DOCKETED		
Docket Number:	24-SB-605	
Project Title:	SB 605 Wave and Tidal Energy - Phase 2	
TN #:	262567	
Document Title:	Presentation - Wave and Tidal Energy Resource	
Description:	April 2 Workshop Presentation 2 - Integral Consulting	
Filer:	Danielle Mullany	
Organization:	California Energy Commission	
Submitter Role:	Commission Staff	
Submission Date:	4/2/2025 4:06:48 PM	
Docketed Date:	4/2/2025	

Wave and Tidal Energy: Evaluation of Feasibility, Costs, and Benefits

SB 605 Report

Phase 2 - Chapter 1 and 2 slides

April 2, 2025

Chapter 1 Objectives

- > Map energy resource availability and conduct initial spatial planning review
- > Using existing data layers, identify:
 - Areas with greatest potential resource
 - Degree of overlap with other marine uses
 - Potential conflicts (detailed review in Chapter 3)
 - Potentially supporting uses (more detail in Chapter 2)
 - Device agnostic

- Not designed to pick locations for individual applications
- > Areas identified in this report do not constitute support for, or opposition to, any individual project or location

Data Analysis and Reporting

- > California separated into three regions: Southern, Central, Northern
 - Southern California (from the Mexico border north to Point Conception)
 - Central California (from Point Conception north to Bodega Bay)
 - Northern California (from Bodega Bay north to the Oregon border)
- > Reflect differences in energy resource availability, population centers, and marine ecosystems

Legend		
Tidal Power Density (w/m²) 0 - 50 50 - 100 100 - 150 200 - 300 300 - 400 400 - 500 500 - 600 600 - 700 700 - 800 800 - 900 900 - 1000 erial Source: 2024 (Bing Satellite)		
0 10 20 NM	DRAFT	integral

Tidal and Wave Energy Geoprocessing

Spatial Constraint Analysis

Tidal Energy Technology Overview - Refresher

SAE Renewables

Tidal Kite

integral

- Submerged, cabled to sediment bed
- Optimized to meet tidal conditions

Cross Flow Turbine

- · Moored/anchored submerged, or semisubmerged
- Bi-or uni-directional flow

Ocean Renewable Power Company

Archimedes Screw

Jupiter Hydro

- Bi- or uni-directional flow

- Moored/anchored, semi-submerged
- Strong tidal oscillations

Tidal Sails

Vortex Hydro Energy

Tidal Energy Resource Data

> Average annual tidal power density from NREL (Haas et al. 2011)

- Grids approximately 250m by 350m
- > Results are reported in five categories/bins, in Watts per square meter:
 - Low Tidal Power Density: <200 W/m²
 - Medium-Low: ≥ 200 to < 400 W/ m^2
 - Medium: \geq 400 to <600 W/ m²

- Medium-High: ≥ 600 to < 800 W/ m²
- High Tidal Power Density: $\geq 800 \text{ W/m}^2$

Southern California Tidal Energy Resources

> Limited energy resources

- > Small area of Medium- Low energy within San Diego Harbor
- > Constraints with military, port, commuter ferry and recreational vessel traffic

Central CA Tidal Energy

Tomales Bay

Tom's Point

Tomales Bay. CA

integral

Sand Point

Legend Exclusion Zones Tidal Power Density Bins Medium-Low Medium Medium-High High Aerial Source: 2024 (Bing Satellite)

2 km

Northern CA Tidal Energy

 \otimes

Wave Energy Technology Overview - Refresher

Attenuator

Moored/anchored, floating • Offshore, tens of meters water depth

Mocean Energy

Oscillating Water Column Fixed on land or seabed, or moored Shore-based, nearshore, or offshore

Ocean Energy

Point Absorber

- Moored/anchored, floating, submerged, or semi-submerged
- Offshore, tens of meters water depth

CalWave

Overtopping

- Fixed on land or seabed or moored
- Shore-based, nearshore, or offshore

Wave Dragon

Pressure Differential • Moored/anchored, submerged, or semi-submerged Flexible deployment location

AWS

Oscillating Wave Surge Moored/anchored, floating, submerged, or semi-submerged, or bottom-fixed • Nearshore, <12 water depth

Resolute Marine Energy

Wave Energy Resource Analysis

Average annual omnidirectional wave data from 2010 (most recent)

Wave Energy Data Summary

- > Wave energy data is in point form, not gridded cells
- > Energy classified into bands, in kilowatts per meter:
 - Low Omni-Directional Wave Power: < 10 kW/m
 - Medium-Low: ≥ 10 to < 20 kW/m
 - Medium: ≥ 20 to < 40 kW/m

- Medium-High: \geq 40 to < 50 kW/m
- High Omni-Directional Wave Power:
 ≥ 50 kW/m

Wave Energy Resource Assessment Caveats

- > Energy data in nearshore (<50 m water depth) is less reliable
 - Bathymetry and offshore structures or features become important
 - Projects require site- and device-specific wave modeling

Southern California Wave Energy Resources

- > Point Conception and Channel Islands block large swells from the northwest
- > Greatest energy potential is around the Channel Islands
- Substantial overlap with marine protected areas, and areas used currently or in the past for defense activities

Southern California Wave Energy Constraints Analysis

- > Areas of high energy close to shore
 - Channel Islands, not mainland – higher costs
- > Highest energy areas entirely within areas with spatial constraints

Medium-high resources are in water depths of 25-100 m

Power Bin	Point Count Total	Percent of Point Count in Unconstrained Zone
Low	31,884	22
Medium-Low	3,258	20
Medium	2,088	6
Medium-High	98	19
High	2	0

Central California Wave Energy Resources

- > Energy resource is highest in the north of the region
- > Located relatively close to population center of San Francisco
- > Highest energy resources located more than 15 km from shore

integra

Potential opportunities 5-15 km from shore with medium energy, fewer constraints

Central California Wave Energy Constraints Analysis

- Substantial overlap with oil and gas resource and planning areas
- > More than 90% of wave energy in the highest two bins has spatial constraints

Power Bin	Point Count Total	Percent of Point Count in Unconstrained Zone
Low	20,002	68
Medium-Low	6,956	46
Medium	39,901	17
Medium-High	6,406	6
High	22	5

Northern California Wave Energy Resources

- > Highest wave energy of the three regions
- > Focusing due to underwater canyons
- > Relatively even distribution of energy across the region

Northern California Wave Energy Constraints Analysis

- > Highest energy is within 10 km of shore
- In some locations, high energy resource is located less than 5 km from shore
 - Importance of canyons

integral

> Fewer constraints than in other regions

Power Bin	Point Count Total	Percent of Point Count in Unconstrained Zone
Low	1,638	83
Medium-Low	679	72
Medium	19,478	46
Medium-High	22,641	7
High	152	84

Chapter 2 – Marine Energy Project Considerations

- > Technologies and Site Selection
 - Device suitability
 - Site selection

- Summary of supporting and limiting factors in each region
- > Potential Opportunities and Applications
 - Commercial Scale Opportunities
 - Near term distributed opportunities
- > Previous Marine Energy Projects in California

Alignment of Demand and Supply

- > Population of California is highly coastal
- > Higher density in Southern California
- > To align with renewable energy targets, will need to replace existing fossil fuel power plants
 - 20% in Central California
 - 78% in Southern California

Port Infrastructure

- > Powering port activities
- > Fishing infrastructure and processing
- > Integrated with existing coastal structures

Other Opportunities

> Aquaculture

- Protecting offshore pens/cages
- Powering operational needs
- > Desalination

- > Ocean observation buoys
 - Environmental
 - Metocean

Previous Marine Energy Projects

> Prior to 2015, failures and bankruptcies

- Failures in cost estimation
- Non-compliance with permit or financial requirements
- Due-diligence failures

integra

> Since 2020, some successes and permitting advances

- CalWave completed 10-month field trial off Scripps Pier
- Eco Wave Power permitted for installation at Port of Los Angeles

Marine Energy Opportunities Summary

- > Tidal energy resource is limited, with San Francisco the most viable
- > Wave energy is greatest in the north of the state, away from major population centers
 - New transmission infrastructure will be necessary if grid connection is the objective
 - In the near-term, distributed opportunities are more promising
- Local, device-specific modeling is required, particularly for nearshore —applications
- > All projects will require environmental permits and additional analysis