DOCKETED		
Docket Number:	00-AFC-01C	
Project Title: Contra Costa Power Plant Project Compliance		
TN #: 262263		
Document Title:	Annual Compliance Report RY 2024 for the PG&E Gateway Generating Station	
Description:	Annual Compliance Report RY 2024	
Filer:	Angel B. Espiritu	
Organization:	PG&E Gateway Generating Station	
Submitter Role:	Applicant Representative	
Submission Date:	3/20/2025 1:34:39 PM	
Docketed Date:	3/20/2025	

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

March 18, 2025

Mr. John Heiser Compliance Project Manager California Energy Commission Siting, Transmission and Environmental Protection Division 1516 Ninth Street, MS-15 Sacramento, CA 95814

Reference:

PG&E Gateway Generating Station (00-AFC-01C)

Subject:

Annual Compliance Report for Reporting Period of January 1, 2024, to

December 31, 2024

Dear Mr. Heiser,

In compliance with the General Condition of Certification as set forth in the California Energy Commission's Final Decision for Pacific Gas and Electric Company Gateway Generating Station (GGS) pages 179-180, attached is the Annual Compliance Report for the reporting period of January 1, 2024, to December 31, 2024.

Included in this report are documents specifically required by Conditions of Certification SOILS&WATER-10, SOILS&WATER-4, HAZ-1, and SOILS&WATER-3, BIO-2 to be submitted along with the Annual Compliance Report and are attached herewith as Exhibits 3, 4, 5, 6, and 7, respectively. Also included in this report are updated compliance matrix, Project operating status, and statements of compliance with Conditions of Certifications VIS-1, and VIS-4.

If you have any questions regarding this report, please contact Angel Espiritu at (925) 522-7838, 510-861-1597 (m) or abe4@pge.com.

Sincerely,

Aman Prakash Singh

Senior Plant Manager

Attachments: a/s

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 16 (Reporting Period: January 1, 2024 - December 31, 2024)

March 30, 2025

Table of Contents

Annual Compliance Report

Introduction	1
Compliance Activities	
Compliance Matrix	1
2. Summary of Project Operating Status	
3. Documents Required by Specific Conditions	
4. Cumulative Listing of Post Certification Changes	
5. Missed Submittal Deadlines	
6. List of Filings/Permits	
7. Projected Compliance Activities for the Succeeding Year	
8. Listing of Year's Addition to On-site Compliance File	
9. Evaluation of On-site Contingency Plan	
10. Complaints, NOVs, and Citations	
List of Attachments	
1. Updated Compliance Matrix	Exhibit 1
2. Key Events List	
3. Water Use Summary (SOIL&WATER-10)	Exhibit 3
4. Semi-annual Self-Monitoring Reports to Delta Diablo District	
(SOIL&WATER-4)	Exhibit 4
5. HAZ-1 Appendix C Table 8.12-4 (HAZ-1), and Hazardous	
Materials Inventory as submitted to CUPA through CERS	Exhibit 5
6. Copy of Notice of Intent (NOI), AND Revised SWPPP to	
comply with the requirements of new	
Statewide Industrial General Permit	
(SOIL & WATER-3)	Exhibit 6
7. Biological Record Summaries (BIO-2)	Exhibit 7

Introduction

This document constitutes PG&E's Annual Compliance Report (ACR) for the Gateway Generating Station (GGS) Project. The information contained in this report covers the reporting period of January 2024 to December 2024 (RY 2024).

Compliance Activities

This section of the Annual Compliance Report focuses on PG&E's activities related to ensuring that compliance with all the Conditions of Certification, as specified in the California Energy Commission's Final Decision for the Gateway Generating Station Project, are achieved in a timely and satisfactory manner. The following information is provided per the requirements set forth on page 179 and 180 of the Final Decision, specifically General Conditions on Annual Compliance Report.

- Updated Compliance Matrix The compliance matrix has been updated for the reporting period to reflect the status of all conditions of certification. See matrix in Exhibit 1.
- 2. Current Project Operating Status The PG&E Gateway Generating Station (GGS) achieved Plant Commercial Operation status on January 4, 2009. During the reporting period of January 2024 to December 2024, the GGS continued its normal commercial operation activities. The Project key events list is included in Exhibit 2.
- Required Documents Submitted with This Report The Final Decision sets forth specific conditions, many of which include reporting requirements that must be addressed in the project's ACR. The following paragraphs provide the status of ongoing compliance activities that were completed during the reporting period:
 - 3.1 <u>SOIL&WATER-10</u> GGS utilized potable water, supplied by the City of Antioch. The Water Use Summary for RY 2023 is included in this report as **Exhibit 3**. Also included in **Exhibit 3** is monthly water consumption invoices information from the City of Antioch. The total water use for the reporting period is 63.83 AF (acre-feet). The metering devices are owned, and maintained by the City of Antioch,

- hence GGS is not allowed to do servicing, testing, and calibration of the metering devices.
- 3.2 VIS-1 The maintenance works on treatment of structures, buildings, and tanks at Gateway Generating Station (GGS) were performed on regular basis expeditiously. There are at least 3 separate routine plant inspections, which include among other items, the identification of treatment re-works on structures, buildings, and tanks. These are: (1) Semi-annual (Spring and Fall) Facility-wide Inspection by Safety Committee, (2) Weekly Plant Engineer's Walk-down, and (3) Daily Plant Technician's Walk-down Inspection. In each of these inspections, maintenance work is identified (as may be needed), and a job request notification is submitted. At GGS, there is Work Management (SAP) System which tracks job requests to ensure that works are completed in a timely manner.
- 3.3 VIS-4 In compliance with the Condition of Certification VIS-4, GGS confirms that appropriate maintenance was performed to ensure continued establishment (of growth) of the planted trees and shrubs. A suitable drip irrigation system, equipped with automatic sprinkler timer, was installed and is in operation.
- 3.4 <u>SOIL&WATER-4</u> In compliance with Condition of Certification SOIL&WATER-4, attached in **Exhibit 4** are copies of Quarterly Self-Monitoring Reports submitted to and received by the Delta Diablo (DD) on April 11, 2024, July 11, 2024, October 15, 2024, and January 13, 2025, to cover the reporting year (RY) 2024.
- 3.5 <u>HAZ-1</u> In compliance with Condition of Certification HAZ-1, attached in **Exhibit 5** is Updated Table 8.12-4: Hazardous Materials to be Added at Gateway Generating Station During the Operational Phase (of the Project). Also, a copy of Annual Update of February

- 27, 2025, on Hazardous Materials Inventory as submitted to Local CUPA (Contra Costa Health Services) through the California Environmental Reporting System (CERS) is attached.
- 3.6 <u>SOIL & WATER-3</u> In compliance with Condition of Certification SOIL & WATER-3, a copy of the correspondence with the State Water Resources Control Board, through SMARTS (Stormwater Application & Report Tracking Systems) on the most current NOI and Revised SWPPP to comply with the requirements of the Industrial General Permit (WQ Order No. 2014-0057-DWQ) is submitted with this ACR. (See **Exhibit 6**.)
- 3.7 <u>BIO-2</u> In compliance with Condition of Certification BIO-2, the biology record summaries of the tasks described in BIO-2 is submitted with this ACR. (See **Exhibit 7**)
- 4. Cumulative Listing of All Post-Certification Changes Approved by the CEC The following is a cumulative listing of all post-certification changes as approved by the CEC or cleared by the CPM.
 - 4.1 ORDER Approving Addition, of Pacific Gas and Electric Company as

 Co-Owner and Operator with Mirant Delta, LLC on the Gateway

 Power Plant Unit 8 Project Approved on July 19, 2006.
 - 4.2 Removing Mirant Delta LLC As A Co-Owner, And Changing The

 Name Of The Project To The Gateway Generating Station –

 Approved on January 3, 2008
 - 4.3 Order to Change Construction Work Hours And Noise-8 for the Gateway Generating Station – Approved on May 23, 2007
 - 4.4 Order Amending the Energy Commission Decision to Eliminate the use of San Joaquin River Water as the Cooling Water Source and Complete Ten Associated project design Changes Approved on August 1, 2007

- 4.5 Order to Amend the Energy Commission Decision to Allow Use of Anhydrous Ammonia as the Refrigerant in the Inlet Air Chiller Approved on December 5, 2007.
- 4.6 Order Approving a Petition to Amend the Energy Commission

 Decision to Allow Use of Two Additional Water Tanks January 2,

 2008
- 4.7 <u>Petition for Insignificant Project Change -</u> On February 4, 2008, PG&E filed a request for an insignificant project change related to a modification to the route for the sewer line. The CEC approved PG&E's request on March 10, 2008.
- 4.8 Approval of the Pacific Gas & Electric Company Petition to use a diesel fire pump engine, and make other minor changes to Air Quality Conditions of Certification of the Energy Commission Decision for the Gateway Generating Station (Order Amending the CEC Decision to Modify Equipment & Change Air Quality Conditions of Certification) Approved August 26, 2009.
- 4.9 <u>Commission Adoption Order Adoption of the Proposed Decision of the Siting Committee on the Complaint for Noncompliance</u> Approved on February 17, 2010
- 4.10 <u>Notice of Approval to Modify Gateway Generating Station Project:</u>

 <u>Petition for Insignificant Project Change to Plant Facility</u> Approved on October 18, 2010
- 4.11 On May 27, 2010, the CEC (Mr. Joseph Douglas) approved AQ-SC-11 submittal on the Preliminary Compliance Review on the Authority to Construct Application for the Fire Pump Diesel Engine.
- 4.12 Order Approving a Petition to Modify Several Air Quality Conditions to reflect the Bay Area Management District current conditions and the Prevention of Significant Deterioration (PSD) Action, September 7, 2011.
- 4.13 <u>Notice of Decision by California Energy Commission</u> on: Amendment to Modify Several Air Quality Conditions to Reflect the (BAAQMD)

- current conditions and the Prevention of Significant Deterioration (PSD) Enforcement Actions, dated and posted: September 9, 2011.
- 4.14 <u>Storage of One Spare Generator Step-Up (GSU) Transformer,</u> January 26, 2012
- 4.15 Notice of Determination on Petition to Install additional 40,000-gallon Storage Tank, April 3, 2012
- 4.16 Approval of Project Change: to Install additional 40,000-gallon Storage Tank, April 19, 2012
- 4.17 Approval of Petition for Insignificant Project Change to Plant Facility:

 (a) to acquire the 29% aqueous ammonia system (from NRG, Inc.,

 (b) to install a new stainless steel above-ground aqueous ammonia delivery piping system, and (c) to build security fence around the aqueous ammonia system and remainder of the west side of facility property. Staff-level approval: April 9, 2013. A request to modify this petition to include installation of 2 gate structures (one for GGS and the other for NRG, Inc., was sent to CEC on October 23, 2013. The modification was approved on October 23, 2013. A second modification to install only one gate structure for GGS was sent to CEC on November 13, 2014. The second modification was approved on November 13, 2014.
- 4.18 Approval of proposed stormwater BMP: Construction Work to Cover the Asphalt Drainage Ditch: The request was submitted to CEC on October 14, 2013. The request was approved on October 14, 2013.
- 4.19 <u>Approval of proposed construction of additional turbine decking</u>: The request was submitted on May 23, 2014. The request was approved on September 15, 2014.
- 4.20 <u>Approval of proposed access stairs upgrades at three separate switchgear rooms</u>: The request was submitted on August 11, 2014. The request was approved on October 2, 2014.
- 4.21 Approval of proposed installation of fixed hydrogen tube bank at the south side of the facility: The request was submitted on December 5, 2014. The request was approved on March 19, 2015

- 4.22 Approval of proposed construction of additional grating-type decking on the east side of the steam turbine: The request was submitted on May 21, 2015. The request was approved on August 14, 2015.
- 4.23 <u>Approval of proposed construction of a temporary stormwater treatment system</u>. The request was submitted on August 26, 2016. The request was approved on December 22, 2016.
- 4.24 Response to a project change questionnaire for work to be conducted by PG&E Gas Department on natural gas pipelines located within the site parcel boundaries of Gateway Generating Station, RE: Removal and Replacement of Underground Natural Gas Pipelines at Gateway Generating Station. The questionnaire was submitted to CEC on January 24, 2019. The CEC responded on March 15, 2019. The CEC determined that the approval by the CEC is not required. However, the trees that would be impacted by the pipeline work would have to be replanted when the work is completed. This is to comply with the Condition of Certification VIS-4.
- 4.25 Approval of Title IV Acid Rain Permit Renewal -The Bay Area Air Quality Management District (BAAQMD) approved the Title IV Acid Rain permit renewal on September 3, 2020. A copy of this permit was submitted to the CEC CPM on September 7, 2020.
- 4.26 Approval of Title V Major Facility Review Permit Renewal The Bay Area Air Quality Management District (BAAQMD) approved the Title V Major Facility Review permit renewal on September 3, 2020. A copy of this permit was submitted to the CEC CPM on September 7, 2020.
- Missed Submittal Deadline: None
- 6. **Filings Submitted to / Permits Issued by Other Government. Agencies During the Reporting Period** The following is a list of filings submitted to, or permits issued by other government agencies during the reporting period:
 - 6.1. January 11, 2024 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: October 2023 to December 2023

- 6.2. January 11, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for December 2023
- 6.3. January 11, 2024 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q4-2023 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.4. January 11, 2024 The Priority Pollutant Exemption Form with Certification Statement was submitted to DD.
- 6.5. January 16, 2024 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on December 16, 2023, in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.6. January 18, 2024 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2023 (Part 75 Compliance)
- 6.7. January 30, 2024 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q4-2023 was submitted to CEC/BAAQMD
- 6.8. February 6, 2024 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on December 29, 2023, in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.9. February 6, 2024 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on January 16, 2024, in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.10. February 6, 2024 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS

- submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on January 13, 2024, in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.11. February 26, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for January 2024
- 6.12. February 27, 2024 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Annual Update for 2024, through the California Environmental Reporting System (CERS)
- 6.13. March 12, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for February 2024
- 6.14. March 12, 2024 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Notification on Visual Emission Evaluation for the earliest anticipated re-start date of March 26, 2024.
- 6.15. March 13, 2024 (Condition of Certification AQ-29, AQ-30, AQ-31, AQ-32) GGS submitted to BAAQMD/CEC the annual 2024 Source Test Report and Relative Accuracy Test Audit & Compliance Test Report. The tests were completed January 22-26, 2024.
- 6.16. March 27, 2024 (General Condition of Certification, pages 179-180): GGS submitted/docketed the Annual Compliance Report for RY 2023
- 6.17. April 4, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for March 2024
- 6.18. April 4, 2024 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Report on Visual Emission Evaluation for the restart dates of March 28, 2024, and March 30, 2024.
- 6.19. April 10, 2024 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q1-2024 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)

- 6.20. April 11, 2024 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: January 2024 to March 2024
- 6.21. April 19, 2024 GGS submitted to BAAQMD/CEC the Semi-annual Monitoring report for the period October 1, 2023, to March 31, 2024. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit
- 6.22. April 25, 2024 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q1 2024 was submitted to CEC/BAAQMD
- 6.23. April 25, 2024 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q1-2024 (Part 75 Compliance)
- 6.24. May 15, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for April 2024
- 6.25. May 15, 2024 GGS submitted to BAAQMD the Permit to Operate (PTO) Renewal Data update for 2024-2025 permit cycle
- 6.26. June 15, 2024 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.27. June 18, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for May 2024
- 6.28. July 2, 2024 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, the 2023-2024 Annual Report was submitted to Central Valley Regional Water Quality Control Board (through SMARTS)
- 6.29. July 11, 2024 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: April 2024 to June 2024

- 6.30. July 11, 2024 GGS received the renewal on the Permit to Operate (PTO) from BAAQMD. The PTO expires on August 1, 2025.
- 6.31. July 12, 2024 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q2-2024 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.32. July 15, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for June 2024
- 6.33. July 15, 2024- (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q2 2024 was submitted to CEC/BAAQMD
- 6.34. July 16, 2024 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q2-2024 (Part 75 Compliance)
- 6.35. August 9, 2024 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Interim Update August 9, 2024, through the California Environmental Reporting System (CERS)
- 6.36. August 20, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for July 2024
- 6.37. September 9, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for August 2024
- 6.38. September 18, 2024 GGS submitted to BAAQMD/EPA, and copied CEC, on the Annual Compliance Certification for the reporting period of September 1, 2023, to August 31, 2024 as required under permit condition I.G of the Major Facility Review (Title V) permit.
- 6.39. October 2, 2024 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Interim Update October 2, 2024, through the California Environmental Reporting System (CERS)

- 6.40. October 15, 2024 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: July 2024 to September 2024
- 6.41. October 16, 2024 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q3-2024 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.42. October 17, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for September 2024
- 6.43. October 18, 2024 GGS submitted to BAAQMD/CEC the Semiannual Monitoring report for the period April 1, 2024 to September 30, 2024. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit
- 6.44. October 23, 2024 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q3-2024 (Part 75 Compliance)
- 6.45. October 29, 2024 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q3 2024 was submitted to CEC/BAAQMD
- 6.46. November 21, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for October 2024
- 6.47. December 11, 2024 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.48. December 12, 2024 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for November 2024
- 6.49. December 30, 2024 (Conditions of Certification AQ-31) GGS submitted to BAAQMD and CEC the 2025 Annual RATA and Source

- Test Protocol for the proposed dates of January 13-17, 2025
- 6.50. December 31, 2024 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on November 24, 2024, in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 7. Projected Compliance Activities for Next Year (RY January 1, 2025 December 31, 2025) The following is a list of compliance activities/documents that PG&E anticipates for the January 1, 2025 to December 31, 2025 reporting period:
 - 7.1 (Condition of Certification AQ-14) Quarterly Air Compliance Reports will be submitted within 30 days after the reporting period
 - 7.2 (Condition of Certification AQ-33) Monthly CEMS Reports will be submitted to BAAQMD within 30 days after the reporting period
 - 7.3 (Air Quality Compliance) PG&E anticipates the issuance of Permit to Operate (PTO Annual Renewal) in July 2025
 - 7.4 Quarterly Air Quality EDR reports to EPA due on January 30, 2025, April 30, 2025, July 30, 2025, and October 30, 2025
 - 7.5 Quarterly Self-Monitoring Reports to DD due on January 15, 2025, April 15, 2025, July 15, 2025, and October 15, 2025
 - 7.6 Quarterly Industrial Flow Data Report to DD due January 15, 2025, April 15, 2025, July 15, 2025, and October 15, 2025
 - 7.7 Annual HMBP update due to CCHS on March 1, 2025
 - 7.8 2024-2025 Annual Report to comply with General Permit for Storm Water Associated with Industrial Activity, due to Central Valley Regional Water Quality Control Board on July 15, 2025
 - 7.9 Sampling results of all qualified storm events due to Central Valley Regional Water Quality Control Board within 30 days of receiving analytical results from laboratory.
 - 7.10 (Conditions of Certification AQ-30 and AQ-31) To submit to

- BAAQMD and CEC the Annual Source Test and RATA Plan for 2026
- 7.11 (Conditions of Certification AQ-29, AQ-30, AQ-31, and AQ-32) To submit to BAAQMD and CEC Source Test Report and 2025 Relative Accuracy Test Audit & Compliance Test Report within 60 days of test date.
- 7.12 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on January 30, 2025, April 30, 2025, July 30, 2025, and October 30, 2025
- 7.13 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the CO Projected Exceedance Date (on semi-annual basis). This is incompliance with the requirement of Paragraph 11 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on June 15, 2025, and December 15, 2025.
- 7.14 To submit to BAAQMD/EPA Annual and Semi-annual Title V reports. These reports are due on September 30, 2025, April 30, 2025, and October 30, 2025, respectively.
- 7.15 (Conditions of Certification General Conditions) CEC Annual Compliance Report for RY2024 due March 30, 2025, as prearranged with the CPM
- 8. **Listing of the Year's Addition to Compliance File** During the reporting period, the following compliance submittals were submitted to the CEC CPM and other regulatory agencies as required for review and approval.

Date	То	Condition	Subject	
1/11/2024	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: Oct 2023 to Dec 2024	
1/11/2024	BAAQMD	AQ-33	Monthly CEMS Report for December 2024	
1/11/2024	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q4-2023	
1/11/2024	DD	SOILS&WATER- 4	Priority Pollutant Exemption Form/Certification Statement submitted	
1/16/2024	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Dec 16, 2023	
1/18/2024	EPA	Part 75	EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2023	
1/30/2024	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q4-2023	
2/6/2024	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Dec 29, 2023	
2/6/2024	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Jan 13, 2024	
2/6/2024	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Jan 16, 2024	
2/13/2024	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Source Test Report and 2024 Relative Accuracy Test Audit an Compliance Test Report; the tests were completed January 22-26, 2024	
2/26/2024	BAAQMD	AQ-33	Monthly CEMS Report for January 2024	
2/27/2024	CCHS/CERS		Hazardous Materials Business Plan Annual Update for 2024	

Date	То	Condition	Subject	
3/12/2024	BAAQMD	AQ-33	Monthly CEMS Report for February 2024	
3/12/2024	CEC/BAAQMD	AQ-SC13	Notification on Visual Emission Evaluation (VEE) for Mar 26, 2024 Restart	
3/27/2024	CEC	GEN (pp.179- 180)	Annual Compliance Report #14 RY 2023	
4/11/2024	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: January 2024 to March 2024	
4/4/2024	BAAQMD	AQ-33	Monthly CEMS Report for March 2024	
4/4/2024	CEC/BAAQMD	AQ-SC13	Report on Visual Emission Evaluation (VEE) for Mar 28, 2024, and Mar 30, 2024 Restart	
4/10/2024	US EPA IX/	Concept	Quarterly Evenes Emission	
4/10/2024	CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q1-2024	
4/19/2024	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Oct 1, 2023, to Mar 31, 2024	
4/25/2024	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q1 2024	
4/25/2024	EPA	Part 75	EPA ECMPS (EDR) for Q1-2024	
5/15/2024	BAAQMD	AQ-33	Monthly CEMS Report for April 2024	
5/15/2023	BAAQMD	PTO	PTO Renewal Data Update for 2024-2025 Permit cycle	
6/15/2024	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date	

Date	То	Condition	Subject		
6/18/2024	BAAQMD	AQ-33	Monthly CEMS Report for May 2024		
7/2/2024	CVRWQCB- SMARTS	IGP	Storm Water Annual Report for 2023-2024		
7/11/2024	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: April 2024 to June 2024		
7/12/2024	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q2-2024		
7/15/2023	BAAQMD	AQ-33	Monthly CEMS Report for June 2024		
7/15/2024	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q2 2024		
7/16/2024	EPA	Part 75	EPA ECMPS EDR for Q2-2024		
8/9/2024	CCHS/CERS		Hazardous Materials Business Plan Interim Update Aug 9, 2024		
8/20/2024	BAAQMD	AQ-33	Monthly CEMS Report for July 2024		
9/9/2024	BAAQMD	AQ-33	Monthly CEMS Report for August 2024		
9/18/2024	BAAQMD/EPA /CEC	Title V	Annual Compliance Certification (Sep 1, 2023- Aug 31, 2024)		
10/2/2024	CCHS/CERS		Hazardous Materials Business Plan Interim Update Oct 2, 2024		
10/15/2024	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: July 2024 to September 2024		
10/16/2024	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q3-2024		
10/17/2024	BAAQMD	AQ-33	Monthly CEMS Report for September 2024		
10/18/2024	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Apr 1, 2024 to Sep 30, 2024		

Date	То	Condition	Subject
10/23/2024	EPA	Part 75	EPA ECMPS EDR for Q3-2024
10/29/2024	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q3 2024
11/21/2024	BAAQMD	AQ-33	Monthly CEMS Report for October 2024
12/11/2024	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date
12/12/2024	BAAQMD	AQ-33	Monthly CEMS Report for November 2024
12/30/2024	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Notification on 2024 Source Test and Relative Accuracy Test Audit for Jan 13-17, 2025
12/31/2024	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Nov 24, 2024

9. **Evaluation of On-site Contingency Plan** – The On-site Contingency Plan for Unexpected Facility Closure (previously submitted to CEC 12/30/2008) has been evaluated. PG&E determined that the plan is adequate and does not need revision. PG&E, however, will continue to evaluate the plan and make necessary revisions as may be needed. A copy of the revision will be submitted to CEC promptly.

10. Listing of Complaints, NOVs, Citations Received – None

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 16

Exhibit 1 Updated Compliance Matrix

Color Code Legend	Code Legend	
-------------------	-------------	--

|--|

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-13	3_OPS	CTs and HRSGs shall be fired on gas with a maximum sulfur content of no greater than 1 grain per 100 standard cubic feet.	Conduct monthly sulfur analysis and incorporate results into QAQR.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-14	3_OPS	Combined heat input rate to each power train shall not exceed 2,227 MM BTU per hour over any rolling 3 hour period.	Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-15	3_OPS	Combined heat input rate to each power train shall not exceed 49,950 MM BTU per calendar day.	Demonstrate compliance in QAQR due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-16	3_OPS	Combined cumulative heat input rate for the CTs and HRSG shall not exceed 34,900,000 MM BTU per year.	Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-17	3_OPS	HRSG duct burners shall not be fired without CT in operation.	Include info on date, time, an duration of any violation in Quarterly Air Quality Reports (due January 30, April 30, July 30, and October 30)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-18	3_OPS	CT 1 and HRSG 1 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-19	3_OPS	CT 2 and HRSG 2 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-20	3_OPS	CTs and HRSGs to comply with requirements as listed in the Condition under all operating scenarios, including duct burner firing mode and steam injection power aug mode. Requirements do not apply to CT start-up or shut down. (BACT, PSD)	Provide info listed in Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-21	3_OPS	Regulated air pollutant mass emission rates shall not exceed limits shown in the Condition. (PSD)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-22	3_OPS	CTs shall not run in startup mode simultaneously (PSD).	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-23	3_OPS	Total combined emissions from CTs and HRSG shall not exceed limits specified in Condition during any calendar day.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 (of each year) Public	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	

Color Code Legend

Construction Phase Condition	Commissioning Phase Condition	Operations Phase Condition	Submitted	Submitted / Approved / Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-24	3_OPS	Cumulative combined emissions shall not exceed limits specified in Condition during any consecutive 12 month period.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-25	3_OPS	Maximum projected annual toxic air contaminant emissions from CTs and HRSGs shall not exceed limits specified in Condition.	Owner shall perform a health risk assessment using emission rates determined by source test and most current BAAQMD approved procedures and unit risk factors in effect at the time of the analysis.	Within 60 days of source test date	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-26	3_OPS	Demonstrate compliance with Conditions AQ-14 through 17, 20(a) through 20 (d), 21, 23 (a), 24(a), and 24(b) with CEMs during all hours of operation including equipment startup and shutdowns for all parameters listed in Condition.	Detailed plan on how the measurements and recordings will be performed. CEMS Monitoring Plan	At least 60 days prior to initial operation	8/21/2008			Record keeping to demonstrate compliance is ongoing.
AQ-27	3_OPS	Calculate and record daily the POC, PM10, and SO2 from each power train using actual heat input rates calculated per AQ-26, actual CT startup and shutdown times, and CEC/BAAQMD approved emission factors to calculate emissions. (See additional reporting requirements listed in Condition.)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-28	3_OPS	Calculate and record on an annual basis the maximum projected emissions of formaldehyde, benzene, and specified PAHs.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-30	3_OPS	Conduct District approved source test on exhaust points while CTs and HRSGs are operating at max. load and min. load to demonstrate compliance with AQ-20, and to verify accuracy of CEMS (per Condition AQ-26).	Submit Source Test Protocols /Conduct Source Test 60 days of initial operation and annually thereafter		Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			
AQ-31a	3_OPS	Obtain approval for all source test procedures from BAAQMD Source Test Section and CPM prior to conducting tests.	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates.	At least 7 days prior to source test dates	Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			
AQ-31b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/11/2021			
AQ-32a	3_OPS	Conduct source test on exhaust point P-11 or P-12 while CT and HRSGs are operating at maximum allowable operating rates to demonstrate compliance with AQ-25 (see Condition for more details).	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates. Conduct Source test 60 days of initial operation and biennial thereafter	At least 7 days prior to source test dates	Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			

Color Code Legend

Construction Phase Commis Condition Phase C	5	Submitted	Submitted / Approved / Completed
---	---	-----------	-------------------------------------

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-32b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/11/2021			
AQ-33	3_OPS	required by District Rules or Regulations	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-34	3_OPS	Maintain ongoing records and reports on site for a minimum of 5 years (to include but not limited to: CEMS records (firing hours, fuel flows, emission rates, monitor excesses, breakdowns, etc.). Source and analytical records, natural gas sulfur content analysis results, emission calculation record, plant upsets and related incidents.)	Make records available to BAAQMD, ARB, EPA, and CEC.	Ongoing	N/A		On-going (Records are maintained)	
AQ-35	3_OPS	,,	Submit written notification to Enforcement Division within 96 hours of the violation.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	event occurred on 10/19/16
AQ-44	3_OPS	Take monthly gas samples.		Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-45b	3_OPS	WSAC shall be properly installed/maintained to minimize drift losses	Sample the water once in July, August and September each year while WSAC is in operation and submit results in QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-46b	3_OPS	Have WSAC field rep inspect drift eliminators and certify installation was performed satisfactorily. Verify that PM10 emissions do not exceed 4.7 lbs/day based on most recent TDS (see formula in condition).	Report calculated PM10 emissions from WSAC in QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-47	3_OPS	Fuel gas preheater shall not be operated more than 16 hours in any day.	Submit verification of hours of operation as part of QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AM-1	3_OPS	Conduct Source Test to determine ammonia emission concentration	Submit the results of Source Test with in 60 days of completion	Annually (recurring)	3/11/2021			
BIO-02	3_OPS	Designated Biologist to submit record summaries in the Annual Compliance Report	Provide statement in the Annual Compliance Report whether any actions that affected biological resources occurred on site for the reporting year.	Annually in ACR	3/24/2020		Submitted with this Annual Compliance Report (ACR)	

Color Code Legend

Construction Phase	Commissioning	Operations Phase	Submitted	Submitted / Approved /
Condition	Phase Condition	Condition		Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
BIO-09	3_OPS	Incorporate a Biological Resource Element that includes biological resource facility closure measures into the facility closure plan and BRMIMP.	at least 12 months prior to commencement of permanent closure activities.	at least 12 months prior to facility closure or earlier if needed				Not needed yet
GEN	3_OPS	Annual Compliance Report (ACR)	Submit Annual Compliance Report (ACR): March 31st of the following calendar year	Annually (recurring)	3/24/2020		Submitted w/ this report	
GEN-09	3_OPS	Submit closure/decommissioning plan	Submit closure/decommissioning plan. Meet with CPM prior to submittal.	12 months prior to closing				Not needed yet
HAZ-01	3_OPS	Do not use any hazardous material not listed in Appendix C of the Final Decision.	Provide list of all hazardous materials used at site in the Annual Compliance Report	Annually in ACR	3/24/2020		Submitted w/ this report (see Exhibit 5)	
PAL-07	3_OPS	Include in facility closure plan a description regarding facility closure activity's potential to impact paleontological resources.	Include description of closure activities.	12 months prior to closure of the facility.				Not needed yet
SOILS & WATER- 03	3_OPS	Keep the CPM informed of any modification to the permit, Stormwater Industrial General Permit (IGP).	Submit to CPM: any modification of IGP, submit copy of correspondence with the County on MS4 permit and CVRWQCB, maintain in SWPPP a copy of NOI.	during operation	3/24/2020			NOI and revised SWPPP was submitted to Waterboard through SMARTS copied on this report
SOILS & WATER-4	3_OPS	During operation, any monitoring reports provided to DD shall be provided to the CPM. The CPM shall be notified of any violations of discharge limits/amounts	Submit any water quality monitoring required by DD to the CPM in annual compliance report. Submit any NOV from DD to the CPM within 10 days of receipt explaining corrective actions taken.	Annually	3/24/2020		Submitted w/ this report	
SOILS & WATER-10b	3_OPS	Submit a water use summary to the CPM in the annual compliance report. Also report on the servicing, testing, and calibration of the meters in the ACR.	Provide information in annual compliance report.	Annually in ACR	3/24/2020		Submitted with ACR: Water use for RY 2016 = 63.6 AF	

Public

Color Co	ode Legend	
Commissioning	Operations Phase	Submitted / Approved

Condition

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
TLSN-03	3_OPS		Submit reports of line-related interferences and action taken to CPM for the first five year of operation.	Annually in ACR (for 2009-2013)	No longer required starting in RY 2014			
VIS-04c	3_OPS		Verify in the annual compliance report that maintenance has been performed	Annually in ACR	3/24/2020		Submitted with ACR: appropriate maintenance was performed in RY 2016	

Condition

Phase Condition

Key Dates:

F: (F:	11110000	10T A 44/04/00 OT D 44/04/00)
First Fire	11/1/2008	(CT-A = 11/01/08, CT-B = 11/04/08)
Perf. Tests (Target)	12/6/2008	
Source Test (Started)	1/4/2009	Unit A:1/4/2009, Unit B: 01/06/2009
Source Test (Completed)	1/14/2009	For Both Units
COD (Target)	2/5/2009	
COD (Actual)	1/4/2009	
COD (Guaranteed)	2/28/2009	
Aq. Ammonia on Site	12/4/2008	
Steam Blow	11/4/2008	
Install Catalyst (SCR/CO)	11/24/2008	(SCR Catalyst = 11/24/08)
Q4 2009 Report	1/30/2010	
Sulfuric Acid on Site	3/1/2009	Planned: March 2009
First Lube	7/14/2008	
Noise Survey(Completed)	1/21/2009	Both Community and in-plant surveys
Sustained output	1/4/2009	
Connection Potable Water	3/17/2008	
Pre-energy E/MF	5/19/2008	
		(W/in 6 mos of start of operation = first synchronization to
Post-energy E/MF	5/9/2009	grid)
First Synchronization	11/10/2008	(First Synchronization to grid: CT-A : 11/11/08, CT-B :
		11/10/08)
Start of operation	1/4/2009	
Annual Compliance Report	3/30/2024	RY 2023 ACR

Gateway Generating Station (03-AFC-01)

Annual Compliance Report No. 16

Exhibit 2
Key Events List

KEY EVENTS LIST

PROJECT: GATEWAY GENERATING STATION

DOCKET#: 00-AFC-1C

EVENT DESCRIPTION

DATE

Date of Certification	05-30-01
POWER PLANT SITE ACTIVITIES	
Start Site Pre-Mobilization	01-08-07
Start Ground Disturbance	02-02-07
Start Grading	03-12-07
Start Construction	02-05-07
Begin Pouring Major Foundation Concrete	04-09-07
Begin Installation of Major Equipment	02-12-07
Completion of Installation of Major Equipment	10-16-08
First Combustion of Gas Turbine	10-25-08
Start Commercial Operation	12-31-08
Acquisition of second ammonia tank, tank farm facility, and associated property	December 2013
Regulated Substances Deregistration of Anhydrous Ammonia	05/23/2016
Granted exemption to forego sampling of 126 priority pollutants per 40CFR423.17(a)(4)(ii)	7/23/2019
Renewal of Title IV and Title V Permits was approved	09/03/2020
SWITCHYARD & TRANSMISSION TIE-IN ACTIVITIES	
Start Switchyard Construction	10-01-07
Switchyard & Tie-in Complete	04-30-08
Synchronization with Grid and Interconnection	12-01-08
FUEL SUPPLY LINE ACTIVITIES	
Started Gas Pipeline Construction and Interconnection	07-13-07
Completed Gas Pipeline Construction	07-01-08
·	

Gateway Generating Station (03-AFC-01)

Annual Compliance Report No. 16

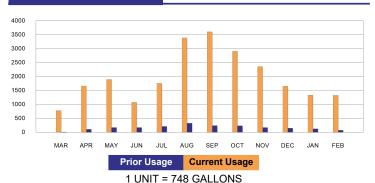
Exhibit 3 Water Use Summary and City of Antioch Invoices

(To comply with CEC Condition of Certification: SOIL & WATER-10)

PG&E Gateway Generating Station Water Use Summary Reporting Period: Jan 2024 - Dec 2024

Date	Water Consumption				
Buto	(gals.)	(cu. feet)	(acre-feet)		
Jan-24	1,042,720	139,391.39	3.20		
Feb-24	320,656	42,865.47	0.98		
Mar-24	976,080	130,482.92	3.00		
Apr-24	2,148,944	287,272.03	6.59		
May-24	1,313,200	175,549.31	4.03		
Jun-24	3,197,152	427,397.06	9.81		
Jul-24	2,133,264	285,175.92	6.55		
Aug-24	2,714,208	362,836.83	8.33		
Sep-24	2,759,680	368,915.56	8.47		
Oct-24	2,021,152	270,188.72	6.20		
Nov-24	961,184	128,491.61	2.95		
Dec-24	1,211,280	161,924.58	3.72		
Annual Total:	20,799,520.00	2,780,491.39	63.83		

Public


Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	Previous	<u>Current</u>	Consumption
31682	WATER	139996	141326	1330

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 01/01/24 TO 02/01/24
BILLING DATE: 02/05/24

CURRENT CHARGES

WATER		\$6,051.50
USAGE TIER 1 = 1330 Units @ 4.55 / UNIT	\$6,051.50	
2 " WATER MAINT FEE		\$165.00
SEWER		\$1,746.90
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$8,023.66
TOTAL PAYMENTS (LAST PAYMENT 01/30/2024)	(\$8,424.85)
TOTAL PENALTIES	\$401.19
CURRENT CHARGES DUE 02/26/2024	\$7,988.50
TOTAL BALANCE	\$7,988.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 01/01/24 TO 02/01/24 02/05/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

 PAST DUE BALANCE
 \$0.00

 CURRENT CHARGES DUE 02/26/2024
 \$7,988.50

 TOTAL BALANCE
 \$7,988.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՍԱլՍԱվույթիթելիլիսիսՍիիրելիկորվելիիլ

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

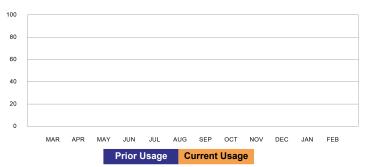
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 01/01/24 TO 02/01/24
BILLING DATE: 02/05/24

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 01/30/2024)	(\$81.38)
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 02/26/2024	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD:

BILLING DATE:

004-01512-01 3225 Wilbur Ave 01/01/24 TO 02/01/24 02/05/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 02/26/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վուլուլուիավարհիվ Որդանույին հանդիրակին ին

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

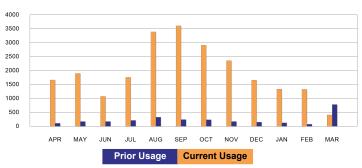
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	141326	141326	0
31682H	WATER	0	409	409
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 02/01/24 TO 03/01/24
BILLING DATE: 03/06/24

CURRENT CHARGES

WATER		\$1,860.95
USAGE TIER 1 = 409 Units @ 4.55 / UNIT	\$1,860.95	
2 " WATER MAINT FEE		\$165.00
SEWER		\$540.39
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$7,988.50
TOTAL PAYMENTS	\$0.00
TOTAL PENALTIES	\$399.44
CURRENT CHARGES DUE 03/27/2024	\$2,591.44
TOTAL BALANCE	\$10,979.38

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 02/01/24 TO 03/01/24 03/06/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$8,387.94

CURRENT CHARGES DUE 03/27/2024 \$2,591.44

TOTAL BALANCE \$10,979.38

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վՈլՈՈւիՈւկությանը հինկիրիանի Որիանի իրագինի ինկի

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 02/01/24 TO 03/01/24
BILLING DATE: 03/06/24

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS	\$0.00
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 03/27/2024	\$77.50
TOTAL BALANCE	\$158.88

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 02/01/24 TO 03/01/24 03/06/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$81.38
CURRENT CHARGES DUE 03/27/2024 \$77.50
TOTAL BALANCE \$158.88

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՄԱիՄեիույթիրել||լիսիոՄ||իլեզՈրդրիել||կլ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

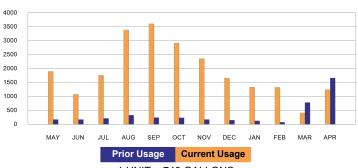
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	Previous	<u>Current</u>	Consumption
31682H	WATER	409	1654	1245
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 03/01/24 TO 04/01/24
BILLING DATE: 04/04/24

CURRENT CHARGES

WATER		\$5,664.75
USAGE TIER 1 = 1245 Units @ 4.55 / UNIT	\$5,664.75	
2 " WATER MAINT FEE		\$165.00
SEWER		\$1,635.55
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$10,979.38
TOTAL PAYMENTS (LAST PAYMENT 03/27/2024)	(\$10,579.94)
TOTAL ADJUSTMENTS	(\$399.44)
CURRENT CHARGES DUE 04/25/2024	\$7,490.40
TOTAL BALANCE	\$7,490.40

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 03/01/24 TO 04/01/24 04/04/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 04/25/2024 \$7,490.40
TOTAL BALANCE \$7,490.40

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վուլույալուվակին անհիւթինին հերային ին հերև հերև ին հերև ին հերև ին հերև հերև ին հերև հերև հերև հերև հերև հերև

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 03/01/24 TO 04/01/24
BILLING DATE: 04/04/24

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$158.88
TOTAL PAYMENTS (LAST PAYMENT 03/27/2024)	(\$155.00)
TOTAL ADJUSTMENTS	(\$3.88)
CURRENT CHARGES DUE 04/25/2024	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 03/01/24 TO 04/01/24 04/04/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 04/25/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորություրդ արևակիլությունի անդարի անկիլի և

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

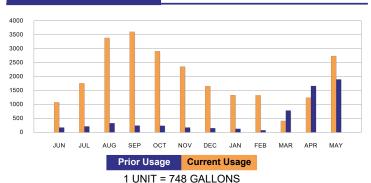
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	<u>Previous</u>	Current	Consumption
31682H	WATER	1654	4395	2741
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 04/01/24 TO 05/01/24
BILLING DATE: 05/06/24

CURRENT CHARGES

WATER		\$12,471.55
USAGE TIER 1 = 2741 Units @ 4.55 / UNIT	\$12,471.55	
2 " WATER MAINT FEE		\$165.00
SEWER		\$3,595.31
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$7,490.40
TOTAL PAYMENTS (LAST PAYMENT 04/25/2024)	(\$7,490.40)
CURRENT CHARGES DUE 05/27/2024	\$16,256.96
TOTAL BALANCE	\$16.256.96

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 04/01/24 TO 05/01/24 05/06/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 05/27/2024 \$16,256.96
TOTAL BALANCE \$16,256.96

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՄԱիՄեիույթիրել||լիսիոՄ||իլեզՈրդրիել||կլ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 04/01/24 TO 05/01/24
BILLING DATE: 05/06/24

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 04/25/2024)	(\$77.50)
CURRENT CHARGES DUE 05/27/2024	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 04/01/24 TO 05/01/24 05/06/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 05/27/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վուրադարությունին արավիրությունին

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

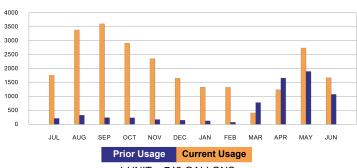
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682H	WATER	4395	6070	1675
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 05/01/24 TO 06/01/24
BILLING DATE: 06/03/24

CURRENT CHARGES

WATER		\$7,621.25
USAGE TIER 1 = 1675 Units @ 4.55 / UNIT	\$7,621.25	
2 " WATER MAINT FEE		\$165.00
SEWER		\$2,198.85
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE \$16,256.96

TOTAL PAYMENTS (LAST PAYMENT 05/13/2024) (\$16,256.96)

CURRENT CHARGES DUE 06/24/2024 \$10,010.20

TOTAL BALANCE \$10,010.20

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 05/01/24 TO 06/01/24 06/03/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 06/24/2024 \$10,010.20
TOTAL BALANCE \$10,010.20

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վուլույալուվակին անհիւթինին հերային ին հերև հերև ին հերև ին հերև ին հերև հերև ին հերև հերև հերև հերև հերև հերև

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 05/01/24 TO 06/01/24
BILLING DATE: 06/03/24

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 05/13/2024)	(\$77.50)
CURRENT CHARGES DUE 06/24/2024	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 05/01/24 TO 06/01/24 06/03/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 06/24/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վուլույուլույիույիիորդիիորորիիորդիորդի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

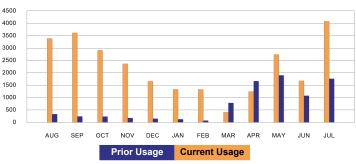
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682H	WATER	6070	10148	4078
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 06/01/24 TO 07/01/24
BILLING DATE: 07/08/24

CURRENT CHARGES

WATER		\$18,554.90
USAGE TIER 1 = 4078 Units @ 4.55 / UNIT	\$18,554.90	
2 " WATER MAINT FEE		\$165.00
SEWER		\$5,795.71
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$10,010.20
TOTAL PAYMENTS (LAST PAYMENT 06/11/2024)	(\$10,010.20)
CURRENT CHARGES DUE 07/23/2024	\$24,540.71
TOTAL BALANCE	\$24.540.71

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 06/01/24 TO 07/01/24 07/08/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 07/23/2024 \$24,540.71
TOTAL BALANCE \$24,540.71

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՍԱլՍԱվույթիրել||լիսիսՍ|||լոել||գորիել||կլ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

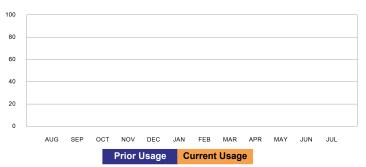
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 06/01/24 TO 07/01/24
BILLING DATE: 07/08/24

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 06/11/2024)	(\$77.50)
CURRENT CHARGES DUE 07/23/2024	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 06/01/24 TO 07/01/24 07/08/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 07/23/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՍԱլՍԱվույթիրել||լիսիսՍ|||լոել||գորիել||կլ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

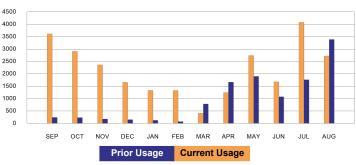
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	Previous	<u>Current</u>	Consumption
31682H	WATER	10148	12869	2721
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 07/01/24 TO 08/01/24
BILLING DATE: 08/05/24

CURRENT CHARGES

WATER		\$12,380.55
USAGE TIER 1 = 2721 Units @ 4.55 / UNIT	\$12,380.55	
2 " WATER MAINT FEE		\$165.00
SEWER		\$3,868.77
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$24,540.71
TOTAL PAYMENTS (LAST PAYMENT 07/26/2024)	(\$24,540.71)
TOTAL PENALTIES	\$1,227.05
CURRENT CHARGES DUE 08/20/2024	\$16,439.42
TOTAL BALANCE	\$17,666.47

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS:

SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 07/01/24 TO 08/01/24 08/05/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$1,227.05
CURRENT CHARGES DUE 08/20/2024 \$16,439.42
TOTAL BALANCE \$17,666.47

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՄԱԿԱԿ-ույլոից ԱլՄեսիո ԱլՄբեց Արգրի հիլՄկ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 07/01/24 TO 08/01/24
BILLING DATE: 08/05/24

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 07/26/2024)	(\$77.50)
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 08/20/2024	\$77.50
TOTAL BALANCE	\$81.38

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 07/01/24 TO 08/01/24 08/05/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$3.88
CURRENT CHARGES DUE 08/20/2024 \$77.50
TOTAL BALANCE \$81.38

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վուլուլուիավարհիվ Որդանույին հեղիանիկին

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

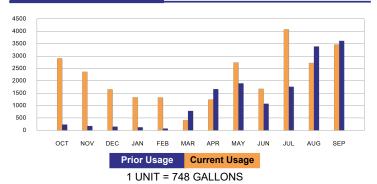
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	Current	Consumption
31682H	WATER	12869	16331	3462
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 08/01/24 TO 09/01/24
BILLING DATE: 09/05/24

CURRENT CHARGES

WATER		\$15,752.10
USAGE TIER 1 = 3462 Units @ 4.55 / UNIT	\$15,752.10	
2 " WATER MAINT FEE		\$165.00
SEWER		\$4,920.99
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$17,666.47
TOTAL PAYMENTS (LAST PAYMENT 08/20/2024)	(\$17,666.47)
CURRENT CHARGES DUE 09/20/2024	\$20,863.19
TOTAL BALANCE	\$20.863.19

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 08/01/24 TO 09/01/24 09/05/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 09/20/2024 \$20,863.19
TOTAL BALANCE \$20,863.19

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վուրագավումների արանիների հետևիր հետևի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 08/01/24 TO 09/01/24
BILLING DATE: 09/05/24

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$81.38
TOTAL PAYMENTS (LAST PAYMENT 08/20/2024)	(\$81.38)
CURRENT CHARGES DUE 09/20/2024	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 08/01/24 TO 09/01/24 09/05/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 09/20/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վուրագավումների արանիների հետևիր հետևիր հետևին իր

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

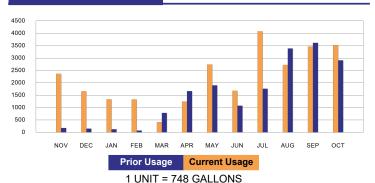
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682H	WATER	16331	19851	3520
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 09/01/24 TO 10/01/24
BILLING DATE: 10/08/24
CURRENT CHARGES DUE DATE 10/23/2024

CURRENT CHARGES

WATER		\$16,016.00
USAGE TIER 1 = 3520 Units @ 4.55 / UNIT	\$16,016.00	
2 " WATER MAINT FEE		\$165.00
SEWER		\$5,003.35
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$20,863.19
TOTAL PAYMENTS (LAST PAYMENT 09/20/2024)	(\$20,863.19)
CURRENT CHARGES DUE 10/23/2024	\$21,209.45
TOTAL BALANCE	\$21 209 45

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Account Information

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 09/01/24 TO 10/01/24 10/08/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 10/23/2024 \$21,209.45
TOTAL BALANCE \$21,209.45

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՍԱլՍԱվույթիրել||լիսիսՍ|||լոել||գորիել||կլ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

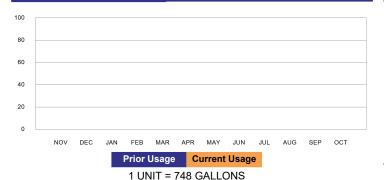
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 09/01/24 TO 10/01/24
BILLING DATE: 10/08/24
CURRENT CHARGES DUE DATE 10/23/2024

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

 PREVIOUS BALANCE
 \$77.50

 TOTAL PAYMENTS (LAST PAYMENT 09/20/2024)
 (\$77.50)

 CURRENT CHARGES DUE 10/23/2024
 \$77.50

 TOTAL BALANCE
 \$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Account Information

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 09/01/24 TO 10/01/24 10/08/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 10/23/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՄԱԿԱԿ-ույլոից ԱլՄեսիո ԱլՄբեց Արգրի հիլՄկ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

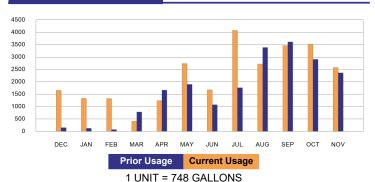
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information				
Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682H	WATER	19851	22429	2578
316821	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 10/01/24 TO 11/01/24
BILLING DATE: 11/04/24
CURRENT CHARGES DUE DATE 11/19/2024

CURRENT CHARGES

WATER		\$11,729.90
USAGE TIER 1 = 2578 Units @ 4.55 / UNIT	\$11,729.90	
2 " WATER MAINT FEE		\$165.00
SEWER		\$3,665.71
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$21,209.45
TOTAL PAYMENTS (LAST PAYMENT 10/23/2024)	(\$21,209.45)
CURRENT CHARGES DUE 11/19/2024	\$15,585.71
TOTAL BALANCE	\$15 585 71

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Account in communication

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 10/01/24 TO 11/01/24 11/04/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 11/19/2024 \$15,585.71
TOTAL BALANCE \$15,585.71

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՄԱԿԱԿ-ույլոից ԱլՄեսիս ԱլՄբեց Արգրի հիլՄկ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

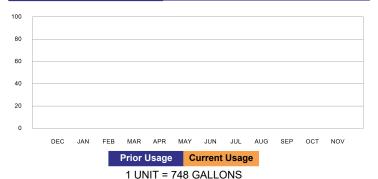
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 10/01/24 TO 11/01/24
BILLING DATE: 11/04/24
CURRENT CHARGES DUE DATE 11/19/2024

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 10/23/2024)	(\$77.50)
CURRENT CHARGES DUE 11/19/2024	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 10/01/24 TO 11/01/24 11/04/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 11/19/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վԱլՄԱԿԱԿ-ույլոից ԱլՄեսիս ԱլՄբեց Արգրի հիլՄկ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

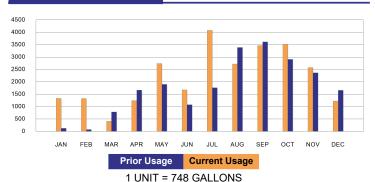
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	Current	Consumption
31682H	WATER	22429	23655	1226
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 11/01/24 TO 12/01/24
BILLING DATE: 12/05/24
CURRENT CHARGES DUE DATE 12/20/2024

CURRENT CHARGES

WATER		\$5,578.30
USAGE TIER 1 = 1226 Units @ 4.55 / UNIT	\$5,578.30	
2 " WATER MAINT FEE		\$165.00
SEWER		\$1,745.87
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE \$15,585.71

TOTAL PAYMENTS (LAST PAYMENT 11/19/2024) (\$15,585.71)

CURRENT CHARGES DUE 12/20/2024 \$7,514.27

TOTAL BALANCE \$7,514.27

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave 11/01/24 TO 12/01/24 12/05/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 12/20/2024 \$7,514.27
TOTAL BALANCE \$7,514.27

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վՈլՈՈւլՈնվուդըվորել||լիոկոն|||լիոկիրդվեկլ||կ

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

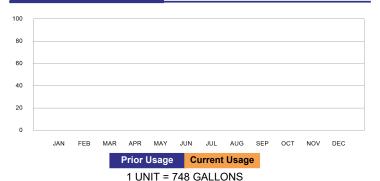
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

TUNIT - 746 GALLON

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 11/01/24 TO 12/01/24
BILLING DATE: 12/05/24
CURRENT CHARGES DUE DATE 12/20/2024

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 11/19/2024)	(\$77.50)
CURRENT CHARGES DUE 12/20/2024	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 11/01/24 TO 12/01/24 12/05/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 12/20/2024 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վՈւլՈՈւլՈՈւիսոլըսիցսկ||լվուկուՈ||լթեգիկորվեկ||իլ

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

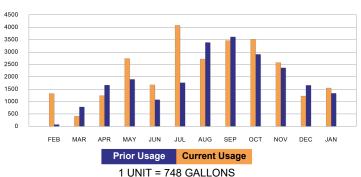
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.



Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

(925)779-7060 8:00 A.M.-5:00 P.M. **Utility Billing: Public Works:** (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682H	WATER	23655	25200	1545
31682L	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 12/01/24 TO 01/01/25 **BILLING DATE:** 01/06/25 **CURRENT CHARGES DUE DATE** 1/21/2025

CURRENT CHARGES

WATER		\$7,029.75
USAGE TIER 1 = 1545 Units @ 4.55 / UNIT	\$7,029.75	
2 " WATER MAINT FEE		\$165.00
SEWER		\$2,384.60
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$7,514.27
TOTAL PAYMENTS (LAST PAYMENT 12/18/2024)	(\$7,514.27)
CURRENT CHARGES DUE 01/21/2025	\$9,604.45
TOTAL BALANCE	\$9,604,45

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon **ACCOUNT INFORMATION**

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01511-01 3225 Wilbur Ave 12/01/24 TO 01/01/25 01/06/25

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00 **CURRENT CHARGES DUE 01/21/2025** \$9,604.45 **TOTAL BALANCE** \$9,604.45

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 -|ՍլՍՍլՍՍլՍՍ-իույյթիգոհյ|<u>|</u>լիոնյոն|||լթնգՍլգոբ|ԱլլՍլ|

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO, CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

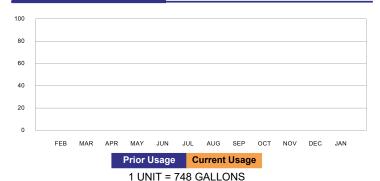
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 12/01/24 TO 01/01/25
BILLING DATE: 01/06/25
CURRENT CHARGES DUE DATE 1/21/2025

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 12/18/2024)	(\$77.50)
CURRENT CHARGES DUE 01/21/2025	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 12/01/24 TO 01/01/25 01/06/25

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 01/21/2025 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորություրի արդականի արդակիր հանդարին իրին

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 16

Exhibit 4
Quarterly Self-Monitoring Reports to DD,
(Condition of Certification SOIL&WATER-4)

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

April 10, 2024

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending March 31, 2024)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2024, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

RECEIVED

APR 11 2024

DELTA DIABLO

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

April 10, 2024

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending March 31, 2024)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2024, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending March 31, 2024

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2027.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business: PG&E Gateway Generating Station

Address: 3225 Wilbur Avenue, Antioch, CA. 94509

Phone: 925-522-7805

Period Covered: <u>Period ending: March 31, 2023</u>

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisdom Date: April 10, 2024

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun	Pretreatment
Fax # (925)756-1961	Phone: (925)756-1929
From: Tim Wisdom	· ,
Company: Pacific Gas and Electric Company –	Gateway Generating Station
Period Covered: Period ending March 31, 2023	,
C .	
Industrial User Checklist for self –monitoring r	• •
discharge permit issued by Delta Diablo Sanitat	tion District:
G 16	
Self-monitoring reports	
√ Flow discharge summary (Discharge Perr	nit Section E.1.h.) (See Attachment 4)
Calibration of flow meters, as required. (S	/ \
$\sqrt{}$ Monitoring results- All required tests com	ipleted, results reviewed, results
included, QA/QC, chain of custody (sect	ion F.7.) (See Attachment 8)
$\underline{}$ Certification statement included (See Atta	nchment 1)
T. 1	
<u>Violations (if applicable)</u>	
All wastewater discharge exceedance are	renorted during this renorting period
Delta Diablo was contacted. (See Addition	
A follow-up report on characterization re-	
Corrective actions to resolve violation:	
Other violations - i.e. Reporting, spills to	sewer, or prohibited discharges
Additional Notes:	
None	
Tions	
Significant changes	
Anticipated changes that may alter the nature, of	L C
discharged. Planned changes shall be submitted	· · ·
and shall include a detailed description of this c	hange. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

 IU NAME :
 PG&E Gateway Generating Station
 ID #:
 0208841-C
 SIC:
 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	2/14/2024	2/15/2024	2/15/2024	2/15/2024	2/15/2024		
TYPE	G	G	C24	G	G		
STATION	E-001	E-001	E-001	E-001	E-001		
SMP.BY	Muskan	Muskan	Muskan	Muskan	Muskan		
	Compliance	Compliance	Compliance	Compliance Semi-	Compliance		
PURPOSE	Quarterly (Q1)	Quarterly (Q1)	Quarterly (Q1)	annual (SA1)	Annual (A)		
							1

Units: mg/L

PARAMETERS	LIMITS	6/ =						
FLOW, DAILY (gal)	51,120							
FLOW, MONTH (gal)								
рН	6-10 s.u.	8.71						
BOD				ND(<2.0)				
COD				20				
TDS				308				
TSS				1.00				
Arsenic	0.15			0.00033*				
Cadmium	0.1			ND(<0.00005)				
Chromium	0.5			ND(<0.00078)				
Copper	0.5			0.0032				
Iron				0.098				
Lead	0.5			ND(<0.00019)				
Mercury	0.003			ND(<0.00012)				
Molybdenum				0.033				
Nickel	0.5			0.00160				
Selenium	0.25			ND(<0.00018)				
Silver	0.2			ND(<0.000051)				
Zinc	1.00			0.018*				
Cyanide	0.2			0.015				
Phenol	1.00			ND(<0.0015)				
Ammonia	200			58				
O&G Petro/Min (E1664A w/ Silica)	100	ND(<1.0)	ND(<1.0)					
O&G Animal/Vegetable Oil	300	ND(<0.66)	ND(<0.66)					
TTO EPA 608								
TTO EPA 624								
TTO EPA 625								
TTO	2.00				0.00591			
Sulfide						0.067		
Sulfate						74		

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

n accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel.

^{* -} J flag: The result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

January 2024-March 2024

	Industrial Flow			Sanitary Flow					
			Did it ever			Time Mater	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
1/1/2024	34.4	0.0	NO	23,409	0.1	0	NO		23,409
1/1/2024	34.4	0.0	NO	24,124	0.0	0	NO		24,124
1/3/2024	34.4	0.0	NO	24,124	25.2	0	NO	360	24,124
1/4/2024	34.5	0.0	NO	15,753	0.0	0	NO	300	15,753
1/5/2024	34.5	0.0	NO	18,542	25.0	0	NO	369	18,912
1/6/2024	34.4	0.0	NO	22,452	0.1	0	NO	000	22,452
1/7/2024	34.7	0.0	NO	19,029	0.0	0	NO		19,029
1/8/2024	34.5	0.0	NO	29,183	0.0	2	NO		29,183
1/9/2024	34.5	0.0	NO	27,585	25.9	0	NO	392	27,977
1/10/2024	34.5	0.0	NO	16,076	0.1	0	NO	392	16,468
1/11/2024	34.5	0.0	NO	24,375	26.4	0	NO	359	24,735
1/12/2024	34.5	0.0	NO	17,475	0.0	0	NO		17,475
1/13/2024	34.4	0.0	NO	6,654	0.0	0	NO		6,654
1/14/2024	34.5	0.0	NO	18,873	26.1	0	NO	378	19,250
1/15/2024	34.3	0.0	NO	21,697	0.1	0	NO		21,697
1/16/2024	34.2	0.0	NO	14,701	0.0	0	NO		14,701
1/17/2024	34.6	0.0	NO	10,975	26.8	0	NO	414	11,389
1/18/2024	34.7	0.0	NO	20,932	24.5	0	NO	366	21,298
1/19/2024	34.6	0.0	NO	16,621	0.0	0	NO		16,621
1/20/2024	40.0	7.0	NO	25,436	0.0	0	NO		25,436
1/21/2024	34.9	0.0	NO	29,189	0.0	0	NO		29,189
1/22/2024	34.5	0.0	NO	14,593	25.5	0	NO	383	14,975
1/23/2024	34.3	0.0	NO	17,031	0.0	0	NO		17,031
1/24/2024	34.5	0.0	NO	14,212	23.6	0	NO	362	14,574
1/25/2024	34.6	0.0	NO	26,041	0.0	0	NO		26,041
1/26/2024	34.5	0.0	NO	15,363	24.5	0	NO	396	15,759
1/27/2024	34.8	0.0	NO	17,730	0.0	0	NO		17,730
1/28/2024	34.7	0.0	NO	33,704	0.0	0	NO		33,704
1/29/2024	34.5	0.0	NO	17,297	25.5	0	NO	372	17,669
1/30/2024	34.5	0.0	NO	19,201	0.0	0	NO	200	19,201
1/31/2024	34.5	0.0	NO	17,881	26.2	0	NO	369	18,250
						Max L	, .	mit: 51,120): onthly Total:	33,704 625,198
2/1/2024	34.4	0.0	NO	14,368	0.0	0		<u> </u>	14,368
2/2/2024	34.4	0.0		20,560	25.7	0	NO	381	20,941
2/3/2024	34.6	0.0	NO	21,729	0.1	0	NO	-	21,729
2/4/2024	34.5	0.0	NO	24,840	0.0	0	NO	-	24,840
2/5/2024	34.3	0.0		14,163	25.2	0		391	14,554
2/6/2024	34.4	0.0	NO	19,672	0.0	0	NO	-	19,672
2/7/2024		0.0	NO	33,394	24.9		NO	360	33,754
2/8/2024		0.0		17,304	0.0		NO	-	17,304
2/9/2024	34.4	0.0	NO	18,149	0.0			-	18,149
2/10/2024	34.6	0.0	NO	12,026	0.0	0	NO	-	12,026
2/11/2024	34.7	0.0	NO	31,779	0.0	0	NO	-	31,779
2/12/2024	34.4	0.0	NO	21,779	26.0		NO	411	22,190
2/13/2024	34.2	0.0	NO	3,183	25.4	0	NO	391	3,574
2/14/2024	34.5	0.0	NO	24,462	0.0		NO	-	24,462
2/15/2024		0.0	NO	41,817	26.1	0	NO	378	42,195
2/16/2024	34.4	0.0		25,636	0.0			-	25,636
2/17/2024	34.5	0.0	NO	16,556	0.0	0	NO	-	16,556
2/18/2024	34.5	0.0	NO	15,078	26.1	0		364	15,442
2/19/2024	34.7	0.0	NO	30,679	blic 0.1	0	NO	-	30,670

PG&E Gateway Generating Station

Discharge Flow Data

January 2024-March 2024

	Industrial Flow								
			Did it ever			Sanitary Time Motor	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
2/20/2024	34.5	0.0	NO	35,383	0.0	0	NO	-	35,383
2/21/2024	34.3	0.0	NO	6,795	26.4	0	NO	361	7,156
2/22/2024	34.4	0.0	NO	14,384	24.7	0	NO	353	14,737
2/23/2024	34.3	0.0	NO	13,588	0.1	0	NO	-	13,588
2/24/2024	34.5	0.0	NO	20,502	0.0	0	NO	-	20,502
2/25/2024	34.4	0.0	NO	10,088	0.0	0	NO	-	10,088
2/26/2024	34.4	0.0	NO	38,196	26.5	0	NO	390	38,586
2/27/2024	34.4	0.0	NO	29,832	0.0	0	NO	-	29,832
2/28/2024	34.7	0.0	NO	28,873	25.7	0	NO	429	29,302
2/29/2024	34.4	0.0	NO	10,774	25.7	0	NO	380	11,154
-						Max D	aily Flow (Lii	mit: 51,120):	42,195
							M	onthly Total:	620,169
3/1/2024	35.1	0.0	NO	43,525	0.1	0	NO		43,525
3/2/2024	35.1	0.0	NO	48,598	25.4	0	NO	413	49,012
3/3/2024	34.6	0.0	NO	49,018	0.0	0	NO		49,018
3/4/2024	34.4	0.0	NO	48,606	26.2	0	NO	388	48,993
3/5/2024	34.6	0.0	NO	41,946	0.0	0	NO		41,946
3/6/2024	-0.5	0.0	NO		25.2	0	NO	386	386
3/7/2024	34.3	0.0	NO	6,528	25.6	0	NO	380	6,908
3/8/2024	-0.5	0.0	NO		0.1	0	NO		-
3/9/2024	34.3	0.0	NO	1,320	26.5	0	NO	379	1,700
3/10/2024	9.6	4.0	NO		0.0	0	NO	379	379
3/11/2024	-0.5	0.0	NO		26.2	0	NO	399	399
3/12/2024	-0.5	0.0	NO		25.7	0	NO	370	370
3/13/2024	-0.5	0.0	NO		0.0	0	NO		
3/14/2024	-0.4	0.0	NO		25.9	0	NO	393	393
3/15/2024	-0.5	0.0	NO		0.0	0	NO	205	-
3/16/2024	-0.5	0.0	NO	0.704	25.6	0	NO	385	385
3/17/2024	34.8	9.0	NO	6,784	0.0	0	NO	207	6,784
3/18/2024	34.6	0.0	NO NO	7,856	26.3 26.1	0	NO	387 371	8,243
3/19/2024	34.3	0.0		10,372		0	NO	3/1	10,743
3/20/2024	-0.5 -0.5	0.0	NO NO		0.0 26.2	0	NO NO	202	393
3/21/2024								393	
3/22/2024 3/23/2024	-0.5 34.4	0.0	NO NO	6,384	25.5	0	NO NO	386	386 6,384
3/23/2024	-0.4	0.0	NO	0,304	0.1 0.0		NO		0,304
3/25/2024	34.6	0.0	NO	23,702	24.7	0	NO	381	24,082
3/25/2024	34.4	0.0	NO	38,035	25.5		NO	410	38,445
3/27/2024	34.5	0.0	NO	15,470	25.1	0	NO	380	15,850
3/28/2024	34.8	0.0	NO	31,308	25.1	0	NO	391	31,698
3/29/2024	34.3	0.0	NO	29,145	0.0	0	NO	001	29,145
3/30/2024	34.7	0.0	NO	31,893	0.0		NO		31,893
3/31/2024	34.5	0.0	NO	21,823	25.0		NO	400	22,223
5,5 1,202T	01.0	0.0		2.,020	20.0		ailv Flow (Lii		49,018

Max Daily Flow (Limit: 51,120): 49,018

Monthly Total: 469,685

,

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2024**

Month	Flow (gallons)	Due Date
January	625,198	4/15/2024
February	620,169	4/15/2024
March	469,685	4/15/2024
April		
May		
June		
July		
August		
September		
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report January 2024 to March 2024

	WSAC Operation						
Month	Hours of Operation						
January-24	No Operation						
February-24	No Operation						
March-24	No Operation						
April-24							
May-24							
June-24							
January-24							
August-24							
September-24							
October-24							
November-24							
December-24							

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report January 2024 to March 2024

	WSAC Operation						
Month	Average Daily Blowdown Cycles						
January-24	No Operation						
February-24	No Operation						
March-24	No Operation						
April-24							
May-24							
June-24							
January-24							
August-24							
September-24							
October-24							
November-24							
December-24							

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2402A43

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (February 2024)

Project Received: 02/15/2024

Analytical Report reviewed & approved for release on 03/05/2024 by:

Jena Alfaro

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2402A43

Project: Quarterly Sampling (February 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2402A43

Project: Quarterly Sampling (February 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 03/01/2024

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N							
Client ID	Lab ID	Matrix	Date C	collected	Instrument	Batch ID	
E-001 Grab	2402A43-002C	Water	02/15/2024 10:40		WC_SKALAR 240301B1_77	288906	
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed	
Ammonia, total as N	58	1.9	2.0	20	03/0	1/2024 17:04	

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 02/16/2024

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

Extraction Method: SM5210B

Analytical Method: SM5210 B

Unit: mg/L

Biochemical Oxygen Demand (BOD)							
Client ID	Lab ID	Matrix	Date C	Collected	Instrument	Batch ID	
E-001 Comp	2402A43-003A	Water	02/15/20	024 10:25	WetChem	288039	
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed	
BOD	ND	2.0	2.0	1.02		02/21/2024 13:15	

Analyst(s): JRA

Analytical Report

Client: PG&E Gateway Generating Station

02/15/2024 13:38 **Date Received:**

Date Prepared: 02/16/2024

Project: Quarterly Sampling (February 2024) WorkOrder: 2402A43

Extraction Method: SM4500-CN⁻ E Analytical Method: SM4500-CN⁻ CE

Unit: $\mu g/L$

Cyanide, Total							
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID	
E-001 Grab	2402A43-002D	Water	02/15/2024 10:40		WC_Skalar3 240216A0_22	288056	
<u>Analytes</u>	<u>Result</u>	<u>MDL</u>	<u>RL</u>	<u>DF</u>	Date	Analyzed	
Total Cyanide	15	0.58	1.0	1	02/1	6/2024 13:04	

Analyst(s): CC

Analytical Report

PG&E Gateway Generating Station **Client:**

02/15/2024 13:38 **Date Received:**

Date Prepared: 02/26/2024

Project: Quarterly Sampling (February 2024) WorkOrder: 2402A43

Extraction Method: SM5220 D

Analytical Method: SM5220 D

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2 /L							
Client ID	Lab ID	Matrix	Date (Collected	Instrument	Batch ID	
E-001 Comp	2402A43-003B	Water	02/15/2	2024 10:25	SPECTROPHOTOMETER2	288560	
Analytes	Result	MDL	<u>RL</u>	<u>DF</u>	Date	e Analyzed	
COD	20	8.2	10	1	02/2	6/2024 18:26	

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station **Date Received:** 02/15/2024 13:38

Date Received: 02/15/2024 1 **Date Prepared:** 02/15/2024

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

Extraction Method: E245.2

Analytical Method: E245.2 **Unit:** µg/L

Mercury by Cold Vapor Atomic Absorption							
Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID	
E-001 Comp	2402A43-003F	Water	02/15/2024 10:25		AA1 _16	287809	
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed	
Mercury	ND	0.12	0.20	1		02/16/2024 13:23	

Analyst(s): DMA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 02/16/2024

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: μg/L

	Metals										
Client ID	Lab ID	Matrix		Date Col	llected	Instrument	Batch ID				
E-001 Comp	2402A43-003E	Water		02/15/202	4 10:25	ICP-MS5 176SMPL.d	288009				
<u>Analytes</u>	<u>Result</u>	Qualifiers	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed				
Arsenic	0.33	J	0.071	0.50	1		02/20/2024 14:16				
Cadmium	ND		0.050	0.50	1		02/20/2024 14:16				
Chromium	ND		0.78	2.0	1		02/20/2024 14:16				
Copper	3.2		0.63	1.5	1		02/20/2024 14:16				
Iron	98		22	50	1		02/20/2024 14:16				
Lead	ND		0.19	0.50	1		02/20/2024 14:16				
Molybdenum	33		0.19	1.0	1		02/20/2024 14:16				
Nickel	1.6		0.33	0.50	1		02/20/2024 14:16				
Selenium	ND		0.18	0.50	1		02/20/2024 14:16				
Silver	ND		0.051	0.50	1		02/20/2024 14:16				
Zinc	18	J	11	20	1		02/20/2024 14:16				
<u>Surrogates</u>	REC (%)			<u>Limits</u>							
Terbium	112			70-130			02/20/2024 14:16				
Analyst(s): MIG											

2402A43

Analytical Report

PG&E Gateway Generating Station **Client:** WorkOrder: 02/15/2024 13:38 **Date Received: Extraction Method:** E420.4 **Date Prepared:** 02/26/2024 **Analytical Method:** E420.4

Project: Quarterly Sampling (February 2024) Unit: $\mu g/L$

Phenolics										
Client ID	Lab ID	Matrix	Date C	collected	Instrument	Batch ID				
E-001 Grab	2402A43-002C	Water	02/15/2024 10:40		WC_SKALAR 240226B1_23	288538				
<u>Analytes</u>	<u>Result</u>	MDL	<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed				
Phenolics	ND	1.5	2.0	1	02/26	6/2024 14:32				

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 02/20/2024

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

Extraction Method: SM2540 C-

Analytical Method: SM2540 C

Unit: mg/L

Total Dissolved Solids									
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID			
E-001 Comp	2402A43-003C	Water	02/15/2024 10:25		WetChem	288186			
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed			
Total Dissolved Solids	308	10.0	10.0	1		02/21/2024 14:06			

Analyst(s): JME

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 02/21/2024

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

Extraction Method: SM2540 D

Analytical Method: SM2540 D

Unit: mg/L

Total Suspended Solids									
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID			
E-001 Comp	2402A43-003D	Water	02/15/2024 10:25		WetChem	288324			
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed			
Total Suspended Solids	1.00	1.00	1.00	1		02/22/2024 14:06			

Analyst(s): JME

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/01/2024

Date Analyzed: 03/01/2024 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

BatchID: 288906

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-288906

QC Summary Report for SM4500-NH3								
Analyte	MB Result	MDL	RL					
Ammonia, total as N	ND	0.095	0.10	=	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	4.0	4.0	4	99	101	90-110	1.76	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:02/16/2024Date Analyzed:02/21/2024Instrument:WetChem

Matrix: Water

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

BatchID: 288039

Extraction Method: SM5210B **Analytical Method:** SM5210 B

Unit: mg/L

Sample ID: MB/LCS/LCSD-288039

QC Summary Report for BOD									
Analyte	MB Result	MDL	RL						
BOD	ND	2.0	2.0	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	210	180	198	105	90	80-120	15.2	16

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 02/16/2024

Date Analyzed: 02/16/2024 **Instrument:** WC_Skalar3

Matrix: Water

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43 **BatchID:** 288056

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: μg/L

Sample ID: MB/LCS/LCSD-288056

2402A43-002DMS/MSD

QC Summary R	eport for	SM4500-CN	CE
--------------	-----------	-----------	----

Analyte	MB Result	MDL	RL			
Total Cyanide	ND	0.58	1.0	-	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	51	51	50	101	102	90-110	0.414	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Total Cyanide	1	65	66	50	15	100	101	80-120	0.381	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 02/26/2024 **Date Analyzed:** 02/26/2024

Instrument: SPECTROPHOTOMETER2

Matrix: Water

Project: Quarterly Sampling (February 2024)

WorkOrder: 2402A43

BatchID: 288560

Extraction Method: SM5220 D **Analytical Method:** SM5220 D

Unit: mg/L

Sample ID: MB/LCS/LCSD-288560

QC Summary Report for COD										
Analyte	MB Result	MDL	RL							
COD	ND	8.2	10	-	-	-				

Analyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
	Result	Result	Val	%REC	%REC	Limits	5	Limit
COD	100	96	100	100	96	90-110	4.08	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2402A43Date Prepared:02/15/2024BatchID:287809Date Analyzed:02/15/2024Extraction Method:E245.2

Instrument:AA1Analytical Method:E245.2Matrix:WaterUnit:µg/L

Project: Quarterly Sampling (February 2024) **Sample ID:** MB/LCS/LCSD-287809

QC Summary Report for Mercury										
Analyte	MB Result	MDL	RL							
Mercury	ND	0.12	0.20	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	1.9	1.8	2	96	90	85-115	6.18	20

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 2402A43

Date Prepared: 02/16/2024 BatchID: 288009

Pate Analysis 02/20/2024 Entraction Mathed: E200.8

Date Analyzed:02/20/2024Extraction Method:E200.8Instrument:ICP-MS4Analytical Method:E200.8Matrix:WaterUnit:µg/L

Project: Quarterly Sampling (February 2024) **Sample ID:** MB/LCS/LCSD-288009

QC Summary Report for Metal	S
-----------------------------	---

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.071	0.50	-	-	-
Cadmium	ND	0.050	0.50	-	-	-
Chromium	ND	0.78	2.0	-	=	-
Copper	ND	0.63	1.5	-	=	-
Iron	ND	22	50	-	=	-
Lead	ND	0.19	0.50	-	=	-
Molybdenum	ND	0.19	1.0	-	=	-
Nickel	ND	0.33	0.50	-	=	-
Selenium	ND	0.18	0.50	-	=	-
Silver	ND	0.051	0.50	-	-	-
Zinc	ND	11	20	-	-	-

Surrogate Recovery

Terbium 550 500 109 70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	53	53	50	105	105	85-115	0.0779	20
Cadmium	53	52	50	105	104	85-115	0.930	20
Chromium	53	53	50	107	106	85-115	0.811	20
Copper	54	54	50	107	107	85-115	0.00931	20
Iron	5300	5300	5000	105	106	85-115	0.478	20
Lead	54	54	50	107	107	85-115	0.0373	20
Molybdenum	50	50	50	101	100	85-115	0.852	20
Nickel	53	52	50	106	105	85-115	1.15	20
Selenium	54	54	50	108	109	85-115	1.14	20
Silver	52	52	50	104	103	85-115	1.09	20
Zinc	540	530	500	107	106	85-115	1.37	20
Surrogate Recovery								
Terbium	560	560	500	112	111	70-130	0.712	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2402A43Date Prepared:02/26/2024BatchID:288538Date Analyzed:02/26/2024Extraction Method:E420.4Instrument:WC_SKALARAnalytical Method:E420.4

Matrix: Water Unit:

Project: Quarterly Sampling (February 2024) **Sample ID:** MB/LCS/LCSD-288538

QC Summary Report for E420.4										
Analyte	MB Result	MDL	RL							
Phenolics	ND	1.5	2.0	-	-	=				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	41	40	40	101	100	80-120	1.62	20

Quality Control Report

 Client:
 PG&E Gateway Generating Station
 WorkOrder:
 2402A43

 Date Prepared:
 02/20/2024
 BatchID:
 288186

 Date Analyzed:
 02/21/2024
 Extraction Method:
 SM2540 C

Instrument: WetChem Analytical Method: SM2540 C
Matrix: Water Unit: mg/L

Project: Quarterly Sampling (February 2024) **Sample ID:** MB/LCS/LCSD-288186

Analyte MB MDL RL Total Dissolved Solids ND 10.0 10.0 - - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Dissolved Solids	902	930	1000	90	93	80-120	3.06	10

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2402A43Date Prepared:02/21/2024BatchID:288324Date Analyzed:02/22/2024Extraction Method:SM2540 DInstrument:WetChemAnalytical Method:SM2540 D

Matrix: Water Unit: mg/L

Project: Quarterly Sampling (February 2024) **Sample ID:** MB/LCS/LCSD-288324

QC Summary Report for Total Suspended Solids										
Analyte	MB Result	MDL	RL							
Total Suspended Solids	ND	1.00	1.00	-	=	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Suspended Solids	83.0	91.0	100	83	91	80-120	9.20	10

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 2402A43

Detection Summary

ClientCode: PGEA

WaterTrax

EDF EQuIS

Dry-Weight

HardCopy

☐ ThirdParty

✓ J-flag

5 days; 7 days;

Report to:

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email:

il: abe4@pge.com

CLIP

 ${\tt cc/3rd~Party:}~{\tt TIWY@pge.com;~MSFG@pge.com;~APSD}$

PO:

Project: Quarterly Sampling (February 2024)

Bill to: Angel Espiritu

PG&E Gateway Generating Station

✓ Email

Excel

3225 Wilbur Avenue Antioch, CA 94509 Date Received:

Requested TATs:

02/15/2024

Date Logged: 02/15/2024

								Requ	ested [·]	Tests (See leg	gend be	elow)			
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2402A43-001	E-001	Water	2/14/2024 09:45		Α	В								Α		
2402A43-002	E-001 Grab	Water	2/15/2024 10:40		Α	В	С		D				С	Α		
2402A43-003	E-001 Comp	Water	2/15/2024 10:25					Α		В	F	Е		Α	С	D

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS_W

2	1664A_W
6	COD_W
10	PRDisposal Fee

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

4	BOD_W
8	METALSMS_TTLC_W
12	TSS_W

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (February 2024) Work Order: 2402A43

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 2/15/2024

		Water	Trax CLIP EDF	Exc	cel EQui:	S [✓ Email	HardCopy	Third	IParty √ J-flag)		
LabII	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative		lead Dry- pace Weigl		TAT	Test Due Date	Sediment Content	Hold	Sub Out
001A	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	2	1LA w/ HCl + 1- aVOA w/HCL			2/14/2024 9:45	5 days	2/25/2024	Present		✓
001B	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	2	1LA w/ HCl + 1- aVOA w/HCL			2/14/2024 9:45	5 days	2/25/2024	Present		✓
002A	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	2	1LA w/ HCl + 1- aVOA w/HCL			2/15/2024 10:40	5 days	2/25/2024	Present		✓
002B	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	2	1LA w/ HCl + 1- aVOA w/HCL			2/15/2024 10:40	5 days	2/25/2024	Present		✓
002C	E-001 Grab	Water	E420.4 (Phenolics)	1	500mL aG w/ H2SO	14		2/15/2024 10:40	5 days	2/23/2024	Present		
			SM4500-NH3 BG (Ammonia Nitrogen)						5 days	2/23/2024	Present		
002D	E-001 Grab	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH			2/15/2024 10:40	5 days	2/23/2024	Present		
003A	E-001 Comp	Water	SM5210B (BOD)	1	500mL HDPE, unprsv.			2/15/2024 10:25	7 days	2/27/2024	Present		
003B	E-001 Comp	Water	SM5220D (COD)	2	aVOA w/ H2SO4			2/15/2024 10:25	5 days	2/23/2024	Present		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (February 2024) Work Order: 2402A43

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 2/15/2024

		Water	Trax CLIP EDF	Exc	el EQuI	S	✓ Er	mail	HardCopy	Third	IParty ✓ J-flag	I		
LabII	O ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative		Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	l Sub Out
003C	E-001 Comp	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.				2/15/2024 10:25	5 days	2/23/2024	Present		
003D	E-001 Comp	Water	SM2540D (TSS)	1	1L HDPE, unprsv.				2/15/2024 10:25	5 days	2/23/2024	Present		
003E	E-001 Comp	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3				2/15/2024 10:25	5 days	2/23/2024	Present		
003F	E-001 Comp	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3				2/15/2024 10:25	5 days	2/23/2024	Present		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

2402 A43

																										ĸ	10-11-15
	McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269									CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY GeoTracker EDF PDF Excel Write On (DW) Check if sample is effluent and "J" flag is required								☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐									
Report To	: Angel Es	piritı			T	Bill To:	PG&	E Gs	itew	/av					ᅱ		Analysis Request Remarks										
		_																<i>-</i>									144444
Company	Company: PG&E Gateway Generating Station							\dashv	7	a a	_				ğ												
E-Mail: a	be4@pge.co	om, 7	IWY@pg	e.com, N	ISF C	@pge.c	om,	APS	D@	pge	co	m				with fore \$00 CN-	eniur ode		8	MES		romit ic)					
	522-7838,		ناط کست			ax: ()									ed wi befo i 450	d set	664A	8	500-		ilyer, ad zir			1		
	ame: Qua				pri	wy	202	4								reat fate , SM	ic an	PA 1	USE	SM 4		dmiu kel, si on, sr	<u>ا</u>	ءِ ا]	
Project Location: Combined Site Flow										Pret losui g) by	rseni by re	CSE	1 2	N SE	45.2)	3, nic n, fr	5210	2026	3								
Sampler S	Sampler Signature: Muskan Environmental Sampling										ide (m tb rving	s (A 0.8 fum	ease ith ou	Fig	nia ,	lry (2	, (200 r, lear denu	WS)	N.		A CA						
		mposi	SAMP	LING		ي	Ma	trix	MI	ЕТН	OD	PRI	ESE	RVI	ED	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 CABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (USEPA 1664A) with	Total Phenolics (USEPA 420.4)	Ammonia as N (SM 4500-NH3-G	Mercury (245.2)	Metals (200.8 cadmium, chroi copper, lead, nickel, silver, Molybdenum, fron, and zinc)	BOD (SM 5210B)	COD (SM 5220D)		TSS /SM 2540D)	
SAMPLE ID	LOCATION / Field Point Name	Sample Type Composite	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	HSO.	NaOH	HCL	HNO,	Other						·						
E-001		G	02/14/24	09:40	-4	1L Amb, 40-ml VOA	Х			X			Х					Х					П		T	T	
E-001		G	02/15/24	-		IL Amb. 40-ml VOA	Х			X			Х					Х				-			T	T	
E-001		G	02/15/24		1	500ml Amb	х	T		X	Х								X	X			П	Г	T	T	
E-001		G	02/15/24		•	250-ml Poly	Х	Г		X		X				х							П		Ť	T	
E-001		С	02/15/24			Foly Poly	X	T	X	X								 	T				X		十	忙	
E-001		C	02/15/24			43-ml	Х	 	Н	X	X			\vdash	\vdash				\vdash	_			H	x	†	十	
E-001		С	02/15/24			VOA 500-ml	х	┢	X	$\overline{\mathbf{x}}$									1			•	H	_	†;	十	
E-001		С	02/15/24			poly 1L	x	 	X	X	\dashv		-	-	十			 	H	-			H	一	十	$\frac{1}{x}$	
E-001		-			1	poly 250-ml	X	t	Н	X			一	x	\vdash			-	\vdash	-	X		H	一	十	十	
E-001			02/15/24 02/15/24			Poly 250-ml	x	┢	H	X	+			x	-		х			<u> </u>		Х	H	一	十	十	
			079.012	10,6)	 	poly	-	十	H	Н	H		-	┢	Н			 	 	-			H	一	十	十	
	2				 	 	 	\vdash	┪	Н	+			┢	十			 					H	一	t	十	
Relinquiste		L	Date: 2//5/2\	Time:		eived Br	10	<u>.</u>					L	<u></u>		ICE/t°_ GOOD CO HEAD SPA			,1	<u>ر</u> د د	es/	L	닉	OM	IM)	ENT	S:
Relinquishe Relinquishe			Date:	Time:		eived By:									DECHLORINATED IN LABAPPROPRIATE CONTAINERSPRESERVED IN LAB												
Licindaisne	~ ~ ·		1	1	1	Dy.									1		***			_	BETTATO	OMET TO D					

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Quarterly Sampling (February 2024)			Date and Time Received: Date Logged: Received by:	2/15/2024 13:38 2/15/2024 Valerie Alfaro
WorkOrder №: Carrier:	2402A43 Matrix: Water Client Drop-In			Logged by:	Valerie Alfaro
	Chain of C	Custody	<u>/ (COC) Infor</u>	mation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time of	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
COC agrees with	Quote?	Yes		No 🗆	NA 🗹
	Samp	le Rece	eipt Informati	ion_	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗆	NA 🗹
Custody seals int	tact on sample bottles?	Yes		No 🗆	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗆	
Samples in prope	er containers/bottles?	Yes	✓	No 🗆	
Sample containe	rs intact?	Yes	✓	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservati	ion and	<u>Hold Time (</u> l	HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	NA 🗆
Samples Receive	ed on Ice?	Yes	✓	No 🗆	
	(Ісе Тур	e: WE	TICE)		
Sample/Temp Bl	ank temperature		Temp: 0.3	3°C	NA 🗌
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes	✓	No 🗆	NA 🗌
UCMR Samples: pH tested and a 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine t [not applicable	ested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗆	NA 🗸
Comments:		===		=======	

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

"When Quality Counts"

Analytical Report

WorkOrder: 2402A64

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Sanjiv Gill

Project P.O.:

Project: pH Sampling (February 2024)

Project Received: 02/15/2024

Analytical Report reviewed & approved for release on 02/23/2024 by:

Jena Alfaro

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2402A64

Project: pH Sampling (February 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2402A64

Project: pH Sampling (February 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

PG&E Gateway Generating Station **Client:**

02/15/2024 13:38 **Date Received:**

Date Prepared: 02/14/2024

Project: pH Sampling (February 2024) WorkOrder: 2402A64

Extraction Method: SM4500H+B **Analytical Method:** SM4500H+B

Unit: pH units

		pН			
Client ID	Lab ID	Matrix	Date Collecte	ed Instrume	nt Batch ID
E-001	2402A64-001A	Water	02/14/2024 09:	46 WetChem	288391
<u>Analytes</u>	Result		<u>Accuracy</u>	<u>DF</u>	Date Analyzed
рН	8.71		±0.05	1	02/14/2024 09:47

Analyst(s): ISH

Email:

Project:

PO:

cc/3rd Party:

CLIP

sanjivgill@comcast.net

pH Sampling (February 2024)

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

3225 Wilbur Avenue

Antioch, CA 94509

(925) 459-7212

PG&E Gateway Generating Station

FAX:

Report to:

Sanjiv Gill

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

J-flag

WorkOrder: 2402A64 ClientCode: PGEA

EQuIS Dry-Weight **✓** Email □HardCopy □ ThirdParty

Detection Summary Excel

> Bill to: Requested TAT: 5 days;

Angel Espiritu

PG&E Gateway Generating Station

Date Received: 02/15/2024 3225 Wilbur Avenue Date Logged: 02/15/2024

Antioch, CA 94509

Requested Tests (See legend below) ClientSampID Lab ID Matrix Collection Date Hold 2 3 5 6 7 8 10 11 12 1 2402A64-001 E-001 Water 2/14/2024 09:46 Α Α

□ EDF

Test Legend:

1 PH_W_SANJIV	2 PRDisposal Fee	3	4
5	6	7	8
9	10	11	12

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: pH Sampling (February 2024) Work Order: 2402A64

Client Contact: Sanjiv Gill QC Level: LEVEL 2

Contact's Email: sanjivgill@comcast.net Comments Date Logged: 2/15/2024

	Water	TraxCLIP	∐EDF	Exc	el EQuI	S E	mail	HardCopy	I hird	IParty ✓ J-flag)		
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative		Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
001A E-001	Water	SM4500H+B (Field pH)		0	<not received<="" td=""><td>></td><td></td><td>2/14/2024 9:46</td><td>5 days</td><td>2/23/2024</td><td></td><td></td><td></td></not>	>		2/14/2024 9:46	5 days	2/23/2024			

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

2402 Ab4

																												10 4110				
Á	M M	CA	MPBE	LLA	NAI	LYTI	CA	L, I	N	C.										C	H/	AII	N	OF	C, C	US	T			R		CORD
			1534	WILLO	W PA	SS ROAD)									T	UR	N A	LR(DU	ND	T	M	E					J			· · · · · · · · · · · · · · · · · · ·
	Web:	site: y	ww.mccae	npbell.co	m Ew	ail: mai	n@m	cam	pbe	il.co	[33				ı	_	_	_		-	-		7	-			H		HR		48 1	
	Tele	phon	e: (877) 2 5	52-9262		F	ax: (9	25) 2	152	-920	69				ı	G	60 .1	rac	cke	rŁ	υr											ite On (DW) 📮 nd "J" flag is required
Penort'	ro: Sanjiv	cin			IR	iii To: Muskan Environmental							+	Analysis Request											Remarks							
	y: PG&E		way Gene	rating S									•		1				П													
																				İ												
						-Mail:	sanjir	gill	D)CO	me	est.	net									ı											
	8) 666-449					ax: (<u> </u>					<u> </u>			_		i			ł										l		
Project	Name: pl Location: F	I Sar	apling (Febru		x 20	24							11			ļ															
Complex	r Signature	- COL	Nucka	uoca –	E-001		17		5,	اممدا	dî			#	\dashv						l											
Catalytes	Seguarate				1	O W	1	l				1	2	-							- 1						,					
		Sample Type Composite	SAMP	LING		g	Ma	trix	MI	етн	OD !	PRE	SEF	RVE	Œ																	
	LOCATION	۾ ق			2	Type Containors	1				T				g					ł												
ID	/ Field Point Name	Spe C	_		# Containers	on the	Waste Water	Sewer Water	H	ł					teta						- 1										ĺ	
		Ple 1	Date	Time	Ş	S g	8	5	9	62	ģ	NaOH	널	HNO	ZincA																	
		am			#	ξ	≱	8	Z	ICE		Ž	HCL	Ħ	2	Hd				1	ı											
E-001		G	14.1	22.11.4	NA	NA	Х		X	Ť	T	1	丁		7	X			П													Grab Time: 09: 46
			2/14/24	09:46	L	<u> </u>			Н	\bot	4	4	4	4	_				\vdash	_	_									<u> </u>	 	Analysis Time: 09:47 Temperature: 20.5°C
									Ц	\bot	1	\perp	_				_		\sqcup	_	\dashv											pH: 8.71
											\perp								Ш													
						<u> </u>			Ц										Ш	\Box												
																			Ш			٠										
										T	T																					
											T														·							
									П		T	П																				
									П	T	T		T						П												Γ	
Relinquished by: Date: Time: Received By:				_		\exists	ICI		CON	ñ.	(A)									(CON	M	ENTS:									
, a	A/S		2/15/24	13:3		1 j	<u> </u>		L	~~~	~					HE	AD S	SPAC	ΞAI	BSEÏ	NT_											
Relinquis	Ked By:	_	Date:	Time:	Rece	ived By:			$\H/$									ORI PRIA					2S	 -								
Della austri	had Don		Date:	Time:	Par	ived By:			7						4			RVE							_							
Relinquis	zea ny :		DEC:	ame:	- Accor	aveu ny :															AS	Qé	₽ G		TAL	s (DTH	ER				
					PR	DSD	RVA'	TIO	¥				рH	₹																		

Logbook for Field pH Samples

D	Commis ID	Matrix	1 st Re	eading	2 nd R	eading	Ave	Standard	Comments	Analyst
Date/Time	Sample ID	Matrix	рН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)	1 Company	
2/14/24/09:25	Cal. pH #	L	7.00	19.1	7.00	19.1	7.00	bulk		
z/14/24/09:25	Cal pH #	L	4.00	19.1	4.00	19.1	400	ba)K		
2/14/24 09:25	Cal. pH #	L	10.00	19.1	10.00	19.1	10.00	bul K		
							 			
	<u> </u>						 			
•		 								
						Mol	er:	Myron	ampany	
							1	tra Meter		
							Sexia	# 6222	06 b	
							pH (m COC	2//4/24	
								PRA	17. Later	xy_
			ļ				100			

Client Supplied pH Data

Client Name: PG&E Gateway Generating Station WorkOrder №: 2402A64

Project: pH Sampling (February 2024)

SampID ClientSampID pH

2402A64-001A E-001 8.71 @ 20.5 °C [analyzed: 2/14/2024 9:46 AM]

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Ge pH Sampling (Febru	· ·			Date and Time Received: Date Logged: Received by:	2/15/2024 13:38 2/15/2024 Valerie Alfaro
WorkOrder №: Carrier:	2402A64 Client Drop-In	Matrix: Water			Logged by:	Valerie Alfaro
		<u>Chain of</u>	Custody	(COC) Info	rmation	
Chain of custody	present?		Yes	✓	No 🗆	
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗆	
Sample IDs note	d by Client on COC?		Yes	✓	No 🗆	
Date and Time o	of collection noted by C	Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
COC agrees with	n Quote?		Yes		No 🗆	NA 🗹
		<u>Sam</u>	ple Rece	eipt Informat	<u>ion</u>	
Custody seals in	tact on shipping conta	niner/cooler?	Yes		No 🗌	NA 🗹
Custody seals in	tact on sample bottles	s?	Yes		No 🗆	NA 🗹
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗆	
Samples in prop	er containers/bottles?		Yes	✓	No 🗌	
Sample containe	ers intact?		Yes	✓	No 🗆	
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗆	
		Sample Preserva	tion and	Hold Time	(HT) Information	
All samples rece	ived within holding tim	ne?	Yes	✓	No 🗆	NA 🗌
Samples Receive	ed on Ice?		Yes		No 🗹	
Sample/Temp Bl	ank temperature			Temp:		NA 🗹
ZHS conditional	analyses: VOA meets Cs, TPHg/BTEX, RSh		Yes		No 🗆	NA 🗸
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌	
pH acceptable u <2; 522: <4; 218		; Nitrate 353.2/4500NO3:	Yes		No 🗆	NA 🗹
UCMR Samples: pH tested and 537.1: 6 - 8)?		ipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine ([not applicable		upon receipt (<0.1mg/L)	Yes		No 🗆	NA 🗹
Comments: .	======	=======		====	========	=======

March 06, 2024 CLS Work Order #: 24B1000

COC #:

Angela Rydelius McCampbell Analytical Inc. 1534 Willow Pass Road Pittsburg, CA 94565-1701

Project Name: Quarterly Sampling (February

2024)

Enclosed are the results of analyses for samples received by the laboratory on 02/16/24 14:30. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

Daniel Johnson Technical Director

CA SWRCB ELAP Accreditation/Registration number 1233

03/06/24 10:59

McCampbell Analytical Inc. Project: Quarterly Sampling (February 2024)

1534 Willow Pass Road Project Number: 2402A43 CLS Work Order #: 24B1000

Pittsburg, CA 94565-1701 Project Manager: Angela Rydelius COC #:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
E-001 (24B1000-01) Water Sampled: 02	/14/24 09:45	Receive	ed: 02/16/24 14:30	0											
Hexane Extractable Material (HEM, Oil & Grease)	ND	0.66	1.0	mg/L	1	2401417	02/21/24	02/22/24	EPA 1664B						
Silica Gel Treated HEM (SGT-HEM)	ND	1.0	5.0	"	"	2401455	02/21/24	02/22/24	EPA 1664B w/SGT						
E-001 Grab (24B1000-02) Water Sampl	E-001 Grab (24B1000-02) Water Sampled: 02/15/24 10:40 Received: 02/16/24 14:30														
Hexane Extractable Material (HEM, Oil & Grease)	ND	0.66	1.0	mg/L	1	2401417	02/21/24	02/22/24	EPA 1664B						
Silica Gel Treated HEM (SGT-HEM)	ND	1.0	5.0	"	"	2401455	02/21/24	02/22/24	EPA 1664B w/SGT						

03/06/24 10:59

McCampbell Analytical Inc. Project: Quarterly Sampling (February 2024)

1534 Willow Pass Road Project Number: 2402A43 CLS Work Order #: 24B1000

Pittsburg, CA 94565-1701 Project Manager: Angela Rydelius COC #:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	D14	MDI	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes							
Analyte	Result	MDL	Lillit	Ullits	Level	Result	/0KEC	Lillits	KrD	Lillit	inotes							
Batch 2401417 - Solvent Extract																		
Blank (2401417-BLK1)				Prepared: 02/21/24 Analyzed: 02/22/24														
Hexane Extractable Material (HEM, Oil & Grease)	ND	0.66	1.0	mg/L														
LCS (2401417-BS1)					Prepared: 02/21/24 Analyzed: 02/22/24 ng/L 40.0 94 78-114													
Hexane Extractable Material (HEM, Oil & Grease)	37.7	0.66	1.0	mg/L	40.0		94	78-114										
LCS Dup (2401417-BSD1)					Prepared: 02/21/24 Analyzed: 02/22/24													
Hexane Extractable Material (HEM, Oil & Grease)	38.9	0.66	1.0	mg/L	40.0		97	78-114	3	18								
Batch 2401455 - Solvent Extract																		
Blank (2401455-BLK1)					Prepared: 02/21/24 Analyzed: 02/22/24													
Silica Gel Treated HEM (SGT-HEM)	ND	1.0	5.0	mg/L														
LCS (2401455-BS1)					Prepared: (02/21/24 A	nalyzed: 02	2/22/24										
Silica Gel Treated HEM (SGT-HEM)	24.7	1.0	5.0	mg/L	20.0		124	64-132										
LCS Dup (2401455-BSD1)					Prepared: (02/21/24 A	nalyzed: 02	2/22/24										
Silica Gel Treated HEM (SGT-HEM)	23.0	1.0	5.0	mg/L	20.0		115	64-132	7	34								

03/06/24 10:59

McCampbell Analytical Inc. Project: Quarterly Sampling (February 2024)

1534 Willow Pass Road Project Number: 2402A43 CLS Work Order #: 24B1000

Pittsburg, CA 94565-1701 Project Manager: Angela Rydelius COC #:

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

* The laboratory does not hold CA-ELAP accreditation for this analyte or method. Accreditation may not be available from CA-ELAP for this analyte or method.

This is a "MDL Report", thus if the report denotes an "ND" for a particular analyte, it should be noted that the analyte was not detected at or above the MDL.

Page 1 of 1

McCampbell Analytical, Inc.

Pittsburg, CA 94565-1701

1534 Willow Pass Rd

Phone: (925) 252-9262 (925) 252-9269

WorkOrder: 2402A43

ClientCode: PGEA

SUB CHAIN-OF-CUSTODY RECORD

EDF: NO

Subcontractor:

CLS LABS

3249 Fitzgerald Road

✓ J-flag

OC Level: LEVEL 2

Project Name: Quarterly Sampling (February 2024)

Rancho Cordova, CA 95742

Project Number: 2402A43

TEL: (916) 638-7301 (916) 638-4510

MAI Lab ID						TAT	Requested Tests (see Legend below)							
	ClientSampID	Source Name	PS Code	Matrix	Collection Date		1	2	3	4	5	6		
2402A43-001A	E-001			Water	2/14/2024 9:45	STD	1							
2402A43-001B	E-001			Water	2/14/2024 9:45	STD		1						
2402A43-002A	E-001 Grab			Water	2/15/2024 10:40	STD	1							
2402A43-002B	E-001 Grab			Water	2/15/2024 10:40	STD		1						

Test Legend:

E1664A (SGT- HEM; Non-polar Material) 4

2 E1664A (HEM; Oil & Grease w/o S.G. Clean-Up) 5

Comments:

PLEASE USE 'CLIENT ID' AS THE SAMPLE ID AND EMAIL ASAP! STANDARD TAT

Please email results to at subdata@mccampbell.com upon completion.

Relinquished by:

Relinquished by:

Date/Time

Received by:

Received by:

Date/Time

Revision History

Client: McCampbell Analytical

Work Order: 24B1000

Project Name: Quarterly Sampling (February 2024)

<u>Date</u>: 3/6/24

Revision: 1

Reason: Corrected sample date

Attachment 8c Laboratory Results Semi-annual Monitoring of Combined Site Stream (E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2402A50

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Semi-Annual Sampling (February 2024)

Project Received: 02/15/2024

Analytical Report reviewed & approved for release on 02/23/2024 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2402A50

Project: Semi-Annual Sampling (February 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2402A50

Project: Semi-Annual Sampling (February 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

S Surrogate recovery outside accepted recovery limits.

a2 Sample diluted due to cluttered chromatogram.

c1 Surrogate recovery outside of the control limits due to the dilution of the sample.

h1 Florisil (EPA 3620) cleanup.

Quality Control Qualifiers

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

F5 LCS/LCSD recovery is outside of acceptance limits; however, the data is acceptable based upon the TNI

allowable marginal exceedances.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 02/16/2024

Project: Semi-Annual Sampling (February 2024)

WorkOrder: 2402A50

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

Unit: $\mu g/L$

	Organochlorine Pe	Organochlorine Pesticides + PCBs w/ Florisil Clean-up									
Client ID	Lab ID	Matrix		Date Col	lected	Instrument	Batch ID				
E-001	2402A50-001D	Water		02/15/202	4 10:40	GC40 02212417.d	288088				
<u>Analytes</u>	Result		<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed				
Aldrin	ND		0.0028	0.010	10		02/21/2024 13:12				
a-BHC	ND		0.0031	0.010	10		02/21/2024 13:12				
b-BHC	ND		0.0069	0.010	10		02/21/2024 13:12				
d-BHC	ND		0.0014	0.010	10		02/21/2024 13:12				
g-BHC	ND		0.0045	0.010	10		02/21/2024 13:12				
Chlordane (Technical)	ND		0.023	0.20	10		02/21/2024 13:12				
p,p-DDD	ND		0.0011	0.010	10		02/21/2024 13:12				
p,p-DDE	ND		0.0018	0.010	10		02/21/2024 13:12				
p,p-DDT	ND		0.0017	0.010	10		02/21/2024 13:12				
Dieldrin	ND		0.0014	0.010	10		02/21/2024 13:12				
Endosulfan I	ND		0.0011	0.010	10		02/21/2024 13:12				
Endosulfan II	ND		0.0046	0.010	10		02/21/2024 13:12				
Endosulfan sulfate	ND		0.0033	0.020	10		02/21/2024 13:12				
Endrin	ND		0.0018	0.010	10		02/21/2024 13:12				
Endrin aldehyde	ND		0.0053	0.010	10		02/21/2024 13:12				
Heptachlor	ND		0.0041	0.010	10		02/21/2024 13:12				
Heptachlor epoxide	ND		0.0025	0.010	10		02/21/2024 13:12				
Toxaphene	ND		0.020	0.20	10		02/21/2024 13:12				
Aroclor1016	ND		0.019	0.20	10		02/21/2024 13:12				
Aroclor1221	ND		0.024	0.20	10		02/21/2024 13:12				
Aroclor1232	ND		0.038	0.20	10		02/21/2024 13:12				
Aroclor1242	ND		0.028	0.20	10		02/21/2024 13:12				
Aroclor1248	ND		0.018	0.20	10		02/21/2024 13:12				
Aroclor1254	ND		0.015	0.20	10		02/21/2024 13:12				
Aroclor1260	ND		0.028	0.20	10		02/21/2024 13:12				
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>							
Decachlorobiphenyl	111			60-130	ı		02/21/2024 13:12				
Analyst(s): CN			<u>An</u>	alytical Co	mments: a	2,h1					

Analytical Report

Client:PG&E Gateway Generating StationWorkOrder:2402A50Date Received:02/15/2024 13:38Extraction Method:E624.1Date Prepared:02/16/2024Analytical Method:E624.1

Project: Semi-Annual Sampling (February 2024) Unit: μg/L

Acrolein, Acrylonitrile, & 2-Chloroethyl Vinyl Ether										
Client ID	Lab ID	Matrix		Date Co	llected	Instrument	Batch ID			
E-001	2402A50-001B	Water		02/15/202	4 10:40	GC10 02162407.D	288149			
<u>Analytes</u>	Result		MDL	<u>RL</u>	<u>DF</u>		Date Analyzed			
Acrolein (Propenal)	ND		3.7	5.0	1		02/16/2024 13:25			
Acrylonitrile	ND		0.27	2.0	1		02/16/2024 13:25			
2-Chloroethyl Vinyl Ether	ND		0.52	1.0	1		02/16/2024 13:25			
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>						
Dibromofluoromethane	101			70-130)		02/16/2024 13:25			
Analyst(s): PRE										

ND

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 02/16/2024

Project: Semi-Annual Sampling (February 2024)

WorkOrder: 2402A50

Extraction Method: E624.1

Analytical Method: E624.1 **Unit:** µg/L

	1	Volatile	Orga	nics			
Client ID	Lab ID	Matrix		Date Col	lected	Instrument	Batch ID
E-001	2402A50-001A	Water		02/15/2024	1 10:40	GC16 02162416.D	288093
<u>Analytes</u>	Result		MDL	<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene	ND		0.034	0.20	1		02/16/2024 17:15
Bromodichloromethane	1.9		0.022	0.050	1		02/16/2024 17:15
Bromoform	0.52		0.10	0.50	1		02/16/2024 17:15
Bromomethane	ND		0.26	0.50	1		02/16/2024 17:15
Carbon tetrachloride	ND		0.033	0.050	1		02/16/2024 17:15
Chlorobenzene	ND		0.092	0.50	1		02/16/2024 17:15
Chloroethane	ND		0.23	0.50	1		02/16/2024 17:15
Chloroform	1.1		0.015	0.10	1		02/16/2024 17:15
Chloromethane	ND		0.18	0.50	1		02/16/2024 17:15
Dibromochloromethane	1.5		0.069	0.15	1		02/16/2024 17:15
1,2-Dichlorobenzene	ND		0.11	0.50	1		02/16/2024 17:15
1,3-Dichlorobenzene	ND		0.12	0.50	1		02/16/2024 17:15
1,4-Dichlorobenzene	ND		0.11	0.50	1		02/16/2024 17:15
1,1-Dichloroethane	ND		0.14	0.50	1		02/16/2024 17:15
1,2-Dichloroethane (1,2-DCA)	ND		0.011	0.020	1		02/16/2024 17:15
1,1-Dichloroethene	ND		0.0036	0.010	1		02/16/2024 17:15
trans-1,2-Dichloroethene	ND		0.12	0.50	1		02/16/2024 17:15

0.029

0.13

0.20

0.14

0.75

0.018

0.028

0.096

0.14

0.026

0.030

0.13

0.0027

0.20

0.50

0.50

0.50

2.0

0.020

0.20

0.50

0.50

0.20

0.50

0.50

0.0050

1

1

1

1

1

1

1

1

1

1,2-Dichloropropane

Ethylbenzene

Toluene

Methylene chloride

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

02/16/2024 17:15

Analytical Report

Client: PG&E Gateway Generating Station V

Date Received: 02/15/2024 13:38

Date Prepared: 02/16/2024

Project: Semi-Annual Sampling (February 2024)

WorkOrder: 2402A50 Extraction Method: E624.1

Analytical Method: E624.1

Unit: $\mu g/L$

Volatile Organics										
Client ID	Lab ID	Matrix		Date Col	llected	Instrument	Batch ID			
E-001	2402A50-001A	Water		02/15/202	4 10:40	GC16 02162416.D	288093			
<u>Analytes</u>	Result	<u>N</u>	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed			
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>						
Dibromofluoromethane	102			70-130)		02/16/2024 17:15			
Toluene-d8	101			70-130)		02/16/2024 17:15			
4-BFB	83			70-130			02/16/2024 17:15			

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 02/16/2024

Project: Semi-Annual Sampling (February 2024)

WorkOrder: 2402A50

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

	Ser	ni-Volat	tile Or	ganics			
Client ID	Lab ID	Matrix		Date Coll	ected	Instrument	Batch ID
E-001	2402A50-001C	Water		02/15/2024	10:40	GC47 02202416.D	288041
Analytes	<u>Result</u>	Qualifiers	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Acenaphthene	0.021	J	0.014	0.024	5		02/20/2024 16:30
Acenaphthylene	ND		0.0085	0.024	5		02/20/2024 16:30
Anthracene	ND		0.0095	0.024	5		02/20/2024 16:30
Benzidine	ND		13	24	5		02/20/2024 16:30
Benzo (a) anthracene	ND		0.095	0.24	5		02/20/2024 16:30
Benzo (a) pyrene	ND		0.024	0.024	5		02/20/2024 16:30
Benzo (b) fluoranthene	ND		0.025	0.047	5		02/20/2024 16:30
Benzo (g,h,i) perylene	ND		0.019	0.047	5		02/20/2024 16:30
Benzo (k) fluoranthene	ND		0.024	0.047	5		02/20/2024 16:30
Bis (2-chloroethoxy) Methane	ND		2.4	4.7	5		02/20/2024 16:30
Bis (2-chloroethyl) Ether	ND		0.024	0.024	5		02/20/2024 16:30
Bis (2-chloroisopropyl) Ether	ND		0.023	0.047	5		02/20/2024 16:30
Bis (2-ethylhexyl) Phthalate	0.63	J	0.62	1.2	5		02/20/2024 16:30
4-Bromophenyl Phenyl Ether	ND		1.4	4.7	5		02/20/2024 16:30
Butylbenzyl Phthalate	ND		0.38	1.2	5		02/20/2024 16:30
4-Chloro-3-methylphenol	ND		2.8	4.7	5		02/20/2024 16:30
2-Chloronaphthalene	ND		2.7	4.7	5		02/20/2024 16:30
2-Chlorophenol	ND		0.17	0.24	5		02/20/2024 16:30
4-Chlorophenyl Phenyl Ether	ND		2.3	4.7	5		02/20/2024 16:30
Chrysene	0.013		0.013	0.024	5		02/20/2024 16:30
Dibenzo (a,h) anthracene	ND		0.025	0.047	5		02/20/2024 16:30
Di-n-butyl Phthalate	ND		0.37	1.2	5		02/20/2024 16:30
1,2-Dichlorobenzene	ND		2.5	4.7	5		02/20/2024 16:30
1,3-Dichlorobenzene	ND		2.8	4.7	5		02/20/2024 16:30
1,4-Dichlorobenzene	ND		2.1	4.7	5		02/20/2024 16:30
3,3-Dichlorobenzidine	ND		0.029	0.047	5		02/20/2024 16:30
2,4-Dichlorophenol	0.049		0.027	0.047	5		02/20/2024 16:30
Diethyl Phthalate	ND		0.10	0.24	5		02/20/2024 16:30
2,4-Dimethylphenol	ND		2.5	4.7	5		02/20/2024 16:30
Dimethyl Phthalate	ND		0.028	0.047	5		02/20/2024 16:30
4,6-Dinitro-2-methylphenol	ND		18	24	5		02/20/2024 16:30
2,4-Dinitrophenol	ND		3.2	4.7	5		02/20/2024 16:30
2,4-Dinitrotoluene	ND		0.13	0.24	5		02/20/2024 16:30
2,6-Dinitrotoluene	ND		0.14	0.24	5		02/20/2024 16:30
Di-n-octyl Phthalate	ND		5.7	12	5		02/20/2024 16:30
1,2-Diphenylhydrazine	ND		2.0	4.7	5		02/20/2024 16:30

(Cont.)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38 **Date Prepared:** 02/16/2024

Project: Semi-Annual Sampling (February 2024)

WorkOrder: 2402A50

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

	Sei	ni-Volati	le Or	ganics			
Client ID	Lab ID	Matrix		Date Colle	ected	Instrument	Batch ID
E-001	2402A50-001C	Water		02/15/2024	10:40	GC47 02202416.D	288041
Analytes	<u>Result</u>	Qualifiers	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Fluoranthene	ND		0.018	0.047	5		02/20/2024 16:30
Fluorene	ND		0.0085	0.047	5		02/20/2024 16:30
Hexachlorobenzene	ND		0.0081	0.024	5		02/20/2024 16:30
Hexachlorobutadiene	ND		0.0052	0.024	5		02/20/2024 16:30
Hexachlorocyclopentadiene	ND		11	24	5		02/20/2024 16:30
Hexachloroethane	ND		0.016	0.047	5		02/20/2024 16:30
Indeno (1,2,3-cd) pyrene	ND		0.033	0.047	5		02/20/2024 16:30
Isophorone	ND		2.1	4.7	5		02/20/2024 16:30
Naphthalene	ND		0.030	0.047	5		02/20/2024 16:30
Nitrobenzene	ND		2.9	4.7	5		02/20/2024 16:30
2-Nitrophenol	ND		14	24	5		02/20/2024 16:30
4-Nitrophenol	ND		17	24	5		02/20/2024 16:30
N-Nitrosodimethylamine	ND		17	24	5		02/20/2024 16:30
N-Nitrosodiphenylamine	ND		1.7	4.7	5		02/20/2024 16:30
N-Nitrosodi-n-propylamine	ND		2.8	4.7	5		02/20/2024 16:30
Pentachlorophenol	ND		0.76	1.2	5		02/20/2024 16:30
Phenanthrene	0.039		0.017	0.024	5		02/20/2024 16:30
Phenol	0.12	J	0.090	0.19	5		02/20/2024 16:30
Pyrene	0.018	J	0.013	0.024	5		02/20/2024 16:30
1,2,4-Trichlorobenzene	ND		2.5	4.7	5		02/20/2024 16:30
2,4,6-Trichlorophenol	ND		0.025	0.047	5		02/20/2024 16:30
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>		<u>Limits</u>			
2-Fluorophenol	16	S		20-103			02/20/2024 16:30
Phenol-d5	12	S		20-120			02/20/2024 16:30
Nitrobenzene-d5	22	S		61-130			02/20/2024 16:30
2-Fluorobiphenyl	26	S		63-115			02/20/2024 16:30
2,4,6-Tribromophenol	64			48-149			02/20/2024 16:30
4-Terphenyl-d14	52			32-113			02/20/2024 16:30
Analyst(s): MV			<u>An</u>	nalytical Comi	ments: c	1	

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 02/16/2024 **Date Analyzed:** 02/20/2024

Instrument: GC40
Matrix: Water

Project: Semi-Annual Sampling (February 2024)

WorkOrder: 2402A50

BatchID: 288088

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-288088

	QC Summary Report	for E608.3 w/ l	Florisil Cle	an-up		
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Aldrin	ND	0.00028	0.0010	-	-	-
a-BHC	ND	0.00031	0.0010	-	-	-
b-BHC	ND	0.00069	0.0010	=	-	-
d-BHC	ND	0.00014	0.0010	=	-	-
g-BHC	ND	0.00045	0.0010	=	-	-
Chlordane (Technical)	ND	0.0023	0.020	=	-	-
a-Chlordane	ND	0.00085	0.0010	-	-	-
g-Chlordane	ND	0.00015	0.0010	-	-	-
p,p-DDD	ND	0.00011	0.0010	=	-	-
p,p-DDE	ND	0.00018	0.0010	-	-	-
p,p-DDT	ND	0.00017	0.0010	-	-	-
Dieldrin	ND	0.00014	0.0010	-	-	-
Endosulfan I	ND	0.00011	0.0010	-	-	-
Endosulfan II	ND	0.00046	0.0010	-	-	-
Endosulfan sulfate	ND	0.00033	0.0020	-	-	-
Endrin	ND	0.00018	0.0010	-	-	-
Endrin aldehyde	ND	0.00053	0.0010	-	-	-
Endrin ketone	ND	0.00026	0.0010	=	=	-
Heptachlor	ND	0.00041	0.0010	=	=	-
Heptachlor epoxide	ND	0.00025	0.0010	=	=	-
Methoxychlor	ND	0.00012	0.0010	=	=	-
Toxaphene	ND	0.0020	0.020	=	=	-
Aroclor1016	ND	0.0019	0.020	=	=	-
Aroclor1221	ND	0.0024	0.020	-		-
Aroclor1232	ND	0.0038	0.020	=	=	-
Aroclor1242	ND	0.0028	0.020	-	-	-
Aroclor1248	ND	0.0018	0.020	-	-	-
Aroclor1254	ND	0.0015	0.020	-	-	-
Aroclor1260	ND	0.0028	0.020	-	-	-
Surrogate Recovery						
Decachlorobiphenyl	0.041			0.05	82	60-130

2402A50

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Prepared: 02/16/2024 **BatchID:** 288088 **Date Analyzed:** 02/20/2024 **Extraction Method:** E608.3/SW3620B

GC40 **Instrument: Analytical Method:** E608.3 **Matrix:** Unit: Water

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288088

QC Summary Report for E608.3 w/ Florisil Clean-up

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.048	0.045	0.050	95	89	54-130	6.46	20
a-BHC	0.045	0.042	0.050	89	84	70-130	5.62	20
b-BHC	0.043	0.041	0.050	87	81	70-130	6.71	20
d-BHC	0.045	0.042	0.050	89	83	70-130	7.04	20
g-BHC	0.036	0.034	0.050	73	69	60-130	5.37	20
a-Chlordane	0.045	0.042	0.050	90	84	55-130	6.92	20
g-Chlordane	0.052	0.048	0.050	104	97	55-130	7.07	20
p,p-DDD	0.044	0.041	0.050	89	83	70-130	7.04	20
p,p-DDE	0.043	0.040	0.050	85	79	70-130	7.12	20
p,p-DDT	0.048	0.043	0.050	96	86	70-130	10.4	20
Dieldrin	0.049	0.046	0.050	99	93	70-130	6.41	20
Endosulfan I	0.050	0.047	0.050	100	94	70-130	6.47	20
Endosulfan II	0.048	0.045	0.050	96	89	70-130	6.99	20
Endosulfan sulfate	0.045	0.042	0.050	90	83	70-130	7.58	20
Endrin	0.059	0.055	0.050	118	110	70-130	7.18	20
Endrin aldehyde	0.034	0.032	0.050	69	63	60-130	8.02	20
Endrin ketone	0.039	0.036	0.050	78	73	60-130	6.73	20
Heptachlor	0.049	0.046	0.050	98	92	43-130	6.05	20
Heptachlor epoxide	0.046	0.043	0.050	91	86	70-130	6.63	20
Methoxychlor	0.051	0.047	0.050	102	93	70-130	8.67	20
Aroclor1016	0.14	0.14	0.15	93	95	70-130	2.55	20
Aroclor1260	0.14	0.14	0.15	92	94	70-130	2.56	20
Surrogate Recovery								
Decachlorobiphenyl	0.052	0.049	0.050	104	97	60-130	7.06	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2402A50Date Prepared:02/16/2024BatchID:288149Date Analyzed:02/16/2024Extraction Method:E624.1

Instrument: GC10

Matrix: Water

Database Method: E624.1

Mult: µg/L

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288149

QC Summary Report for E624.1									
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC		MB SS Limits
Acrolein (Propenal)	ND		3.7	5.0		-	-		-
Acrylonitrile	ND		0.27	2.0		-	-		-
2-Chloroethyl Vinyl Ether	ND		0.52	1.0		-	-		-
Surrogate Recovery									
Dibromofluoromethane	25					25	102		70-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acrolein (Propenal)	18	18	20	90	91	71-140	1.71	20
Acrylonitrile	18	18	20	88	92	67-145	3.67	20
2-Chloroethyl Vinyl Ether	18	19	20	92	93	70-124	0.834	20
Surrogate Recovery								
Dibromofluoromethane	25	25	25	101	100	70-130	0.359	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2402A50Date Prepared:02/16/2024BatchID:288093Date Analyzed:02/16/2024Extraction Method:E624.1

Instrument: GC16

Matrix: Water

Extraction Method: E624.1

Analytical Method: E624.1

Unit: µg/L

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288093

	QC Summar	ry Report for	E624.1			
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Benzene	ND	0.034	0.20	-	-	-
Bromodichloromethane	ND	0.022	0.050	-	-	-
Bromoform	ND	0.10	0.50	-	=	-
Bromomethane	ND	0.26	0.50	-	=	-
Carbon tetrachloride	ND	0.033	0.050	-	=	-
Chlorobenzene	ND	0.092	0.50	-	=	-
Chloroethane	ND	0.23	0.50	-	-	-
Chloroform	ND	0.015	0.10	-	-	-
Chloromethane	ND	0.18	0.50	-	-	-
Dibromochloromethane	ND	0.069	0.15	-	-	-
1,2-Dichlorobenzene	ND	0.11	0.50	-	-	-
1,3-Dichlorobenzene	ND	0.12	0.50	-	-	-
1,4-Dichlorobenzene	ND	0.11	0.50	-	-	-
1,1-Dichloroethane	ND	0.14	0.50	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.011	0.020	-	-	-
1,1-Dichloroethene	ND	0.0036	0.010	-	-	-
trans-1,2-Dichloroethene	ND	0.12	0.50	-	-	-
1,2-Dichloropropane	ND	0.029	0.20	-	-	-
cis-1,3-Dichloropropene	ND	0.13	0.50	-	-	-
trans-1,3-Dichloropropene	ND	0.20	0.50	-	-	-
Ethylbenzene	ND	0.14	0.50	-	-	-
Methylene chloride	ND	0.75	2.0	-	-	-
1,1,2,2-Tetrachloroethane	ND	0.018	0.020	-	-	-
Tetrachloroethene	ND	0.028	0.20	-	-	-
Toluene	ND	0.096	0.50	-	-	-
1,1,1-Trichloroethane	ND	0.14	0.50	-	-	-
1,1,2-Trichloroethane	ND	0.026	0.20	-	-	-
Trichloroethene	ND	0.030	0.50	-	-	=
Trichlorofluoromethane	ND	0.13	0.50	-	-	-
Vinyl chloride	ND	0.0027	0.0050	-	-	-
Surrogate Recovery						
Dibromofluoromethane	25			25	100	70-130
Toluene-d8	26			25	103	70-130
4-BFB	2.2			2.5	88	70-130

2402A50

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

 Date Prepared:
 02/16/2024
 BatchID:
 288093

 Date Analyzed:
 02/16/2024
 Extraction Method:
 E624.1

 Instrument:
 GC16
 Analytical Method:
 E624.1

 Matrix:
 Water
 Unit:
 μg/L

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288093

QC Summary Report for E624.1

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Benzene	3.4	3.3	4	85	82	65-130	4.19	20
Bromodichloromethane	3.6	3.5	4	89	87	60-130	2.20	20
Bromoform	3.2	3.2	4	81	79	70-130	2.53	20
Bromomethane	5.2	4.7	4	130	118	50-130	9.67	20
Carbon tetrachloride	3.9	3.8	4	99	95	70-130	3.64	20
Chlorobenzene	3.8	3.7	4	96	93	65-130	3.39	20
Chloroethane	4.5	4.5	4	114	112	60-140	1.24	20
Chloroform	3.7	3.6	4	94	91	70-130	3.40	20
Chloromethane	4.4	4.0	4	110	101	50-130	7.87	20
Dibromochloromethane	3.2	3.0	4	79	75	70-130	4.59	20
1,2-Dichlorobenzene	3.4	3.3	4	86	82	65-130	4.18	20
1,3-Dichlorobenzene	4.1	3.8	4	101	95	70-130	6.18	20
1,4-Dichlorobenzene	3.7	3.6	4	93	89	65-130	3.96	20
1,1-Dichloroethane	3.8	3.7	4	96	92	70-130	3.43	20
1,2-Dichloroethane (1,2-DCA)	3.3	3.2	4	82	79	70-130	2.91	20
1,1-Dichloroethene	4.9	3.7	4	123	93	60-130	28.2,F2	20
trans-1,2-Dichloroethene	4.1	3.8	4	101	94	70-130	7.61	20
1,2-Dichloropropane	3.6	3.5	4	89	86	60-130	2.93	20
cis-1,3-Dichloropropene	3.6	3.5	4	91	87	60-130	4.28	20
trans-1,3-Dichloropropene	3.6	3.5	4	91	88	60-130	2.81	20
Ethylbenzene	4.0	3.7	4	99	93	60-130	6.18	20
Methylene chloride	4.4	3.4	4	111	84	60-130	27.8,F2	20
1,1,2,2-Tetrachloroethane	3.3	3.3	4	82	82	60-130	0.121	20
Tetrachloroethene	4.0	3.8	4	100	94	70-130	6.26	20
Toluene	4.0	3.7	4	100	93	70-130	6.98	20
1,1,1-Trichloroethane	3.6	4.1	4	90	103	70-130	13.6	20
1,1,2-Trichloroethane	3.6	3.4	4	90	85	70-130	5.58	20
Trichloroethene	3.8	3.6	4	96	91	65-130	5.45	20
Trichlorofluoromethane	5.2	4.9	4	131,F2	123	60-130	6.11	20
Vinyl chloride	2.4	2.3	2	122	117	60-130	4.52	20
Surrogate Recovery								
Dibromofluoromethane	25	25	25	100	101	70-130	1.64	20
Toluene-d8	26	26	25	103	102	70-130	1.08	20
4-BFB	2.3	2.4	2.5	92	95	70-130	2.27	20

Quality Control Report

Client: PG&E Gateway Generating Station

WorkOrder: 2402A50 **Date Prepared:** 02/16/2024 **BatchID:** 288041 **Date Analyzed:** 02/16/2024 **Extraction Method:** E625.1 **Instrument:** GC21 **Analytical Method:** E625.1 **Matrix:** Unit: Water

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288041

QC Summary Report for E625.1

Ameliata	MD	MDI		001/	MD 00	WD 00
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Acenaphthene	ND	0.0029	0.0050	-	-	-
Acenaphthylene	ND	0.0018	0.0050	-	-	-
Anthracene	ND	0.0020	0.0050	-	-	-
Benzidine	ND	2.7	5.0	-	-	-
Benzo (a) anthracene	ND	0.020	0.050	-	-	-
Benzo (a) pyrene	ND	0.0050	0.0050	-	-	-
Benzo (b) fluoranthene	ND	0.0053	0.010	-	-	-
Benzo (g,h,i) perylene	ND	0.0039	0.010	-	-	-
Benzo (k) fluoranthene	ND	0.0050	0.010	-	-	-
Benzyl Alcohol	ND	1.9	5.0	-	-	-
Bis (2-chloroethoxy) methane	ND	0.51	1.0	-	-	-
Bis (2-chloroethyl) ether	ND	0.0050	0.0050	-	-	-
Bis (2-chloroisopropyl) ether	ND	0.0049	0.010	-	-	-
Bis (2-ethylhexyl) Adipate	ND	0.79	1.0	-	-	-
Bis (2-ethylhexyl) Phthalate	ND	0.13	0.25	-	-	-
4-Bromophenyl phenyl ether	ND	0.29	1.0	-	-	-
Butylbenzyl Phthalate	ND	0.081	0.25	-	-	-
4-Chloroaniline	ND	0.0020	0.0050	-	-	-
4-Chloro-3-methylphenol	ND	0.59	1.0	-	-	-
2-Chloronaphthalene	ND	0.56	1.0	-	-	-
2-Chlorophenol	ND	0.036	0.050	-	-	-
4-Chlorophenyl phenyl ether	ND	0.49	1.0	-	-	-
Carbazole	ND	0.42	1.0	-	-	-
Chrysene	ND	0.0027	0.0050	-	-	-
Dibenzo (a,h) anthracene	ND	0.0052	0.010	-	-	-
n-Decane	ND	0.69	1.0	-	-	-
Dibenzofuran	ND	0.0014	0.0050	-	-	-
Di-n-butyl phthalate	ND	0.078	0.25	-	-	-
1,2-Dichlorobenzene	ND	0.53	1.0	-	-	-
1,3-Dichlorobenzene	ND	0.59	1.0	-	-	-
1,4-Dichlorobenzene	ND	0.44	1.0	-	-	-
3,3-Dichlorobenzidine	ND	0.0062	0.010	-	-	-
2,4-Dichlorophenol	ND	0.0056	0.010	-	-	-
2,6-Dichlorophenol	ND	0.034	0.050	=	-	-
Diethyl phthalate	ND	0.021	0.050	-	-	-
2,4-Dimethylphenol	ND	0.53	1.0	-	-	-
	ND	0.0059	0.010	-		_
Dimethyl phthalate	ND	0.0039	0.010			-

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 2402A50

Date Prepared: 02/16/2024 BatchID: 288041

Date Analyzed:02/16/2024Extraction Method:E625.1Instrument:GC21Analytical Method:E625.1Matrix:WaterUnit:μg/L

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288041

OC Summary Report for E625.1

Analyte	МВ	MDL	RL	SPK	MB SS	MB SS
	Result			Val	%REC	Limits
2,4-Dinitrophenol	ND	0.68	1.0	-	-	-
2,4-Dinitrotoluene	ND	0.027	0.050	-	-	-
2,6-Dinitrotoluene	ND	0.030	0.050	-	-	-
Di-n-octyl phthalate	ND	1.2	2.5	-	-	-
1,2-Diphenylhydrazine	ND	0.42	1.0	-	-	-
Fluoranthene	ND	0.0038	0.010	-	-	-
Fluorene	ND	0.0018	0.010	-	-	-
Hexachlorobenzene	ND	0.0017	0.0050	-	-	-
Hexachlorobutadiene	ND	0.0011	0.0050	-	-	-
Hexachlorocyclopentadiene	ND	2.3	5.0	-	-	-
Hexachloroethane	ND	0.0034	0.010	-	-	-
Indeno (1,2,3-cd) pyrene	ND	0.0070	0.010	-	-	-
1-Methylnaphthalene	ND	0.0021	0.0050	-	-	-
Isophorone	ND	0.45	1.0	-	-	-
2-Methylnaphthalene	ND	0.0022	0.0050	-	-	-
2-Methylphenol (o-cresol)	ND	0.63	1.0	-	-	-
3 & 4-Methylphenol (m,p-Cresol)	ND	0.70	1.0	-	-	-
Naphthalene	ND	0.0063	0.010	-	-	-
2-Nitroaniline	ND	3.0	5.0	-	-	-
3-Nitroaniline	ND	3.9	5.0	-	-	-
4-Nitroaniline	ND	2.4	5.0	-	-	-
Nitrobenzene	ND	0.61	1.0	-	-	-
2-Nitrophenol	ND	3.0	5.0	-	-	-
4-Nitrophenol	ND	3.6	5.0	-	-	-
N-Nitrosodimethylamine	ND	3.6	5.0	-	-	-
N-Nitrosodiphenylamine	ND	0.36	1.0	-	-	-
N-Nitrosodi-n-propylamine	ND	0.60	1.0	-	-	-
n-Octadecane	ND	0.54	1.0	-	-	-
Pentachlorophenol	ND	0.16	0.25	-	-	-
Phenanthrene	ND	0.0036	0.0050	-	-	-
Phenol	ND	0.019	0.040	-	-	-
Pyrene	ND	0.0028	0.0050	-	-	-
Pyridine	ND	0.89	1.0	-	-	-
1,2,4-Trichlorobenzene	ND	0.52	1.0	-	-	-
2,4,5-Trichlorophenol	ND	0.0064	0.010	-	-	-
2,4,6-Trichlorophenol	ND	0.0053	0.010	-	-	-

Water

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:2402A50Date Prepared:02/16/2024BatchID:288041Date Analyzed:02/16/2024Extraction Method:E625.1Instrument:GC21Analytical Method:E625.1

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288041

QC Summary Report for E625.1										
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits				
Surrogate Recovery										
2-Fluorophenol	4.9			5	98	20-103				
Phenol-d5	4.6			5	92	20-120				
Nitrobenzene-d5	5.6			5	111	61-130				
2-Fluorobiphenyl	4.4			5	88	63-115				
2,4,6-Tribromophenol	6.5			5	129	48-149				
4-Terphenyl-d14	4.1			5	82	32-113				

Matrix:

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2402A50Date Prepared:02/16/2024BatchID:288041Date Analyzed:02/16/2024Extraction Method:E625.1Instrument:GC21Analytical Method:E625.1

Matrix: Water Unit: μg/l

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288041

QC Summary Report for E625.1

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acenaphthene	0.21	0.22	0.25	86	87	60-132	1.91	25
Acenaphthylene	0.20	0.21	0.25	82	86	54-126	5.05	25
Anthracene	0.23	0.24	0.25	93	97	60-130	3.82	25
Benzidine	8.3	8.6	25	33	34	20-130	3.68	25
Benzo (a) anthracene	0.26	0.27	0.25	106	107	60-130	1.02	25
Benzo (a) pyrene	0.27	0.27	0.25	106	107	60-130	0.711	25
Benzo (b) fluoranthene	0.24	0.25	0.25	95	100	60-130	4.29	25
Benzo (g,h,i) perylene	0.26	0.25	0.25	102	98	50-130	3.93	25
Benzo (k) fluoranthene	0.29	0.29	0.25	116	116	60-130	0.0564	25
Benzyl Alcohol	20	22	25	81	87	60-130	6.54	25
Bis (2-chloroethoxy) methane	4.2	4.4	5	84	87	65-130	4.26	25
Bis (2-chloroethyl) ether	0.18	0.18	0.25	73	74	60-130	0.921	25
Bis (2-chloroisopropyl) ether	0.19	0.20	0.25	74	80	63-139	7.89	25
Bis (2-ethylhexyl) Adipate	4.7	4.9	5	94	98	60-130	4.23	25
Bis (2-ethylhexyl) Phthalate	0.24	0.24	0.25	98	97	60-130	0.875	25
4-Bromophenyl phenyl ether	4.6	4.8	5	92	96	65-120	3.35	25
Butylbenzyl Phthalate	0.28	0.29	0.25	112	116	60-140	3.41	25
4-Chloroaniline	0.19	0.20	0.25	76	81	60-130	6.66	25
4-Chloro-3-methylphenol	5.2	5.4	5	103	108	65-130	4.67	25
2-Chloronaphthalene	4.5	4.7	5	90	94	65-120	4.31	25
2-Chlorophenol	0.19	0.20	0.25	75	79	60-130	6.18	25
4-Chlorophenyl phenyl ether	4.5	4.6	5	90	93	65-130	2.95	25
Carbazole	4.8	5.0	5	96	100	70-130	3.81	25
Chrysene	0.26	0.27	0.25	105	107	70-130	1.84	25
Dibenzo (a,h) anthracene	0.25	0.24	0.25	99	95	50-130	4.34	25
n-Decane	3.7	3.8	5	74	76	30-130	2.53	25
Dibenzofuran	0.24	0.25	0.25	94	98	65-130	4.06	25
Di-n-butyl phthalate	0.26	0.26	0.25	103	103	60-130	0.165	25
1,2-Dichlorobenzene	4.2	4.2	5	85	84	60-130	0.332	25
1,3-Dichlorobenzene	3.9	4.0	5	79	79	60-130	0.745	25
1,4-Dichlorobenzene	4.2	4.2	5	83	83	60-130	0.00721	25
3,3-Dichlorobenzidine	0.29	0.29	0.25	115	117	60-130	1.32	25
2,4-Dichlorophenol	0.26	0.26	0.25	103	106	53-122	2.68	25
Diethyl phthalate	0.22	0.23	0.25	88	90	65-130	2.31	25
2,4-Dimethylphenol	5.3	5.2	5	105	103	60-130	1.78	25
Dimethyl phthalate	0.21	0.21	0.25	82	86	60-130	4.27	25
4,6-Dinitro-2-methylphenol	26	28	25	105	114	60-130	8.37	25
2,4-Dinitrophenol	3.8	4.0	5	75	79	50-130	5.31	25
•								

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2402A50Date Prepared:02/16/2024BatchID:288041Date Analyzed:02/16/2024Extraction Method:E625.1

Instrument: GC21 Analytical Method: E625.1
Matrix: Water Unit: µg/L

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288041

OC Summary Report for E625.1

	QC Sui	шпагу к	eport for E	.023.1				
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
2,4-Dinitrotoluene	0.35	0.36	0.25	139,F5	145,F5	70-130	4.22	25
2,6-Dinitrotoluene	0.28	0.29	0.25	112	118	68-137	5.35	25
Di-n-octyl phthalate	5.2	5.5	5	104	111	70-130	6.86	25
1,2-Diphenylhydrazine	4.8	4.9	5	95	98	65-130	2.37	25
Fluoranthene	0.27	0.27	0.25	108	109	65-130	1.03	25
Fluorene	0.22	0.23	0.25	89	92	70-120	3.11	25
Hexachlorobenzene	0.22	0.23	0.25	89	92	60-130	2.86	25
Hexachlorobutadiene	0.19	0.19	0.25	77	76	68-130	0.964	25
Hexachlorocyclopentadiene	18	18	25	70	70	50-130	0.256	25
Hexachloroethane	0.19	0.20	0.25	76	79	55-120	2.84	25
Indeno (1,2,3-cd) pyrene	0.26	0.26	0.25	104	103	50-130	0.974	25
1-Methylnaphthalene	0.21	0.22	0.25	85	88	65-130	2.59	25
Isophorone	3.4	3.5	5	68	71	52-130	4.59	25
2-Methylnaphthalene	0.21	0.22	0.25	85	89	60-130	4.55	25
2-Methylphenol (o-cresol)	4.8	4.6	5	96	93	60-130	3.04	25
3 & 4-Methylphenol (m,p-Cresol)	4.9	5.1	5	98	101	60-130	3.34	25
Naphthalene	0.19	0.20	0.25	78	79	70-130	1.65	25
2-Nitroaniline	26	26	25	102	105	65-130	2.39	25
3-Nitroaniline	28	29	25	112	117	70-140	4.11	25
4-Nitroaniline	28	29	25	112	117	70-130	4.52	25
Nitrobenzene	5.2	5.3	5	104	107	60-130	2.56	25
2-Nitrophenol	26	27	25	104	109	70-130	4.00	25
4-Nitrophenol	30	30	25	120	122	30-130	1.78	25
N-Nitrosodimethylamine	19	19	25	77	78	30-130	0.799	25
N-Nitrosodiphenylamine	4.5	4.7	5	91	94	65-130	3.46	25
N-Nitrosodi-n-propylamine	3.8	4.1	5	76	83	59-130	8.38	25
n-Octadecane	5.0	5.0	5	99	101	60-130	1.16	25
Pentachlorophenol	1.6	1.6	1.25	124	129	60-130	3.36	25
Phenanthrene	0.23	0.24	0.25	93	95	65-120	1.99	25
Phenol	0.88	0.89	1	88	89	48-120	1.92	25
Pyrene	0.26	0.27	0.25	103	106	70-120	3.27	25
Pyridine	3.1	3.1	5	62	63	30-130	0.918	25
1,2,4-Trichlorobenzene	4.3	4.4	5	86	87	57-130	1.16	25
2,4,5-Trichlorophenol	0.24	0.25	0.25	95	99	65-130	3.36	25
2,4,6-Trichlorophenol	0.23	0.24	0.25	91	97	69-130	6.53	25

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2402A50Date Prepared:02/16/2024BatchID:288041Date Analyzed:02/16/2024Extraction Method:E625.1Instrument:GC21Analytical Method:E625.1

Matrix: Water Unit: µ

Project: Semi-Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288041

QC Summary Report for E625.1										
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit		
Surrogate Recovery										
2-Fluorophenol	3.9	4.0	5	79	80	20-103	1.91	25		
Phenol-d5	4.2	4.4	5	84	88	20-120	3.92	25		
Nitrobenzene-d5	5.2	5.4	5	104	107	61-130	3.24	25		
2-Fluorobiphenyl	4.3	4.2	5	86	85	63-115	1.86	25		
2,4,6-Tribromophenol	6.6	6.4	5	132	128	48-149	3.20	25		
4-Terphenyl-d14	3.8	3.6	5	76	72	32-113	4.92	25		

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262

☐ WaterTrax CLIP **EQuIS**

WorkOrder: 2402A50 ClientCode: PGEA Dry-Weight **✓** Email

□HardCopy

☐ThirdParty

J-flag

□ EDF Detection Summary

Bill to:

Excel

Requested TAT:

5 days;

Angel Espiritu

Report to:

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

(925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: T1WY@pge.com; MSFG@pge.com; APSD

PO:

Project: Semi-Annual Sampling (February 2024) Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Date Received:

02/15/2024

Date Logged: 02/15/2024

				Г	Requested Tests (See legend below)											
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2402A50-001	E-001	Water	2/15/2024 10:40		D	Α	В	С	Α							

Test Legend:

1	608_W
5	PRDisposal Fee
9	

2	624_W
6	
10	

3	624ACR+2CEVE_W
7	
11	

4	625_SCSM_W
8	
12	

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (February 2024) Work Order: 2402A50

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 2/15/2024

	Water	Trax CLIP	EDF Exc	el EQu	IS ✓Ema	ail HardCopy	Third	Party √ J-flaç	J	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head Space V	Dry- Collection Date Weight & Time	TAT	Test Due Date	Sediment Content	Sub Out
001A E-001	Water	E624.1 (VOCs) <1,1,1-Trichloroet 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane Dichloroethane, 1,2-Dichloroethane 1,2-Dichloroethane (1,2-DCA), 1,2-Dichloropropane, 1,3-Dichloroben 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Bromofor Bromomethane, Carbon tetrachloric Chlorobenzene, Chloroethane, Chloroform, Chloromethane, cis-1 Dichloropropene, Dibromochloromethane, Ethylbenz Methylene chloride, Tetrachloroeth Toluene, trans-1,2-Dichloroethene 1,3-Dichloropropene, Trichloroeth Trichlorofluoromethane, Vinyl chl	ne, 1,1- ene, 2- izene, rm, ide, ,3- zene, hene, , trans- ene,	VOA w/ HCI		2/15/2024 10:40	5 days	2/23/2024	Present	
001B E-001	Water	E624.1 (ACRO, ACRY, & 2-CEV	(E) 2	VOA, Unpres		2/15/2024 10:40	5 days	2/23/2024	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (February 2024) Work Order: 2402A50

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 2/15/2024

		Water	Trax CLIP	EDF	Exc	el EQul:	S [Email	HardCopy	Third	IParty √ J-flaç	1		
LabID	ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative		ead Dry- pace Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
001C	E-001	Water	E625.1 (SVOCs) <1,2,4- Trichlorobenzene, 1,2-Dichlor 1,2-Diphenylhydrazine, 1,3- Dichlorobenzene, 1,4-Dichlor 2,4,6-Trichlorophenol, 2,4- Dichlorophenol, 2,4-Dimethyl 2,4-Dinitrophenol, 2,4-Dinitro 2,6-Dinitrotoluene, 2- Chloronaphthalene, 2-Chlorop Nitrophenol, 3,3-Dichloroben: Dinitro-2-methylphenol, 4-Bre Phenyl Ether, 4-Chloro-3-met 4-Chlorophenyl Phenyl Ether, Nitrophenol, Acenaphthene, Acenaphthylene, Anthracene, Benzo (a) anthracene, Benzo (b) fluoranthene, Benzo (chloroethoxy) Methane, Bis (2- chloroethyl) Ether, Bis (2-	obenzene, Iphenol, otoluene, ohenol, 2- zidine, 4,6- omophenyl hylphenol, 4- Benzidine, (a) pyrene, o (g,h,i) ene, Bis (2-	1	1LA Narrow Mouth Unpres			2/15/2024 10:40	5 days	2/23/2024	Present		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (February 2024) Work Order: 2402A50

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 2/15/2024

		Water ⁻	Trax CLIP	EDF	Exce	I EQu	IS Fmail	HardCopy	Third	Party √ J-flaç)	
LabID	ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	U** Head Dry Space Weig		TAT	Test Due Date	Sediment Content	Hold Sub Out
			chloroisopropyl) Ether, I ethylhexyl) Phthalate, Br Phthalate, Chrysene, Dit anthracene, Diethyl Phth Phthalate, Di-n-butyl Ph octyl Phthalate, Fluorant Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadi Hexachloroethane, Inder pyrene, Isophorone, Nap Nitrobenzene, N-Nitroso N-Nitrosodi-n-propylam Nitrosodiphenylamine, Pentachlorophenol, Pher Phenol, Pyrene>	utylbenzyl benzo (a,h) nalate, Dimethyl thalate, Di-n- thene, Fluorene, ene, no (1,2,3-cd) shthalene, odimethylamine, tine, N-								

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (February 2024) Work Order: 2402A50

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 2/15/2024

		WaterT	「rax ☐CLIP	EDF	Exc	el EQul:	S	✓ Em	nail	HardCopy	Third	Party ✓ J-flag	J		
LabID	ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative			Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
001D E-00)1	Water	E608.3 (OC Pesticide Clean-up) <a-bhc_1 (technical)_1,="" aldehyde_1,="" aroc="" aroclor1016_1,="" aroclor1232_1,="" aroclor1248_1,="" aroclor1260_1,="" b-bh="" d-bho="" endo="" endosulfan="" endrin_heptachlor="" epoxide_p,p-ddd_1,="" i_1,="" p,p-ddh="" sulfate_1="" toxaphene_1=""></a-bhc_1>	, Aldrin_1, lor1221_1, lor1242_1, lor1254_1, HC_1, Chlordane C_1, Dieldrin_1, osulfan II_1, , Endrin 1, g-BHC_1, 1, Heptachlor_1,	1	1LA Narrow Mouth Unpres	,			2/15/2024 10:40	5 days	2/23/2024	Present		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

ALLAA NEA

				-																				i	L	10) [-450	
A	M M	cCA	MPBE					L, I	IN(C.								CHA	AII	V (OF C	UST	ΓOΙ	DY	R	E	C	ORD	
				4 WILLO												TUF	RN ARC	OUND T	ΓIN	1E		l				3			ZI
			www.mcca	mpbell.co	m Er	nail: mai	n@m												L	_		USH				8 H			DAY
	Tele	phon	e: (877) 2	52-9262		F	ax: (9	25)	252	-92	69					Geo	Tracker	· EDF			DF□ beelvic		cel					On (DW)	
Report To	: Angel Es	pirit	1	***************************************	TI	Bill To:	PG&	E Ga	tew	av				-		 	Analys	is Reque	-	<u>C</u> 1	neck II	samp	ie is e	IIIu	ent	A STATE OF THE PARTY.	100	J" flag is requi	rea
report ro	. ringer Es	PITIE	•			7111 10.		L Gu		u y							Anaiys	is reque	Jot							Ne	3111 <i>a</i>	ii no	
Company	: PG&E G	atew	ay Genera	ating Sta	tion														П	П				П	П	Т	Т		
										-						ganic	.e	lorin											
THE R. P. LEWIS CO., LANSING, MICH.	be4@pge.co		The second second second second			-	om,	APS	D(a)	pge	.co	m				e On	Volat	noch	П								-		
				361-1597 (Cell) Fax: ()								olatil	emi)	Orga	П						- 1		-						
Project Name: Semi-Annual Sampling (February 2024) Project Location: Combined Site Flow								24-V	25- S ounds	- 808 -							- 1												
	Sampler Signature: Muskan Environmental Sampling							TTO (USEPA 624-Volatile Organic Compounds)	TTO (USEPA 625- Semi Volatile Organic Compounds)	TTO (USEPA 608 – Organochlorine Pesticides and PCBs)							- 1		-										
Samplers	I	-	I	Junichta	l San	I		0	1	-			-			(USF	(USF	(USF											
		Sample Type Composite	SAMP	LING			Ma	trix	M	IET.	HOI	D PR	RESI	ERV	ED	TTO Comj	TTO Orga	TTO Pestic							- 1		-		
SAMPLE	LOCATION	Con 4		Τ	8	ners	-	Г	Н	Т	Т	_				-			\vdash	\dashv		 		\forall	\dashv	+	\dashv		
ID	/ Field Point	ype C Grab			Containers	Type Containers	Waste Water	ter	П	1	-																		
	Name	e T	Date	Time	nta	్రి	le 🛚	r Wa	۵		4	田		٦	7.											-	-		
		dun			Co #	ype	Vasi	Sewer Water	None	ICE.	H ₂ SO ₄	NaOH	HCL	HNO	Other										- 1	-	-		
E 001			<u> </u>		_	43 ml		S	4	-	7		_	П	_			<u> </u>	H	-				4	\dashv	+	4		
E-001			02/15/24	10:40	2	VOA	X		Ц	X	4		X	Ц		X								Ц	\Box	\perp	_		
E-001		G	02/15/24	10:40	2	43 ml VOA	X		X	X						Х										\perp			
E-001		G	02/15/24	10:40	1	1L Amb	X		X	X							X												
E-001		G	02/15/24	10:40	1	1L Amb	X		X	X	Т			П				X	П	П				T	П	T	T		
				P					П	\forall	\forall			П					П					\forall	寸	\top	\forall		
									П	寸	7			П					П					T	寸	T	寸		
									П	寸	T			П					H	\neg				\forall	寸	\forall	\forall		
									H	T	寸			П					П	\dashv	-			十	寸	十	\dagger		
									П	T	\forall		П	П					П	\neg				\forall	ヿ	+	\forall		
									П	T	T		П	П					П	\exists	*********			\forall	ヿ	+	7		
	-								П	T	寸			П					П	\neg				\forall	\forall	\forall	\forall		
									П	\exists	\forall			П					П	\neg				\forall	\forall	十	\forall		
Relinquished	dBy		Date:	Time:		eived By;	-	1			-					ICE/t°_	COMPANY	ON (1	20	we	Y		C	OM	MEN	NTS	:	
			2/15/21			110	~	1	~	_						HEAD	CONDITION SPACE AB	SENT				/	TTO (EPA 608), TTO (EPA 624		24),				
Relinquished	By		Date:	Time:	Rec	eived By:							DECHLORINATED IN LAB TTO (EPA 625) see APPROPRIATE CONTAINERS Appendix A and an																
Palinguisha	d D		Datas	Times	l B	alored Day		V									RVED IN I		_		_			Appendix A and analyze only l compounds			nsted		

VOAS O&G METALS OTHER

Relinquished By:

Date:

Time:

Received By:

APPENDIX A

District Local Discharge Limits include a parameter called Total Toxic Organics (TTO). The required analytical methods for TTO analysis are listed in 40 CFR Part 136 and include the following EPA methods: 624,625, 608, and 1613, respectively. Unless specifically required, EPA method 1613 for dioxins is not mandatory for routine TTO analysis. The constituents with concentrations greater than the minimum limit/reporting limit must be added together to determine compliance with the District's Local Discharge Limit for TTO of 2.0 mg/L. The following is a list of the constituents of TTO:

EPA Method 624 Compounds

Acrolein Acrylonitrile Renzene Bromodichloromethane (Dichlorobromomethane) Bromform Brommomethane (Methyl Bromide) Carbon tetrachloride (Tetrachloromethane) Chlorobenzene Chloroethane (Ethyl Chloride)
2-Chloroethyl vinyl ether
Chloroform (trichloromethane)
Chloromethane (Methyl Chloride)
Dibromochloromethane (Chlorodibromomethane) 1, 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 1-Dichloroethane 1, 2-Dichloroethane
1, 1-Dichloroethene (1, 1-dichloroethylene)
trans-1, 2-Dichloroethene
1, 2-Dichloropropane
cis-1, 3-Dichloropropene
trans-1, 3-Dichloropropene
Ethylbenzene
Mathylana Chlorida Chichloroethylene 1, 2-Dichloroethane Methylene Chloride (Dichloromethane)
1, 1, 2, 2, Tetrachloroethane Tetrachloroethene (PCE) Toluene 1, 1, 1-Trichloreothane 1, 1, 2-Trichloroethane Trichloroethene (TCE) Trichlorofluoromethane Vinyl chloride (Chloroethylene)

EPA Method 625 Compounds

Acenaphthene
Acenaphthylene
Anthracene
Benzo (a) anthracene
Benzo (a) pyrene
Benzo (b) fluoranthene
Benzo (c) fluoranthene
Benzo (c) fluoranthene
Benzo (d) fluoranthene
Benzyl butyl phthalate
bis (2-Chloroethoxy) methane
bis (2-Chloroethyl) ether
bis (2-Chloroethyl) ether
bis (2-Ethylhexyl) phthalate
4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol
2-Chloronaphthalene
2-Chlorophenyl
4-Chlorophenyl phenyl ether
Chrysene
Dibenzo (a, h) anthracene
1, 2-Dichlorobenzene
1, 3-Dichlorobenzene
1, 4-Dichlorobenzene
3, 3'-Dichlorobenzidine

2, 4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethylphthalate Di-n-butylphthalate 2, 4-Dinitirophenol 2, 4-Dinitrotoluene 6-Dinitrotoluene Di-n-octylphthalate 1.2-Diphenylhydrazine/Azo Fluoranthene Fluorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene Isophorone 2-Methyl-4, 6-dinitrophenol Naphthalene Nitrobenzene 2-Nitrophenol
4-Nitrophenol
N-Nitrosodimethylamine
N-Nitrosodiphenylamine
N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene 1, 2, 4-Trichlorobenzene 2, 4, 6-Trichlorophenol

EPA Method 608 Compounds

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4, 4'-DDD 4, 4'-DDE 4,4'DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260 Toxaphene

Sample Receipt Checklist

Client Name: Project: WorkOrder №: Carrier:	PG&E Gateway Generating Station Semi-Annual Sampling (February 2024) 2402A50 Matrix: Water Client Drop-In			Date and Time Received: Date Logged: Received by: Logged by:	2/15/2024 13:38 2/15/2024 Valerie Alfaro Valerie Alfaro
	·	Custody	/ (COC) Info	rmation	
Chain of custody		Yes	<u>√ (CCC) IIIIO</u>	No 🗆	
•	signed when relinquished and received?	Yes	✓	No 🗆	
-	agrees with sample labels?	Yes	✓	No 🗆	
-	ed by Client on COC?	Yes	✓	No 🗆	
	of collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	•	Yes	✓	No 🗆	
COC agrees with		Yes			NA 🗹
ŭ		nla Dasa	.:		
Custody spale in	stact on shipping container/cooler?	Yes	eipt Informat		NA 🗸
•	tact on sample bottles?	Yes			NA 🗹
•	ner/cooler in good condition?	Yes	<u>✓</u>	No 🗆	
•	er containers/bottles?	Yes	✓	No 🗆	
Sample containe		Yes	✓	No 🗆	
·	e volume for indicated test?	Yes	✓	No 🗌	
	Sample Preserva	tion and	Hold Time (HT) Information	
All samples rece	vived within holding time?	Yes	✓		NA 🗌
Samples Receiv	•	Yes	✓	No 🗆	
			TICE)		
Sample/Temp B	lank temperature		Temp: 0.	3°C	NA 🗌
ZHS conditional requirement (VO	analyses: VOA meets zero headspace CS, TPHg/BTEX, RSK)?	Yes	✓	No 🗆	NA 🗆
Sample labels cl	hecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🗆	NA 🗹
UCMR Samples pH tested and 537.1: 6 - 8)?	: acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗆	NA 🗹
Comments:	=======================================			=======	=======

Attachment 8d Laboratory Results Annual Monitoring of Combined Site Stream (E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2402A38

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Annual Sampling (February 2024)

Project Received: 02/15/2024

Analytical Report reviewed & approved for release on 02/23/2024 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2402A38

Project: Annual Sampling (February 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2402A38

Project: Annual Sampling (February 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

B Analyte detected in the associated Method Blank at a concentration greater than 1/10 the reported sample result.

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

S Surrogate recovery outside accepted recovery limits.

c1 Surrogate recovery outside of the control limits due to the dilution of the sample.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 02/15/2024 13:38

Date Prepared: 02/15/2024

Project: Annual Sampling (February 2024)

WorkOrder: 2402A38

Extraction Method: E300.1 **Analytical Method:** E300.1

Unit: mg/L

Inorganic Anions by IC												
Client ID	Lab ID	Matrix		Date Col	lected	Instrument	Batch ID					
E-001	2402A38-001B	Water		02/15/202	4 10:40	IC4 02162405.D	288013					
Analytes	Result		<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed					
Sulfate	74		0.76	2.0	20		02/15/2024 19:21					
Surrogates	<u>REC (%)</u>	Qualifiers		<u>Limits</u>								
Malonate	139	S		90-115			02/15/2024 19:21					
Analyst(s): TD			<u>A</u>	nalytical Co	mments: c1							

Analytical Report

Client: PG&E Gateway Generating Station

02/15/2024 13:38 **Date Received:**

Date Prepared: 02/15/2024

Project: Annual Sampling (February 2024) WorkOrder: 2402A38

Extraction Method: SM4500-S⁻² D **Analytical Method:** SM4500 S⁻² D

Unit: mg/L

Total Sulfide - S												
Client ID	Lab ID	Matri	X	Date Co	llected	Instrument	Batch ID					
E-001	2402A38-001A	Water		02/15/202	4 10:40	SPECTROPHOTOMETER2	288029					
<u>Analytes</u>	<u>Result</u>	Qualifier	s MDL	<u>RL</u>	<u>DF</u>	Date	e Analyzed					
Total Sulfide	0.067	JB	0.028	0.10	1	02/1	5/2024 15:17					

Analyst(s): IGC

Quality Control Report

 Client:
 PG&E Gateway Generating Station
 WorkOrder:
 2402A38

 Date Prepared:
 02/15/2024 - 02/16/2024
 BatchID:
 288013

 Date Applying to 1/15/2024
 02/15/2024 - 02/16/2024
 Entraction Methods - E200.1

Date Analyzed:02/15/2024 - 02/16/2024Extraction Method:E300.1Instrument:IC4Analytical Method:E300.1Matrix:WaterUnit:mg/L

Project: Annual Sampling (February 2024) Sample ID: MB/LCS/LCSD-288013

	QC Sur								
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC		IB SS imits
Sulfate	ND		0.038	0.10		-	-	-	
Surrogate Recovery									
Malonate	0.10					0.1	100	9	0-115
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Sulfate	1.0	1.0	1		102	101	85-115	0.336	20
Surrogate Recovery									
Malonate	0.10	0.10	0.10		100	100	90-115	0.236	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 02/15/2024 **Date Analyzed:** 02/15/2024

Instrument: SPECTROPHOTOMETER2

Matrix: Water

Project: Annual Sampling (February 2024)

WorkOrder: 2402A38

BatchID: 288029

Extraction Method: SM4500-S⁻² D **Analytical Method:** SM4500 S⁻² D

Unit: mg/L

Sample ID: MB/LCS/LCSD-288029

QC Summary Report For SM4500 S-2D												
Analyte	MB Result	MDL	RL									
Total Sulfide	0.071,J	0.028	0.10	-	-	-						

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Sulfide	0.52	0.52	0.50	104	104	80-120	0.386	20

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 2402A38

ClientCode: PGEA

WaterTrax CLIP EDF

 HardCopy

ThirdParty

✓ J-flag

Detection Summary

EQuIS

____Botootion outline

Excel

Bill to:

5 days;

Angel Espiritu

Report to:

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

(925) 459-7212 FAX:

Email: abe4@pge.com

cc/3rd Party: TIWY@pge.com; MSFG@pge.com; APSD

PO:

Project: Annual Sampling (February 2024)

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 Date Received:

Requested TAT:

02/15/2024

Date Logged: 02/15/2024

					Requested Tests (See legend below)											
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
										ı	ı			ı		
2402A38-001	E-001	Water	2/15/2024 10:40		В	Α	Α									

Test Legend:

1	300_1_W
5	
9	

2	PRDisposal Fee
6	
10	

3	SULFIDE_W
7	
11	

4	
8	
12	

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Annual Sampling (February 2024) Work Order: 2402A38

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 2/15/2024

	Water1	rax CLIP ED	F Exce	el <u>EQul</u>	S	✓ Em	ail	HardCopy	Third	Party J-flag	I	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative			Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out
001A E-001	Water	SM4500S2D (Total Sulfide)	1	250mL HDPE w/ NaOH+ZnAc				2/15/2024 10:40	5 days	2/23/2024	Present	
001B E-001	Water	E300.1 (Inorganic Anions) <sulfate></sulfate>	1	125mL HDPE, unprsv.				2/15/2024 10:40	5 days	2/23/2024	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

2402 A38

	75	McCAMPBELL ANALYTICAL, INC.								CHAIN OF CUSTODY RECORD																										
		141	CCA	153.	4 WILLO	IA SPI	LI II SS ROAT	CA. 1	L, I	116	~•							. .							C	_	_			K					\	
		₹	_	PIT	TSBURG,	, CA 94	4565-1701	1								1	UK	N A	TK(UU.	ND	11	M	ť		DI 1	# SH		<u></u>]				3.2
		Web	site: <u>v</u>	vww.mccai e: (877) 2:	npbell.co	<u>m</u> En		n@m ax: (9								G	ارمو	Fras	ماد	r F	DE		h	рп					HR	h v	48∶ •/ W	HR rite (72 H. On (D	R :)DA □	Y
		T CIE	рион	e: (0//) 2:	32-7202		r	8X: (>	143) 4	:52 -	.920	>			ı	•	.01		LINC		171	E		Ch	eck	if s	2001	le is	eff	s Iver	t a	nd ".]	J" flag	is re	,- anire	સ્તે
	Report ?	To: Angel I	Espiri	itu		F	Bill To:	PG&	E Ga	tew	ay										A		/sis											marl		<u> </u>
	Compar	ıy: PG&E	Gate	way Gene	rating S	tatior	a																				T				Π	1				
																											l		Ì	ļ						
	E-Mail:	abe4@pge	.com,	TIWY@	pge.com	, MSI	FG@pg	e.com	, AP	SD@	<u>Ppg</u>	e.con	1														Ì			İ		1				
	Tel: (92	5) 522-783	8, (51	0)-861-15	97(Cell)	F	Pax: ()												Ì							}									
	Project	Name: A	nnual	Samplin	<u>g (Fe)</u>	W 50	recx	<u> 202</u>	<u>, 4</u>	<u>) </u>																	1			l		1				
		Location: (+			1.			-/	Ц																	1				
	Sampler	r Signature		uskan	- 20	λγτβ	nme	لعلب	_>	<u>~~</u>	نله	Se-	- /	4	4												Ì				İ					
			posite	SAMP	LING			Ma	trix	ME	THO	D PR	ESE	RVE	o l												İ									
						4	2									_																				
	SAMPLE ID	LOCATION / Field Point	Sample Type Con Grab			S	Type Containers	ē	<u>.</u>						9	Sulfide (EPA 376.2)	Sulfate (EPA 300.1)					- }				•	-									
	עו	Name	ي جُ ا	_		Containers	1 8	Waste Water	Sewer Water						E	PA	PA															1				
			<u> </u>	Date	Time	0 0	O O	ste	er V	a	ج اج	H	ير ا	ä	3	de (E	te (E																			
			aml			1 2	T,	×	Sew	None	ICE GO	NaOH	HCL	HNO	ZincA	Sulfi	Sulfa															ł				
	E-001		_		10100	$\frac{1}{1}$	250-ml	х		+	$\frac{1}{x}$	X			고		-			-	\dashv	+	_	_		-		 - -	╁┈	-	┢	 				
X	E-001			02/15/24			poly 250-fil	ł	-	X	\	-		\vdash	-		X			-	+	\dashv				-	-	╁	 -		┼	┼				
	200.			02/15/20	10:40	├	250-filt poly / 25	10°2		7	7	├-	_	\vdash	-				-			-					-			ļ	<u> </u>	┼				
						 		<u> </u>		-	-	_			_						_	_					_	<u> </u>			L	↓				
						├	-			4	+	-			_					_	\dashv						_	<u> </u>	-	_	<u> </u>	<u> </u>				
						├		<u> </u>		-	+	-	_	\vdash	-				\vdash			-				<u> </u>		ļ	ļ		├-	—				
						—	 		-	-	_	-		\sqcup	4	_				_	\dashv	_						<u> </u>			<u> </u>	<u> </u>				
						↓	ļ					<u> </u>										_									<u> </u>	<u> </u>				
						L		.																				ļ.,								
						<u> </u>																										<u> </u>				
						<u> </u>	<u> </u>																				Ĺ									
						<u>L</u>																														
		01																																		
	Relinquist	ied By:		Date:	Time:	Rece	eived By:	$\bigcirc y$	۷.	71						ICE		2017		·		0,	ζ,	w	1				C	OMI	MEN	VTS:				
	2/15/213:38 1 ONE										CONI					_	Ì																			
	Repagnished By: Date: Time: Received By:							١			ORIN						_																			
								APPROPRIATE CONTAINERS PRESERVED IN LAB																												
	Relinquished By: Date: Time: Received By:																																			
									VOAS O&G METALS OTHER PRESERVATIONpH<2																											

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Annual Sampling (February 2024)			Date and Time Received: Date Logged: Received by:	2/15/2024 13:38 2/15/2024 Valerie Alfaro
WorkOrder №: Carrier:	2402A38 Matrix: Water Client Drop-In			Logged by:	Valerie Alfaro
	Chain of C	Custody	/ (COC) Infor	mation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
COC agrees with	Quote?	Yes		No 🗆	NA 🗹
	<u>Samp</u>	le Rece	eipt Informati	<u>on</u>	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗌	NA 🗸
Custody seals int	tact on sample bottles?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	•	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗌	
Sufficient sample	volume for indicated test?	Yes	•	No 🗆	
	Sample Preservati	ion and	Hold Time (I	HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	NA 🗆
Samples Receive	ed on Ice?	Yes	✓	No 🗌	
	(Ice Typ	e: WE	TICE)		
Sample/Temp Bl	ank temperature		Temp: 0.3	3°C	NA 🗌
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes		No 🗆	NA 🗹
UCMR Samples: pH tested and a 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine t [not applicable	ested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗆	NA 🗹
Comments:			====	=======	=======

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

July 11, 2024

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending June 30, 2024)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2024, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

This report contains all components required by the above-referenced Industrial Wastewater Discharge Permit. See the following page for a list of its contents.

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

RECEIVED

JUL 11 2024

DELTA DIABLO

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

July 11, 2024

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending June 30, 2024)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2024, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

This report contains all components required by the above-referenced Industrial Wastewater Discharge Permit. See the following page for a list of its contents..

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending June 30, 2024

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2027.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 9: Annual Flowmeter Calibration

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending June 30, 2024

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2027.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 9: Annual Flowmeter Calibration

Attachment 1 Certification Statement

Certification Statement

Name of Business: PG&E Gate

PG&E Gateway Generating Station

Address:

3225 Wilbur Avenue, Antioch, CA. 94509

Phone:

925-522-7805

Period Covered:

Period ending: June 30, 2024

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisclom Date: July 11, 2024

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun	Pretreatment
Fax # (925)756-1961	Phone: (925)756-1929
From: Tim Wisdom	
Company: Pacific Gas and Electric Company – C	Sateway Generating Station
Period Covered: Period ending June 30, 2024	
Industrial User Checklist for self –monitoring rep discharge permit issued by Delta Diablo Sanitation	- · · · · · · · · · · · · · · · · · · ·
<u>Self-monitoring reports</u>	
Flow discharge summary (Discharge Permi Calibration of flow meters, as required. (Sec Monitoring results- <u>All</u> required tests comp included, QA/QC, chain of custody (sectio	ction E.1.g.) leted, results reviewed, results on F.7.) (See Attachment 8)
Violations (if applicable)	
All wastewater discharge exceedance are re Delta Diablo was contacted. (See Additions A follow-up report on characterization re-sa Corrective actions to resolve violation: Other violations - i.e. Reporting, spills to se	al Notes below) ampling was submitted on
Other violations - i.e. Reporting, spins to se	wer, or promotted discharges
Additional Notes: None	
Significant changes	
Anticipated changes that may alter the nature, quadischarged. Planned changes shall be submitted a and shall include a detailed description of this changes.	at least 90-days prior to implementation

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

6/11/2024	6/12/2024	6/12/2024			
G	G	C24			
E-001	E-001	E-001			
Muskan	Muskan	Muskan			
Compliance	Compliance	Compliance			
Quarterly (Q2)	Quarterly (Q2)	Quarterly (Q2)			

Units: mg/L

DATE
TYPE
STATION
SMP.BY
PURPOSE

	Units:	mg/L					
<u>PARAMETERS</u>	<u>LIMITS</u>						
FLOW, DAILY (gal)	51,120						
FLOW, MONTH (gal)							
рН	6-10 s.u.	8.99					
BOD				ND(<2.0)			
COD				20			
TDS				294			
TSS				ND(<1.0)			
Arsenic	0.15			0.00074			
Cadmium	0.1			ND(<0.000061)			
Chromium	0.5			0.00033			
Copper	0.5			0.0083			
Iron				0.17			
Lead	0.5			ND(<0.00021)			
Mercury	0.003			ND(<0.00012)			
Molybdenum				0.0098			
Nickel	0.5			0.0016			
Selenium	0.25			0.00025			
Silver	0.2			ND(<0.000058)			
Zinc	1.00			0.05			
Cyanide	0.2		0.032				
Phenol	1.00		0.0042				
Ammonia	200			30			
O&G Petro/Min (E1664A w/ Silica)	100	ND(<1.1)	ND(<1.0)				
O&G Animal/Vegetable Oil	300	ND(<2.4)	ND(<2.4)				
TTO EPA 608							
TTO EPA 624							
TTO EPA 625							
TTO	2.00						
Sulfide							
Sulfate							

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel.

J - The result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data April 2024-June 2024

		Industria	l Flow						
			Did it ever			Time Meter	Did it ever		
	Instantanceus	Time Over	go over	Doily Total	Instantanceus		go over	Daily Tatal	Cita Tatal
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(mins?			(minutes)	mins?		
4/1/2024	34.4	0.0	NO	41,266	0.0	0	NO		41,266
4/2/2024	34.4	0.0	NO	47,112	24.9	0	NO	383	47,495
4/3/2024	34.7	0.0	NO	48,595	24.3	0	NO	395	48,990
4/4/2024	34.6	0.0	NO	49,008	0.0	0	NO	393	49,008
4/5/2024	34.5	0.0	NO	48,574	24.0	0	NO	428	49,000
4/6/2024	34.6	0.0	NO	42,092	0.0	0	NO	420	42,092
4/7/2024	34.5	0.0	NO	42,451	0.0	0	NO		42,451
4/8/2024	34.5	0.0	NO	37,546	23.9	0	NO	416	37,962
4/9/2024	34.6	0.0	NO	36,761	0.0	0	NO	710	36,761
4/10/2024	34.4	1.0	NO	18,513	21.7	1	NO		18,513
4/11/2024	34.8	0.0	NO	21,838	24.0	0	NO	398	22,236
4/12/2024	36.0	0.0	NO	42,458	0.0	0	NO	000	42,458
4/13/2024	34.6	0.0	NO	19,677	0.0	0	NO		19,677
4/14/2024	35.2	0.0	NO	35,419	24.3	0	NO	388	35,807
4/15/2024	34.8	0.0	NO	16,004	23.5	0	NO	382	16,386
4/16/2024	34.4	0.0	NO	31,410	19.4	0	NO	360	31,770
4/17/2024	34.5	0.0	NO	35,997	0.1	0	NO	333	35,997
4/18/2024	34.7	0.0	NO	36,890	23.5	0	NO	369	37,260
4/19/2024	35.3	0.0	NO	45,326	23.8	0	NO	377	45,703
4/20/2024	34.7	0.0	NO	22,224	0.1	0	NO	0	22,224
4/21/2024	34.8	0.0	NO	38,937	0.1	0	NO		38,937
4/22/2024	34.8	0.0	NO	18,671	23.9	0	NO	393	19,064
4/23/2024	34.5	0.0	NO	39,218	0.0	0	NO	000	39,218
4/24/2024	34.6	0.0	NO	41,844	24.8	0	NO	408	42,252
4/25/2024	34.5	0.0	NO	48,569	25.0	0	NO	409	48,978
4/26/2024	34.6	0.0	NO	31,446	0.0	0	NO		31,446
4/27/2024	34.7	0.0	NO	18,813	0.0	0	NO		18,813
4/28/2024	34.8	0.0	NO	35,016	24.5	0	NO	400	35,416
4/29/2024	34.6	0.0	NO	30,845	0.0	0	NO		30,845
4/30/2024	36.1	0.0	NO	21,854	24.0	0	NO	412	22,266
						Max D	aily Flow (Lir	nit: 51,120):	49,008
							Mo	onthly Total:	1,050,293
5/1/2024	34.5	0.0	NO	30,406	0.0	0	NO		30,406
5/2/2024	34.8	0.0	NO	28,515	24.5	0	NO	408	28,922
5/3/2024	35.0	0.0	NO	23,787	0.0	0	NO		23,787
5/4/2024	34.6	0.0	NO	15,582	0.0	0	NO		15,582
5/5/2024	34.7	0.0	NO	42,477	24.7	0	NO	417	42,894
5/6/2024	35.1	0.0	NO	16,706	0.1	0	NO	3	16,709
5/7/2024	35.5	0.0	NO	17,878	23.4	0	NO	426	18,304
5/8/2024	35.0	0.0	NO	22,788	0.0	0	NO		22,788
5/9/2024	34.5	0.0	NO	46,515	23.7	0	NO	415	46,930
5/10/2024	34.6	1.0	NO	11,036	23.6	1	NO	415	11,451
5/11/2024	34.8	0.0	NO	18,187	0.1	0	NO		18,187
5/12/2024	34.5	0.0	NO	25,714	0.1	0	NO		25,714
5/13/2024	34.7	0.0	NO	6,519	23.3	0	NO	450	6,969
5/14/2024	-0.4	0.0	NO	(1,053)	0.0	0	NO		(1,053)
5/15/2024	34.6	0.0	NO	6,411	23.5	0	NO	439	6,850
5/16/2024	34.8	0.0	NO	14,139	23.4	0	NO	388	14,528
5/17/2024	34.7	0.0	NO	22,975	0.1	0	NO		22,975
5/18/2024	34.8	0.0	NO	16,454	0.0	0	NO		16,454
5/19/2024	34.9	0.0	NO	16,428	0.0	0	NO		16,428
5/20/2024	34.8	0.0	NO	18,766	23.9		NO	413	19,178
5/21/2024	34.5	0.0	NO	6,392	0.0	0	NO		6,392

Public

PG&E Gateway Generating Station

Discharge Flow Data

April 2024-June 2024

	Industrial Flow			Sanitary Flow					
			Did it ever			Time Motor	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
5/22/2024	34.8	0.0	NO	13,708	22.7	0	NO	395	14,103
5/23/2024	34.6	0.0	NO	42,324	0.0	0	NO	393	42,324
5/24/2024	37.0	0.0	NO	20,212	23.8	0	NO	433	20,645
5/25/2024	34.6	0.0	NO	9,486	0.1	0	NO	700	9,486
5/26/2024	34.8	0.0	NO	12,388	23.8	0	NO	417	12,804
5/27/2024	34.7	0.0	NO	6,521	0.1	0	NO	1	6,522
5/28/2024	34.6	0.0	NO	6,375	0.1	0	NO		6,375
5/29/2024	34.8	0.0	NO	6,273	23.3	0	NO	401	6,673
5/30/2024	35.8	0.0	NO	23,716	22.8	0	NO	387	24,103
5/31/2024	34.7	0.0		30,728	0.0	0	NO		30,721
				,				nit: 51,120):	46,930
								onthly Total:	584,150
6/1/2024	34.5	0.0	NO	38,148	0.0	0	NO		38,139
6/2/2024	34.6	0.0	NO	19,187	23.1	0	NO	368	19,555
6/3/2024	34.8	0.0	NO	9,316	0.0	0	NO		9,305
6/4/2024	34.7	0.0	NO	19,014	24.4	0	NO	364	19,378
6/5/2024	34.5	0.0	NO	45,031	0.0	0	NO		45,025
6/6/2024	34.5	0.0	NO	48,634	24.6	0	NO	366	49,000
6/7/2024	34.5	0.0	NO	49,003	0.1	0	NO		48,990
6/8/2024	34.4	0.0	NO	28,689	0.1	2	NO		28,681
6/9/2024	34.4	0.0	NO	18,633	25.6	0	NO	364	18,997
6/10/2024	34.5	0.0	NO	35,767	0.1	0	NO	364	36,131
6/11/2024	34.7	0.0	NO	48,619	24.7	0	NO	373	48,992
6/12/2024	34.6	0.0	NO	47,508	0.0	0	NO		46,967
6/13/2024	34.5	0.0	NO	48,588	22.8	0	NO	401	48,989
6/14/2024	34.5	0.0	NO	37,660	0.0	0			37,653
6/15/2024	34.6	0.0	NO	7,390	0.0	0	NO		7,388
6/16/2024	34.6	0.0	NO	6,426	23.3	0	NO	428	6,854
6/17/2024	34.8	0.0	NO	21,425	0.0	0	NO	444	21,423
6/18/2024				29,845	23.6			414	30,259
6/19/2024		0.0	NO	48,994	0.1	0	NO		48,987
6/20/2024	34.6	0.0	NO	49,002	0.0	0	NO	205	48,993
6/21/2024	34.6	0.0	NO	48,601	25.2	0	NO	395	48,996
6/22/2024	34.9	0.0	NO NO	20,768	0.0	0	NO	 	20,749
6/23/2024 6/24/2024	34.8 35.0	0.0 0.0	NO	30,067 14,771	0.0	0	NO NO		30,056
6/25/2024	35.0	0.0	NO	14,771	23.2	0		367	14,763 14,480
6/25/2024	35.0	0.0	NO	29,682	25.7	0		378	30,060
6/27/2024	34.8	0.0	NO	36,704	0.0	0		370	36,692
6/28/2024		0.0	NO	48,609	24.7	0		380	48,989
6/29/2024		0.0	NO	41,224	0.0	0		300	41,213
6/30/2024		0.0	NO	45,313	0.0	0	NO		45,306
0/00/2024	υ-ττ	0.0	.,,	10,010	5.0			nit: 51,120):	49,000

Max Daily Flow (Limit: 51,120): 49,000

Monthly Total: 991,010

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2024**

Month	Flow (gallons)	Due Date
January		
February		
March		
April	1,050,293	7/15/2024
May	584,150	7/15/2024
June	991,010	7/15/2024
July		
August		
September		
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report April 2024 to June 2024

	WSAC Operation
Month	Hours of Operation
January-24	
February-24	
March-24	
April-24	34.92
May-24	211.83
June-24	396.58
January-24	
August-24	
September-24	
October-24	
November-24	
December-24	

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report April 2024 to June 2024

	WSAC Operation
Month	Average Daily Blowdown Cycles
January-24	
February-24	
March-24	
April-24	3.34
May-24	5.09
June-24	4.09
July-24	
August-24	
September-24	
October-24	
November-24	
December-24	

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2406738 **Amended:** 06/20/2024

Revision: 1

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (June 2024)

Project Location: Combined Site Flow

Project Received: 06/12/2024

Analytical Report reviewed & approved for release on 06/19/2024 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Revision History

Client: PG&E Gateway Generating Station WorkOrder: 2406738

Project: Quarterly Sampling (June 2024)

<u>Date</u> <u>Revision</u> <u>Reason</u>

06/20/2024 1 Reported Arsenic and Selenium

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2406738

Project: Quarterly Sampling (June 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2406738

Project: Quarterly Sampling (June 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/12/2024 11:55 **Date Prepared:** 06/14/2024-06/18/2024

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

Extraction Method: E1664A_SG **Analytical Method:** E1664A

Unit: mg/L

	Hexane Extractab	le Material ((HEM;	Oil &	Grease	e) with Si	lica Gel Clean-U	p
Client ID		Lab ID	Matrix		Date C	ollected	Instrument	Batch ID
E-001		2406738-001A	Water		06/11/20	24 10:00	O&G	295694
Analytes		<u>Result</u>		<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM		ND		1.1	4.8	1		06/14/2024 12:00

Analyst(s): LAM

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
E-001	2406738-002A	Water	06/12/20	24 10:20	O&G	295935
<u>Analytes</u>	<u>Result</u>	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND	1.0	4.7	1		06/18/2024 14:00

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/12/2024 11:55 **Date Prepared:** 06/14/2024-06/17/2024

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

	Hexane Extractab	le Material (F	HEM; C	il & (Grease)	without S	ilica Gel Clean	·Up
Client ID		Lab ID	Matrix		Date Co	ollected	Instrument	Batch ID
E-001		2406738-001B	Water		06/11/20	24 10:00	O&G	295694
<u>Analytes</u>		<u>Result</u>		MDL	<u>RL</u>	<u>DF</u>		Date Analyzed
HEM		ND		2.4	4.8	1		06/14/2024 12:05

Analyst(s): LAM

Client ID	Lab ID	Matrix	Date (Collected	Instrument	Batch ID
E-001	2406738-002B	Water	06/12/2	024 10:20	O&G	295855
Analytes	Result	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND	2.4	4.8	1		06/17/2024 15:55

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/12/2024 11:55 **Date Prepared:** 06/17/2024

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N									
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID			
E-001	2406738-003G	Water	06/12/202	24 10:15	WC_SKALAR 240617A1_85	295861			
<u>Analytes</u>	<u>Result</u>	<u>MDL</u>	<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed			
Ammonia, total as N	30	0.89	1.0	10	06/17	7/2024 16:07			

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/12/2024 11:55 **Date Prepared:** 06/13/2024

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

Extraction Method: SM5210B **Analytical Method:** SM5210 B

Unit: mg/L

Biochemical Oxygen Demand (BOD)								
Client ID	Lab ID	Matrix	Date	Collected	Instrument	Batch ID		
E-001	2406738-003A	Water	06/12/2	2024 10:15	WetChem	295670		
Analytes	Result	MD	<u>L</u> <u>RL</u>	<u>DF</u>		Date Analyzed		
BOD	ND	2.0	2.0	1.02		06/18/2024 13:09		

Analyst(s): JME

Analytical Report

PG&E Gateway Generating Station **Client:**

06/12/2024 11:55 **Date Received:**

Date Prepared: 06/18/2024

Project: Quarterly Sampling (June 2024) WorkOrder: 2406738

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

Cyanide, Total								
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID		
E-001	2406738-002D	Water	06/12/202	24 10:20	WC_Skalar3 240618A0_28	295963		
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>	Date	Analyzed		
Total Cyanide	32	0.58	1.0	1	06/1	8/2024 16:37		

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

06/12/2024 11:55 **Date Received: Date Prepared:** 06/18/2024

Project: Quarterly Sampling (June 2024) WorkOrder: 2406738

Extraction Method: SM5220 D

Analytical Method: SM5220 D

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2 /L									
Client ID Lab ID Matrix Date Collected Instrument Batch									
E-001	2406738-003B	Water		06/12/202	4 10:15	SPECTROPHOTOMETER2	295962		
Analytes	Result		MDL	<u>RL</u>	<u>DF</u>	Date	e Analyzed		
COD	20		7.1	10	1	06/1	8/2024 19:46		

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/12/2024 11:55 **Date Prepared:** 06/13/2024

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption						
Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001	2406738-003F	Water	06/12/2024 10:15		AA1 _17	295597
Analytes	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Mercury	ND	0.12	0.20	1		06/13/2024 17:38

Analyst(s): MJA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/12/2024 11:55

Date Prepared: 06/13/2024

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738 Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

	Metals										
Client ID	Lab ID	Matrix	Matrix		lected	Instrument	Batch II				
E-001	2406738-003E	Water		06/12/2024	10:15	ICP-MS4 282SMPL.d	295623				
<u>Analytes</u>	Result	Qualifiers	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed				
Arsenic	0.74		0.077	0.50	1		06/13/2024 23:41				
Cadmium	ND		0.061	0.50	1		06/13/2024 23:41				
Chromium	0.33	J	0.33	2.0	1		06/13/2024 23:41				
Copper	8.3		0.63	1.5	1		06/13/2024 23:41				
Iron	170		21	50	1		06/13/2024 23:41				
Lead	ND		0.21	0.50	1		06/13/2024 23:41				
Molybdenum	9.8		0.18	0.50	1		06/13/2024 23:41				
Nickel	1.6		0.24	0.50	1		06/13/2024 23:41				
Selenium	0.25	J	0.17	0.50	1		06/13/2024 23:41				
Silver	ND		0.058	0.50	1		06/13/2024 23:41				
Zinc	50		11	20	1		06/13/2024 23:41				
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>							
Terbium	107			70-130			06/13/2024 23:41				
Analyst(s): DB											

Analytical Report

PG&E Gateway Generating Station **Client:**

06/12/2024 11:55 **Date Received: Date Prepared:** 06/18/2024

Project: Quarterly Sampling (June 2024) WorkOrder: 2406738

Extraction Method: E420.4

Analytical Method: E420.4 Unit: $\mu g/L$

Phenolics										
Client ID	Lab ID	Matrix	Date (Collected	Instrument	Batch ID				
E-001	2406738-002C	Water	06/12/2	2024 10:20	WC_SKALAR 240618B1_36	295927				
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed				
Phenolics	4.2	1.5	2.0	1	06/1	8/2024 13:06				

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/12/2024 11:55

Date Prepared: 06/17/2024

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

Extraction Method: SM2540 C-

Analytical Method: SM2540 C

Unit: mg/L

Total Dissolved Solids										
Client ID	Lab ID Matrix Date Collected				Instrument	Batch ID				
E-001	2406738-003C	Water	06/12/202	24 10:15	WetChem	295864				
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed				
Total Dissolved Solids	294	10.0	10.0	1		06/18/2024 16:12				

Analyst(s): JME

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/12/2024 11:55

Date Prepared: 06/14/2024

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

Extraction Method: SM2540 D

Analytical Method: SM2540 D

Unit: mg/L

	Total Suspended Solids										
Client ID	ID Lab ID Matrix Date Collected				Instrument	Batch ID					
E-001	2406738-003D	Water	06/12/2024 10:15		WetChem	295794					
<u>Analytes</u>	<u>Result</u>	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed					
Total Suspended Solids	ND	1.00	1.00	1		06/17/2024 14:18					

Analyst(s): JME

2406738

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Prepared: 06/14/2024 BatchID:

Date Prepared:06/14/2024BatchID:295694Date Analyzed:06/14/2024Extraction Method:E1664A_SGInstrument:0&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (June 2024) **Sample ID:** MB/LCS/LCSD-295694

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
SGT-HEM	ND	1.1	5.0	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	9.2	12	10.42	88	116	64-132	26.7	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/18/2024 **Date Analyzed:** 06/18/2024 **Instrument:** O&G

Matrix: Water

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

BatchID: 295935

Extraction Method: E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Sample ID: MB/LCS/LCSD-295935

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
SGT-HEM	ND	1.1	5.0	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	6.0	6.2	10.42	57,F4	59,F4	64-132	3.46	30

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2406738Date Prepared:06/14/2024BatchID:295694Date Analyzed:06/14/2024Extraction Method:E1664A

Instrument:O&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (June 2024) **Sample ID:** MB/LCS/LCSD-295694

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
HEM	ND	2.5	5.0	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	19	20	20.83	93	96	78-114	2.39	30

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2406738Date Prepared:06/17/2024BatchID:295855Date Analyzed:06/17/2024Extraction Method:E1664A

Instrument:O&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (June 2024) **Sample ID:** MB/LCS/LCSD-295855

QC Summary Report for E1664A										
Analyte	MB Result	MDL	RL							
HEM	ND	2.5	5.0	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	19	19	20.83	93	91	78-114	2.19	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/17/2024

Date Analyzed: 06/17/2024 **Instrument:** WC_SKALAR

Matrix: Water

Analyte

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

BatchID: 295861

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-295861

QC Summary R	QC Summary Report for SM4500-NH3							
MB Result	MDL	RL						

Ammonia, total as N ND 0.089 0.10 - - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	4.0	4.1	4	100	102	90-110	1.27	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:06/13/2024Date Analyzed:06/18/2024Instrument:WetChem

Matrix: Water

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

BatchID: 295670

Extraction Method: SM5210B **Analytical Method:** SM5210 B

Unit: mg/L

Sample ID: MB/LCS/LCSD-295670

QC Summary Report for BOD								
Analyte	MB Result	MDL	RL					
BOD	ND	2.0	2.0	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	210	220	198	106	109	80-120	3.53	16

Quarterly Sampling (June 2024)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/18/2024

Date Analyzed: 06/18/2024 **Instrument:** WC_Skalar3

Matrix: Water

Project:

WorkOrder: 2406738 **BatchID:** 295963

Extraction Method: SM4500-CN⁻ E

Analytical Method: SM4500-CN⁻ CE

Unit: μg/L

Sample ID: MB/LCS/LCSD-295963

QC Summary Report for SM4500-CN ⁻ CE									
Analyte	MB Result	MDL	RL			_			
Total Cyanide	ND	0.58	1.0	_	_	_			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	47	50	50	94	100	90-110	5.58	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/18/2024 **Date Analyzed:** 06/18/2024

Instrument: SPECTROPHOTOMETER2

Matrix: Water

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738

BatchID: 295962

Extraction Method: SM5220 D

Analytical Method: SM5220 D

Unit: mg/L

Sample ID: MB/LCS/LCSD-295962

QC Summary Report for COD								
Analyte	MB Result	MDL	RL					
COD	ND	7.1	10	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD	98	98	100	98	98	90-110	0	20

Quality Control Report

Client: PG&E Gateway Generating Station **Date Prepared:** 06/13/2024

Date Analyzed: 06/13/2024
Instrument: AA1
Matrix: Water

Ana

Mercury

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738 **BatchID:** 295597

Extraction Method: E245.2 **Analytical Method:** E245.2

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-295597

2406738-003FMS/MSD

QC Summary Report for Mercury								
alyte	MB Result	MDL	RL					
cury	ND	0.12	0.20	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	2.0	2.1	2	101	104	85-115	2.17	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Mercury	1	1.9	2.0	2	ND	94	100	80-120	5.37	20

Analyte	DLT Result	DLTRef Val	%D %D Limit
Mercury	ND	ND	-

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:06/13/2024Date Analyzed:06/13/2024Instrument:ICP-MS4Matrix:Water

Project: Quarterly Sampling (June 2024)

WorkOrder: 2406738 **BatchID:** 295623

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-295623

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.077	0.50	=	-	=
Cadmium	ND	0.061	0.50	=	-	-
Chromium	ND	0.33	2.0	-	-	-
Copper	ND	0.63	1.5	-	-	-
Iron	ND	21	50	-	-	-
Lead	ND	0.21	0.50	-	-	-
Molybdenum	ND	0.18	0.50	-	-	-
Nickel	ND	0.24	0.50	-	-	-
Selenium	ND	0.17	0.50	-	-	-
Silver	ND	0.058	0.50	-	-	-
Zinc	ND	11	20	-	-	-

Surrogate Recovery

Terbium 530 500 106 70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	53	54	50	106	107	85-115	1.80	20
Cadmium	53	53	50	107	107	85-115	0.0411	20
Chromium	52	52	50	104	105	85-115	0.471	20
Copper	54	54	50	109	109	85-115	0.361	20
Iron	5200	5200	5000	104	104	85-115	0.114	20
Lead	52	53	50	104	106	85-115	2.15	20
Molybdenum	50	51	50	100	102	85-115	1.92	20
Nickel	53	54	50	106	108	85-115	2.27	20
Selenium	53	55	50	107	110	85-115	2.71	20
Silver	52	52	50	104	104	85-115	0.135	20
Zinc	540	540	500	108	109	85-115	0.953	20
Surrogate Recovery								
Terbium	520	530	500	105	107	70-130	1.97	20

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:2406738Date Prepared:06/18/2024BatchID:295927Date Analyzed:06/18/2024Extraction Method:E420.4Instrument:WC_SKALARAnalytical Method:E420.4

Matrix: Water

Project: Quarterly Sampling (June 2024) **Sample ID:** MB/LCS/LCSD-295927

QC Summary Report for E420.4							
Analyte	MB Result	MDL	RL				
Phenolics	ND	1.5	2.0	-	-	-	

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	41	42	40	103	105	90-110	1.87	20

Analyte

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2406738Date Prepared:06/17/2024BatchID:295864Date Analyzed:06/18/2024Extraction Method:SM2540 C-

Instrument:WetChemAnalytical Method:SM2540 CMatrix:WaterUnit:mg/L

Result

Project: Quarterly Sampling (June 2024) **Sample ID:** MB/LCS/LCSD-295864

QC Summary Rep	ort for Total Dis	solved Solid	ls	
МВ	MDL	RL		

Total Dissolved Solids ND 10.0 10.0 - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Dissolved Solids	918	908	1000	92	91	80-120	1.10	10

WetChem

Instrument:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Method: SM2540 D

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2406738Date Prepared:06/14/2024BatchID:295794Date Analyzed:06/17/2024Extraction Method:SM2540 D

Matrix: Water Unit: mg/L

Project: Quarterly Sampling (June 2024) **Sample ID:** MB/LCS/LCSD-295794

	QC Summary Report for Total Suspended Solids								
Analyte	MB Result	MDL	RL						
Total Suspended Solids	ND	1.00	1.00	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Suspended Solids	84.0	87.0	100	84	87	80-120	3.51	10

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WaterTrax CLIP EDF E

■ EQuIS ■ Dry-Weight ■ Email

HardCopy

ClientCode: PGEA

ThirdParty

✓ J-flag

Detection Summary

Bill to:

WorkOrder: 2406738

Excel

)·

Requested TATs:

5 days;

Angel Espiritu
PG&E Gateway Generating Station

Email: abe4@pge.com cc/3rd Party: T1WY@pge.com: MSF

Angel Espiritu

7 days;

3225 Wilbur Avenue

cc/3rd Party: T1WY@pge.com; MSFG@pge.com; APSD PO:

PG&E Gateway Generating Station 3225 Wilbur Avenue

06/12/2024

Antioch, CA 94509

Report to:

Project: Quarterly Sampling (June 2024)

Antioch, CA 94509

Date Logged: 06/12/2024

Date Received:

(925) 459-7212 FAX:

								Requ	ested	Tests (See le	gend be	elow)			
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2406738-001	E-001	Water	6/11/2024 10:00		Α	В								Α		
2406738-002	E-001	Water	6/12/2024 10:20		Α	В			D				С	Α		
2406738-003	E-001	Water	6/12/2024 10:15				G	Α		В	F	E		Α	С	D

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS W

2	1664A_W
6	COD_W
10	PRDisposal Fee

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

4	BOD_W
8	METALSMS_TTLC_W
12	TSS_W

Prepared by: Natalie Zaragoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Quarterly Sampling (June 2024)	Work Order: 2406738
--------------	---------------------------------	----------	--------------------------------	----------------------------

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

Comments:

Date Logged: 6/12/2024

		Water ¯	Trax CLIP EDF		Excel	EQuIS	√ Ema	il HardCopy	Third	lParty ✓ J-flaς	J	
LabII	ClientSampID	Matrix	Test Name	Cont./ Comp.	Bottle & Preservative	U** Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Sub Out
001A	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	2	1LA w/ HCl + 1- aVOA w/HCL			6/11/2024 10:00	5 days	6/19/2024	Present	
001B	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	2	1LA w/ HCl + 1- aVOA w/HCL			6/11/2024 10:00	5 days	6/19/2024	Present	
002A	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	2	1LA w/ HCl + 1- aVOA w/HCL			6/12/2024 10:20	5 days	6/19/2024	Present	
002B	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	2	1LA w/ HCl + 1- aVOA w/HCL			6/12/2024 10:20	5 days	6/19/2024	Present	
002C	E-001	Water	E420.4 (Phenolics)	1	500mL aG w/ H2SO4			6/12/2024 10:20	5 days	6/19/2024	Present	
002D	E-001	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH	′ 🗌 🖺		6/12/2024 10:20	5 days	6/19/2024	Present	
003A	E-001	Water	SM5210B (BOD)	1	500mL HDPE, unprsv.			6/12/2024 10:15	7 days	6/21/2024	Present	
003B	E-001	Water	SM5220D (COD)	2	aVOA w/ H2SO4			6/12/2024 10:15	5 days	6/19/2024	Present	
003C	E-001	Water	SM2540C (TDS)	1	500mL aG, Unpre	s		6/12/2024 10:15	5 days	6/19/2024	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 1 of 2

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Quarterly Sampling (June 2024)	Work Order: 2406738
--------------	---------------------------------	----------	--------------------------------	----------------------------

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

Comments:

Date Logged: 6/12/2024

		Water	Trax CLIP EDF		Excel	EQul	IS	✓ Emai	il HardCopy	Third	Party √ J-flaç	J		
LabII	ClientSampID	Matrix	Test Name	Cont./	Bottle & Preservative	U**	Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
003D	E-001	Water	SM2540D (TSS)	1	1L HDPE, unprsv	v			6/12/2024 10:15	5 days	6/19/2024	Present		
003E	E-001	Water	E200.8 (Metals) < Cadmium, Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Silver, Zinc>	1	250mL HDPE w/ HNO3	′ 🔲			6/12/2024 10:15	5 days	6/19/2024	Present		
003F	E-001	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3	/			6/12/2024 10:15	5 days	6/19/2024	Present		
003G	E-001	Water	SM4500-NH3 BG (Ammonia Nitrogen)	1	250mL aG w/ H2SO4				6/12/2024 10:15	5 days	6/19/2024	Present		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 2 of 2

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 WILLOW PASS ROAD TURN AROUND TIME 2 PITTSBURG, CA 94565-1701 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com GeoTracker EDF PDF Excel Write On (DW) Telephone: (877) 252-9262 Fax: (925) 252 -9269 Check if sample is effluent and "J" flag is required Report To: Angel Espiritu Bill To: PG&E Gateway Analysis Request Remarks Company: PG&E Gateway Generating Station Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 CN-ABCE Metals (200.8 cadmium, chromium, Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode Ammonia as N (SM 4500-NH3-G Total Phenolics (USEPA 420.4) E-Mail: abe4@pge.com, TlWY@pge.com, MSFG@pge.com, APSD@pge.com Tel: (925) 522-7838, (510) 861-1597 (Cell) Fax: (Project Name: Quarterly Sampling (June 2024 BOD (SM 5210B) COD (SM 5220D) **Project Location: Combined Site Flow** TDS (SM 2540C) Mercury (245.2) Sampler Signature: Muskan Environmental Sampling Sype Composite SAMPLING Matrix METHOD PRESERVED Type Containers SAMPLE LOCATION Containers Waste Water Sample Type ID Field Point Name Time Date H.SO NaOH HNO3 None HCL E-001 G X X 6/11/24 10:00 IL Amb, 40-ml VOA X E-001 X 6/12/24/10:20 500ml X E-001 L/12/24 10:20 Amb 250-ml X E-001 X X 6/12/24 10:20 Poly 500m X E-001 6/12/24/10:15 Poly E-001 43-ml X 6/12/24 10:15 VOA 500-ml X E-001 10:15 X 1L E-001 10:15 poly E-001 250-ml X X X 6/12/24 10:15 Poly 250-ml X E-001 X X X 6/12/24 10:15 E-001 250 ml X X 6/12/24 10:15 Relinquished By: Received By: ICE/to 1. Trus Date: Time: COMMENTS: GOOD CONDITION 11:5 112/24

HEAD SPACE ABSENT

DECHLORINATED IN LAB APPROPRIATE CONTAINERS

Time:

Received By:

Date:

Relinquished By:

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Quarterly Sampling (June 2024)			Date and Time Received: Date Logged:	6/12/2024 11:55 6/12/2024
				Received by:	Lilly Ortiz
WorkOrder №: Carrier:	2406738 Matrix: Water Client Drop-In			Logged by:	Natalie Zaragoza
	Chain of C	Sustody	(COC) Infor	mation	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗆	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name r	noted on COC?	Yes	✓	No 🗆	
COC agrees with	Quote?	Yes		No 🗆	NA 🗸
	Sampl	le Rece	<u>ipt Informati</u>	<u>on</u>	
Custody seals into	act on shipping container/cooler?	Yes		No 🗆	NA 🗹
Custody seals into	act on sample bottles?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	•	No 🗆	
Samples in prope	er containers/bottles?	Yes	•	No 🗆	
Sample container	rs intact?	Yes	•	No 🗆	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservation	on and	Hold Time (H	HT) Information	
All samples receive	ved within holding time?	Yes	✓	No 🗆	NA 🗆
Samples Receive	ed on Ice?	Yes	✓	No 🗆	
	(Ice Type	e: WE	TICE)		
Sample/Temp Bla	ank temperature		Temp: 0.7	7°C	NA 🗆
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	•	No 🗌	
pH acceptable up <2; 522: <4; 218.	on receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes	✓	No 🗆	NA 🗆
UCMR Samples: pH tested and a 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine to [not applicable to	ested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗆	NA 🗹
Comments:	=========	==:			=======

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

"When Quality Counts"

Analytical Report

WorkOrder: 2406865

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Sanjiv Gill

Project P.O.:

Project: pH Sampling (June 2024)

Project Location: PG&E GGS Antioch-E-001

Project Received: 06/12/2024

Analytical Report reviewed & approved for release on 06/18/2024 by:

Jena Alfaro

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2406865

Project: pH Sampling (June 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2406865

Project: pH Sampling (June 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

06/12/2024 11:55 **Date Received:**

Project: pH Sampling (June 2024)

06/11/2024

WorkOrder: 2406865

Extraction Method: SM4500H+B Analytical Method: SM4500H+B

Unit: pH units

		pН				
Client ID	Lab ID	Matrix	Date Collecte	ed	Instrument	Batch ID
E-001	2406865-001A	Water	06/11/2024 10:	02	WetChem	295991
<u>Analytes</u>	Result		Accuracy	<u>DF</u>		Date Analyzed
pН	8.99		±0.05	1		06/11/2024 10:03

Analyst(s): ISH

Date Prepared:

□WaterTrax

Email:

Project:

PO:

cc/3rd Party:

CLIP

sanjivgill@comcast.net

pH Sampling (June 2024)

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

PG&E Gateway Generating Station

FAX:

Report to:

Sanjiv Gill

3225 Wilbur Avenue

Antioch, CA 94509

(925) 459-7212

CHAIN-OF-CUSTODY RECORD

1 of 1

WorkOrder: 2406865 ClientCode: PGEA

EQuIS Dry-Weight ✓ Email □HardCopy ☐ ThirdParty ☐ J-flag

Detection Summary Excel

> Bill to: Requested TAT: 5 days;

Sanjiv Gil

Muskan Environmental Services

Date Received: 06/12/2024 1828 Nelda Ct. Date Logged: 06/13/2024

Yuba City, CA 95993

								Req	uested	Tests ((See le	gend b	elow)			
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				_												
2406865-001	E-001	Water	6/11/2024 10:02		Α	Α										

□ EDF

Test Legend:

1 PH_W_SANJIV	2 PRDisposal Fee	3	4	
5	6	7	8	
9	10	11	12	

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

001A E-001

McCampbell Analytical, Inc.

Water

"When Quality Counts"

SM4500H+B (Field pH)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

6/11/2024 10:02

5 days

6/19/2024

WORK ORDER SUMMARY

Client Name: Client Contact:	PG&E GATEWAY G Sanjiv Gill	ENERATING STAT	TION I	Project: pH Sa	ampling (June	2024)			Work Order: 2406865 QC Level: LEVEL 2
	: sanjivgill@comcast.ne	et	•	Comments:					Date Logged: 6/13/2024
	Water ⁻	Trax CLIP	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	☐ J-flag
abID Clients	SampID Matrix	Test Name		ont./ Bottle & Preservativ	-	•	lection Date & Time	TAT Test	Due Date Sediment Hold Sub Content Out

<NOT RECEIVED>

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 1 of 1

241/28/25

											no de mario	-	TOPPOSION O	None de la constante		-							4	_		//	W	DU D			
			PT	34 WILLS	DW PA	SS ROAI 4565-170	D 1								I	UR	n A	LR						C	U	ST	OI		R	E	CORD
	Wet	beite:	www.mccs	mpbell.co	der Er	nail: mai	in@m	cam;	pbel	Leon	1										_				RUS	H	24	HR		48 I	HR 72 HR 5 DAY
,	Tele	ibpor	ie: (877) 2	252-9262		F	ax: (9	25)	252-	926	9				G	eo'	Fra	cke	rE	D	7 [PI	F	Q.	E	cel		. 1	Wr	ite On (DW) 📮
Report	To: Sanjiy	Cin				BIR To:	Manh	- 10°				-1	Selement.	-	-			tod startment (ex	anno esta de	-	WEST	1	Ch	eck	if sa	mp	e is	effi	uen	tar	d "J" flag is required
AND PARTY AND PERSONS ASSESSED.	y: PG&E	MARKET PROPERTY.	way Can	arating 5			TAR OF 2 ST	au E	SATI	VIII	16st	21	-	-	parameters.	1	7			A	mai	ysis	Re	ques	t	particular (-		-		Remarks
	7. 1 665	Control	Way Citt	on estimate r	260 046								-	-																	
	-	-			1	-Mail:	saniiv	oill 6	a)co	nce	nt me	4	-	\neg														-			
Tel: (40	8) 666-449	4 (C	ell)			Par: ()	Parent		444		-		\neg																	
Project	Name: pl	H Sa	mpling (Jun	e 5	1024)					and the second										8								
Project	Lecation: 1	PG&	E GGS A	ntioch -	E-001			_					and the same of																		
Sample	r Signature	1	Tus kan	Fni	ran	mede		a	Di	Y																					•
		Sample Type Composite	SAME	LING			Mat	rix	ME	THO	D PR	ESE	RV	ED												.				The programme	
SAMPLE	LOCATION	ے ق		T	1 2	Type Centainers	<u> </u>	_	-	T	_			H																	
ID	/ Field Point	8.5			Containers	1tei	Waste Water	ter						뒤													1				
	Name	E	Date	Time	nts	S	A O	Wa	None	1	E			3									-						- 1		
		F			ပိ	ype	/ass	Wer	one	38.	NaOH	HCL	HNO.	ZheA	met										1				- 1		
		A CONTRACTOR OF THE PARTY OF TH			*		_	02		15	Z		=		pH										-				- 1	9	
E-001		G	6/11/24	10:02	NA	NA	Х		X						Х					T								T	1	1	Grab Time: /0;02 Analysis Time: /0;03
										П		П						T	7	\exists	7		\exists	7	\neg	7	1	\top	7	\forall	Temperature: 21.1°C pH: 8.99
									十	\forall				+	\neg			+	+	\dashv	7	\dashv	1	+	\dashv	\dashv	十	+	\dashv	+	pH: 8,44
									+	H	-	\vdash	\dashv	+	\dashv	-	-	+	+	+	-	+	\dashv	\dashv	\dashv	+	+	+	\dashv	+	
								\dashv	+	Н		\dashv	\dashv	+	\dashv	\neg	\dashv	+	+	+	+	\dashv	\dashv	\dashv	+	+	\dashv	+	-	+	
					\vdash			\dashv	+	H		-	-	+	-	\dashv	\dashv	+	+	+	-	\dashv	\dashv	+	4	+	+	+	+	4	
		-			-	<u> </u>	-	+	+	H		-	-	+	-	-	-	+	+	-	4	+	4	4	4	4	4	_	4	4	
				<u> </u>				+	+	\vdash		-	-	_	-	_	-	4	4	_	4	_	4	_	1	_	_	1	_		
					_			4	+	H	_	_		1	_	_	_		1	\perp	1	1				\perp	\perp	\perp	\perp		
		_						_	1						1			\perp				\perp									
		_						_	_	Ш																T			T	T	
														-					T	T				T	T	T	T	T	T	T	
												T	T	T				T	T	1	T	T	1	1	T	\top	T	1	T	T	A Control of the Cont
Relinquish	ed My		Dates	Time:	Recei	ved By:	11	1		/	7	1	15	5	ICE	2	OND	7	(1)	4	Er	ì	<u></u>	mounding	-	men has	and and	C	DMI	MEN	TS:
	110		15/21/9		1	ell-	2	1	1	-	61	12	12	7	HEA	DSI	PACE	AR	SEN	T											•
Relinguish	ed By:	Boreson	Date:	Time:	Recei	ved By:								1	DEC	HL	RIN	ATE	DI	ILA	8_		-								
Delinguish			Date		of Control of Control		100 00 dd		Managar.		and Re-						RIAT VED			FAIN	ER	S	-								
Walter more Lake	Add Hillians	- 8	Hiberdon II	FIDA	Th	3 -						-	-	-					-		_										

VOAS OAG METALS OTHER

PRESERVATION

Relinquished By:

Date:

Time:

Received By:

Logbook for Field pH Samples

D . //T:	Samula ID	Matrix	1 st Reading		2 nd Reading		Ave Standard		Comments	Analyst
Date/Time	Sample ID	Maura	pН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)		
6/11/24 / 09:33	Cal. pH # 7.00	L	7.00	19.5	7.00	19.5	7.00	bulk		11
6/11/24 /09:33	Cal pH # 14.00	L	4.00	19.5	4.00	19.5	4.00	halk		
6/11/24/09:37	Cal. pH # 10.00	Ŀ	10.06	19.5	10.00	19.5	10.00	bulk		<u> </u>
, ,										1
										(4)
										p.80
P								l l		
4										
7						Ma	lec:	Myran	Company	
								m Meter T		
						SE	0.,	A 6222066		14
							40	COC6	11/24	
		-					PIL	, CO C 07		
							1.11	PERE	1 /2 /2 /3	¥
							90	1	100	/
		1						*	10.	

Client Supplied pH Data

Client Name: PG&E Gateway Generating Station WorkOrder №: 2406865

Project: pH Sampling (June 2024)

SampID ClientSampID pH

2406865-001A E-001 8.99 [analyzed: 6/11/2024 10:03 AM]

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Ger pH Sampling (June 2	-			Date and Time Received: Date Logged: Received by:	6/12/2024 11:55 6/13/2024 Lilly Ortiz
WorkOrder №: Carrier:	2406865 Client Drop-In	Matrix: Water			Logged by:	Agustina Venegas
		Chain of 0	Custody	(COC) Infor	<u>mation</u>	
Chain of custody	present?		Yes	✓	No 🗆	
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗆	
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆	
Date and Time of	collection noted by C	lient on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?		Yes	✓	No 🗆	
COC agrees with	Quote?		Yes		No 🗆	NA 🗹
		Samp	ole Rece	eipt Informati	<u>on</u>	
Custody seals int	act on shipping contai	ner/cooler?	Yes		No 🗆	NA 🗹
Custody seals int	act on sample bottles	?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?		Yes	✓	No 🗌	
Sample container	rs intact?		Yes	✓	No 🗆	
Sufficient sample	volume for indicated	test?	Yes	•	No 🗆	
		Sample Preservat	ion and	Hold Time (I	HT) Information	
All samples recei	ved within holding time	e?	Yes		No 🗸	NA \square
Samples Receive	ed on Ice?		Yes		No 🗹	
Sample/Temp Bla	ank temperature			Temp:		NA 🗹
ZHS conditional a requirement (VO	analyses: VOA meets Cs, TPHg/BTEX, RSK	zero headspace)?	Yes		No 🗆	NA 🗹
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.		Nitrate 353.2/4500NO3:	Yes		No 🗆	NA 🗹
UCMR Samples:						
pH tested and a 537.1: 6 - 8)?	acceptable upon recei	pt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹
Free Chlorine to [not applicable		upon receipt (<0.1mg/L)	Yes		No 🗌	NA 🗹
		======			=	=======

Comments: Method SM4500H+B (Field pH) was received past its 0.01-day holding time.

Attachment 9 Annual Flowmeter Calibration

Gateway Generating Station Annual Flowmeter Accuracy Test		111		DA .1 A	1 1
Name and Signature of Tester:	ar Valdez	Ce/Ven	Hove	1 Vistaugh	1h/V
Date of Test:	0-12-24				

Follow the testing procedure (per manufacturer's -YokogawaCorporation of America's recomemdation) below.

Flowmeter ID	Coil Resis	tance Check	Flow Tube Resistance Check				
ž.	Reading (ohm/s)	Within +/- 10% (Y/N)?	Electrode A Reading (ohm/s)	Electrode A Reading (ohm/s)	Within 20% Difference (Y/N)?		
Industrial Wastewater Flowmeter Tag No. 8WWC-FM-X001 Model No. Yokogawa AXF-100C Coil Resistance Value: 113.4 ohms	112.51	Yes	1701	160KL	Yes		
Sanitary Wastewater Flowmeter Tag No. 8WWB-FM-X001 Model No. Yokogawa AXF 650C Coil Resistance Value: 116.8 ohms	1132	Yes	150 KL	150 KM	Yes		

Procedure for testing AXF integral flowtubes

- 1. Remove power from the flow meter. Remove the display side cover from the meter electronics housing.
- 2. Remove three retaining screws with a Phillips head screwdriver used to hold the amplifier assembly in place.
- 3. Remove the white plastic connector (CN5) attached to the left side of the amplifier assembly. The connector has 3 wires (red, white & blue). Remove the white plastic connector (CN3) attached to the right side of the amplifier assembly. The connector has 2 wires (purple & yellow).
- 4. Remove the amplifier assembly and store it in a safe place.

Checking the coil circuits

- 5. Locate 2 wire connector (CN3). Measure the excitation coil resistance between the yellow wire and purple wire of connector CN3. The measured resistance should correspond to the resistance value shown above in table 2 within +/- 10%.
- 6. Confirm that there is more than 20 MOHMS resistance between each wire to the meter electronics housing. If leakage is detected consult Yokogawa at 800-524-SERV.

Checking the flow tube when filled with conductive liquid

- 7. Make certain that the meter flow tube is full of liquid with greater than one micro-siemen conductivity.
- 8. Locate connector CN5 (3 wire connector). Measure the resistance between the red wire (A) and the blue wire (C) of CN5. Record the value.
- Measure the resistance between the white wire (B) and the blue wire (C) of CN5. Record the value.
- 10. Compare resistance readings obtained in steps 8 and 9 above. If the readings are less than 20% apart the meter flow tube is not suspect. Proceed to the reassembly instructions (step
- 13). If readings are greater than 20% apart proceed to step 11.

Checking the flow tube when empty and dry

- 11. Drain the meter flow tube of all conductive liquid. Measure the resistance between each electrode in the meter flow tube to CN5 red (A) or white (B). The resistance will be less than 3 Ohms for general purpose meters or 150 K ohms for FM approved meters.
- 12. Repeat steps 8 and 9 above. The resistance should be infinite. Any leakage measured maybe due to buildup of conductive material between the electrode and the meter tube. Clean
- 13. Replace the amplifier assembly and meter electronics housing cover.

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave
Antioch, CA 94509
(925) 522-7801

October 8, 2024

DELTA DIABLO

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

OC1 I 2 5054

RECEIVED

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending September 30, 2024)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending September 30, 2024, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

This report contains all components required by the above-referenced Industrial Wastewater Discharge Permit. See the following page for a list of its contents..

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

October 8, 2024

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending September 30, 2024)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending September 30, 2024, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

This report contains all components required by the above-referenced Industrial Wastewater Discharge Permit. See the following page for a list of its contents..

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending September 30, 2024

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2027.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business: <u>PG&E Gateway Generating Station</u>

Address: 3225 Wilbur Avenue, Antioch, CA. 94509

Phone: <u>925-522-7805</u>

Period Covered: Period ending: September 30, 2024

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisdom Date: Oct. 8, 2024

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun	Pretreatment
Fax # (925)756-1961	Phone: (925)756-1929
From: Tim Wisdom	
Company: Pacific Gas and Electric Company – G	ateway Generating Station
Period Covered: Period ending September 30, 202	•
Industrial User Checklist for self –monitoring repedischarge permit issued by Delta Diablo Sanitatio	
Self-monitoring reports	
Flow discharge summary (Discharge Permit Calibration of flow meters, as required. (Sec Monitoring results- <u>All</u> required tests compliancluded, QA/QC, chain of custody (section Certification statement included (See Attach	etion E.1.g.) leted, results reviewed, results n F.7.) (See Attachment 8)
Violations (if applicable)	
All wastewater discharge exceedance are repDelta Diablo was contacted. (See Additional	
A follow-up report on characterization re-sa	mnling was submitted on
Corrective actions to resolve violation:	inpling was suchineed on
Other violations - i.e. Reporting, spills to sev	wer, or prohibited discharges
Additional Notes: None	
Significant changes	
Anticipated changes that may alter the nature, quadischarged. Planned changes shall be submitted at and shall include a detailed description of this changes that may alter the nature, quadischarged.	t least 90-days prior to implementation

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	9/3/2024	9/4/2024	9/4/2024	9/4/2024		
TYPE	G	G	C24	G		
STATION	E-001	E-001	E-001	E-001		
SMP.BY	Muskan	Muskan	Muskan	Muskan		
	Compliance	Compliance	Compliance	Compliance Semi-		
PURPOSE	Quarterly (Q3)	Quarterly (Q3)	Quarterly (Q3)	annual (SA2)		

	Units:	mg/L					
PARAMETERS	<u>LIMITS</u>						
FLOW, DAILY (gal)	51,120						
FLOW, MONTH (gal)							
рН	6-10 s.u.	8.49					
BOD				ND(<2.0)			
COD				36			
TDS				510			
TSS				1.00			
Arsenic	0.15			0.00076			
Cadmium	0.1			ND(<0.000061)			
Chromium	0.5			ND(<0.00033)			
Copper	0.5			0.0041			
Iron				0.120			
Lead	0.5			0.00021			
Mercury	0.003			ND(<0.00012)			
Molybdenum				0.00017			
Nickel	0.5			0.00089			
Selenium	0.25			0.00019			
Silver	0.2			ND(<0.000058)			
Zinc	1.00			0.110			
Cyanide	0.2		0.0032				
Phenol	1.00		ND(<0.0015)				
Ammonia	200			45			
O&G Petro/Min (E1664A w/ Silica)	100	ND(<1.6)	ND(<1.6)				
O&G Animal/Vegetable Oil	300	ND(<1.5)	31.1				
TTO EPA 608							
TTO EPA 624							
TTO EPA 625							
TTO	2.00				0.02126		
Sulfide							
Sulfate						 	

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel.

J - The result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

July 2024-September 2024

		Industria	l Flow			Sanitary	Flow		
			Did it ever			Time Meter	Did it ever		
	Instantaneous	Time Over	go over	Daily Tatal	Instantaneous	went Bad	go over	Daily Tatal	Site Total
Date		39.05 GPM	39.05 GPM	Daily Total			39.05 GPM	Daily Total	
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
			mins?			(minutes)	mins?		
7/1/2024	34.5	0.0	NO	31,074	25.3	24	NO	385	31,459
7/2/2024	34.8	0.0	NO	15,198	0.1	0	NO		15,198
7/3/2024	34.7	0.0	NO	21,002	23.3	0	NO	403	21,405
7/4/2024	35.0	0.0	NO	18,872	0.1	0		7	18,879
7/5/2024	35.2	0.0	NO	31,282	0.1	0	NO	4	31,286
7/6/2024	35.0	0.0	NO	22,101	25.4	0	NO	399	22,500
7/7/2024	34.8	0.0	NO	27,663	0.1	0	NO	(0)	27,663
7/8/2024	34.5	0.0	NO	48,603	23.4	0	NO	378	48,981
7/9/2024	34.5	9.0	NO	41,073	0.1	9	NO	075	41,073
7/10/2024	34.7	1.0	NO	22,248	22.8	1	NO	375	22,623
7/11/2024 7/12/2024	34.6 34.5	0.0	NO NO	29,867 6,735	0.1 21.8	0	NO NO	5 377	29,872 7,112
7/12/2024	34.9	0.0	NO	28,551	0.0	0	NO	311	28,551
7/13/2024	34.9	0.0	NO	23,113	0.0	0	NO	1	23,114
7/15/2024	34.6	0.0	NO	38,440	22.5	0		388	38,828
7/16/2024	34.8	0.0	NO	33,443	20.4	0		372	33,816
7/17/2024	34.4	0.0	NO	29,753	0.1	0			29,753
7/18/2024	34.6	0.0	NO	17,046	22.8	0	NO	438	17,484
7/19/2024	34.9	0.0	NO	19,845	0.1	0	NO		19,845
7/20/2024	35.0	0.0	NO	22,090	0.1	0	NO	1	22,090
7/21/2024	34.8	0.0	NO	23,743	22.6	0	NO	395	24,138
7/22/2024	34.4	0.0	NO	49,002	0.0	0	NO		49,002
7/23/2024	34.6	0.0	NO	36,348	23.3	0	NO	384	36,732
7/24/2024	34.7	0.0	NO	14,511	0.0	0	NO	5	14,516
7/25/2024	35.0	0.0	NO	14,630	22.6	0	NO	406	15,036
7/26/2024 7/27/2024	34.9 34.6	0.0	NO NO	28,330 44,078	0.1 24.6	0		3 391	28,333 44,469
7/28/2024	34.6	0.0	NO	49,010	0.1	0	NO	391	49,010
7/29/2024	34.5	0.0	NO	48,605	23.4	0	NO	399	49,004
7/30/2024				48,998	0.1			000	48,998
7/31/2024				45,134	22.3			374	45,508
				,			aily Flow (Lir	nit: 51,120):	49,010
							,	onthly Total:	936,277
8/1/2024	34.6	0.0		34,770	0.0		NO		34,770
8/2/2024	34.8	0.0	NO	26,431	22.5	0		366	26,797
8/3/2024	34.6	0.0	NO	39,800	0.1	0			39,800
8/4/2024	34.7	0.0	NO	40,106	24.8	0			40,106
8/5/2024	34.6	0.0	NO	45,353	0.1	0		1	45,354
8/6/2024	34.5	0.0	NO	48,612	22.3	0		376	48,988
8/7/2024 8/8/2024	34.5	0.0	NO NO	47,848	0.0	0			47,848
8/8/2024	34.5 34.5	0.0	NO	47,489 14,437	23.0 24.8	0		377	47,489 14,813
8/10/2024	35.4	1.0	NO	26,399	0.1	1		377	26,775
8/11/2024	35.4	0.0	NO	25,994	0.0	0		311	25,994
8/12/2024	34.4	0.0	NO	48,584	24.2	0			48,584
8/13/2024	34.6		NO	41,145	20.7	0		377	41,522
8/14/2024	35.2	0.0	NO	37,580	0.0	0		2	37,580
8/15/2024	34.5		NO	48,608	23.0	0		393	49,001
8/16/2024	34.7	0.0	NO	26,806	0.1	0			26,806
8/17/2024	34.8		NO	37,481	24.3	0			37,481
8/18/2024	34.5		NO	48,985	0.1	0			48,985
8/19/2024	34.4		NO	29,842	24.3	0			29,842
8/20/2024	35.0	0.0	NO	18,457	0.1	0	NO	1	18,458

Public

PG&E Gateway Generating Station

Discharge Flow Data

July 2024-September 2024

8/22/2024 35.1 0.0 NO 33,196 0.0 0 NO 33,196 8/23/2024 35.5 0.0 NO 48,620 24.0 0 NO 48,620 24.0 0 NO 48,620 34,524 35.1 0.0 NO 31,579 0.1 0 NO 31,579 8/25/2024 35.0 0.0 NO 39,272 24.9 0 NO 261 42,289 8/26/2024 34.6 0.0 NO 22,261 24.9 0 NO 261 42,289 8/26/2024 35.0 0.0 NO 22,261 24.9 0 NO 361 22,622 8/26/2024 35.0 0.0 NO 22,261 24.9 0 NO 361 22,622 8/26/2024 35.0 0.0 NO 12,680 0.1 0 NO 361 22,622 8/26/2024 34.8 0.0 NO 33,471 23.8 0 NO 39 33,864 8/30/2024 34.8 0.0 NO 37,620 0.0 0 NO 37,620 8/31/2024 34.9 0.0 NO 34,433 0.1 0 NO 37,620 8/31/2024 34.9 0.0 NO 34,433 0.1 0 NO 34,433 9/2/2024 34.9 0.0 NO 36,159 0.1 0 NO 36,159 9/2/2024 35.0 0.0 NO 36,159 0.1 0 NO 36,159 9/2/2024 34.9 0.0 NO 36,468 0.1 0 NO 37,620 36,159 3/2024 34.9 0.0 NO 36,468 24.7 0 NO 37,620			Industria	l Flow		Sanitary Flow				
Date				Did it ever			Time Motor	Did it ever		
		Instantancous	Time Over	go over	Daily Total	Instantanoous		go over	Daily Total	Cito Total
	Date		39.05 GPM	39.05 GPM				39.05 GPM	-	
		Flow (GPIVI)	(minutes)	for 15	(Gallons)	Flow (GPIVI)		for 15	(Gallons)	(Gallons)
8/22/2024 35.1 0.0 NO 33,196 0.0 O NO 48,620 8/23/2024 35.1 0.0 NO 48,620 24.0 O NO 48,620 8/24/2024 35.1 0.0 NO 31,579 0.1 O NO 31,579 8/25/2024 35.0 0.0 NO 39,272 24.9 O NO 261 42,289 8/26/2024 34.6 0.0 NO 22,261 24.9 O NO 261 42,289 8/27/2024 35.0 0.0 NO 22,261 24.9 O NO 361 22,622 8/28/2024 35.0 0.0 NO 22,261 24.9 O NO 361 22,622 8/28/2024 35.0 0.0 NO 12,680 0.1 O NO 361 22,622 8/28/2024 34.8 0.0 NO 33,471 23.8 O NO 393 33,864 8/30/2024 36.1 0.0 NO 37,620 0.0 O NO 37,620 8/31/2024 34.9 0.0 NO 34,433 0.1 O NO 37,620 8/31/2024 34.7 0.0 NO 38,051 24.4 O NO 38,134,33 9/2/2024 34.9 0.0 NO 36,159 0.1 O NO 36,159 9/3/2024 34.4 0.0 NO 36,468 0.1 O NO 37,620 9/3/2024 34.4 0.0 NO 36,468 24.7 O NO 37,620 9/3/2024 34.5 0.0 NO 36,468 24.7 O NO 37,620 9/3/2024 34.5 0.0 NO 36,468 24.7 O NO 37,620 9/3/2024 34.5 0.0 NO 36,468 24.7 O NO 37,620 9/3/2024 34.5 0.0 NO 36,468 24.7 O NO 37,620 9/3/2024 34.5 0.0 NO 36,468 24.7 O NO 37,620 9/3/2024 34.5 0.0 NO 35,620 21.9 O NO 279 26,638 9/3/2024 34.5 0.0 NO 35,620 21.9 O NO 37,620 9/3/2024 34.5 0.0 NO 35,620 25.1 O NO 398 32,203 9/3/2024 34.5 0.0 NO 35,620 25.1 O NO 36,480 9/3/2024 34.5 0.0 NO 35,620 25.1 O NO 36,480 9/3/2024 34.5 0.0 NO 45,208 25.1 O NO 36,480 9/3/2024 34.5 0.0 NO 45,208 25.1 O NO 36,480 9/3/2024 34.5 0.0 NO 45,208 25.1 O NO 36,480 9/3/2024 34.5 0.0 NO 45,208 25.1 O NO 36,480 9/3/2024 34.5 0.0 NO 45,208 25.1 O NO 46,480 9/3/2024 34.5 O O NO 37,271				mins?			(minutes)	mins?		
8/23/2024 34.5 0.0 NO 48,620 24.0 0 NO 48,620 8/24/2024 35.1 0.0 NO 31,579 0.1 0 NO 31,579 31,579 32,572 24.9 0 NO 39,272 24.9 0 NO 39,272 37,0024 35.0 0.0 NO 42,027 24.9 0 NO 361 42,289 37/2024 35.0 0.0 NO 42,027 24.9 0 NO 361 42,289 37/2024 35.0 0.0 NO 12,680 0.1 0 NO 361 22,682 37/2024 35.0 0.0 NO 12,680 0.1 0 NO 361 32,682 37/2024 34.8 0.0 NO 33,471 23.8 0 NO 393 33,864 38/30/2024 34.8 0.0 NO 34,433 0.1 0 NO NO 37,620 33,443 33,844 33/2024 34.9 0.0 NO 34,433 0.1 0 NO 387 38,438 37/2024 35.0 0.0 NO 38,051 24.4 0 NO 387 38,438 37/2024 35.0 0.0 NO 36,159 0.1 0 NO 36,159 37/2024 34.4 0.0 NO 36,159 0.1 0 NO 37,620 34,433 37/2024 34.4 0.0 NO 36,468 24.7 0 NO 37,620 37/2024 34.4 0.0 NO 36,468 24.7 0 NO 37,620 37/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 39/5/2024 34.5 0.0 NO 35,369 20.4 0 NO 279 26,638 39/6/2024 34.5 0.0 NO 35,369 20.4 0 NO 379 36,847 39/5/2024 34.5 0.0 NO 35,369 20.4 0 NO 318 35,207 37/2024 34.6 0.0 NO 35,369 20.4 0 NO 391 45,600 39/2/2024 34.5 0.0 NO 47,686 21.7 0 NO 391 45,600 39/2/2024 34.5 0.0 NO 47,686 21.7 0 NO 398 32,363 39/10/2024 34.5 0.0 NO 47,686 21.7 0 NO 398 32,363 39/10/2024 34.5 0.0 NO 37,271 23.8 0 NO 411 49,005 39/13/2024 34.5 0.0 NO 47,686 21.7 0 NO 398 32,363 39/10/2024 34.5 0.0 NO 47,686 21.7 0 NO 398 32,363 39/10/2024 34.5 0.0 NO 47,686 21.7 0 NO 398 32,363 39/10/2024 34.5 0.0 NO 47,686 21.7 0 NO 398 32,363 39/10/2024 34.5 0.0 NO 47,686 21.7 0 NO 398 32,363 39/10/2024 34.5 0.0 NO 47,686 21.7 0	8/21/2024	34.8	0.0	NO	25,629	22.8	0	NO		25,629
8/24/2024 35.1 0.0 NO 31,579 0.1 0 NO 31,579 8/25/2024 35.0 0.0 NO 39,272 24.9 0 NO 261 42,289 8/27/2024 35.0 0.0 NO 42,027 24.9 0 NO 261 42,289 8/27/2024 35.0 0.0 NO 22,261 24.9 0 NO 361 22,682 8/27/2024 35.0 0.0 NO 22,261 24.9 0 NO 361 22,682 8/28/2024 34.8 0.0 NO 33,471 23.8 0 NO 393 33,864 8/30/2024 36.1 0.0 NO 37,620 0.0 0 NO 37,620 8/31/2024 34.9 0.0 NO 34,433 0.1 0 NO 34,433 8/30/2024 34.9 0.0 NO 34,433 0.1 0 NO 37,620 8/31/2024 34.9 0.0 NO 38,051 24.4 0 NO 387 38,438 9/2/2024 35.0 0.0 NO 36,159 0.1 0 NO 36,159 9/3/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 9/3/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 9/3/2024 34.5 0.0 NO 26,360 21.9 0 NO 279 26,638 9/3/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.5 0.0 NO 44,156 0.1 0 NO 391 45,600 9/3/2024 34.5 0.0 NO 47,686 21.7 0 NO 391 45,600 9/3/2024 34.5 0.0 NO 47,686 21.7 0 NO 394 45,600 9/3/2024 34.5 0.0 NO 47,686 21.7 0 NO 394 45,600 9/3/2024 34.5 0.0 NO 37,986 21.9 0 NO 411 49,005 9/3/2024 34.5 0.0 NO 37,986 21.9 0 NO 314,500 9/3/2024 34.5 0.0 NO 37,986 21.7 0 NO 394 45,600 9/3/2024 34.5 0.0 NO 37,986 21.9 0 NO 37,880 9/3/2024 34.5 0.0 NO 37,986 21.9 0 NO 37,880 9/3/2024 34.5 0.0 NO 37,986 21.9 0 NO 37,880 9/3/2024 34.5 0.0 NO 37,986 21.9 0 NO 37,880 9/3/2024 34.5 0.0 NO 37,986 21.9 0 NO 37,880 9/3/2024 34.5 0.0 NO 37,986 21.0 NO 394 43,990 9/3/2024 34.5 0.0 NO 37,986 22.2 0 NO 394 43,990 9/3/2024 34.5 0.0 NO 37,986 22.2 0 N	8/22/2024	35.1	0.0	NO	33,196	0.0	0	NO		33,196
8/25/2024 35.0 0.0 NO 39.272 24.9 0 NO 261 42.289 8/26/2024 34.6 0.0 NO 42.027 24.9 0 NO 261 42.289 8/27/2024 35.0 0.0 NO 22.261 24.9 0 NO 361 22.626 8/28/2024 35.0 0.0 NO 12.680 0.1 0 NO 12.680 8/29/2024 34.8 0.0 NO 33.471 23.8 0 NO 393 33.664 8/30/2024 34.8 0.0 NO 37.620 0.0 0 NO 37.620 8/31/2024 34.9 0.0 NO 34.433 0.1 0 NO 37.620 8/31/2024 34.9 0.0 NO 34.433 0.1 0 NO 36.159 9/1/2024 34.7 0.0 NO 36.159 0.1 0 NO 387 38.438 9/2/2024 35.0 0.0 NO 36.159 0.1 0 NO 36.159 9/3/2024 34.4 0.0 NO 36.488 24.7 0 NO 379 36.847 9/4/2024 34.4 0.0 NO 36.488 24.7 0 NO 379 36.847 9/6/2024 34.5 0.0 NO 35.089 20.4 0 NO 118 35.207 9/7/2024 34.5 0.0 NO 35.089 20.4 0 NO 118 35.207 9/7/2024 34.5 0.0 NO 35.089 20.4 0 NO 118 35.207 9/7/2024 34.5 0.0 NO 44.156 0.1 0 NO 364 48.049 9/8/2024 34.5 0.0 NO 45.208 25.1 0 NO 384 48.049 9/10/2024 34.5 0.0 NO 47.686 21.7 0 NO 364 48.049 9/10/2024 34.5 0.0 NO 37.971 23.8 0 NO 411 49.005 9/7/2024 34.5 0.0 NO 37.971 23.8 0 NO 411 49.005 9/7/2024 34.5 0.0 NO 37.871 23.8 0 NO 40.975 9/7/2024 34.5 0.0 NO 37.871 23.8 0 NO 40.975 9/7/2024 34.5 0.0 NO 37.871 23.8 0 NO 40.975 9/7/2024 34.5 0.0 NO 37.871 23.8 0 NO 40.975 9/7/2024 34.5 0.0 NO 37.871 23.8 0 NO 40.975 9/7/2024 34.5 0.0 NO 37.871 23.8 0 NO 40.975 9/7/2024 34.5 0.0 NO 37.871 23.8 0 NO 40.975 9/7/2024 34.5 0.0 NO 37.871 23.8 0 NO 47.686 9/17/2024 34.5 0.0 NO 37.871 23.8 0 NO 47.686 9/17/2024 34.5 0.0 NO 37.871 23.8 0 NO 47.686	8/23/2024	34.5	0.0	NO	48,620	24.0	0	NO		48,620
8/26/2024 34.6 0.0 NO 42,027 24.9 0 NO 261 42,289 8/27/2024 35.0 0.0 NO 22,261 24.9 0 NO 361 22,622 8/28/2024 35.0 0.0 NO 32,880 0.1 0 NO 333,3864 8/30/2024 36.1 0.0 NO 33,471 23.8 0 NO 393 33,864 8/30/2024 36.1 0.0 NO 37,620 0.0 0 NO 37,620 Max Daily Flow (Limit: 51,20): 49,001 34,433 0.1 0NO 34,433 34.9 34.9 34.9 34.433 0.0 NO 38,7620 0.0 NO 38,7630 0.0 NO 38,7630 0.0 NO 38,648 0.0	8/24/2024		0.0	NO	31,579	0.1	0	NO		31,579
8/27/2024 35.0 0.0 NO 22,261 24.9 0 NO 361 22,628 8/28/2024 35.0 0.0 NO 12,680 0.1 0 NO 36,126 0.0 NO 33,864 8/30/2024 34.8 0.0 NO 33,864 8/30/2024 36.1 0.0 NO 37,620 0.0 0 NO 37,620 8/31/2024 34.9 0.0 NO 37,620 0.0 0 NO 37,620 0.0 NO 37,620 0.0 NO 34,433 0.1 0.0 NO 34,433 0.1 0.0 NO 34,433 0.1 0.0 NO 34,433 0.1 0.0 NO 38,651 24.4 0 NO 387 38,438 9/1/2024 34.7 0.0 NO 36,159 0.1 0 NO 36,159 9.1 0 NO 36,159 9.1 0 NO 36,159 9.1 0 NO 36,159 9	8/25/2024		0.0		39,272		0			39,272
8/28/2024 35.0 0.0 NO 12,680 0.1 0 NO 12,680 8/29/2024 34.8 0.0 NO 33,471 23.8 0 NO 393 33,864 8/30/2024 34.9 0.0 NO 37,620 0.0 0 NO 37,620 8/31/2024 34.9 0.0 NO 34,433 0.1 0 NO 34,433 Max Daily Flow (Limit: 51,120): Monthly Total: Monthly Total: Monthly Total: Monthly Total: Monthly Total: Monthly Total: No 1,098,801 9,172024 35.0 0.0 NO 36,159 0.1 0 NO 36,159 9.1 0 NO 379 36,847 9,6224 34.4 0.0 NO 36,468 24.7 0	8/26/2024		0.0	NO	42,027	24.9	0	NO	261	42,289
8/29/2024 34.8 0.0 NO 33,471 23.8 0 NO 393 33,864 8/30/2024 34.9 0.0 NO 37,620 0.0 0 NO 37,620	8/27/2024		0.0	NO	22,261	24.9	0	NO	361	22,622
8/30/2024 36.1 0.0 NO 37,620 0.0 0 NO 37,620 8/31/2024 34.9 0.0 NO 34,433 0.1 0 NO 34,433 3.1 3.1 0 NO 34,433 3.1 3.1 0 NO 34,433 3.1 3.1 0 NO 34,433 3.1 3.1 0 NO 38,051 34.4 0 NO 387 38,438 38,438 39/2/2024 35.0 0.0 NO 36,159 0.1 0 NO 36,159 9/3/2024 20.4 0.0 NO 16,684 0.1 0 NO 379 36,847 9/5/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 9/5/2024 34.9 0.0 NO 36,468 24.7 0 NO 279 26,638 9/6/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 44,156 9/8/2024 34.5 0.0 NO 45,208 25.1 0 NO 391 45,600 9/9/2024 34.5 0.0 NO 47,886 21.7 0 NO 364 48,049 9/10/2024 34.4 1.0 NO 40,675 0.0 1 NO 391 45,600 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398 32,63 9/12/2024 34.5 0.0 NO 33,965 22.2 0 NO 398 32,63 9/12/2024 34.5 0.0 NO 33,965 22.2 0 NO 398 32,63 9/12/2024 34.5 0.0 NO 33,965 22.2 0 NO 398 32,63 9/12/2024 34.5 0.0 NO 33,965 22.2 0 NO 398 32,63 9/12/2024 34.5 0.0 NO 33,965 22.2 0 NO 398 32,63 9/12/2024 34.5 0.0 NO 33,583 0.0 NO 411 49,005 9/13/2024 34.5 0.0 NO 33,583 0.0 NO 40,075 9/14/2024 34.5 0.0 NO 33,583 0.0 NO 40,075 40,000 40	8/28/2024		0.0		12,680	0.1	0			12,680
8/31/2024	8/29/2024	34.8	0.0	NO	33,471	23.8	0	NO	393	33,864
Max Daily Flow (Limit: 51,120): Monthly Total: Mont	8/30/2024	36.1			37,620	0.0				37,620
9/1/2024 34.7 0.0 NO 38,051 24.4 0 NO 387 38,438 9/2/2024 35.0 0.0 NO 36,159 0.1 0 NO 367 38,438 9/3/2024 20.4 0.0 NO 16,684 0.1 0 NO 16,684 9/4/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 9/5/2024 34.4 0.0 NO 36,668 24.7 0 NO 379 36,847 9/5/2024 34.9 0.0 NO 26,360 21.9 0 NO 279 26,638 9/6/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 441,156 9/8/2024 34.5 0.0 NO 45,208 25.1 0 NO 391 45,600 9/9/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/10/2024 34.4 1.0 NO 40,675 0.0 1 NO 388 32,363 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 388 32,363 9/11/2024 34.9 0.0 NO 36,778 0.0 NO 411 49,005 9/13/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 34.5 0.0 NO 33,583 0.0 0 NO 37,280 9/15/2024 34.5 0.0 NO 33,583 0.0 0 NO 37,280 9/15/2024 34.5 0.0 NO 36,778 0.0 0 NO 37,280 9/15/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 34.5 0.0 NO 48,688 0.0 0 NO 37,280 9/15/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 47,4868 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2	8/31/2024	34.9	0.0	NO	34,433	0.1				34,433
9/1/2024 34.7 0.0 NO 38,051 24.4 0 NO 387 38,438 9/2/2024 35.0 0.0 NO 36,159 0.1 0 NO 36,159 9/3/2024 20.4 0.0 NO 16,684 0.1 0 NO 16,684 9/4/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 9/5/2024 34.9 0.0 NO 26,360 21.9 0 NO 279 26,638 9/6/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 391 45,600 9/8/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/10/2024 34.4 1.0 NO 40,675 0.0 1 NO 36,468 32,363 9/11/2024 34.5 0.0 NO 31,965 22.2 0 NO 398 32,363 9/11/2024 34.9 0.0 NO 36,778 0.0 NO 411 49,005 9/11/2024 34.9 0.0 NO 36,778 0.0 NO 40,675 9/11/2024 34.9 0.0 NO 33,583 0.0 NO 40,675 9/11/2024 34.9 0.0 NO 36,778 0.0 NO 40,9 37,860 9/13/2024 34.5 0.0 NO 33,883 0.0 NO 40,9 37,860 9/13/2024 34.9 0.0 NO 33,583 0.0 NO 40,9 37,860 9/13/2024 34.9 0.0 NO 33,583 0.0 NO 40,9 37,860 9/13/2024 34.5 0.0 NO 45,688 0.0 0 NO 37,271 23.8 0 NO 40,9 37,860 9/13/2024 34.5 0.0 NO 45,688 0.0 0 NO 37,274 33.8 0 NO 40,675 9/14/2024 34.5 0.0 NO 45,688 0.0 0 NO 37,274 33.8 0 NO 40,40 37,274 33.8 33.8 33.8 33.0 33.8							Max E	Daily Flow (Lir	nit: 51,120):	49,001
9/2/2024 35.0 0.0 NO 36,159 0.1 0 NO 36,159 9/3/2024 20.4 0.0 NO 16,684 0.1 0 NO 36,684 9/4/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 9/5/2024 34.9 0.0 NO 26,360 21.9 0 NO 279 26,638 9/6/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 44,156 9/8/2024 34.5 0.0 NO 45,208 25.1 0 NO 364 48,049 9/10/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398								Mo	onthly Total:	1,098,801
9/3/2024 20.4 0.0 NO 16,684 0.1 0 NO 16,684 9/4/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 9/5/2024 34.9 0.0 NO 26,360 21.9 0 NO 279 26,638 9/6/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 391 45,600 9/8/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/9/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398 32,363 9/12/2024 34.9 0.0 NO 36,778 0.0 NO <td>9/1/2024</td> <td></td> <td>0.0</td> <td></td> <td></td> <td>24.4</td> <td>0</td> <td>NO</td> <td>387</td> <td>38,438</td>	9/1/2024		0.0			24.4	0	NO	387	38,438
9/4/2024 34.4 0.0 NO 36,468 24.7 0 NO 379 36,847 9/5/2024 34.9 0.0 NO 26,360 21.9 0 NO 279 26,638 9/6/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 391 45,600 9/8/2024 34.5 0.0 NO 45,208 25.1 0 NO 391 45,600 9/9/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/10/2024 34.4 1.0 NO 40,675 0.0 1 NO 398 32,34 9/11/2024 34.9 0.0 NO 36,778 0.0 NO 411 49,005 9/13/2024 35.0 0.0 NO 37,271 23.8 0 <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.1</td> <td></td> <td></td> <td></td> <td></td>			0.0			0.1				
9/5/2024 34.9 0.0 NO 26,360 21.9 0 NO 279 26,638 9/6/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 44,156 9/8/2024 34.5 0.0 NO 45,208 25.1 0 NO 391 45,600 9/9/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/10/2024 34.4 1.0 NO 40,675 0.0 1 NO 40,675 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398 32,363 9/12/2024 34.5 0.0 NO 48,593 23.4 0 NO 411 49,005 9/13/2024 34.5 0.0 NO 36,778 0.0 NO 40,78										
9/6/2024 34.5 0.0 NO 35,089 20.4 0 NO 118 35,207 9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 44,156 9/8/2024 34.5 0.0 NO 45,208 25.1 0 NO 391 45,600 9/9/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/10/2024 34.4 1.0 NO 40,675 0.0 1 NO 364 48,049 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398 32,363 9/13/2024 34.5 0.0 NO 48,593 23.4 0 NO 411 49,005 9/13/2024 34.9 0.0 NO 36,778 0.0 NO 409 37,680 9/15/2024 35.0 0.0 NO 33,583 0.0 NO 409										
9/7/2024 34.6 0.0 NO 44,156 0.1 0 NO 44,156 9/8/2024 34.5 0.0 NO 45,208 25.1 0 NO 391 45,600 9/9/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398 32,363 9/12/2024 34.5 0.0 NO 48,593 23.4 0 NO 411 49,0675 9/13/2024 34.9 0.0 NO 36,778 0.0 NO 31,965 22.2 0 NO 398 32,363 9/13/2024 34.9 0.0 NO 36,778 0.0 NO 37,580 9/14/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 35.0 0.0 NO 48,688 <	9/5/2024		0.0		26,360	21.9	0		279	
9/8/2024 34.5 0.0 NO 45,208 25.1 0 NO 391 45,600 9/9/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/10/2024 34.4 1.0 NO 40,675 0.0 1 NO 308 32,363 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398 32,363 9/12/2024 34.9 0.0 NO 36,778 0.0 NO 411 49,005 9/13/2024 34.9 0.0 NO 36,778 0.0 NO 36,778 9/14/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 35.0 0.0 NO 33,583 0.0 0 NO 48,688 9/17/2024 34.5 0.0 NO 48,688 0.0 0 NO 471 43									118	
9/9/2024 34.5 0.0 NO 47,686 21.7 0 NO 364 48,049 9/10/2024 34.4 1.0 NO 40,675 0.0 1 NO 40,675 9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398 32,363 9/12/2024 34.5 0.0 NO 48,593 23.4 0 NO 411 49,005 9/13/2024 34.9 0.0 NO 36,778 0.0 0 NO 409 37,680 9/14/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 35.0 0.0 NO 33,583 0.0 0 NO 33,583 9/16/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2024 34.7 0.0 NO 48,622 12.6 0 NO 372<										
9/10/2024 34.4 1.0 NO										
9/11/2024 34.9 0.0 NO 31,965 22.2 0 NO 398 32,363 9/12/2024 34.5 0.0 NO 48,593 23.4 0 NO 411 49,005 9/13/2024 34.9 0.0 NO 36,778 0.0 0 NO 36,778 9/14/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 35.0 0.0 NO 33,583 0.0 0 NO 48,680 9/16/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2024 34.7 0.0 NO 48,622 12.6 0 NO 372 48,994 9/18/2024 34.9 0.0 NO 42,549 22.9 0 NO 471 43,020 9/20/2024 34.5 0.0 NO 45,000 0 NO 425 45,									364	
9/12/2024 34.5 0.0 NO 48,593 23.4 0 NO 411 49,005 9/13/2024 34.9 0.0 NO 36,778 0.0 0 NO 36,778 9/14/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 35.0 0.0 NO 33,583 0.0 0 NO 409 37,680 9/16/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2024 34.7 0.0 NO 48,622 12.6 0 NO 372 48,994 9/18/2024 34.9 0.0 NO 42,549 22.9 0 NO 471 43,020 9/19/2024 34.5 0.0 NO 49,001 0.0 0 NO 49,001 9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425										
9/13/2024 34.9 0.0 NO 36,778 0.0 0 NO 36,778 9/14/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 35.0 0.0 NO 33,583 0.0 0 NO 33,583 9/16/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2024 34.7 0.0 NO 48,622 12.6 0 NO 372 48,994 9/18/2024 34.9 0.0 NO 42,549 22.9 0 NO 471 43,020 9/19/2024 34.5 0.0 NO 49,001 0.0 0 NO 49,001 9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425 45,495 9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434										
9/14/2024 35.0 0.0 NO 37,271 23.8 0 NO 409 37,680 9/15/2024 35.0 0.0 NO 33,583 0.0 0 NO 33,583 9/16/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2024 34.7 0.0 NO 48,622 12.6 0 NO 372 48,994 9/18/2024 34.9 0.0 NO 42,549 22.9 0 NO 471 43,020 9/19/2024 34.5 0.0 NO 49,001 0.0 NO 49,001 9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425 45,495 9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434 9/22/2024 34.8 0.0 NO 45,123 0.0 NO 412 17,882 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>411</td><td></td></td<>									411	
9/15/2024 35.0 0.0 NO 33,583 0.0 0 NO 33,583 9/16/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2024 34.7 0.0 NO 48,622 12.6 0 NO 372 48,994 9/18/2024 34.9 0.0 NO 42,549 22.9 0 NO 471 43,020 9/19/2024 34.5 0.0 NO 49,001 0.0 0 NO 49,001 9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425 45,495 9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434 9/22/2024 34.8 0.0 NO 45,123 0.0 NO 45,123 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 129,807 9/25/2024										
9/16/2024 34.5 0.0 NO 48,688 0.0 0 NO 48,688 9/17/2024 34.7 0.0 NO 48,622 12.6 0 NO 372 48,994 9/18/2024 34.9 0.0 NO 42,549 22.9 0 NO 471 43,020 9/19/2024 34.5 0.0 NO 49,001 0.0 0 NO 49,001 9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425 45,495 9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434 9/22/2024 34.8 0.0 NO 45,123 0.0 NO 45,123 9/23/2024 35.2 0.0 NO 17,469 23.8 0 NO 412 17,882 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 392 39,185									409	
9/17/2024 34.7 0.0 NO 48,622 12.6 0 NO 372 48,994 9/18/2024 34.9 0.0 NO 42,549 22.9 0 NO 471 43,020 9/19/2024 34.5 0.0 NO 49,001 0.0 0 NO 49,001 9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425 45,495 9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434 9/22/2024 34.8 0.0 NO 45,123 0.0 NO 45,123 9/23/2024 35.2 0.0 NO 17,469 23.8 0 NO 412 17,882 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 1 29,807 9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 375 23,										
9/18/2024 34.9 0.0 NO 42,549 22.9 0 NO 471 43,020 9/19/2024 34.5 0.0 NO 49,001 0.0 0 NO 49,001 9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425 45,495 9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434 9/22/2024 34.8 0.0 NO 45,123 0.0 0 NO 45,123 9/23/2024 35.2 0.0 NO 17,469 23.8 0 NO 412 17,882 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 1 29,807 9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 392 39,185 9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
9/19/2024 34.5 0.0 NO 49,001 0.0 0 NO 49,001 9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425 45,495 9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434 9/22/2024 34.8 0.0 NO 45,123 0.0 0 NO 45,123 9/23/2024 35.2 0.0 NO 17,469 23.8 0 NO 412 17,882 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 1 29,807 9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 392 39,185 9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 375 23,771 9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2										
9/20/2024 34.5 0.0 NO 45,070 22.9 0 NO 425 45,495 9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434 9/22/2024 34.8 0.0 NO 45,123 0.0 NO 45,123 9/23/2024 35.2 0.0 NO 17,469 23.8 0 NO 412 17,882 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 1 29,807 9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 392 39,185 9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 375 23,771 9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2 14,307 9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>471</td> <td></td>									471	
9/21/2024 35.1 0.0 NO 22,434 0.1 0 NO 22,434 9/22/2024 34.8 0.0 NO 45,123 0.0 0 NO 45,123 9/23/2024 35.2 0.0 NO 17,469 23.8 0 NO 412 17,882 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 1 29,807 9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 392 39,185 9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 375 23,771 9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2 14,307 9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 22,816										
9/22/2024 34.8 0.0 NO 45,123 0.0 0 NO 45,123 9/23/2024 35.2 0.0 NO 17,469 23.8 0 NO 412 17,882 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 1 29,807 9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 392 39,185 9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 375 23,771 9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2 14,307 9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 22,816									425	· · · · · · · · · · · · · · · · · · ·
9/23/2024 35.2 0.0 NO 17,469 23.8 0 NO 412 17,882 9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 1 29,807 9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 392 39,185 9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 375 23,771 9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2 14,307 9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 22,816										
9/24/2024 34.8 0.0 NO 29,806 0.1 0 NO 1 29,807 9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 392 39,185 9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 375 23,771 9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2 14,307 9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 22,816										· · · · · · · · · · · · · · · · · · ·
9/25/2024 35.0 0.0 NO 38,793 21.0 0 NO 392 39,185 9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 375 23,771 9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2 14,307 9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 22,816										
9/26/2024 34.7 0.0 NO 23,396 10.7 0 NO 375 23,771 9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2 14,307 9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 22,816									•	
9/27/2024 34.9 0.0 NO 14,305 0.1 0 NO 2 14,307 9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 22,816										
9/28/2024 35.2 0.0 NO 22,352 23.1 0 NO 464 22,816										
■ 9/29/2024 34.81 0.01 NO 36.030 0.11 0.1 NO 36.030									464	
	9/29/2024	34.8		NO	36,030	0.1				36,030
	9/30/2024	34.6	0.0	NO	45,485	0.1				45,919 49.005

Max Daily Flow (Limit: 51,120):

49,005

Monthly Total:

1,090,334

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data acquisition/handling

system)

Year: **2024**

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July	936,277	10/15/2024
August	1,098,801	10/15/2024
September	1,090,334	10/15/2024
October		
November		
December		

Note:

 $\label{lem:pretreatment} \textbf{File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls}$

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report July 2024 to September 2024

	WSAC Operation								
Month	Hours of Operation								
January-24									
February-24									
March-24									
April-24									
May-24									
June-24									
July-24	501.25								
August-24	416.75								
September-24	241.08								
October-24									
November-24									
December-24									

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report July 2024 to September 2024

	WSAC Operation								
Month	Average Daily Blowdown Cycles								
January-24									
February-24									
March-24									
April-24									
May-24									
June-24									
July-24	5.23								
August-24	3.74								
September-24	3.00								
October-24									
November-24									
December-24									

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2409065

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (September 2024)

Project Location: Combined Site Flow

Project Received: 09/04/2024

Analytical Report reviewed & approved for release on 09/13/2024 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2409065

Project: Quarterly Sampling (September 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2409065

Project: Quarterly Sampling (September 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

b7 Lighter than water immiscible sheen/product is present—sheen constituents not included in result.

b9 Sediment observed in aqueos sample prior to extraction.

m1 Based on the method limit threshold, the sample tested produced a result below the threshold of 2.5mg of dried

residue.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17 **Date Prepared:** 09/10/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: E1664A_SG **Analytical Method:** E1664A

Unit: mg/L

	Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up									
Client ID		Lab ID	Matrix		Date C	collected	Instrument	Batch ID		
E-001		2409065-001A	Water		09/03/20	024 08:55	O&G	301524		
Analytes	<u> 1</u>	<u>Result</u>		MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		
SGT-HEM		ND		1.6	4.8	1		09/10/2024 11:25		

Analyst(s): LAM

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001	2409065-002A	Water	09/04/202	24 09:05	O&G	301524
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND	1.6	4.9	1		09/10/2024 11:30

Analyst(s): LAM

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17 **Date Prepared:** 09/10/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up										
Client ID		Lab ID Matrix Date Collected		Instrument	Batch ID					
E-001		2409065-001B	Water		09/03/20	024 08:55	O&G	301524		
<u>Analytes</u>	<u> </u>	Result		MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		
HEM		ND		1.5	4.8	1		09/10/2024 12:10		

Analyst(s): LAM Analytical Comments: b9

Client ID	Lab ID	D Matrix I		ollected	Instrument	Batch ID
E-001	2409065-002B	Water	09/04/2024 09:05		O&G	301524
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	32.7	1.5	4.8	1		09/10/2024 11:35

Analyst(s): LAM Analytical Comments: b7

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17 **Date Prepared:** 09/09/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N								
Client ID	Lab ID	Matrix	Date (Collected	Instrument	Batch ID		
E-001	2409065-002K	Water	09/04/2	2024 09:00	WC_SKALAR 240909B1_126	301431		
Analytes	Result	<u>MD</u>	L RL	<u>DF</u>	Date	Analyzed		
Ammonia, total as N	45	1.8	2.0	20	09/0	9/2024 17:36		

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17 **Date Prepared:** 09/05/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: SM5210B

Analytical Method: SM5210 B

Unit: mg/L

Biochemical Oxygen Demand (BOD)									
Client ID	Lab ID	b ID Matrix Date Collected		Instrument	Batch ID				
E-001	2409065-002E	Water	09/04/2	024 09:00	WetChem	301210			
Analytes	Result	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed			
BOD	ND	2.0	2.0	1.02		09/10/2024 10:13			

Analyst(s): JRA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17 **Date Prepared:** 09/10/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: μg/L

Cyanide, Total								
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID		
E-001	2409065-002D	Water	09/04/2024 09:05		WC_Skalar3 240910A0_39	301533		
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>	Date	Analyzed		
Total Cyanide	3.2	0.58	1.0	1	09/1	0/2024 14:48		

Analyst(s): JRA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/11/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: SM5220 D

Analytical Method: SM5220 D

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L									
Client ID	Lab ID	b ID Matrix I		Collected	Instrument	Batch ID			
E-001	2409065-002F	Water	09/04/2	2024 09:00	SPECTROPHOTOMETER2	301646			
Analytes	Result	MDL	<u>RL</u>	<u>DF</u>	<u>Date</u>	e Analyzed			
COD	36	4.8	10	1	09/1	11/2024 17:14			

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17 **Date Prepared:** 09/05/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: E245.2 **Analytical Method:** E245.2

Unit: μg/L

Mercury by Cold Vapor Atomic Absorption									
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID			
E-001	2409065-0021	Water	09/04/2024 09:00		AA1 _17	301273			
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed			
Mercury	ND	0.12	0.20	1		09/05/2024 18:57			

Analyst(s): MJA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/04/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

		Me	etals				
Client ID	Lab ID	Matrix	Matrix		lected	Instrument	Batch ID
E-001	2409065-002J	Water		09/04/2024	1 09:00	ICP-MS4 278SMPL.d	301157
<u>Analytes</u>	Result	Qualifiers	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Arsenic	0.76		0.077	0.50	1		09/06/2024 02:25
Cadmium	ND		0.061	0.50	1		09/06/2024 02:25
Chromium	ND		0.33	2.0	1		09/06/2024 02:25
Copper	4.1		0.63	1.5	1		09/06/2024 02:25
Iron	120		21	50	1		09/06/2024 02:25
Lead	0.21	J	0.21	0.50	1		09/06/2024 02:25
Molybdenum	17		0.18	0.50	1		09/06/2024 02:25
Nickel	0.89		0.24	0.50	1		09/06/2024 02:25
Selenium	0.19	J	0.17	0.50	1		09/06/2024 02:25
Silver	ND		0.058	0.50	1		09/06/2024 02:25
Zinc	110		11	20	1		09/06/2024 02:25
<u>Surrogates</u>	REC (%)			<u>Limits</u>			
Terbium	104			70-130			09/06/2024 02:25
Analyst(s): AL							

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/05/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: E420.4 **Analytical Method:** E420.4

Unit: $\mu g/L$

Phenolics								
Client ID	Lab ID	Matrix Date Collected		Instrument	Batch ID			
E-001	2409065-002C	Water	09/04/2024 09:05		WC_SKALAR 240905C1_22	301247		
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed		
Phenolics	ND	1.5	2.0	1	09/08	5/2024 15:47		

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/10/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: SM2540 C-

Analytical Method: SM2540 C

Unit: mg/L

Total Dissolved Solids									
Client ID	D Lab ID Matrix Date Collected		Instrument	Batch ID					
E-001	2409065-002G	Water	09/04/2024 09:00		WetChem	301525			
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed			
Total Dissolved Solids	510	10.0	10.0	1		09/10/2024 16:55			

Analyst(s): JME

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/05/2024

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

Extraction Method: SM2540 D

Analytical Method: SM2540 D

Unit: mg/L

Total Suspended Solids									
Client ID Lab ID Matrix Date Collect		llected	Instrument	Batch ID					
E-001	2409065-002H	Water	09/04/2024 09:00		WetChem	301214			
<u>Analytes</u>	Result	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed			
Total Suspended Solids	1.00	1.00	1.00	1		09/05/2024 13:20			

Analyst(s): ISH Analystical Comments: m1

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409065Date Prepared:09/10/2024BatchID:301524

Date Analyzed:09/10/2024Extraction Method:E1664A_SGInstrument:O&GAnalytical Method:E1664AMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (September 2024) Sample ID: MB/LCS/LCSD-301524

QC Summary Report for E1664A Analyte MB Result MDL RL HEM ND 1.6 5.0 SGT-HEM ND 1.7 5.0

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	20	21	20.83	95	99	78-114	3.41	30
SGT-HEM	6.9	7.7	10.42	66	74	64-132	10.8	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/09/2024

Date Analyzed: 09/09/2024 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

BatchID: 301431

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-301431

QC Summary Report for SM4500-NH3								
Analyte	MB Result	MDL	RL					
Ammonia, total as N	ND	0.089	0.10	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	4.0	4.2	4	100	106	90-110	5.48	10

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409065Date Prepared:09/05/2024BatchID:301210Date Analyzed:09/10/2024Extraction Method:SM5210B

Instrument:WetChemAnalytical Method:SM5210 BMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (September 2024) **Sample ID:** MB/LCS/LCSD-301210

QC Summary Report for BOD									
Analyte	MB Result	MDL	RL						
BOD	ND	2.0	2.0	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
BOD	230	230	198	114	115	84-115	0.879	16

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/10/2024

Date Analyzed: 09/10/2024 **Instrument:** WC_Skalar3

Matrix:

Project:

Water

Quarterly Sampling (September 2024)

WorkOrder: 2409065

BatchID: 301533 Extraction Method: SM4500-CN⁻ E

Analytical Method: SM4500-CN⁻ CE

Unit: μg/L

Sample ID: MB/LCS/LCSD-301533

QC Summary Report for SM4500-CN ⁻ CE										
Analyte	MB Result	MDL	RL							
Total Cyanide	ND	0.58	1.0	-	-	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	48	50	50	96	100	90-110	3.41	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/11/2024 **Date Analyzed:** 09/11/2024

Instrument: SPECTROPHOTOMETER2

Matrix: Water

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

BatchID: 301646

Extraction Method: SM5220 D **Analytical Method:** SM5220 D

Unit: mg/L

Sample ID: MB/LCS/LCSD-301646

2409065-002FMS/MSD

	QC Summary Report for COD								
Analyte	MB Result	MDL	RL						
COD	ND	4.8	10	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD	100	110	100	100	108	90-110	7.69	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
COD	1	120	120	100	36.00	86	86	80-120	0	20

Quality Control Report

Client: PG&E Gateway Generating Station

 Date Prepared:
 09/05/2024

 Date Analyzed:
 09/05/2024

 Instrument:
 AA1

Matrix: Water

Analyte

Project: Quarterly Sampling (September 2024)

WorkOrder: 2409065

BatchID: 301273 **Extraction Method:** E245.2

Analytical Method: E245.2 **Unit:** μg/L

Sample ID: MB/LCS/LCSD-301273

2409065-002IMS/MSD

QC Summary	Report for N	Iercury		
MB Result	MDL	RL		

Mercury ND 0.12 0.20 - -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	2.1	1.9	2	105	93	85-115	12.5	20

Analyte	MS DF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Mercury	1	2.2	2.1	2	ND	108	106	80-120	1.45	20

Analyte	DLT Result	DLTRef Val	%D %D Limit
Mercury	ND	ND	-

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

2409065

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Prepared: 09/04/2024 RatchID:

 Date Prepared:
 09/04/2024
 BatchID:
 301157

 Date Analyzed:
 09/05/2024
 Extraction Method:
 E200.8

 Instrument:
 ICP-MS4
 Analytical Method:
 E200.8

 Matrix:
 Water
 Unit:
 μg/L

Project: Quarterly Sampling (September 2024) **Sample ID:** MB/LCS/LCSD-301157

QC Summary Report for

	•								
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits			
Arsenic	ND	0.077	0.50	-	-	-			
Cadmium	ND	0.061	0.50	-	-	=			
Chromium	ND	0.33	2.0	-	-	=			
Copper	ND	0.63	1.5	-	-	-			
Iron	ND	21	50	-	-	-			
Lead	ND	0.21	0.50	-	-	-			
Molybdenum	ND	0.18	0.50	-	-	-			
Nickel	ND	0.24	0.50	-	-	-			
Selenium	ND	0.17	0.50	-	-	-			
Silver	ND	0.058	0.50	-	-	-			
Zinc	ND	11	20	-	-	-			

Surrogate Recovery

Terbium 520 500 104 70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	53	52	50	105	103	85-115	2.13	20
Cadmium	52	51	50	103	102	85-115	0.894	20
Chromium	52	52	50	103	104	85-115	0.525	20
Copper	53	52	50	106	105	85-115	1.53	20
Iron	5200	5200	5000	104	105	85-115	0.510	20
Lead	51	50	50	101	101	85-115	0.430	20
Molybdenum	50	50	50	101	100	85-115	1.42	20
Nickel	52	52	50	104	104	85-115	0.496	20
Selenium	51	51	50	103	103	85-115	0.119	20
Silver	52	50	50	103	100	85-115	2.75	20
Zinc	530	520	500	107	104	85-115	2.25	20
Surrogate Recovery								
Terbium	520	520	500	104	103	70-130	1.44	20

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder: 2409065 **Date Prepared:** 09/05/2024 **BatchID:** 301247 **Date Analyzed:** 09/05/2024 **Extraction Method:** E420.4 **Instrument:** WC_SKALAR **Analytical Method:** E420.4

Matrix: Water

Project: Quarterly Sampling (September 2024) **Sample ID:**

MB/LCS/LCSD-301247

Unit:

QC Summary Report for E420.4										
Analyte	MB Result	MDL	RL	RL						
Phenolics	ND	1.5	2.0	-	-	-				

Analyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
	Result	Result	Val	%REC	%REC	Limits	2	Limit
Phenolics	41	41	40	102	102	90-110	0.0341	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409065Date Prepared:09/10/2024BatchID:301525Date Analyzed:09/10/2024Extraction Method:SM2540 C-

Instrument:WetChemAnalytical Method:SM2540 CMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (September 2024) **Sample ID:** MB/LCS/LCSD-301525

	QC Summary Repo	rt for Total D	issolved S	olids		
Analyte	MB Result	MDL	RL			
Total Dissolved Solids	ND	10.0	10.0	_	_	_

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Dissolved Solids	1080	1050	1000	108	105	80-120	2.64	10

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409065Date Prepared:09/05/2024BatchID:301214Date Analyzed:09/05/2024Extraction Method:SM2540 D

Instrument:WetChemAnalytical Method:SM2540 DMatrix:WaterUnit:mg/L

Project: Quarterly Sampling (September 2024) **Sample ID:** MB/LCS/LCSD-301214

QC Summary Report for Total Suspended Solids										
Analyte	MB Result	MDL	RL							
Total Suspended Solids	ND	1.00	1.00	=	=	-				

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Suspended Solids	100	99.0	100	100	99	80-120	1.01	10

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 **CHAIN-OF-CUSTODY RECORD**

Page 1 of 1

☐ WaterTrax CLIP

abe4@pge.com

EQuIS

Dry-Weight **✓** Email □HardCopy

ClientCode: PGEA

☐ThirdParty

J-flag

Detection Summary

□ EDF

Bill to:

WorkOrder: 2409065

Excel

Requested TATs:

5 days; 7 days;

PG&E Gateway Generating Station

Angel Espiritu cc/3rd Party: APSD@pge.com; MSFG@pge.com; T1WY PG&E Gateway Generating Station

Date Received:

09/04/2024

3225 Wilbur Avenue

(925) 252-9262

PO:

3225 Wilbur Avenue

Antioch, CA 94509 (925) 459-7212 FAX:

Angel Espiritu

Report to:

Project:

Email:

Quarterly Sampling (September 2024)

Antioch, CA 94509

Date Logged:

09/04/2024

					Requested Tests (See legend below)											
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2409065-001	E-001	Water	9/3/2024 08:55		Α	В								Α		
2409065-002	E-001	Water	9/4/2024 09:00				K	Е		F	ı	J			G	Н
2409065-002	E-001	Water	9/4/2024 09:05		Α	В			D				С	Α		

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	PHENOLICS_W

2	1664A_W
6	COD_W
10	PRDisposal Fee

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

4	BOD_W
8	METALSMS_TTLC_W
12	TSS_W

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Client Contact:

Angel Espiritu

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (September 2024) Work Order: 2409065

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 9/4/2024

		☐ Water	Trax CLIP EDF		Excel [EQuIS	✓ Ema	il HardCopy	Third	IParty √ J-flaç)	
LabII	O ClientSampID	Matrix	Test Name	Cont./	Bottle & Preservative	U** Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out
001A	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl			9/3/2024 8:55	5 days	9/11/2024	None	
				1	aVOA w/ HCl						None	
001B	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl			9/3/2024 8:55	5 days	9/11/2024	None	
				1	aVOA w/ HCl						None	
002A	E-001	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl			9/4/2024 9:05	5 days	9/11/2024	None	
				1	aVOA w/ HCl						None	
002B	E-001	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl			9/4/2024 9:05	5 days	9/11/2024	None	
				1	aVOA w/ HCl						None	
002C	E-001	Water	E420.4 (Phenolics)	1	500mL aG w/ H25	SO4		9/4/2024 9:05	5 days	9/11/2024	None	
002D	E-001	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE v NaOH	v/		9/4/2024 9:05	5 days	9/11/2024	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Quarterly Sampling (September 2024) Work Order: 2409065

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 9/4/2024

		Water1	Γrax ☐CLIP ☐EDF	1	Excel	EQuis	3	✓ Ema	il HardCopy	Third	Party J-flag	1	
LabID	ClientSampID	Matrix	Test Name	Cont./	Bottle & Preservative		Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Sub Out
002E	E-001	Water	SM5210B (BOD)	1	500mL HDPE, unprsv.				9/4/2024 9:00	7 days	9/13/2024	None	
002F	E-001	Water	SM5220D (COD)	2	aVOA w/ H2SO4				9/4/2024 9:00	5 days	9/11/2024	None	
002G	E-001	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.				9/4/2024 9:00	5 days	9/11/2024	None	
002H	E-001	Water	SM2540D (TSS)	1	1L HDPE, unprsv.				9/4/2024 9:00	5 days	9/11/2024	None	
002I	E-001	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3				9/4/2024 9:00	5 days	9/11/2024	None	
002J	E-001	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3				9/4/2024 9:00	5 days	9/11/2024	None	
002K	E-001	Water	SM4500-NH3 BG (Ammonia Nitrogen)	1	250mL aG w/ H2SC	04 🗌			9/4/2024 9:00	5 days	9/11/2024	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 2 of 2

2409065

	McCAMPBELL ANALYTICAL, INC.								-	-	-	_	the same of the sa		-	-	-			-	_	_	_				
			1534 PITT	WILLOW SBURG, C	V PASS CA 945	S ROAD 65-1701										TURN										E HR	CORD □ 72 HR 5 DAY
			: (877) 25		Ema		@mcc x: (92					8				GeoTra	icker E	DF	区区		PDF 📮	Excel	Ę]	W	rite	e On (DW)
Report To	: Angel Es	piritu	1%		В	ill To:	PG&	E Ga	tew	ay	-				T		Analysis	Req	ues	t						F	Remarks
Company	PG&E G	atew	ay Genera	ting Stat	tion		-	-			-				T				П						Г		
The second																ż	(mm	₽.		5-6		iu m,					
THE RESERVE THE PERSON NAMED IN	Mail: abe4@pge.com, TlWY@pge.com, MSFG@pge.com, APSD@pge.com													vith ore	leni	(A)	120.4	-NH		hron ; inc)							
	el: (925) 522-7838, (510) 861-1597 (Cell) Fax: () roject Name: Quarterly Sampling (September 2024)												4	(Pretreated with niosulfate before g) by SM 4500	os pu	1664,	PA	4500		im, c silver nd zi							
					pter	rpex	20:	24)				-		-	4	reat Ifate y SN	ic an	PA 1	USE	SM		dmiu kel, s on, a	e e	<u> </u>			
THE RESERVE OF THE PARTY OF THE	cation: Co	ALC: UNKNOWN		CALL TO STATE OF THE STATE OF T				n							4	Pret iosul () by	seni	USE	lics (s N (15.2)	8 ca l, nic n, ir	2101	220D	40C	40D)	
Sampler S	ignature: I	ASSESSMENT OF THE OWNER, THE OWNE	an Enviro	onmental	Sam	pling		K				-			4	de (n thi ving	8. 8. Im	ase (heno	nia a	y (2,	(200. lead lenur	SMS	M S	N 22	M 25	
		omposit	SAMP	LING		SI	Ma	trix	ME	тн	OD	PRE	SER	VEI		Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 ABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (USEPA 1664A) with	Total Phenolics (USEPA 420.4)	Ammonia as N (SM 4500-NH3-	Mercury (245.2)	Metals (200.8 cadmium, chromium, copper, lead, nickel, silver, Molybdenum, iron, and zinc)	BOD (SM 5210B)	COD (SM 5220D)	TDS (SM 2540C)	TSS (SM 2540D)	
SAMPLE ID	LOCATION / Field Point Name	Sample Type Composite	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H,SO4	NaOH	HCL	HNO3	Other												
E-001		G	9/3/24	△8:5 ≤	4	1L Amb, 40-ml VOA	Х		H	X	+	\dashv	Х	T	1			X	П						Н		
E-001		G	9/4/24		4	1L Amb, 40-ml VOA	X	П	П	X	T		X	T	7			X	П	1	-		П		Н	П	
E-001		0	9/4/24		1	500ml Amb	X	П	\Box	Х	X		寸	T	7				Х				П		П	П	
E-001		G	914/24		1	250-ml	X	Н	H	Х	\dagger	X	\forall	\dagger	7	X		_	Н				Н	_	Н	Н	
E-001		С	9/4/24	The second lives and the second lives are as a second lives are a seco	1	Poly Poly	Х	Н	X	Х	\dagger	\dashv	\forall	\dagger	+				Н				Х	_	H	Н	
E-001		С	9/4/24		2	43-ml VOA	X	Н	1	X	X	\dashv	\forall	\forall	1				H				H	X	1	Н	
E-001		С	9/4/24		1	500-ml poly	Х		X	X	\dagger	\neg	寸	1	1				H				Н	7	X	Н	
E-001		С	9/4/24		1	1L poly	X		X	Х	T	\dashv	ヿ	十	7				Н				Н		H	Х	
E-001		С	9/4/24		1	250-ml Poly	Х		H	Х	T	\exists	寸	X	1				П		X		Н	_	H	П	
E-001		С	9/4/24	16.00	1	250-ml poly	X	П	\forall	Х	T		\forall	X	7		X		П			X	Н	_	H	Н	
E-001		С	9/4/24			250 ml Amb	Х		\forall	X	X		寸	7	1				П	X			Н		H	Н	
			, ,,-	1.00		74110		П	\sqcap	7	7		\forall	\forall	7				П				П		H		
Relinquish	Ву:		Date:	Time:	Rece	ived By:	7			Ż	4				ナ	ICE/t° () e GOOD CO	&CW	1	10	4	5		-C	OM	ME	NTS	:
M	_		9/4/24	11:17	/	71	1/2	4	3/	N	A	7	-			GOOD CO	NDITION	VT.	11	4							
Relinquished	i By:		Date:	Time:	Rece	ived By:)	-							DECHLOR APPROPRI	INATED I	N LA		- }							

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Quarterly Sampling (September 2024)			Date and Tir Date Logged Received by		9/4/2024 11:17 9/4/2024 Agustina Venegas
WorkOrder №: Carrier:	2409065 Matrix: Water Client Drop-In			Logged by:		Adrianna Cardoza
	<u>Chain of</u>	Custody	/ (COC	C) Information		
Chain of custody	present?	Yes	✓	No 🗌		
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆		
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆		
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆		
Date and Time o	f collection noted by Client on COC?	Yes	✓	No 🗆		
Sampler's name	noted on COC?	Yes	✓	No 🗌		
COC agrees with	n Quote?	Yes		No 🗆	NA 🗹	
	<u>Sam</u>	ple Rece	eipt Int	<u>formation</u>		
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹	
Custody seals in	tact on sample bottles?	Yes	✓	No 🗌	NA \square	
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗆		
Samples in prope	er containers/bottles?	Yes	✓	No 🗌		
Sample containe	ers intact?	Yes	✓	No 🗆		
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗆		
	<u>Sample Preserva</u>	tion and	Hold	Time (HT) Information		
All samples rece	ived within holding time?	Yes	✓	No 🗌	NA \square	
Samples Receive	ed on Ice?	Yes	✓	No 🗌		
	(Ice Ty	vpe: WE	TICE)		
Sample/Temp Bl	ank temperature		Т	emp: 0.8°C	NA 🗌	
ZHS conditional requirement (VO	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🗆	NA 🗹	
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌		
pH acceptable up	pon receipt (Metal: <2)?	Yes	✓	No 🗌	NA \square	pH Lot#: HC439975
						Lot Expiration: 1/31/2028
UCMR Samples: pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗌	NA 🗸	
Free Chlorine to [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🗆	NA 🗹	
Comments:	=========		==	======		=======

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2409240

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Sanjiv Gill

Project P.O.:

Project: pH sampling (September 2024)

Project Location: PG&E GGS Antioch-E-001

Project Received: 09/04/2024

Analytical Report reviewed & approved for release on 09/11/2024 by:

Christine Askari

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2409240

Project: pH sampling (September 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2409240

Project: pH sampling (September 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC).

(Adjustment for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/03/2024

Project: pH sampling (September 2024)

WorkOrder: 2409240

Extraction Method: SM4500H+B **Analytical Method:** SM4500H+B

Unit: pH units

		pН				
Client ID	Lab ID	Matrix	Date Collect	ted	Instrument	Batch ID
E-001	2409240-001A	Water	09/03/2024 08	3:53	WetChem	301587
<u>Analytes</u>	<u>Result</u>		<u>Accuracy</u>	<u>DF</u>		Date Analyzed
рН	8.49		±0.05	1		09/03/2024 08:54

Analyst(s): ISH

McCampbell Analytical, Inc.

FAX:

1534 Willow Pass Rd

Pittsburg, CA 94565-1701 (925) 252-9262

Sanjiv Gill

(925) 459-7212

ClientCode: PGEA

Page 1 of 1

☐ ThirdParty

WorkOrder: 2409240 □WaterTrax CLIP □ EDF

EQuIS Dry-Weight ✓ Email □HardCopy

Detection Summary Excel

Report to: Bill to: Requested TAT: 5 days; Email:

sanjivgill@comcast.net Sanjiv Gil

cc/3rd Party: PG&E Gateway Generating Station Muskan Environmental Services

Date Received: 09/04/2024 PO: 3225 Wilbur Avenue 1828 Nelda Ct. Antioch, CA 94509 Project: pH sampling (September 2024) Yuba City, CA 95993 Date Logged: 09/06/2024

					Requested Tests (See legend below)												
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	2	3	4	5	6	7	8	9	10	11	12
	,												,	,		,	
2409240-001	E-001	Water	9/3/2024 08:53		Α	F	١.										

Test Legend:

1	PH_W_SANJIV	2 PRDisposal Fee	3	4
5		6	7	8
9		10	11	12

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	pH sampling (September 2024)	Work Order: 240924

Client Contact: Sanjiv Gill

Contact's Email: sanjivgill@comcast.net

Comments:

Date Logged: 9/6/2024

─ WaterTrax CLIP EDF Excel **EQuIS** ✓ Email HardCopy ■ ThirdParty LabID ClientSampID Bottle & U** Head **Dry-** Collection Date Matrix **Test Name** Cont./ TAT Test Due Date Sediment Hold Sub Preservative Space Weight & Time Content Out Comp. 5 days 001A E-001 Water SM4500H+B (Field pH) <NOT RECEIVED> 9/3/2024 8:53 9/11/2024

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

			43500																					-					2	4) (1240	
	M	CC	AMPB	ELL & 34 WILL	LNA OW P	LYT.	ICA	L,	IN	C.						_					CH	A	IN	0	F	CI	US	T	ΟĪ	ĮΫ́			CORD	
		helta:	WWW.Rec	TISBUR	L CA	4565-178	1									1	U	EN.	AF	CO	UN	D'	FIR	Æ			Q.		-E	↓ HR		[· · · · · · · · · · · · · · · · · · ·	
1	Tele	ibpo	Re: (877)	252-9262			Paz: (925)	252	-92	69					G	leo'	Tre	æk	er i	ED	F	ā	P	DF	2] .	Ex	cel		۱ ۱	Wı	rite On (DW) 📮	
Report	To: Sanity	Cili				Bill To:	Man	E	Para d			-4-			_								<u>ų</u>	C	bec	k ii	891	npl	e is	effi	uer	ıt e	ed "J" flag is requir	ed
	ey: PG&E			eretino	Static	D 10.	14463	CHH E	V				<u></u>			_			T	<u> </u>		AM	LIVS.		equ	est	-	_	_			_	Remarks	
								-							ᅦ																			
						E-Mall:	iess	vgill(e	me	est.	net													ı	1	1		- 1					
	8) 666-449					Fax: (<u></u>																			ı	1						·	
Project	Name: p	F 23	E CCS V	Scott	der of	<u>er_2</u>	024								4												- 1	I	- 1	- 1				
	r Signature		Musk						<u>C</u>	کسر	15			Û	4						l						1	1						•
						Lann	Y	<u> </u>	ا	un	24	<u>.</u>	-		4												ı		ļ	ı				
		a de la constant de l	SAMI	PLING	I	_	Ma	trix	M	STE	OĐ !	PRE	SEI	RVE	D		٠										I.							
SAMPLE	LOCATION	2 4		T	1 g				П	T	Т	T	7	Ŧ	ㅓ																			
ID	/ Field Point Name	25			# Containers	Type Containers	Waste Water	喜				- 1			#														ı					
		2	Date	Time	I	ပ္မ	8	A	g	_],	á	Ę	٦	4	4							İ				1				- 1				
		atdus		1	1 2	3	\$	Sewer Water	None	₫:		Z OZ	HOL	HNO	Zec	뜅					l					1	Ì							
E-001		SG	Q/q/q		NA	NA	X	-	굮	7	7	7	구	구	7	X	-	┞—	H		_	_	╀	╀	+	4	4	4	4	+			0 1 = 10 65	
			9/3/24	08:53	_		Ĺ			\perp	\perp	\bot		\perp		_						L	L										Grab Time: 08.53 Analysis Time: 08.5	4
					_					\perp	$oldsymbol{\perp}$	\bot	\downarrow	\bot	1				Ш				L										Temperature: 20.39 pH: 8,49	ح
					_								\perp	\perp	$oldsymbol{\perp}$													I	1					
										_	L	\bot			$oldsymbol{\perp}$											Τ	T	T	T	T	\exists			-
			 						\perp	┸	L	\bot	\perp													Τ	Т	T	T	\top				
			ļ						\perp	\perp	L	\perp														Τ	T	T			T			
				<u> </u>					\bot	\perp	L				$oldsymbol{1}$				Ш								I	T						
				ļ					\bot	\perp	L	\bot	\perp		1				Ц									T.						
									4		L	\bot	\perp	\perp	L												I	T						
									\bot	\perp		\bot	\perp		l												I	T			T			
								_	4	$oldsymbol{\perp}$	L	\bot	\perp	\perp	1													\mathbb{I}						
P	2			-							L		L															T			T			
Religion	क्ट की:		Date:	Time:	Heed	red By:	ر رما	_	> /	<u>/</u>		•	_			CCC		ONI		nv.										C	DM	ME	NTS:	-
Reliferabl	gehhod By: Date: Time: Received By					-	_ 1	HEA	D8	PAC	EAI	SE	17	 	-																			
	···•							,							1	AFT	ROI	DRIA BLA	TE (CON	TAI	NEI VE	S_	-	_									
Relinguish	ed Bre		Dates	79-04	David							-	-		41	RE	SER	VED	N	LAB		_												

VOAS O&G METALS OTHER

PRESERVATION

Relinquished By:

Dates

Timet

Received By:

Logbook for Field pH Samples

	Date/Time	Sample ID	Matrix	1 st R	eading	2 nd F	Reading	Ave	Standard	·	
			Mulix	рΉ	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)	Comments	Analyst
	9/3/24 /08:40	Cal. pH#	L	7.00	19.1	7.00	19.1	7.00	bulk		
٠.	9/3/24 /08:40	Cal pH #	L	4.00	19.1	4.00	19.1	4.00	bulk		
	4/3/2M /08:40	Cal. pH #	L	10.00	19.1	10.00	19.1	10.06	bup bulk		
						•	(4.	- 00	- ruji		
-		•									
-											
L											
ŀ			e			M	eler:	Mya	m / Cman	Dany	
ŀ				0	10 E	, !)1tra	Meter I	zmy	
-	4			2			Seri		6222 066		
ŀ								2/1	CAC al-	1.	
-	T.						ď	// OY	· CUC 9/3	124	
								10	0 4	0.1	
									PREE	hoteway	
								110	Cinci	Line	-
								-	1	1101.	

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Ge pH sampling (Septe	-			Date and Tim Date Logged: Received by:		9/4/2024 11:17 9/6/2024 Agustina Venegas
WorkOrder №: Carrier:	2409240 Client Drop-In	Matrix: Water			Logged by:		Agustina Venegas
		<u>Chain of</u>	Custody	/ (COC) Info	ormation_		
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌		
Sample IDs note	ed by Client on COC?		Yes	✓	No 🗌		
Date and Time o	of collection noted by 0	Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
COC agrees with	n Quote?		Yes		No 🗌	NA 🗹	
		<u>Sam</u>	ple Rece	eipt Informa	<u>ition</u>		
Custody seals in	tact on shipping conta	niner/cooler?	Yes		No 🗌	NA 🗹	
Custody seals in	tact on sample bottles	3?	Yes		No 🗌	NA 🗹	
Shipping contain	er/cooler in good con	dition?	Yes	✓	No 🗌		
Samples in prop	er containers/bottles?		Yes	✓	No 🗌		
Sample containe	ers intact?		Yes	✓	No 🗌		
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗆		
		Sample Preserva	ition and	Hold Time	(HT) Information		
All samples rece	ived within holding tim	ne?	Yes	✓	No 🗌	NA \square	
Samples Receive	ed on Ice?		Yes		No 🗸		
Sample/Temp Bl	lank temperature			Temp:		NA 🗹	
	analyses: VOA meets Cs, TPHg/BTEX, RSh		Yes		No 🗆	NA 🗹	
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌		
pH acceptable u	pon receipt (Metal: <2)?	Yes		No 🗆	NA 🗹	
UCMR Samples: pH tested and 537.1: 6 - 8)?	=	ipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗸	
Free Chlorine t [not applicable		upon receipt (<0.1mg/L)	Yes		No 🗆	NA 🗹	
Comments:	=====	=======	:		=====	====	=======

Attachment 8c Laboratory Results Semi-annual Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2409058

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Semi-Annual Sampling (September 2024)

Project Location: Combined Site Flow

Project Received: 09/04/2024

Analytical Report reviewed & approved for release on 09/11/2024 by:

Jena Alfaro

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2409058

Project: Semi-Annual Sampling (September 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

SPK Val Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2409058

Project: Semi-Annual Sampling (September 2024)

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

P Agreement between the quantitative dual-column confirmation results exceed method recommended limits of

40% RPD. The lowest concentration is reported.

h1 Florisil (EPA 3620) cleanup

Quality Control Qualifiers

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

F5 LCS/LCSD recovery is outside of acceptance limits; however, the data is acceptable based upon the TNI

allowable marginal exceedances.

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 2409058

Date Received: 09/04/2024 11:17 **Extraction Method:** E608.3/SW3620B

Date Prepared:09/04/2024Analytical Method:E608.3Project:Semi-Annual Sampling (September 2024)Unit: μ g/L

	Organochlorine Pe	sticides	+ PCB	s w/ Flo	risil Clo	ean-up	
Client ID	Lab ID	Matrix		Date Coll	ected	Instrument	Batch ID
E-001	2409058-001D	Water		09/04/2024	09:05	GC40 09092418.d	301132
<u>Analytes</u>	Result	Qualifiers	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed
Aldrin	ND		0.00078	0.0010	1		09/09/2024 14:47
a-BHC	ND		0.0010	0.0020	1		09/09/2024 14:47
b-BHC	ND		0.00081	0.0020	1		09/09/2024 14:47
d-BHC	ND		0.00057	0.0020	1		09/09/2024 14:47
g-BHC	ND		0.00063	0.0020	1		09/09/2024 14:47
Chlordane (Technical)	ND		0.014	0.050	1		09/09/2024 14:47
p,p-DDD	ND		0.00051	0.0010	1		09/09/2024 14:47
p,p-DDE	ND		0.00060	0.0010	1		09/09/2024 14:47
p,p-DDT	ND		0.00063	0.0010	1		09/09/2024 14:47
Dieldrin	ND		0.00042	0.0010	1		09/09/2024 14:47
Endosulfan I	ND		0.00043	0.0010	1		09/09/2024 14:47
Endosulfan II	0.0013	Р	0.00054	0.0010	1		09/09/2024 14:47
Endosulfan sulfate	ND		0.00053	0.0020	1		09/09/2024 14:47
Endrin	ND		0.00055	0.0010	1		09/09/2024 14:47
Endrin aldehyde	ND		0.00042	0.0010	1		09/09/2024 14:47
Heptachlor	ND		0.00067	0.0010	1		09/09/2024 14:47
Heptachlor epoxide	ND		0.00065	0.0010	1		09/09/2024 14:47
Toxaphene	ND		0.020	0.050	1		09/09/2024 14:47
Aroclor1016	ND		0.018	0.050	1		09/09/2024 14:47
Aroclor1221	ND		0.018	0.050	1		09/09/2024 14:47
Aroclor1232	ND		0.018	0.050	1		09/09/2024 14:47
Aroclor1242	ND		0.018	0.050	1		09/09/2024 14:47
Aroclor1248	ND		0.018	0.050	1		09/09/2024 14:47
Aroclor1254	ND		0.018	0.050	1		09/09/2024 14:47
Aroclor1260	ND		0.018	0.050	1		09/09/2024 14:47
PCBs, total	ND		NA	0.050	1		09/09/2024 14:47
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>			
Decachlorobiphenyl	97			60-130			09/09/2024 14:47
Analyst(s): EEV			<u>Ana</u>	alytical Com	ments: h	1	

 $\mu g/L$

Analytical Report

Client: PG&E Gateway Generating Station

09/04/2024 11:17

Date Prepared: 09/04/2024

Date Received:

Project: Semi-Annual Sampling (September 2024)

WorkOrder: 2409058

Extraction Method: E624.1

Analytical Method: E624.1

Unit:

Acrolein, Acrylonitrile, & 2-Chloroethyl Vinyl Ether									
Client ID	Lab ID	Matrix Water		Date Collected		Instrument	Batch ID		
E-001	2409058-001B			09/04/202	4 09:05	GC10 09042409.D	301234		
Analytes	<u>Result</u>	1	MDL_	<u>RL</u>	<u>DF</u>		Date Analyzed		
Acrolein (Propenal)	ND	;	3.7	5.0	1		09/04/2024 18:56		
Acrylonitrile	ND	(0.27	2.0	1		09/04/2024 18:56		
2-Chloroethyl Vinyl Ether	ND	(0.52	1.0	1		09/04/2024 18:56		
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>					
Dibromofluoromethane	100			70-130			09/04/2024 18:56		
Analyst(s): MSH									

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/10/2024

Project: Semi-Annual Sampling (September 2024)

WorkOrder: 2409058

Extraction Method: E624.1

Analytical Method: E624.1 **Unit:** µg/L

Volatile Organics									
Client ID	Lab ID	Matrix		Date Collected		Instrument	Batch ID		
E-001	2409058-001A	Water		09/04/2024	09:05	GC45 09092432.D	301526		
Analytes	Result		<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Benzene	ND		0.035	0.20	1		09/10/2024 04:05		
Bromodichloromethane	1.6		0.035	0.050	1		09/10/2024 04:05		
Bromoform	17		0.24	0.50	1		09/10/2024 04:05		
Bromomethane	ND		0.25	0.50	1		09/10/2024 04:05		
Carbon tetrachloride	ND		0.034	0.050	1		09/10/2024 04:05		
Chlorobenzene	ND		0.095	0.50	1		09/10/2024 04:05		
Chloroethane	ND		0.25	0.50	1		09/10/2024 04:05		
Chloroform	0.97		0.043	0.10	1		09/10/2024 04:05		
Chloromethane	ND		0.16	0.50	1		09/10/2024 04:05		
Dibromochloromethane	1.4		0.073	0.15	1		09/10/2024 04:05		
1,2-Dichlorobenzene	ND		0.10	0.50	1		09/10/2024 04:05		
1,3-Dichlorobenzene	ND		0.14	0.50	1		09/10/2024 04:05		
1,4-Dichlorobenzene	ND		0.089	0.50	1		09/10/2024 04:05		
1,1-Dichloroethane	ND		0.14	0.50	1		09/10/2024 04:05		
1,2-Dichloroethane (1,2-DCA)	ND		0.0093	0.020	1		09/10/2024 04:05		
1,1-Dichloroethene	0.018		0.0058	0.010	1		09/10/2024 04:05		
trans-1,2-Dichloroethene	ND		0.15	0.50	1		09/10/2024 04:05		
1,2-Dichloropropane	ND		0.039	0.10	1		09/10/2024 04:05		
cis-1,3-Dichloropropene	ND		0.13	0.50	1		09/10/2024 04:05		
trans-1,3-Dichloropropene	ND		0.20	0.50	1		09/10/2024 04:05		
Ethylbenzene	ND		0.10	0.50	1		09/10/2024 04:05		
Methylene chloride	ND		1.5	2.0	1		09/10/2024 04:05		
1,1,2,2-Tetrachloroethane	ND		0.015	0.020	1		09/10/2024 04:05		
Tetrachloroethene	ND		0.036	0.20	1		09/10/2024 04:05		
Toluene	ND		0.10	0.50	1		09/10/2024 04:05		
1,1,1-Trichloroethane	ND		0.13	0.50	1		09/10/2024 04:05		
1,1,2-Trichloroethane	ND		0.032	0.10	1		09/10/2024 04:05		
Trichloroethene	ND		0.034	0.10	1		09/10/2024 04:05		
Trichlorofluoromethane	ND		0.14	0.50	1		09/10/2024 04:05		
Vinyl chloride	ND		0.0044	0.0050	1		09/10/2024 04:05		

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/10/2024

Project: Semi-Annual Sampling (September 2024)

WorkOrder: 2409058

Extraction Method: E624.1

Analytical Method: E624.1 **Unit:** µg/L

Volatile Organics									
Client ID	Lab ID	Matrix		Date Col	lected	Instrument	Batch ID		
E-001	2409058-001A	Water	Vater 09/04/2024 09:05		GC45 09092432.D	301526			
Analytes	Result	ME	<u>)L</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Surrogates	<u>REC (%)</u>			<u>Limits</u>					
Dibromofluoromethane	96			70-130			09/10/2024 04:05		
Toluene-d8	96			70-130			09/10/2024 04:05		
4-BFB	81			70-130			09/10/2024 04:05		
Analyst(s): CLO									

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17

Date Prepared: 09/04/2024

Project: Semi-Annual Sampling (September 2024)

WorkOrder: 2409058

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

Semi-Volatile Organics								
Client ID	Lab ID	Matrix		Date Colle	ected	Instrument	Batch ID	
E-001	2409058-001C	Water		09/04/2024	09:05	GC47 09052425.D	301113	
<u>Analytes</u>	Result	Qualifiers	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed	
Acenaphthene	ND		0.0028	0.0048	1		09/05/2024 18:34	
Acenaphthylene	ND		0.0017	0.0048	1		09/05/2024 18:34	
Anthracene	0.0021	J	0.0019	0.0048	1		09/05/2024 18:34	
Benzidine	ND		2.6	4.8	1		09/05/2024 18:34	
Benzo (a) anthracene	ND		0.019	0.048	1		09/05/2024 18:34	
Benzo (a) pyrene	ND		0.0048	0.0048	1		09/05/2024 18:34	
Benzo (b) fluoranthene	ND		0.0051	0.0095	1		09/05/2024 18:34	
Benzo (g,h,i) perylene	ND		0.0037	0.0095	1		09/05/2024 18:34	
Benzo (k) fluoranthene	ND		0.0048	0.0095	1		09/05/2024 18:34	
Bis (2-chloroethoxy) Methane	ND		0.49	0.95	1		09/05/2024 18:34	
Bis (2-chloroethyl) Ether	ND		0.0048	0.0048	1		09/05/2024 18:34	
Bis (2-chloroisopropyl) Ether	ND		0.0047	0.0095	1		09/05/2024 18:34	
4-Bromophenyl Phenyl Ether	ND		0.28	0.95	1		09/05/2024 18:34	
Butylbenzyl Phthalate	ND		0.077	0.24	1		09/05/2024 18:34	
4-Chloro-3-methylphenol	ND		0.56	0.95	1		09/05/2024 18:34	
2-Chloronaphthalene	ND		0.53	0.95	1		09/05/2024 18:34	
4-Chlorophenyl Phenyl Ether	ND		0.47	0.95	1		09/05/2024 18:34	
Chrysene	ND		0.0026	0.0048	1		09/05/2024 18:34	
Dibenzo (a,h) anthracene	ND		0.0050	0.0095	1		09/05/2024 18:34	
Di-n-butyl Phthalate	0.075	J	0.074	0.24	1		09/05/2024 18:34	
1,2-Dichlorobenzene	ND		0.51	0.95	1		09/05/2024 18:34	
1,3-Dichlorobenzene	ND		0.56	0.95	1		09/05/2024 18:34	
1,4-Dichlorobenzene	ND		0.42	0.95	1		09/05/2024 18:34	
3,3-Dichlorobenzidine	ND		0.0059	0.0095	1		09/05/2024 18:34	
2,4-Dichlorophenol	ND		0.0053	0.0095	1		09/05/2024 18:34	
Diethyl Phthalate	0.029	J	0.020	0.048	1		09/05/2024 18:34	
2,4-Dimethylphenol	ND		0.51	0.95	1		09/05/2024 18:34	
Dimethyl Phthalate	0.013		0.0056	0.0095	1		09/05/2024 18:34	
4,6-Dinitro-2-methylphenol	ND		3.5	4.8	1		09/05/2024 18:34	
2,4-Dinitrophenol	ND		0.65	0.95	1		09/05/2024 18:34	
2,4-Dinitrotoluene	ND		0.026	0.048	1		09/05/2024 18:34	
2,6-Dinitrotoluene	ND		0.029	0.048	1		09/05/2024 18:34	
Di-n-octyl Phthalate	ND		1.1	2.4	1		09/05/2024 18:34	
1,2-Diphenylhydrazine	ND		0.40	0.95	1		09/05/2024 18:34	
Fluoranthene	0.0097		0.0036	0.0095	1		09/05/2024 18:34	
Fluorene	0.0026	J	0.0017	0.0095	1		09/05/2024 18:34	

(Cont.)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 09/04/2024 11:17 **Date Prepared:** 09/04/2024

Project: Semi-Annual Sampling (September 2024)

WorkOrder: 2409058

Extraction Method: E625.1

Analytical Method: E625.1 **Unit:** µg/L

Client ID	Lab ID	Matrix		Date Colle	ected	Instrument	Batch ID
E-001	2409058-001C	Water		09/04/2024	09:05	GC47 09052425.D	301113
<u>Analytes</u>	<u>Result</u>	Qualifiers	MDL	RL	<u>DF</u>		Date Analyzed
Hexachlorobenzene	ND		0.0016	0.0048	1		09/05/2024 18:34
Hexachlorobutadiene	ND		0.0010	0.0048	1		09/05/2024 18:34
Hexachlorocyclopentadiene	ND		2.2	4.8	1		09/05/2024 18:34
Hexachloroethane	ND		0.0032	0.0095	1		09/05/2024 18:34
Indeno (1,2,3-cd) pyrene	ND		0.0067	0.0095	1		09/05/2024 18:34
Isophorone	ND		0.43	0.95	1		09/05/2024 18:34
Naphthalene	ND		0.0060	0.0095	1		09/05/2024 18:34
Nitrobenzene	ND		0.58	0.95	1		09/05/2024 18:34
2-Nitrophenol	ND		2.9	4.8	1		09/05/2024 18:34
4-Nitrophenol	ND		3.4	4.8	1		09/05/2024 18:34
N-Nitrosodimethylamine	ND		3.4	4.8	1		09/05/2024 18:34
N-Nitrosodiphenylamine	ND		0.34	0.95	1		09/05/2024 18:34
N-Nitrosodi-n-propylamine	ND		0.57	0.95	1		09/05/2024 18:34
Pentachlorophenol	ND		0.15	0.24	1		09/05/2024 18:34
Phenanthrene	0.011		0.0034	0.0048	1		09/05/2024 18:34
Phenol	0.12		0.018	0.038	1		09/05/2024 18:34
Pyrene	0.0050		0.0027	0.0048	1		09/05/2024 18:34
1,2,4-Trichlorobenzene	ND		0.50	0.95	1		09/05/2024 18:34
2,4,6-Trichlorophenol	ND		0.0051	0.0095	1		09/05/2024 18:34
Surrogates	REC (%)			<u>Limits</u>			
2-Fluorophenol	38			30-130			09/05/2024 18:34
Phenol-d5	22			20-130			09/05/2024 18:34
Nitrobenzene-d5	61			60-130			09/05/2024 18:34
2-Fluorobiphenyl	62			50-130			09/05/2024 18:34
2,4,6-Tribromophenol	83			60-140			09/05/2024 18:34
4-Terphenyl-d14	71			40-130			09/05/2024 18:34

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/04/2024

Date Analyzed: 09/04/2024 - 09/06/2024

Instrument: GC40
Matrix: Water

Project: Semi-Annual Sampling (September 2024)

WorkOrder: 2409058

BatchID: 301132

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-301132

QC Summary Report for E608.3 w/ Florisil Clean-up								
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits		
Aldrin	ND	0.00078	0.0010	-	-	-		
a-BHC	ND	0.0010	0.0020	-	-	-		
b-BHC	ND	0.00081	0.0020	-	-	-		
d-BHC	ND	0.00057	0.0020	-	-	-		
g-BHC	0.0018,J	0.00063	0.0020	-	-	-		
Chlordane (Technical)	ND	0.014	0.050	-	-	-		
a-Chlordane	ND	0.00047	0.0010	-	-	-		
g-Chlordane	ND	0.00048	0.0010	-	-	-		
p,p-DDD	ND	0.00051	0.0010	-	-	-		
p,p-DDE	ND	0.00060	0.0010	-	-	-		
p,p-DDT	ND	0.00063	0.0010	-	-	-		
Dieldrin	ND	0.00042	0.0010	-	-	-		
Endosulfan I	ND	0.00043	0.0010	-	-	-		
Endosulfan II	ND	0.00054	0.0010	-	-	-		
Endosulfan sulfate	ND	0.00053	0.0020	-	-	-		
Endrin	ND	0.00055	0.0010	-	-	-		
Endrin aldehyde	ND	0.00042	0.0010	-	-	-		
Endrin ketone	ND	0.00058	0.0010	-	-	-		
Heptachlor	ND	0.00067	0.0010	-	-	-		
Heptachlor epoxide	ND	0.00065	0.0010	-	-	-		
Methoxychlor	ND	0.00052	0.0010	=	-	-		
Toxaphene	ND	0.020	0.050	=	-	-		
Aroclor1016	ND	0.018	0.050	=	-	-		
Aroclor1221	ND	0.018	0.050	=	-	-		
Aroclor1232	ND	0.018	0.050	-	-	-		
Aroclor1242	ND	0.018	0.050	-	-	-		
Aroclor1248	ND	0.018	0.050	-	-	-		
Aroclor1254	ND	0.018	0.050	-	-	-		
Aroclor1260	ND	0.018	0.050	-	-	-		
Surrogate Recovery								
Decachlorobiphenyl	0.032			0.05	64	60-130		

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/04/2024

Date Analyzed: 09/04/2024 - 09/06/2024

Instrument: GC40 **Matrix:** Water

Project: Semi-Annual Sampling (September 2024)

WorkOrder: 2409058

BatchID: 301132

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3 **Unit:** μg/L

Sample ID: MB/LCS/LCSD-301132

QC Summary Report for E608.3 w/ Florisil Clean-up									
Analyte	LCS Res			LCS %R			RPD	RPD Limit	
Aldrin	0.03	9 0.03	8 0.050	78	77	54-130	2.05	20	
a-BHC	0.05	3 0.05	2 0.050	107	105	70-130	2.00	20	
b-BHC	0.04	7 0.04	6 0.050	94	92	70-130	1.75	20	
d-BHC	0.04	7 0.04	7 0.050	95	94	70-130	0.562	20	
g-BHC	0.05	2 0.05	1 0.050	105	103	60-130	1.77	20	
a-Chlordane	0.04	7 0.04	7 0.050	95	93	55-130	1.66	20	
g-Chlordane	0.04	1 0.04	1 0.050	83	82	55-130	0.876	20	
p,p-DDD	0.06	1 0.06	1 0.050	122	122	70-130	0.387	20	
p,p-DDE	0.05	7 0.05	6 0.050	114	112	70-130	1.41	20	
p,p-DDT	0.06	0.06	0.050	120	120	70-130	0.0336	20	
Dieldrin	0.05	4 0.05	3 0.050	107	106	70-130	1.36	20	
Endosulfan I	0.04	8 0.04	7 0.050	97	95	70-130	1.98	20	
Endosulfan II	0.05	2 0.05	2 0.050	104	104	70-130	0.399	20	
Endosulfan sulfate	0.05	6 0.05	7 0.050	113	113	70-130	0.379	20	
Endrin	0.05	6 0.05	6 0.050	112	! 111	70-130	0.851	20	
Endrin aldehyde	0.05	3 0.05	3 0.050	106	106	60-130	0.389	20	
Endrin ketone	0.05	9 0.05	8 0.050	117	116	60-130	0.955	20	
Heptachlor	0.05	1 0.04	9 0.050	101	99	43-130	2.55	20	
Heptachlor epoxide	0.04	8 0.04	7 0.050	95	94	70-130	1.87	20	
Methoxychlor	0.06	7 0.06	8 0.050	135	,F2 136,F	2 70-130	0.753	20	
Aroclor1016	0.11	0.10	0.15	71	70	70-130	1.55	20	
Aroclor1260	0.11	0.13	0.15	76	85	70-130	11.3	20	
Surrogate Recovery									
Decachlorobiphenyl	0.04	5 0.04	6 0.050	90	92	60-130	1.94	20	

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 09/04/2024

Date Prepared: 09/04/2024

Date Analyzed: 09/04/2024

Instrument: GC10

Matrix: Water

Project: Semi-Annual Sampling (September 2024)

WorkOrder: 2409058

BatchID: 301234

Extraction Method: E624.1 **Analytical Method:** E624.1

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-301234

	QC Sur	nmary R	eport for	E624.1					
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC		B SS mits
Acrolein (Propenal)	ND		3.7	5.0		-	-	-	
Acrylonitrile	ND		0.27	2.0		-	-	-	
2-Chloroethyl vinyl ether	ND		0.52	1.0		-	-	-	
Surrogate Recovery									
Dibromofluoromethane	27					25	106	70	-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acrolein (Propenal)	19	24	20		94	119	71-140	23.5,F2	20
Acrylonitrile	23	22	20		113	110	67-145	2.73	20
2-Chloroethyl vinyl ether	21	21	20		107	106	70-124	0.721	20
Surrogate Recovery									
Dibromofluoromethane	25	25	25		100	100	70-130	0.202	20

2409058

Water

Quality Control Report

Client: PG&E Gateway Generating Station WorkOrder:

Date Prepared: 09/09/2024 BatchID:

 Date Prepared:
 09/09/2024
 BatchID:
 301526

 Date Analyzed:
 09/09/2024
 Extraction Method:
 E624.1

 Instrument:
 GC45
 Analytical Method:
 E624.1

Project: Semi-Annual Sampling (September 2024) Sample ID: MB/LCS/LCSD-301526

QC Summary	Report fo	or E624.1
------------	-----------	-----------

Unit:

QC Summary Report for 1502-1.1								
MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits			
ND	0.035	0.20	-	-	-			
ND	0.035	0.050	-	-	-			
ND	0.24	0.50	-	-	-			
ND	0.25	0.50	-	-	-			
ND	0.034	0.050	-	-	-			
ND	0.095	0.50	-	-	-			
ND	0.25	0.50	-	-	-			
ND	0.043	0.10	-	-	-			
ND	0.16	0.50	-	-	-			
ND	0.073	0.15	-	-	-			
ND	0.10	0.50	-	-	-			
ND	0.14	0.50	-	-	-			
ND	0.089	0.50	-	-	-			
ND	0.14	0.50	-	-	-			
ND	0.0093	0.020	-	-	-			
ND	0.0058	0.010	-	-	-			
ND	0.15	0.50	-	-	-			
ND	0.039	0.10	-	-	-			
ND	0.13	0.50	-	-	-			
ND	0.20	0.50	-	-	-			
ND	0.10	0.50	-	-	-			
ND	1.5	2.0	-	-	-			
ND	0.22	2.0	-	-	-			
ND	0.015	0.020	-	-	-			
ND	0.036	0.20	-	-	-			
ND	0.10	0.50	-	-	-			
ND	0.13	0.50	-	-	-			
ND	0.032	0.10	-	-	-			
ND	0.034	0.10	-	-	-			
ND	0.14	0.50	-	-	-			
ND	0.0044	0.0050	-	-	-			
ND	0.22	1.0	-	-	=			
23			25	93	70-130			
24			25	97	70-130			
2.0			2.5	81	70-130			
	ND	ND	ND	ND	ND			

Matrix:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: PG&E Gateway Generating Station

WorkOrder: 2409058 **Date Prepared:** 09/09/2024 **BatchID:** 301526 **Date Analyzed:** 09/09/2024 **Extraction Method:** E624.1 **Instrument:** GC45 **Analytical Method:** E624.1 **Matrix:** Unit: Water

Project: Semi-Annual Sampling (September 2024) Sample ID: MB/LCS/LCSD-301526

QC Summary Report for E624.1

	C - 10 11	J	1					
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Benzene	3.5	3.4	4	87	85	65-130	2.01	20
Bromodichloromethane	4.2	4.1	4	105	104	60-130	1.03	20
Bromoform	4.1	4.1	4	103	103	70-130	0.196	20
Bromomethane	4.9	4.7	4	121	117	50-130	3.59	20
Carbon tetrachloride	4.0	3.9	4	99	99	70-130	0.280	20
Chlorobenzene	4.0	3.8	4	99	96	65-130	2.95	20
Chloroethane	4.1	4.0	4	101	100	60-140	1.94	20
Chloroform	3.9	3.9	4	98	97	70-130	1.24	20
Chloromethane	3.2	3.1	4	80	78	50-130	2.64	20
Dibromochloromethane	4.0	4.0	4	100	99	70-130	0.554	20
1,2-Dichlorobenzene	3.8	3.6	4	95	91	65-130	4.85	20
1,3-Dichlorobenzene	3.7	3.6	4	93	91	70-130	2.62	20
1,4-Dichlorobenzene	3.9	3.8	4	97	95	65-130	1.56	20
1,1-Dichloroethane	3.7	3.6	4	92	91	70-130	0.984	20
1,2-Dichloroethane (1,2-DCA)	3.4	3.4	4	85	85	70-130	0.696	20
1,1-Dichloroethene	3.8	3.7	4	95	93	60-130	2.17	20
trans-1,2-Dichloroethene	3.6	3.5	4	91	87	70-130	4.07	20
1,2-Dichloropropane	3.7	3.7	4	93	92	60-130	1.63	20
cis-1,3-Dichloropropene	4.1	4.0	4	102	100	60-130	1.45	20
trans-1,3-Dichloropropene	4.0	4.0	4	101	100	60-130	0.912	20
Ethylbenzene	3.7	3.6	4	93	91	60-130	1.74	20
Methylene chloride	3.3	3.2	4	82	80	60-130	2.73	20
1,1,2,2-Tetrachloroethane	3.6	3.6	4	89	91	60-130	2.04	20
Tetrachloroethene	4.1	4.1	4	103	101	70-130	1.28	20
Toluene	3.7	3.6	4	93	91	70-130	1.80	20
1,1,1-Trichloroethane	3.6	3.6	4	91	89	70-130	1.35	20
1,1,2-Trichloroethane	3.8	3.8	4	96	96	70-130	0.252	20
Trichloroethene	3.7	3.7	4	93	92	65-130	1.43	20
Trichlorofluoromethane	3.5	3.5	4	88	86	60-130	2.11	20
Vinyl chloride	1.5	1.4	2	73	71	60-130	3.50	20
Surrogate Recovery								
Dibromofluoromethane	23	23	25	93	94	70-130	0.325	20
Toluene-d8	24	24	25	98	98	70-130	0.0902	20
4-BFB	2.2	2.2	2.5	87	86	70-130	1.24	20

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: PG&E Gateway Generating Station

WorkOrder: 2409058 **Date Prepared:** 09/04/2024 **BatchID:** 301113 **Date Analyzed:** 09/04/2024 **Extraction Method:** E625.1 GC47 **Instrument: Analytical Method:** E625.1 **Matrix:** Unit: Water

Project: Semi-Annual Sampling (September 2024) Sample ID: MB/LCS/LCSD-301113

OC Summary	Report	for	E625 1
	17Choi r	\mathbf{IUI}	1043.1

Analyte	MB	MDL	RL	SPK	MB SS	MB SS
Analyte	Result	MDL	KL	Val	%REC	Limits
Acenaphthene	ND	0.0029	0.0050	-	-	-
Acenaphthylene	ND	0.0018	0.0050	-	-	-
Anthracene	ND	0.0020	0.0050	-	-	-
Benzidine	ND	2.7	5.0	-	-	-
Benzo (a) anthracene	ND	0.020	0.050	-	-	-
Benzo (a) pyrene	ND	0.0050	0.0050	-	-	-
Benzo (b) fluoranthene	ND	0.0053	0.010	-	-	-
Benzo (g,h,i) perylene	ND	0.0039	0.010	-	-	-
Benzo (k) fluoranthene	ND	0.0050	0.010	-	-	-
Benzyl Alcohol	ND	1.9	5.0	-	-	-
Bis (2-chloroethoxy) methane	ND	0.51	1.0	-	-	-
Bis (2-chloroethyl) ether	ND	0.0050	0.0050	-	-	-
Bis (2-chloroisopropyl) ether	ND	0.0049	0.010	-	-	-
Bis (2-ethylhexyl) Adipate	ND	0.79	1.0	-	-	-
Bis (2-ethylhexyl) Phthalate	ND	0.13	0.25	-	-	-
4-Bromophenyl phenyl ether	ND	0.29	1.0	-	-	-
Butylbenzyl Phthalate	ND	0.081	0.25	-	-	-
4-Chloroaniline	ND	0.0020	0.0050	-	-	-
4-Chloro-3-methylphenol	ND	0.59	1.0	-	-	-
2-Chloronaphthalene	ND	0.56	1.0	-	-	-
2-Chlorophenol	ND	0.036	0.050	-	-	-
4-Chlorophenyl phenyl ether	ND	0.49	1.0	-	-	-
Carbazole	ND	0.42	1.0	-	-	-
Chrysene	ND	0.0027	0.0050	-	-	-
Dibenzo (a,h) anthracene	ND	0.0052	0.010	-	-	-
n-Decane	ND	0.69	1.0	-	-	-
Dibenzofuran	ND	0.0014	0.0050	-	-	-
Di-n-butyl phthalate	ND	0.078	0.25	-	-	-
1,2-Dichlorobenzene	ND	0.53	1.0	-	-	-
1,3-Dichlorobenzene	ND	0.59	1.0	-	-	-
1,4-Dichlorobenzene	ND	0.44	1.0	-	-	-
3,3-Dichlorobenzidine	ND	0.0062	0.010	-	-	-
2,4-Dichlorophenol	ND	0.0056	0.010	-	-	-
Diethyl phthalate	ND	0.021	0.050	-	-	-
2,4-Dimethylphenol	ND	0.53	1.0	-	-	-
Dimethyl phthalate	ND	0.0059	0.010	-	-	-
4,6-Dinitro-2-methylphenol	ND	3.7	5.0	-	-	-
2,4-Dinitrophenol	ND	0.68	1.0	-	-	-

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409058Date Prepared:09/04/2024BatchID:301113

Date Analyzed:09/04/2024Extraction Method:E625.1Instrument:GC47Analytical Method:E625.1Matrix:WaterUnit:μg/L

Project: Semi-Annual Sampling (September 2024) **Sample ID:** MB/LCS/LCSD-301113

OC Summary Report for E625.1

Din-octyl phthalate	QC Summary Report for E023.1												
2.6-Dintrotoluene ND 0.030 0.050 - - - Din-octyl phthalate ND 1.2 2.5 - - - IDiphenylydrazine ND 0.42 1.0 - - - Fluoranthene ND 0.0038 0.010 - - - Fluorene ND 0.0018 0.010 - - - Hexachlorobutadiene ND 0.0011 0.0050 - - - Hexachlorocytopentadiene ND 0.0071 0.0050 - - - Hexachlorocytopentadiene ND 0.0070 0.010 - - - Hexachlorophane ND	Analyte		MDL	RL									
Di-n-octyl phthalate ND 1.2 2.5 - - - -	2,4-Dinitrotoluene	ND	0.027	0.050	=	=	-						
1,2-Diphenylhydrazine ND 0.42 1.0 - - - Fluoranthene ND 0.0038 0.010 - - - Hexachlorobenzene ND 0.0017 0.0050 - - - Hexachlorobutadiene ND 0.0011 0.0050 - - - Hexachlorocyclopentadiene ND 0.0011 0.0050 - - - Hexachlorocyclopentadiene ND 0.0034 0.010 - - - Hexachlorocyclopentadiene ND 0.0070 0.010 - - - Indeatology Pyrene ND 0.0070 0.010 - - - <td< td=""><td>2,6-Dinitrotoluene</td><td>ND</td><td>0.030</td><td>0.050</td><td>-</td><td>-</td><td>-</td></td<>	2,6-Dinitrotoluene	ND	0.030	0.050	-	-	-						
Fluoranthene ND 0.0038 0.010 Fluorene ND 0.0018 0.010	Di-n-octyl phthalate	ND	1.2	2.5	=	=	-						
Fluorene ND 0.0018 0.010 - - - Hexachlorobenzene ND 0.0017 0.0050 - - - Hexachlorobutadiene ND 0.0011 0.0050 - - - Hexachlorocyclopentadiene ND 0.0031 0.010 - - - Hexachlorocyclopentadiene ND 0.0034 0.010 - - - Indeno (1,2,3-cd) pyrene ND 0.0021 0.0001 - - - 1-Methylahenel ND 0.0021 0.0050 - - - - 2-Methylphenol (o-cresol) ND 0.63 1.0 - - - N	1,2-Diphenylhydrazine	ND	0.42	1.0	=	=	-						
Hexachlorobenzene ND	Fluoranthene	ND	0.0038	0.010	=	=	-						
Hexachlorobutadiene ND	Fluorene	ND	0.0018	0.010	-	-	-						
Hexachlorocyclopentadiene ND 2.3 5.0 - - - - -	Hexachlorobenzene	ND	0.0017	0.0050	-	-	-						
Hexachloroethane ND	Hexachlorobutadiene	ND	0.0011	0.0050	-	-	-						
Indeno (1,2,3-cd) pyrene ND 0.0070 0.010	Hexachlorocyclopentadiene	ND	2.3	5.0	=	=	-						
1-Methylnaphthalene ND 0.0021 0.0050	Hexachloroethane	ND	0.0034	0.010	=	=	-						
Sophorone ND	Indeno (1,2,3-cd) pyrene	ND	0.0070	0.010	=	-	-						
2-Methylnaphthalene ND 0.0022 0.0050 - - - 2-Methylphenol (o-cresol) ND 0.63 1.0 - - - 3 & 4-Methylphenol (m,p-Cresol) ND 0.70 1.0 - - - Naphthalene ND 0.0063 0.010 - - - Valid ND 3.0 5.0 - - - 2-Nitroaniline ND 3.9 5.0 - - - 4-Nitroaniline ND 3.9 5.0 - - - 4-Nitroaniline ND 3.9 5.0 - - - 4-Nitroaniline ND 0.61 1.0 - - - 4-Nitroaniline ND 0.61 1.0 - - - NItroplenci ND 3.6 5.0 - - - N-Nitrosodimethylamine ND 3.6 5.0 - <td< td=""><td>1-Methylnaphthalene</td><td>ND</td><td>0.0021</td><td>0.0050</td><td>=</td><td>-</td><td>-</td></td<>	1-Methylnaphthalene	ND	0.0021	0.0050	=	-	-						
2-Methylphenol (o-cresol) ND 0.63 1.0 - - - - 3 & 4-Methylphenol (m,p-Cresol) ND 0.70 1.0 - - - Naphthalene ND 0.0063 0.010 - - - 2-Nitroaniline ND 3.0 5.0 - - - 3-Nitroaniline ND 3.9 5.0 - - - 4-Nitroaniline ND 2.4 5.0 - - - 4-Nitroaniline ND 0.61 1.0 - - - 4-Nitroaniline ND 3.0 5.0 - - - 4-Nitroaniline ND 3.6 5.0 - - - 4-Nitroaniline ND 3.6 5.0 - - - 4-Nitroaniline ND 3.6 5.0 - - - 2-Nitrophenol ND 3.6 5.0 -	Isophorone	ND	0.45	1.0	=	-	-						
38 & 4-Methylphenol (m,p-Cresol) ND 0.70 1.0 - - - Naphthalene ND 0.0063 0.010 - - - 2-Nitroaniline ND 3.0 5.0 - - - 3-Nitroaniline ND 3.9 5.0 - - - 4-Nitroaniline ND 2.4 5.0 - - - Nitrobenzene ND 0.61 1.0 - - - 2-Nitrophenol ND 3.0 5.0 - - - 4-Nitrophenol ND 3.6 5.0 - - - N-Nitrosodimethylamine ND 3.6 5.0 - - - N-Nitrosodiphenylamine ND 0.36 1.0 - - - N-Nitrosodi-n-propylamine ND 0.60 1.0 - - - N-Netrosodi-n-propylamine ND 0.54 1.0	2-Methylnaphthalene	ND	0.0022	0.0050	-	-	-						
Naphthalene ND 0.0063 0.010 - - - 2-Nitroaniline ND 3.0 5.0 - - - 3-Nitroaniline ND 3.9 5.0 - - - 4-Nitroaniline ND 2.4 5.0 - - - Nitrobenzene ND 0.61 1.0 - - - 2-Nitrophenol ND 3.0 5.0 - - - 4-Nitrophenol ND 3.6 5.0 - - - N-Nitrosodimethylamine ND 3.6 5.0 - - - N-Nitrosodiphenylamine ND 0.36 1.0 - - - N-Nitrosodi-n-propylamine ND 0.60 1.0 - - - N-Notrosodiphenylamine ND 0.54 1.0 - - - N-Nitrosodi-n-propylamine ND 0.54 1.0 -	2-Methylphenol (o-cresol)	ND	0.63	1.0	-	-	-						
2-Nitroaniline ND 3.0 5.0	3 & 4-Methylphenol (m,p-Cresol)	ND	0.70	1.0	-	-	-						
ND 3.9 5.0 - - - - - - - - -	Naphthalene	ND	0.0063	0.010	-	-	-						
A-Nitroaniline ND 2.4 5.0 - - - - - - - - -	2-Nitroaniline	ND	3.0	5.0	-	-	-						
Nitrobenzene ND 0.61 1.0 - - - 2-Nitrophenol ND 3.0 5.0 - - - 4-Nitrophenol ND 3.6 5.0 - - - N-Nitrosodimethylamine ND 0.36 1.0 - - - N-Nitrosodi-n-propylamine ND 0.60 1.0 - - - N-Nitrosodi-n-propylamine ND 0.54 1.0 - - - - N-Nitrosodi-n-propylamine ND 0.54 1.0 - - - - - Pentachilorophenol ND 0.16 0.25 - - - - -	3-Nitroaniline	ND	3.9	5.0	-	-	-						
2-Nitrophenol ND 3.0 5.0 - - - - - - - - -	4-Nitroaniline	ND	2.4	5.0	-	-	-						
A-Nitrophenol ND 3.6 5.0 - - - - N-Nitrosodimethylamine ND 3.6 5.0 - - - N-Nitrosodiphenylamine ND 0.36 1.0 - - - N-Nitrosodi-n-propylamine ND 0.60 1.0 - - - N-Octadecane ND 0.54 1.0 - - - Pentachlorophenol ND 0.16 0.25 - - - Phenanthrene ND 0.0036 0.0050 - - - Phenol ND 0.019 0.040 - - - Pyrene ND 0.0028 0.0050 - - - Pyridine ND 0.89 1.0 - - 1,2,4-Trichlorobenzene ND 0.0064 0.010 - - - 2,4,5-Trichlorophenol ND 0.0064 0.010 - - - - - - 2,4,5-Trichlorophenol ND 0.0064 0.010 - - - - - - - - -	Nitrobenzene	ND	0.61	1.0	-	-	-						
N-Nitrosodimethylamine ND 3.6 5.0 N-Nitrosodiphenylamine ND 0.36 1.0 N-Nitrosodiphenylamine ND 0.60 1.0	2-Nitrophenol	ND	3.0	5.0	-	-	-						
N-Nitrosodiphenylamine ND 0.36 1.0	4-Nitrophenol	ND	3.6	5.0	-	-	-						
N-Nitrosodi-n-propylamine ND 0.60 1.0 - <t< td=""><td>N-Nitrosodimethylamine</td><td>ND</td><td>3.6</td><td>5.0</td><td>-</td><td>-</td><td>-</td></t<>	N-Nitrosodimethylamine	ND	3.6	5.0	-	-	-						
ND 0.54 1.0 - - - - - - - - -	N-Nitrosodiphenylamine	ND	0.36	1.0	-	-	-						
Pentachlorophenol ND 0.16 0.25 - - - Phenanthrene ND 0.0036 0.0050 - - - - Phenol ND 0.019 0.040 - - - - Pyrene ND 0.0028 0.0050 - - - - Pyridine ND 0.89 1.0 - - - - 1,2,4-Trichlorobenzene ND 0.0064 0.010 - - - - 2,4,5-Trichlorophenol ND 0.0064 0.010 - - - -	N-Nitrosodi-n-propylamine	ND	0.60	1.0	-	-	-						
Phenanthrene ND 0.0036 0.0050 -	n-Octadecane	ND	0.54	1.0	-	-	-						
Phenanthrene ND 0.0036 0.0050 -	Pentachlorophenol	ND	0.16	0.25	=	-	-						
Pyrene ND 0.0028 0.0050 - - - - Pyridine ND 0.89 1.0 - - - - 1,2,4-Trichlorobenzene ND 0.52 1.0 - - - - 2,4,5-Trichlorophenol ND 0.0064 0.010 - - -	Phenanthrene	ND	0.0036	0.0050	-	-	-						
Pyrene ND 0.0028 0.0050 - - - - Pyridine ND 0.89 1.0 - - - - 1,2,4-Trichlorobenzene ND 0.52 1.0 - - - - 2,4,5-Trichlorophenol ND 0.0064 0.010 - - -	Phenol	ND	0.019	0.040	-	-	-						
Pyridine ND 0.89 1.0 - - - - 1,2,4-Trichlorobenzene ND 0.52 1.0 - - - - 2,4,5-Trichlorophenol ND 0.0064 0.010 - - -	Pyrene		0.0028	0.0050	=	-	-						
1,2,4-Trichlorobenzene ND 0.52 1.0 - - - 2,4,5-Trichlorophenol ND 0.0064 0.010 - - -	Pyridine				=	-	-						
2,4,5-Trichlorophenol ND 0.0064 0.010	1,2,4-Trichlorobenzene		0.52	1.0	-	-	-						
· · · · · · · · · · · · · · · · · · ·	2,4,5-Trichlorophenol				-	-	-						
	2,4,6-Trichlorophenol	ND	0.0053	0.010	-	-	-						

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409058Date Prepared:09/04/2024BatchID:301113Date Analyzed:09/04/2024Extraction Method:E625.1Instrument:GC47Analytical Method:E625.1

Project: Semi-Annual Sampling (September 2024) **Sample ID:** MB/LCS/LCSD-301113

	QC Summary Report for E625.1										
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits					
Surrogate Recovery											
2-Fluorophenol	4.8			5	96	30-130					
Phenol-d5	4.4			5	87	20-130					
Nitrobenzene-d5	4.7			5	93	60-130					
2-Fluorobiphenyl	5.0			5	99	50-130					
2,4,6-Tribromophenol	3.5			5	69	60-140					
4-Terphenyl-d14	5.0			5	99	40-130					

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409058Date Prepared:09/04/2024BatchID:301113Date Analyzed:09/04/2024Extraction Method:E625.1

Instrument: GC47 Analytical Method: E625.1 Matrix: Water Unit: µg/L

Project: Semi-Annual Sampling (September 2024) Sample ID: MB/LCS/LCSD-301113

QC Summary Report for E625.1

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acenaphthene	0.25	0.23	0.25	100	92	60-132	7.50	25
Acenaphthylene	0.23	0.21	0.25	92	86	54-126	7.24	25
Anthracene	0.25	0.23	0.25	99	92	60-130	7.19	25
Benzidine	10	9.1	25	40	36	20-130	9.35	25
Benzo (a) anthracene	0.24	0.22	0.25	96	90	60-130	6.66	25
Benzo (a) pyrene	0.23	0.22	0.25	92	88	60-130	4.25	25
Benzo (b) fluoranthene	0.21	0.20	0.25	82	79	60-130	4.55	25
Benzo (g,h,i) perylene	0.24	0.22	0.25	96	87	50-130	9.54	25
Benzo (k) fluoranthene	0.30	0.27	0.25	118	108	60-130	9.03	25
Benzyl Alcohol	23	22	25	92	87	60-130	5.30	25
Bis (2-chloroethoxy) methane	5.4	5.0	5	108	100	65-130	7.90	25
Bis (2-chloroethyl) ether	0.23	0.21	0.25	91	85	60-130	7.12	25
Bis (2-chloroisopropyl) ether	0.22	0.21	0.25	89	83	63-139	6.70	25
Bis (2-ethylhexyl) Adipate	5.4	4.7	5	108	93	60-130	14.8	25
Bis (2-ethylhexyl) Phthalate	0.21	0.19	0.25	83	76	60-130	9.09	25
4-Bromophenyl phenyl ether	5.4	4.9	5	108	99	65-120	8.72	25
Butylbenzyl Phthalate	0.26	0.24	0.25	105	95	60-140	9.40	25
4-Chloroaniline	0.20	0.20	0.25	82	78	60-130	4.74	25
4-Chloro-3-methylphenol	5.4	5.1	5	109	103	65-130	5.61	25
2-Chloronaphthalene	5.2	4.8	5	104	96	65-120	7.53	25
2-Chlorophenol	0.24	0.23	0.25	95	92	60-130	3.23	25
4-Chlorophenyl phenyl ether	5.7	4.7	5	113	94	65-130	19.0	25
Carbazole	5.1	5.4	5	102	108	70-130	5.77	25
Chrysene	0.26	0.24	0.25	106	97	70-130	8.79	25
Dibenzo (a,h) anthracene	0.24	0.22	0.25	96	88	50-130	7.73	25
n-Decane	4.4	4.0	5	88	80	30-130	9.13	25
Dibenzofuran	0.26	0.24	0.25	104	95	65-130	8.87	25
Di-n-butyl phthalate	0.21	0.20	0.25	85	79	60-130	7.37	25
1,2-Dichlorobenzene	4.9	4.6	5	97	92	60-130	5.31	25
1,3-Dichlorobenzene	4.8	4.5	5	95	90	60-130	5.82	25
1,4-Dichlorobenzene	5.0	4.6	5	100	93	60-130	7.89	25
3,3-Dichlorobenzidine	0.22	0.21	0.25	88	85	60-130	2.99	25
2,4-Dichlorophenol	0.27	0.25	0.25	107	102	53-122	5.30	25
Diethyl phthalate	0.25	0.22	0.25	98	90	65-130	9.08	25
2,4-Dimethylphenol	6.1	5.5	5	121	111	60-130	9.04	25
Dimethyl phthalate	0.25	0.23	0.25	100	92	60-130	8.18	25
4,6-Dinitro-2-methylphenol	25	24	25	99	95	60-130	4.49	25
2,4-Dinitrophenol	4.2	4.0	5	83	80	50-130	3.66	25

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409058Date Prepared:09/04/2024BatchID:301113Date Analyzed:09/04/2024Extraction Method:E625.1

Instrument: GC47

Matrix: Water

Extraction Method: E625.1

Analytical Method: E625.1

Unit: µg/L

Project: Semi-Annual Sampling (September 2024) Sample ID: MB/LCS/LCSD-301113

QC Summary Report for E625.1

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
2,4-Dinitrotoluene	0.26	0.24	0.25	102	96	70-130	5.87	25
2,6-Dinitrotoluene	0.24	0.22	0.25	97	90	68-137	7.54	25
Di-n-octyl phthalate	5.0	4.4	5	100	89	70-130	11.3	25
1,2-Diphenylhydrazine	5.4	5.0	5	107	99	65-130	7.77	25
Fluoranthene	0.23	0.22	0.25	93	89	65-130	4.42	25
Fluorene	0.30	0.28	0.25	121,F5	111	70-120	8.39	25
Hexachlorobenzene	0.25	0.23	0.25	99	92	60-130	7.61	25
Hexachlorobutadiene	0.27	0.25	0.25	107	100	68-130	6.67	25
Hexachlorocyclopentadiene	23	21	25	92	84	50-130	8.20	25
Hexachloroethane	0.23	0.22	0.25	93	87	55-120	7.04	25
Indeno (1,2,3-cd) pyrene	0.24	0.22	0.25	96	89	50-130	7.60	25
1-Methylnaphthalene	0.27	0.25	0.25	107	100	65-130	6.92	25
Isophorone	4.7	4.4	5	94	89	52-130	6.47	25
2-Methylnaphthalene	0.27	0.25	0.25	109	100	60-130	8.22	25
2-Methylphenol (o-cresol)	5.2	5.0	5	103	100	60-130	2.66	25
3 & 4-Methylphenol (m,p-Cresol)	5.3	4.9	5	107	99	60-130	7.51	25
Naphthalene	0.26	0.25	0.25	105	98	70-130	6.65	25
2-Nitroaniline	26	24	25	105	97	65-130	8.00	25
3-Nitroaniline	22	20	25	88	80	70-140	9.27	25
4-Nitroaniline	24	25	25	95	98	70-130	4.11	25
Nitrobenzene	5.7	5.4	5	114	109	60-130	4.93	25
2-Nitrophenol	31	29	25	123	116	70-130	6.23	25
4-Nitrophenol	21	21	25	86	83	30-130	3.15	25
N-Nitrosodimethylamine	23	21	25	90	85	30-130	5.43	25
N-Nitrosodiphenylamine	5.4	5.0	5	108	99	65-130	7.94	25
N-Nitrosodi-n-propylamine	4.3	4.0	5	85	80	59-130	6.06	25
n-Octadecane	5.5	5.0	5	110	100	60-130	8.87	25
Pentachlorophenol	1.2	1.1	1.25	98	92	60-130	6.23	25
Phenanthrene	0.25	0.23	0.25	100	93	65-120	7.59	25
Phenol	1.0	0.98	1	102	98	48-120	4.38	25
Pyrene	0.29	0.26	0.25	116	102	70-120	12.8	25
Pyridine	4.1	3.5	5	81	69	30-130	16.0	25
1,2,4-Trichlorobenzene	5.5	5.1	5	110	102	57-130	7.65	25
2,4,5-Trichlorophenol	0.23	0.23	0.25	94	91	65-130	3.01	25
2,4,6-Trichlorophenol	0.25	0.23	0.25	99	93	69-130	6.49	25
<u> </u>								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2409058Date Prepared:09/04/2024BatchID:301113Date Analyzed:09/04/2024Extraction Method:E625.1

Instrument:GC47Analytical Method:E625.1Matrix:WaterUnit:μg/L

Project: Semi-Annual Sampling (September 2024) Sample ID: MB/LCS/LCSD-301113

	QC Sur	nmary R	eport for E	525.1				
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Surrogate Recovery								
2-Fluorophenol	5.6	5.8	5	113	116	30-130	3.00	25
Phenol-d5	5.6	5.8	5	112	115	20-130	2.77	25
Nitrobenzene-d5	6.1	6.2	5	121	125	60-130	2.88	25
2-Fluorobiphenyl	5.7	5.8	5	114	117	50-130	2.96	25
2,4,6-Tribromophenol	6.2	6.6	5	125	132	60-140	5.51	25
4-Terphenyl-d14	6.5	6.5	5	129	129	40-130	0.162	25

FAX:

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(925) 459-7212

WorkOrder: 2409058 ClientCode: PGEA

□ EQuIS □ Dry-Weight □ Email □ HardC

Excel

☐ HardCopy ☐ ThirdParty ☐ J-flag

Detection Summary

Report to: Bill to: Requested TAT: 5 days;

Angel Espiritu Email: abe4@pge.com Angel Espiritu

PG&E Gateway Generating Station cc/3rd Party: APSD@pge.com; MSFG@pge.com; T1WY PG&E Gateway Generating Station

3225 Wilbur Avenue PO: 3225 Wilbur Avenue Date Received: 09/04/2024
Antioch, CA 94509 Project: Semi-Annual Sampling (September 2024) Antioch, CA 94509 Date Logged: 09/04/2024

					Requested Tests (See legend below)											
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2409058-001	E-001	Water	9/4/2024 09:05		D	Α	В	С	Α							

Test Legend:

1	608_W	2 624_W	3 624ACR+2CEVE_W	4 625_SCSM_W
5	PRDisposal Fee	6	7	8
9		10	11	12

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (September 2024) Work Order: 2409058

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

Comments

Comments

Date Logged: 9/4/2024

		Water	Trax CLIP EDF		Excel	EQuI	S	✓ Ema	il HardCopy	Third	Party J-flag	1		
LabII	O ClientSampID	Matrix	Test Name	Cont./	Bottle & Preservativ	U**	Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
001A	E-001	Water	E624.1 (VOCs) <1,1,1-Trichloroethane, 1,1,2-Trichloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,2-Dichloroethane, 1,2-Dichloroethane (1,2-DCA), 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Bromoform, Bromomethane, Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform, Chloromethane, Ethylbenzene, Methylene chloride, Toluene, trans-1,2-Dichloroethene, trans-1,3-Dichloropropene, Trichloroethene, Trichlorofluoromethane, Vinyl chloride>		VOA w/ HC	1			9/4/2024 9:05	5 days	9/11/2024	None		
001B	E-001	Water	E624.1 (ACRO, ACRY, & 2-CEVE)	2	VOA, Unpre	s			9/4/2024 9:05	5 days	9/11/2024	None		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 1 of 4

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (September 2024) Work Order: 2409058

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 9/4/2024

		Water	Trax CLIP ED	F [Excel	EQuIS	y Ema	ail HardCopy	Third	dParty √ J-flaç)	
LabID	ClientSampID	Matrix	Test Name	Cont./	Bottle & Preservativ	U** Head e Space	Dry- Weight	Collection Date t & Time	TAT	Test Due Date	Sediment Content	Sub Out
001C	E-001	Water	E625.1 (SVOCs) <1,2,4- Trichlorobenzene, 1,2-Dichlorobenzer 1,2-Diphenylhydrazine, 1,3- Dichlorobenzene, 1,4-Dichlorobenzen 2,4,6-Trichlorophenol, 2,4- Dichlorophenol, 2,4-Dimethylphenol, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 2- Chloronaphthalene, 2-Chlorophenol, 2 Nitrophenol, 3,3-Dichlorobenzidine, 4 Dinitro-2-methylphenol, 4-Bromopher Phenyl Ether, 4-Chloro-3-methylphenol 4-Chlorophenyl Phenyl Ether, 4- Nitrophenol, Acenaphthene, Acenaphthylene, Anthracene, Benzidi Benzo (a) anthracene, Benzo (a) pyren Benzo (b) fluoranthene, Benzo (g,h,i) perylene, Benzo (k) fluoranthene, Bis chloroethoxy) Methane, Bis (2- chloroethyl) Ether, Bis (2-	- ,6- ,ol, l, ne,	1LA, Unpre	S		9/4/2024 9:05	5 days	9/11/2024	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 2 of 4

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (September 2024) Work Order: 2409058

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 9/4/2024

		Water	Trax CLIP	□EDF		_Excel [EQuIS	✓ Email	⊟HardCopy	ThirdP	°arty ✓ J-flag	ı	
LabID	ClientSampID	Matrix	chloroisopropyl) Ether, B ethylhexyl) Phthalate, Bu Phthalate, Chrysene, Dibe anthracene, Diethyl Phtha Phthalate, Di-n-butyl Phthalate, Di-n-butyl Phthalate, Fluoranth Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadie Hexachloroethane, Indene pyrene, Isophorone, Naph Nitrobenzene, N-Nitrosoc N-Nitrosodi-n-propylamin Nitrosodiphenylamine, Pentachlorophenol, Phena Phenol, Pyrene>	tylbenzyl enzo (a,h) slate, Dimethyl halate, Di-n- hene, Fluorene, ne, o (1,2,3-cd) hthalene, limethylamine, ne, N-	Cont./ Comp.	Bottle & Preservative	U** Head Space	Dry- (Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 3 of 4

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Project: Semi-Annual Sampling (September 2024) Work Order: 2409058

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 9/4/2024

		WaterT	rax CLIP	EDF		Excel	EQuIS	✓ Ema	il HardCopy	Third	IParty ✓ J-flaç	9	
LabID Cli	ientSampID	Matrix	Test Name		Cont./ Comp.	Bottle & Preservativ	U** Head e Spac	l Dry- e Weight		TAT	Test Due Date	Sediment Content	Sub Out
001D E-001		Water	E608.3 (OC Pesticides+ Clean-up) <a-bhc_1, (technical)_1,="" a="" aldehyde_1,="" aroclor="" aroclor1016_1,="" aroclor1232_1,="" aroclor1248_1,="" aroclor1260_1,="" b-bhc_1="" d-bhc_1="" dde_1,="" en="" endosul="" endosulfan="" endrin_1,="" epoxide_1,="" g="" heptachlor="" i_1,="" p="" p,p-ddt_1,="" pc="" sulfate_1,="" toxaphene_1=""></a-bhc_1,>	ldrin_1, 1221_1, 1242_1, 1254_1, 1, Chlordane , Dieldrin_1, fan II_1, ndrin -BHC_1, ,p-DDD_1, p,p-	1	1LA, Unpre	s		9/4/2024 9:05	5 days	9/11/2024	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Page 4 of 4

2409058

															_	10												
	McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Email: main@mccampbell.com									CHAIN OF CUSTODY RECORD TURN AROUND TIME						∑ DAY												
1	Tele	phon	e: (877) 2:	52-9262			ax: (9													Excel sample is	e Write On (DW) is effluent and "J" flag is required			uired				
Report To	: Angel Es	piritu	<u> </u>		I	Bill To: I	PG&	E Ga	itew	vay						Analysis Request				***************************************	Remarks							
Company	: PG&E G	atew	ay Genera	ating Stat	tion					_						u		le le	П	T			Τ	Γ	П	T		
	be4@pge.co				-	THE RESERVE OF THE PARTY.	om,	APS	D@	pge	e.co	m				624-Volatile Organic	olatile	-Organochlorine 8s)	Ш						Ш			
	522-7838,		-			Fax: ()							-drawn -		atil	la V	rgan	11						П			
	ame: Sem				Sep	tember 2024)						624-Vol	625- Ser ounds)	808	П						П	1						
	Signature:			-	Sar	npling	-	R	_							SEPA (ands)	SEPA (Comp	SEPA sand							П			
		mposite	SAMP	LING		S.	Ma	trix	N	иет	НО	D PI	RES	ERV	ED	TTO (USEPA (Compounds)	TTO (USEPA 625- Semi Volatile Organic Compounds)	TTO (USEPA (Pesticides and)										
SAMPLE ID	LOCATION / Field Point Name		Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H ₂ SO ₄	NaOH	HCI.	HNO3	Other													
E-001		G	9/4/24	09:05	2	43 ml VOA	X			Х			X			X			П				I		П			
E-001		G	9/4/24	19:05	2	43 ml VOA	X		X	Х						X												
E-001			9/4/24			1L Amb	X		X	Х			L	Ш			X								Ш			
E-001		G	9/4/24	09:05	1	1L Amb	X	4	Х	Х	Ц		L	Ц				X	Ц				\perp	L	Ц	\perp		
						-	_	_		Ц	Ц		L	Н				<u> </u>	\sqcup	+			+	_	Н	\dashv		Marine Spanish
						├─	_	┝	\vdash	Н	Н		┝	Н		<u> </u>		-	H	+		 	+	┝	Н	\dashv		
-		_			_	-		┝	\vdash	Н	Н		\vdash	Н		-	-	-	H	+		 	+	-	Н	\dashv		
		_		-	_	 	\vdash	\vdash	\vdash	Н	Н		\vdash	Н		<u> </u>		-	H	+	-	 	十	\vdash	Н	\dashv		
							\vdash	T		П	П		T	П					Ħ	\top			十	T	П	7		
									T	П	П		T	П					\sqcap	\top			T	T	П	\forall		
								Г		П		i	Γ	П			n d s		П	T			T	Γ	П	T		
Relinquish	dBy:		Date: 9 /4/214	Time:	Received By:				ICE/1º U. A.C. WATT P.4.S. COMMENTS:				608) TTO (FDA	624)														
Relinquishe			Date:	Time:	Received By: DECHLORINA APPROPRIATE PRESERVED IN					HEAD SPACE ABSENT TTO (EPA 608), TTO (EPA DECHLORINATED IN LAB TTO (EPA 625) see ATTAC APPROPRIATE CONTAINERS Appendix A and analyze on compounds			CHED															
Relinquishe	d By:		Date:	Time:	Rec	eceived By:																						

APPENDIX A

District Local Discharge Limits include a parameter called Total Toxic Organics (TTO). The required analytical methods for TTO analysis are listed in 40 CFR Part 136 and include the following EPA methods: 624,625, 608, and 1613, respectively. Unless specifically required, EPA method 1613 for dioxins is not mandatory for routine TTO analysis. The constituents with concentrations greater than the minimum limit/reporting limit must be added together to determine compliance with the District's Local Discharge Limit for TTO of 2.0 mg/L. The following is a list of the constituents of TTO:

EPA Method 624 Compounds

Acrolein Acrylonitrile Benzene Bromodichloromethane (Dichlorobromomethane) Bromform Brommomethane (Methyl Bromide)
Carbon tetrachloride (Tetrachloromethane) Chlorobenzene Chloroethane (Ethyl Chloride)

2-Chloroethyl vinyl ether
Chloroform (trichloromethane)
Chloromethane (Methyl Chloride)
Dibromochloromethane (Chlorodibromomethane) 1, 2-Dichlorobenzene 3-Dichlorobenzene , 4-Dichlorobenzene , 1-Dichloroethane 2-Dichloroethane 1, 1-Dichloroethene (1, 1-dichloroethylene) trans-1, 2-Dichloroethene
1, 2-Dichloropropane
cis-1, 3-Dichloropropene
trans-1, 3-Dichloropropene
Ethylbenzene
Mollorida Chlorida Chichle Methylene Chloride (Dichloromethane)
1, 1, 2, 2, -Tetrachloroethane
Tetrachloroethene (PCE) Toluene 1, 1, 1-Trichloreothane 1, 1, 2-Trichloroethane Trichloroethene (TCE) Trichloroffuoromethane Vinyl chloride (Chloroethylene)

EPA Method 625 Compounds

Acenaphthene
Acenaphthylene
Anthracene
Benzo (a) anthracene
Benzo (a) pyrene
Benzo (b) fluoranthene
Benzo (c) fluoranthene
Benzo (c) fluoranthene
Benzo (c) fluoranthene
Benzo (c) fluoranthene
Benzyl butyl phthalate
bis (2-Chloroethoxy) methane
bis (2-Chloroethoxy) methane
bis (2-Chloroethyl) ether
bis (2-Chloroethyl) ether
bis (2-Ethylhexyl) phthalate
4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol
2-Chloronaphthalene
2-Chlorophenyl
4-Chlorophenyl phenyl ether
Chrysene
Dibenzo (a, h) anthracene
1, 2-Dichlorobenzene
1, 3-Dichlorobenzene
1, 4-Dichlorobenzene
1, 4-Dichlorobenzene
3, 3'-Dichlorobenzidine

2, 4-Dichlorophenol Diethyl phthalate Dienyl phinaiate
2,4-Dimethylphenol
Dimethylphthalate
Di-n-butylphthalate
2,4-Dimitrotoluene
2,4-Dimitrotoluene 2, 6-Dinitrotoluene Di-n-octylphthalate 1.2-Diphenylhydrazine/Azo Fluoranthene Fluorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene Isophorone 2-Methyl-4, 6-dinitrophenol Naphthalene Nifrobenzene 2-Nitrophenol 4-Nitrophenol N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene 1, 2, 4-Trichlorobenzene 2, 4, 6-Trichlorophenol

EPA Method 608 Compounds

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4, 4'-DDD 4, 4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260

Me Campbell Analytical

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Ger Semi-Annual Sampl	erating Station ing (September 2024)			Date and Date Logg Received		9/4/2024 11:17 9/4/2024 Agustina Venegas		
WorkOrder №: Carrier:	2409058 Client Drop-In	Matrix: <u>Water</u>			Logged by	•	Adrianna Cardoza		
		Chain of	Custody	/ (COC)	<u>Information</u>				
Chain of custody	present?		Yes	•	No 🗆				
Chain of custody	signed when relinquis	hed and received?	Yes	•	No 🗆				
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗆				
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆				
Date and Time of	collection noted by C	lient on COC?	Yes	✓	No 🗆				
Sampler's name	noted on COC?		Yes	•	No 🗌				
COC agrees with	Quote?		Yes		No 🗆	NA 🗸			
		<u>Sam</u> ı	ple Rece	eipt Info	<u>rmation</u>				
Custody seals int	act on shipping contai	ner/cooler?	Yes		No 🗆	NA 🗸			
Custody seals int	act on sample bottles	?	Yes	•	No 🗆	NA \square			
Shipping containe	er/cooler in good cond	ition?	Yes	•	No 🗆				
Samples in prope	er containers/bottles?		Yes	•	No 🗌				
Sample container	rs intact?		Yes	•	No 🗆				
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌				
		Sample Preservat	tion and	Hold Ti	me (HT) Information	1			
All samples recei	ved within holding tim	e?	Yes	•	No 🗌	NA \square			
Samples Receive	ed on Ice?		Yes	✓	No 🗆				
		(Ice Ty	pe: WE	T ICE)				
Sample/Temp Bla	ank temperature			Ter	np: 0.8°C	NA 🗌			
	analyses: VOA meets Cs, TPHg/BTEX, RSK		Yes	✓	No 🗌	NA 🗌			
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌				
pH acceptable up	oon receipt (Metal: <2)	?	Yes		No 🗆	NA 🗸			
UCMR Samples: pH tested and a 537.1: 6 - 8)?	acceptable upon recei	pt (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹			
Free Chlorine to [not applicable		upon receipt (<0.1mg/L)	Yes		No 🗆	NA 🗹			
Comments:	======	======			=====	====	:=======		

RECEIVED

JAN 1 3 2025

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

DELTA DIABLO

January 6, 2025

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending December 31, 2024)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending December 31, 2024, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

This report contains all components required by the above-referenced Industrial Wastewater Discharge Permit. See the following page for a list of its contents.

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Prakash Singh Senior Plant Manage

Attachment: a/s

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 6, 2025

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending December 31, 2024)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending December 31, 2024, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

This report contains all components required by the above-referenced Industrial Wastewater Discharge Permit. See the following page for a list of its contents.

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely

Prakash Singh Senior Plant Manage

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending December 31, 2024

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2027.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business:

PG&E Gateway Generating Station

Address:

3225 Wilbur Avenue, Antioch, CA. 94509

Phone:

<u>925-522-7805</u>

Period Covered:

Period ending: December 31, 2024

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature

Print Name:

Prakash Singh

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun	Pretreatment
Fax # (925)756-1961	Phone: (925)756-1929
From: Prakash Singh	
Company: Pacific Gas and Electric Company	· · ·
Period Covered: Period ending December	ber 31, 2024
Industrial User Checklist for self –mon discharge permit issued by Delta Diabl	itoring reports, as specified by the wastewater o Sanitation District:
Self-monitoring reports	
Calibration of flow meters, as required to Monitoring results- All required to	tests completed, results reviewed, results ody (section F.7.) (See Attachment 8)
Violations (if applicable)	
Delta Diablo was contacted. (See A follow-up report on characterize	ration re-sampling was submitted on
Corrective actions to resolve viol	ation: spills to sewer, or prohibited discharges
Other violations - i.e. Reporting,	spins to sewer, or promotted discharges
Additional Notes: None	
Significant changes	
	nature, quality, or volume of the wastewater ubmitted at least 90-days prior to implementation of this change. (None)

Public

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	12/3/2024	12/4/2024	12/4/2024			
TYPE	G	G	C24			
STATION	E-001	E-001	E-001			
SMP.BY	Muskan	Muskan	Muskan			
PURPOSE	Compliance	Compliance	Compliance			
FUNFUSE	Quarterly (Q4)	Quarterly (Q4)	Quarterly (Q4)			

Units: mg/L

PARAMETERS	LIMITS						
FLOW, DAILY (gal)	51,120						
FLOW, MONTH (gal)							
рН	6-10 s.u.		8.75				
BOD				ND(<2.0)			
COD				10			
TDS				190			
TSS				2			
Arsenic	0.15			0.00028			
Cadmium	0.1			ND(<0.000061)			
Chromium	0.5			ND(<0.00033)			
Copper	0.5			0.0025			
Iron				0.093			
Lead	0.5			ND(<0.00021)			
Mercury	0.003			ND(<0.00012)			
Molybdenum				0.021			
Nickel	0.5			0.0008			
Selenium	0.25			ND(<0.00017)			
Silver	0.2			ND(<0.0004)			
Zinc	1.00			0.017			
Cyanide	0.2		0.016				
Phenol	1.00		ND(<0.0015)				
Ammonia	200			68			
O&G Petro/Min (E1664A w/ Silica)	100	ND(<1.6)	ND(<1.6)				
O&G Animal/Vegetable Oil	300	ND(<1.6)	ND(<1.5)				
TTO EPA 608							
TTO EPA 624							
TTO EPA 625							
TTO	2.00						
Sulfide							
Sulfate							

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel.

J - The result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

October 2024-December 2024

		Industria	l Flow						
			Did it ever			Time Meter	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 39.05 GPM	go over 39.05 GPM	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality	go over 39.05 GPM	Daily Total (Gallons)	Site Total (Gallons)
	,	(minutes)	for 15 mins?	(,	(minutes)	for 15 mins?	(,	(,
10/1/2024	35.0	0.0	NO	17,937	23.2	0	NO	442	18,379
10/2/2024	35.3	0.0	NO	16,871	0.1	0	NO	14	16,885
10/3/2024	35.6	0.0	NO	17,347	22.2	0	NO	410	17,757
10/4/2024	34.5	0.0	NO	40,176	23.2	0	NO	393	40,569
10/5/2024	35.0	0.0	NO	18,686	0.1	0	NO	8	18,694
10/6/2024	35.2	0.0	NO	22,353	0.1	0	NO	18	22,371
10/7/2024	35.2	0.0	NO	28,349	22.2	0	NO	413	28,762
10/8/2024	34.8	0.0	NO	36,075	0.0	0	NO	5	36,079
10/9/2024	34.7	0.0	NO	46,640	23.0	0	NO	416	47,056
10/10/2024	34.9	1.0	NO	23,524	0.0	1	NO	3	23,526
10/11/2024	34.9	0.0	NO	33,161	23.2	0	NO	394	33,555
10/12/2024	35.3	1.0	NO	32,031	0.0	1	NO		32,031
10/13/2024	34.9	0.0	NO	22,856	23.1	0	NO	392	23,248
10/14/2024	35.2	0.0	NO	38,749	0.0	0	NO		38,749
10/15/2024	34.6	0.0	NO	46,287	21.1	0	NO	383	46,671
10/16/2024	35.8	0.0	NO	42,827	20.7	0	NO	395	43,222
10/17/2024	35.6	0.0	NO	34,047	0.1	0	NO	6	34,053
10/18/2024	34.5	0.0	NO	40,655	24.0	0	NO	399	41,054
10/19/2024	35.6	0.0	NO	25,202	0.1	0	NO	7	25,210
10/20/2024	34.5	0.0	NO	35,396	0.1	0	NO	16	35,412
10/21/2024	34.8	0.0	NO	26,738	24.1	0	NO	409	27,147
10/22/2024	35.0	0.0	NO	20,837	0.1	0	NO		20,837
10/23/2024	35.0	0.0	NO	7,737	22.3	0	NO	439	8,176
10/24/2024	35.0	0.0	NO	14,168	0.1	0	NO	7	14,175
10/25/2024	35.5	0.0	NO	21,739	23.7	0	NO	422	22,161
10/26/2024	34.5	0.0	NO	9,081	0.1	0	NO	10	9,092
10/27/2024	35.1	0.0	NO	22,354	0.1	0	NO	4	22,359
10/28/2024	35.0	0.0	NO	30,030	24.0	0	NO	407	30,437
10/29/2024	34.8	0.0	NO	24,075	0.1	0	NO	7	24,082
10/30/2024	34.9	0.0	NO	14,155	22.2	0	NO	405	14,560
10/31/2024	34.9	0.0	NO	9,795	23.8	0	NO	398	10,193
						Max E	aily Flow (Lir		47,056
11/1/2024	34.8	0.0	NO	25,731	0.1	0		onthly Total:	826,501 25,731
11/1/2024	34.8	0.0	NO	29,031	0.0		NO		29,031
11/2/2024	34.8	1.0	NO	38,647	0.0		NO	6	38,654
11/3/2024	34.7	0.0	NO	24,249	23.6	0	NO	176	24,425
11/4/2024	35.2	0.0	NO	18,995	22.3	0	NO	699	19,694
11/6/2024	35.2	0.0	NO	31,520	22.3	0	NO	43	31,562
11/6/2024	34.5	0.0	NO	19,739	0.1	0	NO	14	19,753
11/8/2024	34.5	0.0	NO	32,347	22.0	0	NO	519	32,866
11/9/2024	34.6	0.0	NO	21,261	0.1	0	NO	15	21,276
11/9/2024	34.8	1.0		25,093	22.7	1	NO	261	25,354
11/11/2024	34.5	0.0	NO	7,841	0.1	0	NO	201	7,841
11/11/2024	34.5	0.0	NO	7,763	21.2	0	NO	201	7,041
11/13/2024	35.3	0.0	NO	23,949	0.0	0	NO	201	23,949
11/13/2024	34.6	0.0	NO	40,816	24.3			438	41,254
11/15/2024	34.6	0.0	NO	30,441	0.0	0	NO	1	30,442
11/16/2024	34.8	0.0	NO	14,452	0.0	0	NO	5	14,456
11/17/2024	34.8	0.0		18,254	23.1	0		388	18,642
11/17/2024	34.6	0.0	NO	24,399	0.1	0		300	24,399
11/19/2024	34.7	0.0	NO			0	NO	369	17,034
11/10/2024	0 7 .1	0.0	1,10	16,665	lblic 10.0		.,0	000	17,004

PG&E Gateway Generating Station

Discharge Flow Data

October 2024-December 2024

		Industria	l Flow						
			Did it ever			Time Meter	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 39.05 GPM (minutes)	go over 39.05 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	went Bad Quality (minutes)	go over 39.05 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
11/20/2024	35.1	0.0	NO	18,799	19.3	0	NO	377	19,176
11/21/2024	35.1	0.0	NO	13,982	0.1	0	NO	011	13,982
11/22/2024	34.7	0.0	NO	6,246	21.1	0	NO	386	6,632
11/23/2024	34.4	0.0	NO	20,777	0.0	0	NO	333	20,777
11/24/2024	34.5	0.0	NO	10,805	0.1	0	NO		10,805
11/25/2024	34.7	0.0	NO	40,032	23.9	0	NO	393	40,425
11/26/2024	34.8	0.0	NO	6,603	0.0	0	NO		6,603
11/27/2024	34.8	0.0	NO	20,847	21.4	0	NO	381	21,228
11/28/2024	34.8	0.0	NO	25,749	0.0				25,749
11/29/2024	34.8	0.0	NO	13,625	0.0	0	NO		13,625
11/30/2024	35.0	0.0	NO	10,597	0.0	0	NO		10,597
						Max E	aily Flow (Lii	nit: 51,120):	41,254
							M	onthly Total:	643,925
12/1/2024	34.8	0.0	NO	17,056	0.1	0	NO		17,056
12/2/2024	34.5	0.0	NO	22,331	24.0	0	NO	470	22,801
12/3/2024	34.9	0.0	NO	28,141	0.1	0	NO	1	28,142
12/4/2024	34.6	0.0	NO	45,337	24.4	0	NO	409	45,745
12/5/2024	34.9	0.0	NO	23,169	0.1	0	NO		23,169
12/6/2024	34.7	0.0	NO	27,974	23.8	0		412	28,386
12/7/2024	34.6	0.0	NO	17,914	0.1	0	NO		17,914
12/8/2024	34.8	0.0	NO	19,314	0.0	2	NO		19,314
12/9/2024	34.6	0.0	NO	19,116	19.7	0	NO	31	19,147
12/10/2024	34.9	0.0	NO	6,423	22.2	0		31	6,455
12/11/2024	34.8	0.0	NO	14,464	22.6	0	NO	377	14,841
12/12/2024	34.8	0.0	NO	6,883	0.0	0	NO		6,883
12/13/2024	34.5	0.0	NO	33,697	23.1	0	NO	385	34,082
12/14/2024	34.8	0.0	NO	19,009	0.0	0			19,009
12/15/2024	34.4	0.0	NO	6,640	0.0	0	NO		6,640
12/16/2024	34.4	0.0	NO	13,286	21.6	0	NO	390	13,677
12/17/2024	34.6	0.0	NO	18,587	0.0	0	NO	200	18,587
12/18/2024	34.5	0.0	NO	23,871	21.9	0	NO	392	24,263
12/19/2024	34.6	0.0	NO	37,261	0.0	0	NO	E04	37,261
12/20/2024	34.8	0.0	NO	20,455	24.5			501	20,956
12/21/2024	34.7	0.0		22,872	0.0				22,872
12/22/2024	34.5	0.0	NO	8,600	0.0		NO		8,600
12/23/2024	34.6	0.0	NO	29,177	0.0			202	29,177
12/24/2024	34.6	0.0	NO NO	19,562	24.2		NO NO	392	19,954
12/25/2024	34.7	0.0		31,979	0.0		_		31,979
12/26/2024 12/27/2024	34.5 34.5	0.0	NO NO	36,023 30,512	0.1	0	NO	206	36,023
12/27/2024	34.5	0.0	NO	49,002	21.4 0.0		NO NO	296	30,808
12/28/2024	34.6	0.0	NO	26,029	0.0	0			49,002 26,029
12/29/2024	34.5	1.0	NO	34,131	22.7	0		534	34,665
12/30/2024	35.6	0.0	NO	34,131	0.0			554	34,005
12/3/1/2024	34.7	0.0	INO	J4,Z91	0.0		NO Daily Flow (Liv		34,29 I 49 002

Max Daily Flow (Limit: 51,120): 49,002

Monthly Total: 747,728

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: 2024

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July		
August		
September		
October	826,501	1/15/2025
November	643,925	1/15/2025
December	747,728	1/15/2025

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report October 2024 to December 2024

	WSAC Operation
Month	Hours of Operation
January-24	
February-24	
March-24	
April-24	
May-24	
June-24	
July-24	
August-24	
September-24	
October-24	311.25
November-24	0.00
December-24	0.00

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report October 2024 to December 2024

	WSAC Operation
Month	Average Daily Blowdown Cycles
January-24	
February-24	
March-24	
April-24	
May-24	
June-24	
July-24	
August-24	
September-24	
October-24	3.42
November-24	
December-24	

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2412167

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (December 2024)

Project Location: Combined Site Flow

Project Received: 12/04/2024

Analytical Report reviewed & approved for release on 12/13/2024 by:

Tray Bobja

Tracy Babjar

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current regulatory standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2412167

Project: Quarterly Sampling (December 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB IS/SS % Rec % Recovery of Internal Standard or Surrogate in Method Blank, if applicable

MB SS % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2412167

Project: Quarterly Sampling (December 2024)

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC). (Adjustment

for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

m1 Based on the method limit threshold, the sample tested produced a result below the threshold of 2.5mg of dried

residue.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38 **Date Prepared:** 12/13/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: E1664A_SG **Analytical Method:** E1664A

Unit: mg/L

	Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up									
Client ID	I	ab ID	Matrix		Date (Collected	Instrument	Batch ID		
E-001	2	412167-001A	Water		12/03/2	2024 09:42	O&G	307740		
Analytes		<u>esult</u>		MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		
SGT-HEM	N	ID		1.6	4.9	1		12/13/2024 11:45		

Analyst(s): LAM

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
E-001	2412167-002A	Water	12/04/20	24 10:35	O&G	307740
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND	1.6	4.8	1		12/13/2024 11:50

Analyst(s): LAM

Analytical Report

Client: PG&E Gateway Generating Station

12/04/2024 12:38 **Date Received: Date Prepared:** 12/13/2024

Project: Quarterly Sampling (December 2024) WorkOrder: 2412167

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

	Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up									
Client ID		Lab ID	Matrix		Date C	ollected	Instrument	Batch ID		
E-001		2412167-001A	Water		12/03/20	024 09:42	O&G	307740		
Analytes		Result		MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		

ND HEM 1.6 4.9 12/13/2024 11:45

Analyst(s): LAM

Client ID	Lab ID	Matrix	Matrix Date Collected		Instrument	Batch ID
E-001	2412167-002A	Water	12/04/20	24 10:35	O&G	307740
Analytes	<u>Result</u>	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND	1.5	4.8	1		12/13/2024 11:50

Analyst(s): LAM

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38 **Date Prepared:** 12/05/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N								
Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID		
E-001	2412167-002C	Water	12/04/2024 10:30		WC_SKALAR 241205A1_53	307182		
Analytes	<u>Result</u>	<u>MDL</u>	<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed		
Ammonia, total as N	68	0.89	1.0	10	12/09	5/2024 17:00		

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38 **Date Prepared:** 12/04/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: SM5210B

Analytical Method: SM5210 B **Unit:** mg/L

Biochemical Oxygen Demand (BOD)								
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID		
E-001	2412167-002E	Water	12/04/2024 10:30		WetChem	307089		
Analytes	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
BOD	ND	2.0	2.0	1.02		12/09/2024 14:23		

Analyst(s): ISH

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38 **Date Prepared:** 12/10/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: μg/L

Cyanide, Total								
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID		
E-001	2412167-002D	Water	12/04/2024 10:35		WC_Skalar3 241210A0_33	307459		
<u>Analytes</u>	<u>Result</u>	<u>MDL</u>	<u>RL</u>	<u>DF</u>	Date	Analyzed		
Total Cyanide	16	0.68	1.0	1	12/1	0/2024 14:28		

Analyst(s): JRA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38

Date Prepared: 12/05/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: SM5220 D

Analytical Method: SM5220 D

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2 /L								
Client ID	Lab ID	Matrix	Dat	e Coll	ected	Instrument	Batch ID	
E-001	2412167-002F	Water	12/0	12/04/2024 10:35		SPECTROPHOTOMETER2	307178	
Analytes	Result	<u>M</u>	<u>DL</u> R	<u>L</u>	<u>DF</u>	Date	Analyzed	
COD	10	4.8	3 10)	1	12/0	5/2024 15:16	

Analyst(s): AHE

2412167

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: **Date Received:** 12/04/2024 12:38 **Extraction Method:** E245.2

Date Prepared: 12/06/2024 **Analytical Method:** E245.2 **Project:** Quarterly Sampling (December 2024) Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption								
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID		
E-001	2412167-0021	Water	12/04/202	24 10:30	AA1 _42	307229		
Analytes	Result	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		
Mercury	ND	0.12	0.20	1		12/11/2024 12:46		

Analyst(s): MJA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38

Date Prepared: 12/05/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: μg/L

Metals								
Client ID	Lab ID	Matrix		Date Coll	lected	Instrument	Batch ID	
E-001	2412167-002J	Water		12/04/2024	10:30	ICP-MS4 266SMPL.d	307086	
<u>Analytes</u>	Result	Qualifiers	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed	
Arsenic	0.28	J	0.077	0.50	1		12/06/2024 00:51	
Cadmium	ND		0.061	0.50	1		12/06/2024 00:51	
Chromium	ND		0.33	2.0	1		12/06/2024 00:51	
Copper	2.5		0.63	1.5	1		12/06/2024 00:51	
Iron	93		21	50	1		12/06/2024 00:51	
Lead	ND		0.21	0.50	1		12/06/2024 00:51	
Molybdenum	21		0.18	0.50	1		12/06/2024 00:51	
Nickel	0.80		0.24	0.50	1		12/06/2024 00:51	
Selenium	ND		0.17	0.50	1		12/06/2024 00:51	
Zinc	17	J	11	20	1		12/06/2024 00:51	
Surrogates	<u>REC (%)</u>			<u>Limits</u>				
Terbium	107			70-130			12/06/2024 00:51	
Analyst(s): AL								

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38

Date Prepared: 12/06/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: E420.4

Analytical Method: E420.4 **Unit:** µg/L

Phenolics								
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID		
E-001	2412167-002B	Water	12/04/2024 10:35		WC_SKALAR 241206B1_47	307291		
Analytes	Result	MDL	<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed		
Phenolics	ND	1.5	2.0	1	12/06	6/2024 15:48		

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38

Date Prepared: 12/04/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: SM2540 C-

Analytical Method: SM2540 C

Unit: mg/L

Total Dissolved Solids								
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID		
E-001	2412167-002G	Water	12/04/2024 10:30		WetChem	307137		
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed		
Total Dissolved Solids	190	10.0	10.0	1		12/05/2024 12:05		

Analyst(s): ISH

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:38

Date Prepared: 12/04/2024

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

Extraction Method: SM2540 D

Analytical Method: SM2540 D

Unit: mg/L

	Total Suspended Solids								
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID			
E-001	2412167-002H	Water	12/04/202	4 10:30	WetChem	307074			
<u>Analytes</u>	Result	<u>MDL</u>	<u>RL</u>	<u>DF</u>		Date Analyzed			
Total Suspended Solids	2.20	1.00	1.00	1		12/04/2024 17:05			

Analyst(s): JME Analytical Comments: m1

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 12/13/2024 **Date Analyzed:** 12/13/2024 **Instrument:** O&G

Matrix: Water

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

BatchID: 307740 **Extraction Method:** E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Sample ID: MB/LCS/LCSD-307740

QC Summary Report for E1664A							
Analyte	MB Result	MDL	RL				
HEM	ND	1.6	5.0	-	-	=	
SGT-HEM	ND	1.7	5.0	-	-	-	

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	18	20	20	90	100	78-114	10.9	30
SGT-HEM	7.4	10	10	74	100	64-132	29.3	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 12/05/2024

Date Analyzed: 12/05/2024 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167 **BatchID:** 307182

Extraction Method: SM4500-NH3 BG

Analytical Method: SM4500-NH3 BG **Unit:** mg/L

Sample ID: MB/LCS/LCSD-307182

QC Summary Report for SM4500-NH3								
Analyte	MB Result	MDL	RL					
Ammonia, total as N	ND	0.089	0.10	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	4.0	4.2	4	101	105	90-110	3.70	10

2412167

307089

mg/L

Quality Control Report

Client: PG&E Gateway Generating Station

WorkOrder: **Date Prepared:** 12/04/2024 **BatchID: Date Analyzed:** 12/09/2024 **Extraction Method: SM5210B Instrument:** WetChem **Analytical Method:** SM5210 B **Matrix:** Unit: Water

QC Summary Report for BOD									
Analyte	MB Result	MDL	RL						
BOD	ND	2.0	2.0	-	-	-			

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
	Nesuit	Nesun	v ai	70INLO	/olvec	Lillits		
BOD	170	170	198	85	85	84-115	0	16

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 12/10/2024

Date Analyzed: 12/10/2024 **Instrument:** WC_Skalar3

Matrix: Water

Project: Quarterly Sampling (December 2024) WorkOrder: 2412167

BatchID: 307459

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: μg/L

Sample ID: MB/LCS/LCSD-307459

	QC Summary Re	port for SM4	500-CN ⁻ (CE		
Analyte	MB Result	MDL	RL			
Total Cvanide	ND	0.68	1.0	_	-	-

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Cyanide	49	50	50	99	100	90-110	1.29	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 12/05/2024 **Date Analyzed:** 12/05/2024

Instrument: SPECTROPHOTOMETER2

Matrix: Water

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167

BatchID: 307178

Extraction Method: SM5220 D **Analytical Method:** SM5220 D

Unit: mg/L

Sample ID: MB/LCS/LCSD-307178

QC Summary Report for COD								
Analyte	MB Result	MDL	RL					
COD	ND	4.8	10	-	-	-		

Analyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
Allalyte	Result	Result	Val	%REC	%REC	Limits	KI D	Limit
COD	98	98	100	98	98	90-110	0	20

Water

Matrix:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Unit:

Client:PG&E Gateway Generating StationWorkOrder:2412167Date Prepared:12/06/2024BatchID:307229Date Analyzed:12/06/2024Extraction Method:E245.2Instrument:AA1Analytical Method:E245.2

QC Summary Report for Mercury								
Analyte	MB Result	MDL	RL					
Mercury	ND	0.12	0.20	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	2.2	2.3	2	112	115	85-115	3.16	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 12/05/2024

Date Analyzed: 12/05/2024 - 12/06/2024 **Instrument:** ICP-MS4, ICP-MS5

Matrix: Water

Project: Quarterly Sampling (December 2024)

WorkOrder: 2412167 **BatchID:** 307086

Extraction Method: E200.8

Analytical Method: E200.8

Unit: μg/L

Sample ID: MB/LCS/LCSD-307086

	QC Summar	ry Report for	Metals			
Analyte	MB Result	MDL	RL	SPK Val	MB IS/SS %REC	MB IS/SS Limits
Arsenic	ND	0.077	0.50	-	-	-
Cadmium	ND	0.061	0.50	-	-	-
Chromium	ND	0.33	2.0	-	-	-
Copper	ND	0.63	1.5	-	-	-
Iron	ND	21	50	-	-	-
Lead	ND	0.21	0.50	-	-	-
Molybdenum	ND	0.18	0.50	-	-	-

0.24

0.17

11

0.50

0.50

20

Surrogate Recovery

Nickel

Zinc

Selenium

Terbium 540 500 108 70-130

ND

ND

ND

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	54	54	50	107	109	85-115	1.16	20
Cadmium	55	54	50	109	109	85-115	0.440	20
Chromium	53	53	50	107	106	85-115	1.14	20
Copper	54	54	50	108	108	85-115	0.206	20
Iron	5500	5400	5000	110	108	85-115	1.83	20
Lead	53	52	50	105	104	85-115	1.18	20
Molybdenum	50	50	50	100	100	85-115	0.742	20
Nickel	55	54	50	110	108	85-115	1.45	20
Selenium	56	55	50	112	110	85-115	2.17	20
Zinc	560	560	500	112	113	85-115	0.363	20
Surrogate Recovery								
Terbium	530	540	500	107	107	70-130	0.616	20

_

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2412167Date Prepared:12/06/2024BatchID:307291Date Analyzed:12/06/2024Extraction Method:E420.4Instrument:WC_SKALARAnalytical Method:E420.4

Matrix: Water Unit: μg/

QC Summary Report for E420.4								
Analyte	MB Result	MDL	RL					
Phenolics	ND	1.5	2.0	-	-	-		

Analyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
	Result	Result	Val	%REC	%REC	Limits		Limit
Phenolics	41	42	40	104	105	90-110	0.838	20

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2412167Date Prepared:12/04/2024BatchID:307137Date Analyzed:12/05/2024Extraction Method:SM2540

Date Analyzed:12/05/2024Extraction Method:SM2540 C-Instrument:WetChemAnalytical Method:SM2540 CMatrix:WaterUnit:mg/L

QC Summary Report for Total Dissolved Solids								
Analyte	MB Result	MDL	RL					
Total Dissolved Solids	ND	10.0	10.0	-	-	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Dissolved Solids	990	980	1000	99	98	80-120	1.02	10

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2412167Date Prepared:12/04/2024BatchID:307074Date Analyzed:12/04/2024Extraction Method:SM2540 D

Instrument:WetChemAnalytical Method:SM2540 DMatrix:WaterUnit:mg/L

QC Summary Report for Total Suspended Solids								
Analyte	MB Result	MDL	RL					
Total Suspended Solids	ND	1.00	1.00	=	=	-		

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Suspended Solids	97.0	95.0	100	97	95	80-120	2.08	10

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 2412167 ClientCode: PGEA

WaterTrax □CLIP □EDF □EQuIS □Dry-Weight □Femail □HardCopy □ThirdParty

Detection Summary Excel

Report to:
Angel Espiritu

Angel Espiritu Email: abe4@pge.com
PG&E Gateway Generating Station cc/3rd Party: APSD@pge.com

PO:

Project:

cc/3rd Party: APSD@pge.com; MSFG@pge.com; T1WY

Quarterly Sampling (December 2024)

3225 Wilbur Avenue Antioch, CA 94509

(925) 459-7212 FAX:

Bill to: Requested TATs:
Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue

Antioch, CA 94509

12/04/2024

5 days; 7 days;

J-flag

Date Logged: 12/04/2024

Date Received:

					Requested Tests (See legend below)											
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
						ı	ı	ı	ı		ı	ı		ı	ı	
2412167-001	E-001	Water	12/3/2024 09:42		Α	Α									Α	
2412167-002	E-001	Water	12/4/2024 10:30				С	Е			I	J	J			J
2412167-002	E-001	Water	12/4/2024 10:35		Α	Α			D	F				В	Α	

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9	METALSMS_TTLC_W

2	1664A_W
6	COD_W
10	PHENOLICS_W

3	AMMONIA-SM4500BG_W
7	HG_W
11	PRDisposal Fee

4	BOD_W
8	METALSMS_Alpha_W
12	PRSUB

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

□WaterTrax

Email:

Project:

PO:

CLIP

abe4@pge.com

cc/3rd Party: APSD@pge.com; MSFG@pge.com; T1WY

Quarterly Sampling (December 2024)

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

PG&E Gateway Generating Station

FAX:

CHAIN-OF-CUSTODY RECORD

✓ Email

1 of 1

WorkOrder: 2412167

Dry-Weight

ClientCode: PGEA

☐ HardCopy ☐ ThirdParty

J-flag

Detection Summary

EQuIS

Excel Bill to:

Requested TATs: 5 days; 7 days;

Angel Espiritu

PG&E Gateway Generating Station 12/04/2024 Date Received: 3225 Wilbur Avenue

Antioch, CA 94509 Date Logged: 12/04/2024

				Г												
Lab ID	ClientSampID	Matrix	Collection Date	Hold	13	14	15	Requ 16	ested 17	Tests (See leg	gend b 20	elow) 21	22	23	24
		1				1									T	T
2412167-001	E-001	Water	12/3/2024 09:42	Ш												
2412167-002	E-001	Water	12/4/2024 10:30		G	Н										
2412167-002	E-001	Water	12/4/2024 10:35													

□ EDF

Test Legend:

Report to:

Angel Espiritu

(925) 459-7212

3225 Wilbur Avenue

Antioch, CA 94509

13	TDS_W	
17		
21		

14	TSS_W
18	
22	

15	
19	
23	

16		
20		
24		

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

5 days

WORK ORDER SUMMARY

Client Name: PG	&E GATEWAY GENERATING STATION	Project: (Quarterly Sampling (December 2024)	Work Order: 2412167
-----------------	-------------------------------	------------	------------------------------------	----------------------------

OC Level: LEVEL 2 **Client Contact:** Angel Espiritu Contact's Email: abe4@pge.com **Comments: Date Logged:** 12/4/2024

✓ Email CLIP EDF Excel **EQuIS** ☐ HardCopy ☐ ThirdPartv LabID ClientSampID Matrix **Test Name** Cont./ Bottle & U** Head **Dry-** Collection Date TAT Test Due Date Sediment Hold Sub Comp. **Preservative** Space Weight & Time Content Out 001A E-001 E1664A (HEM; Oil & Grease w/o S.G. 12/3/2024 9:42 12/11/2024 Water (2LA w/HCl +5 days None Clean-Up) 2aVOA w/HCL) E1664A (SGT- HEM; Non-polar 12/11/2024 5 days None Material) 002A E-001 Water E1664A (HEM; Oil & Grease w/o S.G. 4 (2LA w/HCl +12/4/2024 10:35 12/11/2024 5 days None 2aVOA w/HCL) Clean-Up) E1664A (SGT- HEM; Non-polar 5 days 12/11/2024 None Material) 002B E-001 Water E420.4 (Phenolics) 1 500mL aG w/ 12/4/2024 10:35 12/11/2024 5 days None H2SO4 002C E-001 1 12/11/2024 Water SM4500-NH3 BG (Ammonia Nitrogen) 250mL aG w/ 12/4/2024 10:30 5 days None H2SO4 002D E-001 Water SM4500-CN-CE (Cyanide, Total) 1 250mL aHDPE w/ 12/4/2024 10:35 5 days 12/11/2024 None NaOH 002E E-001 Water SM5210B (BOD) 1 500mL HDPE. 12/4/2024 10:30 7 days 12/13/2024 None unprsv. 2 002F E-001 Water SM5220D (COD) aVOA w/ H2SO4 12/4/2024 10:35 12/11/2024

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

None

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Ouarterly Sampling (December 2024) **Project: Work Order:** 2412167

OC Level: LEVEL 2

Client Contact: Angel Espiritu Contact's Email: abe4@pge.com **Comments: Date Logged:** 12/4/2024

		Water	Trax CLIP EDF		Excel	EQul	S	✓ Emai	HardCopy	Third	Party 🗸 J-flag)		
LabID	ClientSampID	Matrix	Test Name	Cont./	Bottle & Preservative			Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
002G	E-001	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.				12/4/2024 10:30	5 days	12/11/2024	None		
002H	E-001	Water	SM2540D (TSS)	1	1L HDPE, unprsv	v			12/4/2024 10:30	5 days	12/11/2024	None		
002I	E-001	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3	′ 🔲			12/4/2024 10:30	5 days	12/11/2024	None		
002J	E-001	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Zinc></arsenic,>	1	250mL HDPE w/ HNO3	′			12/4/2024 10:30	5 days	12/11/2024	None		
			E200.8 Metals <silver></silver>							5 days	12/17/2024	None		✓

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

2412167

	Websi	te: w		WILLOV SBURG, O pbell.com	V PAS	S ROAD 665-1701 ail: main		camp	bell	con						CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY GeoTracker EDF PDF Excel Write On (DW) Check if sample is effluent and "J" flag is required								□ N R 72 HR 5 DAY Ye On (DW) □			
Report To:	: Angel Es	piritu	1		E	Bill To:	PG&	E Ga	itew	ay					T		Analysi	s Rec	ues	t]	Remarks
Company:	PG&E G	atew	ay Genera	ting Sta	tion										#												
E-Mail: ab	e4@nge.co	m, T	TIWY@ng	e.com. N	ASFG	@nge.c	om.	APSI	D@	nge		m	-	-	┨	C C C	niun	with	₹	H3-C		chromium er, zinc)					
Tel: (925)					_	ax: ()			-5					1	(Pretreated with iiosulfate before g) by SM 4500	l selc	64A)	A 42	300-N						1	
Project Na						nber	202	14)							1	ate b	and	A 16	SEP	M 45		cadmium, nickel, silv iron, and					
Project Lo	cation: Co	mbin	ed Site Fl												٦	retr sulf by	enic 7 rea	SEP	Cs (I	N (S	(7)	200.8 cadmi lead, nickel, enum, iron,	10B)	20D)	٤	j [
Sampler Si	ignature: I		an Enviro	onmental	Sam	pling		R								e (P thio ing)	(Ars 8 m b	se (U	enol	a as	, (245	200.8 lead,	M 52	M 52	125	25.	
		Composite	SAMP	LING		rs.	Ma	trix	MI	ЕТН	OD	PRE	SER	VED	,	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 CABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (USEPA 1664A) with	Total Phenolics (USEPA 420.4)	Ammonia as N (SM 4500-NH3-G	Mercury (245.2)	Metals (200.8 cadmii copper, lead, nickel, Molybdenum, iron, a	BOD (SM 5210B)	COD (SM 5220D)	TDS (SM 2540C)	TSS (SM 2540D)	
SAMPLE I	LOCATION / Field Point Name	Sample Type Co	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H.SO.	NaOH	HCL	HNO3	Other												
E-001		G	12/3/24	09:42	4	1L Amb, 40-ml VOA	X			X			X					X									
E-001	4-	G	12/4/24	10:35	4	1L Amb, 40-ml VOA	X			X			X					X									
E-001		G	12/4/24	10:35	1	500ml Amb	X			X	X								X						Γ	Γ	
E-001		G	12/4/24	10:35	1	250-ml Poly	X	Г	П	X	T	X	T	T	T	X			Π				П	Г	Γ	Γ	
E-001		С	12/4/24		1	1L Poly	X	Г	Х	Х	T	\neg	T	T	T				Γ				Х		Γ	Γ	
E-001		С	12/4/24		2	43-ml VOA	X		П	Х	X		T		1				Г				Г	X	Τ	T	
E-001		С	12/4/24		1	500-ml poly	X	Г	X	X	T		T	T	T				Г					F	3	₹	
E-001		С	12/4/24		1	1L poly	X		Х	Х	T		\forall	T	T				Т	П			Г		T	Х	
E-001		С	12/4/24		1	250-ml Poly	Х		П	Х	T	\neg	7	X	T				T		X		Г	Т	T	T	
E-001		С	12/4/24	10.30	1	250-ml poly	Х		П	Х	T		T	X	7		X		F	П		X			T	T	
E-001	-	С	12/4/24			250 ml Amb	Х	T	П	X	Х	\exists	7	+	†				T	X			Г		T	T	
	_			10.20		7.000			П	ヿ	T	\exists	寸	T	†				Τ					\Box	T	T	
Relinquished	>		Date: / 2 / 4 / 2 \\ Date:	Time: /2'.38 Fime:		deceived By:						ICE/t° GOOD COT HEAD SPA DECHLOR APPROPRI	CE ABSE INATED	NT_ IN LA	В	-	20		C	сом	ME	NT	S:				

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Gene Quarterly Sampling (I	-			Da	ate and Time Received: ate Logged: eceived by:	12/4/2024 12:38 12/4/2024 Lilly Ortiz
WorkOrder №: Carrier:	2412167 Client Drop-In	Matrix: Water				gged by:	Valerie Alfaro
		Chain of	Custody	/ (COC	C) Information		
Chain of custody	present?		Yes	✓	No 🗆		
Chain of custody	signed when relinquish	ed and received?	Yes	✓	No 🗆		
Chain of custody	agrees with sample lab	pels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on COC?		Yes	✓	No 🗆		
Date and Time of	f collection noted by Cli	ent on COC?	Yes	✓	No 🗆		
Sampler's name	noted on COC?		Yes	✓	No 🗆		
COC agrees with	Quote?		Yes		No 🗆	NA 🗹	
		<u>Sam</u> r	ole Rece	eipt Inf	<u>ormation</u>		
Custody seals int	tact on shipping contain	er/cooler?	Yes		No 🗌	NA 🗸	
Custody seals int	act on sample bottles?		Yes		No 🗌	NA 🗸	
Shipping contain	er/cooler in good condit	ion?	Yes	✓	No 🗆		
Samples in prope	er containers/bottles?		Yes	✓	No 🗆		
Sample containe	rs intact?		Yes	✓	No 🗆		
Sufficient sample	volume for indicated to	est?	Yes	✓	No 🗌		
		Sample Preservat	tion and	Hold ⁻	Time (HT) Info	<u>rmation</u>	
All samples recei	ved within holding time	?	Yes	✓	No 🗌	NA 🗆	
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ice Typ	pe: WE	TICE)		
Sample/Temp Bl	ank temperature			Te	emp: 0.8°C	NA 🗌	
	analyses: VOA meets z Cs, TPHg/BTEX, RSK)		Yes		No 🗌	NA 🗹	
Sample labels ch	ecked for correct prese	ervation?	Yes	✓	No 🗌		
pH acceptable up	oon receipt (Metal: <2)?		Yes	✓	No 🗌	NA 🗆	pH Lot#: HC446507
110140 0							Lot Expiration: 1/31/2028
pH tested and 537.1: 6 - 8)?	acceptable upon receip	t (200.7: ≤2; 533: 6 - 8;	Yes		No 🗌	NA 🗹	
Free Chlorine t [not applicable		pon receipt (<0.1mg/L)	Yes		No 🗆	NA 🗸	
Comments:		======	- = = -			======	:======:

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

17 December 2024

McCampbell Analytical/Alpha Quote 232557

Sheri Speaks

Attn: Lab Reports

1534 Willow Pass Rd.

Pittsburg, CA 94565

RE: Water Quality - J-flags

Work Order: 24L1541

Enclosed are the results of analyses for samples received by the laboratory on 12/06/24 09:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri L. Speaks

Project Manager

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

McCampbell Analytical/Alpha Quote 232557

Project Manager: Lab Reports

1534 Willow Pass Rd.

Project: Water Quality - J-flags

Pittsburg CA, 94565

Project Number: 2412167

Reported:

12/17/24 14:54

Bay Area: 262 Rickenbacker Circle | Livermore, CA 94551 | 925-828-6226 | ELAP# 2728

Central Valley: 9090 Union Park Way Suite 113 | Elk Grove, CA 95624 | 916-686-5190 | ELAP# 2922

North Bay: 737 Southpoint Blvd Unit D | Petaluma, CA 94954 | 707-769-3128 | ELAP# 2303

San Diego: 2722 Loker Avenue West Suite A | Carlsbad, CA 92010 | 760-930-2555 | ELAP# 3055

Los Angeles: 1230 E. 223rd Street Suite 205 | Carson, CA 90745 | 424-267-5032 | ELAP# 3091

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
E-001	24L1541-01	Water	12/04/24 10:35	12/06/24 09:00

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

McCampbell Analytical/Alpha Quote 232557

Project Manager: Lab Reports

1534 Willow Pass Rd.

Project: Water Quality - J-flags

Pittsburg CA, 94565

Project Number: 2412167

Reported:

12/17/24 14:54

Metals by EPA Method 200.8 ICP/MS

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Analyst	ELAP #	^t Notes
E-001 (24L1541-01) Water S	Sampled: 12/04/24 1	0:35 Rec	eived: 12/0	6/24 09:	:00							
Silver	ND	0.40	0.80	ug/L	4	AL43767	12/09/24 15:25	12/17/24 02:20	EPA 200.8	SMP	1551	R-01, U

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

McCampbell Analytical/Alpha Quote 232557

Project Manager: Lab Reports

1534 Willow Pass Rd.

Project: Water Quality - J-flags

Pittsburg CA, 94565 Project Number: 2412167

Reported: 12/17/24 14:54

Metals by EPA Method 200.8 ICP/MS - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch AL43767 - EPA 200.8											
Blank (AL43767-BLK1)					Prepared: 1	12/09/24 Aı	nalyzed: 12	/11/24			
Silver	ND	0.10	0.20	ug/L							U
LCS (AL43767-BS1)					Prepared: 1	12/09/24 A	nalyzed: 12	/11/24			
Silver	20.3	0.10	0.20	ug/L	20.0		102	85-115			
					D 11		1 1 10	/11/04			
Duplicate (AL43767-DUP1)		Source: 2	4L0171-01		Prepared: 1	12/09/24 A	nalyzed: 12	/11/24			
Duplicate (AL43767-DUP1) Silver	ND	0.10	0.20	ug/L	Prepared: 1	ND	nalyzed: 12	/11/24		20	U
	ND	0.10		_	•					20	U
Silver	ND 18.9	0.10	0.20	_	•	ND				20	U
Silver Matrix Spike (AL43767-MS1)		0.10 Source: 2 0.10	0.20 4L0171-01	ug/L	Prepared: 1	ND 12/09/24 A	nalyzed: 12 94.4	/11/24 70-130		20	U
Silver Matrix Spike (AL43767-MS1) Silver		0.10 Source: 2 0.10	0.20 4L0171-01 0.20	ug/L	Prepared: 1	ND 12/09/24 An ND	nalyzed: 12 94.4	/11/24 70-130		20	U
Silver Matrix Spike (AL43767-MS1) Silver Matrix Spike (AL43767-MS2)	18.9	0.10 Source: 2- 0.10 Source: 2- 0.10	0.20 4L0171-01 0.20 4L0171-02	ug/L	Prepared: 1 20.0 Prepared: 1 20.0	ND 12/09/24 Ai ND 12/09/24 Ai	94.4 94.2 nalyzed: 12 89.5	/11/24 70-130 /11/24 70-130		20	U

email: clientservices@alpha-labs.com

Corporate: 208 Mason Street | Ukiah, CA 95482 | T: 707-468-0401 | F: 707-468-5267 | ELAP# 1551

McCampbell Analytical/Alpha Quote 232557

Project Manager: Lab Reports

1534 Willow Pass Rd.

Project: Water Quality - J-flags

Pittsburg CA, 94565 Project Number: 2412167

Reported:

12/17/24 14:54

Notes and Definitions

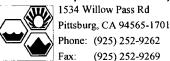
R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

U Analyte included in analysis, but not detected at or above MDL.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

MDL Method detection limit


Rec Recovery

RPD Relative Percent Difference

^{*} ELAP does not offer accreditation in this matrix for the requested analyte/method combination.

2421541

McCampbell Analytical, Inc.

SUB CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 2412167

ClientCode: PGEA

EDF: NO

Subcontractor:

Alpha Analytical Laboratories (Liv & Ukiah)

262 Rickenbacker Circle

√ J-flag

OC Level: LEVEL 2

Project Name: Quarterly Sampling (December 2024)

Livermore, CA 94551

Project Number: 2412167

							Rec	questec	l Tests (see Leç	end be	low)
MAI Lab iD	ClientSampID	Source Name	PS Code	Matrix	Collection Date	TAT	1	2	3	4	5	6
2412167-002J	E-001			Water	12/4/2024 10:35	5 days	1		Ī			T

Test Legend:		
1 E200.8 Metals	2	3
4	5	6

Comments: PLEASE USE 'CLIENT ID' AS THE SAMPLE ID AND EMAIL ASAP!

Silver by 200.8

Please email results to at subdata@mccampbell.com upon completion.

Date/Time Date/Time Relinquished by: Received by: Relinquished by:

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2412182

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Sanjiv Gill

Project P.O.:

Project: pH Sampling (December 2024)

Project Location: PG&E GGS Antioch-E-001

Project Received: 12/04/2024

Analytical Report reviewed & approved for release on 12/12/2024 by:

Christine Askari

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current regulatory standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2412182

Project: pH Sampling (December 2024)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CCV Continuing Calibration Verification.

CCV REC (%) % recovery of Continuing Calibration Verification.

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.

LQL Lowest Quantitation Level

MB Method Blank

MB IS/SS % Rec % Recovery of Internal Standard or Surrogate in Method Blank, if applicable

MB SS % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit ¹

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PF Prep Factor

RD Relative Difference
RL Reporting Limit ²

RPD Relative Percent Difference
RRT Relative Retention Time
RSD Relative Standard Deviation

SNR Surrogate is diluted out of the calibration range

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2412182

Project: pH Sampling (December 2024)

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TNTC "Too Numerous to Count;" greater than 250 colonies observed on the plate.

TZA TimeZone Net Adjustment for sample collected outside of MAI's Coordinated Universal Time (UTC).

(Adjustment for Daylight Saving is not accounted.)

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/04/2024 12:35

Date Prepared: 12/03/2024

Project: pH Sampling (December 2024)

WorkOrder: 2412182

Extraction Method: SM4500H+B **Analytical Method:** SM4500H+B

Unit: pH units

		pН			
Client ID	Lab ID	Matrix	Date Collecte	d Instrument	Batch ID
E-001	2412182-001A	Water	12/03/2024 09:3	5 WetChem	307561
<u>Analytes</u>	Result		Accuracy D	<u>ıF</u>	Date Analyzed
pH	8.75		±0.05 1		12/03/2024 09:36

Analyst(s): JME

McCampbell Analytical, Inc.

□WaterTrax

Email:

Project:

PO:

cc/3rd Party:

CLIP

sanjivgill@comcast.net

pH Sampling (December 2024)

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

PG&E Gateway Generating Station

FAX:

Report to:

Sanjiv Gill

3225 Wilbur Avenue

Antioch, CA 94509

(925) 459-7212

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

J-flag

WorkOrder: 2412182 ClientCode: PGEA

Detection Summary Excel

Bill to: Requested TAT: 5 days;

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue *Date Received:* 12/04/2024 Antioch, CA 94509 *Date Logged:* 12/04/2024

								Requ	uested '	Tests (See le	gend b	elow)			
Lab ID	ClientSampID	Matrix	Collection Date I	Hold	1	2	3	4	5	6	7	8	9	10	11	12
								_								
2412182-001	E-001	Water	12/3/2024 09:35		Α	Α										

□ EDF

Test Legend:

1 PH_W_SANJIV	2 PRDisposal Fee	3	4
5	6	7	8
9	10	11	12

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	pH Sampling (December 2024)	Work Order: 2412182
--------------	---------------------------------	----------	-----------------------------	----------------------------

Client Contact: Sanjiv Gill

Contact's Email: sanjivgill@comcast.net

Comments:

Date Logged: 12/4/2024

	WaterT	rax CLIP [EDF]Excel [EQuIS	✓ Emai	I ⊟HardCopy	Third	Party ✓ J-flag	l	
LabID ClientSampID	Matrix	Test Name		Cont./ Comp.	Bottle & Preservative	U** Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out
001A E-001	Water	SM4500H+B (Field pH)		0 <	NOT RECEIVE	D>		12/3/2024 9:35	5 days	12/11/2024		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.
- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mecampbell.com Email: main@mecampbell.com

CHAIN OF CUSTODY RECORD OUND TIME Q Q Q TURN AROUND TIME

5 DAY 72 HR

RUSH 24 HR 48 HR

	Tek	phot	ie: (877) :	252-9262		I	ax: (925)	252-	926	9				(Geo	Tr	ack	er.	ED	F	H	P	DF	Q	E	XCE	1 [] .	Wr	ite On (DW) 📮	
Report	To: Sanjiy	GIN		CONTRACTOR DESCRIPTION OF THE		BIN To:	Musi	tan I	invi	on.	nent	al	(Chatan)	-	-					None and	Ana	lve	e D	POUR	E HE 2	AND IN	Die i	s em	HUCE	II DI	Remarks	
Compa	ny: PG&E	Gate	way Gan	erating S	Statio	in .									-		T	T	T	T	T	T	T	T	T	T	T	T	T	T	Kemarks	
	****			- Value of the last of the last													1	-	-	Deciments of the last of the l				the state of	-	TO DAY OF THE PERSON				TON THE STATE OF		
99-9- 444	han ded a	- 400	-			E-Mail:	sanji	veille	2 co	nca	st.ne	ıt_						T-STATE OF THE STATE	1				No.	and the same of	Medicina		Ì		-			
Tel: (4)	18) 666-449	4 (C	MI)	-		Fax: (-	-					despt.							1					-		
Project	Name: pi	H DE	D COC A	Dece	Line	ofor 2	100 c	1	_	-	_	-	-	_) Adjustance				Own	-							
Comple	r Signature	M	B GGS A	Broch -	E-00.	<u> </u>	7		1		1	0		_		1				1		1										
School lands	- Cal marente	TE	W Now	From	ONY	neta	13	and	114		1	}	PER PER PER PER PER PER PER PER PER PER	_											1	and the same						
		mpos	SAMI	PLING		138	Ma	trix	ME	THO	D PR	ESE	RVI	n			-			And the second												
ID	LOCATION / Field Point Name	Sample Type	Date	Time	# Containers		Waste Water	Sewer Water		H.SO.	NaOH	HCI.	HINO.	Zinc Acetate	-				mananan da angan da angan da angan da angan da angan da angan da angan da angan da angan da angan da angan da a	den in market den in partie en fanoard in state den de servición de servición de servición de servición de ser			dents and savings of the spirit representation of the spirit of the spir	elibination quiviliphism the manuscriptures and graph result			ederation of the contract day and the contract of the contract				* 2	
E-001		G	12/2/24	09:35	NA	NA	X		X						X																Grab Time: OQ: 35 Analysis Time: JQ: 36	
		_			_		_		4	\sqcup			4	4		_	_	\perp			L				L						Temperature: 19.21C	
					_				4	Н			1	1	_		L				L	L	L									
		-			_				+	\sqcup	_	1	1	4	_	_	L	\sqcup													/	
		_							_				1			L	L													7		7
		_							_	Ш		\perp	\perp													Π			\neg	T		٦
		_							1	Ш																Π			T	T		٦
										Ш																П	-		T	T		
													T	appliped.				П											T	\forall		٦
													T	The same of				П										\neg	寸	\forall		-
												T	T		\neg			П										7	\dashv	+		7
	10								T	П			T	T				П			\neg						7	7	十	+		-
Relinquish	ed it:		12/4/24	Time: /2:35	Recei	ived lby:	///	1)	/		23		. 1	ICE GO:	M CO	CON	7	ON		-	2	3	0	L			-	MO	MEN	ns:	
Relinquish			Date:	-		ved By:	4			5	10	14	/ 6		HEA DEC APP	IDS HIL ROI	PAC DRE PRIA EVEI	E AI NAT	ed i Con	NT N L	AB			•								
Relinquish	ed By:		Dates	Time:	Recei	ved By:								NAME OF TAXABLE PARTY.			VA.		VO	-	08	:G	ME		s e	DTH	ER					STATES OF STREET STREET, STREE

Logbook for Field pH Samples

			1 st Re	ading	2 nd Re	eading	Ave	Standard	Comments	Analyst
Date/Time	Sample ID	Matrix	рН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)		
12/3/24 /09:15	Cal. pH # 7.00	L	7.00	18.9	7,00	18.9	7.00			
12/24/09:15	Cal pH # 4.00	L .	4.00	18.9	4.00	189	4.00			
12/3/2m / 09:15	Cal. pH # Jo.O Y	L	10.00	18.9	10.00	180	10.00			
, , ,										
		-								
					^	Wer	· My	on L Co	mpanj	
						1	- 9	meter I		
						Ser	1 1	1	6	
						,		(1)	2/3/2M	
						pr	don		C 1	
							X	REAL	Lateway	
								Zula C		

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Gen pH Sampling (Decen	· ·			Date and T Date Logge Received b		12/4/2024 12:35 12/4/2024 Lilly Ortiz
WorkOrder №: Carrier:	2412182 Client Drop-In	Matrix: Water			Logged by:		Valerie Alfaro
		Chain of	Custody	(COC) Info	rmation		
Chain of custody	present?		Yes	✓	No 🗆		
Chain of custody	signed when relinquisl	ned and received?	Yes	✓	No 🗆		
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on COC?		Yes	✓	No 🗆		
Date and Time of	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆		
Sampler's name	noted on COC?		Yes	✓	No 🗆		
COC agrees with	Quote?		Yes		No 🗆	NA 🗹	
		<u>Sam</u>	ple Rece	eipt Informa	<u>tion</u>		
Custody seals int	tact on shipping contain	ner/cooler?	Yes		No 🗌	NA 🗹	
Custody seals int	tact on sample bottles?		Yes		No 🗌	NA 🗹	
Shipping containe	er/cooler in good condi	tion?	Yes	✓	No 🗌		
Samples in prope	er containers/bottles?		Yes	✓	No 🗌		
Sample containe	rs intact?		Yes	✓	No \square		
Sufficient sample	e volume for indicated t	est?	Yes	•	No 🗌		
		Sample Preserva	ition and	Hold Time	(HT) Information		
All samples recei	ived within holding time	9?	Yes	✓	No 🗌	NA \square	
Samples Receive	ed on Ice?		Yes		No 🗸		
Sample/Temp Bl	ank temperature			Temp:	19.2°C	na 🗆	
	analyses: VOA meets 2 Cs, TPHg/BTEX, RSK)		Yes		No 🗆	NA 🗹	
Sample labels ch	necked for correct pres	ervation?	Yes	✓	No 🗌		
pH acceptable up	oon receipt (Metal: <2)	?	Yes		No 🗆	NA 🗹	
UCMR Samples: pH tested and a 537.1: 6 - 8)?		ot (200.7: ≤2; 533: 6 - 8;	Yes		No 🗆	NA 🗹	
Free Chlorine t [not applicable		upon receipt (<0.1mg/L)	Yes		No 🗌	NA 🗹	
Comments:	=====	======		====	=====	====	=======

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 16

Exhibit 5 HAZ-1 Appendix C: Table 8.12-4 (Condition of Certification HAZ-1), and Hazardous Materials Inventory as submitted to CUPA through CERS

HAZ-1 Appendix C Table 8.12-4 Hazardous Materials to be Added at Gateway Generating Station During the Operational Phase

Material	CAS Number	Purpose	Location	Container	Hazardous Characteristics	Maximum Quantity	Unit	Reg	ulatory Th	resholds (I	bs.)
						On-Site		Cal-ARP	Federal RQ	Federal TPQ	Federal TQ
Aqueous Ammonia (29%)	7664-41-7	SCR	Ammonia Storage Facility	Storage Tank (20,000 gal)	Corrosive	285,000	lbs.	500	100	500	20,000
Trisodium Phosphate (or Pre-blended Phosphate/Caustic)	7601-54-9 1310-73-2	pH/Corrosion Control	Northeast Corner of Admin Building	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	1,000	lbs.				
Carbohydrazide	487-18-7	Oxygen Scavenger (Oxygen removal/metal passiavtion)	Between ST and ACC	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Aqueous Ammonia (19.4%) (or ammonia monoethanolamine blend) *	7664-41-7 141-43-5	Boiler Feed pH adjustment/corrosion control	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	330	gals.	500			
Sodium Bisulfite	7631-90-5	Water treatment feedwater dechlorinization	Fire Water Pump Enclosure	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Stabilized Bromine/Sodium Hydroxide	1310-73-2	Bacteria control for feedwater tank/WSAC cooling water biocide	Fire Water Pump Enclosure	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	400	gals.				
Sulfuric Acid *	7664-93-9	WSAC water pH adjustment	Between ACC and WSAC and Warehouse (Storage)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	50	gals.	1,000			
Corrosion/Scale Inhibitor/Sodium Hydroxide	1310-73-2	Scale and corrosion inhibitor for closed loop cooling	Fire Water Pump Enclosure	Drum	Toxic	55	gals.				
Scale Inhibitor/Sulfuric Acid	7664-93-9	Scale and corrosion inhibitor evaporative cooling system (WSAC)	Between ACC and WSAC	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Sodium Hypochlorite	7681-52-9	Evaporative Cooling (WSAC) biocide	Between ACC and WSAC	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	500	gals.				
Hydrogen Gas	1333-74-0	Heat transfer medium for generators	Storage (South of ACC), In Process (CT1, CT2, ST)	Bulk Returnable Container (Tube Trailer) & In Process	Flammable	1,029	lbs.				10,000
Propylene Glycol	00057-55-6	Heat transfer fluid (Anti- freeze)	Power Block	Bulk Returnable Container (Tube Trailer) & In Process	Flammable (HMIS Flam-1)	3,326	gals.				
Monoethanolamine (30%-60%) *	141-43-5	Corrosion Inhibitor	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (SS Metal Tote) with Hose Connections	Corrosive/Toxic/ Combustable	400	gals.				
Ammonium Hydroxide (15%) & Monoethanolamine (8%)	1336-21-6 141-43-5	Corrosion Inhibitor	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (SS Metal Tote) with Hose Connections	Corrosive, Toxic	400	gals.				
Aluminum chloride hydroxide sulfate (10-30%)	39290-78-3	Flocculant	Storm Water Treatment System and Warehouse (Storage)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	550	gals.				
Sodium Hydroxide (10-50%)	1310-73-2	Precipitate Transition (for Iron)	Storm Water Treatment System	Bulk Returnable Container with Hose Connections	Corrosive	80	gals.				

^{*} The aqueous ammonia (or ammonia monoethanolamine blend) and sulfuric acid are stored in catchments sized to meet all applicable codes.

			Hazardoı	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 100	18894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Air Cooled	d Condense	r Gear Bo	oxes	Facility ID 07-	000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status Sub	mitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		ous Componen mixture only)	ts
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Lubricating Oil		432 Storage Container	12	432 Pressue		l-	1-DECENE, HOMOPOLYMER HYDROGENATED	8, 95%	68037-01-4
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C3	Туре	Other Days on Site: 365		Ambient Temperature > Ambient	Waste Cod	IE.			

Printed on 2/27/2025 3:26 PM Page 1 of 51

			Hazardo	us Materials /	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Alternate	Feed Transf	former		Facility II	D 07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	s
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid	I, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: D6	Liquid Type	656 Storage Container Other Days on Site: 365	656	656 Pressue Ambient Temperature > Ambient	Waste Cod	de	Dielectric Oil (Highly F Oil)	Refined Petro 100%	

Printed on 2/27/2025 3:26 PM Page 2 of 51

CERS Business/Org.	PG&E			Chemical Loca				CERS ID		
acility Name	PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Ammonia	and Scave	nger Feed	Skid	Facility I Status	D 07-000-773723 Submitted on 2/2	
OT Code/Fire Haz. C	lass Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
Corrosive	NALCO 5711 CAS No Map: Figure 2 Grid: C4	Gallons State Liquid Type		400 lic Drum	400 Pressue Ambient Temperature Ambient	Waste Cod	- Physical	AMMONIA MEA	15% 8%	

Printed on 2/27/2025 3:26 PM Page 3 of 51

ERS Business/Org.	PG&E				Chemical Loca		_		CERS ID		
acility Name		YEWAY GENERATING STATION Ave, Antioch 94509			Aqueous	Ammonia Si	torage Ta	nk	Facility I Status	O7-000-773723 Submitted on 2/2	
OT Code/Fire Haz. (`lass	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
OT: 8 - Corrosive: olids) Corrosive	(Liquids and	Aqua Ammonia (29%) CAS No 1336-21-6 Map: Figure 2 Grid: A6	Liquid Type	18020 Storage Container Aboveground Tank Days on Site: 365	18020	18020 Pressue Ambient Temperature Ambient		- Health Acute Toxicity - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity - Health Hazard Not Otherwise Classified	Ammonia	30%	7 664-41-7

Printed on 2/27/2025 3:26 PM Page 4 of 51

		Hazardous Materials	And Waste	s Inventory	/ Matrix R	eport			
Facility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509		Chemical Loca Behind (E		t Service Bu	uilding and S	hop Annex Facility ID	10018894 07-000-773723 Submitted on 2/27	
DOT Code/Fire Haz. Cla DOT: 2.1 - Flammabl Flammable Gas		Unit Max. Daily Cu. Feet 1740 State Storage Container Gas Cylinder Type Pure Days on Site: 365	Quantities Largest Cont. 145	Avg. Daily 1740 Pressue > Ambient Temperature Ambient	Amount Waste Code	Federal Hazard Categories - Physical Flammable - Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Component Name Acetylene	azardous Components (For mixture only) % Wt 100%	EHS CAS No. 74-86-2
DOT: 2.1 - Flammabl	e Gases Propane, Compressed CAS No 74-98-6 Map: Figure 2 Grid: B4	Gallons 111 State Storage Container Liquid Cylinder Type Pure Days on Site: 369	9.6	74 Pressue > Ambient Temperature Ambient	Waste Code	Physical Flammable - Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Propane	100%	74-98-6
Combustible Liquid,	Class III-B CAS No Map: Figure 2 Grid: C4	Gallons 110 State Storage Container Liquid Steel Drum Type Mixture Days on Site: 369	55	110 Pressue Ambient Temperature Ambient	Waste Code		Highly Refined Petroleu Proprietary Additives	ım Oil 99% 1%	

Printed on 2/27/2025 3:26 PM Page 5 of 51

			Hazardo	ous Materials A	And Waste	s Inventory	y Matrix	Report			
Facility Name PC		EWAY GENERATING STATION Ave, Antioch 94509							CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	s	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammal	able Gases	Carbon Dioxide, Liquid CAS No 124-38-9 Map: Figure 2 Grid: D2	Gallons State Liquid Type		2326	2326 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas	Carbon Dioxide	100%	124-38-9

Printed on 2/27/2025 3:26 PM Page 6 of 51

			Hazardo	us Materials A	And Waste	s Inventory	/ Matrix	Report			
Facility Name PC		EWAY GENERATING STATION Ave, Antioch 94509			Combusti	ation on Turbine-	A		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	ss	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflamma	able Gases	Carbon Dioxide, Liquid CAS No 124-38-9 Map: Figure 2 Grid: B5	Liquid Type		2326	2326 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Carbon Dioxide	100%	124-38-9

Printed on 2/27/2025 3:26 PM Page 7 of 51

			Hazardo	ous Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID 100	18894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Combusti	on Turbine-	A Lube C	Oil Reservoir	Facility ID 07-0	000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status Subr	nitted on 2/2	27/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		ous Componen mixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Shell Turbo Oil T 32	Gallons	6000	6000	6000			Highly Refined Petroleum Oi	l 99%	
Combustible Liquid	I, Class III-B	CAS No	State Liquid	Storage Container Other		Pressue Ambient	Waste Cod	le	Proprietary Additives	5%	
		Map: Figure 2 Grid: C6	Type Mixture	Days on Site: 365		Temperature > Ambient					,

Printed on 2/27/2025 3:26 PM Page 8 of 51

			Hazardo	ous Materials A	And Waste	s Inventory	y Matrix	Report			
Facility Name PC		EWAY GENERATING STATION Ave, Antioch 94509							CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	s	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflamma	able Gases	Carbon Dioxide, Liquid CAS No 124-38-9 Map: Figure 2 Grid: B5	Liquid Type		2326	2326 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Carbon Dioxide	100%	124-38-9

Printed on 2/27/2025 3:26 PM Page 9 of 51

			Hazardo	ous Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 100	18894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Combusti	on Turbine-	B Lube C	il Reservoir	Facility ID 07-	000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status Sub	mitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		ous Componen mixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Shell Turbo Oil T 32	Gallons	s 6000	6000	6000			Highly Refined Petroleum O	il 99%	
Combustible Liquic	l, Class III-B	CAS No	State Liquid	Storage Container Other		Pressue Ambient	Waste Cod	le	Proprietary Additives	5%	
		Map: Figure 2 Grid: C5	Type Mixture	Days on Site: 365		Temperature > Ambient					,

Printed on 2/27/2025 3:26 PM Page 10 of 51

			Hazardo	us Materials /	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Construct	ion Power T	ransforn	ner	Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
	·				Quantities		Annual Waste	Federal Hazard		azardous Component (For mixture only)	S
DOT Code/Fire Haz. (lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	, Class III-B	Mineral Oil CAS No Man Figure 3 Crid R6	Liquid	390 Storage Container Other	390	390 Pressue Ambient	Waste Cod	le_	Dielectric Oil (highly refi petroleum oil)	ined 100%	
11	,	Map: Figure 2 Grid: B6	Type Mixture	Days on Site: 365		> Ambient					

Printed on 2/27/2025 3:26 PM Page 11 of 51

			Hazardo	us Materials /	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Construct	ion Trailer T	ransforn	ner	Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
	·				Quantities		Annual Waste	Federal Hazard		zardous Component (For mixture only)	S
DOT Code/Fire Haz. O	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	I. Class III-B	Mineral Oil CAS No	Liquid	402 Storage Container Other	402	402 Pressue Ambient	Waste Cod	le	Dielectric Oil (highly refi petroleum oil)	ined 100%	
some Elquic	,, 0.000 111 0	Map: Figure 2 Grid: C8	Type Mixture	Days on Site: 365		> Ambient					

Printed on 2/27/2025 3:26 PM Page 12 of 51

		Hazardo	ous Materials A	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org. Facility Name	 TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca	C and CT B	- PEEC		CERS ID Facility ID Status	10018894 07-000-77372 Submitted on 2/2	
OOT Code/Fire Haz.	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories - Physical		lazardous Componen (For mixture only) % Wt	•
DOT: 8 - CORTOSIVE Solids) Corrosive, Water F 2	 AlphaCell OPzS Stationary Flooded Tubular Lead Acid Battery CAS No Map: Figure 2 Grid: C6, C5	Gallons State Liquid Type Mixture	Storage Container Other Days on Site: 365	3	Ambient Temperature Ambient		Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Reproductive Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Sulfuric Acid	7%	7664-93-9

Printed on 2/27/2025 3:26 PM Page 13 of 51

			Hazardou	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID 1	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-A Auxi	liary Transf	ormer		Facility ID 0	7-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	7/2025 11:34 AM
	de/Fire Har Class Common Name			Annual Quantities Waste Federal Hazard						ardous Component For mixture only)	ts
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid	, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C6		6155 Storage Container Other	6155	6155 Pressue Ambient Temperature	Waste Cod	de	Dielectric Oil (highly refir petroleum oil)	ned 100%	
			Mixture [Days on Site: 365		> Ambient					

Printed on 2/27/2025 3:26 PM Page 14 of 51

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-A Excit	ation Trans	former		Facility ID 0	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		ardous Component (For mixture only)	ts
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil		Storage Container	414	414 Pressue			Dielectric Oil (highly refir petroleum oil)	ned 100%	
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C6	Туре	Other Days on Site: 365		Ambient Temperature > Ambient	Waste Cod	16			

Printed on 2/27/2025 3:26 PM Page 15 of 51

			Hazardou	ıs Materials <i>İ</i>	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-A Isola	tion Transf	ormer		Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	27/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard	Ha	azardous Componen (For mixture only)	ts
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid	, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C6	Liquid C	1413 torage Container Other	1413	1413 Pressue Ambient Temperature > Ambient	Waste Cod	le	Dielectric Oil (highly ref	fined 100%	

Printed on 2/27/2025 3:26 PM Page 16 of 51

			Hazardou	s Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-A Mair	n Step-Up Ti	ransform	ner	Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		zardous Componen (For mixture only)	ts
DOT Code/Fire Haz. 0	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C6	Liquid O	12800 torage Container Other	12800	12800 Pressue Ambient Temperature > Ambient	Waste Cod	le	Dielectric Oil (highly refi petroleum oil)	ined 100%	

Printed on 2/27/2025 3:26 PM Page 17 of 51

			Hazardoı	us Materials /	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-B Auxi	liary Transfo	ormer		Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		zardous Componen (For mixture only)	ts
DOT Code/Fire Haz. C	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid	l, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C5	Liquid (6155 Storage Container Other Days on Site: 365	6155	6155 Pressue Ambient Temperature > Ambient	Waste Cod	le	Dielectric Oil (highly refi petroleum oil)	ned 100%	

Printed on 2/27/2025 3:26 PM Page 18 of 51

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-B Excit	ation Trans	former		Facility ID (07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		zardous Component (For mixture only)	s
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		Storage Container	414	414 Pressue	Wasta Coa	ło.	Dielectric Oil (highly refir petroleum oil)	ned 100%	
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C5	Туре	Other Days on Site: 365		Ambient Temperature > Ambient	Waste Coo	ie			

Printed on 2/27/2025 3:26 PM Page 19 of 51

			Hazardou	ıs Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-B Isola	tion Transfo	ormer		Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		zardous Componen (For mixture only)	ts
DOT Code/Fire Haz. O	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		1413 torage Container Other	1413	1413 Pressue Ambient	Waste Cod	le	Dielectric Oil (highly refi petroleum oil)	ined 100%	
Combustible Liquic	l, Class III-B	Map: Figure 2 Grid: C5	Type Mixture [Days on Site: 365		Temperature > Ambient					1

Printed on 2/27/2025 3:26 PM Page 20 of 51

			Hazardou	ıs Materials <i>İ</i>	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID 1	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-B Mair	Step-Up Ti	ransform	er	Facility ID (07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		ardous Componen (For mixture only)	ts
DOT Code/Fire Haz. O	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	I, Class III-B	Mineral Oil CAS No Man Figure 2 Crids CF	Liquid C	12800 torage Container Other	12800	12800 Pressue Ambient	Waste Cod	le	Dielectric Oil (highly refir petroleum oil)	ned 100%	
•		Map: Figure 2 Grid: C5	<u>Type</u> Mixture D	Days on Site: 365		> Ambient	•••				

Printed on 2/27/2025 3:26 PM Page 21 of 51

		Hazardou	ıs Materials	And Waste	s Inventory	y Matrix	Report			
, , , , , , , , , , , , , , , , , , , ,	GATEWAY GENERATING STATION ilbur Ave, Antioch 94509			Chemical Loca Gas Cond	ation itioning Sta	tion		CERS ID Facility II Status	10018894 D 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable G		Cu. Feet State Single Gas Control Type		292	1168	Waste Code	- Physical Gas - Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Helium	100%	7440-59-7

Printed on 2/27/2025 3:26 PM Page 22 of 51

			Hazard	ous Materials /	And Wastes	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Hazardou	s Mat/Was	te Storag	e (M9)-Wareho	ouse Facility II	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	s
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 4.1 - Flamma	ble Solids	Waste Flamable Solids, Organic	Pound	s 100	500	66	750	- Physical	Flamable Solid, Organ	nic 100%	
Flammable Solid		CAS No	State Solid	Storage Container Steel Drum		Pressue Ambient	Waste Cod 352	_e Flammable			
		Grid: B8, C3	Type Waste	Days on Site: 365		Temperature Ambient					,

Printed on 2/27/2025 3:26 PM Page 23 of 51

			Hazardo	us Materials	And Waste	s Inventor	y Matrix I	Report				
ERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID 10018894			
acility Name	PG&E G	ATEWAY GENERATING STATION			Hazardou	s Mat/Was	te Storage	Area	Facility	D 07-000-773723		
	3225 Wilb	ur Ave, Antioch 94509							Status	Submitted on 2/27/2025 11:34 AM		
					Quantities		Annual Waste	Federal Hazard		Hazardous Components (For mixture only)		
OOT Code/Fire Haz. C	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt EHS CAS No.		
		Non-RCRA Mixed Oil	Gallons	132	55	87	363		Oil			
		CAS No	State	Storage Container	 .	Pressue	Waste Code					
			Liquid	Steel Drum		Ambient	221					
		Map: Figure 2 Grid: B8, C3	Type			Temperature						
			Waste	Days on Site: 90		Ambient						
		Non-RCRA Solids (Oily Debris)	Pounds	3500	500	2310	5665					
		CAS No		Storage Container		Pressue	Waste Code					
			Solid	Steel Drum		Ambient	223					
		Map: Figure 2 Grid: B8, C3	Type			Temperature						
			Waste	Days on Site: 90		Ambient						
		RCRA Liquid Lab Bench Waste	Gallons	30	30	25	230	- Health Skin	Sulfuric Acid			
		CAS No	State	Storage Container		Pressue	Waste Code					
			Liquid	Plastic/Non-metal	lic Drum	Ambient	791	Irritation - Health Serious				
		Map: Figure 2 Grid: B8, C3	Type Waste	Days on Site: 90		Temperature Ambient	•••	Eye Damage Eye Irritation				

Printed on 2/27/2025 3:26 PM Page 24 of 51

			Hazardou	us Materials	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	tion			CERS ID	10018894	
Facility Name	PG&E GAT	EWAY GENERATING STATION			Hazardou	s Waste Sto	rage Are	a	Facility I	D 07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 8 - Corrosives Solids)	s (Liquids and	Waste Sodium Hydroxide Contaminated Debris CAS No Map: Figure 2 Grid: B8, C3	Solid C	Storage Container Can Days on Site: 90	10	5 Pressue Ambient Temperature Ambient	5 Waste Cod 181	e			

Printed on 2/27/2025 3:26 PM Page 25 of 51

RS Business/Org.	PG&E				Chemical Loca					CERS ID		
cility Name		EWAY GENERATING STATION			HRSGs (He	eat Recover	y Steam (Generators) - A	and B	Facility I	D 07-000-773723	
	3225 Wilbur	Ave, Antioch 94509								Status	Submitted on 2/27	•
					Quantities		Annual Waste	Federal Hazard			Hazardous Components (For mixture only)	i
T Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Na	ame	% Wt	EHS CAS No.
OT: 2.2 - Nonflam	nmable Gases	Argon, Compressed Gas	Cu. Feet	1344	336	1344		- Physical Gas	Argon		100%	
		CAS No	State	Storage Container	•••	Pressue	Waste Code					
			Gas	Cylinder		> Ambient		- Health Simple				
		Map: Figure 2 Grid: B5	Туре			Temperature		Asphyxiant - Health Hazard				
			Pure	Days on Site: 365		Ambient		Not Otherwise				
								Classified				
OT: 2.2 - Nonflam	nmable Gases	Helium, Compressed	Cu. Feet	1344	336	1344		- Physical Gas	Helium		100%	7440-59-7
		CAS No	State	Storage Container		Pressue	Waste Code					
		7440-59-7	Gas	Cylinder		> Ambient		- Health Simple				
		Map: Figure 2 Grid: B5	Туре			Temperature		Asphyxiant - Health Hazard				
			Pure	Days on Site: 365		Ambient		Not Otherwise				
								Classified				
OT: 2.2 - Nonflam	nmable Gases	Oxygen, Compressed	Cu. Feet	1124	281	1124		- Physical Gas	Oxygen		100%	7782-44-
		CAS No	State :	Storage Container		Pressue	Waste Code					
kidizing Gas, Gase	eous	7782-44-7	Gas	Cylinder		> Ambient		- Physical Oxidize	r			
		Map: Figure 2 Grid: B3, B5	Type			Temperature		- Health Hazard				
			Pure	Days on Site: 365		Ambient		Not Otherwise				
								Classified				
OT: 2.2 - Nonflam	nmable Gases	EPA Protocol Gas (Carbon	Cu. Feet	1440	144	1440		- Physical Gas	Nitrogen		88%	7727-37-9
		Monoxide/Nitrogen Mixture)	State	Storage Container		Pressue	Waste Code		Carbon Mon	oxide	13%	630-08-0
		CAS No	Gas	Cylinder		> Ambient		- Health Simple Asphyxiant				
			Type			Temperature		Aspriyalant				
		Map: Figure 2 Grid: B5	Mixture	Days on Site: 365		Ambient						
OT: 2.2 - Nonflam	nmable Gases	EPA Protocol Gas Carbon	Cu. Feet	864	144	864		- Physical Gas	Nitrogen		99%	7727-37-9
		Monoxide 11/Nitric/Nitrogen		Storage Container		Pressue	Waste Code		Nitric Oxide	ovida	1%	10102-43
		Mixture		Cylinder		> Ambient		- Health Simple Asphyxiant	Carbon Mon	oxiue	10%	630-08-0
		CAS No	Type	Davis an 6'1 - 365		Temperature		Aspriyalant				
			iviixture	Days on Site: 365		Ambient						
		Map: Figure 2 Grid: B5										
OT: 2.2 - Nonflam	imable Gases	EPA Protocol Gas Carbon	Cu. Feet	864	144	864		- Physical Gas	Nitrogen		99%	7727-37-9
		Monoxide 660/Nitric/Nitrogen		Storage Container	•••	Pressue	Waste Code	Under Pressure - Health Simple	Nitric Oxide Carbon Mon	ovido	1% 20%	10102-43 630-08-0
		Mixture		Cylinder		> Ambient		Asphyxiant	Cai bull IVIUII	UNIUE	20/0	030-06-0
		CAS No	Type	Davis on Citar 205		Temperature						
		<u></u>	iviixture	Days on Site: 365		Ambient						
		Map: Figure 2 Grid: B5										
OT: 2.2 - Nonflam	nmable Gases	EPA Protocol Gas Nitric/Nitroger	Cu. Feet	576	144	576		- Physical Gas	Nitrogen		99%	7727-37-9
		Mixture		Storage Container		Pressue	Waste Code	Under Pressure - Health Simple	Nitric Oxide		2%	10102-43
		CAS No	Gas	Cylinder		> Ambient		- Health Simple Asphyxiant				
			Type			Temperature		Aspiryxialit				
		Map: Figure 2 Grid: B5	Mixture	Days on Site: 365		Ambient						

Printed on 2/27/2025 3:26 PM Page 26 of 51

			Hazardo	us Materials <i>F</i>	And Waste	s Inventory	Matrix	Report				
CERS Business/Org. Facility Name	PG&E PG&E GAT	EWAY GENERATING STATION			Chemical Loca		y Steam (Generators) - A		CERS ID Facility ID	10018894 07-000-773723	
	3225 Wilbur	Ave, Antioch 94509					Annual			Status H	Submitted on 2/27	•
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Waste Amount	Federal Hazard Categories	Component Nar	me	(For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflan	nmable Gases	EPA Protocol Gas Nitrogen/Oxygen Mixture CAS No Map: Figure 2 Grid: B5	Gas Type	t 1152 Storage Container Cylinder Days on Site: 365	144	Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Oxygen		99% 20%	7727-37-9 7782-44-7

Printed on 2/27/2025 3:26 PM Page 27 of 51

		Hazardou	ıs Materials <i>i</i>	And Waste	s Inventory	y Matrix	Report			
,	TEWAY GENERATING STATION r Ave, Antioch 94509			•		-	Generators) - A	A and B, Fac	RS ID 10018894 cility ID 07-000-77372: atus Submitted on 2/2	
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gases	Nitrogen, Compressed CAS No 7727-37-9 Map: Figure 2 Grid: B5,C4,C5,C6	Gas C	3263 torage Container Cylinder Days on Site: 365	251	3263 Pressue > Ambient Temperature Ambient		- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Nitrogen	100%	7727-37-9

Printed on 2/27/2025 3:26 PM Page 28 of 51

		Hazardou	s Materials /	And Waste	s Inventor	y Matrix	Report			
,	ATEWAY GENERATING STATION ur Ave, Antioch 94509			Chemical Local Hydrogen	ation Bulk Storag	ge			10018894 D 07-000-773723 Submitted on 2/23	
				Quantities		Annual Waste	Federal Hazard		Hazardous Components (For mixture only)	5
DOT Code/Fire Haz. Class DOT: 2.1 - Flammable Gases Flammable Gas	Common Name Hydrogen, Compressed CAS No 1333-74-0 Map: Figure 2 Grid: D1	Gas O	Max. Daily 134000 orage Container ther ays on Site: 365	134000	Avg. Daily 134000 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Flammable - Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Component Name Hydrogen	% Wt 100%	1333-74-0

Printed on 2/27/2025 3:26 PM Page 29 of 51

			Hazardo	us Materials	And Waste	s Inventory	/ Matrix	Report			
Facility Name PC		EWAY GENERATING STATION Ave, Antioch 94509			Chemical Local Nitrogen	ation Bulk Storage	e		CERS ID Facility I Status	10018894 D 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	SS	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	s EHS CAS No.
DOT: 2.2 - Nonflamma	able Gases	Nitrogen, Compressed CAS No 7727-37-9 Map: Figure 2 Grid: D2	Gas Type	-	304	10944 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Nitrogen	100%	7727-37-9

Printed on 2/27/2025 3:26 PM Page 30 of 51

		Hazardo	us Materials <i>i</i>	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E			Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GATEWAY GENERATING STATION			Phosphat	e Feed Skid			Facility I	D 07-000-77372	3
	3225 Wilbur Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
				Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	s
DOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	NALCO BT-3400 CAS No Map: Figure 2 Grid: B4	Liquid Type	400 Storage Container Tote Bin Days on Site: 365	400	Ambient Temperature Ambient	Waste Cod	- Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	Sodium Hydroxide Proprietary	5% 99%	1310-73-2

Printed on 2/27/2025 3:26 PM Page 31 of 51

		Hazardo	ous Materials /	And Waste	s Inventory	y Matrix I	Report			
,	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Plant Serv	tion vices Buildin	ng		CERS ID Facility Status	10018894 ID 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class DOT: 8 - Corrosives (Liquids and Solids) Corrosive, Water Reactive, Class 2	Battery	Liquid Type	Max. Daily 8 834 Storage Container Other Days on Site: 365	Quantities Largest Cont. 14	Avg. Daily 834 Pressue Ambient Temperature Ambient	Annual Waste Amount Waste Code	Federal Hazard Categories - Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Component Name Lead Sulfuric Acid Lead Dioxide	Hazardous Component (For mixture only) % Wt 52% 44% 21%	•

Printed on 2/27/2025 3:26 PM Page 32 of 51

		Hazardo	ous Materials A	nd Waste	s Inventory	y Matrix I	Report			
CERS Business/Org. Facility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Chemical Loca	Treatment			CERS ID Facility I Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz.	Class Common Name Sodium Bisulfite CAS No Map: Figure 2 Grid: C2	Unit Gallons State Liquid Type Mixture		Quantities Largest Cont. 50	Avg. Daily 50 Pressue Ambient Temperature Ambient	Annual Waste Amount Waste Code	Federal Hazard Categories - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Component Name Sodium Bisulfite	Hazardous Component (For mixture only) % Wt 20%	EHS CAS No. 763-90-5
Corrosive	Sodium Hydroxide CAS No Map: Figure 2 Grid: C2	Gallons State Liquid Type Pure	Storage Container Aboveground Tank Days on Site: 365	75	75 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	SODIUM HYDROXIDE	100%	1310-73-2

Printed on 2/27/2025 3:26 PM Page 33 of 51

		Hazardou	ıs Materials <i>i</i>	And Waste	s Inventory	y Matrix	Report			
,	TEWAY GENERATING STATION r Ave, Antioch 94509			Chemical Local Sodium H		(Elect Ed	լսipment) Breal	CERS ID kers Facility II Status	10018894 07-000-773723 Submitted on 2/2	
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gases		Cu. Feet State S Gas C Type	2043 torage Container Other Days on Site: 365	639	2043 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Sulfur Hexafluoride	100%	2551-62-4

Printed on 2/27/2025 3:26 PM Page 34 of 51

		Hazardou	s Materials A	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org. PG&E				Chemical Loca	ntion			CERS ID 1001	8894	
Facility Name PG&E G	ATEWAY GENERATING STATION			ST Electro	-Hydraulic (Control S	ystem	Facility ID 07-000-773723		
3225 Wilk	our Ave, Antioch 94509							Status Subm	tted on 2/	27/2025 11:34 AM
				Quantities		Annual Waste	Federal Hazard		s Componer ixture only)	ts
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid, Class III-B	Hydraulic Oil CAS No Map: Figure 2 Grid: C4	Liquid O	torage Container other	130	130 Pressue Ambient Temperature > Ambient	Waste Cod	le	Highly refined mineral oil (C1: C50)	5 - 99%	

Printed on 2/27/2025 3:26 PM Page 35 of 51

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			ST Excitat	ion Transfo	rmer		Facility ID 07-000-773723		
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		zardous Componen (For mixture only)	s
DOT Code/Fire Haz. C	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		414 Storage Container Other	414	414 Pressue Ambient	Waste Cod	le	Dielectric Oil (highly refi petroleum oil)	ned 100%	
Combustible Liquid	l, Class III-B	Map: Figure 2 Grid: C4	Туре	Days on Site: 365		Temperature > Ambient					

Printed on 2/27/2025 3:26 PM Page 36 of 51

			Hazardou	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			ST Main S	tep-Up Trar	nsformer	•	Facility ID 07-000-773723		
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	27/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		zardous Componen (For mixture only)	ts
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid	, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C4	Liquid (14143 Storage Container Other Days on Site: 365	14143	14143 Pressue Ambient Temperature > Ambient	Waste Cod	le	Dielectric Oil (highly refi petroleum oil)	ned 100%	

Printed on 2/27/2025 3:26 PM Page 37 of 51

			Hazardo	ous Materials A	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID 100	18894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Steam Tu	rbine Lube (Oil Reser	voir	Facility ID 07-	000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status Subr	nitted on 2/2	27/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		ous Componen mixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Refined Petroleum Oil	Gallons	4800	4800	4800			Highly Refined Petroleum O	il 99%	
Combustible Liquid	l, Class III-B	CAS No	State Liquid	Storage Container Other	 .	Pressue Ambient	Waste Cod	le	Proprietary Additives	5%	
		Map: Figure 2 Grid: C4	Type Mixture	Days on Site: 365		Temperature > Ambient					,

Printed on 2/27/2025 3:26 PM Page 38 of 51

		Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E			Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GATEWAY GENERATING STATION			Stormwat	er Treatme	nt Syster	n	Facility ID	07-000-77372	3
	3225 Wilbur Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
				Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	s
DOT Code/Fire Haz.	Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Corrosive	Tidal Clear Hybrid (TCH) CAS No Map: Figure 2 Grid: C9		275 Storage Container Tote Bin	275	275 Pressue Ambient Temperature	Waste Cod	- Health Serious	Dialuminum Chloride Penthahydroxide	30%	12042-91-0
		Mixture	Days on Site: 365		Ambient		Eye Damage Eye Irritation			

Printed on 2/27/2025 3:26 PM Page 39 of 51

		Hazardo	us Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			
,	GATEWAY GENERATING STATION ilbur Ave, Antioch 94509			Chemical Loca Switchyar				CERS ID Facility Status	10018894 ID 07-000-773723 Submitted on 2/2	
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
OT: 8 - Corrosives (Liquids olids) xplosive, Corrosive, Water eactive, Class 2	And Lead Calcium Batteries CAS No Map: Figure 2 Grid: D4	Liquid Type	Storage Container Other Days on Site: 365	1.5	90 Pressue Ambient Temperature Ambient	•••••	- Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Lead Calcium sulfuric Acid	65% 27%	7439-92-1 7664-93-9

Printed on 2/27/2025 3:26 PM Page 40 of 51

		Hazardo	ous Materials A	And Waste	s Inventor	y Matrix I	Report			
acility Name P	G&E G&E GATEWAY GENERATING STATION 225 Wilbur Ave, Antioch 94509			Chemical Local				CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/27	
				Quantities		Annual Waste	Federal Hazard		Hazardous Components (For mixture only)	5
OOT Code/Fire Haz. Class	s Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	Gas Turbine Compressor Cleani	ng Gallons	264	264	264			Cleaning Fluid		
	Fluid	State	Storage Container		Pressue	Waste Code				
	CAS No	Liquid	Tote Bin		Ambient					
		Type	B 611 065		Temperature					
	Map: Figure 2 Grid: B8-9	Mixture	Days on Site: 365		Ambient					
	Tidal Clear Hybrid (TCH)	Gallons	275	275	275		- Physical	Dialuminum Chloride	30%	12042-91-0
	CAS No	State	Storage Container		Pressue	Waste Code	Corrosive To	Penthahydroxide		
Corrosive		Liquid	Tote Bin		Ambient		- Health Serious			
COITOSIVE	Map: Figure 2 Grid: B8-9	Type			Temperature		Eye Damage Eye			
		Mixture	Days on Site: 365		Ambient		Irritation			
	NALCO BT-3400	Gallons	110	55	55		- Health Skin	Sodium Hydroxide	5%	1310-73-2
	CAS No	State	Storage Container	_	Pressue	Waste Code		Proprietary	99%	
		Liquid	Plastic/Non-metali	c Drum	Ambient		Irritation			
	Map: Figure 2 Grid: B8-9	Type			Temperature		 Health Serious Eye Damage Eye 			
		Mixture	Days on Site: 365		Ambient		Irritation			
	Petroleum Distillate	Gallons	55	55	55			Severely Hydrotreate	d Naphthenic 100%	64742-53-6
	CAS No	State	Storage Container		Pressue			Petroleum Oil		
		Liquid	Steel Drum		Ambient	Waste Code		BHT	0%	128-37-0
Combustible Liquid, C	lass III-B Map: Figure 2 Grid: B8-9	Type			Temperature					
		Mixture	Days on Site: 365		Ambient					
	NALCO Trac107	Gallons	110	55	55		- Health Skin	Sodium Hydroxide	1%	1310-73-2
	CAS No	State	Storage Container		Pressue	Waste Code		Inorganic Salt	5%	
	CAS NO	Liquid	Plastic/Non-metali	c Drum	Ambient		Irritation	Proprietary	99%	
	Map: Figure 2 Grid: B8-9	Type			Temperature		- Health Serious			
		Mixture	Days on Site: 365		Ambient		Eye Damage Eye Irritation			
	Sodium Hydroxide (10-50%)	Gallons	55	55	55		- Physical	SODIUM HYDROXIDE	50%	1310-73-2
	CAS No	State	Storage Container		Pressue	Waste Code	Corrosive To			
Corrosive	1310-73-2	Liquid	Plastic/Non-metali	c Drum	Ambient		Metal			
	Map: Figure 2 Grid: B8-9	Туре			Temperature		- Health Skin			
		Mixture	Days on Site: 365		Ambient		Corrosion			
							Irritation - Health Serious			
							Eye Damage Eye			
							Irritation			

Printed on 2/27/2025 3:26 PM Page 41 of 51

			Hazardo	us Materials	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org. Facility Name		GATEWAY GENERATING STATION bur Ave, Antioch 94509			Chemical Loca Warehous				CERS ID Facility IE Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
Corrosive		Polypropylene glycol bis (aminopropyl) ether CAS No 9046-10-0 Map: Figure 2 Grid: B8	Liquid Type		1.85	66.5 Pressue Ambient Temperature Ambient	Waste Code	- Health Acute	Pojvoxyalkyleneamine Nonyl Phenol		9046-10-0 84852-15-3

Printed on 2/27/2025 3:26 PM Page 42 of 51

CERS Business/Org.	PG&E			Chemical Loca	ation			CERS ID 100	18894	
, ,	PG&E GATEWAY GENERATING STATION			Warehou	se - Hazardo	ous Mat/V	Vaste Storage	Facility ID 07-0		3
	3225 Wilbur Ave, Antioch 94509							, , , , , , , , , , , , , , , , , , , ,		27/2025 11:34 AN
				Quantities		Annual Waste	Federal Hazard	Hazardo	us Componen nixture only)	•
OT Code/Fire Haz. Cla	ss Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	Shell Tellus Oil 32	Gallon	s 550	275	275			Highly refined mineral oils ar	ıd	
	CAS No	State	Storage Container	•••	Pressue			additives		
ombustible Liquid, (Class III B	Liquid	Tote Bin		Ambient	Waste Code				
.ombustible Liquiu, (Map: Figure 2 Grid: B8	Type	Davis as Citas 205		Temperature					
		Mixture	Days on Site: 365		Ambient					1
	Shell Turbo Oil DR46	Gallon	s 275	55	110			Highly Refined Petroleum Oil		
Combustible Liquid, (Class III. P. CAS No	State	Storage Container		Pressue	Waste Code		Proprietary Additives	1%	
ombustible Liquiu,		Liquid	Steel Drum		Ambient					
	Map: Figure 2 Grid: B8	Type Mixture	Days on Site: 365		Temperature Ambient					
	RCRA Waste Paint, Liquids	Pound		500	500	750		Waste Paint, Liquids		1
	CAS No	State	Storage Container		Pressue	Waste Code				
	CASTIO	Liquid	Steel Drum		Ambient	352				
	Map: Figure 2 Grid: B8, C3	Type			Temperature					
		Waste	Days on Site: 90	F00	Ambient	1070				
	Universal Waste - eWaste	Pound State	S 500 Storage Container	500	330 Pressue	Waste Code				
	CAS No	Solid	Steel Drum		Ambient	181				
	Map: Figure 2 Grid: B8, C3	Туре			Temperature					
	,	Waste	Days on Site: 90		Ambient					
	NON-RCRA Hazardous Waste	Gallon	s 96	55	63	113		Oil, Water	100%	
	Liquid (Oil, Water)	State	Storage Container	•••	Pressue	Waste Code				
	CAS No	Liquid	Steel Drum		Ambient	223				
	Crid, DO, C2	Type Waste	Days on Site: 365		Temperature Ambient					
	Grid: B8, C3 NON-RCRA Hazardous Solids	Pound		500	10	165		Empty Drums	100%	
	(Empty Drums)	State	Storage Container	300	Pressue	Waste Code		zpcy z.as	20075	
		Solid	Steel Drum			512				
	CAS No	Type			Temperature					
	Grid: B8, C3	Waste	Days on Site: 365							
	NON-RCRA Hazardous Waste	Gallon	s 6500	3000	6500	6500		Oil, Water, Sludge	100%	
	Liquid (Oil, Water, Sludge)	State	Storage Container	•••	Pressue	Waste Code				
	CAS No	Liquid –	Tank Wagon		Ambient	222				
		Type Waste	Days on Site: 365		Temperature Ambient	•••				
OT: 8 - Corrosives (Grid: B8, C3		•	2500		3500		LIQUIDS SOLUTION (SODIUM	5%	
solids)	. HON KONATIALANDOUS WAST	•	s 3500 Storage Container	3500	3500 Brossue	3300		HYDROXIDE)	J /0	
,	LIQUIDS SOLUTION (SODIUM	State Liquid	Tank Wagon		Pressue Ambient	Waste Code	•••	•		
	HYDROXIDE)	Туре	- 0 -		Temperature	135				
	CAS No	Waste	Days on Site: 90		Ambient					
	Map: Figure 2 Grid: B8, C3									

Printed on 2/27/2025 3:26 PM Page 43 of 51

		Hazardo	ous Materials /	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E			Chemical Loca	tion			CERS ID	10018894	
Facility Name	PG&E GATEWAY GENERATING STATION			Warehous	se - Hazardo	ous Mat/	Waste Storage	Facility I	D 07-000-773723	}
	3225 Wilbur Ave, Antioch 94509							Status	Submitted on 2/27	7/2025 11:34 AM
				Quantities		Annual Waste	Federal Hazard		Hazardous Components (For mixture only)	5
OOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	NON-RCRA Hazardous Solids	Pounds	400	100	400	400		Empty Drums	100%	
	(Empty Drums)	State	Storage Container		Pressue	Waste Cod	le			
		Solid	Other			512				
	CAS No	Type			Temperature					
	Grid: B8, C3	Waste	Days on Site: 365							

Printed on 2/27/2025 3:26 PM Page 44 of 51

		Hazardo	us Materials A	And Waste	s Inventory	/ Matrix	Report			
,	LE LE GATEWAY GENERATING STATION Wilbur Ave, Antioch 94509				se, Behind (-	lant Service B et, Hazardous	CERS ID uilding and Facility ID Mat/Waste Status	10018894 07-000-77372 Submitted on 2/2	3 27/2025 11:34 AM
				Quantities		Annual Waste	Federal Hazard	Н	lazardous Componen (For mixture only)	ts
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid, Class	Shell Morlina III-B CAS No		150 Storage Container Plastic Bottle or Jug	5	67 Pressue Ambient	Waste Code	2	HIGHLY REFINED BASE	OILS 99%	64742-54-7
	Map: Figure 2 Grid: C4, B8-9	Type Mixture	Days on Site: 365		Temperature Ambient					
	Shell Turbo	Gallons	150	5	67			HIGHLY REFINED BASE	OILS 99%	64742-54-7
Combustible Liquid, Class	III-B CAS No		Storage Container Plastic Bottle or Jug	3	Pressue Ambient	Waste Code	2			
	Map: Figure 2 Grid: C4, B8-9	Type Mixture	Days on Site: 365		Temperature Ambient					1

Printed on 2/27/2025 3:26 PM Page 45 of 51

		Hazardo	ous Materials	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E			Chemical Loca	ation			CERS ID 1001	L8894	
Facility Name	PG&E GATEWAY GENERATING STATION			Warehou	se, Behind F	Plant Ser	vices Building	Facility ID 07-0	00-77372	3
	3225 Wilbur Ave, Antioch 94509							Status Subm	itted on 2/2	.7/2025 11:34 AM
				Quantities		Annual Waste	Federal Hazard		us Component nixture only)	ts
DOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	Gear Lubricant (Shell Omala S4 GX 320) CAS No	Liquid Type	Storage Container Plastic/Non-meta	5 lic Drum	170 Pressue Ambient Temperature	Waste Coo	<u>le</u>	Highly Refined Petroleum Oil Proprietary Additives	99% 1%	
	Map: Figure 2 Grid: B8-9, C4	Mixture	Days on Site: 365		Ambient					

Printed on 2/27/2025 3:26 PM Page 46 of 51

		Hazardo	us Materials <i>F</i>	And Waste	s Inventory	y Matrix I	Report			
Facility Name	PG&E PG&E GATEWAY GENERATING STATIO 3225 Wilbur Ave, Antioch 94509	ON		Chemical Loca Warehous		ater Treat	ment System	Facility ID	10018894 07-000-773723 Submitted on 2/27	
OOT Codo/Eiro Hoy Cla	lass Common Name	Unit	Max. Daily	Quantities	Aug Daily	Annual Waste	Federal Hazard		zardous Components (For mixture only) % Wt	EHS CAS No.
DOT Code/Fire Haz. Cla	Sodium Hydroxide (10-509) CAS No Map: Figure 2 Grid: C9, B8-9	Gallons State Liquid Type	30 Storage Container Plastic Bottle or Jug Days on Site: 365	30	Avg. Daily 15 Pressue Ambient Temperature Ambient	Waste Code	- Physical - Physical - Corrosive To - Metal - Health Skin - Corrosion - Irritation - Health Serious - Eye Damage Eye - Irritation	SODIUM HYDROXIDE	50%	1310-73-2

Printed on 2/27/2025 3:26 PM Page 47 of 51

		Hazardo	ous Materials A	nd Waste	s Inventory	y Matrix I	Report				
	E GATEWAY GENERATING STATION Wilbur Ave, Antioch 94509			Chemical Local Water Tre		ilding / Fir	e Water Pump	House	CERS ID Facility I	10018894 D 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class Combustible Liquid, Class	Common Name Diesel Fuel CAS No 68476-34-6 Map: Figure 2 Grid: C1	Туре	•	Quantities Largest Cont. 500	Avg. Daily 500 Pressue Ambient Temperature Ambient	Annual Waste Amount Waste Code	Federal Hazard Categories - Physical Flammable - Health Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Specific Target Organ Toxicity - Health Aspiration Hazard	Component P Diesel Fuel	Name	Hazardous Component (For mixture only) % Wt 100%	EHS CAS No.
DOT: 8 - Corrosives (Liquid Solids) Corrosive, Water Reactive 2	Battery	Gallons State Liquid Type Mixture	S 9 Storage Container Other Days on Site: 365	4.5	9 Pressue Ambient Temperature Ambient	Waste Code	- Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Reproductive Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Sulfuric Aci	d	35%	√ 7439-92-1

Printed on 2/27/2025 3:26 PM Page 48 of 51

			Hazardo	us Materials	And Waste	s Inventory	/ Matrix I	Report			
CERS Business/Org.	PG&E PG&E GA	ATEWAY GENERATING STATION			Chemical Loca Water Tre	tion eatment Che	emical Sto	rage	CERS ID Facility	10018894 D 07-000-773723	I
	3225 Wilbu	ır Ave, Antioch 94509			Quantities		Annual Waste	Federal Hazard	Status	Submitted on 2/2 Hazardous Component (For mixture only)	•
DOT Code/Fire Haz.	Class	Common Name NALCO 7408	Unit Gallons	Max. Daily	Largest Cont.	Avg. Daily 65	Amount	- Health Skin	Component Name Sodium Bisulfite	% Wt 60%	FHS CAS No. 7631-90-5
		CAS No Map: Figure 2 Grid: C2	Liquid Type	Storage Container Plastic/Non-metal Days on Site: 365		Pressue Ambient Temperature Ambient	Waste Code	Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	Proprietary	70%	, ,
Corrosive		NALCO Stabrex ST20 CAS No Map: Figure 2 Grid: C2	Liquid Type	65 Storage Container Plastic/Non-metal Days on Site: 365	65 ic Drum	65 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	Sodium Hydroxide Proprietary	5% 99%	1310-73-2

Printed on 2/27/2025 3:26 PM Page 49 of 51

			Hazardo	ous Materials	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name PG&E GATEWAY GENERATING STATION			WSAC Chem Feed Skid				Facility ID 07-000-773723				
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2025 11:34 AM
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	s
DOT Code/Fire Haz.	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 8 - Corrosive Solids)	s (Liquids and	NALCO 3D TRASAR 3DT447 CAS No	Gallons State	s 110 Storage Container	110	110 Pressue		- Health Skin Corrosion	Phosphoric Acid	5%	7664-38-2
Corrosive		Map: Figure 2 Grid: C3	Liquid <u>Type</u> Mixture	Plastic/Non-meta Days on Site: 365		Ambient Temperature Ambient		leIrritation	Sulfuric Acid Tolyltriazole	5% 5%	✓ 7664-93-9 29385-43-1

Printed on 2/27/2025 3:26 PM Page 50 of 51

	PG&E			Chemical Loca				CERS ID		_
*	PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			WSAC Che	emical Feed	Skia		Facility I Status	D 07-000-773723 Submitted on 2/2	
				Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	
OT Code/Fire Haz. Cl	NALCO Stabrex ST70 CAS No Map: Figure 2 Grid: C3	Liquid Type	Max. Daily 110 Storage Container Plastic/Non-metal Days on Site: 365	110 ic Drum	Avg. Daily 110 Pressue Ambient Temperature Ambient	Waste Code	- Physical - Physical - Corrosive To - Metal - Health Acute - Toxicity - Health Skin - Corrosion - Health - Respiratory Skin - Sensitization - Health Serious	Component Name Sodium Hydroxide Proprietary	% Wt 5% 99%	EHS CAS No. 1310-73-2

Printed on 2/27/2025 3:26 PM Page 51 of 51

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 16

Exhibit 6 Copy of Notice of Intent (NOI) and Revised SWPPP (October 2018) to comply with the requirements of Industrial General Permit (SOIL & WATER-3)

State Water Resources Control Board

NOTICE OF INTENT

GENERAL PERMIT TO DISCHARGE STORM WATER ASSOCIATED WITH INDUSTRIAL ACTIVITY (WQ ORDER No. 2014-0057-DWQ)

(Excluding Construction Activities)

WDID: 5S07	1021950	Sta	Status: Active			
Operator Info	ormation	Т	ype: Private Business			
Name: Pacific Gas Electric Company		Contact Name:	Tim Wisdom			
Address:	PO Box 770000		Plant Manager			
·			925-522-7812			
	San Francisco CA 94177		T1WY@pge.com			
Federal Tax ID:						
Facility Infor	mation	Le	evel:			
Contact Name:	Diana Furman	Title: _	Environmental Compliance Manager			
Site Name:	Gateway Generating Station					
Address:	3225 Wilbur Ave					
City/State/Zip:	Antioch CA 94509	Site Phone #: _	925-522-7838			
County:	Contra Costa	Email Address: _	dmwr@PGE.com			
Latitude:	38.01228 Longitude: -121.75	Site Size: _	32.5 Acres			
	Industrial Area	Exposed to Storm Water: _	22 Acres			
	Percent of Site Impervi	ious (Including Rooftops): _	28 %			
SIC Code In	formation					
1. 4911		Electric Services				
2						
Additional In	formation					
Receiving	Water: San	Joaquin River	Flow: Indirectly			
	ystem:					
Compliance	•					
RWQCB Juriso	diction: Region 5S - Sacramento					
	916-464-3291	Email:	r5s_stormwater@waterboards.ca.gov			
Certification						
Name:	Alvin Thoma	Date: 0	October 12, 2016			
- Title:	Senior Plant Manager					

Stormwater Pollution Prevention Plan

Gateway Generating Station

WDID#: 5S07I021950

Facility Address: 3225 Wilbur Avenue, Antioch, CA 94509

Facility Contact:
Angel B. Espiritu, Environmental Compliance Manager
Pacific Gas & Electric Company
(925) 522-7838

Prepared for

Storm Water Quality Group 3401 Crow Canyon Road, San Ramon, CA Jeremy Laurin, Storm Water Work Supervisor (925) 719-4466

Initial Preparation Date: December 2014

Revision Date: October 2018

EXECUTIVE SUMMARY

This storm water pollution prevention plan (SWPPP) was prepared in accordance with the requirements of the California State Water Resources Control Board (SWRCB) Industrial Storm Water Permit for Discharges Associated with Industrial Activity (Order No. 2014-0057-DWQ) which was adopted on April 1, 2014. This permit replaces Order No. 97-03-DWQ which had been in effect from August 1, 1997 through June 30, 2015.

This SWPPP identifies and evaluates all sources of pollutants that may affect the quality of industrial storm water discharges and authorized non-storm water discharges, identifies and describes the minimum best management practices (BMPs) and any advanced BMPs implemented to reduce or prevent pollutants in industrial storm water discharges and authorized non-storm water discharges.

Pacific Gas and Electric Company shall fully implement this SWPPP by July 1, 2015. The SWPPP will be revised whenever necessary and will be certified and submitted electronically to the SWRCB via the Storm Water Multi-Application and Report Tracking System (SMARTS).

TABLE OF CONTENTS

			Page					
LIST	CUTIV FOF TA		i iv iv					
1.	INTRODUCTION							
	1.1	Background and Requirements	1					
	1.2	SWPPP Performance Standards	2					
	1.3	SWPPP Implementation and Revisions	2					
	1.4 1.5	General Facility Information Pollution Prevention Team	2 2 2 3					
2.		LAYOUT AND EXISTING FACILITY PLANS (PERMIT SECTION X.E)	5					
3.	LIST	OF INDUSTRIAL MATERIALS (PERMIT SECTION X.F)	7					
	3.1	List of Industrial Materials Handled at the Facility	7					
4.	DESCRIPTION OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.F							
	AND	G)	12					
	4.1	Industrial Processes	12					
	4.2	Material Receiving, Shipping, and Handling	13					
	4.3	Dust and Particle Generating Activities	14					
	4.4	Significant Spills and Leaks	14					
	4.5 4.6	Non-Storm Water Discharges Erodible Surfaces	14 15					
	4.0	Erodible Surfaces	13					
5.	ASSI	ESSMENT OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.	G.2)16					
	5.1	Narrative Assessment of Likely Pollutants Present in Storm Water Discharges	16					
	5.2	Identification of Additional BMPs	16					
	5.3 5.4	Identification of Drainage Areas with No Exposure Identification of Additional Parameters	16 16					
6.	STO	RM WATER BEST MANAGEMENT PRACTICES (PERMIT SECTION X.H)	17					
	6.1	Minimum BMPs (PERMIT SECTION X.H.1)	17					
		6.1.1 Good Housekeeping	17					
		6.1.2 Spill and Leak Spill and Leak Prevention	18					
		6.1.3 Spill and Leak Response	18					
		6.1.4 Material Handling and Waste Management	19					
		6.1.5 Erosion and Sediment Controls	19					
		6.1.6 Employee Training Program	19					
	6.3	6.1.7 Quality Assurance and Record-Keeping	20					
	6.2	Advanced BMPs (Permit Section X.H.2)	20					
		6.2.1 Exposure Minimization BMPs6.2.2 Storm Water Containment and Discharge Reduction BMPs	20 20					
		6.2.2 Storm Water Containment and Discharge Reduction BMPs6.2.3 Treatment Control BMPs	20					
			۷ ک					

TABLE OF CONTENTS

		Page
	6.2.4 Other Advanced BMPs	21
7.	TEMPORARY SUSPENSION OF ACTIVITIES (PERMIT SECTION X.H.3)	22
8.	BMP SUMMARY (PERMIT SECTIONS X.H.4 AND 5)	23
9.	MONITORING IMPLEMENTATION PLAN (PERMIT SECTION X.I)	25
10.	ANNUAL REPORTING (PERMIT SECTIONS XV AND XVI)	29
REF	ERENCES	30
TAB: FIGU	LES URES	
APP	ENDIX A - General Permit for Storm Water Discharges Associated with Industrial Ac (Order No. 2014-0057-DWQ)	tivities
APP	ENDIX B – Permit Registration Documents	
APP	ENDIX C – SWPPP Amendment Form	
	ENDIX D – Training Log	
APP	ENDIX E – Industrial Storm Water Facility Inspection and Visual Observation Form	
	- Annual Evaluation Form	
	- Sampling Log	
APPl	ENDIX F – General Permit Attachment H "Sample Collection and Handling Instruction	ons" and

APPENDIX H – ERA Evaluation(s) and Report(s)

Example Chain of Custody Form

APPENDIX I – Advanced Treatment System (Chemical & Filtration) Operating Manual, including the Gateway Generation Station Quick Operations Guide and Operating Log

LIST OF TABLES

Table No.	Title
I	Pollution Prevention Team
II	Industrial Materials Handled at the Facility
III	BMP Summary
IV	NAL Values

LIST OF FIGURES

Figure No.	Title
1	Site Location Map
2	Facility Details
3	Storm Water Flow and BMP Map

ACRONYMS AND ABBREVIATIONS

AST Aboveground Storage Tank
BMP Best Management Practice
CFR Code of Federal Regulations

COC Chain of Custody
CWA Clean Water Act

DDT Dichlorodiphenyltrichloroethane

ECM Environmental Compliance Manager

ELAP Environmental Laboratory Accreditation Program

ELG Effluent Limitation Guideline ERA Exceedance Response Action

General Permit Industrial Storm Water Permit for Discharges Associated with Industrial Activity

HMBP Hazardous Materials Business Plan

LRP Legally Responsible Person

mg/L Milligrams per liter
NAL Numeric Action Level

NEC No Exposure Certification

NOI Notice of Intent

NOT Notice of Termination

NPDES National Pollutant Discharge Elimination System

NSWD Non-Storm Water Discharge

OSHA Occupational Health and Safety Administration

PG&E Pacific Gas and Electric Company

PPT Pollution Prevention Team

PRDs Permit Registration Documents

QISP Qualified Industrial Storm Water Practitioner

QSE Qualifying Storm Event

RWQCB Regional Water Quality Control Board

SIC Standard Industrial Classification

SMARTS Storm Water Multi-Application and Report Tracking System

SPCC Spill Prevention Control and Countermeasure

SWPPP Storm Water Pollution Prevention Plan SWRCB State Water Resources Control Board

WDID Waste Discharge Identification

STORM WATER POLLUTION PREVENTION PLAN SIGNATURE AND CERTIFICATION

I am duly authorized to sign reports required by the California State Water Resources Control Board Industrial Storm Water Permit for Discharges Associated with Industrial Activity. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tim Wisdom, Sr. Plant Manager

Feb. 10, 2017

1. INTRODUCTION

This industrial storm water pollution prevention plan (SWPPP) for Pacific Gas and Electric Company's (PG&E) Gateway Generating Station (facility) was prepared in accordance with the requirements of the California State Water Resources Control Board Industrial Storm Water Permit for Discharges Associated with Industrial Activity ("General Permit," Order NPDES No. CAS000001). A copy of the General Permit (Order No. 2014-0057-DWQ) dated April 1, 2014, is attached as Appendix A.

This SWPPP will be modified whenever there is a change in operation, maintenance or construction which may affect the discharge of pollutants to surface water. It will also be amended if it is found ineffective in achieving the stated objectives listed in the General Permit.

1.1 Background and Requirements

The Federal Clean Water Act (CWA) prohibits discharges from point sources to waters of the United States, unless the discharges are in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. In 1987, the CWA was amended to establish a framework for regulating municipal storm water discharges and discharges associated with industrial activity under the NDPES program. Industrial storm water discharges are regulated pursuant to CWA section 402(p)(3)(A). This provision requires NPDES permits for industrial storm water discharges to comply with technology-based effluent limitations and water quality-based limitations, as well as implement best management practices (BMPs).

On April 17, 1997, the California State Water Resources Control Board (SWRCB) issued NPDES General Permit for Industrial Storm Water Discharges, Excluding Construction Activities, Water Quality Order 97-03-DWQ (previous permit). The current General Permit, Order 2014-0057-DWQ, rescinds the previous permit and serves as the statewide general permit for industrial storm water discharges. The General Permit requires dischargers to:

- Eliminate unauthorized non-storm water discharges (NSWDs);
- Develop and implement SWPPPs that include BMPs;
- Implement minimum BMPs, and advanced BMPs as necessary, to achieve compliance with the effluent and receiving water limitations of this General Permit;
- Conduct monitoring, including visual observations and analytical storm water monitoring for indicator parameters;
- Compare monitoring results for monitored parameters to applicable numeric action levels (NALs) derived from the U.S. EPA 2008 Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (2008 MSGP) and other industrial storm water discharge monitoring data collected in California;
- Perform the appropriate Exceedance Response Actions (ERAs) when there are exceedances of the NALs; and
- Certify and submit all permit-related compliance documents via the Storm Water Multiple Application and Report Tracking System (SMARTS). Dischargers shall certify and submit these documents which include, but are not limited to, Permit Registration Documents (PRDs) including Notices of Intent (NOIs), No Exposure Certifications (NECs), and SWPPPs, as well as Annual Reports, Notices of Termination (NOTs), Level 1 ERA Reports, and Level 2 ERA Technical Reports.

Copies of all PRDs are included in Appendix B.

1.2 SWPPP Performance Standards

This SWPPP identifies and evaluates all sources of pollutants from the facility that may affect the quality of industrial storm water discharges and authorized NSWDs. Additionally, this SWPPP identifies and describes the minimum BMPs and any advanced BMPs implemented to reduce or prevent pollutants in industrial storm water discharges and authorized NSWDs. BMPs will be selected to achieve compliance with this General Permit and will identify and describe conditions or circumstances which may require future revisions to be made to the SWPPP. A copy of the SWPPP shall be maintained at the facility.

1.3 SWPPP Implementation and Revisions

PG&E shall fully implement this SWPPP by July 1, 2015. The SWPPP shall be revised whenever necessary and will be certified and submitted electronically to the SWRCB via SMARTS within 30 days whenever the SWPPP contains significant revisions. Minor revisions are not required to be entered into SMARTS more than once every three months within a given reporting year. A log of all SWPPP revisions is included in Appendix C.

1.4 General Facility Information

Facility Name: Gateway Generating Station

Facility Address: 3225 Wilbur Avenue, Antioch CA 94509

Telephone Number: (925) 522-7838

Standard Industrial Classification (SIC) Code: 4911 (Electric Power Generating Facility)

Waste Discharge Identification (WDID) Number: <u>5S07I021950</u>

Scheduled Facility Operating Hours: 24 hours/7 days (2 shifts)

Size of Facility: Approximately 32.5 acres

The facility is located in unincorporated Contra Costa County (within the City of Antioch's Sphere of Influence), on Wilbur Avenue, 1 mile northeast of Antioch, on the southern shore of the San Joaquin River (Figure 1). The operating portion of the site area is approximately 22 acres. The facility is a natural gas-fired, combined cycle, combustion turbine power plant with a nominal generation capacity of 530 megawatts. The facility includes the following building structures and areas:

- Two Combustion Turbine Electrical Generators;
- Steam Powered Electrical Generator:
- Wet Surface Air Cooler (Wet SAC);
- Fin Fan (Close-loop Cooling System);
- Air Cooled Condenser;
- Plant Services Building;
- Laydown Area for Equipment/Parts Staging;
- Warehouse;

- Hazardous Materials Storage Shed;
- Hazardous Waste Accumulation Storage Shed; AND
- Water Treatment Building.

Percent Impervious: ~28%

Facility Contact: Name: Angel Espiritu

Title: Environmental Compliance Manager Company: Pacific Gas and Electric Company

Phone: (925)522-7838 Email: ABE4@pge.com

Street Address: 3225 Wilbur Ave

City: Antioch State: California Zip Code: 94509

1.5 Pollution Prevention Team

PG&E has identified a Pollution Prevention Team responsible for assisting with the implementation of this SWPPP and for conducting all monitoring required under the General Permit. The specific individuals (and job title) that are responsible for developing, implementing, and revising this SWPPP and conducting monitoring are identified in the Table 1.

Table I Pollution Prevention Team

Name of Person	Title/Position	Responsibilities, Duties, and Activities		
Jeremy Laurin	Water Quality Subject Matter Expert	Supervise SWPPP development and implementation; provide support and training to the ECM and Plant Manager; review of any documents uploaded to SMARTS; interface with the Regional and/or State Water Quality Control Boards when necessary.		
Angel Espiritu	Environmental Compliance Manager (ECM)	Facility lead for storm water permit compliance, monitoring, and reporting; conduct employee training; supervise and/or conduct inspections and sampling, record and report maintenance; record and report spills and leaks; file documents in SMARTS; BMP Implementation, emergency response coordinator, spill cleanup coordination.		
Name of Person	Title/Position	Responsibilities, Duties, and Activities		
Steve Royall	Director, Fossil Generation	Legally Responsible Party (LRP); responsible for certification of Notice of Intent (NOI) within SMARTS.		
Tim Wisdom	Sr. Plant Manager	Duly Authorized Representative (DAR); responsible for certification of documents within SMARTS.		
Aman Singh	Maintenance Supervisor	BMP Implementation and maintenance.		
David J. Hammond	Operations Supervisor	BMP Implementation and maintenance.		

David Thurston	Plant Engineer	Engineering guidance, supervision and review of BMPs.
Doug Welch or available on-shift Power Plant Technician	Plant Chemist or available on shift power plant technician	Storm water inspections and sampling.

In the event that the Environmental Compliance Manager or other positions responsible for SWPPP implementation are temporarily unavailable to conduct storm water activities due to vacation, illness, out of town business or other absences, backup personnel will implement the SWPPP and conduct required monitoring. PG&E will train all backup personnel so they are familiar with storm water requirements.

The Environmental Compliance Manager, through the Operations or Maintenance Supervisor, will notify the backup PPT member of any expected absences. If the backup PPT member is unavailable, a tertiary individual will be selected and trained to perform the tasks necessary during the primary and secondary PPT member's absence. The backup PPT member has been trained to complete Environment Compliance Manager's tasks when the ECM is unexpectedly absent.

PG&E will ensure that this SWPPP is implemented and revised as necessary to be consistent with applicable municipal, state, and federal requirements that pertain to the requirements in the General Permit.

2. SITE LAYOUT AND EXISTING FACILITY PLANS (PERMIT SECTION X.E)

PG&E has prepared three figures illustrating the information required by the General Permit. These include Figure 1 Site Location Map, Figure 2 Facility Details Map, and the Figure 3 Storm Water Flow and BMP Map. The maps present the following information where applicable:

- Site location;
- North arrow;
- Facility boundary;
- Drainage areas;
- Portions of any drainage area impacted by discharges from surrounding areas;
- Direction of flow within each drainage area;
- On-facility surface water bodies;
- Areas of soil erosion;
- Nearby water bodies (e.g., rivers, lakes, wetlands);
- Municipal storm drain inlets;
- Location of storm water collection and conveyance systems;
- Points of discharge;
- Sampling locations;
- Structural control measures;
- Impervious areas;
- Locations of directly exposed materials;
- Locations of significant spills and leaks;
- Areas of industrial activity;
- Industrial storage areas/storage tanks;
- Shipping and receiving areas;
- Fueling areas;
- Vehicle and equipment storage/maintenance areas;
- Material handling/processing areas;
- Waste treatment and disposal areas;
- Dust or particulate generating areas;
- Cleaning and material reuse areas; and
- Other areas of industrial activity.

Storm water in Drainage Area A is generally conveyed from the south to the north. Surface run-off travels to drain inlets and/or rock-lined ditches which connect to a covered drainage conveyance into a concrete structure with flow valves. The valves on the outlet structure are typically left open to allow the discharge of stormwater in the wet season. The valves are typically left closed in the dry season to

provide an additional measure to capture potential pollutants if a spill occurred. Stormwater in Drainage Area B is contained in a depression centrally located in the drainage area and does not discharge. Additionally, there is no industrial activity in Drainage Area B. The facility details are shown on Figure 2.

3. LIST OF INDUSTRIAL MATERIALS (PERMIT SECTION X.F)

3.1 List of Industrial Materials Handled at the Facility

The following table lists the industrial materials stored or handled at the facility (as detailed in the Hazardous Materials Business Plan):

Table II Industrial Materials Handled at the Facility

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Aqueous Ammonia (29%)	Aboveground Storage Tank (AST)	Weekly	Aqueous Ammonia Storage Area	18,000 gallons
Pre-blended Phosphate/Caustic (Soap)	Tote	Daily	Plant Services Building	460 gallons
Sodium Bisulfite Tote		Monthly	Water Treatment Building	50 gallons
Stabilized Bromine/Sodium Hydroxide Tote		Monthly	Water Treatment Building and Wet SAC	110 gallons
Sulfuric Acid	furic Acid Tote		Wet SAC	35 gallons
Corrosion/Scale Inhibitor/Sodium Hydroxide Tote		Semi-annual	Wet SAC	110 gallons
Chlorine Scavenger Tote		Monthly	Water Treatment Building	65 gallons
Mineral Oil	Transformers	As needed	Transformers (throughout the site) and the inlet chiller	58,000 gallons
Diesel Fuel No. 2 AST		Weekly	Water Treatment Building	500 gallons
Turbine Oil	Within Turbines / Drums	As needed	Combustion Turbines, Steam Turbine, Hazardous Materials / Waste Storage Shed	17,000 gallon

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Mixed Oil	Drum	As needed	Hazardous Materials / Waste Storage Shed	55 gallon
Hydraulic Oil	Hydraulic Oil Steam Turbine As needed		Steam Turbine	130 gallons
Liquid Carbon Dioxide	Cylinder	As needed	Combustion Generators and CO2 Bulk Storage	36,000 gallons
Argon	Argon Cylinder As nee		Combustion Turbines	1,344 cubic feet
EPA Protocol Gases (Carbon Monoxide / Nitrogen / Oxygen / Nitric Oxide)	Cylinder	As needed	Combustion Turbines	4,896 cubic feet
Helium	Cylinder	As needed	Combustion Turbines and Gas Conditioning Station	2,200 cubic feet
Oxygen	Cylinder	As needed	Combustion Turbines	1,124 cubic feet
Hydrogen	Cylinder	As needed	Tube Trailer and Gas Conditioning Station	134,200 cubic feet
Nitrogen	Cylinder	As needed	Combustion Turbines, Steam Turbine, Inlet Chiller	8,735 cubic feet
Propane Cylinder		As needed	Combustion Turbines and Plant Services Building	60 pounds
Acetylene	Cylinder	As needed	Plant Services Building	1,700 cubic feet
Petroleum Distillates	Within Transformer	As needed	Spare GSU Transformer	14,000 gallon
Refined Petroleum Oil	Drum	As needed	Spare GSU Transformer	55 gallons

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Dielectric Fluid	Transformer housing	As needed	Plant Services Building Transformers, Water Treatment Building, Combustion Turbines, Main Electrical Control Enclosure and Inlet Chiller	4,800 gallons
Gear Lubricant	ricant Gear Boxes (36) and Drums		Air Cooled Condenser Gear Boxes (36), Warehouse and Hazardous Materials / Waste Storage Shed	540 gallons
Lead Acid Batteries Within Electrical Equipment		As needed	Combustion Turbines	48,000 pounds
Lead Calcium Batteries	Within Electrical Equipment	As needed	Switchyard	90 gallons
Sulfur Hexafluoride	Internally within breakers	As needed	Sulfur Hexafluoride Breakers	774 pounds
Carbon Dioxide, Gas Cylinders		As needed	Stormwater Treatment System	6,620 cubic feet
HaloKlear BHR-50	Plastic Tote	As needed	Stormwater Treatment System	275 gallons
Yardney 3660 Media Filter (glass media beads)	Filter (glass media Within Equipment		Stormwater Treatment System	6,300 pounds
Sodium Hydroxide	Plastic Container	As needed	Stormwater Treatment System	30 gallons
Non-hazardous trash	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Metal scraps for recycling	Roll-off bin with tarp cover	Weekly	Laydown area	20 yards

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Wood Pallets	Outside	Daily	Laydown	50 to 100 total
Plastics	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Recyclables	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Cardboard	In enclosed cardboard compactor	Daily	Laydown in roofed area	3 yards
RCRA Waste (i.e., waste absorbent)	In secondary- contained drums within covered waste storage area	As needed	Hazardous Materials / Waste Storage Sheds	55 gallons
Non-RCRA Waste (i.e. oily debris)	In secondary- contained drums within covered waste storage area	As needed	Hazardous Materials / Waste Storage Sheds	55 gallons
Universal Waste (i.e., batteries and fluorescent light bulbs)	Bins	As needed	Hazardous Materials / Waste Storage Sheds	5 pounds
Monoethanolamine (30%-60%)	Tote	As needed	Northeast corner of Air Cooled Condenser (ACC)	400 gallons
Cooling Water Inhibitor (3DTRASAR)	Tote	As needed	Water Treatment Building	110 gallons
Antiscalant (Avista Vitec)	Drum	As needed	Water Treatment Building	60 gallons
Antifungal/bacteria/slime (Stabrex)	Tote	As needed	Water Treatment Building	110 gallons
Simple Green	2.5 gallon Containers	As needed	East of the Plant Services Building	10 gallons
Reclaimed water Tanks		Daily	East of the Water Treatment Building	140,000 gallons
Wastewater	Tank	Daily	East of the Water Treatment Building	40,000 gallons

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Turbine Cleaning Fluid	Tote	As needed	Parts and Miscellaneous Storage Building	250 gallons
Various solvents, degreasers, paints, adhesives, etc.	Fire Cabinet	As needed	East of the Plant Service Building	Typically less than 1 gallon each

4. DESCRIPTION OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.F AND G)

4.1 Industrial Processes

Gateway Generating Station facility manufactures electricity through the use of two natural gas fired combustion turbines and a steam powered generator. The industrial materials utilized throughout the facility are detailed in Table II. All industrial processes associated with manufacturing occur at locations denoted on Figure 2.

Industrial materials imported to the site are imported directly into the warehouse, directly to aqueous ammonia storage tank, the water treatment plant and the wet surface air cooler. Handling, shipping and receiving of hazardous materials including waste occurs at the frequencies denoted in Table II above. Storage areas identified in Table II are also denoted in Figure 2. These areas are further described as follows.

The aqueous ammonia is stored in an area that houses two 20,000 gallon capacity tanks. These tanks sit above grade within a secondary containment unit and a sump. This area has sufficient storage capacity to meet the facility's Risk Management Plan requirements. Storm water that collects in this sump is discharged to the sanitary sewer per a separate permit. This storage area has its own loading ramp that drains to the secondary containment sump below the tanks.

The hazardous materials storage shed, hazardous waste storage shed and hazardous materials accumulation shed are all covered sheds with secondary containment that meets the facilities hazardous materials business plan (HMBP) and SPCC plan requirements. The various oils the facility uses are stored within these sheds in 55 gallon drums. In addition to those drums universal waste and used absorbent is also stored within these sheds. Materials and wastes are moved using services vehicles.

All hazardous materials associated with the water treatment plant including the diesel fuel used for the emergency fire water system are housed in a roofed water treatment building. Secondary containment for these materials is provided. All of the ASTs within this area are filled by bulk delivery.

There are various transformers throughout the facility. These transformers are filled with dielectric oil and are housed in secondary containment that meets the facility's SPCC plan requirements.

Various hazardous materials are stored adjacent to the wet surface air cooler. These materials are all stored in sealed tanks within secondary containment. These tanks are filled by bulk delivery.

Trash, recyclable materials, and cardboard are accumulated in three separate dumpsters. The dumpsters have lids which are closed when the dumpsters are not actively used. To further isolate the dumpsters from exposure to storm water, they are housed under a roof.

Metals for recycling are accumulated in a roll off bin or bins and are covered when not actively in-use.

Various pressurized gases are stored throughout the facility for various uses. These pressurized gases are stored according to all applicable HMBP requirements.

Various batteries are stored throughout the facility for various uses. These batteries are stored in roofed buildings and according to all applicable HMBP requirements.

4.2 Material Receiving, Shipping, and Handling

Receiving

The facility receives regular deliveries of the materials listed in Table II. The materials stored in larger tanks are delivered by service trucks and are directly loaded into the respective vessels. Receiving and loading of materials (e.g., fuels, fuel additives, oils, and ammonia) is performed at the respective material storage areas. Other sources include smaller quantities of oils used in transformers, sulfuric acid used in batteries, and oils used in miscellaneous equipment and machines which are delivered to their various storage locations throughout the facility, including but not limited to the warehouse, plant services building, parts and miscellaneous storage building, and the water treatment building.

Material Handling

The primary function of the power plant facility is to generate electricity through a combined-cycle process utilizing natural gas as fuel. The potential pollutants at the facility are used in ancillary functions such as lubricants, aqueous ammonia for emissions control, and other various maintenance fluids. Most materials and wastes are transported via on-site pipe networks. For example, potable water is piped to the facility from a municipal water purveyor to the water treatment area and then transferred from the treatment plant to the boilers and other heat exchange equipment. Used water is conveyed to the sanitary sewer. Small quantities of other materials and wastes, typically for maintenance activities, are moved using services vehicles. There is a seldom used parts cleaning machine that is located outdoors, immediately east of the plant services building.

Waste

General trash is accumulated in dumpsters located north of the inlet chiller. The waste dumpster area is equipped with a storm resistant shelter. Trash is transferred to a collection facility by a service vendor.

Metals for recycling are accumulated in two dumpsters that are equipped with lids. One metal disposal dumpster is located near the trash dumpsters and the other is located east of the parts and miscellaneous storage building. Occasionally, roll-off dumpsters are placed near the warehouse during maintenance and repair operations.

Hazardous waste is temporarily stored onsite in storage sheds located east of the plant service building and the south-east corner of the warehouse. The majority of hazardous waste produced at the facility is waste oil sludge and used lubricating oil. Hazardous waste is picked up by a waste disposal vendor as necessary, though typically picked up more frequently; the hazardous waste vendor is on 90-day maximum schedule. An industrial service vendor visits the site weekly to perform a required weekly inspection and schedule waste pick-up.

The water-side effluent from the oil/water separator is conveyed to the sanitary sewer along with other waste water generated from plant operation. The oily sludge effluent is transported offsite for proper disposal.

Portable toilets are commonly placed onsite in various locations for construction and maintenance projects and are serviced regularly by a service vendor.

Shipping

The industrial product produced at the facility is electricity and therefore shipping of industrial products does not occur at this facility. The electricity generated at the facility is transmitted through the substation located west of the facility.

4.3 Dust and Particle Generating Activities

PG&E does not conduct any activities that generate dust and/or particles. The vents located on the combustion turbines are designed only for heat dissipation. The active areas of the site are paved or covered in gravel to prevent dusting.

4.4 Significant Spills and Leaks

Significant spills and leaks include any toxic chemicals identified in 40 Code of Federal Regulations (CFR) Section 302 that are discharged into the facilities' storm water conveyance system as reported on U.S. EPA Form R, as well as spills or leaks of oil and hazardous substances in excess of reportable quantities (40 CFR §§ 110, 117, and 302). PG&E contracts with a service vendor to respond to any significant spills of fuels, oil or other materials. During the routine monthly inspections, PG&E will evaluate the facility in areas where spills and leaks could potentially occur during material delivery, unloading, loading, transport, storage/containment, or use. There have not been any significant spills or leaks of industrial materials at this facility in the last five years that had potential to be discharged from the facility.

In accordance with the facility SPCC Plan and the General Permit, in the event that significant spills or leaks occur in the future, for each potential discharge PG&E will record and document the following information: the location, characteristics, and approximate quantity of the materials spilled or leaked; approximate quantity of the materials discharged from the facility's storm water conveyance system; the cleanup or remedial actions that have occurred or are planned; the approximate remaining quantity of materials that have the potential to be discharged; and the preventive measures taken to ensure spills or leaks of the material do not reoccur.

4.5 Non-Storm Water Discharges

A NSWD is any water discharged at the Facility which is not the direct result of a rain event. Examples include process water, cooling water, wash water, and sanitary wastewater. Certain limited categories of NSWDs are considered to be authorized by the General Permit (as long as they are not in violation of any Basin Plan, municipal agency ordinance, or other statewide water quality control plans or policy requirements), including: fire hydrant flushing; potable water sources; drinking fountain water; refrigeration, air conditioning, and compressor condensate; irrigation drainage and landscape watering; uncontaminated natural springs, groundwater, and foundation/footing drainage; seawater infiltration; and incidental windblown mist from cooling towers.

Authorized NSWDs at the Gateway Generating Station facility are expected to be prevented or minimized and would occur at an unknown frequency if they arise with the exception of the fire system flushing. The fire system is flushed annually and the quantity of water would be equal to the amount in the system or necessary to flush the system. Expected authorized NSWDs include:

- Fire system flushing water;
- Irrigation water;
- Eve wash system flushing and testing water; and
- Air conditioning or compressor condensate.

The NSWDs listed above are authorized by the General Permit if all of the following conditions are met:

- The NSWDs are in compliance with Regional Water Quality Control Board (RWQCB) requirements;
- The NSWDs are in compliance with local agency ordinances and/or requirements;
- BMPs are specifically included in the SWPPP to (1) prevent or reduce the contact of NSWDs with significant materials or equipment and (2) minimize, to the extent practicable, the flow or volume of NSWDs;
- The NSWDs do not contain significant quantities of pollutants;
- The monitoring program includes quarterly visual observations of each NSWD and its sources to ensure that BMPs are being implemented and are effective; and
- The NSWDs are reported and described annually as part of the Annual Report.

As part of the routine monthly site inspections, PG&E will conduct an evaluation of the facility to identify any NSWDs, sources, and drainage areas. The inspection will include an evaluation of all storm drain inlets to identify connections to the storm water conveyance system; and a description of any NSWDs and how any which have occurred and have been eliminated. In the event that NSWDs are discovered, they will be described on the inspection form located in Appendix E of the SWPPP. This description will include the source, quantity, frequency, and characteristics of the NSWDs, associated drainage area, and whether it is an authorized or unauthorized NSWD.

Potential unauthorized NSWDs at the Gateway Generating Station Facility include:

- Secondary containment failure;
- Pipeline leak, rupture, or failure;
- Contaminated water in sumps;
- Leaks or spills from portable restrooms; and
- Leaks or spills from service vehicles or portable equipment.

Unauthorized NSWDs have been eliminated or prevented through the use of sumps, secondary containment structures, an oil/water separator, drains that convey waste to the oil/water separator, controlled site access, and the placement and maintenance of numerous spill clean-up kits throughout the facility.

4.6 Erodible Surfaces

There are three vegetated areas (Figure 3) that may be considered erodible surfaces at the facility. The only unpaved areas within the active facility exposed to storm water are flat gravel-capped surfaces between structures and adjacent to roadways, and three vegetated surfaces on the northeastern edge of the property.

The southern portion of the facility is inactive and self-contained, with a berm which surrounds the entire perimeter. This area has also been graded into a depression and decompacted to help increase infiltration of any storm water that lands within the area.

5. ASSESSMENT OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.G.2)

5.1 Narrative Assessment of Likely Pollutants Present in Storm Water Discharges

PG&E conducts frequent preventive maintenance to ensure that plant machinery, equipment and storage vessels are in good working order. The most likely potential pollutants in storm water discharges are the materials listed in Table II. Approximately 28 storm water catch basins drain the site and are located throughout the facility and in proximity to material storage areas. PG&E has implemented BMPs to control the offsite migration of potential pollutants by following good housekeeping, requiring immediate cleanup of spills, and by installing filter screens (Dandy Pops®) in storm water catch basins on the site, as appropriate. The filter screens are cleaned and/or replaced as needed.

5.2 Identification of Additional BMPs

In the event that conditions change or monitoring results indicate a need, PG&E will consider identifying additional BMPs to address the changed conditions or constituents of concern.

5.3 Identification of Drainage Areas with No Exposure

There is one drainage area at the facility with no exposure, as indicated on Figure 2. The southern area meets the requirements for no exposure, as there are no industrial activities occurring within it.

5.4 Identification of Additional Parameters

In addition to the standard parameters required for all industrial facilities (pH, oil & grease, and total suspended solids), PG&E will continue to analyze for total iron, as per the SIC code 4911 requirements of Table 1 and Attachment A of the General Permit.

The facility drains to the Delta Waterways (western portion) which is in the HUC 10 watershed of the site. The 303(d) listed impairments for the Delta include: Chlordane; Chlorpyrifos; Dichlorodiphenyltirchloroethane (DDT); Diazinon; Dieldrin; Dioxin; Dioxin compounds (including 2,3,7,8-TCDD); Disulfoton; Electrical Conductivity; Escherichia coli (E. coli); Furan Compounds; Group A Pesticides; Invasive Species; Mercury; Organic Enrichment/Low Dissolved Oxygen; Oxygen, Dissolved; Low Dissolved Oxygen; Pathogens; PCBs (Polychlorinated biphenyls) (dioxin-like); PCBs (Polychlorinated biphenyls); Selenium; and Unknown Toxicity. The sources of the impairments listed are primarily caused by agricultural sources or mineral resource extraction and the Gateway Generating Station does not have the potential to discharge most of the pollutants; however, electrical conductivity may be an exception.

Electrical Conductivity is a measure of the ability of water to pass an electrical current. Conductivity in water is affected by the presence of inorganic dissolved solids such as chloride, nitrate, sulfate, and phosphate anions (ions that carry a negative charge) or sodium, magnesium, calcium, iron, an aluminum cations (ions that that carry a positive charge). Though the General Permit does not have a Numeric Action Level for electrical conductivity, the facility has the potential to discharge inorganic dissolved solids and analytical results may be beneficial as an indicator of other pollutant concerns; therefore, the facility will also collect and analyze samples for electrical conductance.

6. STORM WATER BEST MANAGEMENT PRACTICES (PERMIT SECTION X.H)

This section describes the BMPs implemented and maintained as a result of the activities assessment in Section 4. The current BMPs, when properly maintained, are effective for the operations at the facility. BMPs are divided into minimum and advanced measures.

6.1 Minimum BMPs (PERMIT SECTION X.H.1)

6.1.1 Good Housekeeping

- Monthly Visual Inspections. Once per calendar month, PG&E inspects all outdoor areas associated with industrial activity, including storm water discharge locations, drainage areas, conveyance systems, waste handling/disposal areas, and perimeter areas impacted by off-facility materials or storm water run-on to determine housekeeping needs. Any identified debris, waste, spills, tracked materials, or leaked materials identified during the inspections are cleaned and disposed of properly.
- **Tracking Control.** Although there is low potential for tracking of sediment at the facility, paved surfaces are swept on a monthly basis. Additionally sweeping will occur as needed.
- **Dust Control.** PG&E's power generation process does not generate dust, and the surface of the site is either paved, has a gravel cap, or is vegetated. Therefore, there is no need to implement dust control at this facility.
- Cleaning Areas Impacted by Rinse/Wash Waters. No washing or rinsing of equipment is performed at the facility. Parts are washed within an enclosed parts washer, within the roofed Plant Services building.
- Industrial Materials Storage Control. The facility stores all materials and performs all activities that involve hazardous materials under roofed areas (buildings or storage containers), within secondary containment, or during dry weather, if possible.
- Control of Non-Solid Industrial Materials/Wastes. The facility contains all stored non-solid industrial materials or wastes (e.g., fuel, waste oil) that can be transported or dispersed by wind or contact with storm water. Spill kits are maintained appropriately and allow for immediate response to spills. In addition, all materials are stored within secondary containment to prevent any spilled or leaked material from being transported by storm water. Numerous secondary containment structures have been designed and constructed throughout the facility to contain spills, leaks, or ruptures from various tanks and oil filled equipment. The secondary containment structures have been designed per SPCC requirements to contain the capacity of either 100 percent of the largest tank or 10 percent of all tanks or containers stored within the containment. Additional material and waste control information is included in the facility's Spill Prevention Control and Countermeasure (SPCC) Plan.
- Control of Rinse/Wash Water Disposal. No washing or rinsing is performed at the facility. The facility prevents the disposal of any industrial materials into the storm water conveyance system by maintaining spill kits appropriately and immediately responding to spills.
- Minimize Storm Water Discharges from Non-Industrial Areas. A non-industrial area exists within the facility, as denoted on Figure 2. This area is self-contained, with a berm surrounding the entire perimeter of this portion. This area has also been graded into a

- depression and decompacted to help increase infiltration of any storm water that lands within the area, as described in Section 4.5.
- Minimize Authorized NSWDs from Non-Industrial Areas. A non-industrial area exists within the facility and no authorized NSWDs occur from it.

6.1.2 Spill and Leak Spill and Leak Prevention

The facility implements the following preventative maintenance measures:

- PG&E has identified the following outdoor equipment at the Facility which may spill or leak pollutants, as follows:
 - Containment areas, tanks and containers storing hazardous materials or wastes
 - Oil-filled electrical equipment and oil-filled operating equipment in the Radiator Area, and Transformer Yard
 - Service vehicles (when transporting materials such as drums of waste oil)
- Monthly observations of containment areas, tanks, equipment and systems are conducted to detect leaks, or identify conditions that may result in the development of leaks.
- The facility maintains a schedule for conducting routine maintenance of identified equipment and systems. There is a daily inspection of all equipment at the facility, monthly preventative maintenance and periodic servicing. Daily inspections are informal visual inspections by operators, and are not documented. Service vehicles are not washed on site.
- The facility has defined procedures for prompt maintenance and repair of equipment, and maintenance of systems when conditions exist that may result in the development of spills or leaks.
- The facility utilizes forklifts and golf carts that are loaned to the facility from PG&E Fleet. Fleet vehicles are repaired and maintained by the Fleet group.
- The manufacturer of the power generation equipment requires maintenance of equipment after a specified number of operating hours and therefore the facility conducts two shutdowns per year to maintain the facility's power generation equipment.

6.1.3 Spill and Leak Response

PG&E has established the following protocols to respond to spills and leaks:

- The facility has developed procedures to minimize spills and leaks. The facility has a SPCC Plan that addresses storage of materials and wastes.
- The facility has established spill and leak response procedures to prevent industrial materials from discharging through the storm water conveyance system. Spilled or leaked industrial materials are cleaned up promptly and disposed of properly.
- The facility has identified and described all necessary and appropriate spill and leak response equipment, locations of spill and leak response equipment, and spill/leak response equipment maintenance procedures, in the facility's HMBP and SPCC plans. Spill kits are maintained throughout the facility and denoted in maps located in the facility's HMBP.

- The facility has designated and trained appropriate spill and leak response personnel, identified as the PPT in Table 1 above. Spill and leak response personnel are trained annually, at a minimum. Plant operations personnel are responsible for spill cleanup; an outside vendor is used to respond to significant spills. Spill response personnel receive OSHA hazard communication training and spill training consistent with the hazardous materials business plan and SPCC plan.
- Powered industrial truck maintenance shall be performed on tarps or other impervious materials to capture spills.

6.1.4 Material Handling and Waste Management

PG&E has a robust program for addressing material handling and waste management, as follows:

- The facility minimizes the handling of industrial materials or wastes that can be readily mobilized by contact with storm water during storm events through the use of awnings at loading docks.
- The facility appropriately contains stored non-solid industrial materials or wastes (e.g., lubricant oil) that can be transported or dispersed by the wind or contact with storm water by storing these materials in secondary containment with water tight lids.
- Industrial waste disposal containers (dumpsters and metal waste recycling bins) and industrial material storage containers that contain industrial materials are covered with lids or plastic tarps when not in use.
- Site run-on and storm water generated from within the facility is diverted away from material storage areas.
- Spills of industrial materials or wastes that occur during handling are cleaned up in accordance with the spill response procedures.
- Outdoor material or waste handling equipment or containers that can be contaminated by contact with industrial materials or wastes are inspected and cleaned, as appropriate.

6.1.5 Erosion and Sediment Controls

Erosion is not a significant issue at the site because approximately 28 percent is paved and the remainder is covered with a gravel cap or is vegetated (Figure 3). Therefore, erosion is not a problem at the site, and the facility does not implement erosion and sediment controls.

6.1.6 Employee Training Program

PG&E employees responsible for implementing the storm water program at the Facility will receive annual storm water training. The facility has identified which personnel require training (per Section 1.5), their responsibilities, and the type of training they will receive, and will prepare or acquire appropriate training materials and establish a schedule for providing the training. All participants will sign a Training Log that will be kept in Appendix D. This documentation will be maintained with the SWPPP. Annual training is required once every calendar year. At a minimum, training will cover the following topics:

- BMP implementation;
- BMP effectiveness evaluations:
- Visual observations; and

Monitoring activities.

In the event the Facility enters Level 1 status (see Section 9), appropriate team members will be trained by a Qualified Industrial SWPPP Practitioner (QISP). A QISP must complete a SWRCB-approved training course and assist in the preparation of ERAs for Level 1 and 2 status designations which are described in further detail in Section 9 of this SWPPP.

6.1.7 Quality Assurance and Record-Keeping

PG&E has done [and will continue to perform] the following to retain proper quality assurance and record-keeping:

- The facility has developed and implemented management procedures to ensure that appropriate staff implements all elements of the SWPPP, including the Monitoring Implementation Plan;
- The facility has developed a method of tracking and recording the implementation of BMPs identified in the SWPPP, through the monthly inspection process; and
- The facility will maintain the BMP implementation records, training records and records related to any spills and clean-up related response activities for a minimum of five years.

6.2 Advanced BMPs (Permit Section X.H.2)

In addition to the minimum BMPs described above in Section 6.1 and in Section X.H.1 of the General Permit, the facility will, to the extent feasible, implement and maintain any advanced BMPs necessary to reduce or prevent discharges of pollutants in its storm water discharge in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.

6.2.1 Exposure Minimization BMPs

The facility has installed permanent storm resistant shelters to prevent contact of storm water with certain kinds of materials. These areas include the hazardous materials/waste storage sheds, and the Laydown area (e.g., for waste and recycling dumpsters).

6.2.2 Storm Water Containment and Discharge Reduction BMPs

These BMPs include structures that divert, infiltrate, reuse, contain, retain, or reduce the volume of storm water runoff. As described in Section 4.5, the facility includes gravel caps to areas that haven't been paved or are not roofed which may increase infiltration at the site and prevent erosion. Additional BMPs will be explored and implemented as needed.

6.2.3 Treatment Control BMPs

• Oil/Water Separator. The site is equipped with an oil/water separator; however, since the effluent from the oil/water separator is conveyed to the municipal sanitary sewer (which is permitted through the publicly owned treatment works), this water is not considered storm water discharge. The oil (if any) is separated and sent offsite for proper disposal. The coalescer packs are inspected regularly and cleaned if indicated by inspection.

- **Parts Cleaner.** The site is equipped with a parts cleaner that is located outdoors on the east side of the maintenance shop. The manufacturer inspects the washer and replaces the solvent as necessary.
- **Drain Inlet Filters.** Filter screens (Dandy Pops®) are installed in storm water catch basins on the site, as appropriate, to capture sediment. The filter screens are cleaned and/or replaced as needed.
- Stormwater Chemical Treatment/Filtration System. The site is equipped with a standard chemical treatment and filtration system for the stormwater prior to discharge. The treatment system is located immediately adjacent to the existing outfall, E-006, to allow treatment of all of Gateway Generating Station's stormwater prior to discharge into the river. The system is expected to reduce the total iron content of the storm water effluent to less than or equal to 1 ppm.

Design of the system was precluded by volume-based calculations to meet the provisions of the IGP (see memo dated October 12, 2016 found in Appendix H). The volume of runoff produced from an 85th percentile 24-hour storm event and 85th Percentile Hourly Rainfall Intensity per the IGP, as determined from local, historical rainfall records produces a maximum of 229,562 gallons. The design volume processing rate of the treatment system is 468,895 gallons, both meeting and exceeding the volume-based calculations of the IGP.

Treatment steps for the treatment system are as follows:

- 1. The storm water is pH adjusted to allow the iron to precipitate out of the stormwater,
- 2. A chemical flocculating agent is added to clump the iron particles together,
- 3. The stormwater is settled and pumped over a series of small weirs to capture the solids,
- 4. Stormwater is then passed through the media filters for finer particulate removal,
- 5. The water is monitored real-time to assure it meets discharge criteria, if it does not meet pH or turbidity criteria, it is recirculated, and,
- 6. The treated stormwater is discharged into the San Joaquin River.

6.2.4 Other Advanced BMPs

At this time, the Facility does not implement other advanced BMPs. In the event that conditions change or monitoring results indicate a need, PG&E will consider additional advanced BMPs to address the changed conditions or constituents of concern.

7. TEMPORARY SUSPENSION OF ACTIVITIES (PERMIT SECTION X.H.3)

PG&E's Gateway Generating Station operates two shifts, seven days a week. The facility does not have any plans to suspend industrial activities for ten or more consecutive calendar days in any given year. Therefore, this section of the General Permit is not applicable.

8. BMP SUMMARY (PERMIT SECTIONS X.H.4 AND 5)

The following table summarizes each identified area of industrial activity, the associated industrial pollutant sources, the industrial pollutants, and the BMPs implemented. The approximate boundaries of Drainage Areas A and B are shown on Figure 2. The PPT identified in Section 1.5 is responsible for implementing all BMPs at the site. Some of the BMPs described below require the use of mechanical equipment, such as forklifts, in order to perform maintenance activities on the BMPs. PPT members are authorized to use the required equipment or to obtain the help of other facility staff to maintain the BMPs onsite. The facility mechanics are responsible for maintaining the mechanical equipment throughout the facility.

To retain effectiveness during and after significant weather conditions, certain BMPs need to be inspected more frequently than monthly. These BMPs will be informally inspected by PPT members during large rain events or following rain events.

Table III BMP Summary

Drainage Area	BMPs Implemented	Associated Industrial	Potential Industrial	Frequency of BMP
	Implementeu	Pollutant Sources	Pollutants	Implementation
	Spill kit	Oil Filled Equipment (Transformers)	Petroleum hydrocarbons, heavy metals	As needed
Combustion turbines	Secondary containment	Aqueous Ammonia for exhaust system	Aqueous Ammonia	As needed
	Check dams	All facility pollutants	Suspended Sediment	As needed
0.1 111 . 1	Spill kits	Truck access	Petroleum hydrocarbons, heavy metals	As needed
Oil and Universal Waste Storage Used Oil / Hazardous Waste Storage	Parts Cleaner	Part Cleaning	Solvents, lubricants, metals	As needed
	Spill kits and secondary containment	Spills during shipping and receiving	Petroleum hydrocarbons, heavy metals	As needed
	Covered forklift parking	Forklift	Vehicle related pollutants	Daily
Water Treatment	Spill kit	Truck access	Petroleum hydrocarbons, heavy metals	As needed
Plant	Spill kits and secondary containment	Spills during shipping and receiving	Diesel, various chemicals	As needed
	Fueling Sump	Fuel	Petroleum	Permanent
Trash and Scrap Metal Dumpsters	Dumpsters have lids, roll offs are tarped	Spills during shipping and receiving	Metals and non- petroleum waste	Cover daily when not in use
wiciai Dumpsiers	Storm resistant shelter	Waste	Metals, oils, suspended solids	Permanent

Warehouse	Run-on diversions	Run-on from neighboring facilities	Iron	Permanent
Discharge Location	Valves and Concrete Containment	All facility pollutants	All potential pollutants	Permanent
Location	Treatment and filtration	ponutants	ponutants	As needed
	Drain inlet filters	All pollutant sources	All potential pollutants	Permanent
	Rock-lined ditches	All pollutant sources	Suspended solids	Permanent
	Site has access control and security 24 hours a day, 7 days a week	All pollutant sources	All potential pollutants	As needed
All Drainage	Oil/Water Separator	All pollutants	Oils and Grease	Daily
Areas	Oil absorbent socks around various drain inlets	All pollutant sources	Oils and Grease	Daily
	Powder coated drain inlet grates	Rusting grates	Iron	Permanent
	"No Dumping, Drains to Delta Signs"	Illicit dumping	All potential pollutants	Permanent

9. MONITORING IMPLEMENTATION PLAN (PERMIT SECTION X.I)

As described above in Section 1.5, PG&E has assembled a PPT that includes members assigned to conduct storm water monitoring. The facility has one industrial discharge location which is also the sampling location. The discharge location (Sample Location E-006) is located at the northern perimeter of the facility. Analytical monitoring and visual observations will be conducted at the sampling location shown on Figure 2.

Procedures for Monthly Visual Observations

PG&E will conduct visual observations within the drainage area at the facility at least once per calendar month, which will include an evaluation of:

- Presence or indications of prior, current, or potential unauthorized NSWDs and their sources;
- Authorized NSWDs, sources, and associated BMPs; and
- Outdoor industrial equipment and storage areas, outdoor industrial activities areas, BMPs, and all other potential source of industrial pollutants.

Monthly visual observations will be conducted during daylight hours of scheduled facility operating hours and on days without precipitation. Visual observations will be recorded on the form provided in Appendix E. Information to be recorded will include the date, approximate time, locations observed, presence and probable source of any observed pollutants, name of person(s) that conducted the observations, and any response actions and/or additional SWPPP revisions necessary in response to the visual observations. To ensure adequate documentation of response action completion, a PPT member will initial and date the documented response action when the action is complete. If a monthly visual observation is not conducted, PG&E will provide an explanation in the Annual Report.

Procedures for Sampling Event Visual Observations

PG&E will conduct visual observations at the same time sampling occurs at a discharge location. At each discharge location where a sample is obtained, PG&E will observe the discharge of storm water associated with industrial activity and record these observations on the form provided in Appendix E. The same types of information will be recorded as for the monthly inspections. The following items will be observed and recorded:

- The appearance of storm water discharged from containment sources (e.g., secondary containment or sumps) at the time that the discharge is sampled;
- The presence or absence of floating and suspended materials, oil and grease, discolorations, turbidity, odors, trash/debris, and source(s) of any discharged pollutants.

In the event that a discharge location is not visually observed during a sampling event, PG&E will record which discharge locations were not observed during sampling or that there was no discharge from the discharge location and will provide an explanation in the Annual Report for uncompleted sampling event visual observations. PG&E will revise BMPs as necessary if the visual observations indicate pollutant sources have not been adequately addressed in the SWPPP. If any response actions are noted during Sampling Event Visual Observations, a PPT member will initial and date the documented response action when the action is complete.

Sampling and Analysis

Samples will be collected during Qualifying Storm Events (QSE). A QSE is defined as a precipitation event that produces a discharge for at least one drainage area and is preceded by 48 hours with no discharge from any Facility drainage area. PG&E will collect and analyze storm water samples from two QSEs within the first half of each reporting year (July 1 to December 31), and two QSEs within the second half of each reporting year (January 1 to June 30). Samples will be collected within four hours of the start of discharge at the E006 discharge/sampling location shown on Figure 2. The sampling point at E006 is upstream from the actual discharge into the San Joaquin River (Outfall), due to the comingling of our discharge with the neighboring industrial facility just after E006 and prior to Outfall.

Sampling will be performed in accordance with requirements of the General Permit. Use caution when collecting samples at night and do not collect samples without sufficient lighting. Samples will be collected and analyzed for pH, oil and grease, total suspended solids, and total iron (based on the facility's SIC code listed in Table 1 of the General Permit for additional analytical parameters). Sampling results will be compared to two types of NAL values based on the specific parameter to determine whether either type of NAL has been exceeded for each applicable parameter. Annual NAL exceedances are based on analytical results for the entire facility for the reporting year, while Instantaneous NAL exceedances are based on analytical results from each distinct sample. The table below describes test methods, reporting units, and NAL values:

Table IV NAL Values

Parameter	Test Method	Reporting Units	Annual NAL	Instantaneous Maximum NAL
pН	Portable instrument*	pH units	N/A	<6.0 or >9.0
Oil and Grease	EPA 1664A	mg/L	15	25
Total Suspended Solids	SM 2540-D	mg/L	100	400
Total Iron	EPA 200.7	mg/L	1.0	
Electrical Conductivity			N/A	N/A

^{*}The pH screen will be performed as soon as practicable, but no later than 15 minutes after the sample is collected and will be analyzed using a calibrated portable instrument for pH.

All instruments used for pH measurement will be properly calibrated in accordance with the manufacturer's instructions and recommended frequency, and copies of the calibration records will be maintained onsite. Samples for total iron, total suspended solids, oil and grease, and electrical conductivity will be analyzed by an analytical laboratory that is Environmental Laboratory Accreditation Program (ELAP)-certified. All samples will be collected in accordance with Attachment H of the General Permit ("Sample Collection and Handling Instructions") and handled under proper Chain-of-Custody (COC) protocols. General Permit Attachment H and an example COC are included in Appendix F.

Though there are Effluent Limitation Guidelines (ELGs) for Electric Power Generation facilities, which require copper and chlorine analysis, the regulation only applies to runoff from coal storage piles and therefore the ELGs for Electric Power Generation do not apply to this facility because coal is not stored or used at the facility.

Exceedance Response Actions

ERAs are required when an NAL exceedance occurs for any parameter. At the beginning of NOI coverage, PG&E will enter as a Baseline status for all parameters designated in Table IV above. If sampling results indicate an NAL exceedance [either annual or instantaneous] for any parameter listed in Table IV, the status will move up to Level 1 for that parameter on July 1st following the reporting year during which the exceedance occurred (i.e., if there was an instantaneous exceedance on September 30, 2015, Level 1 would begin on July 1, 2016). Moving to Level 1 status triggers two actions: a Level 1 ERA Report, both prepared with assistance of a QISP.

- A Level 1 ERA Evaluation, due by October 1 following commencement of Level 1 status, consists of completing an evaluation of the industrial pollutant sources at the facility that may be related to the NAL exceedance and evaluate all BMPs to determine if revisions are necessary to prevent future NAL exceedances.
- A Level 1 ERA Report, due by January 1 following commencement of Level 1 status, is prepared after the Level 1 ERA Evaluation and consists of revising the SWPPP as necessary to implement any additional BMPs identified in the Evaluation and submitting via SMARTS the Level 1 ERA Report with details regarding SWPPP revisions and the results of the Evaluation.

A Level 1 status for any exceeded parameter will return to Baseline status once the Level 1 ERA Report has been completed, additional BMPs have been implemented, and results from four consecutive QSEs indicate no additional NAL exceedances for that parameter.

The status for any exceeded parameter will change to Level 2 if sampling results indicate an NAL exceedance for that same parameter while in Level 1 (i.e., if Level 1 was implemented on July 1, 2015 and an exceedance occurred on December 1, 2015, Level 2 would be triggered on July 1, 2016). Moving to Level 2 status triggers two actions: a Level 2 ERA Action Plan and a Level 2 ERA Technical Report, both prepared with assistance of a QISP.

- A Level 2 ERA Action Plan, due by January 1 following the reporting year during which the NAL exceedance occurred, consists of a schedule and description of implementing a particular demonstration, as described in the Level 2 Technical Report, in response to the NAL exceedance.
- A Level 2 ERA Technical Report, due by January 1 of the reporting year following the submittal of the Level 2 ERA Action Plan, describes one or more of the demonstrations in response to the NAL exceedance: Industrial Activity BMPs Demonstration, Non-Industrial Pollutant Source Demonstration, and/or Natural Background Pollutant Source Demonstration (as described in the General Permit Section XII.D.2).
- A Level 2 ERA Technical Report may be prepared and submitted at any time, whether or not the Facility is required to submit such a report.

A new Level 2 NAL exceedance is any Level 2 NAL exceedance for 1) a new parameter in any drainage area, or 2) the same parameter that is being addressed in an existing Level 2 ERA Action Plan in a different drainage area.

NAL exceedances, in and of themselves, are not violations of the General Permit. Failure to comply with the Level 1 status and/or Level 2 status ERA requirements is in violation of the General Permit.

PG&E Gateway Generation Station ERA Status

Reporting	ERA Level	Parameter	Level 1 ERA	Level 1 ERA	Level 2 ERA	Level 2 ERA
Year	Status		Evaluation	Report	Action Plan	Technical
			Completion	Submittal	Submittal	Report
			Date	Date	Date	Submittal
						Date

2015-	Baseline	N/A	N/A	N/A	N/A	N/A
2016						
2016-	Level 1	Iron, Total	09/27/2016	12/30/2016	N/A	N/A
2017						

See Appendix H for the ERA Evaluation(s) and Report(s)

Reporting

PG&E will submit all sampling and analytical results via SMARTS within 30 days of obtaining all results for each sampling event. In the event a sample's analytical result is reported by the laboratory as non-detect or less than the method detection limit, the method detection limit will be provided. A value of zero will not be reported.

PG&E will provide the sample analytical results reported by the laboratory as below the minimum level (often referred to as the reporting limit) but above the method detection limit. Reported analytical results from multiple discharge points will be averaged automatically by SMARTS. For any calculations required by this General Permit, SMARTS will assign a value of zero for all results less than the minimum level as reported by the laboratory.

10. ANNUAL REPORTING (PERMIT SECTIONS XV AND XVI)

PG&E will conduct an Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation) each reporting year (July 1 to June 30). If the Annual Evaluation is conducted fewer than eight months, or more than sixteen months, after the previous Annual Evaluation, the facility will document the justification for doing so. Within 90 days of the Annual Evaluation, PG&E will revise the SWPPP, as appropriate, and implement the revisions. At a minimum, the Annual Evaluation will cover the following:

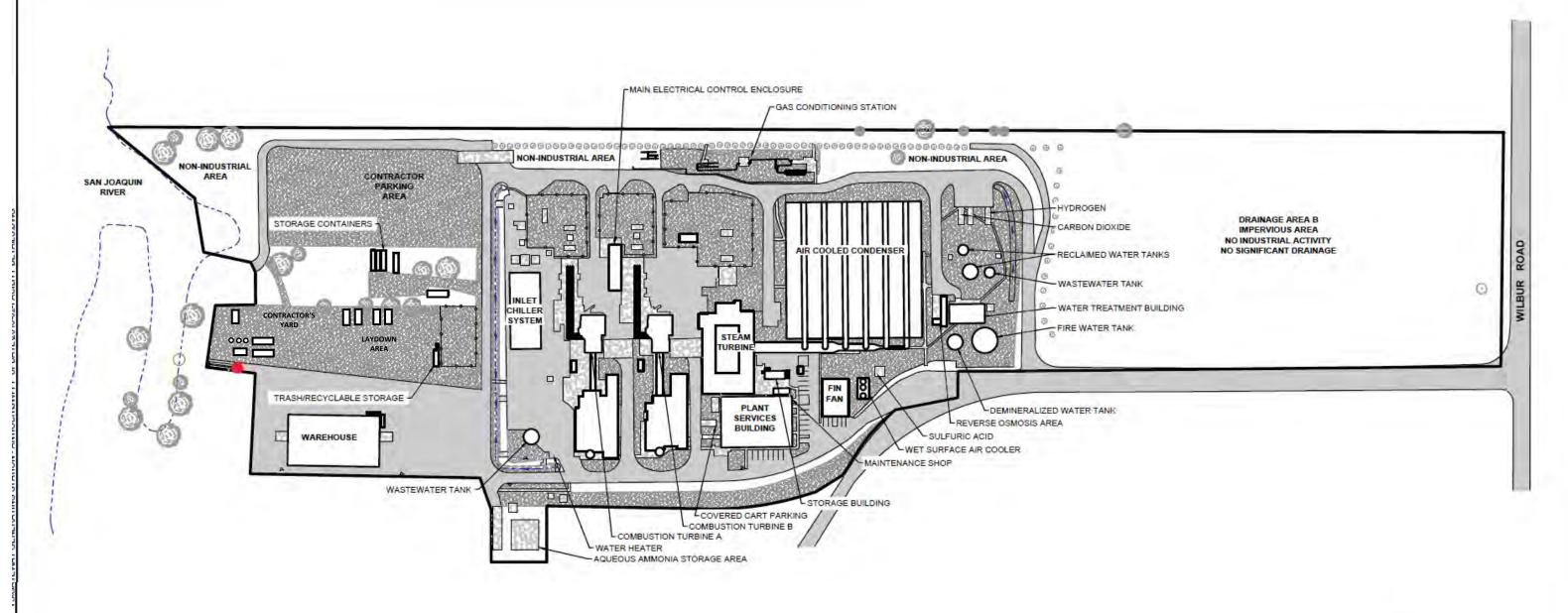
- Review of all sampling, visual observation, and inspection records conducted during the previous reporting year;
- Inspection of all areas of industrial activity and associated potential pollutant sources for evidence of, or the potential for, pollutants entering the storm water conveyance system;
- Inspection of all drainage areas previously identified as having no exposure to industrial activities and materials in accordance with the definitions in Section XVII;
- Inspection of equipment needed to implement the BMPs;
- Inspection of all site BMPs;
- Review and effectiveness assessment of all BMPs for each area of industrial activity and associated potential pollutant sources to determine if the BMPs are properly designed, implemented, and are effective in reducing and preventing pollutants in industrial storm water discharges and authorized NSWDs; and
- Assessment of any other factors needed to comply with the requirements in Section XVI.B.

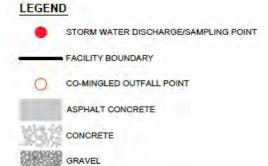
Information gathered during the Annual Evaluation will be recorded on the form provided in Appendix E.

Annual Report

PG&E will certify and submit via SMARTS an Annual Report no later than July 15th following each year. The Annual Report will be created by the Environmental Compliance Manager, reviewed by the Subject Matter Expert, and certified by the Legally Responsible Party. The Annual Report will include the following:


- A Compliance Checklist that indicates compliance with all applicable requirements of the General Permit;
- An explanation for any non-compliance of requirements within the reporting year;
- Identification of all revisions made to the SWPPP within the reporting year; and
- The date of the Annual Evaluation.


Copies of the Annual Report are included in Appendix G.


REFERENCES

- 1. California State Water Resources Control Board. Industrial Storm Water Permit for Discharges Associated with Industrial Activity (Order No. 2014-0057-DWQ). 2014.
- 2. Excerpts from Gateway Generating Facility Hazardous Materials Business Plan.
- 3. Spill Prevention, Control, and Countermeasures Plan for Gateway Generating Station, initially prepared by CH2MHill January 12, 2009 and revised August 2, 2013.

@ TREENEGETATION

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

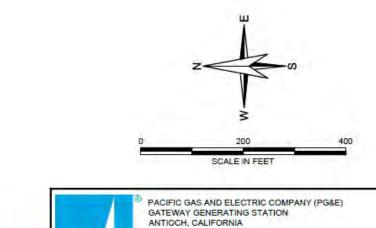
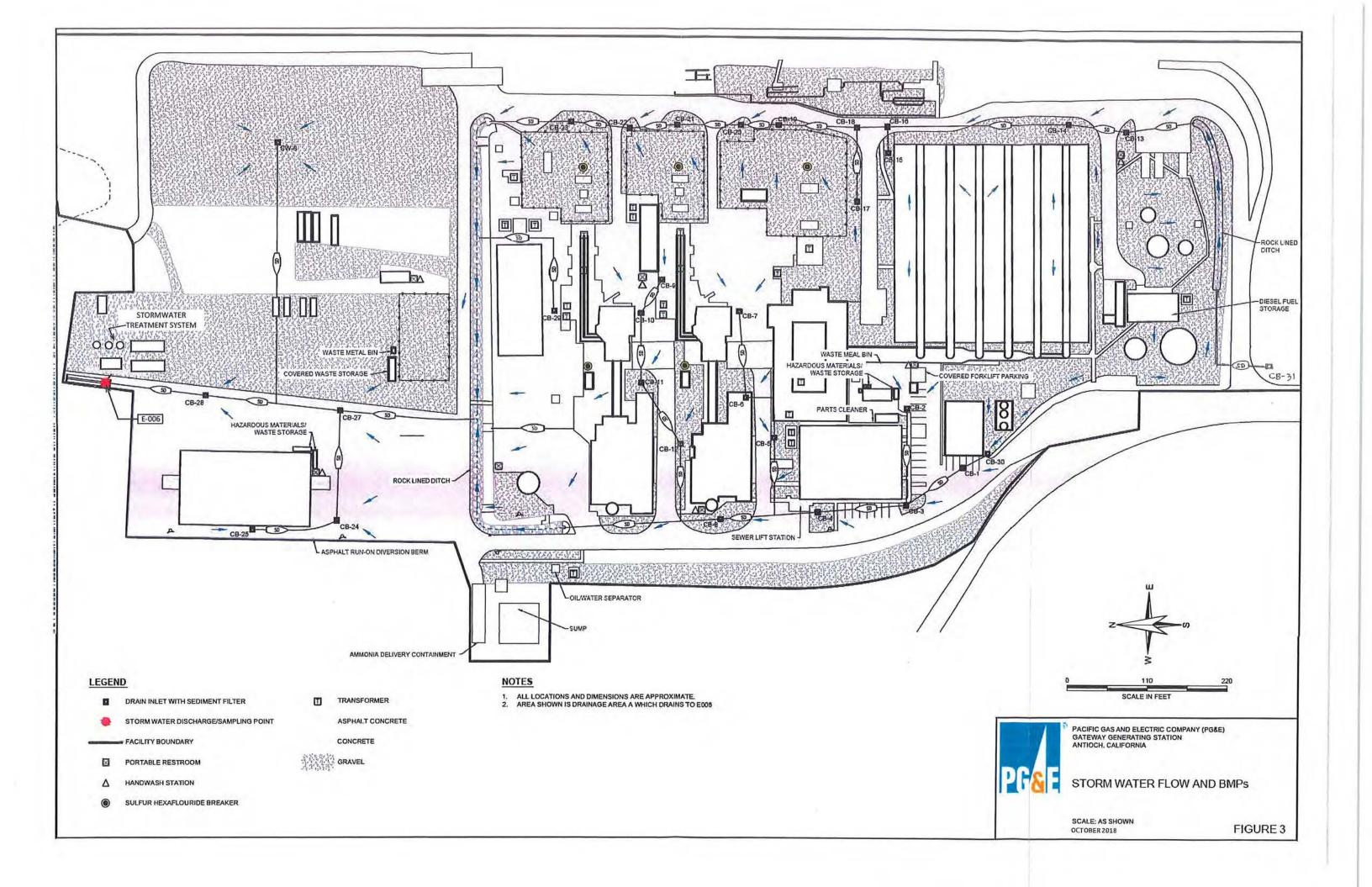



FIGURE 2

APPENDIX A

General Permit for Storm Water Discharges Associated with Industrial Activities (State Water Resources Control Board Order 2014-0057-DWQ)

APPENDIX B

Permit Registration Documents

State Water Resources Control Board

NOTICE OF INTENT

GENERAL PERMIT TO DISCHARGE STORM WATER ASSOCIATED WITH INDUSTRIAL ACTIVITY (WQ ORDER No. 2014-0057-DWQ) (Excluding Construction Activities)

JARED BLUMENFELD
SECRETARY FOR
ENVIRONMENTAL PROTECTION

WDID: 5S07I021950 Status: Active Operator Information Type: Private Business Name: Pacific Gas Electric Company Contact Name: _____ Tim Wisdom Address: PO Box 770000 Title: ___ Plant Manager Phone Number: 925-522-7812 Address 2: Email Address: T1WY@pge.com City/State/Zip: San Francisco CA 94177 Federal Tax ID: Facility Information Level: Contact Name: Angel Espiritu Title: Environmental Compliance Manager Site Name: Gateway Generating Station Address: 3225 Wilbur Ave Site Phone #: 925-522-7838 City/State/Zip: Antioch CA 94509 County: Contra Costa Email Address: abe4@PGE.com Latitude: 38.01228 Longitude: -121.75859 Site Size: 32.5 Acres Industrial Area Exposed to Storm Water: 22 Acres Percent of Site Impervious (Including Rooftops): 28 % SIC Code Information 1. 4911 Electric Services Additional Information Receiving Water: San Joaquin River Flow: Indirectly Storm Drain System: Compliance Group: RWQCB Jurisdiction: Region 5S - Sacramento Phone: 916-464-3291 Email: r5s_stormwater@waterboards.ca.gov Certification _____ Date: June 14, 2017 Name: stephen royall Title: Senior Plant Manager

State Water Resources Control Board

NOTICE OF INTENT

GENERAL PERMIT TO DISCHARGE STORM WATER ASSOCIATED WITH INDUSTRIAL ACTIVITIES (WQ ORDER No. 2014-0057-DWQ) (Excluding Construction Activities)

WDID: 5S07I021950 Status: Active

Operator Information Type: Private Business

Name: Pacific Gas Electric Company Contact Name: Benjamin Stanley

Address: PO Box 770000 Title: Senior Plant Manager

Address 2: Phone #: 925-522-7812

City/State/Zip: San Francisco CA 94177 Email: BESN@pge.com

Federal Tax ID: 94-0742640

Facility Information Level:

Site Name: Gateway Generating Station Contact Name: Angel Espiritu

Address: 3225 Wilbur Ave Title: Environmental Compliance Manag

City/State/Zip: Antioch CA 94509 Site Phone #: 925-522-7838

County: Contra Costa Email: ABE4@PGE.com

Latitude: 38.01228 Longitude: -121.75859 Emergency:

Total Site Size: 32.5 Acres Percent of Site Impervious (including rooftops): 28 %

Industrial Area exposed to Storm Water: 22 Acres

SIC Code(s)

Primary SIC: 4911 Electric Services

Secondary SIC:

Tertiary SIC:

Additional Information

Receiving Water: San Joaquin River Water Flow: Indirectly

Storm drain system: Compliance Group:

RWQCB Jurisdiction: Region 5S - Sacramento

Phone: 916-464-3291 Email: r5s_stormwater@waterboards.ca.gov

Certification

Name Benjamin Stanley Date: June 03, 2015

Title: Senior Plant Manager

Attachments Meta Data Information:

Attachment ID	File Name	File Description	File Hash	File Size	Date Attached	Attachment Type
		Reminder Letter	e4101d3683ba9ccd e463ee75ce71789 3ca19ad7dfa27b69 cde4b24692d959		2015-05-04 07:10:34.0	Other

APPENDIX C

SWPPP Amendment Form

SUMMARY OF SWPPP AMENDMENTS OR REVISIONS

Summary of Revision	Date	Name/Title
Preparation of the SWPPP under the 2014 IGP	Dec-14	Nancy E. Gardiner, CPESC, QSD/QSP Haley & Aldrich, Inc.
Subsequent to performing a stormwater compliance assessment for the vacility, revisions, additions, and updates were made to the SWPPP and site maps.	3/14/2016	Alicia Brenner, CPESC, CESSWI, QSD/P, QISP BTConsulting, Inc.
Update contact information: Facility Contact, Plant Manager & Operations Supervisor	6/23/2016	Diana Furman, ECM
Removed anhydrous ammonia, this is no longer used or stored at the facility	6/23/2016	Diana Furman, ECM
Reviewed and evaluated the site for the updated 303(d) listed impairments. SWPPP updated and now includes all 303(d) impairments listed on SMARTS.	7/1/2016	Diana Furman, ECM
Include clanfication for annual training	11/14/16	DIANA FURMAN, ECI
Revised form template	12/8/2016	DIANA FURMAN ECM
gupdated contact info for plant manager	- 12/30/2016	DIANA FURMAN ECM
Facility Contact info & tollution Dervention Team were updated	5/31/2017	Angel ESPIRITY/
- hodeld revision date - updated Table ! - updated map	10/3/2016	Angel Espirita ECM
	Subsequent to performing a stormwater compliance assessment for the vacility, revisions, additions, and updates were made to the SWPPP and site maps. Update contact information: Facility Contact, Plant Manager & Operations Supervisor Removed anhydrous ammonia, this is no longer used or stored at the facility Reviewed and evaluated the site for the updated 303(d) listed impairments. SWPPP updated and now includes all 303(d) impairments listed on SMARTS. Include clanfication for annual training Revised Prom Visual observation form template. 3 Updated confact info for plant manager Facility Contact info & Addition Account on Team were updated before the plant repeated and posserved for the plant manager facility contact info & Addition Account on Team were updated by the plant required to the plant	Subsequent to performing a stormwater compliance assessment for the vacility, revisions, additions, and updates were made to the SWPPP and site maps. Update contact information: Facility Contact, Plant Manager & 6/23/2016 Removed anhydrous ammonia, this is no longer used or stored at the facility Reviewed and evaluated the site for the updated 303(d) listed impairments. SWPPP updated and now includes all 303(d) impairments listed on SMARTS. Include clanfication for annual training IIIIIII Revised PMWE Visual observation form template. 3/14/2016 IIIIIII Revised Confact info for plant manager 12/30/2016 Facility Contact info & following Station of the plant manager

APPENDIX D

Training Log, including training material

SWPPP Training Log

Name of Trainer:		
Location of Training:	Date of Training:	
Signature of Trainer:		
Topics covered:		
☐ SWPPP Compliance Responsibilities		
☐ BMP Implementation and Maintenance		
☐ BMP Effectiveness Evaluations		
☐ Visual Observations		
☐ Monitoring Activities		
☐ SMARTS Reporting		

Name	Title	Company	Signature		
- 100000					

APPENDIX E

Industrial Storm Water Facility Inspection and Visual Observation Form Annual Evaluation Form Sampling Log

Industrial Storm Water Facility Inspection and Visual Observation Form

General Information											
Facility I	Name	Gateway	Generating Stati	on							
WDID N	0.	5S07I021	5S07I021950								
Date of I	nspection		Start/End Time								
Inspecto	nspector's Name(s)										
Inspecto	Inspector's Title(s)										
Inspecto	r's Contact Information										
Inspecto	r's Qualifications										
Inspecto	r's Signature										
Type of l	Inspection ^{1,2}	☐ Mon	nthly Visual Obs	ervation	mpling Event Visual	Observation					
Weather Information											
Weather at time of this inspection? □ Clear □ Cloudy □ Rain □ Sleet □ Fog □ Snow □ High Winds □ Other: Temperature:											
	a sampling event visual of Time Storm Began:	observation,	Rain Gauge		Rain Gauge II	D:					
Date and	Time Discharge Began:		Previous Dis	scharge Ended Greater	Than 48 Hours: □Y	es □No					
			Visual Obs	ervations							
Are there If yes, de	e any spills/leaks observe scribe:	ed at the tim	e of inspection	? □Yes □No							
Have any If yes, de	y previously unidentified scribe:	discharges	of pollutants oc	ccurred since the last	inspection? □Yes	□No					
If yes, no ☐ Floatin	e any discharges occurring the the presence of any of the materials Sheen all checked above:	the followir	ng:		h/Debris 🗖 Other:						
			Outfall Obs	servations							
Outfall No.	Observations	Is NSWD Present?	Potential Source(s) of NSWD	Corrective Action	Person Contacted	Date Corrective Action Completed					
E-006		□Yes □No									
		□Yes □No									
		□Yes □No									

¹ Monthly visual observations will be conducted during daylight hours of normally scheduled facility operation and on days without precipitation. Sampling event visual observations will be recorded at the same time sampling occurs at a discharge location.
² For monthly visual observations, pages 1-5 need to be completed. For sampling event visual observations, pages 1-2 need to be completed.

BMP Control Measures

- Number the structural storm water control measures identified in your SWPPP below (add as many control measures as are implemented on-site).
- Describe corrective actions initiated, date completed, and note the person that completed the work.

	Structural Control Measure	Control Measure is Operating Effectively?	If No, In Need of Maintenance, Repair, or Replacement?	Corrective Action Needed and Notes (identify needed maintenance and repairs, or any failed control measures that need replacement)	Date Corrective Action Completed	Initials of Person Responsible for the Correction Action
1	Drain Inlets	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
2	Secondary Containment: Transformers	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
3	Secondary Containment: Turbines/Oil-filled Equipment	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
4	Secondary Containment: Firewater Pump Bldg	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
5	Secondary Containment: Hazardous Material/Waste Sheds	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
6	Trash/Scrap Dumpsters	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
7	Oil/Used Oil Storage	□Yes □No	☐ Maintenance ☐ Repair ☐ Replacement			
8	Ditches/Outfall	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
9	Iron Treatment System	□Yes □No	☐ Maintenance☐ Repair☐ Replacement			
10		□Yes □No	☐ Maintenance ☐ Repair ☐ Replacement			

Areas of Industrial Materials or Activities exposed to storm water

Below is a list of areas that should be assessed during routine inspections. Customize this list as needed for the specific types of industrial materials or activities at your facility.

	Area/Activity	Inspected?	Controls Adequate (appropriate, effective, and operating)?	Corrective Action Needed and Notes	Date Corrective Action Completed	Initials of Person Responsible for the Correction Action
1	Material loading/unloading and storage areas	□Yes □No □ N/A	□Yes □No			
2	Equipment operations and maintenance areas	□Yes □No □ N/A	□Yes □No			
3	Fueling areas	□Yes □No □ N/A	□Yes □No			
4	Outdoor vehicle and equipment washing areas	□Yes □No □ N/A	□Yes □No			
5	Waste handling and disposal areas	□Yes □No □ N/A	□Yes □No			
6	Erodible areas/construction	□Yes □No □ N/A	□Yes □No			
7	Non-storm water/ illicit connections*	□Yes □No □ N/A	□Yes □No			
8	Dust generation and vehicle tracking	□Yes □No □ N/A	□Yes □No			
9	General Housekeeping	□Yes □No □ N/A	□Yes □No			
10		□Yes □No □ N/A	□Yes □No	and characteristics of the non-sto		

^{*}Include a description of the source, quantity, frequency, and characteristics of the non-storm water discharges, associated drainage area, and whether it is an authorized or unauthorized non-storm water discharge.

BMP Implementation Tracking and Recording

Describe all BMP implementation and/or maintenance that occurred since the last inspection here.

Non-Compliance
Describe any incidents of non-compliance observed and not described above:
Additional Control Measures** Describe any additional control measures needed to comply with the permit requirements:
Describe any additional control measures needed to comply with the permit requirements.
**Additional Control Measures include the following categories as described in the General Permit:
TO THE COUNTY OF THE COUNTY OF THE COUNTY OF THE PROPERTY OF T
Minimum BMPs: Good Housekeeping; Preventative Maintenance; Spill and Leak Protection; Material Handling and Waste Management; Erosion and Sediment Controls; Employee Training; and Quality Assurance and Record
Keeping
Advanced BMPs: Exposure Minimization; Storm Water Containment and Discharge Reduction; and Treatment
Control
Notes
Notes Use this space for any additional notes or observations from the inspection:
ose this space for any additional notes of observations from the hispection.

Annual Compliance Evaluation Form

General Information											
Facility Name:		Evaluation Date:									
Facility Location:		WDID#:									
Is the SWPPP Onsite?	Yes No NA NA	Is the NOI Onsite?	Yes No No N	IA 🗆							
	Document Review Info	ormation									
Have all sampling records from the previous reporting year been reviewed? Yes No NA NA											
Document any trends, concerns, or notable information about sampling records here.											
Have all visual observiewed?	ervation and inspection records from the previous	reporting year been	Yes □ No □	NA 🗆							
	ocument any trends, concerns, or notable informa	·	T								
	activity areas and associated potential pollutant so ne potential for, pollutants entering the storm wate		Yes No No	NA 🗔							
Docume	ent any trends, concerns, or notable information al	bout industrial areas an	d pollutants here.								
Have all drainage a and materials been	reas previously identified as having no exposure t inspected?	to industrial activities	Yes No No	NA 🗆							
Do	ocument any trends, concerns, or notable informa	tion about no exposure	areas here.								
1	needed to implement BMPs been inspected?		Yes □ No □	NA 🗆							
Docume	nt any trends, concerns, or notable information ab	out BMP implementatio	on equipment here.								

Annual Compliance Evaluation Form

Have all BMPs been inspected?		Yes No No	NA 🗆
Document any trends, concerns, or notable	information about BMPs h	iere.	
Has a review and effectiveness assessment of all BMPs been condindustrial activity and associated pollutant potential sources to determine the properly designed, implemented, and are effective in reducing and industrial storm water discharges and authorized non-stormwater of	ermine if the BMPs are preventing pollutants in discharges?		NA 🗆
Document any trends, concerns, or notable inform	nation about BMP effective	ness here.	
Has the SWPPP been reviewed to ensure the information within is operations and personnel?	Yes 🗆 No 🗀	NA 🗆	
Document any trends, concerns, or notable inform	mation about SWPPP revis	ions here.	
Have any other factors needed to comply with the requirements of assessed?	the General Permit been	Yes No No	NA 🗆
Document any other trends, concerns, of	or notable information here		
Inspector Inform	mation		
Evaluator Name:	Evaluator Title:		
Signature:		Report Date:	

Sampling Field Log

	Genera	l Information	
Facility Name:	_ 		
Date:		Event Start Time:	
Sampler:		Rainfall Amount:	☐ Today ☐ Storm
Sampling Event Type:	☐ Storm Water	☐ Non-storm water	Storm Water & NSWD
	pH Sampl	ing Information	
	Litmus Paper Test Kit Portable Instrument	Portable Instrument Calibration Date/Time:	
	Field pH and Tu	rbidity Measurements	
Were field dupliates taken?	⊡s	□ No	
Discharge Location	% Total Daily Flow	рН	Time
Sum % Flow (Must = 100)	0		
рН	Calculated Average:	#NUM!	
	Other Paramete	ers (check those collected)	
Oil and Grease	Oth	ner:	
Total Suspended Solids (TSS)	Oth	ner:	
Other:	Oth	ner:	
Other:	Oth	ner:	
Was a chain of custody complete	ed? □s	N	
Addition	nal Sampling No	tes/Exception Docume	entation
Estimated Event End:			

APPENDIX F

General Permit Attachment H "Sample Collection and Handling Instructions" and Example Chain of Custody Form

ATTACHMENT H

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

For more detailed guidance, Dischargers should refer to the U.S. EPA's "Industrial Stormwater Monitoring and Sampling Guide," dated March 2009, available at: http://www.epa.gov/npdes/pubs/msgp_monitoring_guide.pdf and the "NPDES Storm Water Sampling Guidance Document," dated July 1992, available at: http://www.epa.gov/npdes/pubs/owm0093.pdf.

- Identify the sampling parameters required to be tested and the number of storm water discharge points that will be sampled. Request the analytical testing laboratory to provide the appropriate number and type of sample containers, sample container labels, blank chain of custody forms, and sample preservation instructions.
- 2. Determine how samples will be transported to the laboratory. The testing laboratory should receive samples within 48 hours of the physical sampling (unless otherwise required by the laboratory). The Discharger may either deliver the samples to the laboratory, arrange for the laboratory to pick up the samples, or overnight ship the samples to the laboratory. All sample analysis shall be done in accordance with 40 Code of Federal Regulations part 136. Samples for pH have a holding time of 15 minutes.¹
- 3. Qualified Combined Samples shall be combined by the laboratory and not by the Discharger. Sample bottles must be appropriately labeled to instruct the laboratory on which samples to combine.
- 4. Unless the Discharger can provide flow weighted information, all combined samples shall be volume weighted.
- 5. For grab samples, use only the sample containers provided by the laboratory to collect and store samples. Use of any other type of containers may contaminate samples.
- 6. For automatic samplers that are not compatible with bottles provided by the laboratory, the Discharger is required to send the sample container included with the automatic sampler to the laboratory for analysis.

-

¹ 40 C.F.R. section 136.3, Table II - Required Containers, Preservation Techniques, and Holding Times.

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

- 7. The Discharger can only use automatic sampling device to sample parameters that the device is designed to. For pH, Dischargers can only use automatic sampling devices with the ability to read pH within 15 minutes of sample collection.
- 8. The Discharger is prohibited from using an automatic sampling device for Oil and Grease, unless the automatic sampling device is specifically designed to sample for Oil and Grease.
- 9. To prevent contamination, do not touch inside of sample container or cap or put anything into the sample containers before collecting storm water samples.
- 10. Do not overfill sample containers. Overfilling can change the analytical results.
- 11. Tightly screw on the cap of each sample container without stripping the threads of the cap.
- 12. Complete and attach a label for each sample container. The label shall identify the date and time of sample collection, the person taking the sample, and the sample collection location or discharge point. The label should also identify any sample containers that have been preserved.
- 13. Carefully pack sample containers into an ice chest or refrigerator to prevent breakage and maintain temperature during shipment. Remember to place frozen ice packs into shipping containers. Samples should be kept as close to 4 degrees Celsius (39 degrees Fahrenheit) as possible until arriving to the laboratory. Do not freeze samples.
- 14. Complete a Chain of Custody form for each set of samples. The Chain of Custody form shall include the Discharger's name, address, and phone number, identification of each sample container and sample collection point, person collecting the samples, the date and time each sample container was filled, and the analysis that is required for each sample container.
- 15. Upon shipping/delivering the sample containers, obtain both the signatures of the persons relinquishing and receiving the sample containers.
- 16. Dischargers shall designate and train personnel to collect, maintain, and ship samples in accordance with the sample protocols and laboratory practices.
- 17. Refer to Table 1 in the General Permit for test methods, detection limits, and reporting units.
- 18. All sampling and sample preservation shall be in accordance with 40 Code of Federal Regulations part 136 and the current edition of "Standard Methods for

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

the Examination of Water and Wastewater" (American Public Health Association). All monitoring instruments and equipment (including Discharger field instruments for measuring pH or specific conductance if identified as an additional sampling parameter) shall be calibrated and maintained in accordance with manufacturers' specifications to ensure accurate measurements. All laboratory analyses shall be conducted according to approved test procedures under 40 Code of Federal Regulations part 136, unless other test procedures have been specified by the Regional Water Quality Control Board. All metals shall be reported as total metals. Dischargers may conduct their own field analysis of pH (or specific conductance if identified as an additional sampling parameter) if the Discharger has sufficient capability (qualified and trained employees, properly calibrated and maintained field instruments, etc.) to adequately perform the field analysis. With the exception of field analysis conducted by Dischargers for pH (or specific conductance if identified as an additional sampling parameter), all analyses shall be sent to and conducted at a laboratory certified for such analyses by the California Department of Public Health. Dischargers are required to report to the Water Board any sampling data collected more frequently than required in this General Permit (Section XXI.J.2)

GGS Stormwater Treatment System Operations Recordkeeping Log

Discharge Date/Time		Discharge Volume - Flow Meter Readings (100 gal)		Discharge Iron Levels (ppm or mg/L)		Discharg	Discharge pri Probe (5.0.)		Turbidity Probe (NTU)			Operator	Comments	
Start	End	Initial	Final	Total	Date/Time	Bench Kit Reading	Date/Time	Handheld Reading	Probe Reading	Date/Time	Handheld Reading	Probe Reading	Initials	comments

Flow Meter Readings to be taken prior to beginning of discharge and after discharge ends.

Discharge if iron level is less than 1 ppm.

Perform accuracy checks on pH and turbidity probes at least twice per discharge event. Do not perform accuracy checks during backwash; meters are inaccurate during this time.

Accuracy for pH ±0.5 s.u.

Accuracy for turbidity ±15-20 NTU

Allowable pH discharge range: 6.0-9.0 s.u.

Normal pH range at pretreatment probe (i.e. weir tank): 8.8-9.3 s.u.

CHAIN OF CUSTODY FORM

Client Name:														ANALYSIS REQUIRED											
Laboratory:					Project:																	Field readings: (Include units)			
																						Time of readings			
Laboratory Contact:																						pH pH unit	·		
Sampler:				Contact:																		Field readings QC: Checked by:			
										Total Iron												Date			
Sample Description	Sample Matrix	Container Type	# of Cont.	Sample I.D.	Sampling Date/Time	Preservative	Bottle #	Total Suspended	Oii &	Tota												Comments			
Outfall 001	W																								
Outfall 002	W																								
Outfall 003	W							ļ																	
Duplicate	W																								
								<u> </u>																	
								<u> </u>																	
								<u> </u>																	
																	_								
								1																	
								+									\perp								
		•				•	•	•		•	-	-	•		•			•		•	•				
								Received By Date/Time:									Turn-around time: (Check) 24 Hour: 72 Hour: 10 Day: 48 Hour: 5 Day: Normal:								
Relinquished By Date/Time:								Received By Date/Time:									Sample Integrity: (Check) Intact: On Ice:								
Relinquished	I Ву			Date/Time:	Received I	eceived By Date/Time:																			

APPENDIX G

Annual Reports

APPENDIX H

ERA Evaluations and Reports

APPENDIX I

Advanced Treatment System (Chemical & Filtration) Operating Manual, including the Gateway Generation Station Quick Operations Guide and Operating Log

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 16

Exhibit 7
Biological Record Summaries
(BIO-2)

Gateway Generating Station California Energy Commission 2024 Annual Biological Compliance Report Draft

Date: March 13, 2025

Project Name: Gateway Generating Station 2024 Biological Resources Support Project

Project No: D31321EK

Attention: Angel Espiritu/PG&E Gateway Generating Station Compliance Manager

Company: Pacific Gas and Electric Company

Prepared By: Gateway Generating Station Designated Biologist

Scott Lindemann/Jacobs

Copies To: Jerry Salamy/Jacobs Project Manager

Amy Krisch Co-Designated Biologist/PG&E

1. Introduction

The California Energy Commission's (CEC) Condition of Certification (COC) for the Gateway Generating Station (GGS) 2024 Environmental On-call Support Project (the Project) requires Pacific Gas and Electric Company (PG&E) to designate a biologist to supervise compliance with mitigation measures outlined in the CEC-approved Biological Resources Mitigation, Implementation, and Monitoring Plan (BRMIMP) and submit compliance reports during GGS's operations phase. This Gateway Generating Station (GGS) Annual 2024 Biological Resources Compliance Report fulfills COC BIO-2. This report covers the reporting period from January 1, 2024, to December 31, 2024 (the 2024 Reporting Period). GGS complied with all biological resource COCs, and the measures specified in the BRMIMP during the Reporting Period.

1.1 Project Location

The GGS site is located at 3225 Wilbur Avenue in the city of Antioch, Contra Costa County, California. The facility is on the southern side of the San Joaquin River, approximately 0.4 miles west of Highway 160, and in Section 16, Township 02 north, Range 02 east (Mt. Diablo Meridian) on the Antioch North U.S. Geological Survey (USGS) topographic quadrangle. GPS coordinates for the approximate site center are: 38.016757°, -121.758799° (WGS 84).

1.2 Background

On December 19, 2006, Pacific Gas and Electric Company (PG&E) filed a petition (TN 38720) with the CEC requesting to amend the CEC Decision to eliminate the use of San Joaquin River water as the cooling source for the GGS Project (formerly known as the Contra Costa Power Plant Unit 8 Project). The petition also proposed ten associated project design changes at the project site. The 530-megawatt project was originally certified by the CEC on May 30, 2001, and a BRMIMP was prepared for the Project (URS Corporation 2001). Construction of the facility started late in 2001 and was suspended in February of 2002 due to financial difficulties, with approximately seven percent of construction completed. On July 19, 2006, the CEC approved the addition of

Final 1

PG&E as co-owner of the project with Mirant Delta, LLC (CEC 2006). On December 4, 2006, PG&E filed a petition to remove Mirant as a co-owner and change the name of the facility to the Gateway Generating Station. Construction was restarted in January 2007 with PG&E as the project proponent. GGS construction, including restoration activities, was completed in June 2009.

After PG&E became the project owner/operator, the project was re-designed to avoid biological resource impacts to the extent feasible through development of mitigation and protection measures for the new design. These mitigation and protection measures reduced biological resource impacts so that no agency permits were required. These changes resulted in BRMIMP Conditions BIO-7, 10 and 11 being eliminated; also, additional minor changes were made to Conditions 5, 6 and 9 (CEC 2007).

The GGS was designed to avoid biological resources to the greatest extent through the development of mitigation and protection measures in consultation with the U.S. Fish and Wildlife Service (USFWS), U.S. Army Corps of Engineers (USACE), California Department of Fish and Wildlife (CDFW), Central Valley Regional Water Quality Control Board (CVRWQCB), and the CEC. Applicable COCs were complied with during construction and continue to be implemented during GGS operations, including routine maintenance and outage events.

2. Results

PG&E complied with the biological resource COCs during the Reporting Period. The CEC-approved Designated Biologist (DB) Scott Lindemann or Biological Monitor (BM) Sean O'Neal performed pre-disturbance surveys and coordinated with GGS staff to avoid or minimize impacts to the environment. GGS also complied with all measures specified in the BRMIMP during the Reporting Period.

All new GGS employees and contract workers received the CEC-approved Worker Environmental Awareness Training (WEAP) via video and daily tailgate training with the DB or the PG&E GGS Compliance Manager (CM) Angel Espiritu. The DB remained on call throughout the Reporting Period.

The monitoring and compliance activities for the 2024 calendar year are documented in chronological order below.

- March 3: Aman Prakash Singh, Maintenance Supervisor for the Gateway Generating Station, contacted the DB (Mr. Lindemann) and PG&E Biologist Amy Krisch to inform them that an Anna's hummingbird (*Calypte anna*) nest was discovered in the afternoon by one of the GGS operators (Photo 1). An adult female hummingbird was photographed on the nest incubating (Photo 2). It was located on the on the west/southwest side of the 4160 Motor Control Center. The area around the nest was barricaded off with a 15-foot buffer and plant personnel were notified to avoid the area.
- March 18: Matt Fiedler, Fossil Operations Supervisor for the Gateway Generating Station notified Mr. Lindemann and Ms. Krisch that the nest appeared to be empty, and workers had not noticed any activity around the nest in the last week. Later that afternoon Mr. Singh inspected the nest and found it to be empty. Ms. Krisch confirmed the nest was inactive, and the nest was removed.

Final 2

- March 22: Mr. Singh contacted Mr. Lindemann to schedule a pre-disturbance nesting bird survey at the facility prior to vegetation management activities (mowing). Mr. O'Neal was scheduled to visit the site the March 28 to perform the nesting bird survey.
- March 28: Mr. O'Neal arrived at GGS at 07:30, took the site safety training, and proceeded to survey the facility for nesting birds (Photo 3). No nests or nesting activity was observed during the survey of the areas that will be mowed by vegetation control crews. Sean communicated the results to Doug Welch (PG&E) and Mr. Singh.
- April 12: Mr. Singh contacted Mr. Lindemann to schedule another nesting bird survey, as the landscaping company had completed their mowing activities the previous week but were not able to complete herbicide spraying due to wet weather. Mr. O'Neil was scheduled to complete another nesting bird survey on April 15.
- **April 15:** Mr. O'Neal arrived at GGS at 07:00 and proceeded to survey the facility for nesting birds (Photos 4 and 5). No nests were found within any of the herbicide application areas. Sean communicated the results to Mr. Singh and to the landscaping crew.

3. References

- California Energy Commission (CEC). 2006. Order Approving Addition of Pacific Gas and Electric Company as Co-Owner and Operator with Mirant Delta, LLC on Contra Costa Power Plant Unit 8 Project; Extension of Construction Milestones; and Four Modifications to the Facility. Docket No. 00-AFC-1C, Order No. [Not Given]. July 19.
- California Energy Commission (CEC). 2007. Order Amending the Energy Commission Decision to Eliminate the Use of San Joaquin River Water as the Cooling Water Source and Complete Ten Associated Project Design Changes. Docket No. 00-AFC-1C, Order No. 07.0801-2. August 1.
- URS Corporation. 2001. Biological Resources Mitigation, Implementation, and Monitoring Plan for Contra Costa Power Plant Unit 8 Project. Prepared for Mirant Delta LLC. Revised Version, August.

Final 3

Appendix A Site Photos

Photo 1: Anna's hummingbird nest with observed inside the facility on March 3, 2024. Nest noted in red circled area. It was located on the on the west/southwest side of the 4160 Motor Control Center. The area around the nest was barricaded off with red and white flagging tape in a 15-foot buffer, and plant personnel were notified to avoid the area.

Photo 2: Detailed view of Anna's hummingbird nest on March 3, 2024, circled in red. Note adult female Anna's hummingbird incubating the nest.

Photo 3: Representative view of area surveyed during nesting bird survey on March 28, 2024, prior to vegetation management activities. Photo taken in the field south of the GGS, facing south.

Photo 4: Representative view of area surveyed during nesting bird survey on April 15, 2024, prior to vegetation management activities. Photo taken in the field south of the GGS, facing south.

Photo 5: Representative view of area surveyed during nesting bird survey on April 15, 2024, prior to vegetation management activities. Photo taken at north end of the gravel parking lot north of the GGS, facing south.