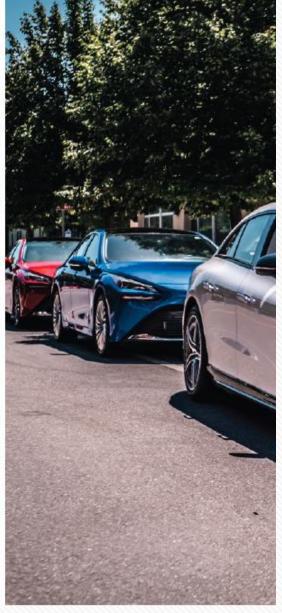
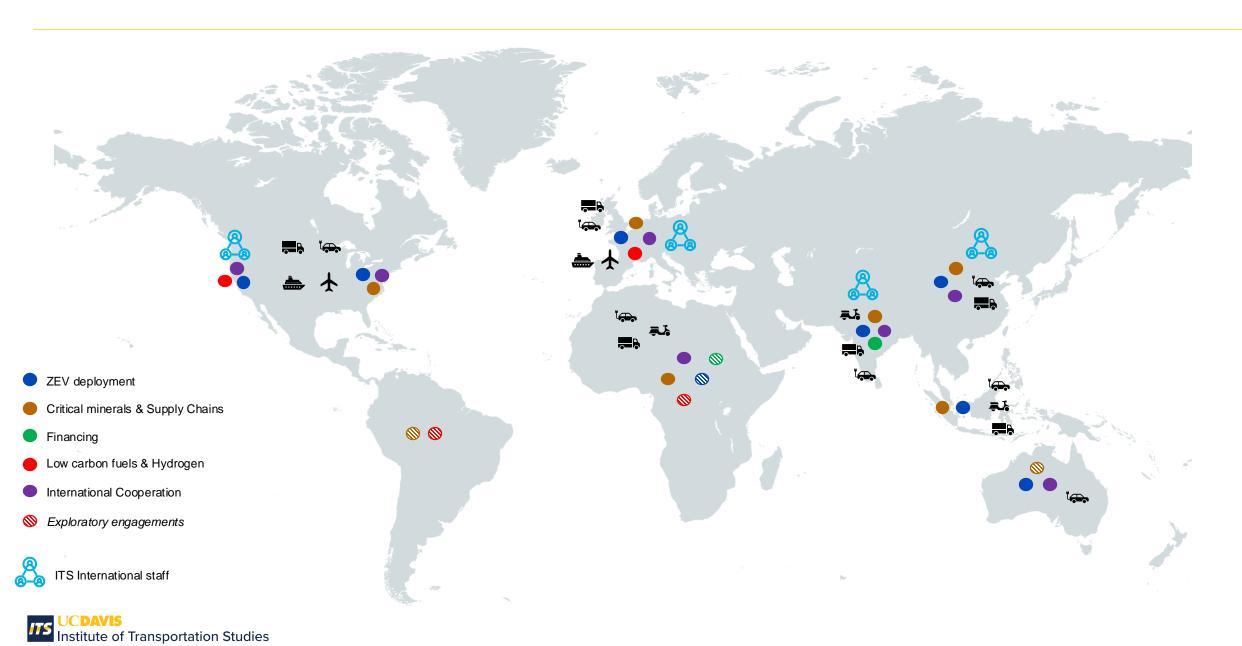
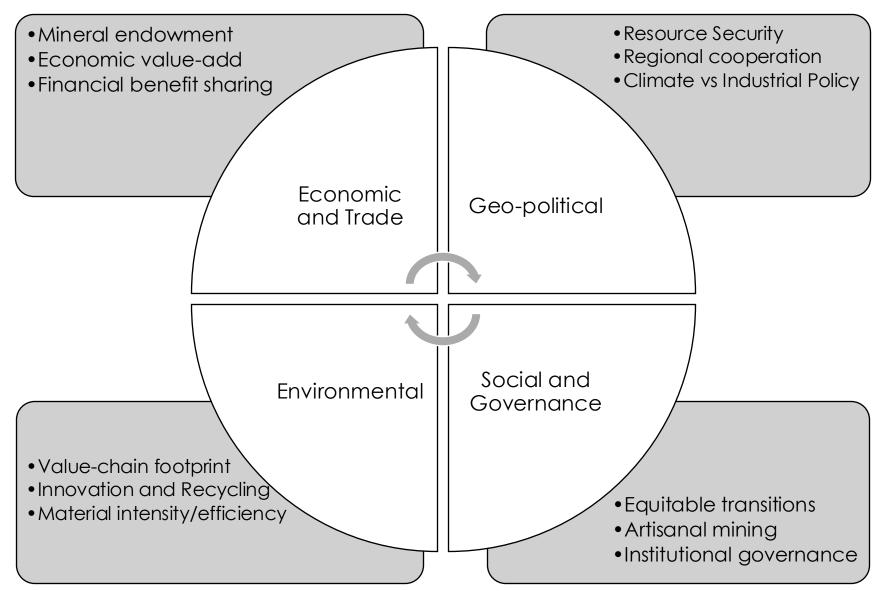
DOCKETED			
Docket Number:	24-OIIP-02		
Project Title:	Informational Proceeding on Lithium Valley Vision		
TN #:	262110		
Document Title:	Presentation Slide - Aditya Ramji		
Description:	N/A		
Filer:	Erik Stokes		
Organization:	California Energy Commission		
Submitter Role:	Commission Staff		
Submission Date:	3/6/2025 5:48:03 AM		
Docketed Date:	3/6/2025		

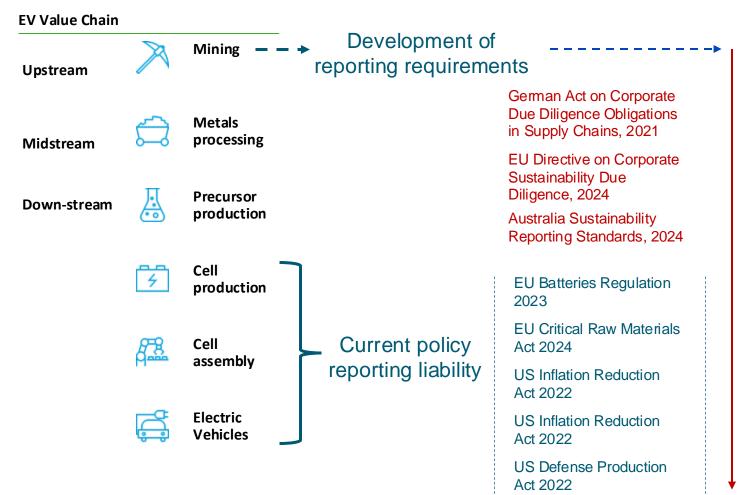
Institute of Transportation Studies


LVC Informational Workshop California Energy Commission

Dr Aditya Ramji


19 February 2025




Premier global research institution on clean transportation

Track and Trace: Assessing supply risks

Track and Trace: Key Global Developments

Opportunity for California:

 ZEV assurance measures and <u>Battery Labeling</u> <u>Requirements 2022</u> can include *expanded reporting requirements* across the value chain

Battery Passport Initiative

Battery Global Traceability Standards Committee

- Various countries are considering battery passport regulations
 - ESG reporting is become mainstream: 40% of 2024 Lithium ore to come from industries with higher ESG standards

Battery Passport Initiative: Global Battery Alliance

GHG emissions

Circular Design

Biodiversity Loss

Environmental & Human Rights

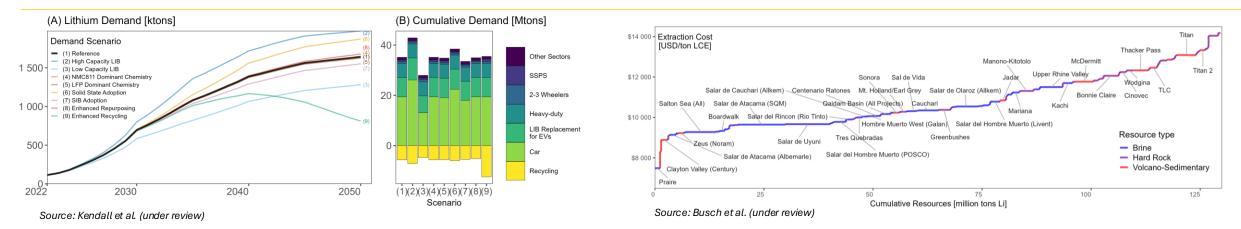
Child Labor

Forced Labor

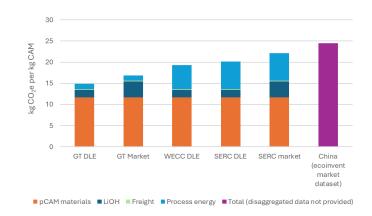
Indigenous Peoples' Rights

	BATTERY
CLUSTERS	
# of companies	
OUANTITATIVE ISSUE:	
# of reports	
·	
GHG (PMA)	
primary data sha	re
GHG (HMA)	
primary data sha	re
QUALITATIVE ISSUES	
# of reports	
ESG Score	
n/a rate (%)	
DATA PROOFS	
(A) external	
(B) standard	
(C) self-reported	
(D) validated (*)	

of verified reports


ATION	MATERIALS PROVENANCE			ESG PERFORMANCE			
MINING	REFINING	MATERIALS	CELL	BATTERY	OVERALL		
3	3	6	1	1	14		
(01) GREENHOUSE GAS							
2	2	4	2	2	12		
17	7	59	17	1	102		
0%	0%	67%	100%	100%	57%		
18	7	52	9	0,41	86		
0%	0%	62%	100%	100%	49%		
(02-07) OVERALL							
4	4	12	2	2	24		
withheld	withheld	withheld	withheld	withheld	secured		
19%	19%	12%	0%	0%	12%		
0%	0%	0%	0%	0%	0%		
0%	0%	6%	13%	13%	5%		
100%	100%	94%	14%	14%	81%		
0%	0%	0%	73%	73%	14%		
0	0	8	2	2	12		

U.S. Case Study: Track and trace by 2027....


Mineral	China %	Major Sources	Import Prices (\$/mt)
Lithium (Li-HO / CO3)	4-5% (proc.)	Chile, Argentina	HO: \$23k (1.6X) CO3: \$11k (1X)
Nickel	86-90% (ore)	Ore: China Sulphates: EU, South Africa	Ore: \$4k (1.6X) Sulph: \$7k (1.6X)
Manganese	-	Ore: Gabon, S. Africa, Mexico Oxides: Africa, India, E. Asia	Ore: \$510 (1.6X) Oxides: \$1.2k (1.1X)
Cobalt	16% (ore) 3% (ox.)	Ore: Russia, Canada Oxides: EU, UK, Asia	Ore: \$88k (4.5X) Oxides: \$47k (1.8X)
Graphite	49% (nat.)	Natural: Mexico, Africa, Canada, Brazil	Natural: \$2k (1.8X)
Aluminium	1.6%	Canada, Brazil, Sweden, Colombia, Mexico	\$990 (1.9X)

- Treasury, IRS & DOE: updated guidance on 30D & FEOC
- FEOC definition becomes more stringent:
 - if HQ, inc. or relevant activities in a covered nation
 - if 25% or more of voting rights, board seats, or equity held by the govt.
 - if controlled by a FEOC through a license or contract with that FEOC
 - Battery components (2024); Critical minerals (2025)
- Traced qualifying value add test
 - Detailed supply chain tracing to estimate actual value-added % for extraction, processing, and recycling
 - Certain impracticable-to-trace battery materials exempted until 2027 including graphite and some electrode powders.
 - EV OEMs to show proof of track and trace mechanisms that will be implemented to meet this compliance by 2027
- These exemptions could change subject to new directives from USG
- Proposed legislation: Critical Material Transparency and Reporting of Advanced Clean Energy (Critical Material TRACE) Act

CALi: Market competitiveness is a Cost+ approach

- Low emission extraction will be an inherent advantage
- Market opportunity in Europe for low-carbon battery production and critical materials with low ESG risks
- Export competitiveness → Strategic port access + Clean Ports + low carbon production
- Co-locating processing, pCAM and recycling can create strategic opportunities, lower transportation costs, lower emissions
- Mexico has analogous resources in proximity to Salton Sea: crossborder collaboration in "hub" development and achieving scale.

Global warming potential (measured by kg CO_{2} e) of different CAM production scenarios, differentiated by emissions driver (materials, freight, and process energy).

Source: Slattery et al. (under review)

Thank you!

adiramji@ucdavis.edu

