DOCKETED	
Docket Number:	25-SPPE-01
Project Title:	Vernon Backup Generating Facility
TN #:	262033
Document Title:	GIC Vernon LLC VBGF SPPE Application - Appendix E
Description:	N/A
Filer:	Scott Galati
Organization:	DayZenLLC
Submitter Role:	Applicant Representative
Submission Date:	2/28/2025 9:57:21 AM
Docketed Date:	2/28/2025

APPENDIX E

Preliminary Geotechnical Report

GEOTECHNICAL INVESTIGATION REPORT

for

Proposed Goodman Energy Park (GEP) 3049 and 3163 East Vernon Avenue Vernon, California

Prepared For:

GIC Vernon LLC 3333 Michelson Drive Suite 1050 Irvine, CA 92612

Prepared By:

Langan CA, Inc. 18575 Jamboree Road, Suite 150 Irvine, California 92612

December 18, 2024 Langan Project No.: 721040501

18575 Jamboree Road, Suite 150 Irvine, CA 92612 T: 949.561.9200 F: 949.561.9201 www.langan.com

New Jersey • New York • Connecticut • Massachusetts • Pennsylvania • Washington, DC • West Virginia • Ohio • Florida • Texas • Colorado • Arizona • Washington • California Athens • Calgary • Dubai • London • Panama

Technical Excellence Practical Experience Client Responsiveness

December 18, 2024

Matthew Davidson, Development Manager Matthew McGuire, Vice President Acquisition, Construction, Due Diligence GIC Vernon LLC 3333 Michelson Drive Suite 1050 Irvine, CA 92612

Geotechnical Investigation Report Proposed Project 3049 and 3163 East Vernon Avenue Vernon, CA Langan Project No.: 721040501

Dear Matthew and Matthew:

Langan CA, Inc. is pleased to submit this report summarizing our geotechnical investigation for the proposed project to be constructed at 3049 and 3163 East Vernon Avenue, Vernon, California.

Our services were performed in general accordance with our proposal for geotechnical engineering services dated May 2, 2023, and Change Order 11 dated August 23, 2024.

Sincerely, Langan CA, Inc.

Christopher J. Zadoorian, P.E, G.E., F. ASCE Associate Principal / Vice President

Ny

Robert 'Rory' Johnston, P.E, G.E, F. ASCE Managing Principal / Executive Vice President

BW:CJZ:

Document ID: \langan.com\data\LAX\data5\721040501\Outbound2024-12-13- Geotech Report\GIC Vernon - Geotechnical Investigation Report - 2024-12-17-REV-cjz.docx

 18575 Jamboree Road, Suite 150
 Irvine, CA 92612
 T: 949.561.9200
 F: 949.561.9201
 www.langan.com

New Jersey • New York • Connecticut • Massachusetts • Pennsylvania • Washington, DC • Ohio • Florida • Texas • Colorado • Arizona • Washington • California Athens • Calgary • Dubai • London • Panama

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	GENERAL	1
1.2	Prior Geotechnical Investigations	
2.0	SUBSURFACE EXPLORATIONS AND SUBSURFACE CONDITIONS	2
2.1	CURRENT GEOTECHNICAL INVESTIGATION	2
2.1	Prior Geotechnical Investigation	
2.2	Subsurface Conditions	
2.3	GROUNDWATER	
2.4	Field Percolation Testing	
2.5	Seismic Shear Wave Velocity Measurements	
3.0	GEOTECHNICAL LABORATORY TESTING	
3.1	CURRENT INVESTIGATION	
3.2	PRIOR INVESTIGATION	
4.0	GEOLOGIC AND SEISMIC HAZARDS EVALUATION	
4.1	REGIONAL TECTONIC AND LOCAL GEOLOGIC SETTING	
4.2	REGIONAL FAULTING & SEISMICITY	
4.3	GROUND SURFACE RUPTURE POTENTIAL	
4.4	LIQUEFACTION POTENTIAL	
4.5	LATERAL SPREADING AND GROUND LURCHING POTENTIAL	
4.6	Seismic (aka 'Dry') Settlement	
4.7	Earthquake-Induced Landslides	
4.8	Hydrocollapse	
4.9	FLOOD MAPPING	
4.10		
4.11		
4.12		-
4.13		
5.0	CONCLUSIONS	
5.1	COUNTY 111 STATEMENT	8
5.2	General	8
5.3	Foundations	
5.4	Seismic Design Considerations	9
5.5	FLOOR SLAB SUPPORT	9
5.6	TEMPORARY EXCAVATIONS	-
5.7	Corrosion Potential	-
5.8	Expansive Soils	
5.9	Materials for Fill	-
5.10		-
5.11		-
5.12	STORMWATER INFILTRATION	10
6.0	RECOMMENDATIONS	11
6.1	Foundations	11
6.2	Seismic Design	15
6.3	STORM WATER INFILTRATION	15
6.4	Pavement Design	16

6.5	Freestanding Retaining Walls	
6.6	FLOOR SLAB SUPPORT	
6.7	TEMPORARY VERTICAL CUTS AND CONSTRUCTION SLOPES	
6.8	EARTHWORK CONSIDERATIONS	
7.0	TESTING, INSPECTION AND OBSERVATION PROGRAM	20
7.0 8.0	TESTING, INSPECTION AND OBSERVATION PROGRAM	

FIGURES

- 1 SITE LOCATION MAP
- 2 PROJECT LOCATION MAP AND SITE PLAN (2A AND 2B)
- 3 CROSS SECTIONS A-A' THROUGH E-E' (3A THROUGH 3D)
- 4 HISTORICAL HIGH GROUNDWATER MAP
- 5 REGIONAL GEOLOGIC MAP
- 6 MAP OF MAJOR FAULTS AND EARTHQUAKE EPICENTERS (6A & 6B)
- 7 SEISMIC HAZARD ZONES MAP
- 8 ALLOWABLE DOWNWARD AUGER-CAST PILE CAPACITIES
- 9 ALLOWABLE UPWARD AUGER-CAST PILE CAPACITIES

APPENDICES

- A CURRENT FIELD INVESTIGATION AND GEOTECHNICAL LABORATORY TESTING
- B CURRENT CONE PENETROMETER TEST (CPT) SOUNDINGS
- C PRIOR FIELD INVESTIGATION BORINGS AND GEOTECHNICAL LABORATORY TESTING
- D PRIOR CONE PENETROMETER TEST (CPT) SOUNDINGS
- E RESULTS OF PRIOR FIELD PERCOLATION TESTING

1.0 INTRODUCTION

1.1 General

In accordance with the request of GIC Vernon, LLC (GIC), Langan CA, Inc. (Langan) performed a geotechnical investigation at the site and is pleased to submit this report summarizing the geotechnical investigation for the proposed development to be constructed at 3049 and 3163 East Vernon Avenue in Vernon, CA. The site location is shown on Figure 1.

The site is approximately 12 acres and located at the northeast corner of the intersection of East Vernon Avenue and Soto Street. The site is bound on the north by a vacant lot and the Los Angeles River Channel and on the east by existing industrial developments.

The site is within the southern half of a property formerly developed with an industrial facility that was recently demolished. The prior development included approximately eight industrial buildings and an engine room associated with the most recent site usage as a meat processing and distribution facility. Approximately five of the prior industrial buildings and the engine room were located within the site. An access tunnel crossing beneath East Vernon Avenue and Soto Street was also present on the south side of the site. Subterranean building and tunnel components within the site were demolished, including subterranean building levels, foundations, and floor slabs and the areas were subsequently backfilled, typically with processed miscellaneous base.

The meat processing and distribution facility was developed in the 1920's; prior to that time the site was developed with single-family residences.

GIC furnished Langan with a preliminary site plan dated August 21, 2024, prepared by Corgan. Based on a review of the plans and subsequent discussions, it is understood that the proposed development will include two data center buildings designated as Data Center Building 1 and Data Center Building 2, each requiring 49.5 Mega Watts of electrical capacity.

The data center buildings each have an approximately 94,500-square-foot plan area and include three above-grade levels. Adjoining generator yards will be constructed adjacent to each data center building and a substation will be constructed between the data center buildings. The locations of the proposed structures are shown on Figures 2A and 2B.

Langan is also the civil engineer on this project and based on the Langan drawings dated November 22, 2024, Table 1 summarizes the lowest finish floor level (LFFE) for proposed data center building, generator yard and the substation.

Project Component	LFFE (ft, mean sea level)
Data Center Building 1	197
Data Center Building 2	200
Generator Yard 1	196
Generator Yard 2	199
Substation	197

Table 1 – Planned LFF	Ε
-----------------------	---

Loading docks, drive lanes, and surface parking lots are also planned as part of the proposed development.

Chris Wong of PASE provided preliminary structural loading information for the proposed data center buildings. Typical dead-plus-live column loading is on the order of 800 to 1,200 kips for the proposed data center buildings.

Column loading for the proposed generators and/or substation were not available at the time this report was prepared. It is anticipated that axial loading on the screen walls will be relatively light; lateral loading on the screen wall foundation elements will likely include relatively large moments due to planned wall heights.

A large stockpile is located at the site due to processing (crushing) of the former Portland cement concrete (PCC) buildings and other site development features. The location of the existing stockpile is shown on Figure 2B.

The following sections of the report summarize the geotechnical investigation and the conclusions and recommendations for the proposed development.

1.2 Prior Geotechnical Investigations

Langan performed a geotechnical investigation at the site for a previously proposed development (industrial warehouse) and summarized the results in a report dated July 14, 2023. The prior investigation included six borings, seven cone penetration tests (CPTs), and four field percolation tests at the site.

The data from the prior field investigations, in conjunction with the data from our current investigation, was utilized to develop the conclusions and recommendations presented herein.

2.0 SUBSURFACE EXPLORATIONS AND SUBSURFACE CONDITIONS

2.1 Current Geotechnical Investigation

To supplement the data from our prior investigation, five exploration borings (B-17 through B-21) were drilled, and four CPT soundings (CPT-17 through CPT-20) were advanced to obtain additional data on the subsurface geotechnical conditions.

The borings were drilled to a depth of approximately 51½ feet bgs using truck-mounted hollow-stem auger drilling equipment and the CPTs were advanced to depths of approximately 9½ to 75½ feet bgs with the first two attempts at CPT-18 encountering refusal at approximately 9 and 11 feet. Seismic shear wave velocity measurements were performed during two of our CPT soundings (CPT-17 and CPT-20) as presented in Section 2.5.

During drilling, a Langan field representative maintained a log of the subsurface conditions encountered in each boring, collected relatively undisturbed samples, and performed standard penetration testing (SPT) at regular depth intervals. Bulk samples were also collected from the near surface in boring across the site.

Limited environmental field screening was also performed on samples collected during drilling using a photo-ionization detector (PID).

Upon completion of drilling, the borings were backfilled with bentonite cement grout and the ground surface was restored to the approximate pre-existing condition.

The locations of the borings and CPTs advanced during the recent investigation are shown on Figure 2B.

Logs of the exploration borings are presented in Appendix A and logs of the CPTs are presented in Appendix B.

2.2 Prior Geotechnical Investigation

As discussed above, Langan performed a geotechnical investigation for a previously proposed development at the site and summarized the results in a report dated July 14, 2023. Our prior investigation included six borings, seven cone penetration tests (CPTs), and four field percolation tests that are considered relevant to the subject development. The subsurface explorations were performed at the approximate locations shown on Figure 2B.

Our prior borings (B-1 through B-4, B-7, and B-8) were generally drilled to depths ranging from approximately 31½ to 36½ feet below the existing ground surface (bgs) and our CPTs (CPT-through CPT-6 and CPT-10) were advanced to approximately 48 to 64 feet bgs. Our field percolation wells (FP-1 and FP-3 through FP-5) were drilled to approximately 50 to 66 feet bgs.

Logs of the relevant prior exploration borings are presented in Appendix C and logs of the relevant prior CPTs are presented in Appendix D.

2.3 Subsurface Conditions

Asphaltic-concrete (AC) pavement ranging from ¼ inch to four inches in thickness was encountered in prior borings B-3, B-4, B-8, FP-1, and FP-5. Aggregate base materials were not encountered beneath the AC pavement, however, Portland cement concrete (PCC) three inches in thickness was encountered underling the AC pavement in the prior boring B-8.

PCC pavement ranging from five to seven inches in thickness was encountered in prior borings B-3 and B-4. Aggregate base materials 12 inches in thickness were encountered beneath the PCC in boring B-4; aggregate base materials were not encountered beneath the PCC in boring B-3.

Pavement encountered in the prior borings was demolished during demolition of the prior meat processing and distribution facility. Pavement was not encountered in the current borings.

Fill materials were encountered in the current and prior borings ranging in thickness from approximately one to 15 feet. The fill consists of engineered fill and artificial fill noting that for the purposes of this report, engineered fill is fill that was placed under our observation, documentation, and testing; and artificial fill is fill that we did not observe, document nor test during placement.

Engineered fill is present at the locations shown on Figure 2 and was encountered in boring B-18 and generally consists of dense to very dense sandy gravel noting that the fill materials are comprised of processed miscellaneous base (PMB) generated from demolition of the prior on-site structures.

Artificial fill generally consists of loose to medium dense sand, silty sand, and sand with silt with varying amounts of gravel.

The underlying native soils consist of alluvial deposits composed of loose to medium dense sand, silty sand to depths of approximately eight to ten feet bgs. The upper alluvial sand and silt were typically underlain by medium dense to dense sand, and silty sand, sand with silt, and clayey sand to depths of approximately 28 to 35 feet.

A fine-grained layer consisting primarily of stiff to hard clayey and silty soils was encountered in the borings and CPTs beneath the medium dense to dense sandy soils to depths of approximately 33 to 49 feet bgs.

Primarily dense to very dense sand, gravelly sand, clayey sand, and silty sand with varying amounts of gravel were encountered below the fine-grained layer to the maximum depth explored of approximately 75 feet bgs.

PID readings collected during drilling were typically non-detect and, in all cases, less than 2.5 parts per million.

Generalized depictions of subsurface conditions at the site are presented in Figures 3A through 3D.

2.4 Groundwater

Groundwater was not encountered in the current or prior borings to a maximum drilled depth of approximately 66 feet bgs.

Based on a review of the *Seismic Hazard Evaluation of the Los Angeles and South Gate 7.5-Minute Quadrangles, Los Angeles County, California, Seismic Hazard Zone Reports 029 & 34*, the historical high groundwater level (HHGWL) at the site is greater than approximately 60 feet bgs as shown on Figure 4.

2.5 Field Percolation Testing

Langan performed field percolation testing at three locations (FP-1, FP-4, and FP-5) in the prior investigation at or within close proximity to the site in general conformance with the guidelines presented in the County of Los Angeles Department of Public Works Geotechnical and Materials Engineering Division, Guidelines for Geotechnical Investigation and Reporting Low Impact Development Storm Water Infiltration, dated June 30, 2021 (Los Angeles County Guidelines; GS200.1).

The field percolation test borings were drilled to depths ranging from approximately 50 feet to approximately 66 feet bgs. Test wells were constructed in each boring by installing three-inch outside-diameter perforated PVC casing in the lower ten feet of the well and three-inch outside-diameter solid PVC casing within the remainder of the test well. Three inches of ¾-inch gravel were placed at the bottom of the well prior to installing the casing, and within the annular space between the boring side walls and the perforated casing was filled with sand.

Water was introduced to the subsurface soils through the PVC pipe and allowed to pre-soak for a period of approximately one hour. Based on the rate of infiltration during the presoak period, and guidance from the LACPWA manual, Langan performed falling head and constant head tests at the infiltration test locations.

Table 2 summarizes the prior field percolation test results. Please note that these values do not include reduction factors for the test procedure, site variability and long-term siltation plugging that are required for the design infiltration rate.

Field Percolation Test	Test Depth (Feet)	USCS Soil Type	Measured Field Percolation Rate (in/hr)
FP-1	55 - 65	SP/SP-SM	1.39
FP-3	43 – 50	SP/SW	15.87
FP-4	43 - 50	CL/SP-SM/SM	4.80
FP-5	39 - 50	SM	4.20

Table 2 – Field Percolation Test Results

The results of our field percolation testing are summarized in Appendix E, and recommendations for storm water infiltration including reduction factors and recommended design infiltration rates are presented in Section 6.3.

2.6 Seismic Shear Wave Velocity Measurements

Langan engaged Kehoe Testing and Engineering (Kehoe) to perform seismic shear wave velocity measurements during advancement of CPTs, CPT-17 and CPT-20. Shear wave velocity measurements were performed in both CPTs at approximately five-foot intervals to depths of approximately 55 and 53 feet bgs in CPT-17 and CPT-20 respectively.

The results of the measurements indicate an average shear wave velocity to the depths explored of 764 feet per second (ft/s) in CPT-17 and 867 ft/s in CPT-20.

The results of shear wave measurements are presented in Appendix B.

3.0 GEOTECHNICAL LABORATORY TESTING

3.1 Current Investigation

Langan performed the following laboratory tests on select samples taken during our site investigation:

- In-situ moisture content and dry density
- Maximum dry density and optimum moisture content
- Atterberg limits
- Consolidation
- Direct shear
- Corrosion
- Expansion index

The results of the current geotechnical laboratory tests are presented in Appendix A.

3.2 **Prior Investigation**

As part of the prior investigation, Langan performed the following geotechnical laboratory testing on select samples taken at or within close proximity to the proposed development:

- In-situ moisture content and dry density
- Maximum dry density and optimum moisture content
- Percent passing #200 sieve
- Consolidation
- Direct shear
- R-Value
- Corrosion
- Expansion index
- Particle size analysis

The results of the prior geotechnical laboratory testing are presented in Appendix C.

4.0 GEOLOGIC AND SEISMIC HAZARDS EVALUATION

4.1 Regional Tectonic and Local Geologic Setting

The site is located near the northwestern end of the Peninsular Ranges Geomorphic Province of Southern California. The Peninsular Ranges Geomorphic Province consists of a series of mountain ranges separated by northwest trending valleys that are subparallel to faults that branch from the San Andreas Fault.

More specifically, the site is within the Central Block of the Los Angeles Basin, an extensive sediment-filled depression bound by the San Gabriel Mountains and Santa Monica Mountains to the

north, and the Pacific Ocean on the west, the Palos Verdes Peninsula on the west, the Santa Ana Mountains on the southeast, and the Puente, San Jose, and Chino Hills on the northeast. The basin's structural history includes extension and strike-slip faulting, followed by oblique contraction via thrusting and strike-slip faulting (Yerkes et al, 1965).

Regional geologic maps of the area by Campbell et al. (2014) indicates the site is underlain by late Pleistocene-aged, alluvial fan deposits (map unit Qya₂). This soil is described as 'Unconsolidated, generally friable, stream-deposited silt, sand and gravel on flood plains, locally including related alluvial fans and streambeds.'

The data from the current exploration borings are generally consistent with the geologic conditions summarized by Campbell et al. (2014).

Figure 5 presents a regional geologic map depicting the surficial geologic deposits at the site.

4.2 Regional Faulting & Seismicity

The site is in an active seismic area that has historically been affected by generally moderate to occasionally high levels of ground motion. Therefore, the proposed development will probably experience moderate to potentially high levels of ground motion from nearby faults as well as ground motions from other area active seismic areas of the southern California region.

A search of the USGS ANSS Comprehensive Earthquake Catalog (ComCat) using a web-based Earthquake Archive Search and URL builder tool, confirmed that as of May 15, 2023, 40 earthquakes with magnitudes of 5.0 or greater have occurred within a 100-km radius of the site since 1800 as shown on Figure 6A and 6B.

4.3 Ground Surface Rupture Potential

Langan reviewed the *California Geological Survey (CGS) Earthquake Zones of Required Investigation map for the Los Angeles and South Gate Quadrangles, and the* City of Vernon General Plan - Safety Element. Based on the review, the site is not located within a State- or City-designated active fault zone.

Therefore, the potential for ground surface rupture is very low.

The site location relative to the mapped seismic hazard zones is presented on Figure 7.

4.4 Liquefaction Potential

Liquefaction generally occurs in saturated, loose to medium dense granular soil and soft to moderately firm non-plastic silts and clays because of strong ground shaking. As the density and/or particle size of the soil increases and as the confinement (overburden pressure) increases, the potential for liquefaction decreases.

The footprint of the proposed development is not located within a State- or City-designated liquefaction hazard zone as shown on Figure 7.

The historic high groundwater level for the site is sufficiently deep to preclude liquefaction potential during the design seismic event. Therefore, the potential for liquefaction at the site is very low.

4.5 Lateral Spreading and Ground Lurching Potential

Lateral spreading and ground lurching are seismically induced slope instability conditions that may occur where either liquefaction potential is present in conjunction with a nearby slope wherein a liquefiable layer daylights within an exposed slope face or cracks form on the slope surface during a seismic event due to relatively loose soil exposed on the slope.

The project site is generally flat, and the subsurface soils are not susceptible to liquefaction. Therefore, the potential for lateral spreading and ground lurching at the site is negligible.

4.6 Seismic (aka 'Dry') Settlement

Seismic (dry) settlement can occur in loose to medium dense, granular soil because of strong ground shaking.

Loose and/or undocumented sand and silty sand were encountered in the upper approximately eight to 10 feet bgs at the site. The upper loose soils are subject to seismically induced settlement and the results of the preliminary analysis indicates approximately ½ inches may occur in these soils due to strong ground shaking at the site.

4.7 Earthquake-Induced Landslides

The site is not located in a zone of required investigation for Earthquake-Induced Landslides per CGS's Earthquake Zones of Required Investigation, Los Angeles, and South Gate Quadrangles, as shown on Figure 7.

The site is relatively flat and there are no sloped boundary conditions. Thus, the potential for earthquake-induced landsliding is negligible at the site.

4.8 Hydrocollapse

Hydro-collapse is a phenomenon that occurs when loose, predominately sandy soils are subjected to saturated conditions. The loose nature of these soils undergoes a decrease in volume (i.e. densification) when the particle-to-particle contact is disturbed with the introduction of pore water, resulting in settlement that could manifested to the ground surface.

Based on data available from the current and prior laboratory testing, the upper loose granular soils are subject to hydro-collapse if saturated.

4.9 Flood Mapping

Based on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Number 06037C1639F and 06037C1638G, the site is located outside the 0.2 percent annual chance floodplain.

4.10 Tsunamis, Seiche, and Dam Inundation

Based on information and maps available from the CGS, the site is not located within a Tsunami Inundation Area. Based on review of adjacent water bodies, the site is not subject to inundation from seiche. Based on Review of the City of Vernon General Plan, the site is located within inundation areas from the Sepulveda and Hansen Dams. Inundation scenarios from either of these dams are not available from the Dam Breach Inundation Map Web Publisher hosted by the California Division of Safety of Dams (DSOD).

4.11 Subsidence

Land subsidence may be induced from withdrawal of oil, gas, or water from wells. Based on a search of the CalGEM (formerly known as Division of Oil, Gas, and Geothermal Resources [DOGGR]) GIS Well Finder online tool, the site is not located within an Oil/Gas field; active and inactive oil or gas wells are not located onsite.

According to our review of the available information from CalGEM, the likelihood of land subsidence caused by oil or gas withdrawal from oil wells is very low.

4.12 Expansive Soils

Expansive soils swell and shrink when the moisture content in the soil changes due to cyclic wet/dry weather cycles, installation of irrigation systems, change in landscape plantings, or changes in grading. Swelling and shrinking soils can result in differential movement of structures including floor slabs and foundations, and site work including hardscape, utilities, and sidewalks.

Based on the results of testing performed on samples collected from our current borings and prior borings in or within proximity to the site, the upper on-site soils have a very low potential for expansion.

4.13 Methane Zone

Based on a review of the Solid Waste Information Management System – online viewer, by Los Angeles County, the site is not located within 300 feet of an oil or gas well, or within 1,000 feet of a methane producing site.

5.0 CONCLUSIONS

5.1 County 111 Statement

The proposed development is feasible from a geotechnical perspective and the planned work will not adversely impact adjacent properties nor developments. Additionally, adjacent properties and developments will not have an adverse impact on the proposed development.

The proposed development will require new construction and appropriate care should be taken to avoid disturbance to the surrounding properties.

5.2 General

The site is generally free from geologic or seismic hazards that would preclude the proposed development and the proposed development is considered feasible from a geotechnical perspective.

The site is subject to strong ground shaking that would result from an earthquake occurring on a nearby or distant fault source; however, this hazard is common in Southern California and can be mitigated by following the seismic design requirements of the 2022 California Building Code (CBC).

The planned industrial building development is not subject to landslide hazards, will not result in settlement or slippage and will not adversely affect the geotechnical stability of the area beyond the site limits.

5.3 Foundations

5.3.1 Data Center Buildings

Undocumented fill and loose native soils are generally present within the upper five to 10 feet at the site and these soils are not suitable for support for the proposed data center buildings.

One method to support the proposed data center buildings would be deep foundations that extend through the upper fill and/or loose native soils. A suitable deep foundation method for the given site conditions is auger-cast piles (ACPs).

ACPs are constructed by advancing a flight auger to the design ACP tip elevation and injecting grout through the auger tip beginning from the tip elevation. As the grout is injected, the auger is rotated in reverse of the installation direction so that the side walls of the ACP shaft are never unsupported (i.e. the stresses are not relaxed). Once the auger is fully withdrawn and the wet grout is in-place, reinforcing steel is placed within the wet grout.

Full-scale, pre-production load testing is required to verify design capacity recommendations for ACPs, in accordance with CBC Section 1810.3.3.

5.3.2 Generator Yards

Undocumented fill and loose native soils are generally present within the upper five to ten feet at the site and these soils are not suitable for support for the proposed generator yards.

Noting that the average applied bearing pressure over the generator yard imposed by the generator frames is relatively low, removal and re-compaction of the undocumented fill and loose native soils may be performed, and the proposed generator pads may be supported on a mat foundation established on properly compacted fill soils.

Alternatively, generator yards may be supported on ACPs.

5.3.3 Generator Yard Screen Wall

The proposed generator yard screen wall may be supported on ACPs noting that it is anticipated that lateral loading demands will govern the foundation design.

5.3.4 Substation

Foundation design of the proposed substation is beyond the scope of this investigation; however, it is anticipated that removal and re-compaction of the upper fill and native soils would allow the use of a mat foundation to support of the proposed substation.

5.4 Seismic Design Considerations

Based on the shear wave velocity measurements, the site may be designated as Site Class D in accordance with Table 20.3-1 of ASCE 7-16.

5.5 Floor Slab Support

The upper undocumented fill soils and loose sandy soils are not suitable for support of the industrial building floor slabs.

The proposed industrial building floor slabs may be supported on a minimum of five feet of properly compacted fill soils.

Where finish flooring is planned, a capillary break section should be installed beneath the floor slab to mitigate the potential for moisture transmission through the slab.

5.6 Temporary Excavations

Temporary excavations are feasible in the on-site soils provided the recommendations presented herein are followed.

Temporary vertical cuts are generally not feasible in the upper undocumented fill and/or loose native soils however may be performed within properly compacted fill provided the recommendations presented herein are followed.

5.7 Corrosion Potential

The results of the current and prior corrosion testing are summarized in Table 3.

Boring (Depth)	Boring (Depth) Firm		Resistivity (ohm-cm)	рН	Sulfate (Percent by Weight)	Chloride (Percent by Weight)
B-3 (0 to 5 feet)	Langan (2023)	Silty Sand	4,700	7.6	0.0168	0.0096
B-17 (0 to 5 feet)	Langan (2024)	Sand with Silt	1,400	7.8	0.0213	0.0168
B-18 (35 feet)	Langan (2024)	Sandy Clay	860	7.7	0.0082	0.0254

The results of the sulfate testing indicates that the on-site soils be classified as exposure category S_0 for sulfates and exposure category C_1 for chlorides in accordance with American Concrete Institute (ACI) Table 19.3.1.1.

It is recommended that an engineer specializing in corrosion be engaged to evaluate the need for provisions to protect buried metallic piping based on the results of the corrosion testing.

5.8 Expansive Soils

Expansive soils were not encountered during the current or prior investigations at the site and are not anticipated to impact the proposed development.

5.9 Materials for Fill

On-site soils undocumented fill and loose native sand are suitable for reuse in the required fills.

Recommendations for grading and site preparation are presented in Section 6.8.

5.10 Groundwater

Groundwater was not encountered in the current or prior explorations and is will not impact mass grading.

For the purposes of stormwater design, the current groundwater level at the site is estimated to be present at a depth of approximately 100 feet bgs.

5.11 Shrinkage and Subsidence

Typically, excavation of native materials and replacement of those materials as compacted fill results in a nominal loss of volume (shrinkage) because the materials are typically placed at a higher density than in their naturally deposited state.

Subsidence may occur when the weight of the properly compacted fill is greater than the weight of the pre-existing soil conditions, due to the increased density and/or locally grade changes above existing ground surface level.

The on-site soils will exhibit a degree of shrinkage and subsidence when excavated and re-used as properly compacted fill. It is estimated that a total combined shrinkage and subsidence of ten to 15 percent may be realized during the grading activities.

5.12 Stormwater Infiltration

Based on the City of Vernon General Plan, stormwater runoff is managed through local and Los Angeles County Flood Control District storm drainage systems. The discharges are regulated under an existing NPDES permit for municipal stormwater, which covers most of Los Angeles County, including Vernon. The permit sets guidelines for monitoring discharges, maintaining water quality, implementing best management practices, and submitting reports to the Regional Water Quality Control Board.

To address concerns about contamination from stormwater runoff in urban areas, the Los Angeles Regional Water Quality Control Board seeks cooperation from co-permittees to capture and treat runoff on individual properties during redevelopment. The board's policy emphasizes the infiltration of stormwater whenever possible. However, implementing this approach in Vernon is challenging due to the city's industrial nature and risk of groundwater impacts.

Concurrent with the prior geotechnical investigation, Langan also performed a Phase II environmental investigation for the prior development and the results the Phase II investigation were summarized in a report dated May 30, 2023. Based on information available from the Phase II investigation, limited petrochemical may be present within the soils near the top of fine-grained soil layer present throughout the site, typically between 25 and 33 feet bgs. Therefore, stormwater infiltration may not be feasible at the site above these depths.

Noting the fine-grained later typically extends to depths of approximately 33 to 49 feet bgs, stormwater infiltration is feasible below the fine-grained layer via deep dry wells that utilized solid piping to pass through the fine-grained layer and perforated casing below.

Recommendations for stormwater infiltration are presented in Section 6.3.

6.0 **RECOMMENDATIONS**

6.1 Foundations

6.1.1 Data Center Building Foundations – Auger-cast Piles (ACP)

The Goodman Energy Park may be supported on auger-cast piles (ACP) that extend through the upper fill and/or loose native soils.

Langan developed axial ACP capacities using the procedure outlined in Federal Highway Administration (FHWA) publication number FHWA NHI-18-024, Drilled Shafts: Construction Procedures and Design Methods dated September 11, 2018.

Allowable ASD and LRFD axial pile capacities for 18- and 24-inch diameter ACPs are presented in Figures 8 (downward) and 9 (upward) for shafts spaced at least three diameters on-center. The recommended allowable axial ACPs may be increased by one-third when considering short term wind and seismic loading conditions.

Allowable axial capacities for ACPs spaced closer than three diameters on-center should be reduced to account for potential group action. Reduction factors for group action once ACP spacing and configurations are available, can be provided, as required.

Static and dynamic settlement of ACPs is estimated to be on the order of ½ inch or less.

To confirm the capacities presented in Figure 8 and 9, load testing should be performed in general accordance with Section 1810.3.3 of the 2022 CBC as recommended below.

6.1.2 Lateral Capacities

Lateral loading may be resisted by ACPs and by passive resistance from the planned ACP caps.

Langan computed lateral capacities for 18- and 24-inch diameter ACPs using the software program LPile by Ensoft for fixed head conditions for ½-, and 1-inch deflection. The results of the analysis are presented in Table 4.

	18-inch I	Diameter	24-inch Diameter	
Parameter	¹ ⁄ ₂ -inch Deflection	1-inch Deflection	¹ ⁄2-inch Deflection	1-inch Deflection
Shear (kips)	44	54	68	81
Maximum Moment (inch-kips)	1,800	2,000	3,100	3,200
Depth to Maximum Moment (feet)	0	0	0	0
Depth to Zero Moment (feet)	18	18	20	20

Table 4 – 18-inch and 24-Inch Diameter Auger-Cast Piles – Fixed Head

The recommended lateral capacities presented in Table 4 may be used for lead ACPs in the direction of loading, and for ACPs spaced less than six diameters, reductions in the above recommended lateral capacities should be implemented due to group action. Table 5 presents reduction factors for center-to-center spacing of three to six diameters.

Table 5 – Reduction Factors for Lateral Group Action

	Pile Center-to-Center Spacing					
Pile	3D	4D	5D	6D		
Lead Pile	1.0	1.0	1.0	1.0		
Trailing Piles	0.30	0.50	0.75	0.90		

In addition to the ACP capacities presented in Table 5, passive pressure may be relied on between the soil and both pile caps and grade beams.

As an additional means to resist lateral loading, an ultimate coefficient of friction equal to 0.6 may be used in conjunction with an ultimate passive pressure of 800 psf per foot of embedment of ACP caps provided the passive pressure is reduced by 0.5 to account for the deformation necessary to mobilize the full passive resistance.

An allowable coefficient of friction equal to 0.4 may be used in conjunction with an allowable passive pressure of 400 psf per foot of embedment without reduction.

The contribution of the top one foot of the triangular-shaped passive pressure distribution should be neglected when computing passive resistance so that the resulting passive pressure will be trapezoidal-shaped.

6.1.3 **Pre-production Load Testing – ACPs**

To verify or modify the design capacities presented in this report, compressive load testing as outlined in Section 1810.3.3 of the 2022 CBC, shall be performed in accordance with ASTM D 1143, Procedure B. Loading shall be applied in increments of ten percent of the maximum test load (200-percent of the design capacity) up to 200-percent of the design load.

Each load interval shall be maintained so that the rate or axial movement does not exceed 0.01 inch per hour for a maximum of 2 hours, and the minimum total loading time should be at least 12 hours. If after the minimal 12 hour loading time, the axial movement at 200-percent does not exceed 0.01 inch per hour, remove the load in decrements of 25 percent of the maximum test load with 10 minutes between decrements. In this case, the test will be considered passing.

If failure occurs during the loading, the failure load (or maximum possible load) shall be maintained until the axial movement equals 15-percent of the pile diameter. Once the 200-pecent loading is

applied and the overall test duration is at least 12 hours, unloading may be performed. Alternatively, loading may be incrementally increased to failure as presented in ASTM D 1143, Procedure B.

Pre-production load testing shall be performed after the concrete has cured sufficiently. Concrete cylinders should be collected and tested at 7- and 28-day compressive strengths, to provide confirmation of material strength. The piles tested in pre-production shall be sacrificial and not used as a part of the foundation system.

The allowable recommended axial capacities should be determined using one of the methods cited in Section 1810.3.3.1.3.

As requested, Langan can work with the general contractor and their foundation drilling subcontractor to develop a pre-production load testing program that replicates the planned production installation methods and utilizes the same equipment and materials. Upon completion of load testing program, a letter will be issued, either confirming or updating the recommended axial capacities presented herein.

6.1.4 Production Load Testing – ACPs

A minimum of five percent of production ACPs should be proof tested to a test load of 160 percent of the design value.

Proof testing should include predetermined load increments with a minimum of 10-minute holding period for each load. Readings should be taken at 0, 1, 3, 6, and 10 minutes. If the difference between the 1- and 10-minute reading is less than 0.1 inch during the loading, the test is deemed acceptable. If the difference is more than 0.1 inch, the holding period should be extended to an additional 60 minutes, and the movements should be recorded at 15, 20, 25, 30, 45, and 60 minutes. Under 60-minute hold time, the load test is considered acceptable if less than 0.1 inches of movement occurs.

In addition, all production ACPs should be integrity tested using a non-destructive method such as gamma-gamma logging or thermal integrity profiling.

Detailed proof testing procedures should be provided in a submittal prior to construction. We will work in collaboration with the subcontractor to provide additional testing requirements, as necessary.

Production load testing shall be performed after the concrete has cured sufficiently. Concrete cylinders should be collected and tested at 7- and 28-day compressive strengths, to provide confirmation of material strength.

Detailed proof testing procedures should be provided in a submittal prior to construction. Langan will work in collaboration with the subcontractor to provide additional testing requirements, as necessary.

6.1.5 Construction Considerations – ACPs

Drilling for ACPs may be performed with conventional equipment in good working condition. Care should be taken during installation to avoid contamination of the ACP with soil and rates of auger advancement and withdraw should be consistent among the ACPs, based on the results of the load testing.

The PMB fill materials includes gravel that may result in difficulty drilling. Special provisions should be made to advance augers through PMB fill where present.

Cold joints should not be constructed within the ACPs and reinforcing steel should be installed as soon as possible after placement of grout noting that the grout in the lower portion of the ACP shaft will begin to cure due to the pressure of the overlying grout column. If the grout begins to cure, it will be difficult to install the reinforcing steel to the planned depth and the allowable capacities of the ACP may be impacted.

6.1.6 Generator Yard

6.1.6.1 General

Two alternatives for foundation support for the proposed generator yard are: a mat foundation or auger-cast piles. Recommendations for each alternative are presented below.

6.1.6.2 Mat Foundation

Undocumented fill and loose native soils are generally present within the upper five to ten feet at the site and these soils are not suitable for support for the proposed data center building.

The proposed generator frame structures may be supported on a mat foundation established on properly compacted fill soils.

The existing undocumented fill soils should be removed and replaced with properly compacted fill that should extend a minimum of five feet below the bottom of the mat foundation and a minimum of five horizontal feet beyond the outside edges of the mat foundation. The lower 18 inches of the fill should consist of crushed miscellaneous base (CMB) or equivalent.

The mat foundation may be designed for an allowable bearing capacity equal to 1,500 psf and using a modulus of subgrade reaction of 90 pounds per cubic inch (pci). Langan can review the subgrade modulus with the structural engineer once foundation modeling results are available and provide an updated subgrade modulus in our final report.

It is anticipated that the static settlement of the mat foundation supported on properly compacted fill as recommended herein will be on the order of ½ inch or less and that differential static settlement will be on the order of ½ inch or less.

Seismic settlement on the order of ½ inch or less may occur in the upper loose native soils due to strong ground shaking so that the total static-plus-dynamic settlement will be on the order of 1 inch and total static-plus-dynamic differential settlement will be on the order of one inch or less.

6.1.6.3 Auger-Cast Piles

As an alternative to utilizing a mat foundation, the proposed generator yard may also be supported on auger-cast piles. Axial capacity recommendations presented section 6.1.1 are applicable for proposed generator yard foundations.

For preliminary design consideration, the lateral design recommendations presented in Table 3 may also be considered applicable. However, if ACPs are used, Langan should be provided with lateral loading demands to confirm if values presented in Table 3 are applicable or if updated values are needed.

The results of the load testing recommended in Section 6.1.3 will be applicable to ACPs for generator yard, if utilized.

Construction considerations presented in Section 6.1.4 are also applicable for ACPs for the generator yard, if utilized.

6.1.7 Generator Yard Screen Wall – ACPs

The proposed screen wall may be supported on auger-cast piles (ACP) that extend through the upper fill and/or loose native soils. Axial capacity recommendations presented section 6.1.1 are acceptable for generator yard screen wall.

Langan can provide lateral design recommendations for the proposed generator yard screen wall once lateral demands (shear and moment) are provided.

The results of the load testing recommended in Section 6.1.3 will be applicable to ACPs for generator yard screen walls, if utilized.

Construction considerations presented in Section 6.1.4 are also applicable for ACPs for the generator yard screen wall, if utilized.

6.2 Seismic Design

The site may be classified in accordance with Chapter 20 of ASCE-7-16 as Site Class D. We anticipate that the fundamental period of the proposed buildings will allow the Exemption 2 of Section 11.4.8 of ASCE-7-16, and therefore it is not anticipated that a site-specific ground motion study will be required. California Building Code-prescribed seismic design parameters are presented in Table 6.

Design Parameter	Value
MCE _R Ground Motion at Short Periods, S₅	1.841
MCE _R Ground Motion at 1 Second Period, S ₁	0.655
Site Class	D
Site Amplification Factor at 0.2 second, F _a	1.0
Site Amplification Factor at 1.0 second, F_v	2.5
Site-Modified Spectral Acceleration Value at Short Periods, S_{MS}	1.841
Site-Modified Spectral Acceleration Value at 1 Second Period, S_{M1}	1.638
Design Spectral Response Acceleration at short periods, S _{DS}	1.227
Design Spectral Response Acceleration at 1 second period, S_{D1}	1.092
MCE_{G} Peak Ground Acceleration, PGA _M	0.866

 Table 6 – CBC Prescriptive Seismic Design Parameters

The recommended mapped values of F_v , S_{M1} , and S_{D1} have been increased by 50 percent in accordance with the exception of Section 11.4.8.1 of Supplemental No. 3 to ASCE 7-16.

6.3 Storm Water Infiltration

Storm water infiltration may be performed using dry wells that introduce water to the primarily granular soils encountered 39 to 55 feet bgs in the field percolation wells. Recommended design infiltration rates are summarized in Table 7.

Field Percolation Test #	Test Depth (Feet)	USCS Soil Type	Measured Field Percolation Rate (in/hr)	Reduction Factor	Design Infiltration Rate (in/hr)
FP-1	55 - 65	SP/SP-SM	1.39	3	0.46
FP-3	43 – 50	SP/SW	15.87	3	5.29
FP-4	43 - 50	CL/SP-SM/SM	4.80	3	1.60
FP-5	39 - 50	SM	4.20	3	1.40

Table 7 – Field Percolation Test Results

6.4 Pavement Design

6.4.1 General

New pavement sections should be established on at least 12 inches of properly compacted nonexpansive fill soils. Please note that most of the near-surface native soil present onsite is considered non-expansive. Langan's field representative can provide visual confirmation of this during grading and supplemental laboratory testing may be performed if deemed necessary.

The required pavement and base thicknesses will depend on the expected wheel loads, traffic index (TI), and the R-value of the subgrade soils. Based on laboratory test results, the R-value of the onsite subgrade soils is on the order of 72 to 77; however, based on the guidelines presented in the Caltrans Highway Design Manual, the R-value used in design should be limited to no more than 50. Therefore, an R-value of 50 was used for the design of pavement sections established near existing grade.

Given the high R-Value of the subgrade soils, asphalt concrete (AC) and Portland cement concrete (PCC) may be constructed directly on the properly compacted non-compacted fill soils noting that clayey soils should not be used as fill within two feet of pavement sections.

Recommendations for AC and PCC constructed on aggregate base (AB) materials and directly on the properly compacted non-compacted fill soils is presented below.

6.4.2 Asphalt-Concrete Pavement Design

AC pavement for surface parking shall be designed in accordance with the CALTRANS method. Tables 8A and 8B summarize our AC pavement recommendations for assumed TIs of 5, 6, 8 and 9.

Traffic Use	ті	AC (inches)	AB (inches)
Parking Areas	5	3	4
Passenger Vehicle Drive Lanes	6	4	4
Entry / Exit Drive Lanes	8	6	4
Loading Docks	9	6	7

Table 8A – AC Pavement Design Recommendations with AB

Traffic Use	ті	AC (inches)
Parking Areas	5	5
Passenger Vehicle Drive Lanes	6	6
Entry / Exit Drive Lanes	8	8
Loading Docks	9	9

Table 8B – AC Pavement Design Recommendations without AB

Recommended pavement and aggregate base thickness for other Tis can be provided upon request. Careful inspection is recommended to check that the recommended thickness or greater is achieved and that proper construction procedures are followed.

6.4.3 Portland Cement Concrete Pavement Design

Tables 9A and 9B summarize the PCC pavement recommendations for assumed TI of 5, 6, 8, and 9 based on minimum compressive strength of 3,000 psi for the PCC.

Table 9A – PCC Pavement Design Recommendations

Traffic Use	ті	PCC (inches)	AB (inches)
Parking Areas	5	4	4
Passenger Vehicle Drive Lanes	6	5	4
Entry / Exit Drive Lanes	8	5	6
Loading Docks	9	5	8

Table 9B – PCC Pavement Design Recommendations

Traffic Use	ті	PCC (inches)
Parking Areas	5	5
Passenger Vehicle Drive Lanes	6	6
Entry / Exit Drive Lanes	8	7
Loading Docks	9	8

Reinforcing steel is not considered necessary for the PCC from a geotechnical standpoint. Careful inspection is recommended to check that the recommended PCC thickness or greater is achieved and that proper construction procedures are followed.

Control joints should be installed at 15-foot intervals and cold joints should be spaced at approximately 45-foot intervals.

6.5 Freestanding Retaining Walls

6.5.1 Freestanding Wall Foundation Design

Freestanding walls may be supported on two feet of properly compacted select fill soils. If the exposed excavation bottom is not firm and unyielding, bottom stabilization will be required as recommended herein.

Continuous freestanding wall footings a minimum of two feet wide and established at least 18 inches below the lowest adjacent grade or top of floor slab within properly compacted select fill may be designed using an allowable bearing pressure equal to 2,500 pounds per square foot (psf).

The allowable bearing pressure may be considered a net bearing pressure that includes the considerations for the weight of the foundation and any soil above the footing.

The recommended allowable bearing pressure may be increased by one-third when considering short term loading.

It is estimated that the total settlement for freestanding retaining walls designed as recommended herein will be on the order of approximately 1 inch or less and the differential settlement between adjacent columns will be on the order of 1/4 inch or less.

To resist lateral loading, an ultimate coefficient of friction equal to 0.4 may be used in conjunction with an ultimate passive pressure of 800 psf per foot of embedment of continuous footings provided the passive pressure is reduced by 0.5 to account for the deformation necessary to mobilize the full passive resistance.

An allowable coefficient of friction equal to 0.4 may be used in conjunction with an allowable passive pressure of 400 psf per foot of embedment without reduction.

The contribution of the top one foot of the triangular-shaped passive pressure distribution should be neglected when computing passive resistance so that the resulting passive pressure will be trapezoidal-shaped.

6.5.2 Freestanding Wall Design Lateral Earth Pressures

Drained, freestanding retaining walls should be designed to resist an equivalent fluid pressure equal to 35H psf. Free standing walls in excess of six feet (retained height) should also be designed to resist a triangular-shaped seismic lateral earth pressure distribution equal to 15H psf.

Additionally, if the surface at the top of the wall is sloped, the recommended lateral earth pressures should be increased as indicated in Table 10.

Slope Inclination at Top of Wall	Increase in Lateral Earth Pressure		
(H:V)	(percent)		
1:1	200		
1.5:1	165		
2:1	150		

 Table 10 – Lateral Earth Pressures Increases

6.5.3 Freestanding Retaining Wall Backdrainage

Permanent freestanding retaining walls should be constructed with adequate back-drainage to prevent the buildup of hydrostatic pressure behind the walls. It is recommended that the use of drainage boards on the back of the walls, in conjunction with conventional weep holes at the base of the walls, be utilized to provide adequate drainage.

6.6 Floor Slab Support

The proposed data center building floor slab may be established on a minimum of five feet of properly compacted select fill from bottom of floor slab. The select fill should include a minimum 18-inch-thick layer of crushed miscellaneous base (CMB) placed at the bottom of the required excavation and properly compacted fill soil should then be placed on the CMB. The 18-inch-thick

layer of base is included within the minimum five feet of properly compacted select fill and is not in addition to it.

The existing undocumented fill and loose native soils below the recommended CMB may remain inplace noting some mitigation of the excavation bottoms may be required to provide a firm working surface for placement engineered fill.

To reduce the potential of moisture transfer through the building floor slab that could damage finish flooring, a capillary break section should be installed beneath the building floor slab. The capillary break section should consist of six inches of gravel, or equivalent, underlying a 15-mil HDPE membrane. The membrane should be placed between the gravel layer and the building floor slab.

Please note that if finish flooring is not planned the capillary break may be omitted.

6.7 Temporary Vertical Cuts and Construction Slopes

Temporary vertical cuts are feasible in the on-site soils. In general, temporary vertical cuts should not exceed 4 feet in height. It's unlikely that temporary vertical cuts will stand within the existing granular fill soils.

Temporary, unsurcharged slopes may be excavated into the on-site fine-grained soils and properly compacted select fill; however, these slopes should not exceed a 1½ H:1V gradient and should not exceed 15 feet in height.

Temporary construction slopes should be protected from erosion by directing surface water away from the top of the slope, by placing sandbags at the top of the slopes and vertical cuts, and/or covering the slopes with plastic sheeting during rain events.

6.8 Earthwork Considerations

6.8.1 General

Earthwork will include removal and re-compaction of the existing undocumented fill and underlying loose native soils for floor slab support of the data center buildings, for foundation support of the generator yard, and for presumably the substation building.

A minimum of five feet of removal and re-compaction from bottom of foundations and floor slabs will be required for suitable foundation and floor slab support. Note removal of more than five feet for floor slab support may not be necessary provided CMB is used for fill materials as presented in Section 6.6.

Recommendations for mat foundation and floor slab support are presented in Sections 6.1.6 and 6.6 respectively.

Demolition of existing buildings, foundations and floor slabs, pits, ramps, and other existing subterranean features will result in disturbance to the existing underlying soils.

Exposed excavation bottoms should be evaluated by our field representative. Any zones of loose, soft, excessively moist, or otherwise unsuitable materials should be removed and replaced with suitable fill materials including compacted fill, crushed rock and/or sand-cement slurry. Langan will review such occurrences on a case-by-case basis.

All deleterious materials should be removed from excavation bottoms prior to placement of foundation concrete, floor slab sections, or fill.

6.8.2 Materials for Fill

On-site soils are suitable for re-use in the required fills. Additionally, crushed PCC and AC resulting from demolition of existing on-site buildings, foundations, floor slabs and other features may be re-used in required fills provided these materials are thoroughly blended with on-site soils at a maximum of a 3:1 (on-site soils-to-crushed PCC / AC) ratio.

In general, all fill soils should be free of organic and other deleterious materials and have a maximum particle size no greater than 3 inches.

Imported fill material should be primarily non-expansive and granular in nature and reviewed by our field technician prior to import to the site.

6.8.3 Fill Placement and Compaction

Fill soils shall be moisture conditioned as recommended herein, placed in loose lifts not exceeding 8-inches in thickness and mechanically compacted.

Fine-grained fill soils should be moisture conditioned to 2 to 4 percent above the optimum moisture content and compacted to at least 90 percent of the maximum dry density obtainable per ASTM D-1557. It is recommended that relatively light-weight compaction equipment be utilized when working in fine-grained soils.

Granular soils should be moisture conditioned to 0 to 2 percent above the optimum moisture content and compacted to at least 95 percent of the maximum dry density obtained per ASTM D-1557.

Crushed rock if used for bottom stabilization should be densified using vibratory methods.

6.8.4 Site Drainage

Proper drainage should be always maintained. Ponding or trapping of water in localized areas can cause differing moisture levels in the subsurface soil. Drainage should be directed away from the tops of slopes. Erosion protection and drainage control measures should be implemented during periods of inclement weather. While raining, backfill operations may need to be restricted to allow for proper moisture control during fill placement.

7.0 TESTING, INSPECTION AND OBSERVATION PROGRAM

Geotechnical testing and observation during construction is a continuing part of our geotechnical consultation. As required by the City of Vernon and in accordance with good practice, our representative should perform geotechnical observation and testing during the following primary activities:

- Installation and documentation of test and production ACPs
- Observation and documentation of recommended removal and recompaction
- Placement and compaction of backfill materials
- Observation and probing of excavation bottoms
- Installation of capillary break sections
- Installation and removal of temporary shoring
- Subgrade preparation and placement of aggregate base materials for pavement sections
- Observation and approval of foundation excavation bottoms
- Placement and compaction of utility trench backfill

In addition, development of a load test program in collaboration with the foundation contractor will be required and we will need to issue a supplemental letter summarizing the results of the load testing. Our letter will confirm or update our ACP axial capacity recommendations.

We will prepare daily field reports and summary reports at the end of the project that document that geotechnical related construction work was performed in general accordance with the approved geotechnical recommendations.

8.0 LIMITATIONS

The conclusions and recommendations provided in this report are based on subsurface conditions inferred from available boring data, as well as project information provided to date.

This report was prepared for GIC Vernon LLC and their design consultants and contractors for use in the proposed development.

If changes to the proposed development are made, we should be notified to review our conclusions and recommendations.

We should be retained during the construction phase to perform necessary geotechnical observations and testing in accordance with good geotechnical engineering practice.

Information on subsurface strata and groundwater levels shown on the logs represent conditions encountered only at the locations indicated and at the time of investigation.

9.0 CLOSING

We sincerely appreciate the opportunity to provide professional services for this project and look forward to working with you on this project.

Sincerely,

Langan CA, Inc.

Brandon Watkins Senior Staff Engineer

Christopher J. Zadoorian signa Associate Principal / Vice President

Claudia Rangel Senior Staff Engineer

Robert 'Rory' Johnston signed 12/18/24 Managing Principal / Executive Vice President

FIGURES

LEGEND: PROPOSED GROUND SURFACE

EXISTING GROUND SURFACE PROPOSED FILL

ENGINEERED FILL (OBSERVED BY LANGAN)

ARTIFICIAL FILL (af)

PREDOMINATELY FINE GRAINED SOIL

PREDOMINATELY COARSE GRAINED SOIL

LFFE = 200.0 LOWEST FINISHED FLOOR ELEVATION (FEET)

NDITIONS	50 2	5 () 	50
INING -	SCALE	IN FEET	(HORIZONTAL)
" SHEET	25	() 	25
	SCALE	IN FEE	ET (VERTICAL)	-

Filename: \\langan.com\data\LAX\data5\721040501\Project Data_Discipline\Geotechnical\CAD\721040501- GEP VERNON Geotech Figures.dwg Date: 12/13/2024 Time: 12:17 User: crangel Style Table: Langan.stb Layout: XSC

Filename: \\langan.com\data\LAX\data5\721040501\Project Data_Discipline\Geotechnical\CAD\721040501- GEP VERNON Geotech Figures.dwg Date: 12/13/2024 Time: 12:19 User: crangel Style Table: Langan.stb Layout: XSD

Filename: \\langan.com\data\LAX\data\i721040501\Project Data_Discipline\Geotechnical(CAD)- GEOSEISMIC FIGURES\GEOSEISMIC FIGURES.dwg Date: 12/12/2024 Time: 15:23 User: vramirez Style Table: Langan.stb Layout: HHGW

eotechnical/CADI- GEOSEISMIC FIGURES/GEOSEISMIC FIGURES.dwg Date: 12/12/2024 Time: 15:13 User: vramirez Style Table: Langan.stb Layout: SHZM Filename: \\langan.com\data\LAX\data5\721040501\Project Data_Discipline\Get

APPENDIX A

Current Field Explorations and Laboratory Testing

APPENDIX A

SUBSURFACE EXPLORATIONS

Our current investigation consisted of exploring the subsurface conditions at the site by drilling five borings (B-17 through B-21) to a depth of approximately 51½ feet bgs at the locations shown on Figure 2. The borings were drilled by 2R Drilling, Inc. using truck-mounted hollow-stem auger drilling equipment on September 3, 2024.

The locations of the exploration were determined in the field by observing nearby landmarks/structures, which were based on site maps prepared by us. This information should be considered accurate only to the degree implied by the methods used.

Our field engineer observed and logged the explorations. We obtained representative samples of the soils encountered in the explorations. Classifications and sampling intervals are presented on the exploration logs included in this appendix.

Upon completion of drilling, the samples collected from the borings were transported to our office for further evaluation. The boring was backfilled with bentonite cement grout mix per Vernon City guidelines and topped with cuttings.

We also explored the subsurface conditions at the site with four CPTs advanced to depths ranging between approximately 9.5 and 71.5 feet bgs at the locations shown on Figure 2. The CPTs were advanced on September 3, 2025, by Kehoe Testing and Engineering, Inc.

SOIL SAMPLING

Samples were collected from the borings using modified California split-spoon samplers in general accordance with ASTM D3550 and we performed Standard Penetration Tests (SPTs) in general accordance with ASTM D1586.

The modified California samplers and SPTs were driven using a 140-pound hammer free falling 30 inches. The samplers were driven a total distance of 18 inches or to refusal. The number of blow counts required to drive the sampler for each 6-inch segment was recorded (or less if refusal is met) on the exploration logs. Sampling methods and intervals are shown on the exploration logs.

The samples collected from the borings were transported to our office for further review and for assignment of geotechnical laboratory testing.

SOIL CLASSIFICATION

The soil samples were described in accordance with the classification legend that is included in this appendix prior to the exploration logs. The exploration logs indicate the depths at which the soils or their characteristics change, although the change may be gradual. If the change occurred between sample locations, the depth was interpreted. Changes between geologic units or soil types on the boring logs are represented with a solid line if observed directly in the samples, and with a dashed line if inferred between sample depths. Classifications are shown on the exploration logs.

LABORATORY TESTING

Moisture Content and In-place Dry Density

The natural moisture content of select soil samples were performed in general accordance with ASTM D2216. The natural moisture content is a ratio of the weight of the water to soil in a test sample and is expressed as a percentage.

Select soil samples were tested to determine the in situ dry density. The tests were performed in general accordance with ASTM D2937. The dry density is defined as the ratio of the dry weight of the soil sample to the volume of that sample. The dry density typically is expressed in units of pounds per cubic foot (pcf).

The test results are presented in this appendix and on the boring logs.

Maximum dry-density and Optimum Moisture Content

Maximum dry-density and Optimum Moisture Content testing was performed in general accordance with ASTM D 1557 on one bulk samples obtained from the explorations. The tests determine the optimal moisture content at which sample achieves its maximum dry density. The test results are presented in this appendix.

Strength Testing

Direct shear tests were completed on select samples obtained from the explorations. The tests were performed in general accordance with ASTM D3080. The test determines the effects upon shear resistance and displacement, and strength properties such as Mohr strength envelopes.

The test results are presented in this appendix.

Consolidation Testing

One-dimensional consolidation testing was performed in general accordance with ASTM D2435 on relatively undisturbed soil samples. The test measures the volume change of a soil sample under predetermined loads.

The test results are presented in this appendix.

Expansion Index

Expansion index tests were performed on selected bulk samples of the on-site soils in accordance with the latest version of Test Method ASTM D4829.

The test results are presented in this appendix.

Atterberg Limits

Atterberg Limit tests were completed on select samples obtained from the explorations. The tests were conducted in general accordance with ASTM D 4318. The test measures the amount of material finer than 75- μ m (No. 200) sieve in soils. The test results are presented in this appendix.

Corrosion Testing

Corrosion testing was performed on one selected sample. The testing was completed in general accordance with California Test Methods 634, 417, and 422 for pH value, sulfate content, and chloride content, respectively.

The test results are presented in this appendix.

			UNIFIED SO	IL CLASSIFICATION SYSTEM	
Major	Divisions	Symbols		Typical N	ames
er (i	Gravels	GW	Well-graded GRA	VELS with less than 5% fines or gravel-	sand mixtures
(more than half of soil is larger than the no. 200 sieve size)	(more than half of	GP	Poorly-graded GR	AVELS with less than 5% fines or grave	el-sand mixtures
eve eve	coarse fraction is retained/> no. 4 sieve	GM	Silty gravels, grave	el-sand-silt mixtures;GRAVELS with gre	ater than 12% ML or MH fines
than half of soil is la the no. 200 sieve si	size)	GC	Clayey gravels, gra	avel-sand-clay mixtures; GRAVELS with	greater than 12% CL or CH
o. 20	Sands	SW	Well-graded sands	s with less than 5% fines or gravelly sa	nds, little or no fines
ner ner	(more than half of	SP	Poorly-graded san	ds with less than 5% fines or gravelly s	ands, little or no fines
ant	coarse fraction passes/< no. 4 sieve	-	Silty sands, sand-s	silt mixtures; SANDS with greater than	12% ML or MH fines
(mo th	size)	SC	Clavev sands, san	d-clay mixtures; SANDS with greater th	an 12% CL or CH fines
νO		ML		clayey silts of low plasticity, sandy non	
20il ii	Silts and Clays		-	low to medium plasticity, silty CLAY, tra	
of s e no e)	LL = < 50	CL	,		
(more than half of soil is smaller than the no. 200 sieve size)		OL	-	organic silt-clays of non-plastic to mediu	. ,
han thai sieve	Silts and Clays	МН		plastic silts, medium plastic to very pla	, ,
aller	LL = > 50	СН	<u> </u>	o very plastic CLAYS, sandy plastic CLA	
		ОН	Organic medium p	plastic to plastic silty CLAYS, and very p	lastic CLAYS
Highly O	organic Soils	PT	Peat and other hig	hly organic soils	
	GRAIN SIZE CHAR	т		SOIL DESCRIP	PTIONS/SYMBOLS
	Range of Gr			- Well-graded GRAVEL (GW)	Low-Plasticity SILT (ML)
assification	U.S. Standard Sieve Size	Grain Siz Millimet			High-Plasticity SILT (MH)
oulders	Above 12"	Above 3	<u>)5</u>	 Poorly-graded GRAVEL (GP) 	
obbles	12" to 3"	305 to 76	5.2 M	- Silty GRAVEL (GM)	Low-Plasticity CLAY (CL)
iravel	3" to No. 4	76.2 to 4		- SIILY GRAVEL (GIVI)	LOW-Plasticity CLAY (CL)
coarse fine	3" to ¾" ¾" to No.4	76.2 to 1 19.1 to 4	I N/14		
and	No. 4 to No. 200	4.76 to 0.0		- Clayey GRAVEL (GC)	High-Plasticity CLAY (CH
coarse	No. 4 to No. 10	4.76 to 2.	00		
medium fine	No. 10 to No. 40 No. 40 to No. 200	2.00 to 0.4 0.240 to 0.	اه ها	- Well-graded SAND (SW)	SANDSTONE
ilt and Clay	Below No. 200	Below 0.0		- Poorly-graded SAND (SP)	CLAYSTONE
	ER READING				
				- Silty SAND (SM)	SILTSTONE
- Groundwa	iter encountered dur	ing drilling			KXX
Groundwa	ater at completion			- Clayey SAND (SC)	FILL
- Groundwa	tor at 24 hours		557		
- Grounawa	iter at 24 hours			- AGGREGATE BASE	- ASPHALT
MPLER TYP	ΡE				
CR	Modified Califorr and a 2.5-inch ins			with 3.0-inch outside diameter	BAG - Bulk Sample
SPT	Standard Penetr	ation Test (S	PT) split-barrel sam	pler with a 2.00-inch outside	C - Core Barrel
				منامط المراجع ومارية والمراجع	
ZZ ST	hydraulic pressur		de diameter, thin-	walled tube) advanced with	
		Figure Title			Figure No.
.AN	GAN	i igure title			r igure nuc.
Langan (
Langart			BORIN	G LOG LEGEND	APPENDIX A
	r Street, Suite 1060 es, CA 90071				
					-

		NG/			Log		•			B-	17			Sheet	1 of	3
Project						Pro	ject No.			7011	140501					
ocation		GEP Vernon				Ele	vation an	id Dat		1210	040501					
		3049 East Vernon A	Avenue							Арр	rox. 19	7				
Drilling Co						Dat	te Starteo	ł		~ (~ ~			Date F	Finished		
Drilling Ed		2R Drilling				Cor	mpletion	Depth		9/03	8/2024		Rock		/03/2024	
5	• •	CME-75 Truck Mou	unted Drill Rig				•			:	51.5 ft				-	
Size and	Type c		-			Nui	mber of S	Sampl	les	Distu	urbed	F	Un	disturbed 5	Core	
Casing D			Stelli Auger	Ca	asing Depth (ft)	Wa	ter Level	(ft.)		First		5	Co	mpletion	24 HR.	
Casing H	lammei	- r	Weight (lbs)		Drop (in)		lling Fore	• •		Ţ		-		<u> </u>	<u> </u>	-
Sampler		-		-	-				Са	arlos	;					
Sampler I		2-inch O.D. Split-Ba	Weight (lbs)		Dron (in)	Fie	ld Engine	er	-							
		el Automatic		140	30	<u> </u>			В.		tkins mple Da	ta				
MATERIAL SYMBOL	Elev.		Sample Descri	ntion			Depth	ber	e			PI	D		marks I, Depth of Casir	na
LAM SY	(ft) +197.0			puon			Scale	Number	Type	Rec (ir	Penetr. resist BL/6in	(pp		Fluid Loss, Dril	ling Resistance,	etc.)
\otimes	+196.6	AB = 5-inches thi	ick				- 0 -								r from 0-5 fe e collected	
		Articial Fill (af) SAND with Silt ar	nd Gravel (SP-SM)	. brown	. moist fine		- 1 -	1						0-5 feet.		
· []		sand, fine gravel	[FILL].	,,	,,		- 1 -							Direct Shea Expansion		
							_ 2 _							Compactio		
														Corrosion WC = 4.9%		
							- 3 -							DD = 101.4		
							- 4 -									
	+192.0											•	0			
	102.0	Quaternary Youn	ng Alluvium (Qya) brown, loose, mois				- 5 -				3	0.	0			
		SAND (SP), light	DIOWII, IOOSE, IIIOIS	si, iirie s	sanu.		- 6 -	۲. ۲	Я	18	4					
								<u> </u>			7					
							- 7 -									
						-	- 8 -									
							- 9 -									
							- 10 -					0.	0			
		Medium dense, fi	ine to coarse sand,	trace fi	ne gravel.		_ 10 _			_	10	0.	0			
						-	- 11 -	S-2	SPT	18	11					
						-		-	E		13					
							- 12 -									
							- 13 -									
							- 14 -	1								
						-										
		Dense fina to ma	edium sand, trace f	ine to o	oarse gravel	-	- 15 -					0.	0	WC = 3.3%		
		Dense, line to life	Salam Sanu, trace I		ouise glavel.	ŀ		S-3	CR	18	7 19			DD = 104.4		
						ŀ	- 16 -	S			21					
								-								
							- 17 -	1								
							- 18 -	1								
						ŀ										
1						F		1								
						f	_ 19 _	1								

Project		GEP Vernon	Project No.			721	04050	1				
ocation	1		Elevation a	nd Da	atum							
		3049 East Vernon Avenue				Арр	prox. 19	97				
0L 0L			Denth	-			ample Da	ata	_	Rema	rks	
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	(in)	Penetr. resist BL/6in	PID (ppm)	(Drillin Fluid Los	g Fluid, Dep ss, Drilling R	oth of Casing	J, etc.)
~	+177.0	SAND with Gravel (SP), light brown, medium dense, moist,	20 -	Z	F		11	0.0	-	-,		
		fine to coarse sand, fine to coarse gravel.	Ē	S4	SPT	18	11					
			- 21 -]			13					
>/			22 -	-								
,				1								
Ø<			- 23 -	-								
			- 24 -	-								
Q				-								
		Dense, trace fine to coarse gravel.	- 25 -		~		19	0.3	Direct	Shear		
V			- 26 -	S-5	S	18	25 28					
ן גר			- 27 -	1								
			- 21	-								
ΓT	+169.0	Silty SAND (SM), wet, fine sand.		-								
			- 29 -	1								
			Ē	-								
	+166.5		30 -	-			7	0.1	LL = 2	7, PL = 1	15, PI = 1	2
\square		Sandy SILT to Clay (ML/CL), brown, stiff, moist.	- 31 -	-9- -9-	SPT	18	7					
			Ē	}	E		6					
			- 32 -									
	+164.0	Clay (CL), brown, hard, moist		-								
			Ē	=								
			- 34 -	-								
			- 35 -	-			20	0.1	WC =	15.8%		
			-	S-7	СR	18	37		DD = 1	120.5 pcf		
			- 36 -	1		I	50/6"					
			- 37 -									
			- 38 -	-								
			Ē									
			- 39 -									
44	+157.0	Silty SAND (SM), brown, medium dense, moist, fine sand,	40 -	-	E	_	6	0.0				
		layer of sandy silt in sample, high fines content.	Ē	- 8- - 8- - 8-	SPT	18	7					
			- 41 -	<u>]</u>		-	12					
			- 42 -									
	+154.0		- 43									
		SAND (SP), light brown, very dense, moist, fine sand.	- 40									
			<u> </u>									
				-								

roject		GED Vorpon	Project No			704		1				
ocation		GEP Vernon	Elevation a	and Da	atum	121	04050	1				
		3049 East Vernon Avenue				Арр	orox. 19	97				
۲Þ	_						mple Da	ata	_	Rema	rks	
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PID (ppm)	(Drilling	g Fluid, Dep	th of Casing	J,
≥	+152.0		45 ·	z		r -		0.5	WC = 2		esistance, e)
			Ę		CR	18	17 25		DD = 1			
			- 46	<u> </u>	Ĩ	Ĺ	50					
]		- 47	-								
			Ē	-								
F.T.	+149.0	Silty SAND (SM), brown, dense, moist, fine sand.	48									
			- 49	1								
			Ē	3								
			- 50		I.E		9	0.0				
			- 51	S-10	SPT	18	16					
	+145.5	Total Depth = 51.5 feet		1	E	-	25					
		Groundwater not encountered. Borehole backfilled with grout and topped with cuttings.	- 52									
		o ii o	53	-								
			È	-								
			- 54	-								
			- 55	-								
			Ē	-								
			- 56	-								
			- 57	-								
				=								
			- 58	=								
			- 59	-								
			60	-								
				1								
			- 61	-								
			- 62	Ē								
				=								
			- 63	-								
			64	1								
			Ē	=								
			65	-								
			60 61 62 63 64 65 66 67 68 69									
			Ē	-								
			- 67	-								
			68	1								
			Ē	=								
			- 69 -	-								
			70 ·	1								

LA	NG/	4/V		Log	of B	Boring			B-	18			Sheet	1	of	3
Project					Pro	oject No.										
Location	GEP Vernon				Ele	evation an	d Da		721	040501						
2000000	3049 East Vernon	Avenue				, ration an			App	rox. 19	7					
Drilling Comp					Da	te Starteo	1					Date	Finished			
Drilling Equip	2R Drilling ment				Co	mpletion	Depth		9/03	8/2024		Rock	C Depth	09/03	3/2024	
	CME-75 Truck Mou	unted Drill Rig							1	51.5 ft					-	
Size and Typ					Nu	mber of S	Samp	les	Dist	urbed	5	U	ndisturbed	5	Core	
Casing Diam	eter (in)	oteni Auger	C	asing Depth (ft) -	Wa	ater Level	(ft.)		First		-		ompletion		24 HR. 	-
Casing Hamr	ner	Weight (lbs)	-	Drop (in)	Dri	lling Fore	man	_				•				
Sampler	2-inch O.D. Split-B	arrel SPT, 2.5-inch	I.D. Ca	I Mod	Fie	eld Engine	er	Ca	arlos	5						
Sampler Han	^{nmer} Automatic	Weight (lbs)	140	Drop (in) 30		5		В.	. Wa	tkins						
						Dopth	<u> </u>			mple Dat	a		_	Rem	arks	
MATERIAL SYMBOL SYMBOL		Sample Descri	ption			Depth Scale	Number	Type	(in)	Penetr. resist BL/6in	Pl (pp		(Drilling Fluid Loss	Fluid, De	epth of Casing Resistance, e	g, etc.)
a → (•).	.0 Engineered Fill ((afe)				_ 0 _	Ż	· ·	ы К	<u>е - п</u>		,		-	id auger d	
$\circ \bigcirc \circ \bigcirc \circ$	Processed Misce	ellaneous Base, Sa	ndy GR	AVEL (GP),									base/fil			
0.0.7	light gray, moist,	dense, fine to coa	rse grai	ned [FILL].		- 1 -										
© 	.0					- 2 -										
<u>°</u> ⊡°∠195	Silty SAND with fine sand, few fin	Gravel (SM), brown	n, mediu	ım dense, moist	,											
						- 3 -										
₽						- 4 -										
						- 5 -		I. E		8	0	.0	WC = 2 DD = 1		∼f	
						- 6 -	Υ.	SPT	18	9				00.0 p	51	
0							<u> </u>	E	-	11						
						- 7 -	1									
0							1									
		nd gray, very dense	e, moist,	fine sand,		- 8 -										
	some gravel.					- 9 -										
						- 10 -	<u> </u>			26	0	.0	WC = 8	3.1%		
							S-2	CR	18	35			DD = 1		cf	
						- 11 -	0			38						
						- 12 -										
4						- 12 -										
						- 13 -										
						- 14 -										
											-	•				
+181	.5					- 15 -	~			9	0	.0				
	Quaternary Your SAND (SP), brow	ng Alluvium (Qya) wn, medium dense	moist	fine to medium		- 16 -	S-3	SPT	18	7						
	sand, trace fine g		,					E		7						
						- 17 -										
						- 18 -										
						- 19 -										
						± 20 -	1	I					1			

roject		GEB Vortion	Project No.			704	040504	1				
ocation		GEP Vernon	Elevation a	nd Da	atum	721	040501					
		3049 East Vernon Avenue				Арр	orox. 19	17				
₹⊣							mple Da	ita		Remar	ks	-
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PID (ppm)	(Drilling I Fluid Loss,	Fluid, Depti	nof Casing	, tc
≥ <i>°″</i> 	+177.0	Light brown, dense, fine to coarse sand.	20 -	ž	. .		<u> </u>	0.0	Consolio		515tanoc, c	
				S-4	СR	18	20		-			
			- 21 -	- 0		Ì	32					
· · · · · · ·			- 22 -	1								
				-								
			- 23 -	-								
			- 24 -	3								
				1								
		Some fine gravel.	- 25 -	1		_	13	0.0				
				S-5	SPT	18	12					
			- 26 -	1			14					
			- 27 -	4								
	+169.0			-								
\Box	103.0	Silty SAND (SM), brown, medium dense, very moist to wet, fine sand.	28 -	1								
		ine salu.	- 29 -	-								
				-								
			- 30 -	-			7	0.0	Sandy c sample.	lay at bo	ottom of	
			- 31 -	- 9- - 9-	S	18	8		Consolio	dation		
	+165.5	Sandy CLAY (CL), brown, very stiff, moist, fine sand.	E	}			14					
			- 32 -									
			- 33 -	1								
			-	-								
			- 34 -	-								
			- 35 -	1				0.0	0			
						18	5 8	0.0	Corrosic	n		
			- 36 -	S-7	SPT	-	11					
			- 37 -	1								
			Ē	-								
			- 38 -	-								
			- 39 -	-								
				1								
		Hard.	- 40 -				20	0.0	WC = 14	4.8%		
			E 44	S-8	СR	18	25		DD = 11	9.6 pcf		
			- 41 -	1			34					
			- 42 -	4								
	+154.5.	SAND (SP), brown, dense, moist, fine to coarse sand, trace		1								
		silt.	- 43 -	1								
			- 44 -	=								
	!		F	=								
			45 -	-								

roject			of Boring Project No.		B-18			Sheet	3	of	3
ocation		GEP Vernon	Elevation and D		72104	0501					
Jacon		3049 East Vernon Avenue			Appro	x. 197					
<u>ч</u> .						ole Data					
MATERIAL SYMBOL	Elev. (ft) +152.0	Sample Description	Depth Scale	Type	Recov. (in) Penetr.		PID (ppm)	(Drilling Fluid Los	Remai Fluid, Dep s, Drilling Re	'KS th of Casing esistance, e	g, etc.)
				SPT	1. 80 1	17	0.0				
			47 -								
			- 48 - - 49 -								
		Light brown.	50	CR 2	2 ²	7	0.0	WC = (3.7% 12.6 pcf		
	+145.5	Total Depth = 51.5 feet	- 51		5	0/6"			12.0 poi		
		Groundwater not encountered. Borehole backfilled with grout and topped with cuttings.	52								
			54 -								
			55 -								
			- 56 - - 57 -								
			- 58 -								
			59								
			$ \begin{array}{c} 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 69\\ 69\\ 69\\ 69\\ 69\\ 69\\ 69\\ 69\\ 69$								
			62								
			63 -								
			66 -								
			67								
			68 -								

LA	NG/	4/V	Log	of E	Boring			B-	19			Sheet	1	of	3
Project				Pr	oject No.										
Location	GEP Vernon			Ele	evation ar	nd Dai		721	040501						
	3049 East Vernon A	Avenue						Арр	rox. 19						
Drilling Com				Da	ite Starte	ł					Date	Finished	00/00	10004	
Drilling Equip	2R Drilling			Co	mpletion	Depth		19/03	8/2024		Rock	< Depth	09/03	/2024	
	CME-75 Truck Mou	inted Drill Rig							51.5 ft			-		-	
Size and Typ	e of Bit 8-inch O.D. Hollow	Stem Auger		Nu	Imber of S	Sampl	les	Distu	urbed	5	U	ndisturbed	5	Core	
Casing Diam	eter (in) -		Casing Depth (ft)		ater Leve			First ∑		-		completion		24 HR. 	-
Casing Ham	mer	Weight (lbs)	Drop (in)	Dr	illing Fore	man	~								
Sampler Sampler Har		arrel SPT, 2.5-inch I.D. Weight (lbs) 140	Drop (in)	_ Fie	eld Engine	er		arlos	tkins						
	Automatic	140						Sa	mple Da	ita			Rema		
HATERIAL MATERIAL MATERIAL 196 +196)	Sample Descriptior	ı		Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PII (ppr		(Drilling I	-luid, De	ITKS pth of Casing Resistance, el	, tc.)
<u> </u>	Artificial Fill (af)				<u> </u>				_			Hand au	iger fro	om 0-5 fee	et.
	SAND (SP), light sand, trace silt [F	brown to brown, moist,	fine to medium		- 1 -										
					- 2 -										
						1									
					- 3 -										
					- 4 -	1									
+191	Quaternary Youn	ig Alluvium (Qya)			5 -				5	0.2	2				
	Sand (SP), light b medium sand, tra	prown to brown, loose, r ace fine to coarse grave	noist, fine to I.		6 -	۲. ۲	CR	18	4						
	,	5				<u> </u>			5						
					- 7 -										
					- 8 -							Drill rig o		[.] from 8-10 feet.	
					- 9 -							approxi	natory	0 10 1001	
					E										
	Dense, fine to coa	arse sand.			- 10 -				12	1.1	1				
					- 11 -	S-2	SPT	18	13						
					E'' :	<u> </u>			17						
					- 12 -										
					- 13 -										
					- 14 -										
					E ·										
	Medium dense, fi	ne to medium sand, no	gravel.		- 15 -				11	1.3	7	WC = 5			
					- 16 -	S-3	СR	18	14			DD = 10	1.6 pc	I	
						1			21						
					- 17 -										
						1									
					- 18 -	1									
					- 19 -										
					Ē										
<u>1 </u>					<u>لہ 20 –</u>	1									

Project		GEP Vernon	Project No.			701	040501					
ocation			Elevation a	nd Da	atum	721	040501					
		3049 East Vernon Avenue				Арр	rox. 19	6				
۲ ^۲							mple Da	ita		Rema	rke	
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	in) v	Penetr. resist BL/6in	PID (ppm)	(Drillin	g Fluid, Dep ss, Drilling R	th of Casing	I,
50	+176.0	Fine to exercise cound come fine group	20 -	Ž		æ -		0.1		ss, Drilling R	esistance, e	tc.)
		Fine to coarse sand, some fine gravel.	F	S-4	FE	18	10 13	0.1				
			- 21 -	÷ م	SPT	-	15					
			Ē	1								
			- 22 -	-								
			- 23 -	-								
			Ē	-								
			- 24 -	-								
			Far	-								
		Dense.	- 25 -	-			19	0.4	WC =	6.5% 109.2 pcf		
			- 26 -	S-5	СR	18	30			100.2 poi		
			Ę	}			37					
			- 27 -	-								
			Ē	-								
			- 28 -	-								
			- 29 -	-								
			Ē	-								
		Fine to coarse gravel.	- 30 -			-	11	0.0				
		5	Ē	- 9	SPT	18	19					
			- 31 -	1	ľ		23					
			- 32 -	-								
			Ē	-								
	+163.0	Sandy CLAY (CL), brown, very stiff, moist, fine sand.	33 -	-								
			Ē	-								
			- 34 -	-								
			- 35 -	1				0.0	WC -	14.9%		
			Ē	-1-	СR	18	8 11		DD = '	121.2 pcf		
			- 36 -	S-7		-	15					
			- 27	1								
			- 37 -									
			- 38 -	-								
			Ē	-								
			- 39 -	-								
			E 10	-				0.0				
/////		Olive brown, some fine sand.	- 40 - E		SPT		4	0.0				
/////	+155.0	SAND (SP), brown, medium dense, moist, fine sand, trace		8A/	SP	18	6					
		clay.	E	لمه ا	E	-	19					
			- 42 -									
			- 43 -	-								
			- 43 -	1								
			- 44 -	-								
			F	-								

roject		0521/	Project No.				040-1					
ocation		GEP Vernon	Elevation a	nd Da	atum	721	04050	1				
		3049 East Vernon Avenue				App	prox. 19	96				
_							ample Da					
	Elev. (ft)	Sample Description	Depth Scale	Number	Type		Penetr. resist BL/6in	PID	(Drilling	Remai g Fluid, Dep	r ks th of Casing esistance, e] ,
<u>₹</u> 0	-151.0			Ž	·	Re Re		(ppm) 0.0			esistance, e	etc.)
		Light brown to brown, very dense, fine to medium sand.		6-S	CR	17	26	0.0	Direct	Snear		
			- 46 -	S	0		36 50/5"					
			- 47 -									
			- 48 -	-								
			- 49 -									
			- 40									
		Light brown, fine to coarse sand, trace fine gravel.	- 50 -	-	F	-	10	0.0				
		č	- 51 -	S-10	SPT	18	26					
	-144.5	Total Depth = 51.5 feet		Ű	<u> E</u>	-	29					
		Groundwater not encountered.	- 52 -									
		Borehole backfilled with grout and topped with cuttings.	- 53 -									
			- 54 -									
			- 55 -									
				1								
			- 56 -									
			- 57 -									
			-									
			- 58 -									
			- 59 -									
			Ē									
			- 60 -									
			- 61 -									
			- 62 - -									
			- 63 -									
			- 64 - E									
			65 -									
			È an									
			- 66 - -									
			- 67 -									
			Ē 🙃									
			- 68 -									
			- 69 -									
			F	1								

L	4	NGA	A/V	Log	of E	Boring			B- 2	20		_	Shee	et 1	of	3
Project					Pr	oject No.			7040	4050						
Location		GEP Vernon			Ele	evation ar	nd Da		/21(04050	1					
Drilling Co		3049 East Vernon A	venue			ta Ctarta			Аррі	rox. 19	97	Det	a Finished	4		
Drilling Co	ompar	2R Drilling			Da	ate Starteo	u	0	9/03	/2024		Dat	e Finished		03/2024	
Drilling Eq	quipme	ent			Co	ompletion	Dept					Roo	ck Depth			
Size and 1		CME-75 Truck Mour	nted Drill Rig		+					51.5 ft irbed			Undisturbe	ed	- Core	
Casing Dia		8-inch O.D. Hollow S	Stem Auger	Casing Depth (ft)	Nu	umber of S	Samp	les			5		Completion	5	24 HR.	
		-		-		ater Leve			First <u> </u>		-	Ì		-	<u> </u>	-
Casing Ha	amme	r	Weight (lbs)	Drop (in) -	Dr	illing Fore	eman	C.	arlos							
Sampler			Irrel SPT, 2.5-inch I.D.		_ Fie	eld Engine	eer		anos							
Sampler H	lamm	er Automatic	Weight (lbs) 140	Drop (in) 30		1		Β.		tkins mple Da	ata					
	Elev.		Sample Description			Depth	ber	Ō				ID	(D)		narks Depth of Casing	_
- DG - L/ SYA	(ft) 197.0			I		Scale	Number	Type	Rec (i	Penetr. resist BL/6in		om)	Fluid	Loss, Drillir	ig Resistance, e	etc.)
ort: Lo		Artificial Fill (af)	n, moist, fine sand, fine	to coarse gravel		E 0 -									from 0-5 fe and auger.	
Rep		trace silt [FILL].		to obtailed gravel,		- 1 -									0	
M																
12/12/2024 12:20:40 PM						- 2 -	-									
24 12						- 3 -										
12/20:																
12/						- 4 -	1									
		Madium danaa in	araaaad ailt traaa briel	and glass		- 5 -	-				0	.0				
GINT		fragments.	creased silt, trace brick	and glass			S-1	SPT	18	10 11						
501 -						6 -		s	,	16						
21040	190.0					- 7 -										
GS/7:		Quaternary Young SAND (SP), light b	brown to brown, mediur	n dense, moist,												
OTEN		fine sand, trace fin	ie gravel.			- 8 -										
AL/GI						- 9 -										
01EC						- 10 -				7	0	.0				
E/GE						- 11 -	S-2	CR	18	10						
							-			23						
DISC						- 12 -										
ATA						- 13 -										
ROJE						- 14 -										
1501/F						- 15 -					0	0				
21040		Fine to medium sa	and, trace fine to coars	e gravel.			- 	LE	_	9	0	.0				
[A5/7]						- 16 -	S-3	SP	18	13 14						
XIDA																
						- 17 -										
MDA						- 18 -	1									
VLANGAN COMIDATALAXIDATA5/721040501PR0.JECT DATAL DISCIPLINE/GEOTECHNICAL/GINTLOGS/721040501 - GINT GPJ							1									
NGA						- 19 -										
						E 20 -	-									

Project	_		f Boring _ Project No.			B-20		Sheet	2	of	3
ocation		GEP Vernon	Elevation and	d Dati	7 um	210405	01				
		3049 East Vernon Avenue	anon and	200		Approx. 1	97				
OL	Flori		Derth	۶I		Sample [_	Rema	rks	
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	Recov. (in) Penetr. resist Bl /6in	PID (ppm)	(Drillin Fluid Los	g Fluid, Dep s, Drilling R	th of Casing esistance, e	j, etc.)
	+177.0	Light brown, fine gravel, fine to coarse sand.	20 <u></u>			21 € 18 20	0.0	WC =			
			22			20					
			23 -								
		No gravel, fine to medium sand.	- 25 -	5		12	0.1				
			26 -	S-5	SPT	€ 12 15					
	+169.0.	Sandy CLAY (CL), brown, hard, moist, fine sand.	- 28 -								
			29								
			F 7	S-6	CR	€ 14 € 17 29	- 0.4	Direct	Shear		
	. 404.0		32								
	+164.0.	SAND (SP), brown, dense, moist, fine to medium sand, trace fine gravel, trace clay.	- 33								
			35	S-7	SPT	12 € 14	- 0.1				
			36 -			16					
			- 38 -								
		Light brown year dense, fine to coorse cond	40				- 1.1	WC =	4 2%		
		Light brown, very dense, fine to coarse sand.	E]	8-S	CR	21 ∞ 36 39		DD = 7	4.276 102.9 pcf		
			42 43								
			43 -								
			<u> </u>								

Project		GEP Vernon	Project No.			701	040501					
ocation		GEP Venion	Elevation an	d Da		121	040501					
		3049 East Vernon Avenue				Арр	rox. 19	7				
۲.A							mple Da	ta		Rema	ke	
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PID (ppm)	(Drilling	g Fluid, Dep s, Drilling Re	th of Casing	J,
≥ "	+152.0	Dense, fine to medium sand.	45	ž		æ	a~≃ m 7	0.2	Fluid LOS		esisiance, e	
				6-S	SPT	18	17					
			- 46 -	Ľ	Ĩ	1	22					
•			- 47 -									
			- 48 -									
•••••			- 49 -									
		Very dense, fine to coarse sand, fine to coarse gravel.	- 50 -	S-10	CR	12	42	0.0	WC = 1 DD = 1	2.9% 08.7 pcf		
			- 51 -	S			50/6"					
	+145.5	Total Depth = 51.5 feet Groundwater not encountered.	- 52 -									
		Borehole backfilled with grout and topped with cuttings.										
			- 53 -									
			_ 54 _									
			55 -									
			- 56 -									
			- 57 -									
			- 58 -									
			- 59 -									
			60 -									
			61 -									
			62 -									
			63 -									
			65 -									
			65 - 66 - 67 - 67 - 67 - 67 - 67 - 67 -	1								
			67 -	1								
			68 -	1								
			69 -									
			F 1	1		1						

LA	NGA	4/V	Log	of E	Boring			B-	21			Sheet	1	of	3
Project				Pr	oject No.										
Location	GEP Vernon			Ele	evation a	nd Da		721	040501						
	3049 East Vernon Avenue						Approx. 196								
Drilling Compa	Drilling Company					d			10004		Date	Finished	00/0	0.0004	
Drilling Equipr	2R Drilling nent			Co	mpletion	Depth		19/03	8/2024		Rocł	< Depth	09/0	3/2024	
	CME-75 Truck Mour	nted Drill Rig							51.5 ft			-		-	
Size and Type	of Bit 8-inch O.D. Hollow S	Stem Auger		Nu	mber of	Samp	les	Dist	urbed	5	U	ndisturbed	5	Core	
Casing Diame	ter (in)		Casing Depth (ft)		ater Leve			First ∑		-	С	completion		24 HR. 	-
Casing Hamm	er_	Weight (lbs)	Drop (in)	Dr	illing Fore	eman	~								
Sampler Sampler Hami		rrel SPT, 2.5-inch I.D. Weight (lbs) 140	Drop (in)	_ Fie	eld Engin	eer		arlos Wa	tkins						
4		140	00	-				Sa	mple Da	ita			Dom	orko	
Elev. (ft) +196.(Sample Description	1		Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	Pli (pp		(Drilling Fluid Loss	Rem Fluid, D , Drilling	epth of Casing Resistance, e	j, etc.)
190.0	Artificial Fill				E 0 -	-						Hand a	uger fr	om 0-5 fee	et.
	SAND with Silt (SF trace fine to coarse	P-SM), brown, dense, e gravel, brick fragmer	moist, fine sand, nts [FILL].		- 1 -										
		0 / 0													
					- 2 -	1									
					-	-									
					- 3 -	1									
					- 4 -	1									
						1									
					- 5 -				19	0.	3	WC = 6			
						- - -	CR	18	27			DD = 1	21.4 p	cf	
					- 6 -				30						
					- 7 -	-									
					-	-									
					- 8 -	-									
						-									
					- 9 -	-									
					E - 10 -					0.	0				
		prown, medium dense,	moist, fine to		F	S-2	SPT	18	6 8						
	medium sand, trac	ce fine gravel.			- 11 -	10	IS E	-	11						
					- 12	-									
					- 12 -	-									
					- - 13 -	-									
					E E										
					- 14 -	1									
					- - 15 -	1				0.	0	4.5.1		in alt -	
186.0	Dense, fine to coa	rse sand, fine to coars	e gravel.			3		_	28	0.	J	4-inch o Sample	opple distu	in shoe. bed.	
					- 16 -	S-3	CR	18	32 42			WC = 2 DD = 1	2.5%		
					- - 	1			72				50.0 p		
					- 17 - -	1									
					- 18 -	1									
						-									
					- 19 -	-									
					E	-									

Project		GEP Vernon	Project No.			721	04050 ⁻	1				
ocation 3049 East Vernon Avenue				nd Da	atum	121	04030	1				
				Арр	rox. 19	96						
ЧЧ			·		-		mple Da	ata	_	Rema	rke	
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	in) scov.	Penetr. resist BL/6in	PID (ppm)	(Drillin	ng Fluid, Dep	oth of Casing Resistance, e],
≥∽	+176.0		20 -	Ž		Å,		0.0	Fluid Los	ss, Drilling R	esistance, e	tc.)
		Fine to medium sand.	-	S-4	FE	18	13 17	0.0				
			- 21 -	ن ک	SPT	-	19					
			Ē	╞		1						
			- 22 -	1								
			- 23 -	1								
			-	1								
			- 24 -	1								
			Ē	1								
		Medium dense, fine to coarse sand.	- 25 -				11	0.0	Brown sampl	i silt at bo e	ottom of	
			- 26 -	S-5	CR	18	12			-		
			-	-			12					
			- 27 - E									
			- 28 -									
			20									
			- 29 -									
			E									
		Dense.	- 30 -		İΕ		17	0.0				
			- 31 -	s S S	SPT	9	18					
	+164.5			<u> </u>		1	18		Clavi	n sample	tin	
		CLAY with Sand (CL), brown, very stiff, moist, fine sand.	- 32 -	1					Clay II	i sampie	up.	
				1								
			- 33 -	1								
			- 34 -	1								
				1								
			- 35 -	1	╞╴║		10	1.6	WC =	2.5%		
			Ē	S-7	СR	18	13		DD =	117.4 pc1	f	
			- 36 -	Ľ			14					
			- 37 -	-								
			Ē									
			- 38 -									
			- 39 -									
			_ 39 -									
[<u> </u>]]	+156.0	Clayey SAND (SC), brown, medium dense, moist, fine		1	F	-	8	0.0				
////		sand.	- -	8	SPT	18	8 10					
////			- 41 -			Ĺ	15					
			- 42 -	-								
			÷	1								
111	+153.0	SAND (SP), brown, dense, moist, fine to medium sand.		1								
··· · · ·			- 44 -	1	1	1						

roject	GEP Vernon	Project No.			721	04050	1			
ocation	3049 East Vernon Avenue	Elevation a	nd Da	atum						
					orox. 19					
Elev Elev	,	Donth	ř			mple Da	ata	Remarks		
ITAN (ft)	Sample Description	Depth Scale	Number	Type	(in)	Penetr. resist BL/6in	PID (ppm)		Depth of Casing	j, etc.)
<u>+151</u>		45 -	Z			ш ш 16	0.0	Direct Shear		,
		- 46 -	6-S	CR	18	20		WC = 13.4% DD = 122.5	ocf	
			-			26				
		- 47 -								
		- 48 -								
		- 49 -								
	.0 Sandy SILT (ML), olive brown, very stiff, moist, fine sand.		B	╞			0.0			
		E	10A/S-10B	SPT	18	7 17				
+145 +144	5 SAND (SP), brown, dense, moist, fine to medium sand.	51 -		S		21				
	Total Depth = 51.5 feet Groundwater not encountered.	_ 52 -	5							
	Borehole backfilled with grout and topped with cuttings.									
		- 53 -								
		_ 54 -								
		- 55 -								
		- 56 -								
		- 57 -								
		- 58 -								
		- 59 -								
		E								
		- 60 -								
		_ 61 -								
		Ē								
		- 62 -								
		- 63 -								
		_ 64 -								
		- 65 -								
		66 -								
		Ē								
		- 67 -								
		- 68 -								
		Ē								
		- 69 -								
		E 70								

MOISTURE DENSITY TESTS

PROJECT	Langan # 7210405	01	JOB NO.	2012-0057	BY	LD	DATE	09/14/24
Sample No.	B-17/S-1	B-17/S-3	B-17/S-7	B-17/S-9	B-18/S-2	B-18/S-8	B-18/S-10	B-18/S-1
Depth (ft)	5.0	15.0	35.0	45.0	10.0	40.0	50.0	5.0
Testing								
Soil Type	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Clay	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Clay	Brown, Silty Sand	Brown, Silty Sand
Wet+Tare	831.3	840.6	1030.2	989.6	996.0	1220.1	1072.1	831.0
Tare	5	5	5	6	5	6	6	5
Wet Weight	118.1	142.5	159.9	129.5	65.7	172.1	130.2	118.8
Dry Weight	112.6	137.9	138.1	125.9	60.8	149.9	125.6	115.8
Wet density	106.3	107.9	139.6	105.2	133.8	137.3	116.7	106.3
% Water	4.9	3.3	15.8	2.9	8.1	14.8	3.7	2.6
Dry Density	101.4	104.4	120.5	102.3	123.9	119.6	112.6	103.6
O.B.Press(psf)								
Sample No.	B-19/S-3	B-19/S-5	B-19/S-7	B-20/S-4	B-20/S-8	B-20/S-10		
Depth (ft)	15.0	25.0	35.0	20.0	40.0	50.0		
Testing								
Soil Type	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Clay	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand		
Wet+Tare	1001.3	1069.6	1029.0	901.8	837.1	1036.8		
No. Ring	6	6	5	5	5	6		
Wet Weight	123.7	150.5	156.1	115.2	128.1	126.1		
Dry Weight	117.6	141.3	135.8	113.2	122.9	122.6		
Wet density	106.8	116.4	139.4	118.1	107.3	111.8		
% Water	5.2	6.5	14.9	1.8	4.2	2.9		
Dry Density	101.6	109.2	121.2	116.1	102.9	108.7		
O.B.Press(psf)								

MOISTURE DENSITY TESTS

PROJECT	Langan # 7210405	01	JOB NO.	2012-0057	ВҮ	LD	DATE	09/14/24
Sample No.	B-21/S-1	B-21/S-3	B-21/S-5	B-21/S-7				
Depth (ft)	5.0	15.0	35.0	45.0				
Testing								
Soil Type	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Sandy Clay				
Wet+Tare	966.3	860.5	549.4	1026.3				
Tare	5	5	3	5				
Wet Weight	125.5	78.4	166.0	155.9				
Dry Weight	118.2	76.5	161.9	137.5				
Wet density	128.9	111.2	120.4	138.9				
% Water	6.2	2.5	2.5	13.4				
Dry Density	121.4	108.5	117.4	122.5				
O.B.Press(psf)								
Sample No.								
Depth (ft)								
Testing								
Soil Type								
Wet+Tare								
No. Ring								
Wet Weight								
Dry Weight								
Wet density								
% Water								
Dry Density								
O.B.Press(psf)								

Langan # 721040501

CONSOLIDATION TEST - ASTM D2435

Job No. 2012-0057

Langan # 721040501

CONSOLIDATION TEST - ASTM D2435

Job No. 2012-0057

EXPANSION INDEX - UBC 18-2 & ASTM D 4829-88

PROJECT Langan # 721040501

JOB NO. 2012-0057

Sample	B-17/ Bulk		Ву	LD	Sample		By
Sta. No.		_			Sta. No.		
Soil Type	Brown, Silt	ty Sand			Soil Type		
Date	Time	Dial Reading	Wet+Tare	614.2	Date	Dial Reading	Wet+Tare
9/9/2024	16:20	0.3986	Tare	207.8			Tare
		H2O	Net Weight	406.4			Net Weight
9/10/2024	10:00	0.3988	% Water	9			% Water
			Dry Dens.	113.0			Dry Dens.
			% Max				% Max
			Wet+Tare	639.4			Wet+Tare
			Tare	207.8			Tare
			Net Weight	431.6			Net Weight
INDEX	0	0.0%	% Water	15.8	INDEX		% Water

Sample		By	Sample		Ву	
Sta. No.			Sta. No.	 _		
Soil Type			Soil Type			
Date	Dial Reading	Wet+Tare	Date	Dial Reading	Wet+Tare	
		Tare			Tare	
		Net Weight			Net Weight	
		% Water			% Water	
		Dry Dens.			Dry Dens.	
		% Max			% Max	
		Wet+Tare			Wet+Tare	
		Tare			Tare	
		Net Weight			Net Weight	
INDEX		% Water	INDEX		% Water	

COMPACTION TEST REPORT

Langan Engineering # 721040501

SOIL TEST RESULTS

Job No. 2012-0057

SAMPLE NO.:	B-17 / Bulk	B-18 @ 35'		
DESCRIPTION	Silty Sand	Silty Clay		
DIRECT SHEAR TEST (type)				
Initial Moisture Content %				
Dry Density (pcf)				
Normal Stress (psf)				
Peak Shear Stress (psf)				
Ultimate Shear Stress (psf)				
Cohesion (psf)				
Internal Friction Angle (degrees)				
EXPANSION TEST UBC STD 18-2				
Initial Dry Density (pcf)				
Initial Moisture Content %				
Final Moisture Content %				
Pressure (psf)	-			
Expansion Index Swell %				
CORROSIVITY TEST				
Resistivity (CTM643) (ohm-cm)	1400	860		
pH (CTM643)	7.8	7.7		
CHEMICAL TESTS				
Soluble Sulfate (CTM 417) (ppm)	213	82		
Chloride Content (CTM 422) (ppm)	168	254		
Wash #200 Sieve (ASTM-1140) %				
Sand Equivalent (ASTM D2419)				

APPENDIX B

Current Cone Penetrometer Test (CPT) Soundings

SUMMARY

OF CONE PENETRATION TEST DATA

Project:

Goodman Energy Park 3163 E. Vernon Avenue Vernon, CA September 3, 2024

Prepared for:

Mr. Shaun Wilkins Langan Eng. & Environmental Services 18575 Jamboree Road, Ste 150 Irvine, CA 92612 Office (949) 561-9200 / Fax (949) 561-9201

Prepared by:

Kehoe Testing & Engineering

5415 Industrial Drive Huntington Beach, CA 92649-1518 Office (714) 901-7270 / Fax (714) 901-7289 www.kehoetesting.com

TABLE OF CONTENTS

1. INTRODUCTION

- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

APPENDIX

- CPT Plots
- CPT Classification/Soil Behavior Chart
- Summary of Shear Wave Velocities
- CPT Data Files (sent via email)

SUMMARY OF CONE PENETRATION TEST DATA

1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the Goodman Energy Park project located at 3163 E. Vernon Avenue in Vernon, California. The work was performed by Kehoe Testing & Engineering (KTE) on September 3, 2024. The scope of work was performed as directed by Langan Eng. & Environmental Services personnel.

2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at six locations to determine the soil lithology. A summary is provided in **TABLE 2.1**.

DEPTH OF CPT (ft)	COMMENTS/NOTES:	
56	Refusal	
11	Refusal	
9	Refusal	
75		
75		
52	Refusal	
	CPT (ft) 56 11 9 75 75	CPT (ft)COMMENTS/NOTES:56Refusal11Refusal9Refusal7575

 TABLE 2.1 - Summary of CPT Soundings

3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by **KTE** using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone with a cone net area ratio of 0.83. The following parameters were recorded at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Inclination
- Sleeve Friction (fs)
- Penetration Speed
- Dynamic Pore Pressure (u)

At locations CPT-17 & CPT-20, shear wave measurements were obtained at various depths. The shear wave is generated using an air-actuated hammer, which is located inside the front jack of the CPT rig. The cone has a triaxial geophone, which recorded the shear wave signal generated by the air hammer.

The above parameters were recorded and viewed in real time using a laptop computer. Data is stored at the KTE office for up to 2 years for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly.

4. CONE PENETRATION TEST DATA & INTERPRETATION

The Cone Penetration Test data is presented in graphical form in the attached Appendix. These plots were generated using the CPeT-IT program. Penetration depths are referenced to ground surface. The soil behavior type on the CPT plots is derived from the attached CPT SBT plot (Robertson, "Interpretation of Cone Penetration Test...", 2009) and presents major soil lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used along with cone resistance to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

The CPT data files have also been provided. These files can be imported in CPeT-IT (software by GeoLogismiki) and other programs to calculate various geotechnical parameters.

It should be noted that it is not always possible to clearly identify a soil type based on qc, fs and u. In these situations, experience, judgement and an assessment of the pore pressure data should be used to infer the soil behavior type.

If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

Kehoe Testing & Engineering

P. Kha

Steven P. Kehoe President

09/05/24-eb-6767

APPENDIX

Project: Langan Eng. & Environmental Services / Goodman Energy Park

Location: 3163 E. Vernon Ave, Vernon, CA

CPT-17 Total depth: 56.30 ft, Date: 9/3/2024

Project: Langan Eng. & Environmental Services / Goodman Energy Park

Location: 3163 E. Vernon Ave, Vernon, CA

CPT-18 Total depth: 11.22 ft, Date: 9/3/2024

Project: Langan Eng. & Environmental Services / Goodman Energy Park

Location: 3163 E. Vernon Ave, Vernon, CA

CPT-18A

Total depth: 9.32 ft, Date: 9/3/2024

Project: Langan Eng. & Environmental Services / Goodman Energy Park

Location: 3163 E. Vernon Ave, Vernon, CA

Project: Langan Eng. & Environmental Services / Goodman Energy Park Location: 3163 E. Vernon Ave, Vernon, CA

CPT-19 Total depth: 75.34 ft, Date: 9/3/2024

Project: Langan Eng. & Environmental Services / Goodman Energy Park

Location: 3163 E. Vernon Ave, Vernon, CA

CPT-20 Total depth: 52.90 ft, Date: 9/3/2024

Langan Eng. & Envrionmental Services Goodman Energy Park Vernon, CA

CPT Shear Wave Measurements

					S-Wave	Interval
	Tip	Geophone	Travel	S-Wave	Velocity	S-Wave
	Depth	Depth	Distance	Arrival	from Surface	Velocity
Location	(ft)	(ft)	(ft)	(msec)	(ft/sec)	(ft/sec)
CPT-17	5.02	4.02	4.49	4.48	1002	
	10.01	9.01	9.23	12.48	740	592
	15.03	14.03	14.17	22.24	637	506
	20.01	19.01	19.11	28.24	677	824
	25.03	24.03	24.11	33.70	716	915
	30.05	29.05	29.12	39.40	739	878
	35.04	34.04	34.10	45.38	751	833
	40.03	39.03	39.08	50.40	775	993
	45.05	44.05	44.10	55.36	797	1011
	50.00	49.00	49.04	58.54	838	1555
	54.99	53.99	54.03	62.18	869	1370
CPT-20	5.02	4.02	4.49	4.16	1079	
	10.01	9.01	9.23	10.90	847	703
	15.03	14.03	14.17	17.00	834	810
	20.05	19.05	19.15	24.40	785	673
	25.03	24.03	24.11	30.28	796	843
	29.99	28.99	29.06	35.42	820	962
	35.04	34.04	34.10	40.22	848	1050
	40.03	39.03	39.08	44.76	873	1097
	45.01	44.01	44.06	48.80	903	1231
	50.00	49.00	49.04	52.90	927	1216
	52.89	51.89	51.93	54.68	950	1622

Shear Wave Source Offset -

2 ft

S-Wave Velocity from Surface = Travel Distance/S-Wave Arrival Interval S-Wave Velocity = (Travel Dist2-Travel Dist1)/(Time2-Time1)

APPENDIX C

Prior Field Investigation Borings and Geotechnical Laboratory Testing

			UNIFIED SO	IL CLASSIFICATION SYSTEM						
Major	Divisions	Symbols		Typical N	ames					
er (i	Gravels	GW	Well-graded GRA	VELS with less than 5% fines or gravel-	sand mixtures					
(more than half of soil is larger than the no. 200 sieve size)	(more than half of	GP	Poorly-graded GR	AVELS with less than 5% fines or grave	el-sand mixtures					
eve eve	coarse fraction is retained/> no. 4 sieve	GM	Silty gravels, gravel-sand-silt mixtures; GRAVELS with greater than 12% ML or MH fines							
than half of soil is la the no. 200 sieve si	size)	GC	Clayey gravels, gra	avel-sand-clay mixtures; GRAVELS with	greater than 12% CL or CH					
o. 20	Sands	SW	Well-graded sands	s with less than 5% fines or gravelly sa	nds, little or no fines					
ner I ner ne r	(more than half of	SP	Poorly-graded san	ds with less than 5% fines or gravelly s	ands, little or no fines					
ant	coarse fraction passes/< no. 4 sieve	-	Silty sands, sand-s	silt mixtures; SANDS with greater than	12% ML or MH fines					
(mo th	size)	SC	Clavev sands, san	d-clay mixtures; SANDS with greater th	an 12% CL or CH fines					
νO		ML		clayey silts of low plasticity, sandy non						
20il ii	Silts and Clays		-	low to medium plasticity, silty CLAY, tra						
of s e no e)	LL = < 50	CL	,							
(more than half of soil is smaller than the no. 200 sieve size)		OL	-	organic silt-clays of non-plastic to mediu	. ,					
han thai sieve	Silts and Clays	МН		plastic silts, medium plastic to very pla	, ,					
aller	LL = > 50	СН	<u> </u>	o very plastic CLAYS, sandy plastic CLA						
		ОН	Organic medium p	plastic to plastic silty CLAYS, and very p	lastic CLAYS					
Highly O	organic Soils	PT	Peat and other hig	hly organic soils						
	GRAIN SIZE CHAR	т		SOIL DESCRIP	PTIONS/SYMBOLS					
	Range of Gr			- Well-graded GRAVEL (GW)	Low-Plasticity SILT (ML)					
assification	U.S. Standard Sieve Size	Grain Siz Millimet			High-Plasticity SILT (MH)					
oulders	Above 12"	Above 3	<u>)5</u>	 Poorly-graded GRAVEL (GP) 						
obbles	12" to 3"	305 to 76	5.2 M	- Silty GRAVEL (GM)	Low-Plasticity CLAY (CL)					
iravel	3" to No. 4	76.2 to 4		- SIILY GRAVEL (GIVI)	LOW-Plasticity CLAY (CL)					
coarse fine	3" to ¾" ¾" to No.4	76.2 to 1 19.1 to 4	I N/14							
and	No. 4 to No. 200	4.76 to 0.0		- Clayey GRAVEL (GC)	High-Plasticity CLAY (CH					
coarse	No. 4 to No. 10	4.76 to 2.	00							
medium fine	No. 10 to No. 40 No. 40 to No. 200	2.00 to 0.4 0.240 to 0.	اه ها	- Well-graded SAND (SW)	SANDSTONE					
ilt and Clay	Below No. 200	Below 0.0		- Poorly-graded SAND (SP)	CLAYSTONE					
	ER READING									
				- Silty SAND (SM)	SILTSTONE					
- Groundwa	iter encountered dur	ing drilling			KXX					
Groundwa	ater at completion			- Clayey SAND (SC)	FILL					
- Groundwa	tor at 24 hours		557							
- Grounawa	iter at 24 hours			- AGGREGATE BASE	- ASPHALT					
MPLER TYP	ΡE									
CR	Modified Califorr and a 2.5-inch ins			with 3.0-inch outside diameter	BAG - Bulk Sample					
SPT	Standard Penetr	ation Test (S	PT) split-barrel sam	pler with a 2.00-inch outside	C - Core Barrel					
				منامط المراجع ومارية والمراجع						
ZZ ST	hydraulic pressur		de diameter, thin-	walled tube) advanced with						
		Figure Title			Figure No.					
.AN	GAN	i igure title			r igure nuc.					
Langan (
Langart			BORIN	G LOG LEGEND	APPENDIX A					
	r Street, Suite 1060 es, CA 90071									
					-					

LA	$\mathbf{N}\mathbf{L}$	4 / V	Log	of E	Boring			B-	1			Sheet	1	of	2
Project				Pro	oject No.										
Location	3163 East Vernon A	Avenue		Ele	evation ar	nd Da		7210	4050	1					
	3163 East Vernon A	Avenue						Appr	ox. 20						
Drilling Com	ABC Liovin			Da	ate Starteo	d	0	5/0/	/2023		Date	Finished	05/0	4/2023	
Drilling Equip				Co	mpletion	Dept		5/0-1/	2020		Rock	Depth	00/0	4/2020	
Size and Typ	CME-85 Truck Mou	unted Drill Rig						3 Distu	81.5 ft		1.1.	ndisturbed		- Core	
	6-inch O.D. Hollow	Stem Auger		Nu	Imber of S	Samp	les		Ibeu	3			3		
Casing Diam	eter (in) -		Casing Depth (ft)	Wa	ater Level	l (ft.)		First		-		ompletion	-	24 HR. V	-
Casing Ham	ner	Weight (lbs)	Drop (in)	Dri	illing Fore	man		_				_			
Sampler	2-inch O.D. Split-Ba	arrel SPT, 2.5-inch I.D.		Fie	eld Engine	er	Ju	lan							
Sampler Har	^{nmer} Automatic	Weight (lbs) 140	Drop (in) 30		-	-	В.	Wat				_			
					Depth	Ē			nple Da			-	Rem		
AND		Sample Description	٦		Scale	Number	Type	(in)	Penetr. resist BL/6in	PII (ppr		(Drillin) Fluid Los	ıg Fluid, D ss, Drilling	epth of Casing Resistance, e	j, etc.)
	.7 AC = 4-inch thick	; No base.			<u> </u>	-								rom 0-5 fee	
205 Report Report	Artificial Fill (af) Silty SAND (SM).	, brown, moist, fine san	d. trace concrete			1						0-5 fee		collected fr	om
	and glass fragme		,			1									
	5				2 -										
502 2:31:41 PM	Quaternary Youn	ng Alluvium (Qya) to Sandy SILT (ML), br			- 3 -										
2023	medium stiff, moi	ist, fine sand.	own, loose to			1									
5/31/					- 4 -	1									
						1									
D.T.					5 -	_	T	18	2	0					
- 10 - 10					6 -	۲- ۲-	SP	18	2 3						
0405(-			5						
S\721					- 7 -	1									
9 + 198		t brown, medium dense	moist fino to		8 -										
	coarse sand, trac	ce fine gravel.	, moist, me to												
					- 9 -	1									
					- 10 -	1				0		WC =	2.6%		
						S-2	ся	14	5 10	-			2.0 % 109.7 p	cf	
					- 11 -	S	0		17						
					- 12 -										
					= -	1									
La 193	.0	brown, medium dense	moist, fine to		- 13 -	1									
	medium sand.				- 14 -										
LPRO															
40501					- 15 -	1			5	1.2	2				
/7210						S-3	SPT	18	11						
ATA5					- 16 -	Ľ			13						
AXA					- 17 -	-									
ATAN					ŧ :	1									
188 WO	SAND with Silt (S	SP-SM), light brown, me	dium dense, mois	st , —	- 18 -	1									
VLANGAN COMIDATALAXIDATA5/721040501 PROJECT DATA_DISCIPLINE/GEOTECHNICAL/GINTLOGS/721040501 - GINT.GPU	fine sand, trace fi	ine gravel.			- 19 -	1									
ANG						1									
≢ ⊡ ⊡					نــ ₂₀ ــــَّ	1									

.

-

- - - /

3163 East Vernon Avenue721040501Elevation and DatumApprox. 206Sample Description $\frac{1}{20}$ $\frac{1}{2$	PID (ppm) Remarks (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) 0.2 WC = 8.7% DD = 110.5 pcf
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PID (ppm) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) 0.2 WC = 8.7%
$\frac{\text{Elev.}}{186.0}$ $\frac{\text{Depth}}{\text{Scale}}$ $\text{Dep$	PID (ppm) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) 0.2 WC = 8.7%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PID (ppm) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) 0.2 WC = 8.7%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2 WC = 8.7% DD = 110.5 pcf
178.0 - CLAY with Sand (CL), brown, very stiff, moist, fine sand 28 - 29 - 30 - 9 g g g g g g g g g g g g g g g g g g	0 LL = 25, PL = 15, PI = 10

		<u>A</u>	NGA		Log		Boring			В	-2			Sheet	1	of	1
P	roject		3163 East Vernon A	venue		Pr	oject No.			721	040501						
L	ocatior	1				Ele	evation an	d Da	tum								
)rillina (Compar	3163 East Vernon A	venue		Da	ate Started	1		Арр	rox. 20	6	Date F	inished			
			ABC Liovin)5/03	8/2023				05/03	3/2023	
	rilling E	Equipme	ent CME-85 Truck Mour	ntod Drill Pig		Co	mpletion I	Deptl	n		3 ft		Rock	Depth			
s	ize and	d Type o	of Bit			NL	Imber of S	Samp	les	Dist	urbed		Un	disturbed		Core	
С	asing l	Diamete	6-inch O.D. Hollow S er (in)		Casing Depth (ft)		ater Level	-		First		-		mpletion	-	24 HR.	
c	asina l	Hamme	- :r	Weight (lbs)	- Drop (in)		illing Fore			Ţ		-		_	-	<u> </u>	-
	ampler		-	rrel SPT, 2.5-inch I.D. C	al Mad												
s	ampler	Hamm		Weight (lbs) 140	Drop (in) 30	_ Fi€	eld Engine	er	Δ	Nie	blas						
z	4 ⁷		Automatic	140						Sa	mple Da	ta		I	Rema	arke	
Report: Log - LANGAN	MATERIAL SYMBOL	Elev. (ft) +206.0		Sample Description			Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in					epth of Casin Resistance,	g, etc.)
ĝ		+205.5	AC = 4-inch thick;	No base.			0 -										
Report			Artificial Fill (af) Silty SAND (SM) a	and Sandy SILT (ML), da	ark brown, moist,		- 1 -										
Σ			scattered gravel a	nd pieces of broken clay	v pipe. [FILL]		2 -										
1:48 F																	
3 2:3		+203.0	Total Depth = 3 fe	et			- 3 -										
31/202			Groundwater not e Backfilled with soi	encountered.			4 -										
l 5/:				ed due to potentially buri	iod utility **												
T.GP.			Doning abandone	ed due to potentially built	eu unity.		- 5 -										
- GIN							6 -										
40501																	
\7210							- 7 -										
OGS							- 8 -										
GINTI																	
ICAL							- 9 -										
ECHN							- 10 -										
GEOT																	
LINE/							- 11 -										
ISCIP							- 12 -										
TA_D																	
TDA							- 13 -										
OTEC							- 14 -										
01/PR																	
10405							- 15 -										
45/72							- 16 -										
NDAT/																	
ALAX							- 17 -										
I/DAT,							- 18 -										
I.COV																	
VLANGAN.COMIDATAILAXIDATA5/721040501/PROJECT DATA_DISCIPLINE\GEOTECHNICAL\GINTLOGS/721040501 - GINT.GPJ 5/31/2023 2:31:48 PM							- 10 - - 11 - - 12 - - 12 - - 13 - - 13 - - 13 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 18 - - 19 - - 19 -	1									
A//							<u>E 20 –</u>	1									

L	4	NGA	A/V	Log	of E	Boring			в	-3			Sheet	1	of	2
Project		3163 East Vernon A	Wanua		Pr	oject No.			704	04050	1					
Location		5105 East Verilon A	venue		El	evation ar	id Da	itum								
Drilling Co	mpar	3163 East Vernon A	venue		Da	ate Starteo	1		Арр	rox. 20	04	Date	e Finished			
	-	ABC Liovin)5/05	5/2023				05/0)5/2023	
Drilling Eq	laibme	ent CME-85 Truck Mour	ntod Drill Dia		Co	ompletion	Dept	h		31.5 ft		Roc	k Depth			
Size and T	Гуре о	of Bit			NI	umber of S	Samp	les		urbed		 l	Jndisturbed		- Core	
Casing Dia	amete	6-inch O.D. Hollow S er (in)	Stem Auger	Casing Depth (ft)	+	ater Level			First	t	3	0	Completion	3	24 HR.	
Casing Ha	amme	- r	Weight (lbs)	Drop (in)		rilling Fore	• •		Ω		-		Ţ	-	<u> </u>	-
Sampler		-	Irrel SPT, 2.5-inch I.D.		-			Ju	Jan							
Sampler H	lamm		Weight (lbs) 14(Drop (in)	-	eld Engine	er	В	Wa	atkins						
		, (010110410				Danth	-		Sa	mple D				Rem	narks	
LANGAN MATERIAL SYMBOL	Elev. (ft)		Sample Description	n		Depth Scale	Number	Type	Recov.	Penetr. resist BL/6in	P (pr	ID om)	(Drillin Fluid Los	ig Fluid, D	Depth of Casin g Resistance,	g, etc.)
	204.0 203.6	PCC = 5-inch thick	k, No base.			<u> </u>	Z		-	<u> </u>			Bulk s	ample	collected f	
Material Material Material Material Material		Artificial Fill (af) SAND (SP), light b	brown, moist, fine to m	nedium sand, trace									0-5 fe Corros	sion an	d chemica	l test.
			vel, trace silt. [FILL]										Expan	sion In	dex.	
49 PN						2 -										
5/31/2023 2:31:49 PM						- 3 -										
1/2023	200.0						-									
5/3	200.0	Silty SAND (SM), gravel, trace clay.	brown, loose, moist, fi	ne sand, some fine	; —	4 -										
GPJ		graver, trace clay.	ני יבבן			- 5 -	_			2	(D	WC =	10.7%		
UN CIN						6 -	<u>-</u>	CR	18	3			DD =	106.0 p	ocf	
10501	197.5	Quaternary Young					_			7						
72102		SAND (SP), light b	brown, medium dense	, moist, fine to		- 7 -										
OGS		coarse sand, trace	e fine gravel.			- 8 -										
GINTI																
IICAL						- 9 -										
						- 10 -				-		D				
GEOT							S-2	SPT	18	3						
						- 11 -		SPT	Ĺ	9						
DISCIE						- 12 -										
TAN I	191.0															
	101.0	SAND with Silt (SF fine to medium sa	P-SM), light brown, me	edium dense, mois	t, —	- 13 -										
RoJE						- 14 -										
10201/F						- 15 -						D		0.00/		
21040							ę	CR	18	89		J	WC = DD =	8.6% 112.2 p	ocf	
TA5/7						- 16 -	S-3	o	-	13						
AX/DA						- 17 -										
ATAL	100															
	186.0	SAND (SP), light b	brown, medium dense	, moist, fine to		- 18 -	1									
VLANGAN COMIDATALAXIDAT65721040501PROJECT DATA_DISCIPLINE/GEOTECHNICAL/GINTLOGS/721040501 - GINT GPU		medium sand.				19 -										
ILANC																
-	I					<u> </u>	•	•		•						

roject		3163 East Vernon Avenue	Project No.			72104050)1				
ocation	1		Elevation a	nd Da	itum	12104000					
		3163 East Vernon Avenue				Approx. 2					
81AL OL	Elev.		Depth	-		Sample D		_	Remar	ks	
MATERIAL SYMBOL	(ft)	Sample Description	Scale	Number	Type	Recov. (in) Penetr. resist BL/6in	PID (ppm)	(Drilling Fluid Loss	ı Fluid, Dept s. Drillina Re	h of Casing	l, tc.)
-	+184.0		20 -				0.1				,
			Ē	8-4-1	SPT	۰ ۲ 11					
			- 21 -	1	Ĩ	16					
			- 22 -	3							
			E	1							
	+181.0	SAND (SW), light brown, dense, moist, fine to coarse sand	23 -	1							
	•	and gravel.	- 24 -	-							
	• •		E	3							
,`````````` ``````````````````````````	•		- 25 -	1		13	0	WC = 2			
			- 26 -	S-5	К	€ 21		ן = ממ	03.7 pcf		
	•		Ē	╄		28	-				
	•		- 27 -	-							
	•		- 28 -	1							
	•										
			- 29 -	-							
	•		- 30 -	-			0.3				
, 	+173.5	Fine to medium sand, no gravel. Sandy CLAY (CL), brown, very stiff, moist, very fine to fine	-E	V6B	F	10 00 -	0.5				
		sandy CLAY (CL), brown, very stin, moist, very line to line sand.	- 31 -	S-6A/6B	SPT	₩ 10					
<u> </u>	2+172.5	Total Depth = 31.5 feet	 32 -								
		Groundwater not encountered. Vapor probes installed at 10 and 30 feet.									
			- 33 -	-							
			- 34 -	-							
			-								
			- 35 -	-							
			E	1							
			- 36 -	-							
			- 37 -								
			Ē	-							
			- 38 -	-							
			- 39 -	-							
			- 39 -								
			- 40 -								
			- 40 - - 41 - - 42 -								
			- 42 -								
			- 43 -								
			- 44 -	-							
			 45 -	1							

LA		of Boring	B-4		Sheet 1 of 2
Project		Project No.			
Location	3163 East Vernon Avenue	Elevation and Da	721040501 tum		
	3163 East Vernon Avenue		Approx. 201		
Drilling Comp	-	Date Started	05/00/2000	Date F	Finished
Drilling Equip	ABC Liovin ment	Completion Dept	05/03/2023 n	Rock [05/03/2023 Depth
	CME-85 Truck Mounted Drill Rig		31.5 ft		- -
Size and Type	e of Bit	Number of Samp	les Disturbed	Uno 3	disturbed Core
Casing Diame	6-inch O.D. Hollow Stem Auger eter (in) Casing Depth (ft)	Water Level (ft.)	First		mpletion 24 HR.
Casing Hamn	her Weight (lbs) Drop (in)	Drilling Foreman			
Sampler	2-inch O.D. Split-Barrel SPT, 2.5-inch I.D. Cal Mod	Field Engineer			
Sampler Ham			A. Nieblas		
z d-			Sample Data		Remarks
Elev (ft) +201.		Depth of Scale	Type Recov. (in) Penetr. resist BL/6in	PID	(Drilling Fluid, Depth of Casing,
Υ ₹ ⁶ +201.	0	0	BL Re	(ppm)	Fluid Loss, Drilling Resistance, etc.)
	PCC = 7-inch thick, Base = 12-inch thick.				Hand auger from 0-6 feet.
eport		- 1 -			
[™] 199.		F = ₹			
3 PM	Artificial Fill (af) Silty SAND (SM), light brown, slightly moist. [FILL]	2			
198. 197	Quaternary Young Alluvium (Qva)	[
23 2	Silty SAND (SM), light brown, slightly moist.	3 -			
5/31/2023		4 -			
2/					
G		<u> </u>			
- GINT GPJ					
	Grayish brown, loose, fine sand, micaceous.	6 - 5		0.3	
)405(E =			
7210		- 7 -			
80	0				
VICALIGINITOGSY721040501	SAND with Silt (SW-SM), light brown, dense, slightly mois fine to coarse sand.	t, = 8 =			
		- 9 -			
		10 -	7	0.1	WC = 5.1%
		- 11 - 0	₩ ₩ ₩ 18		DD = 110.5 pcf
			27		
E		12			
		- 12 -			
	SAND with Some Silt (SP-SM), light brown, medium dens slightly moist, medium to coarse sand.	e,			
Pop		- 14 -			
		E E			
0405		- 15	7	0.1	
/7210		- 16 - 0			
ATA			13		
		- 17 -			
		È i i			
VDV		18 -			
ō		E i			
VLANGAN COMIDATAILAXIDATA5/721040501\PROJECT DATAL DISCIPLINE/GEOTECH		- 19 -			

Project			Project No).								
ocation	3163 E	ast Vernon Avenue	Elevation	and Da	atum	721	04050	1				
	3163 E	ast Vernon Avenue				Арр	prox. 20	D1				
4				_	-		ample D			Rema	ke	
MATERIAL SYMBOL	t)	Sample Description	Depth Scale	Number	Type	Recov.	Penetr. resist BL/6in	PID (ppm)	(Drilling Fluid Los	g Fluid, Dep s, Drilling R	th of Casing, esistance, etc	.c.)
		e, medium sand.	20 -	- 2			6	0	WC =	4.6%		
			- 21	- S	CR	18	18		DD = 1	10.1 pcf		
				1			31					
			22	-								
	8.0		tu moist 23	-								
	medi	D with Silt (SP-SM), light brown, dense, sligh um sand, some fine and coarse sand.	itiy moist,	-								
			- 24									
			- 25					0.4				
				S-5	SPT	18	10 20					
			- 26 -	<u>]</u>		Ĺ	24					
			27	-								
			-	-								
			- 28	3								
			- 29	-								
			- 30	1				0		4 50/		
	Very	moist, fine to coarse sand.		S-6	CR	18	21 38		WC = 1 DD = 1	4.5% 24.4 pcf		
+16	9.5		- 31	-10	o	1	22					
	Total	Depth = 31.5 feet ndwater not encountered.	- 32	-								
	Vapo	r probes installed at 10 and 30 feet.		-								
			- 33									
			34	-								
			Ē									
			- 35	-								
			- 36	-								
			- 37	-								
			F									
			- 38	-								
			39	-								
			F	-								
			- 40 E	-								
			- 41	-								
				-								
			- 42	-								
			- 43	-								
			- 44									
			E 44	-								

L	4	NGA	A/	Log	of E	Boring			B	-7			Sheet	1	of	2
Project					Pr	oject No.										
Location		3163 East Vernon A			Ele	evation an	d Da	itum		04050						
Drilling Co		<u>3163 East Vernon A</u> v	Avenue		Da	ate Starteo	1		Арр	rox. 20	06	Date	e Finished			
_	-	ABC Liovin							5/04	/2023				05/0	4/2023	
Drilling Eq	• •				Co	ompletion l	Deptl	h				Roc	k Depth			
Size and T	Tvpe o	CME-85 Truck Mour	nted Drill Rig							36.5 ft urbed		ι	Jndisturbed		- Core	
		6-inch O.D. Hollow S	Stem Auger		Nu	umber of S	Samp	les			3		-	4		
Casing Dia	amete	r (in) -		Casing Depth (ft)	w	ater Level	(ft.)		First		-		Completion	-	24 HR. 1	-
Casing Ha	ammer	-	Weight (lbs)	Drop (in)	Dr	rilling Fore	man									
Sampler		2-inch O.D. Split-Ba	arrel SPT, 2.5-inch I.D.	Cal Mod	Fie	eld Engine	er	Ju	lan							
Sampler H			Weight (lbs) 140	Drop (in)				В.	Wa	tkins						
Z Z .	_,					D //			Sa	mple D	r			Rem	arks	
	Elev. (ft)		Sample Description	ı		Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PI (pp		(Drillin		epth of Casing Resistance, e	g, atc.)
De NA R	206.0	AC = 6-inch thick,	No base			<u> </u>	ž	· ·	Ľ ∣	۳ - ۳	(PP	,			rom 0-6 fe	
	205.5	Artificial Fill (af)														
Report		Silty SAND (SM),	light brown, moist, fine	sand. [FILL]												
M						- 2 -										
	203.5	Quaternary Young														
5/31/2023 2:32:03		Silty SAND (SM),	light brown, loose, moi	st, fine sand.		- 3 -										
1/202																
5/3																
E .						5 -								4 - 40/		
- GINT GPJ														15.1% 101.3 p		
						6 -				2	0)				
04050							۲ <u>-</u>	К	18	2 3						
/7210						- 7 -	0	Ĭ	Ì	8						
Sol						8 -										
	197.5															
SAL/G		SAND (SP), light i	brown, medium dense,	moist, line sand.		- 9 -										
NH																
OTE						- 10 -				3	0)				
						- 11 -	S-2	SPT	18	6						
										11						
DISC						- 12 -										
	102.0															
	193.0		brown, dense, moist, f	ine to coarse san	d, —	- 13 -										
		trace fine gravel.				- 14 -										
						Ę										
4050						- 15 -	-			12	c)			recovery;	Bag
/7210						Ē , Ē	S-3	СR	16	25				e taken		-
ATA5						- 16 -				36						
						- 17 -										
						Ē										
						- 18 -										
O.																
VLANGAN COMIDATALLAXIDATA5/72104056119PROJECT DATA/_DISCIPLINE/GEOTECHNICAL/GINTLOGS/721040501						- 19 -										
						E ₂₀ -										

LANGAN

Project			of Boring Project No.			B-						2
_ocation		3163 East Vernon Avenue	Elevation a	nd Da	tum	7210	40501					
		3163 East Vernon Avenue				Appr	юх. 20	6				
SIAL	Elev.		Depth	r			nple Da		-	Remar	ks	
MATERIAL SYMBOL	(ft) +186.0	Sample Description	Scale	Number	Type	Recov (in)	Penetr. resist BL/6in	PID (ppm)	(Drilling) Fluid Los	g Fluid, Dept s, Drilling Re	th of Casing esistance, e	j, etc.)
	•						9	0.5				
	•		- 21 -	S-4	SPT	16	19 25					
	•		- 22 -									
	•											
	•		- 23 -									
· · · · · · · · · · · · · · · · · · ·			- 24 -									
••••••• ••••••			- 25 -	1	 			0.3	WC =	7 9%		
				S-5	CR	18	21 33	-		9.0 pcf		
••••••••••••••••••••••••••••••••••••••	•		- 26 -	–			40					
••••••			- 27 -									
<u>,</u>	+178.0	Clayey SAND (SC), brown, dense, moist, fine sand.										
		טאיז שאויע ניטן, איטאיז, עפווסס, וועוסג, וווע סמוע.	Ē									
			- 29 -									
			- 30 -	1			8	0	High fi	nes conte	ent.	
			- 31 -	8-0 -0-0	SPT	18	20 20					
			- 32 -	-			20					
	+173.0	Silty SAND (SM) to Sandy SILT (ML), brown, dense to very stiff, moist, very fine to fine sand, trace iron oxide staining.										
			- 34 -									
			- 35 -					0		22.00/		
			Ē	S-7	CR	18	13 19	0	WC = 2 DD = 9	22.0% 2.7 pcf		
	+169.5_		36 - 			Ĺ	26					
		Total Depth = 36.5 feet Groundwater not encountered.	- 37 -									
		Vapor probes installed at 10 and 28.5 feet.	- 38 -									
			Ē									
			- 39 -									
			- 40 -									
			- 41 -									
			- 40									
			- 42 -									
			- 43 -									
			- 44 -									
			F	1								

LA	ANG/	A / P	Log	of E	Boring			B	-8			Sheet	1	of	2
Project	2162 Feet Vormen A	Wanua		Pr	oject No.			7040	10501	1					
Location	3163 East Vernon A	venue		Ele	evation an	id Da		1210	040501						
Drilling Corr	3163 East Vernon A	Venue		Da	ate Starteo	1		Аррі	rox. 20		Date	Finished			
	ABC Liovin							5/05	/2023				05/0	5/2023	
Drilling Equi	ipment CME-85 Truck Mou	ntod Drill Pig		Co	ompletion	Depth	n		36.5 ft		Rock	Depth			
Size and Ty	/pe of Bit			NL	umber of S	Samp	les	Distu			U	ndisturbed		- Core	
Casing Diar	6-inch O.D. Hollow S meter (in)	Stem Auger	Casing Depth (ft)	_	ater Level			First		4		ompletion	3	24 HR.	
Casing Harr	- nmer	Weight (lbs)	Drop (in)		illing Fore	• •		$\overline{\Delta}$		-		<u>Y</u>	-	Ţ	-
Sampler	•	- Irrel SPT, 2.5-inch I.D.	- Cal Mod		- I-I F arations		Ju	lan							
Sampler Ha		Weight (lbs) 140	Drop (in) 30	F#	eld Engine	er	B.	Wa	tkins						
					Denth			Sar	nple Da	ta		_	Rem	arks	
(f) ANG SYM	ev. ft)	Sample Description	l		Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PI (pp		(Drillin) Fluid Los		epth of Casing, Resistance, et	, tc.)
B		PCC = 3-inch thick.				2		_				Hand	auger f	rom 0-5 fee	et.
Report	Artificial Fill (af)	P-SM), brown, moist, fi	ne to medium									0-5 fee	et.	collected fr	om
	sand, trace fine gr	ravel. [FILL]			E 3							R-vail	ue Test		
07 PM					- 2 -										
	Quaternary Young	g Alluvium (Qva)			- 3 -										
5/31/2023	SAND (SP), light l	brown, medium dense,	moist, fine sand,												
5/3					- 4 -										
I.GPJ					- 5 -	-			5	0.	7				
ND-					6 -	<u>۲</u>	SPT	18	5						
10501						_			8						
72104					- 7 -										
OGS					- 8 -										
GINTI															
IICAL					- 9 -										
					- 10 -					0)				
GEOT	Fine to medium sa	and, no silt.				S-2	СR	18	4 8						
					- 11 -	S	0	-	9						
ISCIP					- 12 -										
DA DA					- 13 -										
SOJEC					- 14 -										
01/PF															
10405	Trace fine gravel.				- 15 -	_	SPT		7	1.	9				
A5/72					- 16 -	°.3	SP	18	12 12						
XIDAT						-									
TALLA					- 17 -										
M/DA					- 18 -										
W_ANGAN COMIDATALAXIDATA5/721040501/PROJECT DATA_DISCIPLINE/GEOTECHNICAL/GINTLOGS/721040501 - GINT GPU					- 19 -										
ANG/						1									
≱ ⊡					£	1									

-

Project			of Boring Project No.								
ocation		3163 East Vernon Avenue	Elevation a	nd Da	atum		04050	1			
		3163 East Vernon Avenue					orox. 20				
KIAL SOL	Elev.		Depth	3r			mple Da		-	Remar	rks
MATERIAL SYMBOL	(ft) +184.0	Sample Description	Scale	Number	Type	Recov.	Penetr. resist BL/6in	PID (ppm)	(Drilling) Fluid Los	g Fluid, Depi s, Drilling Re	th of Casing, esistance, etc.
	- 104.0	Dense.	20 -	-			10	0	WC = 3	3.4% 05.8 pcf	
			21 -	8 4	СR	18	19			00.0 pci	
			-	-	┼║		33				
			- 22 -								
			23 -								
			È ai								
			- 24 -								
		Medium dense, fine to coarse sand, no gravel.	- 25 -	-	╞	-	9	2.4			
		,	- 26 -	S-5	SPT	18	12				
			- 20 -	1		1	17				
			- 27 -								
			- 28 -								
			- 29 -								
			- 30 -		 			0.1	S-6A :		
		Fine to medium sand.	-	8-0 8-0	СR	15	4	2	WC = 3	3.4%	
	+172.8	Sandy CLAY (CL), brown, very stiff, moist, very fine to fine	31 -				11			03.3 pcf	
		sand.	- 32 -						S-6B: WC = ⁻	13.6%	
			Ē						DD = 1	22.1 pcf	
			- 33 -								
			- 34 -								
			- -								
/////		Very fine to medium sand, trace fine gravel.	- 35 -		F	_	3	1.1			
			- 36 -	S-7	SPT	18	5 10				
//////	+167.5	Total Depth = 36.5 feet	 27	-		1					
		Groundwater not encountered. Vapor probes installed at 10 and 30 feet.	- 37 -								
			- 38 -								
			- 39 -								
			- 40 -								
			- 41 -								
			- 42 -								
			- 43 -								
			- 44 -								
			 45 -								

LA	NBA	A/V	Log	of E	Boring			FP	-1			Shee	ŧ	1	of	3
Project	3163 East Vernon A	Wonuo		Pr	oject No.			7210)4050	1						
Location	5105 Last Venion A	wende		El	evation an	id Da	tum									
Drilling Comp	3163 East Vernon A any	Venue		Da	ate Starteo	ł		Арр	rox. 2	02	Date	Finished	1			
	2R Drilling							5/05	/2023				0	5/05/2	2023	
Drilling Equip	ment CME-75 Truck Mour	nted Drill Rig		Co	ompletion	Deptł	n	4	35.8 ft	÷	Rock	Depth			_	
Size and Typ	e of Bit			Nu	umber of S	Samp	les		irbed		U	ndisturbe			ore	
Casing Diam	8-inch O.D. Hollow Seter (in)	Stem Auger	Casing Depth (ft)	_	ater Level			First				ompletion	13 n	24	HR.	
Casing Hamr	- ner	Weight (lbs)	Drop (in)		illing Fore	• •		Ţ		-		<u> </u>	-		<u>V</u>	-
Sampler	- 2.5-inch I.D. Cal Mo	-	-	_												
Sampler Han		Weight (lbs) 140	Drop (in) 30	_Fie	eld Engine	er	S.	Will	kins							
GAN BOL Elea					Depth	er			nple D			-	١	Vell [Diagram	ı
ATERIAL SYMBOL (4) +205		Sample Description			Scale	Number	Type	Reco (in)	Penetr. resist BL/6in	P (pr	ID om)					
8 +201	^{.8} AC = 0.25-inch thi	ick.			- 0 - -											
+201 Kebout: Fod	Artificial Fill (af) Silty SAND (SM),	grayish brown, slightly	moist, fine to		- 1 -											
	medium sand. [ÉII	LLJ														
5/31/2023 2:33:24 PM 861	Brown, moist, son fragments.	ne fine to coarse gravel	, few mortar		- 2 -											
23 2:3					- 3 -											
198	o				- 4 -											
	Quaternary Young SAND with Silt (S	P-SM), grayish brown, i	medium dense,										,⊟			
GINT GP1 	moist, fine to med	lium sand.			- 5 -	-			6	-				<u>°</u> ⊢P	erforated	I PVC
	SAND (SP), light	yellowish to grayish bro bist, fine to medium san	wn, medium		- 6 -	ې ۲	СR	18	8							
40501	gravel.					-			10	-						
\$\7210					- 7 -											
LOGS					- 8 -											
/GINT																
NICAL					- 9 -								,⊟,			
	0 SAND with Silt (SI	P-SM), light yellowish to	a aravish brown		- 10 -	_			5	-			H			
CIEC CIEC		ightly moist, fine sand,				S-2	СR	18	5 14							
	increased lines co	Jileni.			- 11 -	Ľ			9	-						
OISCI					- 12 -											
													; <u> </u> '			
CTD					- 13 -											
BLOR					- 14 -											
	0				- 15 -											
21040		yellowish to grayish bro bist, fine to medium san				က္	с	18	7							
TA5/7			-		- 16 -	S-3	CR	-	21 23							
4X/DA					- 17 -					ĺ			,			
ATALL													,目			
(DIMO					- 18 -	1										
AN.C					- 19 -											
ILANGAN COMIDATALAXIDATA5/721040501PR0JECT DATA_DISCIPLINEGEOTECHNICAL/GINTLOGS/721040501 ILANGAN COMIDATALAXIDATA5/721040501PR0JECT DATA_DISCIPLINEGEOTECHNICAL/GINTLOGS/721040501 ILANGAN COMIDATALAXIDATA5/721040501PR0JECT DATA_DISCIPLINEGEOTECHNICAL/GINTLOGS/721040501 ILANGAN COMIDATALAXIDATA5/721040501PR0JECT DATA_DISCIPLINEGEOTECHNICAL/GINTLOGS/721040501 ILANGAN COMIDATALAXIDATA5/721040501PR0JECT DATA_DISCIPLINEGEOTECHNICAL/GINTLOGS/721040501 ILANGAN COMIDATALAXIDATA5/721040501PR0JECT DATA_DISCIPLINEGEOTECHNICAL/GINTLOGS/721040501 ILANGAN COMIDATALAXIDATA5/721040501 ILANGAN COMIDATALAXIDATA5/721040501 ILANGAN COMIDATALAXIDATA5/721040501 ILANGAN COMIDATA1/ANDATA5/721040501 ILANGAN COMIDATA5/721040501 ILANGAN COMIDATA1/ANDATA5/721040501 ILANGAN COMIDATA1/ANDATA5/721040501 ILANGAN COMIDATA1/ANDATA5/721040501 ILANGAN COMIDATA1/ANDATA5/721040501 ILANGAN COMIDATA1/ANDATA5/721040501 ILANGAN COMIDATA5/721040501 ILANGAN COMIDATA5/721000000000000000000000000000000000000																
~					⊥20 —							1 F ·	<u> </u>	.×		

_

Project		3163 East Vernon Avenue	Project No.			704	040504			
ocation			Elevation ar	nd Da		721	040501			
		3163 East Vernon Avenue				Арр	orox. 202			
۲, k						Sa	mple Data	We	ell Diagram	<u> </u>
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	in) č	DIA Penetr. BL/6in BL/6in	vve	n Diagram	1
≧∾	+182.0		20 -	Ž		Å,		 1 1 7 .1		
				4	~	_	9			
ांग	+181.0	SAND with Silt (SP-SM), light gray, dense, fine sand.	21 -	S-4	CR	18	25 26	\square		
				-			20			
			- 22 -	1						
			- 23 -	1						
			_ 24 -	1				\square		
								\square		
	+177.0	SAND (SP), light yellowish to grayish brown, dense, slightly	25 -				18	\square		
		moist, fine to coarse sand, some fine to coarse gravel.	- 26 -	S-5	СR	18	25			
				1			40	\square		
•••••••			_ 27 -							
	474.0			1				\exists		
	+174.0	CLAY (CL), dark yellowish brown and black mottled, very		1						
		stiff, moist to very moist, few fine sand, some silt.	- 29 -	1						
				1				\square		
			30 -	-			7	\square		
				s-6	CR	18	13	\exists		
			- 31 -	- °			22			
			- 32 -	1				\exists		
				1						
			- 33 -	1				\exists		
	160 0			1						
	+168.0	Sandy CLAY (CL), yellowish brown, stiff, moist, fine sand.	34 -	1				H I		
			- 35 -	1				\square		
					~	18	7	\square		
/////			- 36 -	S-7	CR	-	19			
			- 27	-						
/////			- 37 -						-Solid PVC	
			- 38 -						20	
			- 39 -							
			- 40 -	1	L			日二		
/////		Increased sand content.		8		_	9			
/////	+161.0	Clayey SAND (SC), olive gray, dense, moist, fine to	41 -	S-8	CR	18	25 43	日二		
	+160.5	r∖ medium sand.		╞						
		SAND with Silt (SP-SM), yellow, dense, moist, fine sand.	- 42 -					\square		
			- 43 -	1						
								\exists		
			- 44 -							
	1			-				\square		

			of Boring			FP	<u>-1</u>		Sheet	3	of	
roject		2462 Fost Versen Averse	Project No.			704	240504					
catior	ı	3163 East Vernon Avenue	Elevation a	nd Da		721	040501					
		3163 East Vernon Avenue				Арр	rox. 202					
₹⊣			<u> </u>			Sa	mple Data			\//all	Diagran	n
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	in) .	Penetr. resist BL/6in	PID		VVEI	Diagrai	
≥∽ ∵rnr	+157.0	Very dense, fine to medium sand.	45 -			<u>م</u> ج		(ppm)				
		very dense, line to medium sand.		6-S	К	12	22 50					
			- 46 -				00					
			- 47 -	1								
				1								
			- 48 -	1								
			Ē	1								
			- 49 -	1								
	+152.0	Gravelly SAND (SP-GP), light yellow, very dense, slightly	50 -		 							
		moist, fine to coarse sand and gravel.	Ē	S-10	CR	12	25 50/5"					
			- 51 -	Ť	╞╴╫							
م			- 52 -	1								
/				1								
			- 53 -	1								
				1								
5			- 54 -	1								
		Eine te me diamente de merer d'amente te setent	- 55 -	1	 							
		Fine to medium sand, decreased gravel content.	-	S-11	Я	10	40 50/4"					
			- 56 -									
~ 10			- 57 -									
				1								
? <i>[</i>			- 58 -	1								
				1								
γ			- 59 -	1								
			- 60 -		 							
>			-	S-12	S	10	20 50/4"					
			- 61 -	1								
))	+140.0		- 62 -	1								
		SAND with Silt (SP-SM), off-white, very dense, slightly moist, fine to medium sand, few coarse sand, fine gravel.		1								
			63 -	1								
			- 64 -									
				1								
			65 -	8			27					
	• +136.2			S-13	Я	10	27 50/4"					
		Total Depth = 65.8 feet Groundwater not encountered.	- 66 -	1								
		Boring converted to a percolation test well. Boring backfilled with bentonite cement grout and topped	- 67 -	1								
		with soil cuttings and asphalt patched after percolation test.										
			68 -									
			- 69 -									
				1								
				1								

Project 3 163 East Vermon Avenue Location 3 163 East Vermon Avenue Diffing Corpany 2 R Drilling During ExpanyInt. Generg Damate Info Samed Type Bindh O.D. Hollow Stem Auger Completion Dippin Seried Type Seried Type Seried Completion Seried Type Automatic Seried Completion Seried Series Seried Family Automatic Seried Series Seried Series Series Data Series Da	LA		of Boring		FP-3		Sheet	: 1	of	3	
Location Elevation and Datum Drilling Company Date Started Approx. 203 Drilling Company Date Started 05/25/2023 05/25/2023 Drilling Complement Completion Depth 50 ft Rock Depth Size and Type of Bit Price of Bit Undisturbed Corre Casing Dameter (in) Casing Depth (ft) Water Level (ft.) First Completion Sampler 2.6-Inch 1.D. Cal Mod Drop (in) Drilling Foreman Ish Sampler 2.6-Inch 1.D. Cal Mod Torp (in) 30 Antificial Fill (af) Sampler Sample Description Ish Sample Data Sample Data Sampler Sample Description Ish Sample Data Sample Data Sample Value Velight (bs) 140 Drop (in) 30 Antificial Fill (af) Sample Value Sample Sill (GN), brow, moist. Infinition Infinition Sample Data Silly SAND (SM), light brown, medium dense, dry to slightly Infinition Infinition Solid PVC	Project		Project No.								
Drilling Company Date Finished Date Finished Drilling Equipment CME-75 Truck Mounted Drill Rig Completion Depth Rock Depth Size and Type of Bit Soft - Gasing Depth (ft) Water Level (ft.) First Completion Casing Hammer Weight (Ds.) Drop (in) Drilling Foreman Completion Sampler 2.5-Inch I.D. Cal Mod Sampler Level (ft.) First Completion Sampler 2.5-Inch I.D. Cal Mod Sampler Level (ft.) Sampler Description Ish Field Engineer Sampler Description Ish Sampler Detata Velid Diagram Villing Convert Sampler Description Ish Sampler Data Sampler Data Villing Convert Sampler Description Ish Sampler Data Sampler Data Villing Convert Sampler Sample Description Ish Sampler Data Sampler Data Villing Convert Sandy SiLT (ML), brow, moist. 1 1 - - Villing Convert Sampler	Location	3163 East Vernon Avenue	Elevation and Da		721040501						
2R Drilling 05/25/2023 05/25/2023 Drilling Equipment Completion Depth Rock Depth Rock Depth Size and Type of Bit Size and T					Approx. 20	3					
Driling Equipment Completion Depth Rock Depth Completion Dopth Completion Depth 50 ft Size and Type of Bit Sinch O.D. Hollow Stem Auger Number of Samples Disturbed Undisturbed Core Casing Dameter (in) Casing Depth (ft) Water Level (ft.) First Completion 24 HR. Casing Hammer Weight (bs) Drop (in) Diring Foreman Ish Ish Sampler 2.5-inch I.D. Cal Mod Field Engineer A. Nieblas Sample Description Ish Vision Sample Description Drop (in) 30 O A. Nieblas Weill Diagram Vision Sandy SiLT (ML), brow, moist. 1 0 0 1 1 Visity SAND (SM) and Sandy SiLT (ML), brown, loose to medium stift, very moist to moist, clay in sampler shoe. 5 1 1 1 Visity Sand (SM), light brown, medium dense, dry to slightly moist. 5 1 1 5 1 2 3 Visity Sand (SM), light brown, medium dense, dry to slightly 9 2 1 1 5 1 2 3 1 2 3 1	Drilling Compa	-	Date Started	0	E 10 E 10 0 0 0	Da	ate Finished	05/05	10000		
Size and Type of Bit Disturbed Undisturbed Core Casing Diameter (in) Casing Depth (ft) Water Level (ft.) First Completion 24 HR. Casing Hammer Weight (bs) Drop (in) Drop (in) Disturbed Core Ish Sampler 2.5-inch 1.D. Cal Mod Ish Ish Ish Ish Sampler Automatic Weight (bs) 140 Drop (in) 30 A. Nieblas Image: Sample Hammer Automatic Weight (bs) 140 Drop (in) 30 A. Nieblas Image: Sample Hammer Sample Description Sample Description Sample Data Sample Data Well Diagram Image: Sample Samdy SiLT (ML), brow, moist. Image: Samdy SiLT (ML), brow, moist. Image: Samdy SiLT (ML), brow, noist.	Drilling Equipr	2R Drilling	Completion Dept		5/25/2023	R	ock Depth	05/25	/2023		
Number of samples Casing Diameter (in) Casing Depth (ft) Water Level (ft.) First Completion 24 HR. Casing Depth (ft) Drop (in) Drop (in) Drop (in) Casing Part Level (ft.) First Completion 24 HR. Sampler 2.5-inch I.D. Cal Mod Sampler Hammer Automatic Weight (lbs) 10 Drop (in) 30 A Nieblas Sample Description Depth Scale Sample Data Weil Diagram Samy SlLT (ML), brow, moist. 1 1 Attive Young Alluvial Fan Deposits (Qvf) 5 1 4 Visity SAND (SM) and Sandy SiLT (ML), brown, loose to medium suff, very moist to moist, clay in sampler shoe. 6 6 5 5 Visity Sand (SM), light brown, medium dense, dry to slighlyt moist. 1 6 6 6 6 6 6 <th cols<="" td=""><td></td><td>CME-75 Truck Mounted Drill Rig</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></th>	<td></td> <td>CME-75 Truck Mounted Drill Rig</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>		CME-75 Truck Mounted Drill Rig							-	
Casing Dameter (in) Casing Depth (ft) Water Level (ft.) First Completion 24 HR. Casing Hammer Weight (lbs) Drop (in) Drilling Foreman Ish Ish Ish Ish Sampler 2.5-inch I.D. Cal Mod Sampler (lbs) 140 Drop (in) Ish I	Size and Type	e of Bit 8-inch O.D. Hollow Stem Auger	Number of Samp	les	Disturbed		Undisturbed	1	Core		
Sampler 2.5-inch I.D. Cal Mod Sampler Automatic Weight (lbs) 140 Drop (in) 30 Sampler Hammer Automatic Weight (lbs) 140 Drop (in) 30 Matter Scale Sample Data Well Diagram Matter Young Alluvial Fan Deposits (Qyf) Silty SAND (SM), brown, slightly moist. 0 1 Matter Young Alluvial Fan Deposits (Qyf) 31 2 Mative Young Alluvial Fan Deposits (Qyf) 3 4 Mative Young Alluvial Fan Deposits (Qyf) 3 Silty SAND (SM), brown, slightly moist. 5 Mative Young Alluvial Fan Deposits (Qyf) 5 Silty SAND (SM), brown, slightly moist. 5 Mative Young Alluvial Fan Deposits (Qyf) 5 Silty SAND (SM), brown, slightly moist. 5 Mative Young Alluvial Fan Deposits (Qyf) 5 Silty SAND (SM) and Sandy SILT (ML), brown, loose to medium stiff, very moist to moist, clay in sampler shoe. 6 5 Mative Young Alluvial Fan Deposits (Qyf) 7 4 Mative Young Alluvial Fan Deposits (Qyf) 7 4 Medium stiff, very moist to moist, clay in sampler shoe. 6 5 Medium stiff, very moist to moist, clay in sampler shoe. 6 5 6 Mative Young Alluvial Fan Depo		ter (in) Casing Depth (ft)	. ,		First 	-		- 2		-	
2.5-inch 1.D. Cal Mod Field Engineer Sample Hammer Automatic Veight (bs) 140 Orop (in) 30 A. Nieblas Sample Description Depth Scale Sample Data Well Diagram Veight (bs) Automatic Sample Description Depth Scale Sample Data Well Diagram Veight (bs) Automatic (ML), brow, moist. Depth Scale Sample Data Well Diagram Veight (bs) Automatic (ML), brow, moist. Depth Scale Sample Data Well Diagram Veight (bs) Native Young Alluvial Fan Deposits (Oyf) C Veight (bs) Sandy SiLT (ML), brown, loose to medium stiff, very moist to moist, clay in sampler shoe. Sand 50 big by to moist. Solid PVC Veight (bs) Solid PVC		erWeight (lbs)Drop (in)	Drilling Foreman		h						
Addomatic 140 30 A Neblas Multiple Sample Description Serie Serie Serie Pib (ppm) Artificial Fill (af) Sandy Silt (ML), brow, moist. 0 - - - - Attive Young Alluvial Fan Deposits (Qvf) Silty SAND (SM), brown, slightly moist. 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -			Field Engineer	15							
Bigger Elev. (ft) Sample Description Depth Scale Artificial Fill (af) Sandy SILT (ML), brow, moist. 0 2010 Artificial Fill (af) Sandy SILT (ML), brow, moist. 0 1 2 2010 1 2010 Silty SAND (SM), brown, slightly moist. 3 4 4 4 198.0 Silty SAND (SM), and Sandy SILT (ML), brown, loose to medium stiff, very moist to moist, clay in sampler shoe. 198.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist.	Sampler Ham	mer Automatic ^{Weight (lbs)} 140 ^{Drop (in)} 30		Α.							
^{201.0} Native Young Alluvial Fan Deposits (Qyf) Silty SAND (SM), brown, slightly moist. 198.0 3 198.0 Silty SAND (SM) and Sandy SILT (ML), brown, loose to medium stiff, very moist to moist, clay in sampler shoe. 5 198.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist. 6 1 195.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist. 6 6	Elev SYMBOL (ft) t203	Sample Description	Depth ag Scale	Type		PID		Well	l Diagram		
^{201.0} Native Young Alluvial Fan Deposits (Qyf) Silty SAND (SM), brown, slightly moist. 198.0 3 198.0 Silty SAND (SM) and Sandy SILT (ML), brown, loose to medium stiff, very moist to moist, clay in sampler shoe. 5 198.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist. 6 1 195.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist. 6 6	203.	Artificial Fill (af)									
^{201.0} Native Young Alluvial Fan Deposits (Qyf) Silty SAND (SM), brown, slightly moist. 198.0 3 198.0 Silty SAND (SM) and Sandy SILT (ML), brown, loose to medium stiff, very moist to moist, clay in sampler shoe. 5 198.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist. 6 1 195.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist. 6 6											
Solid PVC	+201	ο									
Solid PVC		Native Young Alluvial Fan Deposits (Qvf)	2 -								
198.0 Silty SAND (SM) and Sandy SILT (ML), brown, loose to medium stiff, very moist to moist, clay in sampler shoe. 5 1 1 195.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist. 6 5 1 6 195.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt 8 N g 6 16 9 9 1 1 1 1 1		Silly SAND (SM), DIOWI, Silghuy Moist.	- 3 -								
198.0 Silty SAND (SM) and Sandy SILT (ML), brown, loose to medium stiff, very moist to moist, clay in sampler shoe. 5 1 1 195.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt moist. 6 5 1 6 195.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt 8 N g 6 16 9 9 1 1 1 1 1											
$\frac{195.5}{\text{moist.}} = \frac{3}{7}$ $\frac{1}{7}$ $\frac{1}{9}$ $\frac{6}{7}$ $\frac{6}{16}$ $\frac{6}{20}$ $\frac{9}{10}$ $\frac{1}{20}$ $$			4								
$\frac{195.5}{\text{moist.}} = \frac{3}{7}$ $\frac{1}{7}$ $\frac{1}{9}$ $\frac{6}{7}$ $\frac{6}{16}$ $\frac{6}{20}$ $\frac{9}{10}$ $\frac{1}{20}$ $$	+198	a									
$\frac{195.5}{\text{moist.}} = \frac{3}{7}$ $\frac{1}{7}$ $\frac{1}{9}$ $\frac{6}{7}$ $\frac{6}{16}$ $\frac{6}{20}$ $\frac{9}{10}$ $\frac{1}{20}$ $$		Silty SAND (SM) and Sandy SILT (ML), brown, loose to		E	1						
195.5 Silty Sand (SM), light brown, medium dense, dry to slighlyt 7 7 6 8 Silty Sand (SM), light brown, medium dense, dry to slighlyt 6 7 9 16 20		medium stiff, very moist to moist, clay in sampler shoe.	6 1.2	SPT	€ 2						
					3						
			- 7 -								
	+195.	5			6				Solid PVC		
		moist.	S-7 8 1	К	₩ 16						
			1 1		20						
193.0 Silty SAND with Gravel (SM-SW), light brown with some orangish brown, medium dense, dry to slightly moist, fine to coarse sand, fine to medium gravel, well-graded. 10 11 10 11 <											
orangish brown, medium dense, dry to slightly moist, fine to coarse sand, fine to medium gravel, well-graded.		Silty SAND with Gravel (SM-SW) light brown with some			3						
coarse sand, the to medium gravel, well-graded. 11 - 0 0 0 - 9 12 - 12 - 13 - 14 - 14 - 15 - 16 - 16 - 16 - 16 - 16 - 17 - 18 - 18 - 19 - 19 - 19 - 19 - 19 - 19		orangish brown, medium dense, dry to slightly moist, fine to		F III	<u>6</u> 9						
		coarse sand, line to medium gravel, well-graded.			9						
			12								
			- 13 -								
	•										
			- 16 -					·] [· · · ·]			
								1. F. 1			
			- 19 -								
			È i								

-

Project		Project No.			70.1	04050				
ocation	3163 East Vernon Avenue	Elevation and	d Da		721	040501				
	3163 East Vernon Avenue				Арр	rox. 203	3			
₹:						mple Dat	a	W	ell Diagrar	n
Elev SYMBOL (ft)	Sample Description	Depth Scale	Number	Type	Recov.	Penetr. resist BL/6in	PID (ppm)	•••	on Diagrai	
= +183.	Silty SAND (SM) and Sandy SILT (ML), brown, medium dense to very stiff, moist, fine to coarse sand, occasional gravel.	20		CR	18	9 12 12				
		22 - 23 -								
		24							 Annular M 	/later
		26								
		28							—Solid PV0	C
173.	CLAY with Sand (CL) reddish brown with light reddish	- 29				4				
	brown and gray brown mottle, very stiff, moist, fine to medium sand, maganese-oxide staining.	- 31 -	S-5	SPT	18	10 16				
		- 33 -								
		34								
		36								
		38								
163 .	SAND (SW), light brown, very dense, slightly moist, fine to	- 39 - 				22				
	coarse sand, occasional fine gravel.	41 -	S-6	CR	18	40 47				
		43							-Perforate	d P∖
		44								

roject		3163 East Vernon Avenue	Project No.			721	040501								
ocation			Elevation a	nd Da	atum	121									
		3163 East Vernon Avenue				Арр	rox. 203								
ЧЧ							mple Data	 W	ell Diagrai	m					
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	ecov.	Penetr. resist (mdd) BL/6in		on Diagra						
≥°′	+158.0		45 -	ž	<u> </u>	R.		n L							
	•			1											
	•		- 46 -	1											
	•		- 47 -					°⊟.'I							
	•			1					-Perforate	ed PV					
	+154.5		- 48 -	1											
		SAND with Silt (SM), light brown, very dense, slightly moist.	- 49 -	-	SPT	18	20								
	450.0			S-7	I'S II	-	25 25								
	+153.0	Total Depth = 50 feet. No Groundwater encountered.	- 50 -					**•••••							
		Boring converted to a percolation test well.	- 51 -												
		Boring backfilled with bentonite cement grout and topped with soil cuttings and asphalt patched after percolation test.	Ē												
			- 52 -		1										
			- 53 -		1										
			- 54 -												
			- 55 -												
			- 56 -	1											
			- 57 -												
			- 58 -	1											
			- 59 -		1										
			- 60 -		1										
			- 61 -		1										
			- 62 -		1										
			- 63 -		1										
			E												
			- 64 -		1										
			65 -		1										
			- 66 -		1										
			- 67 -		1										
			- 68 -		1										
					1										
			F	1											
	NG/			Log		oring			FP	-4		Sheet	1	of	3
---	---------------------------------	---------------------	---------------	------------------------	----------	------------	----------	------	---------------------	-----------------------------	----------	-------------	-----	------------	---
Project					Pro	ject No.									
ocation	3163 East Vernon A	venue			Ele	vation ar	nd Dat		721(040501					
	3163 East Vernon A	Avenue					24		Аррі	rox. 202	!				
Drilling Compa	any				Dat	te Starte	d					e Finished			
Drilling Equipr	2R Drilling				Cor	mpletion	Dept		5/25	/2023	Ro	k Depth	05/	25/2023	
	CME-75 Truck Mou	nted Drill Rig				p.etterr	Dop.	•		50 ft				-	
Size and Type	e of Bit				Nui	mber of S	Sampl	les	Distu	irbed		Undisturbed	1	Core	
Casing Diame	8-inch O.D. Hollow eter (in)	Stern Auger	Casinç	g Depth (ft)	Wa	ter Leve	. (#)		First			Completion		24 HR.	
Cooling Homm	-	Weight (lbs)	 Dr	- op (in)		lling Fore			$\overline{\Delta}$		-	Ţ	-	<u> </u>	-
Casing Hamm	-		-		-	ing rore	inan	Isl	h						
•	2.5-inch I.D. Cal Mo	Weight (lbs)		op (in)	Fie	ld Engine	eer								
Sampler Ham	Automatic		140	^{op (III)} 30	<u> </u>		1	Α.	Nie	blas nple Data	<u> </u>				
Elev (ft)		Sample Descrip	otion			Depth	ber	Ō			PID	-	W	ell Diagra	m
HAN (ft) +202.0						Scale	Number	Type	Rec(in	Penetr. resist BL/6in	(ppm)				
	Artificial Fill (af)	brown all about the	int		-	- 0 -									
	SILY SAIND (SIM),	brown, slightly moi	ι 5Ι.		-	- 1 -	1								
					-		1								
					-	_ 2 -	1								
							-								
						- 3 -									
						- 4 -	-								
							-								
197.	Silty SAND with C	Gravel (SM), brown,	, medium d	ense, moist	; — [- 5 -	-			8					
	fine to coarse sar sampler shoe	nd, medium to coars	se gravel, c	concrete in	-	- 6 -	<u>-</u>	К	18	18					
						_ 0 _				22					
						- 7 -									
+ 194.	Native Young All	uvial Fan Deposits	(Qyf)				-			2			-	—Solid PV	С
	Silty SAND (SM), sand.	brown, loose, sligh	itly moist, n	nedium		- 8 -	S-2	SPT	18	3					
	Sanu.					- 9 -				4					
192.	0 Sandy CLAY (CL) and Clayey SAND	(SC) brow	vn medium		- 10 -	1			7					
	dense to very stiff	, moist.	(00), 2:0:	,			S-3	СR	18	11					
						- 11 -				11					
//////////////////////////////////////					-	- 12 -	1								
					-		1								
/					•	- 13 -	1								
							1								
///////////////////////////////////////						- 14 -	1								
						- 15 -	1								
/././././././././././/////////////////					-										
					-	- 16 -									
/////					-	- 17									
					-	- 17 -									
/////					-	- 18 -									
					-										
					-	- 19 -									
////					ļ		4								

LANGAN

Project		2462 Fast Vernen Avenue	Project No.			704	040504				
ocation		3163 East Vernon Avenue	Elevation a	nd Da		721	040501				
		3163 East Vernon Avenue				Арр	rox. 202	2			
ЧЧ					1		mple Dat	а	\M/	ell Diagrai	m
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	ecov. (in)	Penetr. resist BL/6in	PID (ppm)		on Diagrai	
 	+182.0	Silty SAND (SM), to SAND with Silt (SP-SM), brown,	20 -	ž	L.	R	5 5	(PP)			
		medium dense, slighlty moist, occasional fine gravel.		8 4	SPT	18	7				
			- 21 -		Ē		8				
			- 22 -								
			- 23 -	1							
			23								
			- 24 -	1							
			- 25 -							Annular N	Vator
			- 20	1						- Annulai I	viatel
			- 26 -								
			- 27 -								
										-Solid PV	С
			- 28 -								
			- 29 -								
	+172.0	CLAY with Sand (CL), dark reddish brown, very stiff, moist	30 - 				6				
		to very moist.	- 31 -	S-5	CR	18	9				
				╞			18				
			- 32 -								
			- 33 -								
			- 24								
			- 34 -								
			- 35 -	1							
			- 36 -								
			- 37 -								
			- 38 -								
			- 39 -	1							
HAA	+162.0	Sandy CLAY (CL), brown with orange brown mottle, stiff,	40 -	1	╞				_		
		moist to very moist, medium to fine sand.	- 	S-6	SPT	18	2 4				
			- 41 -				6		$\exists $		
			- 42 -								
				1						-Perforate	d PV
			- 43 -						\exists		
			- 44 -						\exists		
			F	1							

LANGAN

Project		3163 East Vernon Avenue	Project No.			721	040501				
ocation			Elevation a	nd Da	atum				 		
		3163 East Vernon Avenue					rox. 202		 		
RIAL 30L	Elev.		Depth	Ē			mple Dat		We	ell Diagrai	m
MATERIAL SYMBOL	(ft) +157.0	Sample Description	Depth Scale	Number	Type	(in)	Penetr. resist BL/6in	PID (ppm)			
	137.0			+-							
			46 -	-							
			-	-							
			- 47 -	-						-Perforate	d PV
	450.5		- 48 -	-					\square		
	+153.5.	SAND with Silt (SP-SM) to Silty SAND (SM), light brown, very desne, dry to slighlty moist, fine to very coarse sand,	 49 ·	1			38		\exists		
		occasional gravel.		S-7	S	18	50 55		日二		
<u>. .</u>	+152.0	Total Depth = 50 feet.					00				
		No Groundwater encountered. Boring converted to a percolation test well.	- 51 -	=							
		Boring backfilled with bentonite cement grout and topped with soil cuttings and asphalt patched after percolation test.	-	-							
			- 52 - E	-							
			- 53 -	-							
			- 54 -	-							
			Ē	-							
			- 55 ·	-							
			- 56 -	-							
				-							
			- 57 -	-							
			- 58 -	-							
			- 59 -	1							
			Ē	-							
			- 60 - -								
			- 61 -	=							
			62 -	-							
			- 02								
			63 -	-							
			64 -	-							
			Ē								
			- 65 ·								
			66	-							
			67 -								
			68 -								
			69 -	-							
			Ē	7							

		NGA		Log		Boring			FP	-5		Shee	t	1	of	3
Project		2162 East \/	/onuo		Pro	oject No.			7040	10504						
ocation		3163 East Vernon Av	/enue		Ele	evation ar	nd Da		1210	040501						
Drilling Co		3163 East Vernon Av	/enue			te Started	1		Аррі	ox. 196		te Finished				
		2R Drilling			Da	te Started	נ	0	5/25	/2023	Da	te Finisned		5/25	/2023	
Drilling Ec	quipme	ent			Co	mpletion	Dept		0/20		Ro	ck Depth		0,20		
Size and [•]	Type of	CME-75 Truck Moun	ted Drill Rig		 			.	Distu	50 ft irbed		Undisturbe	ed	0	- Core	
Casing Di		8-inch O.D. Hollow S		Casing Depth (ft)	-	mber of S			First			Completio		- 2	24 HR.	
-		-		-		ater Level			Ţ		-	Ţ	-	-	Ţ	-
Casing Ha	amme	r	Weight (lbs)	Drop (in) -		illing Fore	man	Isł	ı							
Sampler H		2.5-inch I.D. Cal Mod	Weight (lbs)	Drop (in)	Fie	eld Engine	er									
		Automatic	140	30 Drop (iii)				Α.	Niel Sar	b las nple Data	1					
SYM	Elev. (ft) 196.0		Sample Description			Depth Scale	Number	Type		Penetr. resist BL/6in	PID (ppm)		١	Nell	Diagram	ו
1.5180	196.0	AC = 4-inches thic				- 0 -	-									
		Silty SAND (SM), b	prown, slightly moist to r	noist.		- 1 -										
	104.0															
;†;†;†	194.0	Silty SAND (SM), t	prown.		·	2 -										
						- 3 -										
						- 4 -										
	191.0	SAND with Silt (SF	P-SM), light grayish brow	vn. medium		5 -			_	3						
		dense, dry, fine to	medium sand, occasion	al coarse sand.			۲- ۲-	К	18	6						
						6 -				11						
						- 7 -								-		
	188.5		ight brown, medium der	ise, slightly		- 8 -				3					Solid PVC	;
		moist.					S-2	SPT	18	5						
						- 9 -	-	E		6						
						- 10 -										
		Brown, occasional	fine to coarse gravel, w	ell-graded.			S-3	CR	18	5 9						
						- 11 -	٥ ا		-	18						
						- 12 -										
						- 13 -										
						- 14 -										
						- 15 -										
						- 16 -										
													이 [2			
						- 17 -										
						- 18 -										
						- 19 -										
						E 3	1						91 B	<u></u>		

		of Boring			FF	P-5		Sheet	2	of	3
roject		Project No.			704	040501					
ocation	3163 East Vernon Avenue	Elevation a	nd Da		121	040501					
	3163 East Vernon Avenue				Арр	rox. 196	6				
						mple Dat	а	_	We	ll Diagrar	n
HITERIA BEIEV. (ft)	Sample Description	Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PID (ppm)			n Blagrai	
^{≥00} +176.0	Light brown.	20 -				<u>م</u> م	(PPiii)				
	Light brown.	-	8-4-8	SPT	18	9					
		- 21 -				13					
		- 22 -									
		-									
		- 23 -	1								
		- 24 -	-								
		- 25 -							1	-Annular N	/later
		- 26 -									
		-	1								
		_ 27 -									
		- 28 -								-Solid PV0	;
			1								
		- 29 -	-								
+166.0		30 -	-								
	SILT with Sand (ML), reddish brown with light reddish brown mottle, stiff, moist to very moist, medium sand.	- 30	2	~	_	6					
	,,,,,,	- 31 -	S-5	S	18	9 12					
		- 32 -	-								
		_ 32 -									
		- 33 -	1								
			1								
		- 34 -									
		35 -									
			1								
	Reddish brown, occasional gravel.	- 36 -	1								
		- 37 -									
		E									
		- 38 -	1								
		- 39 -									
		-									
+156.0	Silty SAND (SM), reddish brown, medium dense, dry to slighlty moist, fine to coarse sand, occasiona fine gravel.	- 40 -		F		7					
	sugnity moist, tine to coarse sand, occasiona fine gravel.	- 41 -	S-6	SPT	18	13					
		Ē	-	⊨ Ē		15					
		- 42 -								Deaf (
		- 43 -	1						-	-Perforate	d PV
			1								
		- 44 -	1								
		F	7								

LANGAN

Project		3163 East Vernon Avenue	Project No.			721	040501					
ocation			Elevation a	nd Da	atum		0-10001					
		3163 East Vernon Avenue				Арр	orox. 196					
JL IA	_			-	1		mple Data		_	We	ell Diagrai	m
MATERIAL SYMBOL	Elev. (ft)	Sample Description	Depth Scale	Number	Type	(in)	Penetr. resist BL/6in	PID (ppm)			j	
-	+151.0		45 -	z			<u>а – п</u>	,		\square		
			- 46 -	1								
			- 40 -							티아		
			- 47 -	1						日川		
			- 10	1							-Perforate	ed PV
	+147.5		- 48 -	<u> </u>	_ m							
		Silty SAND (SM) to Sandy SILT (ML), brown and reddish brown, hard to very dense, moist, maganese-oxide	- 49 -	S-7	СR	18	15 32					
	+146.0	staining.	-	S			42					
	. 140.0	Total Depth = 50 feet. No Groundwater encountered.			1							
		Boring converted to a percolation test well. Boring backfilled with bentonite cement grout and topped	- 51 -									
		with soil cuttings and asphalt patched after percolation test.		-								
			- 52 -	-								
			- 53 -									
			-									
			- 54 -									
			- 55 -	1								
			-	1								
			- 56 -									
			- 57 -									
				1								
			- 58 -									
			- 59 -									
			60 -									
			- 61 -									
			62 -									
			- 63 -									
			64 -									
			65 -									
			66 -									
			Ę									
			67 -									
			68 -									
			Ę									
			- 69 -									
			₇₀ _	1								

DIRECT SHEAR ASTM D3080

DIRECT SHEAR ASTM D3080

Langan # 721040501

CONSOLIDATION TEST - ASTM D2435

Job No. 2012-0057

COMPACTION TEST REPORT

COMPACTION TEST REPORT

COMPACTION TEST REPORT

WASH #200 SIEVE - ASTM D 1140-92

Job Name Langan #721040501

Job No. 2012-0057

Date 5-28-23

By LD

Sample	FP-1 / S-1	Sample	FP-2 / S-2	Sample	B-1 / S-2
Soil Type		Soil Type		Soil Type	
% water	1.6	% water	5.7	% water	4.1
Wet weight	213.7	Wet weight	236.9	Wet weight	280.5
Dry weight	210.3	Dry weight	224.1	Dry weight	269.5
+ 200 sieve	202.9	+ 200 sieve	212	+ 200 sieve	254.8
% Retained	96.5	% Retained	94.6	% Retained	94.6
%Pass. #200	4	%Pass. #200	5	%Pass. #200	5
- ·				- ·	
Sample	B-4 / S-2	Sample	B-5 / S-2	Sample	B-9 / S-1
Soil Type		Soil Type		Soil Type	
% water	5.3	% water	3.7	% water	6.7
Wet weight	303.4	Wet weight	222	Wet weight	236.8
Dry weight	288.1	Dry weight	214.1	Dry weight	221.9
+ 200 sieve	272.8	+ 200 sieve	204.1	+ 200 sieve	162.3
% Retained	94.7	% Retained	95.3	% Retained	73.1
%Pass. #200	5	%Pass. #200	5	%Pass. #200	27
Sample		Sample		Sample	
Soil Type		Soil Type		Soil Type	
% water		% water		% water	
Wet weight		Wet weight		Wet weight	
Dry weight		Dry weight		Dry weight	
+ 200 sieve		+ 200 sieve		+ 200 sieve	
% Retained		% Retained		% Retained	
%Pass. #200		%Pass. #200		%Pass. #200	
	-	-			
Sample	_	Sample		Sample	
Soil Type		Soil Type		Soil Type	
% water		% water		% water	
Wet weight		Wet weight		Wet weight	
Dry weight		Dry weight		Dry weight	
+ 200 sieve		+ 200 sieve		+ 200 sieve	
% Retained		% Retained		% Retained	
%Pass. #200		%Pass. #200		%Pass. #200	

EXPANSION INDEX - UBC 18-2 & ASTM D 4829-88

PROJECT Langan # 721040501

JOB NO. 2012-0057

Sample	B-3 / Bulk		Ву	LD	Sample			Ву
Sta. No.		_			Sta. No.			
Soil Type	Brown, Sil	ty Sand			Soil Type			
Date	Time	Dial Reading	Wet+Tare	588.9	Date	Time	Dial Reading	Wet+Tare
5/16/2023	16:20	0.3249	Tare	207.7				Tare
		H2O	Net Weight	381.2				Net Weight
5/17/2023	10:00	0.3253	% Water	11.5				% Water
			Dry Dens.	103.6				Dry Dens.
			% Max					% Max
			Wet+Tare	616.1				Wet+Tare
			Tare	207.7				Tare
			Net Weight	408.4				Net Weight
INDEX	0	0.0%	% Water	19.5				% Water

Sample			Ву	Sample			Ву	
Sta. No. Soil Type		_		Sta. No. Soil Type		_		
Date	Time	Dial Reading	Wet+Tare	Date	Time	Dial Reading	Wet+Tare	
			Tare				Tare	
			Net Weight				Net Weight	
			% Water				% Water	
			Dry Dens.				Dry Dens.	
			% Max				% Max	
			Wet+Tare				Wet+Tare	
			Tare				Tare	
			Net Weight				Net Weight	
			% Water				% Water	

EXPANSION INDEX - UBC 18-2 & ASTM D 4829-88

PROJECT Langan # 721040501

JOB NO. 2012-0057

Sample	FP-1 / Bull	k	Ву	LD	Sample			Ву
Sta. No.		-			Sta. No.			
Soil Type	Brown, Sili	ty Sand			Soil Type			
Date	Time	Dial Reading	Wet+Tare	619.6	Date	Time	Dial Reading	Wet+Tare
5/26/2023	16:20	0.328	Tare	219.7				Tare
		H2O	Net Weight	399.9				Net Weight
5/27/2023	10:00	0.3275	% Water	9.5				% Water
			Dry Dens.	110.7				Dry Dens.
			% Max					% Max
			Wet+Tare	647.2				Wet+Tare
			Tare	219.7				Tare
			Net Weight	427.5				Net Weight
INDEX	1	0.1%	% Water	17.1				% Water

Sample			Ву	Sample			Ву	
Sta. No. Soil Type		_		Sta. No. Soil Type		_		
Date	Time	Dial Reading	Wet+Tare	Date	Time	Dial Reading	Wet+Tare	
			Tare				Tare	
			Net Weight				Net Weight	
			% Water				% Water	
			Dry Dens.				Dry Dens.	
			% Max				% Max	
			Wet+Tare				Wet+Tare	
			Tare				Tare	
			Net Weight				Net Weight	
			% Water				% Water	

Langan # 721040501

SAMPLE NO.:	B-3 / Bulk		
Depth:	0 - 5'		
DIRECT SHEAR TEST (type)		 	
Initial Moisture Content %			
Dry Density (pcf)			
Normal Stress (psf)			
Peak Shear Stress (psf)			
Ultimate Shear Stress (psf)			
Cohesion (psf)		 	
Internal Friction Angle (degrees)			
EXPANSION TEST UBC STD 18-2		 	
Initial Dry Density (pcf)		 	
Initial Moisture Content %			
Final Moisture Content %			
Pressure (psf)		 	
Expansion Index Swell %			
CORROSIVITY TEST			
Resistivity (CTM643) (ohm-cm)	4700		
pH (CTM643)	7.6		
CHEMICAL TESTS			
Soluble Sulfate (CTM 417) (ppm)	168		
Chloride Content (CTM 422) (ppm)	96		
Wash #200 Sieve (ASTM-1140) %			
Sand Equivalent (ASTM D2419)			

Langan # 721040501

SAMPLE NO.:	FP-1 / Bulk		
Depth:	0 - 5'		
DIRECT SHEAR TEST (type)			
Initial Moisture Content %			
Dry Density (pcf)			
Normal Stress (psf)			
Peak Shear Stress (psf)			
Ultimate Shear Stress (psf)			
Cohesion (psf)			
Internal Friction Angle (degrees)			
EXPANSION TEST UBC STD 18-2			
Initial Dry Density (pcf)			
Initial Moisture Content %			
Final Moisture Content %			
Pressure (psf)			
Expansion Index Swell %			
CORROSIVITY TEST			
Resistivity (CTM643) (ohm-cm)	3240		
pH (CTM643)	7.4		
CHEMICAL TESTS			
Soluble Sulfate (CTM 417) (ppm)	156		
Chloride Content (CTM 422) (ppm)	128		
Wash #200 Sieve (ASTM-1140) %			
Sand Equivalent (ASTM D2419)			

'R' VALUE CA 301

Client: Langan

LD

By:

Client's Job No.: 721040501

Sample No.: B-8 @ 0 - 5'

GLA Reference: 2012-0057

Soil Type: Brown, Silty Sand

TEST SPECIMEN		А	В	С	D
Compactor Air Pressure	psi	350	350	350	
Initial Moisture Content	%	10.0	10.0	10.0	
Water Added	ml	10	4	7	
Moisture at Compaction	%	10.9	10.4	10.6	
Sample & Mold Weight	gms	3195	3181	3196	
Mold Weight	gms	2105	2094	2096	
Net Sample Weight	gms	1090	1087	1100	
Sample Height	in.	2.467	2.449	2.482	
Dry Density	pcf	120.7	121.9	121.4	
Pressure	lbs	3525	7930	4990	
Exudation Pressure	psi	281	631	397	
Expansion Dial	x 0.0001	4	13	9	
Expansion Pressure	psf	17	56	39	
Ph at 1000lbs	psi	18	15	16	
Ph at 2000lbs	psi	32	27	30	
Displacement	turns	3.99	3.65	3.89	
R' Value		71	77	74	
Corrected 'R' Value		71	77	74	

By Exudation	By Exudation Pressure (@ 300 psi):							
By Epansion	Pressure :	N/A						
TI =	5							

'R' VALUE CA 301

Client: Langan

Client's Job No.:

 Date:
 5/28/23
 By:
 LD

 721040501
 Sample No.:
 FP-1/Bulk

GLA Reference: 2012-0057

Soil Type: Brown, Silty Sand w. Gravel

TEST SPECIMEN		А	В	С	D
Compactor Air Pressure	psi	350	350	350	
Initial Moisture Content	%	4.4	4.4	4.4	
Water Added	ml	65	72	68	
Moisture at Compaction	%	10.1	10.7	10.4	
Sample & Mold Weight	gms	3204	3209	3200	
Mold Weight	gms	2103	2103	2102	
Net Sample Weight	gms	1101	1106	1098	
Sample Height	in.	2.51	2.534	2.508	
Dry Density	pcf	120.7	119.5	120.2	
Pressure	lbs	8510	2960	4005	
Exudation Pressure	psi	678	236	319	
Expansion Dial	x 0.0001	0	0	0	
Expansion Pressure	psf	0	0	0	
Ph at 1000lbs	psi	11	15	13	
Ph at 2000lbs	psi	19	26	23	
Displacement	turns	4.12	4.46	4.22	
R' Value		82	74	78	
Corrected 'R' Value		82	74	78	

	FINAL 'R' VALUE						
By Exudation	By Exudation Pressure (@ 300 psi):						
By Epansion	Pressure :	N/A					
TI =	5						

PROJECT	Langan # 721040501		JOB NO.	2012-0057	BY	LD	DATE	05/17/23
Sample No.	B-1 / S-2	B-1 / S-4	B-3 / S-1	B-3 / S-3	B-3 / S-5	B-4 / S-2	B-4 / S-4	B-4 / S-6
Depth (ft)	10.0	20.0	5.0	15.0	25.0	10.0	20.0	30.0
Туре								
Soil Type	Brown, Silty Sand	Brown, Silty Sand	Brown, Clayey Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand
Wet+Tare	901.2	1135.5	929.9	1147.8	1037.2	1062.1	1055.1	1162.1
No. Ring	5	6	5	6	6	6	6	6
Wet Weight	127.4	151.8	175.3	150.3	112.9	122.3	135.4	126.7
Dry Weight	124.2	139.6	158.3	138.4	110.0	116.4	129.4	121.2
Wet density	112.6	120.1	117.4	121.8	106.4	116.1	115.2	130.1
% Water	2.6	8.7	10.7	8.6	2.6	5.1	4.6	4.5
Dry Density	109.7	110.5	106.0	112.2	103.7	110.5	110.1	124.4
O.B.Press(psf)								
Sample No.	B-5 / S-4	B-6 / S-3	B-6 / S-5	B-7 / S-1	B-7 / S-3	B-7 / S-5	B-7 / S-7	
Depth (ft)	20.0	15.0	25.0	5.0	15.0	25.0	35.0	
Туре								
Soil Type	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Clayey Sand	NSR	Brown, Silty Sand	Brown, Silty Clay	
Wet+Tare	660.3	1024.0	1129.4	888.0		1040.1	871.4	
No. Ring	4	6	6	5		6	5	
Wet Weight	142.9	271.9	109.0	219.3		135.4	107.6	
Dry Weight	116.7	217.1	87.2	190.5		125.5	87.6	
Wet density	106.2	104.6	119.3	116.6		106.8	113.9	
% Water	22.5	25.2	25.0	15.1		7.9	22.8	
Dry Density	86.7	83.5	95.4	101.3		99.0	92.7	
O.B.Press(psf)								

PROJECT	Langan # 7210405	01	JOB NO.	2012-0057	BY	LD	DATE	05/17/23
Sample No.	B-8 / S-4	B-8 / S-6A	B-8 / S-6B					
Depth (ft)	20.0	30.0	30.0					
Туре								
Soil Type	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Clay					
Wet+Tare	1058.6	346.8	634.4					
No. Ring	6	2	3					
Wet Weight	131.9	84.9	68.7					
Dry Weight	127.6	82.1	60.5					
Wet density	109.4	106.9	138.7					
% Water	3.4	3.4	13.6					
Dry Density	105.8	103.3	122.1					
O.B.Press(psf)								
Sample No.								
Depth (ft)								
Туре								
Soil Type								
Wet+Tare								
No. Ring								
Wet Weight								
Dry Weight								
Wet density								
% Water								
Dry Density								
O.B.Press(psf)								

Geo-Logic

PROJECT	PROJECT Langan # 721040501		angan # 721040501 JOB NO. 2012-0057				DATE	05/28/23
Sample No.	FP-1/S-1	FP-1/S-2	FP-1/S-3	FP-1/S-4	FP-1/S-5	FP-1/S-6	FP-1/S-7	FP-1/S-8
Depth (ft)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
Туре								
Soil Type	Brown, Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Sand	Brown, Silty Clay	Brown, Sandy Clay	Brown, Silty Sand
Wet+Tare	659.1	1031.3	1006.0	1063.6	349.7	1229.0	1220.9	1093.6
No. Ring	4	6	6	6	2	6	6	6
Wet Weight	125.0	100.6	131.1	124.5	159.7	151.3	151.6	134.0
Dry Weight	123.0	98.2	125.5	115.9	156.3	132.0	134.0	128.2
Wet density	105.9	111.9	108.3	116.4	114.3	139.4	138.3	120.5
% Water	1.6	2.4	4.5	7.4	2.2	14.6	13.1	4.5
Dry Density	104.2	109.2	103.7	108.3	111.9	121.6	122.2	115.3
O.B.Press(psf)								
Sample No.	FP-1/S-9	FP-1/S-10	FP-2/S-1	FP-2/S-2	FP-2/S-3	FP-2/S-4	FP-2/S-5	FP-2/S-6
Depth (ft)	45.0	50.0	5.0	10.0	15.0	20.0	25.0	30.0
Туре								
Soil Type	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Silty Sand	Brown, Sand	Brown, Sand	Brown, Silty Clay w. Gravel	Brown, Silty Sand
Wet+Tare	860.3	1014.6	995.0	957.1	777.8	1029.3	1105.9	1017.1
No. Ring	5	6	6	6	5	6	6	6
Wet Weight	109.2	140.0	124.9	116.2	95.0	132.9	125.9	121.5
Dry Weight	103.2	134.3	116.8	109.9	92.6	130.4	120.1	118.0
Wet density	112.0	109.5	106.8	101.5	98.2	111.6	122.2	109.9
% Water	5.8	4.2	6.9	5.7	2.6	1.9	4.8	3.0
Dry Density	105.9	105.1	99.9	96.0	95.7	109.5	116.6	106.7
O.B.Press(psf)								

PROJECT	Langan # 7210405	01	JOB NO.	2012-0057	BY	LD	DATE	05/28/23
Sample No.	FP-2/S-7	FP-2/S-8	FP-2/S-9	FP-2/S-10				
Depth (ft)	35.0	40.0	45.0	50.0				
Туре								
Soil Type	Brown, Silty Sand	Brown, Sandy Clay	Brown, Sandy Clay	Brown, Silty Sand				
Wet+Tare	1118.2	1224.2	908.5	1084.4				
No. Ring	6	6	5	6				
Wet Weight	143.2	151.0	140.5	125.5				
Dry Weight	111.4	129.9	125.5	121.5				
Wet density	124.0	138.7	120.1	119.3				
% Water	28.5	16.2	12.0	3.3				
Dry Density	96.4	119.3	107.2	115.5				
O.B.Press(psf)								
Sample No.								
Depth (ft)								
Туре								
Soil Type								
Wet+Tare								
No. Ring								
Wet Weight								
Dry Weight								
Wet density								
% Water								
Dry Density								
O.B.Press(psf)								

Geo-Logic

APPENDIX D

Prior Cone Penetrometer Test (CPT) Soundings

LANGAN

SUMMARY

OF CONE PENETRATION TEST DATA

Project:

3163 E. Vernon Avenue Vernon, CA May 4-5, 2023

Prepared for:

Mr. Shaun Wilkins Langan Eng. & Environmental Services 18575 Jamboree Road, Ste 150 Irvine, CA 92612 Office (949) 561-9200 / Fax (949) 561-9201

Prepared by:

Kehoe Testing & Engineering

5415 Industrial Drive Huntington Beach, CA 92649-1518 Office (714) 901-7270 / Fax (714) 901-7289 www.kehoetesting.com

TABLE OF CONTENTS

1. INTRODUCTION

- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

APPENDIX

- CPT Plots
- CPT Classification/Soil Behavior Chart
- CPT Data Files (sent via email)

SUMMARY OF CONE PENETRATION TEST DATA

1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the project located at 3163 E. Vernon Avenue in Vernon, California. The work was performed by Kehoe Testing & Engineering (KTE) on May 4-5, 2023. The scope of work was performed as directed by Langan Eng. & Environmental Services personnel.

2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at ten locations to determine the soil lithology. A summary is provided in **TABLE 2.1**.

LOCATION	DEPTH OF CPT (ft)	COMMENTS/NOTES:
CPT-1	48	Refusal
CPT-2	50	
CPT-3	50	
CPT-4	64	Refusal
CPT-5	50	
CPT-6	50	
CPT-7	50	
CPT-8	70	Refusal
CPT-9	50	
CPT-10	50	

3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by **KTE** using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone with a cone net area ratio of 0.83. The following parameters were recorded at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Inclination
- Sleeve Friction (fs)
- Penetration Speed
- Dynamic Pore Pressure (u)

The above parameters were recorded and viewed in real time using a laptop computer. Data is stored at the KTE office for up to 2 years for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly.

4. CONE PENETRATION TEST DATA & INTERPRETATION

The Cone Penetration Test data is presented in graphical form in the attached Appendix. These plots were generated using the CPeT-IT program. Penetration depths are referenced to ground surface. The soil behavior type on the CPT plots is derived from the attached CPT SBT plot (Robertson, "Interpretation of Cone Penetration Test...", 2009) and presents major soil lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used along with cone resistance to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

The CPT data files have also been provided. These files can be imported in CPeT-IT (software by GeoLogismiki) and other programs to calculate various geotechnical parameters.

It should be noted that it is not always possible to clearly identify a soil type based on qc, fs and u. In these situations, experience, judgement and an assessment of the pore pressure data should be used to infer the soil behavior type.

If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

Kehoe Testing & Engineering

P. Kha

Steven P. Kehoe President

05/12/23-aa-5216

APPENDIX

Project: Langan Eng. & Environmental Services Location: 3163 East Vernon Ave, Vernon, CA

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 5/8/2023, 11:22:45 AM Project file: C:\CPT Project Data\Langan-Vernon5-23\CPT Report\CPeT.cpt

Project: Langan Eng. & Environmental Services Location: 3163 East Vernon Ave, Vernon, CA

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 5/8/2023, 11:22:45 AM Project file: C:\CPT Project Data\Langan-Vernon5-23\CPT Report\CPeT.cpt

CPT-2 Total depth: 50.19 ft, Date: 5/5/2023

Project: Langan Eng. & Environmental Services

Location: 3163 East Vernon Ave, Vernon, CA

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 5/8/2023, 11:22:46 AM Project file: C:\CPT Project Data\Langan-Vernon5-23\CPT Report\CPeT.cpt

CPT-3 Total depth: 50.13 ft, Date: 5/4/2023

steve@kehoetesting.com www.kehoetesting.com

Project: Langan Eng. & Environmental Services

Location: 3163 East Vernon Ave, Vernon, CA

Soil Behaviour Type

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 5/8/2023, 11:22:46 AM Project file: C:\CPT Project Data\Langan-Vernon5-23\CPT Report\CPeT.cpt

CPT-4 Total depth: 64.22 ft, Date: 5/5/2023

Project: Langan Eng. & Environmental Services

Location: 3163 East Vernon Ave, Vernon, CA

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 5/8/2023, 11:22:47 AM Project file: C:\CPT Project Data\Langan-Vernon5-23\CPT Report\CPeT.cpt

CPT-5 Total depth: 50.19 ft, Date: 5/5/2023

Project: Langan Eng. & Environmental Services

Location: 3163 East Vernon Ave, Vernon, CA

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 5/8/2023, 11:22:48 AM Project file: C:\CPT Project Data\Langan-Vernon5-23\CPT Report\CPeT.cpt

CPT-6 Total depth: 50.06 ft, Date: 5/5/2023

Project: Langan Eng. & Environmental Services

Location: 3163 East Vernon Ave, Vernon, CA

CPT-10 Total depth: 50.32 ft, Date: 5/4/2023

APPENDIX E

Results of Prior Field Percolation Testing

LANGAN

PERCOLATION TEST DATA SHEET

FALLING HEAD INFILTRATION TEST

Project:			3163 E	Vernon		Project No.:	721040501	Date:	5/5/2023	
Test Hole No.:			FF	P-1		Tested By:	S. Wilkins			
Depth of Test Hc	epth of Test Hole (ft):		6	5		USCS Soil Classification:		SP-SM		
PVC Pipe Dimens	sion:		3-in I.D. Perfora	ated by 10 Feet	-	Test Hole Diameter	(in):		10	
Trial No.	Date	Time of Measurement	Initial Depth to Water (ft)	Time of Measurement	Final Depth to Water (ft)	Volume of Water Infiltrated (cu.in.)	Surface Area (sq.in.)	Time Interval (min)	Inflitration Rate (in/hr)	
Time Interval	Preso	ak, 1 hour								
1	5/5/2023	10:20 AM	55.00	10:30 AM	56.74	1640	3848	10	2.56	
2	5/5/2023	10:30 AM	55.00	10:40 AM	56.48	1395	3848	10	2.17	
3	5/5/2023	10:40 AM	55.00	10:50 AM	56.24	1169	3848	10	1.82	
4	5/5/2023	10:50 AM	55.00	11:00 AM	56.20	1131	3848	10	1.76	
5	5/5/2023	11:00 AM	55.00	11:10 AM	55.98	924	3848	10	1.44	
6	5/5/2023	11:10 AM	55.00	11:20 AM	56.02	961	3848	10	1.50	
7	5/5/2023	11:20 AM	55.00	11:30 AM	56.12	1056	3848	10	1.65	
8	5/5/2023	11:30 AM	55.00	11:40 AM	56.15	1084	3848	10	1.69	
9	5/5/2023	11:40 AM	55.00	11:50 AM	56.10	1037	3848	10	1.62	
10	5/5/2023	11:50 AM	55.00	12:00 PM	56.05	990	3848	10	1.54	
11	5/5/2023	12:00 PM	55.00	12:10 PM	56.02	961	3848	10	1.50	
12	5/5/2023	12:10 PM	55.00	12:20 PM	55.96	905	3848	10	1.41	
13	5/5/2023	12:20 PM	55.00	12:30 PM	55.94	886	3848	10	1.38	
14	5/5/2023	12:30 PM	55.00	12:40 PM	55.96	905	3848	10	1.41	
15	5/5/2023	12:40 PM	55.00	12:50 PM	55.97	914	3848	10	1.43	
16	5/5/2023	12:50 PM	55.00	1:00 PM	55.95	895	3848	10	1.40	
17	5/5/2023	1:00 PM	55.00	1:10 PM	55.94	886	3848	10	1.38	
18	5/5/2023	1:10 PM	55.00	1:20 PM	55.95	895	3848	10	1.40	
						Average Stab	ilized Rate		1.39	
Comments:	Procedure pro	Percolation test was performed in accordance with the Boring Percolation Test ocedure provided in the "Guidelines for Design, Investigation, and Reporting - Low pact Development Stormwater Infiltration," prepared by County of Los Angeles					Factors 1, RF _s =1		3	
	Department of Public Works, dated 30 June 2021.						Design Infiltration Rate (in/hr)		0.46	

oject:	t: 3163 Vernon				Project No.:			72104050	1		Date:		5/25/2023	
est Hole No.:				Tested By: CR						Date.		5/25	72023	
faximum Depth of Test Infiltraton		50			USCS Soil Classification:						SP/SW			
ength of slotted pipe (ft):		50			Test Hole Diameter (in):						10			
resoak Durration:		1 hour			Depth of Presoak (ft):					1.5				
Trial No.	Date	Time of Measureme nt	Initial Depth to Water (ft)	Time of Measureme nt	Final Depth to Water (ft)	· ·	Time Interval (min)	Average Water Head (ft)	Volume of Water per Time Interval (gal/∆t)	Flow Rate (gal/min)	Flow Rate (ft ³ /min)	Surface Area (ft ²)	Infiltration Rate, K _{sat, measured} (ft/min)	Infiltration Rate K _{sat, measured} (in/hr)
Time Interval														
						0	0	0.00		0	0	0	0	
1	5/25/2023	7:10 AM	43.08	7:20 AM	43.40	10	10	6.76	30.30	3.03	0.41	17.70	0.02	16.48
2	5/25/2023	7:20 AM	43.11	7:30 AM	43.19	20	10	6.85	30.40	3.04	0.41	17.93	0.02	16.32
3	5/25/2023	7:30 AM	43.09	7:40 AM	43.34	30	10	6.79	31.20	3.12	0.42	17.76	0.02	16.91
4	5/25/2023	7:40 AM	43.10	7:50 AM	43.29	40	10	6.81	30.70	3.07	0.41	17.82	0.02	16.59
5	5/25/2023	7:50 AM	43.19	8:00 AM	43.40	50	10	6.71	32.00	3.20	0.43	17.55	0.02	17.55
6	5/25/2023	8:00 AM	43.15	8:10 AM	43.16	60	10	6.85	31.50	3.15	0.42	17.92	0.02	16.92
7	5/25/2023	8:10 AM	43.30	8:20 AM	43.40	70	10	6.65	30.60	3.06	0.41	17.41	0.02	16.92
8	5/25/2023	8:20 AM	43.35	8:30 AM	43.39	80	10	6.63	30.10	3.01	0.40	17.36	0.02	16.69
9	5/25/2023	8:30 AM	43.44	8:40 AM	43.48	90	10	6.54	30.00	3.00	0.40	17.12	0.02	16.86
10	5/25/2023	8:40 AM	43.50	8:50 AM	43.61	100	10	6.45	29.40	2.94	0.39	16.87	0.02	16.77
11	5/25/2023	8:50 AM	43.55	9:00 AM	43.66	110	10	6.40	28.30	2.83	0.38	16.74	0.02	16.27
12	5/25/2023	9:00 AM	43.28	9:10 AM	44.10	120	10	6.31	27.40	2.74	0.37	16.52	0.02	15.96
13	5/25/2023	9:10 AM	43.33	9:20 AM	43.72	130	10	6.48	27.30	2.73	0.36	16.95	0.02	15.50
14	5/25/2023	9:20 AM	43.28	9:30 AM	43.61	140	10	6.56	27.00	2.70	0.36	17.16	0.02	15.14
15	5/25/2023	9:30 AM	43.61	9:40 AM	43.86	150	10	6.27	28.20	2.82	0.38	16.40	0.02	16.55
16	5/25/2023	9:40 AM	43.96	9:50 AM	44.01	160	10	6.02	25.30	2.53	0.34	15.75	0.02	15.46
17	5/25/2023	9:50 AM	44.01	10:00 AM	44.17	170	10	5.91	25.80	2.58	0.34	15.47	0.02	16.05
18	5/25/2023	10:00 AM	44.17	10:10 AM	44.22	180	10	5.81	25.50	2.55	0.34	15.20	0.02	16.15
												Raw infi	ltration rate (in/hr)	15.87
													Reduction Factor	3.00
												L" prepared by County	Design Rate	5.29

LANGAN														
		24.623			INFILTRATION TEST DATA SHEET								12022	
roject: est Hole No.:		3163 V	/ernon FP-4		Project No.: 721040501						Date:			/2022
Azvimum Denth of Test Infiltration			Tested By: CR											
ft):			USCS Soil Classification:						SM					
ngth of slotted pipe (ft):			50		Test Hole Diameter (in):						10			
resoak Durration:		1 hour			Depth of Presoak (ft):						1.5			
Trial No.	Date	Time of Measureme nt	Initial Depth to Water (ft)	Measureme	Final Depth to Water (ft)	Elapsed Time (min)	Time Interval (min)	Average Water Head (ft)	Volume of Water per Time Interval (gal/∆t)	Flow Rate (gal/min)	Flow Rate (ft ³ /min)	Surface Area (ft ²)	Infiltration Rate, K _{sat, measured} (ft/min)	Infiltration Rate K _{sat, measured} (in/hr)
Time Interval														
						0	0	0.00	0.00	0	0	0	0	
1	5/25/2022	10:30 AM	42.84	10:40 AM	43.29	10	10	6.94	9.80	0.98	0.13	18.16	0.01	5.20
2	5/25/2022	10:40 AM	43.29	10:50 AM	43.51	20	10	6.60	9.60	0.96	0.13	17.28	0.01	5.35
3	5/25/2022	10:50 AM	43.51	11:00 AM	43.16	30	10	6.67	9.40	0.94	0.13	17.45	0.01	5.19
4	5/25/2022	11:00 AM	43.16	11:10 AM	43.58	40	10	6.63	8.90	0.89	0.12	17.36	0.01	4.94
5	5/25/2022	11:10 AM	43.58	11:20 AM	43.84	50	10	6.29	8.80	0.88	0.12	16.47	0.01	5.14
6	5/25/2022	11:20 AM	43.84	11:30 AM	43.79	60	10	6.19	8.75	0.87	0.12	16.19	0.01	5.20
7	5/25/2022	11:30 AM	43.79	11:40 AM	43.88	70	10	6.17	8.40	0.84	0.11	16.14	0.01	5.01
8	5/25/2022	11:40 AM	43.88	11:50 AM	43.80	80	10	6.16	8.30	0.83	0.11	16.13	0.01	4.95
9	5/25/2022	11:50 AM	43.80	12:00 PM	44.07	90	10	6.07	8.40	0.84	0.11	15.88	0.01	5.09
10	5/25/2022	12:00 PM	44.07	12:10 PM	44.09	100	10	5.92	8.10	0.81	0.11	15.50	0.01	5.03
11	5/25/2022	12:10 PM	44.09	12:20 PM	44.15	110	10	5.88	7.90	0.79	0.11	15.39	0.01	4.94
12	5/25/2022	12:20 PM	44.15	12:30 PM	43.55	120	10	6.15	7.80	0.78	0.10	16.10	0.01	4.66
13	5/25/2022	12:30 PM	43.55	12:40 PM	43.23	130	10	6.61	8.10	0.81	0.11	17.30	0.01	4.51
14	5/25/2022	12:40 PM	43.23	12:50 PM	44.03	140	10	6.37	8.40	0.84	0.11	16.68	0.01	4.85
15	5/25/2022	12:50 PM	44.03	1:00 PM	44.07	150	10	5.95	7.50	0.75	0.10	15.58	0.01	4.63
16	5/25/2022	1:00 PM	44.07	1:10 PM	44.13	160	10	5.90	7.60	0.76	0.10	15.45	0.01	4.74
17	5/25/2022	1:10 PM	44.13	1:20 PM	44.29	170	10	5.79	7.60	0.76	0.10	15.16	0.01	4.83
18	5/25/2022	1:20 PM	44.29	1:30 PM	44.42	180	10	5.65	7.60	0.76	0.10	14.78	0.01	4.95
												Raw infiltration rate (in/hr)		4.80
													Factor of Safety	3.00
	1 infilmenting	at wasf	modin		ith the "Cuick"	ince for Coots	nigal Investion "	n and D	a laurima-st D-	annant Ct	s Infiltration CCCC	0.1" proport by C	Design Rate	1.60
omments:	1. Infiltration to Works, dated 3	•	med in general	accordance w	Guidel	mes for Geotech	inical investigatio	m and keporting	LOW IMPACT Develo	opment stormwate	er inflitration - GS20	0.1" prepared by Cou	TILY OF LOS ANGELES D	epartment of Publ
	2. Infiltration ra	ates provided	do not include	reduction fact	ors.									

PERCOLATION TEST DATA SHEET

FALLING HEAD INFILTRATION TEST

Project:			3163 E	Vernon		Project No.:	721040501	Date:	5/25/2023	
Test Hole No.:			FF	P-5		Tested By:	CR			
Depth of Test Hc	ole (ft):		5	0		USCS Soil Classifica	ation:			
PVC Pipe Dimens	sion:		3-in I.D. Perfora	ated by 10 Feet		Test Hole Diameter	(in):	8		
Trial No.	Date	Time of Measurement	Initial Depth to Water (ft)	Time of Measurement	Final Depth to Water (ft)	Volume of Water Infiltrated (cu.in.)	Surface Area (sq.in.)	Time Interval (min)	Inflitration Rate (in/hr)	
Time Interval Preso		ak, 1 hour								
1	5/25/2023	2:00 PM	39.88	2:10 PM	44.28	2654	3102	10	5.13	
2	5/25/2023	2:10 PM	39.90	2:20 PM	44.26	2630	3096	10	5.10	
3	5/25/2023	2:20 PM	39.95	2:30 PM	44.34	2648	3081	10	5.16	
4	5/25/2023	2:30 PM	39.91	2:40 PM	44.19	2582	3093	10	5.01	
5	5/25/2023	2:40 PM	40.02	2:50 PM	43.90	2340	3060	10	4.59	
6	5/25/2023	2:50 PM	39.94	3:00 PM	44.10	2509	3084	10	4.88	
7	5/25/2023	3:00 PM	39.98	3:10 PM	44.30	2606	3072	10	5.09	
8	5/25/2023	3:10 PM	40.01	3:20 PM	44.50	2708	3063	10	5.30	
9	5/25/2023	3:20 PM	40.00	3:30 PM	44.40	2654	3066	10	5.19	
10	5/25/2023	3:30 PM	40.00	3:40 PM	45.50	3318	3066	10	6.49	
11	5/25/2023	3:40 PM	40.00	3:50 PM	44.80	2895	3066	10	5.67	
12	5/25/2023	3:50 PM	40.11	4:00 PM	43.47	2027	3033	10	4.01	
13	5/25/2023	4:00 PM	40.09	4:10 PM	43.65	2147	3039	10	4.24	
14	5/25/2023	4:10 PM	39.71	4:20 PM	43.59	2340	3154	10	4.45	
15	5/25/2023	4:20 PM	39.94	4:30 PM	43.64	2232	3084	10	4.34	
16	5/25/2023	4:30 PM	39.98	4:40 PM	43.65	2214	3072	10	4.32	
17	5/25/2023	4:40 PM	39.94	4:50 PM	43.50	2147	3084	10	4.18	
18	5/25/2023	4:50 PM	40.01	5:00 PM	43.49	2099	3063	10	4.11	
	1 Dereolation	toot was parfared	ed in accordance v	with the Perine De	realation Test	Average Stab	ilized Rate	4.20		
Comments:	Procedure pro	vided in the "Guid	ed in accordance v elines for Design, er Infiltration," prep	Investigation, and	Reporting - Low	Reduction RF _t =1, RF _v =		3		
comments.	Department of		ted 30 June 2021.			Design Infiltratio	on Rate (in/hr)	1.40		