. 1983. "Bumble Bees and Cuckoo Bumble Bees of California (Hymenoptera: Apidae)." *Bulletin of the California Insect Survey*. Volume 23.

Williams, P. H., R. W. Thorp, L. L. Richardson, and S. R. Colla. 2014. Bumble Bees of North America: An Identification Guide. Princeton University Press.

Xerces Society for Invertebrate Conservation (Xerces), Defenders of Wildlife, and Center for Food Safety. 2018. A Petition to the State of California Fish and Game Commission to List the Crotch bumble bee (*Bombus crotchii*), Franklin's bumble bee (*Bombus franklini*), Suckley cuckoo bumble bee (*Bombus suckleyi*), and western bumble bee (*Bombus occidentalis occidentalis*) as Endangered under the California Endangered Species Act. October 16. <a href="https://nrm.dfg.ca.gov/FileHandler.ashx">https://nrm.dfg.ca.gov/FileHandler.ashx</a>
?DocumentID=161902&inline.

Xerces Society for Invertebrate Conservation (Xerxes), Wildlife Preservation Canada, York University, University of Ottawa, The Montreal Insectarium, The London Natural History Museum, BeeSpotter. 2025. Bumble Bee Watch. Accessed January 28, 2025. <a href="http://www.bumblebeewatch.org/app/#/bees/lists">http://www.bumblebeewatch.org/app/#/bees/lists</a>.



## **Attachment A. Representative Photographs**



**Photo 1.** Non-native grasslands within the SEC facility following routine mowing. This area lacks suitable nesting substrate and has marginal foraging opportunities for Crotch's bumble bee in the form of bindweed (*Convolvulus arvensis*). September 2023.



**Photo 2.** Rice fields and agricultural road southwest of SEC facility in the proposed pipeline alignment. Areas such as these lack foraging and nesting opportunities for Crotch's bumble bee. September 2023.



**Photo 3.** Ruderal and barren habitats along levee road by Sutter Bypass (left site of photograph). Marginally suitable nesting habitat on levee slope but burrows not observed. Riparian habitats on the right are unsuitable for nesting. September 2023.



**Photo 4.** Wild sunflower growing in the riparian corridor of Sutter Bypass. The sunflowers are not preferred foraging plants for Crotch's bumble bee and ground disturbance would be avoided in this area by using trenchless construction methods. September 2023.



**Photo 5.** Irrigation canal and agricultural roads within Project footprint. These habitats are unlikely to support Crotch's bumble bee nesting because of limited burrows and high disturbance. September 2023.



**Photo 6.** Barren and ruderal habitat along a berm between canal and rice fields. There are limited burrows and foraging resources along the berm itself. Seasonal inundation on either side of the berm likely excludes Crotch's bumblebee from nesting. September 2023.

| Attachment E. Conceptual Horizontal Directional Drilling (HDD) Inadvertent Release Protection and Contingency (DR A17) |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |
|                                                                                                                        |  |  |  |  |



# HDD Inadvertent Release Prevention and Contingency Plan

Prepared by: SPEC Services, Inc.

| REV. | DESCRIPTION |  | BY            | DATE                       | REVIEWED | DATE | APPROVED | DATE |
|------|-------------|--|---------------|----------------------------|----------|------|----------|------|
|      |             |  |               |                            |          |      |          |      |
|      |             |  |               |                            |          |      |          |      |
|      |             |  |               |                            |          |      |          |      |
| ·    |             |  | JOB NO.: 8506 |                            |          |      |          |      |
|      |             |  |               | DRAWING / CALCULATION NO.: |          |      | REV.     |      |



Page | 1 Rev. A

## **Table of Contents**

| 1   | INTRODUCTION            | 2  |
|-----|-------------------------|----|
|     |                         |    |
| 2.  | DESCRIPTION OF WORK     | 3  |
| 3.  | RESPONSIBILITIES        | 4  |
| 4.  | TRAINING                | 4  |
| 5.  | WORKPLACE REQUIREMENTS  | 4  |
| 6.  | CONSTRUCTION MONITORING | 5  |
| 7.  | SOIL CONDITIONS         | 8  |
| 8.  | INADVERTANT RETURNS     | 8  |
| 9.  | HDD ABANDONMENT         | 12 |
| 10. | RESTORATION             | 13 |



#### 1. INTRODUCTION

COMPANY is proposing to install a new 12-inch pipeline in Sutter County, California. As part of the pipeline installation, various crossings will be completed via Horizontal Directional Drilling (HDD). Directional drilling operations have a potential to release drilling fluids into the surface environment through inadvertent releases that can be a concern to sensitive terrestrial habitats, waterways, and areas of biological resources. The HDD procedure uses bentonite slurry, a fine clay material used as a drilling lubricant that is non-toxic and commonly used in farming practices. However, aquatic plants and species can be smothered by the fine particles of bentonite if it were to discharge into sensitive environmental areas.

The purpose of this plan is to:

- Minimize the potential for an inadvertent release associated with an HDD
- Provide timely detection of an inadvertent releases
- Protect environmentally sensitive area
- Ensure an organized and timely response time in the event of an inadvertent release
- Ensure all appropriate representatives and regulatory agencies are notified with 24 hours in the event of an inadvertent release
- Design protocols to implement for the protection of sensitive cultural and biological resources
- Design protocols to require a geotechnical engineer or qualified geologist to make recommendations regarding the suitability of the formations to be bored

#### 2. DESCRIPTION OF WORK

Prior to construction, sensitive cultural and biological resources will be protected by implementing the following measures:

- Entry and exit points must be at least feet from marsh vegetation along the waterway;
- Entry and exit points will receive full-time cultural monitoring during excavation;
- Clearly mark and flag sensitive cultural and biological resource areas where present to avoid construction limits; and,
- Provide barriers such as straw bales or fences between bore site and nearby sensitive resource areas.

Drilling operations will be halted upon detection of a drop in drill pressure or other evidence of an inadvertent release. Management, Site Supervisor and the Safety Department are to be notified and clean-up of any spills shall begin immediately. A spill kit, vacuum truck and containment materials shall be present on-site prior to and during drilling operations. In the event of an inadvertent release, the on-site Supervisor and Foreman will conduct an evaluation of the situation and determine appropriate mitigation actions required for clean-up and continuing operations.



Page | 3 Rev. A

#### 3. RESPONSIBILITIES

Site Supervisors shall be familiar with all aspects of drilling operations as well as the contents of this Inadvertent Release Plan prior to the work activity that is permitted to take place. The Site Supervisor has the overall responsibility for implementing this Inadvertent Release Plan and shall ensure that all employees are properly trained and familiarized with the necessary procedures for response to an inadvertent release prior to drilling activities beginning. The Site Supervisor has the responsibility to immediately notify the Safety Department, coordinating personnel, and regulatory agencies of any spills in a timely manner.

#### 4. TRAINING

All crew members shall receive training prior to construction on the following:

- The provisions of the Inadvertent Release Plan
- Ensure that all field personnel understand their responsibility for timely reporting of inadvertent releases
- Equipment maintenance
- Site specific permit and monitoring requirements
- Inspection procedures for release prevention and containment equipment and materials
- Contractor/crew obligation to stop drilling operation upon evidence of an inadvertent release
- Immediately report any inadvertent releases
- Protocols for clean-up

## 5. WORKPLACE REQUIREMENTS

#### 5.1 Access

Designated access points will be clearly marked with signs or flagging to ensure that crews only use approved access routes. Access points may be monitored for excessive erosion, dust and soil tracked onto roadway.

## 5.2 Clearing and Grading

Workspace for the HDD will require minor clearing and grading to establish work areas for the entry and exit sites. All work areas will need to be relatively free of brush and debris so that equipment and the construction crew can move safely around the site.

## 5.3 Equipment and Containment Material

A sufficient supply of containment material will be stockpiled on site to quickly react to an inadvertent release event. At a minimum, the following materials will be stored at either the entry or exit side of the drill for the duration of the drilling operation:



Page | 4 Rev. A

- All equipment and vehicles are checked and maintained daily to prevent leaks and hazardous materials
- Spill kits and spill containment materials are available on-site at all times
- All equipment shall be checked to be in good working order
- Absorbent pads and plastic sheeting are required if equipment are to be operated near a waterbody
- Vacuum truck
- Mud storage tanks
- Mud pumps and additional hose
- Sediment barriers
- Shovels and buckets

If the previously mentioned materials are not effective in containing an inadvertent release, the following materials and measures shall be employed to contain the drilling mud:

- sand bags where silt fence or straw bales are not effective
- floating booms or silt curtains
- plywood
- small backhoe to dig a sump so that mud can be pumped out
- Corrugated pipe to be installed over an in-stream point source to minimize release and facilitate clean up

#### 6. CONSTRUCTION MONITORING

#### 6.1. HDD Monitoring

Pipeline construction personnel and COMPANY on-site representative will monitor HDD activities during construction to ensure compliance with the applicable plans and permits. The following procedures shall be followed each day prior to the start of work. The Site Supervisor shall ensure that the Inadvertent Release Plan is available on-site at all time during construction. A brief meeting with crew members shall be held at the start of each day of construction.

Drilling pressures shall be closely monitored so they do not exceed pressures needed to penetrate the formation. Pressure levels shall be set at a minimum level to prevent inadvertent releases. During the pilot bore, maintain the drilled annulus. Cutters and reamers will be pulled back into previously-drilled sections after each new joint of pipe is added.

Exit and entry pits shall be enclosed by silt fences and straw. A spill kit shall be on-site and a vacuum truck shall be readily available prior to and during drilling operations. Containment materials such as straw, silt fencing, sand bags, and spill kits shall be staged at a location for easy access and mobilization during an event of a spill. If necessary, barriers between bore site and the edge of a waterbody shall be constructed prior to drilling. Barriers shall be constructed from sandbags.



Page | 5 Rev. A

Operator shall stop work whenever the pressure in the drill rig drops, or there is a lack of return in the entrance pit. The drill rig operator and Site Supervisor shall coordinate to verify a potential inadvertent release in its likely location. Notes of the conditions shall be made and the location of the inadvertent release shall be recorded.

Water containing mud, silt, bentonite, or other pollutants from equipment washing or other activities shall not be allowed to enter a lake, flowing stream or any other water source. Bentonite used in the drilling process shall be either disposed of at an approved disposal facility or recycled in an approved manner. Other construction materials and wastes shall be recycled or properly disposed.

The COMPANY representative will have the authority to halt work if an inadvertent release has the potential to impact a sensitive resource. Key project personnel are listed in **Error! Reference source not found.** 

**Table 1: Key Project Personnel** 

| Role                           | Name | Organization | Phone Number |
|--------------------------------|------|--------------|--------------|
| COMPANY Project<br>Manager     |      | COMPANY      |              |
| COMPANY Permitting             |      | COMPANY      |              |
| COMPANY Right-of-<br>Way       |      | COMPANY      |              |
| COMPANY Area<br>Manager        |      | COMPANY      |              |
| COMPANY Line Rider             |      | COMPANY      |              |
| COMPANY Field PIC (Inspector)  |      | COMPANY      |              |
| Contractor Foreman             |      | Contractor   |              |
| Environmental Lead             |      | Contractor   |              |
| Design and Engineering<br>Lead |      | Contractor   |              |



Page | 6 Rev. A

## 6.2. Ground Surface Monitoring

Pipeline construction personnel shall be required to monitor the ground surface during construction for ground settlement and heaving. To assess this, monitoring points shall be established along the proposed pipeline trajectory.

On the entry side of the waterway, the survey monitoring points shall be established at 100 ft. intervals from the HDD entry point to the bank of the waterway. A monitoring point shall be placed at the base and centerline of the levee (if applicable).

On the exit side, monitoring points shall be established at 100 ft. intervals from the HDD exit point to the south bank of the waterway.

The contractor shall complete an elevation survey of monitoring points during the following stages of construction:

- Baseline survey prior to start of construction.
- Survey after completion of HDD pilot hole.
- Survey after completion of the final ream pass.
- Final Survey 1 week after completion of pullback.

Survey results shall be provided to COMPANY for final review. Vertical deviation exceeding 1 inch from the baseline survey shall be evaluated for potential subsidence and heaving by COMPANY and the geotechnical engineer of record. Review will determine whether this is an indication of short-term or long-term subsidence, surface heaving or potential inadvertent release point. After determination is made, drill contractor will make adjustments to drilling pressure and drilling mud composition.

## 6.3. Additional Construction Monitoring

As a precaution, monitoring of the waterway level shall be completed at the end of each work shift by COMPANY's environmental monitor. High water levels shall be monitored daily so that the waterway level does not infringe on the HDD work space. If possible, construction will be scheduled to correspond to seasonal low water levels for the waterway.

#### 6.4. Notification

A COMPANY representative shall immediately notify the Levee District Manager for any construction issues related to the levee. Jurisdictional agencies and their contact information are listed in Table 2: Jurisdictional Agency Contact List.



Page | 7 Rev. A

#### 7. SOIL CONDITIONS

## 7.1. Geotechnical Report

A project specific soils report has been completed by \_\_\_\_\_\_. The drilling contractor shall use this report as the basis for selection of drilling and mud handling equipment, drilling materials and drilling methods. The drilling report is indicative of the soil types but cannot predict all of the soil types that may be encountered during the drill.

(Update to include description of expected soil conditions after completion of geotechnical bores.)

## 7.2. Contingency Plan

The HDD contractor shall have equipment appropriate for completion of the HDD for the soil conditions indicated in the project geotechnical report. Soil conditions detrimental to HDD installation include cobble, boulders and significant loose soil deposits. These soil types, if encountered, may require re-evaluation of the HDD drilling methods and/or trajectory during construction. The contractor shall implement the following contingency plan for adverse soil conditions.

- HDD contractor shall assess the extent of adverse soil layer and potential for non-completion of the HDD due to the adverse soil deposit.
- If HDD drill contractor can complete the drill without significant risk of inadvertent returns, bore hole collapse or damage to the carrier pipe, drill shall be completed and carrier pipe and coating evaluated after pullback.
- For soil conditions that would allow completion of the HDD, but may cause damage to the
  outer coating of the carrier pipe, Contractor shall propose methods to mitigate risk to carrier
  pipe including application of abrasion resistant coating on the carrier pipe or completion
  of additional reaming and swab passes to condition the hole.
- If HDD contractor concludes that drill cannot be successfully completed, the drill string will be retracted from the bore hole and conditions assessed by the contractor, engineering team and COMPANY personnel. Contractor shall propose methods for mitigating the adverse soil condition including soil improvement methods, use of temporary casing pipe, or proposed adjustments to the drill path to reduce exposure to the adverse soil type.

#### 8. INADVERTANT RETURNS

#### 8.1. Inadvertent Release Identification

The drilling operator has the primary responsibility of identifying an inadvertent release or the potential for an inadvertent release and communicating with the COMPANY representative in the field. The drill operator will immediately notify the COMPANY representative of any of the following:

- loss of drilling fluid
- loss of circulation



Page | 8 Rev. A

• unexpected change in pressure

Monitoring frequency will increase if any of the previously mentioned events occur.

## 8.2. Inadvertent Release Response

In the event of an inadvertent release, the release will be assessed to determine the amount of drilling mud released and potential for the release to reach a waterway or other sensitive resource. Surfaced drilling mud will be accessed based on the location and size of the inadvertent release and according to resource agency recommendations. Similarly, response measures will vary based on the location of the inadvertent release, as described further in the following subsections.

The following steps will be taken if an inadvertent release is identified:

- 1. Initiate immediate suspension of drilling operation.
- 2. Determine the location and extent of the inadvertent release.
- 3. A cultural resources monitor shall monitor all activities. Notify the environmental agencies in Table 2 of the inadvertent release.
- 4. Contain inadvertent release with berms, straw bales, or fencing as appropriate and in consultation with the COMPANY Inspector and contacted agencies.
- 5. Verify that drilling fluid will not enter a waterway.
- 6. Notify COMPANY representatives.
- 7. Evaluate the release to determine if containment structures will effectively contain the release.
- 8. Clean up the inadvertent release material if it is *in non-sensitive areas*, such as disturbed uplands, in accordance with the procedures outlined in Section 8.4 Clean Up and in consultation with the COMPANY representative.

A COMPANY representative will review the containment structure and determine if additional measures are needed to prevent the spread of surfaced drilling mud. Drilling may resume upon approval from the COMPANY representative. If borehole abandonment and a new HDD location is required, authorization from the (agency name) must be obtained prior to drilling.

**Table 2: Jurisdictional Agency Contact List** 

| Agency   | Contact Name | Address | Phone<br>Number |
|----------|--------------|---------|-----------------|
| Agency 1 |              |         |                 |
| Agency 2 |              |         |                 |
| Agency 3 |              |         |                 |
| Agency 4 |              |         |                 |
| Agency 5 |              |         |                 |



Page | 9 Rev. A

## Waterbody

In the event of an inadvertent release is aquatic (underwater), the following steps will be taken to prevent or minimize the further release of drilling mud:

- 1. Initiate immediate suspension of drilling operations.
- 2. Monitor inadvertent release for 4 hours to determine if the drilling mud congeals (bentonite will usually harden, effectively sealing the inadvertent release location).
- 3. Notify COMPANY representatives, who will then notify applicable stakeholders including Agency 1, Agency 2, etc. at the contact numbers listed in Table 2:
  - a. If the drilling mud congeals, take no other action that would potentially suspend sediments in the water column.
  - b. If the drilling mud does not congeal, isolate the surrounding area. Spill booms or silt curtains will be deployed on the water by small boats from the shore surrounding the spill area.
  - c. If the release becomes excessively large, a spill response team would be called in to contain and clean up excess drilling mud in the water. Phone numbers of spill response must be on site.
- 4. Document the location and estimated volume of the inadvertent release and corrective measures taken to contain the inadvertent release. In addition, document preventive measures taken to reduce the likelihood of future inadvertent releases.
- 5. With direction from resource agency personnel, initiate clean-up procedures outlined in Section 8.4 Clean Up.

In general, containment is not feasible for in-stream releases. In-stream releases include a release in a water body where the flowing current would wash the drilling mud away. In the event of an in-stream release:

- 1. Initiate immediate suspension of drilling operations.
- 2. Notify COMPANY representatives, who will make notifications to agencies listed in Table 2: Jurisdictional Agency Contact List. Section 8.3 Notification provides details concerning agency notification.
- 3. In consultation with resource agency representatives, assess conditions to determine whether hand-placed containment, recovery, or other measures, such as silt curtains, will be effective and beneficial at the specific release. Refer to Section 5.3 Inadvertent Release Response for additional containment measures that may be suitable depending on the location and volume of the inadvertent release.
- 4. If containment is not a viable solution to an in-stream inadvertent release, increase the drill angle in an attempt to move below the problem area or reduce the amount of drilling fluid reaching the surface.
- 5. Document the location and estimated volume of the inadvertent release and corrective measures taken to contain the inadvertent release. In addition, document preventive measures taken to reduce the likelihood of future inadvertent releases.

Drilling will resume once the inadvertent release is contained and controlled. The Contractor will obtain permission to resume from a COMPANY representative. COMPANY will determine that



Page | 10 Rev. A

the affected area is under control and make proper notifications. Notification procedures are described in more detail in Section 7.3 Notification.

#### **8.3.** Notification

For all drilling mud releases during HDD crossings, the Contractor will notify the drilling foreman to temporarily halt drilling activities. The drilling foreman will immediately notify the appropriate COMPANY representative. A COMPANY representative will assess the severity of the release and make agency notifications.

Agencies in Table 2 shall be notified including Agency 1, Agency 2, etc. Upon project completion, details of inadvertent release events shall be documented in a post construction report that includes, but is not limited to:

- A map that shows the inadvertent release location(s).
- Date and time of inadvertent release event(s).
- Details of clean-up procedures, equipment, and containment implemented.
- "Before" and "After" photographs confirming the clean-up.

In general, if an inadvertent release occurs in an upland area and there is no threat of drilling mud entering a sensitive resource area, the inadvertent release will be contained and the COMPANY representative shall make agency notifications described in section 8.2. If an inadvertent release occurs in a waterbody or other sensitive resource area, COMPANY will notify all agencies with jurisdiction over the resource area by telephone within 24 hours of the containment efforts being implemented. Written notification describing the location of the inadvertent release, estimated size of the affected area, and actions taken to reduce or eliminate the release of drilling mud will be provided to each jurisdictional agency following the verbal notification. A COMPANY representative or their designee will complete all agency notifications. Jurisdictional agencies and their contact information are listed in Table 2: Jurisdictional Agency Contact List.

## 8.4. Clean Up

The Contractor will work with COMPANY on-site representative and resource agency representatives to determine the timing of clean up. The following measures will be implemented to remove drilling mud from previously undisturbed areas:

- Drilling mud will be cleaned up using methods that do not cause extensive ancillary damage to existing vegetation. This will include the use of hand tools, such as shovels, buckets and brooms. If approved by the COMPANY representative, fresh water washes can also be used to dilute drilling fluid if deemed beneficial and feasible.
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or ancillary damage to existing and adjacent vegetation.
- Material will be pumped out by a vacuum truck and collected in containers for temporary storage prior to removal from the site.



Page | 11 Rev. A

- Potential for secondary impacts from the clean-up process will be evaluated. A
  COMPANY representative, in consultation with resources agencies, will determine if
  clean-up activities are to continue if physical damage to the site will exceed the benefits of
  the removal activities.
- Clean-up measures will be initiated for in-stream releases where feasible, in consultation with jurisdictional agencies. If site-specific conditions are such that containment and clean-up may be feasible and beneficial, fresh water washes or other low-impact steps may be employed without undue disturbance to the stream banks and bed.

#### 9. HDD ABANDONMENT

## 9.1. Abandonment Contingency

If the directional drill experiences a failure due to soil conditions, unknown obstructions or equipment failure, a contingency plan will be implemented to properly abandon the bore hole. Prior to implementation of any plans, Contractor and COMPANY shall make notifications to all regulatory stakeholders including the California State Lands Commission. Though the process for abandonment shall depend on the failure scenario, the bore hole shall be properly abandoned to prevent any potential seepage, subsidence or erosion. A detailed abandonment plan shall be developed by the contractor for approval by COMPANY and regulatory agencies. The plan shall include a description of the process, equipment and material that will be used for abandonment. All material, such as abandonment grout, shall be pre-approved by COMPANY and regulatory agencies to ensure material meets or exceeds applicable specifications. Potential abandonment scenarios and contingencies include the following:

- Adverse soil conditions causing borehole collapse may require abandonment of the bore hole. If possible, the drill string will be retracted from the bore hole and conditions assessed by the contractor and COMPANY personnel. If possible the contractor will attempt to recover the bore hole by modifying the drilling fluid composition, drilling pressures and tooling.
- If drill string or tooling fails or is lost in the hole, the contractor will attempt to recover the drill string and tooling. If successful, the contractor will remove the drill string from hole, inspect to determine nature of failure and replace. For re-entry the contractor shall make adjustments to rotational speed, penetration rate, pumping rate.
- If recovery of the borehole is not possible during drilling operations, the contractor will pull back and remove the drill string from the bore hole and choose a new alignment after consultation between contractor, COMPANY, and jurisdictional agencies to determine when operations can restart. The bore hole would be abandoned by pumping grout from one side of the drill and pushing the bentonite mud to holding tanks for disposal. The grout shall be a cellular concrete fill (Cell-Crete) with minimum compressive strength of \_\_\_\_ psi.
- If the failure of the HDD occurs during pullback of the 12-inch pipeline, the contractor will attempt to remove the pipe from hole, inspect failure to determine cause (inadequate preparation of reamed bore path, welding workmanship or pipe design deficiency). Based on result, the contractor would coordinate with COMPANY to determine appropriate modifications to drilling or pipe and potential to re-use the bore hole or follow new alignment.



Page | 12 Rev. A

- If the failure of the HDD occurs during pullback of the 12-inch pipeline and the contractor cannot remove the 12-inch pipe, the contractor would abandon the pipe in the borehole and inspect failure to determine cause (inadequate preparation of reamed bore path, welding workmanship or pipe design deficiency). Based on result, the contractor would coordinate with COMPANY to determine appropriate modifications to drilling or pipe and potential to re-use the bore hole or follow new alignment. The pipe abandoned in the bore hole would be filled with abandonment grout and capped underground with the location surveyed for future reference.
- A plot plan depicting the location of the new entry pit, new exit hole, where equipment and materials will be stored, and where refueling of equipment will be performed.

#### 10. RESTORATION

Temporary erosion and sediment control structures will remain in place during Project activities in accordance with the Stormwater Pollution Prevention Plan (SWPPP) or as determined by the COMPANY representative. Silt fence, straw bales, or other erosion and sediment control devices that are no longer functional or needed will be removed from the site. All temporary Project construction-related materials shall be removed upon Project completion unless a jurisdictional agency has provided specific instruction.

## 10.1. Restoration of Areas Inadvertently Affected by Releases During Clean-Up

If an inadvertent release occurs, affected areas would be restored to their pre-spill conditions either before or during other Project restoration activities. This would be accomplished by first excavating the affected area and properly disposing of the affected material. Once this is completed, the affected area would be backfilled and compacted with clean native material. The original grade would then be restored to its pre-existing condition and topsoil (if any) also restored. If the affected area must be reseeded, the activity would be undertaken in consultation with the project biologist and applicable state or federal agencies (e.g., California Department of Fish and Wildlife, State Lands Commission, U.S. Fish and Wildlife Service, U.S. Army Corps of Engineers, Etc.) and if required, in accordance with a restoration plan prepared by a certified landscape ecologist. In addition, an approved native seed mix (or if required, native plant container material), suitable for the area and based upon the existing native plant communities present, would be used and locally obtained (if available). Applicable erosion protection as detailed in the SWPPP would be used during restoration activities. If a restoration plan is required then monitoring would occur once restoration activities are complete duration, test pressure, maximum allowable operating pressure, test acceptance criteria, etc.

Although the details of the monitoring plan will be outlined in a Restoration Monitoring Plan, these activities will generally entail the following: (1) biologists will perform quarterly site monitoring and collect photo-points (quarters one through four) and conduct additional focused site monitoring events to evaluate weed conditions and determine if the erosion control measures are effective; (2) each quarter, for up to ten days, biologists will collect photographs at established



Page | 13 Rev. A

photo-points and inspect each site and fill out a detailed restoration site monitoring form. The quarterly data collection will document visual estimates of plant cover, the presence of new weed and native species, and other relevant site conditions. During these quarterly visits, the biologists will also visually evaluate and document erosion and sediment control under the remote supervision of a Qualified SWPPP Developer (QSD)/Qualified SWPPP Practitioner (QSP); and (3) site assessment forms and photographs will be used to document the progress of restoration at the site.



Page | 14 Rev. A