DOCKETED				
Docket Number:	25-IEPR-03			
Project Title:	Electricity and Gas Demand Forecast			
TN #:	261975			
Document Title:	Presentation - SCE Data Center Forecast			
Description:	***SUPERSEDED TN 261966*** 4C. Elliot James Dean, SCE_25-02-26_IEPR_Presentation_updated			
Filer:	Raquel Kravitz			
Organization:	SCE			
Submitter Role:	Public			
Submission Date:	2/25/2025 4:26:57 PM			
Docketed Date:	2/25/2025			

SCE Data Center Forecast

IEPR Commissioner Workshop on California's Economic Outlook

Presenter: Elliot Dean – Data Science Specialist, Demand Forecasting

SCE recognizes the importance of forecasting data center development in our territory to proactively meet interconnection demands

 \succ

 \succ

>

 \triangleright

Data Center Forecasting at SCE	Forecast		Incremental Impact	Methods	Source
Data Centers represent a significant load growth area for California and SCE Want to accommodate customer needs, but recognize unique challenges data centers pose Significant volume of requested capacity via applications & inquiries, though some could be speculative Forecast method based on info we collect on planned & potential projects	1. Start w/ Existing Demand	Existing Data Center Demand	80 MW	Carve out existing data center demand to forecast independently of baseline consumption.	Internal Customer Usage Data
	2. Add in Impact from	Near- Term Growth (2025- 2028)	200 MW	Known data center projects – from engineering studies, grid planning ops, etc.	Planned Data Center Projects
The earlier we get project info the better; allows us to prepare the grid and accelerate energization timeline	Planned Projects & Inquiries	Mid-Term Growth (2029- 2035)	400 MW	Known projects that may require significant grid upgrades. Add potential impact from early-stage interconnection inquiries.	Planned Data Center Projects & Customer Inquiries
 <u>Uncertainties:</u> Potential for on-site generation SoCal market conditions Energy efficiency gains 	3. Use Growth Rate for Long-Term	Long- Term Growth (2036+)	300 MW	Developed 4 long-term growth scenarios & polled 10 internal experts to get average view.	External Research & Internal Survey
 AI/Tech advancements 	Cumulative Impact		980 MW		