DOCKETED	
Docket Number:	24-OPT-03
Project Title:	Soda Mountain Solar
TN #:	261605
Document Title:	Appendix J Water Supply Report – February 2025 – Revision 1
Description:	This document replaces in full TN 257930. Revisions made address CEC data requests WATER-1 through WATER-30.
Filer:	Hannah Arkin
Organization:	Resolution Environmental
Submitter Role:	Applicant Consultant
Submission Date:	2/7/2025 1:21:17 PM
Docketed Date:	2/7/2025

Water Supply Report for the Soda Mountain Solar Project, San Bernardino County, California

JANUARY 2025

PREPARED FOR Soda Mountain Solar, LLC

PREPARED BY

SWCA Environmental Consultants

WATER SUPPLY REPORT FOR THE SODA MOUNTAIN SOLAR PROJECT, SAN BERNARDINO COUNTY, CALIFORNIA

Prepared for

Soda Mountain Solar, LLC 604 Sutter Street, Suite 250 Folsom, California 95630

Prepared by

SWCA Environmental Consultants 320 North Halstead Street, Suite 120 Pasadena, California 91107 (626) 240-0587 www.swca.com

SWCA Project No. 68347

January 2025

EXECUTIVE SUMMARY

The Soda Mountain Solar Project (project) proposes to construct, operate, and maintain a utility-scale solar photovoltaic (PV) electrical generating and battery energy storage facility and associated infrastructure to generate and deliver renewable electricity to the statewide electricity transmission grid. The project is located on approximately 2,670 acres of land administered by the U.S. Department of Interior, Bureau of Land Management (BLM), within the jurisdiction of the California Desert District, Barstow Field Office in San Bernardino County (County). Construction of the project would occur over approximately 18 months. After approximately 40 years of operation, the facility would be decommissioned over approximately 18 months. The project would use water sourced from one off-site groundwater well within the Silver Lake Valley Groundwater Basin in San Bernardino County, California.

During the construction process, the water demand is estimated to be a maximum of 336 acre-feet for a period of 18 months (a maximum of 200,000 gallons per day, although daily usage within the construction period would vary depending on construction phase). Operational water demand for the project would be approximately 5.6 acre-feet per year and would begin following construction. During the decommissioning process, it is assumed that water demand would be the same as construction (336 acre-feet for a period of 18 months, with a maximum demand of 200,000 gallons per day). Water demand for decommissioning represents a conservative estimate. Total water demand for the project would not exceed 896 acre-feet, including water used during project construction, facility operations over 40 years, and project decommissioning. This Water Supply Report uses the upper-bound water estimates for water demand to determine water supply sufficiency for the proposed project.

This water supply report concludes that, based on an analysis of regional hydrogeology, an evaluation of pumping impacts, and water quality sampling, sufficient water resources are available to meet the projected water demand of the project.

This page intentionally left blank.

CONTENTS

1	Introduction	.1
2	Project Location and Description	.1
	2.1 Location and Setting	. 1
	2.2 Project Description	. 2
3	Groundwater Management Considerations and California Energy Commission	
	Guidelines	. 6
	3.1 Sustainable Groundwater Management Act	. 6
	3.2 Porter-Cologne Water Quality Control Act	. 6
	3.3 Desert Groundwater Management Ordinance	. 7
	3.4 California Desert Conservation Area Plan	. 7
	3.5 California Energy Commission Requirements	. 7
4	Groudwater Basins and Climate	.9
	4.1 Silver Lake Valley Groundwater Basin	.9
	4.2 Soda Lake Valley Groundwater Basin	.9
	4.3 Climate	.9
5	Historic Water Quality	11
	5.1 Silver Lake Valley Groundwater Basin	11
	5.2 Soda Lake Valley Groundwater Basin	11
	5.3 Current Water Quality Results	11
	5.4 Local Groundwater and Land Use	12
6	Project Water Demand	13
	6.1 Construction Water Demand	14
	6.2 Operation and Maintenance Water Demand	14
	6.2.1 On-site Facilities Water	15
	6.2.2 Landscape Irrigation and Fire Suppression	15
	6.2.3 Water Mass and Heat Balance	15
_	b.3 Decommissioning water Demand	15
7	Basin Water Budget	15
	7.1 Sources of Basin Outflow	15
	7.2 Sources of Basin Inflow	16
8	Impact Analysis	17
	8.1 Water Availability	17
	8.2 Aquifer Test Results	19
9	Conclusion	20
10	References Cited	22

Appendices

APPENDIX A Title 22 Analytical ReportAPPENDIX B Aquifer Test ResultsAPPENDIX C DWR Well Completion Report

Figures

Figure 1. Project vicinity map	3
Figure 2. Project site.	4
Figure 3. Project water supply source	5
Figure 4. Project site, including project water supply well and groundwater basins, within project vicinity (DWR 2020).	10
Figure 1. Project vicinity map	3
Figure 2. Project site	4
Figure 3. Project water supply source	5
Figure 4. Project site, including project water supply well and groundwater basins, within project vicinity (DWR 2020).	10

Tables

Table 1. Source Well Detected Analytes Results	. 11
Table 2. Summary of Project Water Demand	. 13
Table 3. Project Water Use Projections (af)	. 14

1 INTRODUCTION

The proposed Soda Mountain Solar Project (project) would include 18 months of construction with a 40year operational period and an 18-month decommissioning period, requiring 896 acre-feet (af) total of water for construction, operation, and decommissioning for the entire life of the project. The project would use water sourced from one off-site groundwater well within the Silver Lake Valley Groundwater Basin in San Bernardino County, California.

This water supply report has been prepared to approximate water availability within the basin, assess the project's potential impact on groundwater resources, and outline the regulatory framework governing groundwater use across California and within San Bernardino County. This report examines the characteristics of the aquifer, such as drawdown, recharge, and sustainable yield of the well. The evaluation is based on data from existing studies, reports, field-collected groundwater quality samples, and a pump test. Finally, the report provides a summary of project impacts to groundwater resources based on these findings and highlights potential regulatory concerns that may apply to the proposed project.

2 PROJECT LOCATION AND DESCRIPTION

2.1 Location and Setting

The project is located entirely on federally owned land managed by the Bureau of Land Management (BLM). The 2,670-acre project site is located approximately 7 miles southwest of the community of Baker in unincorporated San Bernardino County, California (Figures 1 and 2), approximately 50 miles northeast of Barstow and approximately 0.5 mile from the western boundary of the Mojave National Preserve. The project site is in portions of Sections 1 and 11–14, Township 12 North, Range 7 East; Sections 25 and 36, Township 13 North, Range 7 East; Sections 6–8 and 18, Township 12 North, Range 8 East; and Sections 17–21 and 29–32, Township 13 North, Range 8 East, San Bernardino Meridian, California.

The project would occupy approximately 2,670 acres in the alluvial valley dividing the northern and southern portions of the Soda Mountains in the Mojave Desert. The project is bounded to the east by the Mojave National Preserve and BLM lands, including the Rasor Off-Highway Vehicle recreation area in the southeast corner. Interstate 15 (I-15), formerly the Arrowhead Trail Highway, traverses the east side of the project site. The proposed Brightline West High-Speed Passenger Train Project (formerly called the DesertXpress and XpressWest Project) also has been permitted within this corridor.

I-15 runs along the western boundary of the project site, with Rasor Road Services Shell Oil gas station located off I-15 southwest of the project site, along the access road to the project site. Infrastructure surrounding the site includes the four-lane I-15, two high-voltage electric transmission lines, an electrical distribution line, wireless cellular telephone towers, two fiber-optic cables, and two fuel pipelines. Portions of the project site are located within a designated federal Section 368 Energy Corridor adjacent to I-15 (corridor number 27-225).

The project is located approximately 12 miles southwest of the associated water supply source, a private well located north of Baker, California (see Figures 1 and 3). Water would be trucked to the project site from the water supply source.

2.2 **Project Description**

The project proposes to construct, operate, maintain, and decommission a proposed 300-MW PV solar facility located on approximately 2,670 acres. The project components would be as follows:

- 1. The solar plant site (i.e., all facilities that create a footprint in and around the field of solar panels, including the solar field consisting of solar power arrays identified as the East Array and South Arrays 1, 2, and 3), operation and maintenance (O&M) buildings and structures, stormwater infrastructure, and related infrastructure and improvements.
- 2. A substation and switchyard for interconnection to the existing transmission system.
- 3. Gen-tie line connecting the project substation, project switchyard, and existing 500-kV Mead-Adelanto transmission line.
- 4. Approximately 300 MW/1,200 MWh of battery energy storage system (BESS) across 18 acres.

The project would operate 24 hours per day year-round and deliver solar-generated power to the regional electrical grid through an interconnection with the existing Mead-Adelanto 500-kV transmission line operated by the Los Angeles Department of Water and Power.

The project would plant a variety of native and drought-tolerant trees and shrubs along the western boundary of the project site. There would be approximately 30 acres of landscaped areas on-site, including up to 5 acres of irrigated landscaped areas as needed.

Figure 1. Project vicinity map.

Figure 2. Project site.

Figure 3. Project water supply source.

3 GROUNDWATER MANAGEMENT CONSIDERATIONS AND CALIFORNIA ENERGY COMMISSION GUIDELINES

3.1 Sustainable Groundwater Management Act

The Sustainable Groundwater Management Act of 2014 (SGMA) created a framework to promote the sustainable management of groundwater resources by local agencies. It creates requirements applicable to groundwater basins that have been designated as high- or medium-priority by the California Department of Water Resources (DWR) under California Water Code Section 10933. Basin prioritization is based on the best available socioeconomic and hydrological data, such as population, number of wells, and irrigated acres. The majority of subbasins within the Mojave Desert are designated pursuant to the SGMA as "Low & Very Low Priority" basins. In general, factors that influence basin priority designations within the Mojave Desert remain low, such as urban development, well development, and groundwater reliance. The basin's priority designation under SGMA may not provide a comprehensive depiction of the hydrologic conditions or groundwater resources underlying the project's water supply well, particularly due to limited data and development within the region.

The SGMA addresses the depletion of groundwater resources by mandating the formation of groundwater sustainability agencies tasked with developing and implementing groundwater sustainability plans tailored to local basins. These plans outline strategies, such as recharge and demand management to achieve sustainability within 20 years, guided by set goals and criteria. The framework outlined by the SGMA does not apply to the proposed project because the proposed project is underlain by the Soda Lake Valley Groundwater Basin (see Section 4.1), a subbasin designated as low priority by the DWR (DWR 2004a). Additionally, the water supply for the proposed project is situated approximately 12 miles northeast of the proposed project, within the Silver Lake Valley Groundwater Basin. The Silver Lake Valley Groundwater Basin is designated as Very Low Priority pursuant to the SGMA; therefore, the framework outlined by the SGMA does not apply to the proposed project because the proposed project water supply source.

3.2 Porter-Cologne Water Quality Control Act

The Porter-Cologne Water Quality Control Act (Porter-Cologne Act) (Division 7 of the California Water Code) provides the basis for water quality regulation within California and defines water quality objectives as the limits or levels of water constituents that are established for reasonable protection of beneficial uses. The California State Water Resources Control Board administers water rights, water pollution control, and water quality functions throughout the state, while each of the nine Regional Water Quality Control Boards (RWQCBs) conduct planning, permitting, and enforcement activities. The Porter-Cologne Act requires the RWQCB to establish a regional basin plan with water quality objectives, while acknowledging that water quality may be changed to some degree without unreasonably affecting beneficial uses. Beneficial uses, together with the corresponding water quality objectives, are defined as standards, per federal regulations. Therefore, the regional basin plans form the regulatory references for meeting state and federal requirements for water quality control. Changes in water quality are allowed if the change is consistent with the maximum beneficial use of the state, does not unreasonably affect the present or anticipated beneficial uses, and does not result in water quality less than that prescribed in the water quality control plans.

The project falls under the jurisdiction of the Region 6 Lahontan RWQCB, which is responsible for the implementation of state and federal water quality protection statutes, regulations, and guidelines. The Lahontan RWQCB adopted, and the State Water Resources Control Board approved, the *Water Quality Control Plan for the Lahontan Region* (Basin Plan) (California Water Boards 2023) to define how the

quality of surface water and groundwater in the region should be managed to provide the highest water quality as reasonably possible. The Basin Plan lists the various beneficial uses of water within the region; describes the water quality which must be maintained to allow those uses; describes the programs, projects, and other actions which are necessary to achieve the standards established in this plan; and summarizes plans and policies to protect water quality. Beneficial water uses are of two types: consumptive and non-consumptive. Consumptive uses are those normally associated with human activities, primarily municipal, industrial and irrigation uses that consume water and cause corresponding reduction and/or depletion of water supply.

3.3 San Bernardino County Desert Groundwater Management Ordinance

San Bernardino County (County) adopted the Desert Groundwater Management Ordinance of 2002 (DGMO; Ordinance No. 3872, codified at County Code §§ 33.06551 *et seq.*) to help protect water resources in unadjudicated portions of the desert while not precluding its use. When applicable, the ordinance requires a permit to locate, construct, operate, or maintain a new groundwater well within the unincorporated, unadjudicated desert region of San Bernardino County. California Environmental Quality Act (CEQA) compliance must be completed prior to issuance of a permit, and groundwater management, mitigation, and monitoring may be required as a condition of the permit. The ordinance states that it does not apply to "groundwater wells located on federal lands unless otherwise specified by interagency agreement." The BLM and County entered into a memorandum of understanding, which establishes that the BLM will require conformance with this ordinance for all projects proposing to use groundwater from beneath public lands within the county.

If the ordinance applies, no individual, district, or entity may locate, construct, operate, or maintain a new groundwater well in the designated desert region without first submitting a written application and obtaining a valid permit. This permit is discretionary under CEQA (Public Resources Code 21000 et seq.). The ordinance contains various exceptions to its permit requirements.

3.4 California Desert Conservation Area Plan

The California Desert Conservation Area (CDCA) Plan describes multiple-use classes applicable to the project site. Specifically, with respect to water resources, the CDCA Plan (BLM 1999) requires that areas designated Multiple-Use Class L be managed to provide for the protection and enhancement of surface and groundwater resources, except for instances of short-term degradation caused by water development projects. For areas designated Class M or I, the CDCA Plan requires management to minimize the degradation of water resources. For all areas, best management practices (BMPs) developed by the BLM shall be used to avoid degradation and to comply with Executive Order 12088, which requires all federal agencies be in compliance with environmental laws and fully cooperate with the Environmental Protection Agency (EPA) and with state, interstate, and local agencies to prevent, control, and abate environmental pollution.

3.5 California Energy Commission Requirements

The California Energy Commission (CEC) is the CEQA lead state agency for the proposed project. The CEC Appendix B Information Requirements for an Application for Certification (AFC) or Small Power Plant Exemption (SPPE) requires that specific issues related to groundwater resources be addressed. The issues addressed within this water supply report include relevant applicable groundwater resources outlined in CEC Appendix B Information Requirements for an AFC or SPPE, including:

- A detailed description of the hydrologic setting of the project, including groundwater bodies, surface water bodies, surface inundations zones, and any groundwater wells within 0.5 mile of the proposed project and its water supply well (Section 4);
- A detailed description of the water to be used and discharged by the project, including:
 - The source(s) of the primary and back-up water supplies and the rationale for their selection (Section 7.1);
 - The expected physical and chemical characteristics of the source and discharge water(s) including identification of both organic and inorganic constituents before and after any project-related treatment (groundwater quality test results are discussed in Section 5.3 with a copy of the laboratory analytical report provided in Appendix A);
 - An average and maximum daily and annual water demand and wastewater discharge for the construction, operation, and decommissioning phases of the project (Section 6);
 - A detailed description of all facilities to be used in water conveyance (from primary source to the power plant site), water treatment, and wastewater discharge (Section 6);
 - For all water supplies intended for industrial uses to be provided from public or private water purveyors, a letter of intent or will-serve letter indicating that the purveyor is willing to serve the project, has adequate supplies available for the life of the project, and any conditions or restrictions under which water will be provided (Section 6);
 - Water mass balance and heat balance diagrams for both average and maximum flows that include all process and/or ancillary water supplies and wastewater streams. Highlight any water conservation measures on the diagram and the amount that they reduce water demand (Section 6.2.3).
 - For all water supplied which necessitates transfers and/or exchanges at any point, to identify all parties and contracts/agreements involved, including the primary source for the transfer and/or exchange water (e.g., surface water, groundwater), the status of all appropriate agencies' approvals for the proposed use, environmental impact analysis on the specific transfers and/or exchanges required to obtain the proposed supplies, a copy of any agency regulations that govern the use of the water, and an explanation of how the project complies with the agency regulation(s) (Section 6);
- An impact analysis of the proposed project on water resources and a discussion of conformance with water-related laws, ordinances, regulations, and standards and policy. This discussion shall include:
 - The effects of project demand on the water supply and other users of this source, including, but not limited to, water availability for other uses during construction or after the power plant begins operation, consistency of the water use with applicable RWQCB basin plans or other applicable resource management plans, and any changes in the physical or chemical conditions of existing water supplies as a result of water use by the power plant (Section 8);
 - If the project will pump groundwater, an estimation of aquifer drawdown based on a computer modeling study shall be conducted by a professional geologist and include the estimated drawdown on neighboring wells within 0.5 mile of the proposed well(s), any effects on the migration of groundwater contaminants, and the likelihood of any changes in existing physical or chemical conditions of groundwater resources shall be provided (Section 8).

4 GROUNDWATER BASINS AND CLIMATE

The proposed project is underlain by the Soda Lake Valley Groundwater Basin, whereas the project's water supply source is situated approximately 12 miles northeast and contained within the Silver Lake Valley Groundwater Basin. Both the Silver Lake Valley and Soda Lake Valley Groundwater Basin are located within San Bernardino County and adjacent to one another (Figure 4).

4.1 Silver Lake Valley Groundwater Basin

The Silver Lake Valley Groundwater Basin has a mean elevation that ranges from approximately 900 to 1,200 feet above sea level (DWR 2004a). The basin is bounded by nonwatery-bearing rocks of the Soda Mountains on the southwestern/western portion of the basin, the Hollow Hills to the northeast. A low-lying alluvial drainage separates the Silver Lake Valley Groundwater Basin into a northern and southern boundary. The Silver Lake Valley Groundwater Basin receives between 4 to 6 inches of precipitation annually. The majority of recharge to the Silver Lake Valley occurs via percolation of precipitation runoff along the alluvial fan deposits found along the margins of the basin. Quaternary alluvium is the primary water bearing material within the Silver Lake Valley Groundwater Basin that has an approximate maximum thickness of 180 feet (DWR 2004a). The Silver Lake Valley Groundwater Basin that has an estimated total aquifer storage capacity of 380,000 af (DWR 2004a).

4.2 Soda Lake Valley Groundwater Basin

The Soda Lake Valley Groundwater Basin has an approximate elevation of 923 feet (found in the lower portions of the basin floor) to 5,000 feet (the upper portions of the eastern-mountain basin boundary). The Soda Lake Valley Groundwater Basin is bounded by low permeability nonwatery-bearing rocks of the Marl and Kelso Mountains to the east, the Bristol and Cady Mountains to the south, and the Soda and Cave mountains along the western boundary of the basin (DWR 2004a). Quaternary alluvium is the primary water bearing material found within the Soda Lake Valley Groundwater Basin which exists primarily at or around the basin valley. The Quaternary alluvium found within the Soda Lake Valley consists of unconsolidated younger alluvium underlain by older, poorly consolidated alluvial material. The Soda Lake Valley Groundwater Basin has an estimated alluvial aquifer thickness of up to 400 feet. Recharge to the Soda Lake Valley Groundwater Basin occurs primarily from discharge to the local alluvial aquifer from the Mojave River, percolation through alluvial fan deposits along the basin margins, and to a lesser extent, subsurface inflows from Cave Canyon, Kelso, and the Broadway Valley groundwater basins (DWR 2004a). Groundwater typically follows the natural topography of the area and generally flows toward Soda Lake where it eventually discharges to the Silver Lake Valley Groundwater Basin.

4.3 Climate

The project vicinity has a warm, dry desert climate, with extremely hot, dry summers and temperate winters. It receives little rainfall. The climatic records for Barstow Daggett AP Fire Station, California, in San Bernardino County, California (Cooperative Observer Program [COOP] Station No. 042257), indicate that the project site has an average annual maximum temperature of 81.6 degrees Fahrenheit (°F) and an average annual minimum temperature of 53.4°F. The average annual rainfall at the project site is 3.83 inches, most of which occurs between December and February, whereas the average annual total snowfall, which largely occurs during December and January, is 0.8 inch (Western Regional Climate Center 2023).

Figure 4. Project site, including project water supply well and groundwater basins, within project vicinity (DWR 2020).

5 HISTORIC WATER QUALITY

The DWR has documented groundwater basins across the state, detailing characteristics such as groundwater quality, quantity, and basin geology in Bulletin 118 reports. Bulletin 118 reports provide background information on each basin, including the Silver Lake Valley Groundwater Basin, which underlies the project's water supply source, and the Soda Lake Valley Groundwater Basin, which underlies the proposed project area. Additionally, water quality sampling was conducted for the proposed water supply source to better understand current water quality conditions.

5.1 Silver Lake Valley Groundwater Basin

Historically, the groundwater in the Silver Lake Valley is primarily classified as sodium chloride and sodium bicarbonate-chloride dominant, a result of the dissolution of naturally occurring geological formations (DWR 2004a). The water quality in the valley is considered marginal to inferior for domestic and irrigation use due to elevated levels of fluoride, boron, and total dissolved solids (TDS). Fluoride concentrations in the Silver Lake Valley Groundwater Basin average around 2.3 mg/L, boron levels are approximately 1.3 milligrams per liter (mg/L), and TDS concentrations average 1,310 mg/L (DWR 2004a).

5.2 Soda Lake Valley Groundwater Basin

Groundwater quality across the Soda Lake Valley Groundwater Basin was inventoried across 35 wells between years 1994 and 2000 under the California Department of Health Services Title 22 plan (DWR 2004b). The Soda Lake Valley Groundwater Basin water quality study highlighted elevated concentrations (in mg/L) of fluoride, boron, and TDS. Of the 35 wells, 31 monitoring wells exceeded the groundwater quality standard of 0.9 mg/L of fluoride for domestic use. The average fluoride concentration was 3.5 mg/L with some monitoring wells exhibiting concentrations as high as 33.3 mg/L. Boron concentrations exceeded 1.0 mg/L in 20 of the 35 monitoring wells with an average concentration of 1.3 mg/L. TDS concentrations across the monitoring wells averaged 1,500 mg/L with the highest concentrations (8,300 mg/L) found near Soda Lake.

5.3 Current Water Quality Results

In January 2025, Title 22 water quality testing was conducted on the source well (Well Completion Report Number: WCR2020-016662) to evaluate its water quality using the Title 22 analyte panel (Appendix A). While the testing followed the protocols required for drinking water compliance, the project would not use the well for potable water. Detected analytes are presented in Table 2, with only concentrations above the reporting limit included. All other tested constituents were below detection limits. None of the detected analytes exceeded their respective maximum contaminant levels (MCLs) or secondary MCLs (SMCLs), which are benchmarks established by California regulations to protect human health and address aesthetic water quality concerns (Table 1).

Detected Analyte	Result	Unit [†]	Title 22 MCL
Chloride	250	mg/L	500–1,500 (SMCL)
Nitrate as N*	4.2	mg/L	10

Table 1. Source Well Detected Analytes Results

Detected Analyte	Result	Unit [†]	Title 22 MCL	
Sulfate	190	mg/L	250	
Perchlorate	1.1	µg/L	6	
Calcium	26	mg/L	Not specified	
Iron	0.21	mg/L	Not specified	
Magnesium	14	mg/L	Not specified	
Potassium	9.5	mg/L	Not specified	
Sodium	320	mg/L	Not specified	
Aluminum	200	µg/L	1,000	
Arsenic	4.2	μg/L	10	
Barium	29	μg/L	1,000	
Chromium	11	μg/L	50	
Manganese	15	μg/L	50 (SMCL)	
Selenium	2.9	µg/L	10 50	
Vanadium	24	µg/L	Not specified	
Zinc	21	µg/L	5,000	
Total alkalinity as CaCO ₃	240	mg/L	Not specified	
Bicarbonate alkalinity as CaCO ₃	240	mg/L	Not specified	
Specific conductance	1,700	µmhos/cm	Upper: 1,600 Short term 2,200	
TDS	1,000	mg/L	1,000–1,500	
Fluoride	1	mg/L	2,000	
pH*	8.2	SU	6.5-8.5 (SMCL)	

* Sample was received, prepped, or analyzed beyond the specified holding time for this parameter.

[†] mg/L = milligrams per liter; µg/L = micrograms per liter; µmhos/cm = micromhos per centimeter; SU = standard units

Three analytes: nitrate, nitrite, and methylene blue active substances, were not analyzed within their specified holding times. This would only present a compliance issue if the well were being evaluated for Title 22 drinking water use. However, as this assessment was solely for water quality characterization, the missed hold times are not expected to affect the overall conclusions. Samples were analyzed and evaluated based on their respective MCL, regardless.

The testing confirmed that no analyte within the Title 22 panel exceeded the primary or secondary MCL established by California or the EPA. See Appendix A for the Title 22 Analytical Report, prepared by Eurofins Eaton Analytical Pomona. Title 22 water quality thresholds for specific conductance include two separate thresholds: a higher short-term threshold and a lower long-term threshold. The short-term threshold allows for brief fluctuations that might occur in water sources, whereas the long-term threshold is designed to protect water quality over an extended period The source well water quality sample exceeded the long-term threshold by 100 mg/L but remained below the short-term threshold.

5.4 Local Groundwater and Land Use

Aerial imagery reveals that the vicinity of the water supply well and the Silver Lake Valley Groundwater Basin is almost entirely undeveloped desert habitat. Additionally, there are no developed agricultural fields within the area and no wells within a 0.5-mile radius of the project water supply well. The project water supply well is located approximately 3 miles north of Baker, a census-designated place in San Bernardino, California. Baker is located within the Soda Lake Valley Groundwater Basin, which discharges into the Silver Lake Valley Groundwater Basin, where the proposed water supply well is located. The population in Baker is approximately 550 as of 2022 and according to the San Bernardino well inventory, there are 54 wells located within Baker (California Natural Resources Agency 2025).

6 PROJECT WATER DEMAND

The proposed project would source water from a private well (Well Completion Report Number: WCR2020-016662) located approximately 12 miles northeast of the project site. The project proponent and the water supplier have secured a Long-Term Water Supply Service Agreement for the Soda Mountain Solar Project; however, this document is not provided herein to maintain confidentiality.

The proposed project would require a maximum of 336 af of water to support construction over an 18month period (Table 2). Thereafter, the project would require up to 5.6 acre-feet per year (af-yr) (1,824,768 gallons) to support operations and maintenance activities. Decommissioning activities for the project are not specifically known at this time; therefore, in order to provide a conservative analysis, this analysis assumes that the duration of decommissioning activities would be the same as the duration of construction activities. Therefore, it is assumed that water demands associated with decommissioning the project would be comparable in duration and scale to water demands associated with the construction period (336 af of water over an 18-month period) and would be used primarily for dust suppression and soil compaction. The total project lifespan would be up to 40 years. The water demand for each phase of the proposed project is described in detail in Section 6.1, Construction Water Demand, Section 6.2, Operation and Maintenance Water Demand, and Section 6.3, Decommissioning Water Demand. Table 2 provides a summary estimate of project water demand. These estimates are intentionally based on upperbound water use, and the actual project water demand is expected to be lower.

Project Phase	Approximate Percentage of Total (%)	Water Demand (gallons)	Water Demand (af)	I Daily Maximum (gallons)*		
Maximum Construction Water Demand (18 months)						
Dust control	85	93,063,156	285.6	170,000		
Initial system demand	10	10,948,607	33.6	20,000		
Personnel	5	5,474,303	16.8	10,000		
Total	100	109,486,065	336	200,000		
Operations and Maintenance Water Demand (annually)						
System wash water	50	912,384	2.8	14,482		
Process water	5	91,238	0.28	250		
Facilities (non-potable)	25	456,192	1.4	1,250		
Irrigation	10	182,477	0.56	450		
Fire suppression	10	182,477	0.56	450		
Total	100	1,824,768	5.6	24,123		
Maximum Decommissioning	Water Demand (18 Months)					
Dust control	85	93,063,156	285.6	170,000		

Table 2. Summary of Project Water Demand

Project Phase	Approximate Percentage of Total (%)	Water Demand (gallons)	Water Demand (af)	Daily Maximum (gallons)*
Initial system demand	10	10,948,607	33.6	20,000
Personnel	5	5,474,303	16.8	10,000
Total	100	109,486,065	336	200,000

* Herein, it is assumed that the peak daily water usage for construction, operational, and decommissioning activities is equivalent to the daily average water usage. If the peak daily demand were used every day for construction, construction of the proposed project would use 336 af, which represents the maximum estimated water demand for project construction. The actual water usage for construction will be less. For project operation, it is assumed that system washing would occur three times per year, lasting for a duration of 3 weeks per washing cycle. The maximum water demand for system washing was calculated by dividing the annual operational water usage by 9 weeks, or 63 days.

					Project	Water Us	e Projec	tion (af)				
Year	18-N Const	Month truction	1	2	3	4	5	6	7	8	9	10
Water use	3	36	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6
Cumulative Total	3	36	341.6	347.2	352.8	358.4	364	369.6	375.2	380.8	386.4	392
Year	11	12	13	14	15	16	17	18	19	20	21	22
Water use	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6
Cumulative Total	397.6	403.2	408.8	414.4	420	425.6	431.2	436.8	442.4	448	453.6	459.2
Year	23	24	25	26	27	28	29	30	31	32	33	34
Water use	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6
Cumulative Total	464.8	470.4	476	481.6	487.2	492.8	498.4	504	509.6	515.2	520.8	526.4
Year	35	36	37	38	39	40		18-M	onth Dec	commiss	ioning	
Water use	5.6	5.6	5.6	5.6	5.6	5.6			3	36		
Cumulative Total	532	537.6	543.2	548.8	554.4	560			8	96		

Table 3. Project Water Use Projections (af)

6.1 Construction Water Demand

Project construction would use source well water during the 18-month construction period. It is assumed the project peak water demand could reach a maximum of 200,000 gallons per day (gpd), which would be used primarily for dust control and soil compaction during approximately 90 days of grading activities, with small amounts used for personnel and other purposes. The proposed project specifies that up to 336 af is estimated for the 18-month construction; however, the proposed project would only use up to 336 af if the peak water demand were used every day during construction. Therefore, 336 af represents the maximum possible water demand for project construction. Actual water demand during project construction would decrease substantially following the first 90-day period.

6.2 Operation and Maintenance Water Demand

Water used for project operation and maintenance would also be sourced from the source well. During the 40-year operating period, it is estimated that the project would require up to 5.6 af-yr (1,824,768 gallons per year), totaling 224 af over the 40-year life of the project.

6.2.1 System Wash Water

Operational water use will primarily involve the periodic washing of photovoltaic modules, which is anticipated to occur three times annually for a 3-week duration washing cycle. This process aims to remove dust and maintain power generation efficiency, with no additives or detergents required. Washing would be done using a truck-mounted pressure washer (i.e., system washwater). Panel washing would require approximately 2.8 af (912,384 gallons) of water per year. During the operational phase, the project would have a maximum daily water demand of 24,123 gallons, which would occur during periods of system washing (see Table 2).

6.2.2 Process Water and On-site Facilities Water

The solar collector would require an estimated 0.28 af (91,238 gallons) of water per year. Other non-potable facility use would require an estimated 1.4 af (456,192 gallons) of water per year.

6.2.3 Landscape Irrigation and Fire Suppression

Limited landscape irrigation would be required at an estimated 0.56 af (182,459 gallons) of water per year. Fire suppression is estimated at 0.56 af (182,459 gallons) of water per year.

6.2.4 Water Mass and Heat Balance

Water mass balance diagrams are typically used to quantify and manage water input, output, and losses in systems where water is actively circulated, evaporated, or treated, such as in concentrated solar power plants with cooling systems. Similarly, heat balance diagrams are relevant in projects involving significant heat energy transfers, such as those using steam turbines to convert solar energy into electricity. Water usage for the proposed project involves standard construction and operational water use with the biggest driver of long-term water use going toward panel cleaning. The process uses groundwater without any significant thermal energy transformation; therefore, no water mass balance or heat balance diagrams are provided herein.

6.3 Decommissioning Water Demand

Once the functional operating life of the project is over, the facility would be decommissioned to remove project components and restore the site. Herein, it is assumed that water demands associated with decommissioning the project would be comparable in duration and scale to water demands associated with the construction period and would primarily be related to dust suppression and soil compaction. As discussed above in Section 6.1, water demands are analyzed for an 18-month construction period. Because decommissioning would be comparable in duration and scale to the construction period, it is assumed that this phase would occur over the course of 18 months.

7 BASIN WATER BUDGET

Detailed studies on inflow to the Silver Lake Valley Groundwater Basin are not currently available. This report details inflow and outflow estimates from neighboring basins with more robust analyses and other supplementary data sources to extrapolate estimates of the source well basin's water budget.

7.1 Sources of Basin Outflow

Evapotranspiration

Evapotranspiration is the water use from native plants that is absorbed by the plant roots, used by the plant, and then evaporates from the plant into the air. The historic average outflow from evapotranspiration is equal to 2,000 af-yr (Todd Engineers 2013).

Project Water Supply Well

It is expected that the proposed project will source up to 896 af of water over the course of 18 months of construction, 40 years of operation, and 18 months of decommissioning. The majority of water would be pumped during the 18 months of construction and decommissioning periods (maximum of 336 af during each phase), whereas the 40-year operational period will require a total of 224 af, averaging 5.6 af-yr.

In addition to the water demand associated with the proposed project, the well owner requires full use of the well for 4 to 6 hours per day for on-site agriculture irrigation (Ward 2024). The well owner will pump 250 gallons per minute (gpm) for a maximum of 6 hours per day, or 90,000 gpd. Over the course of 1 year, the well owner would use a maximum of approximately 32,850,000 gallons, or 101 af, for on-site agriculture irrigation.

The total maximum pumping demand for the project water supply well (i.e., the project water demand plus the well owner's on-site agriculture irrigation water use) is 437 af during 18 months of project construction phases, 106.6 af-yr during project operation phases, and 437 af during the 18-month decommissioning phase. See Appendix C for the Well Completion Report.

Total Pumping

According to the DWR Sustainable Groundwater Management Mapping Tool, the Silver Lake Valley Groundwater Basin has five wells; however, activity status of each well is unknown. Additionally, according to the DWR, there is no groundwater pumping within the basin (DWR 2020).

Although the DWR has no records of groundwater pumping within the Silver Lake Valley Basin, the well owner currently uses the proposed project water supply well for irrigation for up to 6 hours per day. Therefore, it is assumed that the current groundwater pumping within the Silver Lake Valley Groundwater Basin is at least equal to the irrigational demand from the well owner for agriculture irrigation, or 101 af-yr.

7.2 Sources of Basin Inflow

Mountain Front Recharge and Precipitation

Mountain front recharge estimates for this report were sourced from Conceptual Hydrogeologic Model and Assessment of Water Supply and Demand for the Centro and Baja Management Subareas Mojave River Groundwater Basin (Todd Engineers 2013). Mountain front recharge estimates represent 0.49% of average annual rainfall on contributing watershed areas outside the Mojave River Basin model boundary. Historic averages are equal to 980 af-yr (Todd Engineers 2013).

Any additional precipitation-based recharge within the Silver Lake Valley lowlands is assumed to be negligible because precipitation-based recharge in arid regions such as the Mojave Desert is generally low due to limited precipitation and high rates of evapotranspiration.

Return Flow (Recirculated Production)

The return flow from pumping is the amount of water that returns to the groundwater basin after consumptive use. For instance, return flow for water that is pumped and used for agricultural purposes is the water that percolates back into the basin that is not lost to plant use or evapotranspiration. The percentage of return flow is based on a 12.6% average return flow for the Baja Subarea, sourced from the 2015 Urban Water Management Plan (Mojave Water Agency 2021).

Pumping within the basin is not reported and no active wells can be determined besides the project water supply well. Therefore, the current return flow for the Silver Lake Valley Groundwater Basin is likely based only on the return flow for the irrigated land surrounding the project water supply source, which is approximately 101 af-yr. In total, approximately 12.7 af-yr will be returned to the basin based on a 12.6% return flow estimate.

8 IMPACT ANALYSIS

Limited data on basin conditions are available to conduct a comprehensive impact analysis of the proposed project's water demand on the underlying aquifer. Data from the DWR Bulletin 118 report for the Silver Lake Valley Groundwater Basin (DWR 2004a) were used to model various project impact scenarios on aquifer storage drawdown. Additionally, details from the aquifer test are provided to evaluate reasonable pumping impacts on aquifer drawdown and to demonstrate the well's ability to sustain construction, operational, and decommissioning water demands for the project in addition to the well owner's on-site use for agriculture irrigation.

8.1 Water Availability

The Silver Lake Valley Groundwater Basin has a surface area of approximately 35,300 acres, and an estimated aquifer storage capacity of 380,000 af. No available data was present on the porosity of the Silver Lake Valley Groundwater Basin so an approximate porosity of 0.33 was used based on the sand content noted in the Silver Lake Valley Groundwater Basin (porosity values of high sand content soils typical range from (0%–35%) With these, the following calculations are made.

1) Drawdown

a. Equation:

 $Drawdown (feet) = \frac{Volume Pumped (af)}{Basin area (acres)}$

- *b.* **Scenario 1**: Assuming an unrealistic scenario in which 896 af (the total project water demand) is pumped from the basin, with no source of recharge, the drawdown would approximately be 0.025 feet, or 0.3 inch.
- *c.* Scenario 2: The daily maximum water demand for the proposed project should not exceed 200,000 gpd during the project lifespan (construction, operation, and decommissioning periods), or 0.61 af per day. During this period of peak water demand, the proposed project could result in 2.07×10^{-4} inch per day of drawdown.
- *d.* Scenario 3: The daily maximum water demand for the proposed project should not exceed 200,000 gpd during the project lifespan. In addition, the well owner requires up to 90,000 gpd for irrigation. In total, the maximum demand on the well is 290,000 gpd, or

0.89 af per day. During this period of peak water demand, the proposed project could result in 3.03×10^{-4} inch per day of drawdown.

2) Average depth

a. Equation:

$$Average \ depth \ (feet) = \frac{Storage \ Capacity \ (af)}{Basin \ Area \ (acres)}$$

b. The average thickness of the basin is approximate 10.8 feet. It is assumed herein that 10.8 feet represents the average saturated thickness of the aquifer.

3) Total volume of water within the aquifer (available water for pumping)

a. Equation:

$$V = A \times b \times \emptyset$$

Where: V = Volume of water stored within the aquifer (af)

A = Area of the aquifer (acres)

b = Thickness of the aquifer (feet)

 \emptyset = Porosity of the aquifer (dimensionless)

b. The total volume of water (in af) found within the Silver Lake Valley Groundwater Basin is as follows:

i. $V = 35,300 \text{ (acres)} \times 10.8 \text{ (feet)} \times 0.33 \text{ (dimensionless)}$

ii. V = 125,809 af

4) Percentage used out of total available storage

a. Equation:

$$Percent \ Usage = \frac{Quantity \ used \ (af)}{Quantity \ available \ (af)} \times 100$$

- **b.** Scenario 1: The project's water use of 896 af could result in using approximately 0.71% of the stored water within the Silver Lake Valley Groundwater Basin over the course of the project life; however, this assumes that the basin exists within a static state, receiving no recharge or discharge. Additionally, this assumes that the entirety of the project water supply is pumped all at once.
- c. Scenario 2: The project's daily peak water demand would not exceed 200,000 gpd, which would result in less than 0.0005% of the stored water volume within the Silver Lake Valley Groundwater Basin being used. Scenario 2 operates under the same conditions as Scenario 1; however, it may represent a more realistic reduction in available storage because it represents peak daily usage by the project in a static system as opposed to the total long-term project water usage within a static system.

d. Scenario 3: Peak water demand during the project lifespan could include project water demand and irrigational water demand from the well owner, totaling 290,000 gpd. This scenario would result in approximately 0.0007% of the stored water volume within the Silver Lake Valley Groundwater Basin being used. Scenario 3 operates under the same conditions as Scenario 2; however, it includes the upper bound of the source well usage by the owner (project water demand plus well owner water demand).

8.2 Aquifer Test Results

On January 7, 2025, SWCA conducted a 24-hour pump test to assess the water availability and viability of the source water well for the project. Data collected during the test was analyzed using AquiferTest, a leading software tool in the industry, to determine the characteristics of the local aquifer at the location of the source well. AquiferTest is widely used to interpret pump test and aquifer recovery results, enabling detailed analysis of the hydrogeologic properties at the source well site. The results of the aquifer test are in Appendix B.

9 CONCLUSION

Regulatory Setting

Desert Groundwater Management Act: The Silver Lake Valley Groundwater Basin falls under the scope of the DGMO due to its location within the unadjudicated desert region of San Bernardino County and the Mojave Desert. The DGMO was enacted to ensure sustainable groundwater use and protect resources in such unregulated areas. The project would source water from an existing water supply well, whereas the DGMO applies to the construction, operation, and maintenance of new groundwater wells within desert regions of San Bernardino County.

Sustainable Groundwater Management Act: The Sustainable Groundwater Management Act was enacted to address groundwater overdraft and ensure the long-term sustainability of California's groundwater resources, particularly in basins with significant agricultural, municipal, or industrial demand. The Silver Lake Valley Groundwater Basin, where the proposed project's water supply source is located, is designated as a Very Low Priority basin under SGMA due to minimal groundwater use and negligible socioeconomic development. Only five wells are listed in the SGMA Basin Prioritization Mapping Tool, with just one confirmed as active. Given these conditions, SGMA regulations do not apply to the project's water supply source. The lack of significant groundwater demand and socioeconomic development in the vicinity of the water supply source supports the feasibility of using the well for the project's 40-year lifespan without notable impacts on regional water availability.

Aquifer Test

The project anticipates a water use demand up to 200,000 gpd occurring during construction. The well owner will require up to an additional 90,000 gpd, totaling a maximum of 290,000 gpd. This represents the absolute maximum potential daily water demand for the proposed water supply well.

The aquifer test was conducted at a constant rate of 250 gpm and indicated that the basin could stabilize in less than 6 hours of continual use. During peak water use events, the maximum demand on the well would not exceed 201.4 gpm, which indicates that the well will support the maximum water demand for the proposed project in addition to the on-site agriculture irrigational water requirements for the well owner.

Basin Drawdown Scenarios

Herein, it was determined that project water demand would result in a maximum possible drawdown within the basin of 0.3 inch, with a maximum reduction in available storage of 0.71%, assuming the entire project water volume were drawn with no recharge.

During peak daily water usage, the project would not exceed 200,000 gpd; this scenario would result in a negligible drawdown of 2.07×10^{-4} inch per day and a reduction of less than 0.0005% of the stored water volume within the basin. Water usage could reach 290,000 gpd to support the project demand and irrigational demand from the well owner. This scenario would result in a negligible drawdown of 3.03×10^{-4} inch per day and a reduction of less than 0.0007% of the stored water volume within the basin.

Groundwater Quality

Single-point groundwater sampling results from the proposed source water well detected no analytes above the California Title 22 MCLs or SMCLs. Project-related water treatment is not anticipated for the construction, operation, or decommissioning of the project.

10 REFERENCES CITED

Bureau of Land Management (BLM). 1999. California Desert Conservation Area Plan of 1980, as amended. Available at: https://eplanning.blm.gov/public_projects/lup/66949/82080/96344/ CDCA_Plan.pdf. Accessed February 2024.

California Department of Water Resources (DWR). 2004a. Silver Lake Valley Groundwater Basin. Available at: https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Bulletin-118/Files/2003-Basin-Descriptions/6 034 SilverLakeValley.pdf#:~:text=The%20Silver%20Lake%20Valley%20Groun

Descriptions/6_034_SilverLakeValley.pdf#:~:text=The%20Silver%20Lake%20Valley%20Groun dwater%20Basin%20underlies%20a,1%2C200%20at%20the%20south%20end%20of%20the%2 0basin. Accessed January 2025.

— 2004b. Soda Lake Valley Groundwater Basin. Available at: https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Bulletin-118/Files/2003-Basin-Descriptions/6_033_SodaLakeValley.pdf. Accessed January 2025.

———. 2020. Basin Prioritization. Available at: https://water.ca.gov/Programs/Groundwater-Management/Basin-Prioritization. Accessed January 2025.

California Water Boards. 2023. Water Quality Control Plan for the Lahontan Region (Basin Plan). Available at: https://www.waterboards.ca.gov/lahontan/water_issues/programs/basin_plan/references.html. Accessed January 2025.

- California Natural Resources Agency. 2025. Water. Available at: <u>https://data.cnra.ca.gov/group/water</u>. Accessed. January 2025.
- Mojave Water Agency. 2021. 2020 Urban Water Management Plan. Available at: https://www.mojavewater.org/wp-content/uploads/2022/06/MWA2020UWMPFinal061621.pdf. Accessed January 2025.
- Todd Engineers. 2013. Conceptual Hydrogeologic Model and Assessment of Water Supply and Demand for the Centro and Baja Subareas Mojave River Groundwater Basin. Available at: https://www.mojavewater.org/data-maps/regional-studies/. Accessed 2023.
- Ward, R. 2024. Owner well usage demand, discussed during the Soda Mountain Water Supply Meeting, December 6, 2024.
- Western Regional Climate Center. 2023. California Climate Summaries. Barstow Daggett AP Fire Station, California (COOP Station No 042257). Available at: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca2257. Accessed September 2024.

APPENDIX A

Title 22 Analytical Report

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Nolan Perryman SWCA Environmental Consultants 320 N. Halstead Street Suite 120 Pasadena, California 91107 Generated 1/23/2025 2:33:52 PM

JOB DESCRIPTION

2024T: CA SWRCB/DDW Title 22

JOB NUMBER

380-129268-1

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive Pomona CA 91768-2642

See page two for job notes and contact information.

Eurofins Eaton Analytical Pomona

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Eaton Analytical, LLC Project Manager.

Compliance Statement

- 1. Laboratory is accredited in accordance with TNI 2016 Standards and ISO/IEC 17025:2017.
- 2. Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis
- 3. Test results relate only to the sample(s) tested.
- 4. This report shall not be reproduced except in full, without the written approval of the laboratory.
- 5. Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. (DW,Water matrices)

Authorization

Generated 1/23/2025 2:33:52 PM 5 6 7

Authorized for release by Terri Harlin, Client Services Manager <u>Terri.Harlin@et.eurofinsus.com</u> (626)386-1149

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	9
Action Limit Summary	13
Surrogate Summary	15
Isotope Dilution Summary	17
QC Sample Results	18
QC Association Summary	48
Lab Chronicle	55
Certification Summary	57
Method Summary	59
Sample Summary	60
Chain of Custody	61
Receipt Checklists	63

Definitions/Glossary

Qualifiers

		J
GC/MS VOA		
Qualifier	Qualifier Description	
^3+	Reporting Limit Check Standard is outside acceptance limits, high biased	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Q2	Sample received with headspace.	
GC/MS Semi	AOV	
Qualifier	Qualifier Description	
^3+	Reporting Limit Check Standard is outside acceptance limits, high biased	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	\$
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	1
HPLC/IC		
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Dioxin		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	1
General Che	mistry	
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	
H3	Sample was received and analyzed past holding time. This does not meet regulatory requirements.	1
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	—
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	

DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE)

Dilution Factor

Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level"

Duplicate Error Ratio (normalized absolute difference)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL

DER

Dil Fac DL

 ML Minimum Level (Dioxin)

MPN Most Probable Number

Client: SWCA Environmental Consultants Project/Site: 2024T: CA SWRCB/DDW Title 22

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 380-129268-1

Eurofins Eaton Analytical Pomona

Job Narrative 380-129268-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/9/2025 9:43 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.8°C.

GC/MS VOA

Method CA_DWRL_123TCP: Headspace of > 6mm observed at time of analysis. Headspace does not impact TCP due to its low Henry's constant thus TCP does not volatilize quickly like fixed gases do.

Baker (380-129268-1) and (380-129268-E-1 DU)

Method 524.2_Pres_PREC: The method requirement for no headspace was not met. The following volatile sample was analyzed with headspace in the sample container(s): Baker (380-129268-1). The sample container was received with headspace.

Method 524.2_Pres_PREC: The method requirement for no headspace was not met. The following volatile sample was analyzed with headspace in the sample container(s): Baker (380-129268-1). The sample container was received with headspace.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 525.2_PREC: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 380-127221 and analytical batch 380-127547 were outside control limits for Benzo[a]pyrene. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Herbicides

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides/PCBs

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_OF_48H_PREC: The following sample was diluted for Nitrite as N to prevent detector saturation due to high conductivity: Baker (380-129268-1). Elevated reporting limits (RLs) are provided.

Method 300_OF_48H_PREC: The following sample(s) was received with less than 2 days remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: Baker (380-129268-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Eaton Analytical Pomona
Job ID: 380-129268-1 (Continued) **Eurofins Eaton Analytical Pomona**

Pesticides

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

LCMS

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Dioxin

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2320B: The method blank for analytical batch 380-127532 contained Total Alkalinity as CaCO3 more than half of the reporting limit (RL). Associated sample(s) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

Method 5540C: The following sample was analyzed outside of analytical holding time due to sample was received by analyst past hold on 1/9/24 at 1332 when hold time expired at 1007.: Baker (380-129268-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample ID: Baker

Lab Sample ID: 380-129268-1

5 6 7 9 10 11 12 13 14 15 16 17

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	250		2.5	mg/L	5	300.0	Total/NA
Nitrate as N	4.2	н	0.25	mg/L	5	300.0	Total/NA
Sulfate	190		1.3	mg/L	5	300.0	Total/NA
Perchlorate	1.1		0.50	ug/L	1	331.0	Total/NA
Calcium	28		1.0	mg/L	1	200.7 Rev 4.4	Total Recoverable
Iron	0.21		0.010	mg/L	1	200.7 Rev 4.4	Total Recoverable
Magnesium	14		0.10	mg/L	1	200.7 Rev 4.4	Total Recoverable
Potassium	9.5		1.0	mg/L	1	200.7 Rev 4.4	Total
Sodium	320		2.0	mg/L	2	200.7 Rev 4.4	Total Recoverable
Aluminum	200		20	ug/L	1	200.8	Total
Arsenic	4.2		1.0	ug/L	1	200.8	Total
Barium	29		2.0	ug/L	1	200.8	Total
Chromium	11		0.90	ug/L	1	200.8	Total
Manganese	15		2.0	ug/L	1	200.8	Total
Selenium	2.9		2.0	ug/L	1	200.8	Total
Vanadium	24		2.0	ug/L	1	200.8	Total
Zinc	21		20	ug/L	1	200.8	Total
Total hardness as CaCO3	130		2.9	mg/L	1	SM 2340B	Total/NA
Calcium hardness as CaCO3	70		2.5	ma/L	1	SM 2340B	Total/NA
Magnesium hardness as CaCO3	58		0.41	ma/L	1	SM 2340B	Total/NA
Total Alkalinity as CaCO3	240		2.0	ma/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	240		2.0	mg/L	1	SM 2320B	Total/NA
Specific Conductance	1700		2.0	umhos/cm	1	SM 2510B	Total/NA
Total Dissolved Solids	1000		20	mg/L	1	SM 2540C	Total/NA
Fluoride	1.0		0.050	mg/L	1	SM 4500 F C	Total/NA
				0	-		

No Detections.

Date Received: 01/09/25 09:43

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	Q2	0.50		ug/L			01/14/25 17:43	
cis-1,3-Dichloropropene	ND	Q2	0.50		ug/L			01/14/25 17:43	
o-Xylene	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,4-Dichlorobenzene	ND	Q2	0.50		ug/L			01/14/25 17:43	
Styrene	ND	Q2	0.50		ug/L			01/14/25 17:43	
Toluene	ND	Q2	0.50		ug/L			01/14/25 17:43	
trans-1,2-Dichloroethylene	ND	Q2	0.50		ug/L			01/14/25 17:43	
trans-1,3-Dichloropropene	ND	Q2	0.50		ug/L			01/14/25 17:43	
Trichlorofluoromethane	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,1-Dichloroethylene	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,2-Dichloropropane	ND	Q2	0.50		ug/L			01/14/25 17:43	
Chlorobenzene	ND	Q2	0.50		ug/L			01/14/25 17:43	
cis-1,2-Dichloroethylene	ND	Q2	0.50		ug/L			01/14/25 17:43	
m,p-Xylenes	ND	^3+ Q2	0.50		ug/L			01/14/25 17:43	
1,2-Dichlorobenzene	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,3-Dichloropropene, Total	ND	Q2	0.50		ug/L			01/14/25 17:43	
Trichloroethylene	ND	Q2	0.50		ug/L			01/14/25 17:43	
Vinyl chloride	ND	Q2	0.30		ug/L			01/14/25 17:43	
1,1,1-Trichloroethane	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,1,2,2-Tetrachloroethane	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,2,4-Trichlorobenzene	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,2-Dichloroethane	ND	Q2	0.50		ug/L			01/14/25 17:43	
Tetrachloroethylene	ND	Q2	0.50		ug/L			01/14/25 17:43	
Xylenes, Total	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,1,2-Trichloroethane	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,1-Dichloroethane	ND	Q2	0.50		ug/L			01/14/25 17:43	
Carbon tetrachloride	ND	Q2	0.50		ug/L			01/14/25 17:43	
Ethylbenzene	ND	Q2	0.50		ug/L			01/14/25 17:43	
Methyl-tert-butyl Ether (MTBE)	ND	Q2	0.50		ug/L			01/14/25 17:43	
Dichloromethane	ND	Q2	0.50		ug/L			01/14/25 17:43	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	Q2	0.50		ug/L			01/15/25 19:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	109	Q2	70 - 130			-		01/14/25 17:43	
1,2-Dichloroethane-d4 (Surr)	106	Q2	70 - 130					01/15/25 19:17	1
4-Bromofluorobenzene (Surr)	94	Q2	70 - 130					01/14/25 17:43	1
4-Bromofluorobenzene (Surr)	91	Q2	70 - 130					01/15/25 19:17	
Toluene-d8 (Surr)	80	Q2	70 - 130					01/14/25 17:43	1
Toluene-d8 (Surr)	75	Q2	70 - 130					01/15/25 19:17	-
Method: CADHS CA DWRL - Vola	atile Organic C	ompounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
123 Trichloronronano			20		ng/l			01/20/25 20:24	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alachlor	ND		0.048		ug/L		01/10/25 07:00	01/13/25 13:29	1
Atrazine	ND		0.048		ug/L		01/10/25 07:00	01/13/25 13:29	1
Benzo[a]pyrene	ND	F1 F2	0.019		ug/L		01/10/25 07:00	01/13/25 13:29	1
Di(2-ethylhexyl)adipate	ND	F2	0.58		ug/L		01/10/25 07:00	01/13/25 13:29	1

Lab Sample ID: 380-129268-1

Matrix: Water

5

6

17

Client Sample ID: Baker Date Collected: 01/07/25 10:07

Date Received: 01/09/25 09:43

Bentazon

Lab Sample ID: 380-129268-1

Matrix: Water

5 6

Method: EPA 525.2 - Semivolatil	e Organic Com	pounds (GC	/MS) (Continu	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di (2-ethylhexyl)phthalate	ND		0.58		ug/L		01/10/25 07:00	01/13/25 13:29	1
Endrin	ND		0.0097		ug/L		01/10/25 07:00	01/13/25 13:29	1
Heptachlor	ND		0.0097		ug/L		01/10/25 07:00	01/13/25 13:29	1
Heptachlor epoxide	ND		0.0097		ug/L		01/10/25 07:00	01/13/25 13:29	1
Hexachlorobenzene	ND		0.048		ug/L		01/10/25 07:00	01/13/25 13:29	1
Hexachlorocyclopentadiene	ND		0.048		ug/L		01/10/25 07:00	01/13/25 13:29	1
gamma-BHC (Lindane)	ND	^3+	0.0097		ug/L		01/10/25 07:00	01/13/25 13:29	1
Methoxychlor	ND		0.048		ug/L		01/10/25 07:00	01/13/25 13:29	1
Molinate	ND		0.097		ua/L		01/10/25 07:00	01/13/25 13:29	1
Simazine	ND		0.048		ug/L		01/10/25 07:00	01/13/25 13:29	1
Thiobencarb	ND		0.097		ua/L		01/10/25 07:00	01/13/25 13:29	1
					3				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Nitro-m-xylene	97		70 - 130				01/10/25 07:00	01/13/25 13:29	1
Triphenylphosphate	114		70 - 130				01/10/25 07:00	01/13/25 13:29	1
Perylene-d12	91		70 - 130				01/10/25 07:00	01/13/25 13:29	1
F									
Method: EPA 548.1 - Endothall (GC/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endothall	ND		5.0		ug/L		01/09/25 14:30	01/15/25 11:44	1
Mothod: EDA DW2 504.1 EDB	DBCD and 4.2.1								
Analyto	DBCP and 1,2,3	Ouglifier	Ы	мы	Unit	п	Proparod	Applyzod	Dil Eac
			0.010			_	01/10/25 18:00	01/11/25 00:35	1
Dibromochloropropage (DBCP)			0.010		ug/L		01/10/25 18:00	01/11/25 09:35	1
Distoniochioropropane (DBCr)	ND		0.010		ug/L		01/10/23 10:00	01/11/20 09:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dibromopropane (Surr)	99		60 - 140				01/10/25 18:00	01/11/25 09:35	1
Method: EPA 505 - Organochlor	ine Pesticides/I	PCBs (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane	ND		0.10		ug/L		01/13/25 13:24	01/14/25 08:12	1
Toxaphene	ND		0.50		ug/L		01/13/25 13:24	01/14/25 08:12	1
PCB-1016	ND		0.071		ug/L		01/13/25 13:24	01/14/25 08:12	1
PCB-1221	ND		0.10		ug/L		01/13/25 13:24	01/14/25 08:12	1
PCB-1232	ND		0.10		ug/L		01/13/25 13:24	01/14/25 08:12	1
PCB-1242	ND		0.10		ug/L		01/13/25 13:24	01/14/25 08:12	1
PCB-1248	ND		0.10		ug/L		01/13/25 13:24	01/14/25 08:12	1
PCB-1254	ND		0.10		ug/L		01/13/25 13:24	01/14/25 08:12	1
PCB-1260	ND		0.071		ug/L		01/13/25 13:24	01/14/25 08:12	1
Polychlorinated biphenyls, Total	ND		0.10		ug/L		01/13/25 13:24	01/14/25 08:12	1
Surrogate	%Recovery	Qualifier	l imite				Pronared	Analyzed	Dil Fac
Tetrachloro-m-xvlene			70 - 130				01/13/25 13:24	01/14/25 08.12	1
	57								,
Method: EPA-DW 515.4 - Herbic	ides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-TP (Silvex)	ND		0.10		ug/L		01/13/25 08:25	01/14/25 02:24	1
Dinoseb	ND		0.20		ug/L		01/13/25 08:25	01/14/25 02:24	1
2,4-D	ND		0.10		ug/L		01/13/25 08:25	01/14/25 02:24	1

Eurofins Eaton Analytical Pomona

01/14/25 02:24

01/13/25 08:25

0.50

ug/L

ND

1

Job ID: 380-129268-1

Client Sample ID: Baker Date Collected: 01/07/25 10:07

ix: Water	Matrix									Date Collected: 01/07/25 10:07 Date Received: 01/09/25 09:43
								tinued)	es (GC) (Cor	Method: EPA-DW 515 4 - Herbicid
Dil Fac	Analvzed	Prepared	D	Unit D	LI	MDL	RL	Qualifier	Result	Analyte
1	01/14/25 02:24	01/13/25 08:25		ug/L	— -		0.040		ND	Pentachlorophenol
1	01/14/25 02:24	01/13/25 08:25		ug/L	ı		1.0		ND	Dalapon
1	01/14/25 02:24	01/13/25 08:25		ug/L			0.10		ND	Picloram
Dil Fac	Analyzed	Prepared					Limits	Qualifier	%Recovery	Surrogate
1	01/14/25 02:24	01/13/25 08:25	-				70 - 130		99	2,4-Dichlorophenylacetic acid (Surr)
								hy	hromatograp	Method: EPA 300.0 - Anions, Ion C
Dil Fac	Analyzed	Prepared	D	Unit D	LI	MDL	RL	Qualifier	Result	Analyte
5	01/09/25 16:48			mg/L			2.5		250	Chloride
5	01/09/25 16:48			mg/L	ı		0.25	н	4.2	Nitrate as N
5	01/09/25 16:48			mg/L	ı		0.25	н	ND	Nitrite as N
5	01/09/25 16:48			mg/L	1		1.3		190	Sulfate
								LC)	esticides (HP	Method: EPA 531.2 - Carbamate P
Dil Fac	Analyzed	Prepared	D	Unit D	LI	MDL	RL	Qualifier	Result	Analyte
1	01/11/25 15:27	01/10/25 14:27		ug/L	- i		0.50		ND	Carbofuran
1	01/11/25 15:27	01/10/25 14:27		ug/L	ι		0.50		ND	Oxamyl
Dil Fac	Analyzed	Prepared					Limits	Qualifier	%Recovery	Surrogate
1	01/11/25 15:27	01/10/25 14:27	-				70 - 130		117	BDMC
Dil Fac	Analyzed 01/11/25 00:38	Prepared 01/10/25 11:54	<u>D</u>	Unit D		MDL	RL 6.0	Qualifier	AI HPLC) Result ND	Method: EPA 547 - Glyphosate (D Analyte Glyphosate
								C)	araquat (HPL)	Method: EPA 549.2 - Diguat and P
Dil Fac	Analyzed	Prepared	D	Unit D	LI	MDL	RL	Qualifier	Result	Analyte
1	01/11/25 20:29	01/10/25 11:57		ug/L			0.40		ND	Diquat
									LC/MS/MS)	Method: EPA 331.0 - Perchlorate (
Dil Fac	Analyzed	Prepared	D	Unit D	LI	MDL	RL	Qualifier	Result	Analyte
1	01/10/25 15:07			ug/L			0.50		1.1	Perchlorate
								(GC/MS/MS)	nated Dioxin (Method: EPA 1613B - Tetra Chlori
Dil Fac	Analyzed	Prepared	D	Unit D		MDL	RL	Qualifier	Result	Analyte
1	01/16/25 18:56	01/15/25 10:30		pg/L	I		5.0		ND	2,3,7,8-TCDD
Dil Fac	Analyzed	Prepared					Limits	Qualifier	%Recovery	Isotope Dilution
1	01/16/25 18:56	01/15/25 10:30	-				31 - 137		79	13C-2,3,7,8-TCDD
							e	I Recoverable	s (ICP) - Tota	Method: EPA 200.7 Rev 4.4 - Meta
Dil Fac	Analyzed	Prepared	D	Unit D	LI	MDL	RL	Qualifier	Result	Analyte
1	01/15/25 18:48	01/15/25 10:12		mg/L	1		1.0		28	Calcium
1	01/15/25 18:48	01/15/25 10:12		mg/L	I		0.010		0.21	Iron
1	01/15/25 18:48	01/15/25 10:12		mg/L			0.10		14	Magnesium
1	01/15/25 18:48	01/15/25 10:12		mg/L	1		1.0		9.5	Potassium

Method: EPA 200.8 - Mercury (ICP/I	MS) - Total Recoverable						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND	0.20	ug/L		01/13/25 09:30	01/13/25 16:47	1

Lab Sample ID: 380-129268-1

6

Lab Sample ID: 380-129268-1

Client Sample ID: Baker Date Collected: 01/07/25 10:07 Date Received: 01/09/25 09:43

5

6

17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	200		20		ug/L		01/13/25 09:30	01/13/25 16:47	
Antimony	ND		1.0		ug/L		01/13/25 09:30	01/13/25 16:47	
Arsenic	4.2		1.0		ug/L		01/13/25 09:30	01/13/25 16:47	
Barium	29		2.0		ug/L		01/13/25 09:30	01/13/25 16:47	
Beryllium	ND		0.30		ug/L		01/13/25 09:30	01/13/25 16:47	
Cadmium	ND		0.50		ug/L		01/13/25 09:30	01/13/25 16:47	
Chromium	11		0.90		ug/L		01/13/25 09:30	01/13/25 16:47	
Copper	ND		1.0		ug/L		01/13/25 09:30	01/13/25 16:47	
Lead	ND		0.50		ug/L		01/13/25 09:30	01/13/25 16:47	
Manganese	15		2.0		ug/L		01/13/25 09:30	01/13/25 16:47	
Selenium	2.9		2.0		ug/L		01/13/25 09:30	01/13/25 16:47	
Silver	ND		0.50		ug/L		01/13/25 09:30	01/13/25 16:47	
Thallium	ND		0.30		ug/L		01/13/25 09:30	01/13/25 16:47	
Vanadium	24		2.0		ug/L		01/13/25 09:30	01/13/25 16:47	
Zinc	21		20		ua/L		01/13/25 09:30	01/13/25 16:47	
					5				
Method: SM 2340B - Total Hardness	(as CaCO3) by calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total hardness as CaCO3	130		2.9		mg/L			01/16/25 22:55	
Calcium hardness as CaCO3	70		2.5		mg/L			01/16/25 22:55	
Magnesium hardness as CaCO3	58		0.41		mg/L			01/16/25 22:55	
General Chemistry						_			
	Result	Qualifier	RL	MDL	Unit		Prepared	Analyzed	DILFa
	ND		0.0050		mg/L		01/16/25 08:34	01/16/25 12:26	
Cyanide (SM 4500 CN F)	ND		0.025		mg/L			01/13/25 09:42	
Jdor (SM 2150B)	ND	ннз	1.0		1.O.N.			01/09/25 11:32	
Total Alkalinity as CaCO3 (SM 2320B)	240		2.0		mg/L			01/10/25 17:12	
Bicarbonate Alkalinity as CaCO3 SM 2320B)	240		2.0		mg/L			01/10/25 17:12	
Carbonate Alkalinity as CaCO3 (SM 2320B)	ND		2.0		mg/L			01/10/25 17:12	
Hydroxide Alkalinity as CaCO3 (SM 2320B)	ND		2.0		mg/L			01/10/25 17:12	
Phenolphthalein Alkalinity as CaCO3 SM 2320B)	ND		2.0		mg/L			01/10/25 17:12	
Specific Conductance (SM 2510B)	1700		2.0		umhos/cm			01/10/25 17:12	
Total Dissolved Solids (SM 2540C)	1000		20		mg/L			01/09/25 16:39	
Fluoride (SM 4500 F C)	1.0		0.050		mg/L			01/15/25 15:03	
рН (SM 4500 H+ B)	8.2	HF	0.01		SU			01/10/25 17:12	
Methylene Blue Active Substances (SM 5540C)	ND	Н	0.10		mg/L			01/16/25 07:08	
lient Sample ID: Trip Blank							Lab Samp	le ID: 380-12	9268-
ate Collected: 01/07/25 10:07 ate Received: 01/09/25 09:43								Matrix	x: Wate

method. OADNO OADNILE - Volati	ic organic oc	mpounds (
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichloropropane	ND		2.0		ng/L	 		01/20/25 21:09	1

Client: SWCA Environmental Consultants Project/Site: 2024T: CA SWRCB/DDW Title 22

Client Sample ID: Baker

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits have been highlighted for your convenience.

				EPAMCL			
Analyte	Result	Qualifier	Unit	Limit	RL	Method	Prep Type
Benzene	ND	Q2	ug/L	5	0.50	524.2	Total/NA
1,4-Dichlorobenzene	ND	Q2	ug/L	75	0.50	524.2	Total/NA
Styrene	ND	Q2	ug/L	100	0.50	524.2	Total/NA
Toluene	ND	Q2	ug/L	1000	0.50	524.2	Total/NA
trans-1,2-Dichloroethylene	ND	Q2	ug/L	100	0.50	524.2	Total/NA
1,1-Dichloroethylene	ND	Q2	ug/L	7	0.50	524.2	Total/NA
1,2-Dichloropropane	ND	Q2	ug/L	5	0.50	524.2	Total/NA
Chlorobenzene	ND	Q2	ug/L	100	0.50	524.2	Total/NA
cis-1,2-Dichloroethylene	ND	Q2	ug/L	70	0.50	524.2	Total/NA
1,2-Dichlorobenzene	ND	Q2	ug/L	600	0.50	524.2	Total/NA
Trichloroethylene	ND	Q2	ug/L	5	0.50	524.2	Total/NA
Vinyl chloride	ND	Q2	ug/L	2	0.30	524.2	Total/NA
1,1,1-Trichloroethane	ND	Q2	ug/L	200	0.50	524.2	Total/NA
1,2,4-Trichlorobenzene	ND	Q2	ug/L	70	0.50	524.2	Total/NA
1,2-Dichloroethane	ND	Q2	ug/L	5	0.50	524.2	Total/NA
Tetrachloroethylene	ND	Q2	ug/L	5	0.50	524.2	Total/NA
Xylenes, Total	ND	Q2	ug/L	10000	0.50	524.2	Total/NA
1,1,2-Trichloroethane	ND	Q2	ug/L	5	0.50	524.2	Total/NA
Carbon tetrachloride	ND	Q2	ug/L	5	0.50	524.2	Total/NA
Ethylbenzene	ND	Q2	ug/L	700	0.50	524.2	Total/NA
Dichloromethane	ND	Q2	ug/L	5	0.50	524.2	Total/NA
Alachlor	ND		ua/L	2	0.048	525.2	Total/NA
Atrazine	ND		ua/L	- 3	0.048	525.2	Total/NA
Benzolalpyrene	ND	F1 F2	ug/L	0.2	0.019	525.2	Total/NA
Di(2-ethylhexyl)adipate	ND	F2	ua/L	400	0.58	525.2	Total/NA
Di (2-ethylhexyl)phthalate	ND		ua/L	6	0.58	525.2	Total/NA
Endrin	ND		ug/l	2	0.0097	525.2	Total/NA
Heptachlor	ND		ug/L	0.4	0.0097	525.2	Total/NA
Heptachlor epoxide	ND		ug/L	0.2	0.0097	525.2	Total/NA
Hexachlorobenzene	ND		ug/l	1	0.048	525.2	Total/NA
Hexachlorocyclopentadiene	ND		ug/L	50	0.048	525.2	Total/NA
gamma-BHC (Lindane)	ND	^3+	ug/L	0.2	0.0097	525.2	Total/NA
Methoxychlor	ND	0.	ug/L	40	0.048	525.2	Total/NA
Simazine	ND		ug/L		0.048	525.2	Total/NA
Endothall	ND		ug/L	100	5.0	548 1	Total/NA
Ethylene Dibromide (EDB)	ND		ug/L	0.05	0.010	504 1	Total/NA
Dibromochloropropane (DBCP)	ND		ug/L	0.00	0.010	504 1	Total/NA
Chlordane			ug/L	2	0.10	505	Total/NA
Toxanhene			ug/L	2	0.10	505	Total/NA
Polychlorinated hinbenyls, Total			ug/L	0.5	0.00	505	Total/NA
2.4.5-TP (Silver)			ug/L	50	0.10	515 /	Total/NA
Dinosoh			ug/L	50	0.10	515.4	Total/NA
24 D			ug/L	70	0.20	515.4	Total/NA
2,4-D			ug/L	1	0.10	515.4	Total/NA
Delenen			ug/L	1	0.040	515.4	
	ND		ug/∟	200	1.0	515.4	Total/NA
	ND		ug/L	500	0.10	200.0	
	4.2	н	mg/L	10	0.25	300.0	Iotal/NA
Nitrite as N	ND	н	mg/L	1	0.25	300.0	Iotal/NA

17

Lab Sample ID: 380-129268-1

Action Limit Summary

Client: SWCA Environmental Consultants Project/Site: 2024T: CA SWRCB/DDW Title 22

Job ID: 380-129268-1

Lab Sample ID: 380-129268-1

Client Sample ID: Baker (Continued)

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits have been highlighted for your convenience.

				EPAMCL			
Analyte	Result	Qualifier	Unit	Limit	RL	Method	Prep Type
Carbofuran	ND		ug/L	40	0.50	531.2	Total/NA
Oxamyl	ND		ug/L	200	0.50	531.2	Total/NA
Glyphosate	ND		ug/L	700	6.0	547	Total/NA
Diquat	ND		ug/L	20	0.40	549.2	Total/NA
2,3,7,8-TCDD	ND		pg/L	30	5.0	1613B	Total/NA
Cyanide, Total	ND		mg/L	0.2	0.0050	335.4	Total/NA
Cyanide	ND		mg/L	0.2	0.025	4500 CN F	Total/NA
Fluoride	1.0		mg/L	4	0.050	SM 4500 F C	Total/NA

Method: 524.2 - Volatile Organic Compounds (GC/MS) Matrix: Water

				Percent Surroga	e Recovery (Acceptance Limits)
		DCA	BFB	TOL	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
380-129268-1	Baker	109 Q2	94 Q2	80 Q2	
380-129268-1	Baker	106 Q2	91 Q2	75 Q2	
LCS 380-127793/10	Lab Control Sample	101	102	112	
LCS 380-128096/10	Lab Control Sample	95	99	117	
LCSD 380-127793/11	Lab Control Sample Dup	101	102	117	
LCSD 380-128096/11	Lab Control Sample Dup	97	102	113	
MB 380-127793/13	Method Blank	106	97	82	
MB 380-128096/13	Method Blank	107	97	73	
MRL 380-127793/12	Lab Control Sample	101	95	93	
MRL 380-127793/9	Lab Control Sample	106	94	83	
MRL 380-128096/12	Lab Control Sample	104	97	88	
MRL 380-128096/9	Lab Control Sample	103	99	82	
Surrogate Legend					
DCA = 1,2-Dichloroetha	ne-d4 (Surr)				
BFB = 4-Bromofluorobe	nzene (Surr)				

TOL = Toluene-d8 (Surr)

Method: 525.2 - Semivolatile Organic Compounds (GC/MS)

latrix:	Water
---------	-------

			Percent Surrogate Recovery (Acceptance Limits)					
		2NMX	TPP	PRY				
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)				
380-129268-1	Baker	97	114	91				
380-129268-1 MS	Baker	106	101	94				
380-129268-1 MSD	Baker	98	96	87				
LCS 380-127221/23-A	Lab Control Sample	105	100	90				
LCSD 380-127221/24-A	Lab Control Sample Dup	99	102	91				
MB 380-127221/21-A	Method Blank	99	100	89				
MRL 380-127221/22-A	Lab Control Sample	105	96	88				

Surrogate Legen	d
-----------------	---

2NMX = 2-Nitro-m-xylene

TPP = Triphenylphosphate

PRY = Perylene-d12

Method: 504.1 - EDB, DBCP and 1,2,3-TCP (GC) Matrix: Water

Percent Surrogate Recovery (Acceptance Limits)

		DBPP1	
Lab Sample ID	Client Sample ID	(60-140)	
380-129268-1	Baker	99	
LCS 380-127255/29-A	Lab Control Sample	103	
MBL 380-127255/4-A	Method Blank	96	
MRL 380-127255/2-A	Lab Control Sample	94	
MRL 380-127255/3-A	Lab Control Sample	94	
Surrogate Legend			

DBPP = 1,2-Dibromopropane (Surr)

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: SWCA Environmental Consultants Project/Site: 2024T: CA SWRCB/DDW Title 22

Method: 505 - Organochlorine Pesticides/PCBs (GC)

Matrix: Water

			Percent Surrogate Recovery (Acce
		TCX1	
Lab Sample ID	Client Sample ID	(70-130)	
380-129268-1	Baker	91	
LCS 380-127543/16-A	Lab Control Sample	105	
LCS 380-127543/24-A	Lab Control Sample	107	
LCS 380-127543/57-A	Lab Control Sample	107	
LCS 380-127543/59-A	Lab Control Sample	103	
LCS 380-127543/60-A	Lab Control Sample	98	
LCS 380-127543/8-A	Lab Control Sample	101	
LCSD 380-127543/58-A	Lab Control Sample Dup	96	
MB 380-127543/32-A	Method Blank	96	
MRL 380-127543/30-A	Lab Control Sample	106	
	Lab Control Sampla	04	

Method: 515.4 - Herbicides (GC)

TCX = Tetrachloro-m-xylene

Matrix: Water	
---------------	--

			Percent Surrogate Recovery (Acceptance Limits)
		DCPAA1	
ab Sample ID	Client Sample ID	(70-130)	
380-129268-1	Baker	99	
LCS 380-127276/35-A	Lab Control Sample	101	
LCS 380-127276/36-A	Lab Control Sample	101	
LCSD 380-127276/37-A	Lab Control Sample Dup	99	
MBL 380-127276/11-A	Method Blank	97	
MRL 380-127276/10-A	Lab Control Sample	101	
MRL 380-127276/9-A	Lab Control Sample	100	

DCPAA = 2,4-Dichlorophenylacetic acid (Surr)

Method: 531.2 - Carbamate Pesticides (HPLC) Matrix: Water

Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)			
		BDMC				
Lab Sample ID	Client Sample ID	(70-130)				
380-129268-1	Baker	117				
LCS 380-127295/28-A	Lab Control Sample	102				
MBL 380-127295/3-A	Method Blank	113				
MRL 380-127295/2-A	Lab Control Sample	99				

Surrogate Legend

BDMC = BDMC

Eurofins Eaton Analytical Pomona

Prep Type: Total/NA

Job ID: 380-129268-1

Method: 1613B - Tetra Chlorinated Dioxin (GC/MS/MS)

Matrix: Water			Prep Type: Total/NA
_			Percent Isotope Dilution Recovery (Acceptance Limits)
		TCDD	
Lab Sample ID	Client Sample ID	(31-137)	
380-129268-1	Baker	79	
MBL 380-128005/21-A	Method Blank	108	
Surrogate Legend			
TCDD = 13C-2,3,7,8-TC	DD		
Method: 1613B - Te	tra Chlorinated Dioxir	ו (GC/MS/MS)	
Matrix: Water		•	Prep Type: Total/NA

		TCDD
Lab Sample ID	Client Sample ID	(25-141)
LCS 380-128005/19-A	Lab Control Sample	84
LCSD 380-128005/20-A	Lab Control Sample Dup	90
MRL 380-128005/22-A	Lab Control Sample	86
Surrogate Legend		

TCDD = 13C-2,3,7,8-TCDD

17

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 380-127793/13 Matrix: Water

Analysis Batch: 127793

	mb								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			01/14/25 17:22	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			01/14/25 17:22	1
o-Xylene	ND		0.50		ug/L			01/14/25 17:22	1
1,4-Dichlorobenzene	ND		0.50		ug/L			01/14/25 17:22	1
Styrene	ND		0.50		ug/L			01/14/25 17:22	1
Toluene	ND		0.50		ug/L			01/14/25 17:22	1
trans-1,2-Dichloroethylene	ND		0.50		ug/L			01/14/25 17:22	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			01/14/25 17:22	1
Trichlorofluoromethane	ND		0.50		ug/L			01/14/25 17:22	1
1,1-Dichloroethylene	ND		0.50		ug/L			01/14/25 17:22	1
1,2-Dichloropropane	ND		0.50		ug/L			01/14/25 17:22	1
Chlorobenzene	ND		0.50		ug/L			01/14/25 17:22	1
cis-1,2-Dichloroethylene	ND		0.50		ug/L			01/14/25 17:22	1
m,p-Xylenes	ND		0.50		ug/L			01/14/25 17:22	1
1,2-Dichlorobenzene	ND		0.50		ug/L			01/14/25 17:22	1
1,3-Dichloropropene, Total	ND		0.50		ug/L			01/14/25 17:22	1
Trichloroethylene	ND		0.50		ug/L			01/14/25 17:22	1
Vinyl chloride	ND		0.30		ug/L			01/14/25 17:22	1
1,1,1-Trichloroethane	ND		0.50		ug/L			01/14/25 17:22	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			01/14/25 17:22	1
1,2,4-Trichlorobenzene	ND		0.50		ug/L			01/14/25 17:22	1
1,2-Dichloroethane	ND		0.50		ug/L			01/14/25 17:22	1
Tetrachloroethylene	ND		0.50		ug/L			01/14/25 17:22	1
Xylenes, Total	ND		0.50		ug/L			01/14/25 17:22	1
1,1,2-Trichloroethane	ND		0.50		ug/L			01/14/25 17:22	1
1,1-Dichloroethane	ND		0.50		ug/L			01/14/25 17:22	1
Carbon tetrachloride	ND		0.50		ug/L			01/14/25 17:22	1
Ethylbenzene	ND		0.50		ug/L			01/14/25 17:22	1
Methyl-tert-butyl Ether (MTBE)	ND		0.50		ug/L			01/14/25 17:22	1
Dichloromethane	ND		0.50		ug/L			01/14/25 17:22	1

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 130		01/14/25 17:22	1
4-Bromofluorobenzene (Surr)	97		70 - 130		01/14/25 17:22	1
Toluene-d8 (Surr)	82		70 - 130		01/14/25 17:22	1

Lab Sample ID: LCS 380-127793/10 Matrix: Water

Analysis Batch: 127793

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	5.00	5.17		ug/L		103	70 - 130	
cis-1,3-Dichloropropene	5.00	4.66		ug/L		93	70 - 130	
o-Xylene	5.00	4.62		ug/L		92	70 - 130	
1,4-Dichlorobenzene	5.00	5.02		ug/L		100	70 - 130	
Styrene	5.00	5.10		ug/L		102	70 - 130	
Toluene	5.00	5.18		ug/L		104	70 - 130	
trans-1,2-Dichloroethylene	5.00	4.54		ug/L		91	70 - 130	

Prep Type: Total/NA

Client Sample ID: Method Blank

Eurofins Eaton Analytical Pomona

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

5

10

Client Sample ID: Lab Control Sample

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 380-127793/10

Matrix: Water Analysis Batch: 127793

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,3-Dichloropropene	5.00	4.94		ug/L		99	70 - 130	
Trichlorofluoromethane	5.00	5.21		ug/L		104	70 - 130	
1,1-Dichloroethylene	5.00	5.25		ug/L		105	70 - 130	
1,2-Dichloropropane	5.00	4.80		ug/L		96	70 - 130	
Chlorobenzene	5.00	4.99		ug/L		100	70 - 130	
m,p-Xylenes	10.0	9.24		ug/L		92	70 - 130	
1,2-Dichlorobenzene	5.00	4.57		ug/L		91	70 - 130	
1,3-Dichloropropene, Total	10.0	9.60		ug/L		96	70 - 130	
Trichloroethylene	5.00	5.08		ug/L		102	70 - 130	
Vinyl chloride	5.00	5.28		ug/L		106	70 - 130	
1,1,1-Trichloroethane	5.00	5.04		ug/L		101	70 - 130	
1,1,2,2-Tetrachloroethane	5.00	4.20		ug/L		84	70 - 130	
1,2,4-Trichlorobenzene	5.00	4.45		ug/L		89	70 - 130	
1,2-Dichloroethane	5.00	4.81		ug/L		96	70 - 130	
Tetrachloroethylene	5.00	4.95		ug/L		99	70 - 130	
Xylenes, Total	15.0	13.9		ug/L		92	70 - 130	
1,1,2-Trichloroethane	5.00	4.86		ug/L		97	70 - 130	
1,1-Dichloroethane	5.00	4.97		ug/L		99	70 - 130	
Carbon tetrachloride	5.00	5.13		ug/L		103	70 - 130	
Ethylbenzene	5.00	4.55		ug/L		91	70 - 130	
Methyl-tert-butyl Ether (MTBE)	5.00	5.03		ug/L		101	70 - 130	
Dichloromethane	5.00	4.39		ug/L		88	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130
Toluene-d8 (Surr)	112		70 - 130

Lab Sample ID: LCSD 380-127793/11 Matrix: Water

Analysis Batch: 127793

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	5.00	5.14		ug/L		103	70 - 130	1	20
cis-1,3-Dichloropropene	5.00	4.84		ug/L		97	70 - 130	4	20
o-Xylene	5.00	4.67		ug/L		93	70 - 130	1	20
1,4-Dichlorobenzene	5.00	5.15		ug/L		103	70 - 130	3	20
Styrene	5.00	5.31		ug/L		106	70 - 130	4	20
Toluene	5.00	5.25		ug/L		105	70 - 130	1	20
trans-1,2-Dichloroethylene	5.00	4.93		ug/L		99	70 - 130	8	20
trans-1,3-Dichloropropene	5.00	5.17		ug/L		103	70 - 130	4	20
Trichlorofluoromethane	5.00	5.42		ug/L		108	70 - 130	4	20
1,1-Dichloroethylene	5.00	5.52		ug/L		110	70 - 130	5	20
1,2-Dichloropropane	5.00	4.86		ug/L		97	70 - 130	1	20
Chlorobenzene	5.00	5.22		ug/L		104	70 - 130	5	20
m,p-Xylenes	10.0	9.73		ug/L		97	70 - 130	5	20
1,2-Dichlorobenzene	5.00	4.70		ug/L		94	70 - 130	3	20
1,3-Dichloropropene, Total	10.0	10.0		ug/L		100	70 - 130	4	20

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 380-127793/11 Matrix: Water

Analysis Batch: 127793

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichloroethylene	5.00	4.94		ug/L		99	70 - 130	3	20
Vinyl chloride	5.00	5.22		ug/L		104	70 - 130	1	20
1,1,1-Trichloroethane	5.00	5.08		ug/L		102	70 - 130	1	20
1,1,2,2-Tetrachloroethane	5.00	4.30		ug/L		86	70 - 130	2	20
1,2,4-Trichlorobenzene	5.00	4.39		ug/L		88	70 - 130	1	20
1,2-Dichloroethane	5.00	4.67		ug/L		93	70 - 130	3	20
Tetrachloroethylene	5.00	5.29		ug/L		106	70 - 130	7	20
Xylenes, Total	15.0	14.4		ug/L		96	70 - 130	4	20
1,1,2-Trichloroethane	5.00	5.26		ug/L		105	70 - 130	8	20
1,1-Dichloroethane	5.00	5.06		ug/L		101	70 - 130	2	20
Carbon tetrachloride	5.00	5.12		ug/L		102	70 - 130	0	20
Ethylbenzene	5.00	4.77		ug/L		95	70 - 130	5	20
Methyl-tert-butyl Ether (MTBE)	5.00	5.18		ug/L		104	70 - 130	3	20
Dichloromethane	5.00	4.46		ug/L		89	70 - 130	2	20
100									

	LUGD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130
Toluene-d8 (Surr)	117		70 - 130

Lab Sample ID: MRL 380-127793/12 Matrix: Water

Analysis Batch: 127793

-	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.545		ug/L		109	50 - 150	
cis-1,3-Dichloropropene	0.500	0.554		ug/L		111	50 - 150	
o-Xylene	0.500	0.639		ug/L		128	50 - 150	
1,4-Dichlorobenzene	0.500	0.494	J	ug/L		99	50 - 150	
Styrene	0.500	0.674		ug/L		135	50 - 150	
Toluene	0.500	0.507		ug/L		101	50 - 150	
trans-1,2-Dichloroethylene	0.500	0.541		ug/L		108	50 _ 150	
trans-1,3-Dichloropropene	0.500	0.540		ug/L		108	50 - 150	
Trichlorofluoromethane	0.500	0.309	J	ug/L		62	50 - 150	
1,1-Dichloroethylene	0.500	0.375	J	ug/L		75	50 - 150	
1,2-Dichloropropane	0.500	0.535		ug/L		107	50 - 150	
Chlorobenzene	0.500	0.530		ug/L		106	50 - 150	
m,p-Xylenes	1.00	1.26		ug/L		126	50 - 150	
1,2-Dichlorobenzene	0.500	0.573		ug/L		115	50 - 150	
1,3-Dichloropropene, Total	1.00	1.09		ug/L		109	50 - 150	
Trichloroethylene	0.500	0.517		ug/L		103	50 - 150	
Vinyl chloride	0.500	0.381		ug/L		76	50 - 150	
1,1,1-Trichloroethane	0.500	0.443	J	ug/L		89	50 - 150	
1,1,2,2-Tetrachloroethane	0.500	0.602		ug/L		120	50 - 150	
1,2,4-Trichlorobenzene	0.500	0.621		ug/L		124	50 - 150	
1,2-Dichloroethane	0.500	0.556		ug/L		111	50 - 150	
Tetrachloroethylene	0.500	0.442	J	ug/L		88	50 - 150	
Xylenes, Total	1.50	1.90		ug/L		127	50 - 150	

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA

17

10

5

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MRL 380-127793/12 Matrix: Water

...... Α

Analysis Batch: 127793								
	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloroethane	0.500	0.549		ug/L		110	50 - 150	
1,1-Dichloroethane	0.500	0.506		ug/L		101	50 - 150	
Carbon tetrachloride	0.500	0.365	J	ug/L		73	50 - 150	
Ethylbenzene	0.500	0.639		ug/L		128	50 - 150	
Methyl-tert-butyl Ether (MTBE)	0.500	0.575		ug/L		115	50 - 150	
Dichloromethane	0.500	0.576		ug/L		115	50 - 150	

	MRL	MRL	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130
Toluene-d8 (Surr)	93		70 - 130

Lab Sample ID: MRL 380-127793/9 Matrix: Water Analysis Batch: 127793

	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m,p-Xylenes	 0.500	1.00	^3+	ug/L		201	50 - 150	
Vinyl chloride	0.250	0.295	J	ug/L		118	50 - 150	

	MRL	MRL	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130
Toluene-d8 (Surr)	83		70 - 130

Lab Sample ID: MB 380-128096/13 Matrix: Water

Analysis Batch: 128096

МВ	MB						
Analyte Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene ND	0.50		ug/L			01/15/25 18:56	1
cis-1,3-Dichloropropene ND	0.50		ug/L			01/15/25 18:56	1
o-Xylene ND	0.50		ug/L			01/15/25 18:56	1
1,4-Dichlorobenzene ND	0.50		ug/L			01/15/25 18:56	1
Styrene ND	0.50		ug/L			01/15/25 18:56	1
Toluene ND	0.50		ug/L			01/15/25 18:56	1
trans-1,2-Dichloroethylene ND	0.50		ug/L			01/15/25 18:56	1
trans-1,3-Dichloropropene ND	0.50		ug/L			01/15/25 18:56	1
Trichlorofluoromethane ND	0.50		ug/L			01/15/25 18:56	1
1,1-Dichloroethylene ND	0.50		ug/L			01/15/25 18:56	1
1,2-Dichloropropane ND	0.50		ug/L			01/15/25 18:56	1
Chlorobenzene ND	0.50		ug/L			01/15/25 18:56	1
cis-1,2-Dichloroethylene ND	0.50		ug/L			01/15/25 18:56	1
m,p-Xylenes ND	0.50		ug/L			01/15/25 18:56	1
1,2-Dichlorobenzene ND	0.50		ug/L			01/15/25 18:56	1
1,3-Dichloropropene, Total ND	0.50		ug/L			01/15/25 18:56	1
Trichloroethylene ND	0.50		ug/L			01/15/25 18:56	1
Vinyl chloride ND	0.30		ug/L			01/15/25 18:56	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

....

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 380-128096/13 Matrix: Water

Analysis Batch: 128096

	MB MB					
Analyte	Result Qua	alifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	0.50	ug/L		01/15/25 18:56	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		01/15/25 18:56	1
1,2,4-Trichlorobenzene	ND	0.50	ug/L		01/15/25 18:56	1
1,2-Dichloroethane	ND	0.50	ug/L		01/15/25 18:56	1
Tetrachloroethylene	ND	0.50	ug/L		01/15/25 18:56	1
Xylenes, Total	ND	0.50	ug/L		01/15/25 18:56	1
1,1,2-Trichloroethane	ND	0.50	ug/L		01/15/25 18:56	1
1,1-Dichloroethane	ND	0.50	ug/L		01/15/25 18:56	1
Carbon tetrachloride	ND	0.50	ug/L		01/15/25 18:56	1
Ethylbenzene	ND	0.50	ug/L		01/15/25 18:56	1
Methyl-tert-butyl Ether (MTBE)	ND	0.50	ug/L		01/15/25 18:56	1
Dichloromethane	ND	0.50	ug/L		01/15/25 18:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		01/15/25 18:56	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		70 - 130		01/15/25 18:56	1
4-Bromofluorobenzene (Surr)	97		70 _ 130		01/15/25 18:56	1
Toluene-d8 (Surr)	73		70 - 130		01/15/25 18:56	1

Spike

LCS LCS

Lab Sample ID: LCS 380-128096/10 Matrix: Water Analysis Batch: 128096

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

5

10

Added Analyte **Result Qualifier** Unit D %Rec Limits Benzene 5.00 4.49 ug/L 90 70 - 130 ug/L cis-1,3-Dichloropropene 5.00 4.75 95 70 - 130 o-Xylene 5.00 4.87 ug/L 97 70 - 130 91 1,4-Dichlorobenzene 5.00 4.55 ug/L 70 - 130 Styrene 5.00 4.97 ug/L 99 70 - 130 Toluene 5.00 5.04 ug/L 101 70 - 130 70 - 130 trans-1,2-Dichloroethylene 5.00 4.53 ug/L 91 trans-1,3-Dichloropropene 5.00 4.83 97 70 - 130 ug/L Trichlorofluoromethane 5.00 5.47 ug/L 109 70 - 130 1,1-Dichloroethylene 5.00 103 70 - 130 5.15 ug/L 5.00 1,2-Dichloropropane 4.65 ug/L 93 70 - 130 Chlorobenzene 5.00 4.73 ug/L 95 70 - 130 m,p-Xylenes 10.0 9.59 ug/L 96 70 - 130 1,2-Dichlorobenzene 5.00 4.10 ug/L 82 70 - 130 10.0 9.58 96 70 - 130 1,3-Dichloropropene, Total ug/L Trichloroethylene 5.00 4.36 ug/L 87 70 - 130 Vinyl chloride 5.00 4.71 94 70 - 130 ug/L 5.00 98 1,1,1-Trichloroethane 4.89 ug/L 70 - 130 1,1,2,2-Tetrachloroethane 5.00 4.39 ug/L 88 70 - 130 5.00 78 1,2,4-Trichlorobenzene 3.91 ug/L 70 - 130 1,2-Dichloroethane 5.00 4.39 88 70 - 130 ug/L 94 70 - 130 Tetrachloroethylene 5.00 4.72 ug/L Xylenes, Total 15.0 14.5 ug/L 96 70 - 130 ug/L 1,1,2-Trichloroethane 5.00 4 4 9 90 70 - 130

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 380-128096/10 Matrix: Water

Analysis Batch: 128096

Analysis Datch. 120090								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	5.00	4.95		ug/L		99	70 - 130	
Carbon tetrachloride	5.00	4.85		ug/L		97	70 - 130	
Ethylbenzene	5.00	4.83		ug/L		97	70 - 130	
Methyl-tert-butyl Ether (MTBE)	5.00	4.81		ug/L		96	70 - 130	
Dichloromethane	5.00	4.66		ug/L		93	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	5.00	4.89		ug/L		98	70 - 130	
ne								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130
Toluene-d8 (Surr)	117		70 - 130

Lab Sample ID: LCSD 380-128096/11 Matrix: Water Analysis Batch: 128096

	Spike		LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	5.00	4.50		ug/L		90	70 - 130	0	20
cis-1,3-Dichloropropene	5.00	4.77		ug/L		95	70 - 130	0	20
o-Xylene	5.00	4.86		ug/L		97	70 - 130	0	20
1,4-Dichlorobenzene	5.00	4.50		ug/L		90	70 - 130	1	20
Styrene	5.00	4.93		ug/L		99	70 - 130	1	20
Toluene	5.00	4.87		ug/L		97	70 - 130	3	20
trans-1,2-Dichloroethylene	5.00	4.40		ug/L		88	70 - 130	3	20
trans-1,3-Dichloropropene	5.00	4.63		ug/L		93	70 - 130	4	20
Trichlorofluoromethane	5.00	5.42		ug/L		108	70 - 130	1	20
1,1-Dichloroethylene	5.00	5.02		ug/L		100	70 - 130	2	20
1,2-Dichloropropane	5.00	4.64		ug/L		93	70 - 130	0	20
Chlorobenzene	5.00	4.71		ug/L		94	70 - 130	0	20
m,p-Xylenes	10.0	9.34		ug/L		93	70 - 130	3	20
1,2-Dichlorobenzene	5.00	4.14		ug/L		83	70 - 130	1	20
1,3-Dichloropropene, Total	10.0	9.40		ug/L		94	70 - 130	2	20
Trichloroethylene	5.00	4.38		ug/L		88	70 - 130	0	20
Vinyl chloride	5.00	4.74		ug/L		95	70 - 130	1	20
1,1,1-Trichloroethane	5.00	4.88		ug/L		98	70 - 130	0	20
1,1,2,2-Tetrachloroethane	5.00	4.52		ug/L		90	70 - 130	3	20
1,2,4-Trichlorobenzene	5.00	3.93		ug/L		79	70 - 130	0	20
1,2-Dichloroethane	5.00	4.25		ug/L		85	70 - 130	3	20
Tetrachloroethylene	5.00	4.72		ug/L		94	70 - 130	0	20
Xylenes, Total	15.0	14.2		ug/L		95	70 - 130	2	20
1,1,2-Trichloroethane	5.00	4.29		ug/L		86	70 - 130	4	20
1,1-Dichloroethane	5.00	4.93		ug/L		99	70 - 130	0	20
Carbon tetrachloride	5.00	4.73		ug/L		95	70 - 130	2	20
Ethylbenzene	5.00	4.75		ug/L		95	70 - 130	2	20
Methyl-tert-butyl Ether (MTBE)	5.00	4.75		ug/L		95	70 - 130	1	20
Dichloromethane	5.00	4.41		ug/L		88	70 - 130	5	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	5.00	4.67		ug/L		93	70 - 130	4	20

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130
Toluene-d8 (Surr)	113		70 - 130

Lab Sample ID: MRL 380-128096/12

Matrix: Water Analysis Batch: 128096

	Spike MI		MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.500	0.496	J	ug/L		99	50 - 150	
cis-1,3-Dichloropropene	0.500	0.468	J	ug/L		94	50 - 150	
o-Xylene	0.500	0.390	J	ug/L		78	50 - 150	
1,4-Dichlorobenzene	0.500	0.547		ug/L		109	50 - 150	
Styrene	0.500	0.579		ug/L		116	50 - 150	
Toluene	0.500	0.493	J	ug/L		99	50 - 150	
trans-1,2-Dichloroethylene	0.500	0.524		ug/L		105	50 - 150	
trans-1,3-Dichloropropene	0.500	0.487	J	ug/L		97	50 - 150	
Trichlorofluoromethane	0.500	0.523		ug/L		105	50 - 150	
1,1-Dichloroethylene	0.500	0.570		ug/L		114	50 - 150	
1,2-Dichloropropane	0.500	0.590		ug/L		118	50 - 150	
Chlorobenzene	0.500	0.503		ug/L		101	50 - 150	
m,p-Xylenes	1.00	0.839		ug/L		84	50 _ 150	
1,2-Dichlorobenzene	0.500	0.594		ug/L		119	50 - 150	
1,3-Dichloropropene, Total	1.00	0.955		ug/L		96	50 - 150	
Trichloroethylene	0.500	0.504		ug/L		101	50 - 150	
Vinyl chloride	0.500	0.560		ug/L		112	50 - 150	
1,1,1-Trichloroethane	0.500	0.562		ug/L		112	50 - 150	
1,1,2,2-Tetrachloroethane	0.500	0.378	J	ug/L		76	50 - 150	
1,2,4-Trichlorobenzene	0.500	0.612		ug/L		122	50 - 150	
1,2-Dichloroethane	0.500	0.498	J	ug/L		100	50 - 150	
Tetrachloroethylene	0.500	0.548		ug/L		110	50 - 150	
Xylenes, Total	1.50	1.23		ug/L		82	50 _ 150	
1,1,2-Trichloroethane	0.500	0.490	J	ug/L		98	50 - 150	
1,1-Dichloroethane	0.500	0.539		ug/L		108	50 - 150	
Carbon tetrachloride	0.500	0.532		ug/L		106	50 - 150	
Ethylbenzene	0.500	0.432	J	ug/L		86	50 - 150	
Methyl-tert-butyl Ether (MTBE)	0.500	0.578		ug/L		116	50 _ 150	
Dichloromethane	0.500	0.547		ug/L		109	50 _ 150	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.500	0.527		ug/L		105	50 - 150	
ne								

	MRL	MRL	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130
Toluene-d8 (Surr)	88		70 - 130

Eurofins Eaton Analytical Pomona

Job ID: 380-129268-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

	/9						Clie	nt Samp	le ID: Lab Contro	I Sample
Matrix: Water									Prep Type:	Total/NA
Analysis Batch: 128096			0	MD					% D	
Analyta			Spike	WIRL Bosult	NIKL	Unit	-) % Poo	%Rec	
			Added	0 533	Quaimer		`	- <u>/0Rec</u>	<u>50 150</u>	
Vinyl chloride			0.500	0.000	1	ug/L		107	50 - 150	
Virgi chiorae			0.200	0.200	0	ug/L		104	00 - 100	
	MRL	MRL								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	103		70 - 130							
4-Bromofluorobenzene (Surr)	99		70 - 130							
Toluene-d8 (Surr)	82		70 - 130							
lethod: CA DWRL - Volatile	Organic	Compou	nds (GC/N	IS)						
- Lab Sample ID: MB 380-129057/1	12							Client	Sample ID: Meth	od Blank
Matrix: Water									Prep Type:	Total/NA
Analysis Batch: 129057										
		MB MB								
Analyte	R	esult Qualifi	er	RL	MDL Unit		D	Prepared	Analyzed	Dil Fac
1,2,3-Trichloropropane		ND		2.0	ng/L				01/20/25 20:02	1
Lab Sample ID: LCS 380-129057 Matrix: Water Analysis Batch: 129057	/1010						Clie	nt Samp	le ID: Lab Contro Prep Type:	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057	(1010		Spike	LCS	LCS		Clie	nt Samp	le ID: Lab Contro Prep Type: %Rec	ol Sample Total/NA
Lab Sample ID: LCS 380-129057 Matrix: Water Analysis Batch: 129057 Analyte	/1010		Spike Added	LCS Result	LCS Qualifier	Unit	Clie	nt Samp	le ID: Lab Contro Prep Type: %Rec Limits	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane	/1010		Spike Added 10.0	LCS Result 10.2	LCS Qualifier	_ <mark>Unit</mark>	Clie	nt Samp 0 <u>%Rec</u> 102	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057	/1010		Spike <u>Added</u> 10.0	LCS Result 10.2	LCS Qualifier	<mark>Unit</mark>	Clie	nt Samp <u>%Rec</u> 102 nt Samp	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water	/1010 /11		Spike Added 10.0	LCS Result 10.2	LCS Qualifier	_ <mark>Unit</mark> ng/L	Clie [nt Samp <u>%Rec</u> 102 nt Samp	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type:	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057	/1010 /11		Spike Added 10.0	LCS Result 10.2	LCS Qualifier	<mark>Unit</mark> ng/L	Clie 	nt Samp <u>%Rec</u> 102 nt Samp	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type:	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057	/1010 /11		Spike Added 10.0 Spike	LCS Result 10.2	LCS Qualifier	- <mark>Unit</mark> ng/L	Clie 	nt Samp <u>%Rec</u> 102 nt Samp	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte	/1010 /11		Spike Added 10.0 Spike Added	LCS Result 10.2 MRL Result	LCS Qualifier MRL Qualifier	Unit	Clie [Clie	nt Samp <u> <u> </u> </u>	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane	/1010 /11		Spike Added 10.0 Spike Added 2.00	LCS Result 10.2 MRL Result 2.01	LCS Qualifier MRL Qualifier	- Unit ng/L - Unit ng/L	Clie [Clie	nt Samp 2 <u>%Rec</u> 102 nt Samp 2 <u>%Rec</u> 100	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits 50 - 150	ol Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane	/1010 /11		Spike Added 10.0 Spike Added 2.00	LCS Result 10.2 MRL Result 2.01	LCS Qualifier MRL Qualifier	- <mark>Unit</mark> ng/L - <u>Unit</u> ng/L	Clie	nt Samp 0 <u>%Rec</u> 102 nt Samp 0 <u>%Rec</u> 100	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits 50 - 150	I Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: 380-129268-1 DU Matrix: Water	/1010 /11		Spike Added 10.0 Spike Added 2.00	LCS Result 10.2 MRL Result 2.01	LCS Qualifier MRL Qualifier	Unit ng/L Unit ng/L	Clie [Clie	nt Samp 0 <u>%Rec</u> 102 nt Samp 0 <u>%Rec</u> 100	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits 50 - 150 Client Sample Prep Type:	I Sample Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: 380-129268-1 DU Matrix: Water Analysis Batch: 129057	/1010 /11		Spike Added 10.0 Spike Added 2.00	LCS Result 10.2 MRL Result 2.01	LCS Qualifier MRL Qualifier	- <mark>Unit</mark> ng/L - Unit ng/L	Clie	nt Samp 0 <u>%Rec</u> 102 nt Samp 0 <u>%Rec</u> 100	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits 50 - 150 Client Sample Prep Type:	ID: Baker Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: 380-129268-1 DU Matrix: Water Analysis Batch: 129057	/1010 /11 J Sample	 	Spike Added 10.0 Spike Added 2.00	LCS Result 10.2 MRL Result 2.01	LCS Qualifier MRL Qualifier	- Unit ng/L - Unit ng/L	Clie	nt Samp 0 <u>%Rec</u> 102 nt Samp 0 <u>%Rec</u> 100	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits 50 - 150 Client Sample Prep Type:	ID: Baker Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: 380-129268-1 DU Matrix: Water Analysis Batch: 129057 Analyte	/1010 /11 J Sample Result	Sample Qualifier	Spike Added 10.0 Spike Added 2.00	LCS Result 10.2 MRL Result 2.01 DU Result	LCS Qualifier MRL Qualifier DU Qualifier	- Unit ng/L - Unit ng/L	Clie Clie	nt Samp 0 <u>%Rec</u> 102 nt Samp 0 <u>%Rec</u> 100	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits 50 - 150 Client Sample Prep Type:	ID: Baker Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: 380-129268-1 DU Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane	/1010 /11 Sample Result ND	Sample Qualifier	Spike Added 10.0 Spike Added 2.00	LCS Result 10.2 MRL Result 2.01 DU Result ND	LCS Qualifier MRL Qualifier DU Qualifier	- Unit ng/L - Unit ng/L - Unit ng/L	Clie [nt Samp 0 <u>%Rec</u> 102 nt Samp 0 <u>%Rec</u> 100	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits 50 - 150 Client Sample Prep Type: 	ID: Baker Total/NA
Lab Sample ID: LCS 380-129057/ Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: MRL 380-129057 Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane Lab Sample ID: 380-129268-1 DU Matrix: Water Analysis Batch: 129057 Analyte 1,2,3-Trichloropropane	/1010 /11 Sample Result ND	Sample Qualifier	Spike Added 10.0 Spike Added 2.00	LCS Result 10.2 MRL Result 2.01 DU Result ND	LCS Qualifier MRL Qualifier DU Qualifier	- Unit ng/L - Unit ng/L - Unit ng/L	Clie [nt Samp 2 <u>%Rec</u> 102 nt Samp 2 <u>%Rec</u> 100 2 <u>100</u>	le ID: Lab Contro Prep Type: %Rec Limits 80 - 120 le ID: Lab Contro Prep Type: %Rec Limits 50 - 150 Client Sample Prep Type: 	ID: Baker Total/NA

						Cheft Sa	mple iD: Metho	U DIAIIK	
Matrix: Water	atrix: Water							Prep Type: 1	otal/NA
Analysis Batch: 127547								Prep Batch:	127221
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alachlor	ND		0.050		ug/L		01/10/25 07:00	01/13/25 12:49	1
Atrazine	ND		0.050		ug/L		01/10/25 07:00	01/13/25 12:49	1
Benzo[a]pyrene	ND		0.020		ug/L		01/10/25 07:00	01/13/25 12:49	1
Di(2-ethylhexyl)adipate	ND		0.60		ug/L		01/10/25 07:00	01/13/25 12:49	1
Di (2-ethylhexyl)phthalate	ND		0.60		ug/L		01/10/25 07:00	01/13/25 12:49	1

17

1/23/2025

Method: 525.2 - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 380-127221/21-A Matrix: Water

Analysis Batch: 127547

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 127221

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Endrin ND 0.0099 01/10/25 07:00 01/13/25 12:49 ug/L 1 Heptachlor ND 0.0099 ug/L 01/10/25 07:00 01/13/25 12:49 1 ND 01/13/25 12:49 Heptachlor epoxide 0.0099 ug/L 01/10/25 07:00 1 Hexachlorobenzene ND 0.050 ug/L 01/10/25 07:00 01/13/25 12:49 1 Hexachlorocyclopentadiene ND 0.050 01/10/25 07:00 01/13/25 12:49 ug/L 1 gamma-BHC (Lindane) ND ^3+ 0.0099 ug/L 01/10/25 07:00 01/13/25 12:49 1 Methoxychlor ND 0.050 01/10/25 07:00 01/13/25 12:49 ug/L 1 Molinate ND 0.099 ug/L 01/10/25 07:00 01/13/25 12:49 1 01/13/25 12:49 Simazine ND 0.050 ug/L 01/10/25 07:00 1 Thiobencarb ND 0.099 ug/L 01/10/25 07:00 01/13/25 12:49 1 MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 99 01/10/25 07:00 2-Nitro-m-xylene 70 - 130 01/13/25 12:49 1 70 - 130 Triphenylphosphate 100 01/10/25 07:00 01/13/25 12:49 1 70 - 130 01/10/25 07:00 01/13/25 12:49 Perylene-d12 89

Lab Sample ID: LCS 380-127221/23-A Matrix: Water Analysis Batch: 127547

Analysis Batch: 127547							Prep B	atch: 127221
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alachlor	1.98	2.02		ug/L		102	70 - 130	
Atrazine	1.98	2.14		ug/L		108	70 - 130	
Benzo[a]pyrene	1.98	1.67		ug/L		84	70 - 130	
Di(2-ethylhexyl)adipate	1.98	1.95		ug/L		98	70 _ 130	
Di (2-ethylhexyl)phthalate	1.98	2.08		ug/L		105	70 - 130	
Endrin	1.98	1.76		ug/L		89	70 - 130	
Heptachlor	1.98	1.82		ug/L		92	70 - 130	
Heptachlor epoxide	1.98	1.89		ug/L		95	70 - 130	
Hexachlorobenzene	1.98	1.77		ug/L		89	70 - 130	
Hexachlorocyclopentadiene	1.98	1.90		ug/L		96	70 - 130	
gamma-BHC (Lindane)	1.98	1.76		ug/L		89	70 - 130	
Methoxychlor	1.98	1.79		ug/L		90	70 - 130	
Molinate	1.98	2.05		ug/L		103	70 - 130	
Simazine	1.98	2.13		ug/L		108	70 - 130	
Thiobencarb	1.98	2.12		ug/L		107	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Nitro-m-xylene	105		70 - 130
Triphenylphosphate	100		70 - 130
Perylene-d12	90		70 - 130

Lab Sample ID: LCSD 380-127221/24-A				Clie	Client Sample ID: Lab Control Sample Du					
Matrix: Water							Prep 1	Type: Tot	tal/NA	
Analysis Batch: 127547							Prep I	Batch: 1	27221	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Alachlor	1.98	2.12		ug/L		107	70 - 130	5	20	

Method: 525.2 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 380-127221/24-A	
Matrix: Water	

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 127221

Analysis Batch: 127547						Prep I	Batch: 127221		
	Spike	LCSD	LCSD		%Rec	%Rec	RP		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Atrazine	1.98	2.14		ug/L		108	70 - 130	0	20
Benzo[a]pyrene	1.98	1.74		ug/L		88	70 - 130	4	20
Di(2-ethylhexyl)adipate	1.98	2.04		ug/L		103	70 - 130	5	20
Di (2-ethylhexyl)phthalate	1.98	2.27		ug/L		115	70 - 130	9	20
Endrin	1.98	1.82		ug/L		92	70 - 130	3	20
Heptachlor	1.98	1.99		ug/L		100	70 - 130	9	20
Heptachlor epoxide	1.98	1.95		ug/L		99	70 - 130	3	20
Hexachlorobenzene	1.98	1.72		ug/L		87	70 - 130	3	20
Hexachlorocyclopentadiene	1.98	1.86		ug/L		94	70 - 130	2	20
gamma-BHC (Lindane)	1.98	1.84		ug/L		93	70 - 130	4	20
Methoxychlor	1.98	1.81		ug/L		92	70 - 130	1	20
Molinate	1.98	2.08		ug/L		105	70 - 130	2	20
Simazine	1.98	2.08		ug/L		105	70 - 130	2	20
Thiobencarb	1.98	2.19		ug/L		110	70 - 130	3	20
100									

	LUGD	LCOD	
Surrogate	%Recovery	Qualifier	Limits
2-Nitro-m-xylene	99		70 - 130
Triphenylphosphate	102		70 - 130
Perylene-d12	91		70 - 130

Lab Sample ID: MRL 380-127221/22-A Matrix: Water Analysis Batch: 127547 MRL MRL Spike Analyte Added Result Qualifier Unit Alachlor 0.0497 0.0551 ug/L Atrazine 0.0497 0.0577 ug/L 0.0199 0.0228 ug/L Benzo[a]pyrene Di(2-ethylhexyl Di (2-ethylhexy Endrin Heptachlor

			-		
Di(2-ethylhexyl)adipate	0.597	0.616	ug/L	103	50 - 150
Di (2-ethylhexyl)phthalate	0.597	0.602	ug/L	101	50 - 150
Endrin	0.00995	0.0142	ug/L	143	50 - 150
Heptachlor	0.00995	0.0131	ug/L	131	50 - 150
Heptachlor epoxide	0.00995	0.0121	ug/L	121	50 - 150
Hexachlorobenzene	0.0497	0.0474 J	ug/L	95	50 - 150
Hexachlorocyclopentadiene	0.0497	0.0475 J	ug/L	96	50 - 150
gamma-BHC (Lindane)	0.00995	0.0173 ^3+	ug/L	174	50 - 150
Methoxychlor	0.0497	0.0548	ug/L	110	50 - 150
Molinate	0.0995	0.105	ug/L	106	50 - 150

0.0536

0.102

ug/L

ug/L

0.0497

0.0995

	MRL	MRL	
Surrogate	%Recovery	Qualifier	Limits
2-Nitro-m-xylene	105		70 - 130
Triphenylphosphate	96		70 - 130
Perylene-d12	88		70 - 130

Simazine

Thiobencarb

Prep Type: Total/NA

Prep Batch: 127221

%Rec

Limits

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

D

%Rec

111

116

115

108

102

10

Client Sample ID: Baker

Prep Type: Total/NA

Method: 525.2 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 380-129268-1 MS Matrix: Water

Analysis Batch: 127547									Prep Bate	:h: 127221
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alachlor	ND		1.95	2.09		ug/L		107	70 - 130	
Atrazine	ND		1.95	2.18		ug/L		112	70 - 130	
Benzo[a]pyrene	ND	F1 F2	1.95	1.74		ug/L		89	70 - 130	
Di(2-ethylhexyl)adipate	ND	F2	1.95	2.07		ug/L		106	70 - 130	
Di (2-ethylhexyl)phthalate	ND		1.95	2.07		ug/L		106	70 - 130	
Endrin	ND		1.95	1.83		ug/L		94	70 - 130	
Heptachlor	ND		1.95	2.01		ug/L		103	70 - 130	
Heptachlor epoxide	ND		1.95	1.97		ug/L		101	70 - 130	
Hexachlorobenzene	ND		1.95	1.84		ug/L		94	70 - 130	
Hexachlorocyclopentadiene	ND		1.95	2.06		ug/L		106	70 - 130	
gamma-BHC (Lindane)	ND	^3+	1.95	1.82		ug/L		93	70 - 130	
Methoxychlor	ND		1.95	1.88		ug/L		96	70 - 130	
Molinate	ND		1.95	2.10		ug/L		108	70 - 130	
Simazine	ND		1.95	2.17		ug/L		111	70 - 130	
Thiobencarb	ND		1.95	2.18		ug/L		112	70 - 130	
	MS	MS								

%Recovery	Qualifier	Limits
106		70 - 130
101		70 - 130
94		70 - 130
	%Recovery 106 101 94	%Recovery Qualifier 106 101 94

Lab Sample ID: 380-129268-1 MSD Matrix: Water

Analysis Batch: 127547 Spike MSD MSD RPD Sample Sample %Rec Analyte Result Qualifier Added **Result Qualifier** %Rec Limits RPD Limit Unit D Alachlor ND 1.96 1.95 ug/L 99 70 - 130 7 20 Atrazine ND 70 - 130 1.96 2.18 ug/L 111 0 20 Benzo[a]pyrene ND F1 F2 1.96 1.33 F1 F2 ug/L 68 70 - 130 27 20 Di(2-ethylhexyl)adipate ND F2 1.96 1.62 F2 83 70 - 130 20 ug/L 24 Di (2-ethylhexyl)phthalate ND 1.96 1.82 ug/L 93 70 - 130 13 20 Endrin ND 1.96 1.66 ug/L 85 70 - 130 10 20 Heptachlor ND 1.96 92 70 - 130 11 1.81 ug/L 20 ND 93 70 - 130 Heptachlor epoxide 1.96 1.82 ug/L 8 20 ND 94 70 - 130 Hexachlorobenzene 1.96 1.84 ug/L 0 20 Hexachlorocyclopentadiene ND 1.96 1.86 ug/L 95 70 - 130 10 20 gamma-BHC (Lindane) ND 1.80 92 70 - 130 ^3+ 1.96 ug/L 1 20 Methoxychlor ND 1.96 2.17 ug/L 111 70 - 130 14 20 Molinate ND 1.96 1.91 ug/L 97 70 - 130 10 20 Simazine ND 1.96 2.09 ug/L 107 70 - 130 4 20 Thiobencarb ND 1.96 2.02 ug/L 103 70 - 130 8 20 MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Nitro-m-xylene	98		70 - 130
Triphenylphosphate	96		70 - 130
Perylene-d12	87		70 - 130

10

Eurofins	Eaton	Analv	/tical	Pomona

Method: 548.1 - Endothall (GC/MS)

Lab Sample ID: MB 380-127156	/1-A								Client Sa	mple ID: Metho	od Blank
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 127991										Prep Batch	: 127156
Analyte	MB Result	MB Qualifier	RI		MDI Unit		п	Р	renared	Analyzed	Dil Fac
Endothall		Quaimer	50					01/0	0/25 1/-30	01/15/25 07:51	1
	ND		5.0		ug/L			01/0	3/20 14.00	01/13/23 07:31	
Lab Sample ID: LCS 380-12715	6/3-A						C	lient	Sample	ID: Lab Contro	I Sample
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 127991										Prep Batch	: 127156
			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Endothall			25.0	21.9		ug/L		_	88	80 - 120	
Lab Sample ID: MRL 280 12715	C/2 A						C	liont	Sampla	Dul ab Cantra	Comple
Lab Sample ID. WRL 500-12715	0/2-A							nem	Sample	Dron Type	
Matrix. Water										Prep Type.	10101/INA
Analysis Balch. 127991			Spike	мы	мы						. 12/130
Analyta			Spike	Bocult	Qualifier	Unit		D	% Pac	%Rec	
Endothall			<u>5 00</u>	/ 70				_		50 150	
			3.00	4.13	5	ug/L			30	30 - 130	
Method: 504.1 - EDB, DBCP	P and 1,2,3-TC	CP (GC)									
Lab Sample ID: MBL 380-12725 Matrix: Water Analysis Batch: 127594	5/4-A								Client Sa	mple ID: Metho Prep Type: Prep Batch	od Blank Total/NA : 127255
	MDI	MDI									
Analyte	MBL Result	MBL Qualifier	RI		MDI Unit		п	Р	renared	Analyzed	Dil Fac
Analyte Ethylene Dibromide (EDB)	MBL 	MBL Qualifier	RL		MDL Unit		D	P	repared 0/25 18:00	Analyzed	Dil Fac
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP)	MBL 	MBL Qualifier	RL 0.010 0.010		MDL Unit ug/L ug/L		<u>D</u>	P 01/1 01/1	repared 0/25 18:00 0/25 18:00	Analyzed 01/11/25 07:07 01/11/25 07:07	Dil Fac
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP)	MBL Result ND ND	MBL Qualifier	RL 0.010 0.010		MDL Unit ug/L ug/L		<u>D</u>	P 01/1 01/1	repared 0/25 18:00 0/25 18:00	Analyzed 01/11/25 07:07 01/11/25 07:07	Dil Fac
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP)	MBL Result ND ND MBL	MBL Qualifier MBL	RL 0.010 0.010		MDL Unit ug/L ug/L		<u> </u>	P 01/1 01/1	repared 0/25 18:00 0/25 18:00	Analyzed 01/11/25 07:07 01/11/25 07:07	Dil Fac 1 1
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate	MBL Result ND ND <i>MBL</i> %Recovery	MBL Qualifier MBL Qualifier	<u>RL</u> 0.010 0.010 <u>Limits</u>		MDL Unit		<u>D</u>	P 01/1 01/1 P	repared 0/25 18:00 0/25 18:00 repared	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed	Dil Fac 1 Dil Fac
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr)	MBL Result ND ND <i>MBL</i> %Recovery 96	MBL Qualifier MBL Qualifier	RL 0.010 0.010		MDL Unit ug/L ug/L		<u> </u>	P 01/1 01/1 P 01/1	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07	Dil Fac 1 1 Dil Fac 1
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725	MBL Result ND ND MBL %Recovery 96 5/29-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 Limits 60 - 140		MDL Unit ug/L ug/L		C	P 01/1 01/1 P 01/1	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro	Dil Fac 1 1 <i>Dil Fac</i> 1 Sample
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-127255 Matrix: Water	MBL Result ND ND %Recovery 96 5/29-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 Limits 60 - 140		MDL Unit ug/L ug/L		C	P 01/1 01/1 <i>P</i> 01/1	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type:	Dil Fac 1 1 <i>Dil Fac</i> 1 I Sample Total/NA
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analysis Batch: 127594	MBL Result ND ND <u>MBL</u> %Recovery 96 5/29-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 Limits 60 - 140		MDL Unit ug/L ug/L		CI	P 01/1 01/1 P 01/1	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch	Dil Fac 1 1 <i>Dil Fac</i> 1 I Sample Total/NA : 127255
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analysis Batch: 127594	MBL Result ND ND <u>MBL</u> %Recovery 96 5/29-A	MBL Qualifier MBL Qualifier		LCS	MDL Unit ug/L ug/L		_ <u>D</u>	P 01/1 01/1 P 01/1	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec	Dil Fac 1 1 <i>Dil Fac</i> 1 I Sample Total/NA : 127255
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analysis Batch: 127594 Analyte	MBL Result ND ND <u>MBL</u> %Recovery 96 5/29-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 <i>Limits</i> 60 - 140 Spike Added	LCS Result	MDL Unit ug/L ug/L LCS Qualifier	Unit	C	P 01/1 01/1 01/1 01/1 lient	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analysis Batch: 127594 Analyte Ethylene Dibromide (EDB)	MBL Result ND ND <i>MBL</i> %Recovery 96 5/29-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 <i>Limits</i> 60 - 140 Spike Added 0.200	LCS Result 0.206	MDL ug/L ug/L LCS Qualifier	<mark>Unit</mark> ug/L	_ <u>D</u>	P 01/1 01/1 <i>P</i> 01/1 lient	repared 0/25 18:00 0/25 18:00 repared 0/25 0/25 18:00 Sample %Rec	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130	Dil Fac 1 1 1 Dil Fac 1 <
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-127255 Matrix: Water Analysis Batch: 127594 Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP)	MBL Result ND ND <i>MBL</i> %Recovery 96 5/29-A	MBL Qualifier MBL Qualifier		LCS Result 0.206 0.202	MDL Unit ug/L ug/L LCS Qualifier	- Unit ug/L ug/L	C	P 01/1 01/1 <i>P</i> 01/1 lient	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample <u>%Rec</u> 103 101	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Controo Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130	Dil Fac 1 1 1 Dil Fac 1 I Sample Total/NA : 127255
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP)	MBL Result ND ND MBL %Recovery 96 5/29-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 <i>Limits</i> 60 - 140 Spike Added 0.200 0.200	LCS Result 0.206 0.202	MDL Unit ug/L ug/L LCS Qualifier	_ Unit ug/L ug/L	C	P 01/1 01/1 P 01/1 lient	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample <u>%Rec</u> 103 101	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130	Dil Fac 1 1 Dil Fac 1 Sample Total/NA 127255
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analysis Batch: 127594 Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate	MBL Result ND ND <i>MBL</i> %Recovery 96 5/29-A 5/29-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 <i>Limits</i> 60 - 140 Spike Added 0.200 0.200 <i>Limits</i>	LCS Result 0.206 0.202	MDL ug/L ug/L LCS Qualifier	<mark>Unit</mark> ug/L ug/L	C	P 01/1 01/1 <i>P</i> 01/1 lient	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample Sample 103 101	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130	Dil Fac
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analysis Batch: 127594 Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr)	MBL Result ND ND MBL %Recovery 96 5/29-A 5/29-A LCS LCS %Recovery Que 103	MBL Qualifier MBL Qualifier	RL 0.010 0.010 0.010 <i>Limits</i> 60 - 140 Spike Added 0.200 0.200 0.200 Limits 60 - 140	LCS Result 0.206 0.202	MDL ug/L LCS Qualifier	- Unit ug/L ug/L	C	P 01/1 01/1 01/1 01/1 lient	repared 0/25 18:00 0/25 18:00 0/25 18:00 0/25 18:00 Sample Sample 103 101	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr)	MBL Result ND ND MBL %Recovery 96 5/29-A 5/29-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 0.010 0.010 0.010 Limits 60 - 140 0.200 0.200 0.200 Limits 60 - 140	LCS Result 0.206 0.202	MDL ug/L ug/L LCS Qualifier	<mark>Unit</mark> ug/L ug/L	_ <u>D</u>	P 01/1 01/1 01/1 01/1 Ilient	repared 0/25 18:00 0/25 18:00 0/25 18:00 Sample Sample 103 101	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130	Dil Fac
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: MRL 380-12725	MBL Result ND ND MBL %Recovery 96 5/29-A LCS LCS %Recovery Qua 103	MBL Qualifier MBL Qualifier	RL 0.010 0.010 0.010 0.010 0.010 Limits 60 - 140 Limits 0.200 0.200 0.200 0.200 0.200 0.200	LCS Result 0.206 0.202	MDL Unit ug/L ug/L LCS Qualifier	- Unit ug/L ug/L	C	P 01/1 01/1 01/1 lient	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample %Rec 103 101 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Controo Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130 TO: Lab Controo	Dil Fac 1 1 1 Dil Fac 1 I Sample Total/NA : 127255 I Sample
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: MRL 380-12725 Matrix: Water	MBL Result ND ND MBL %Recovery 96 5/29-A LCS LCS %Recovery Qua 103	MBL Qualifier MBL Qualifier	RL 0.010 0.010 0.010 <i>Limits</i> 60 - 140 Spike Added 0.200 0.200 0.200 0.200 0.200 60 - 140	LCS Result 0.206 0.202	MDL Unit ug/L ug/L LCS Qualifier	_ Unit ug/L ug/L	CI	P 01/1 01/1 01/1 lient	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample 103 101 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130 ID: Lab Contro Prep Type:	Dil Fac 1 1 1 <i>Dil Fac</i> 1 I Sample Total/NA I Sample Total/NA
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-127254 Matrix: Water Analysis Batch: 127594 Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: MRL 380-12725 Matrix: Water Analysis Batch: 127594	MBL Result ND ND MBL %Recovery 96 5/29-A LCS LCS %Recovery 103 5/2-A	MBL Qualifier MBL Qualifier	RL 0.010 0.010 0.010 0.010 <i>Limits</i> 60 - 140 0.200 0.200 0.200 Limits 60 - 140	LCS Result 0.202	MDL ug/L LCS Qualifier	– <mark>Unit</mark> ug/L ug/L	CI	P 01/1 01/1 01/1 lient	repared 0/25 18:00 0/25 18:00 repared 0/25 18:00 Sample 1 %Rec 103 101 Sample 1	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130 Prep Type: Prep Type: Prep Type: Prep Type: Prep Type:	Dil Fac 1 1 1 Dil Fac 1 Sample Total/NA : 127255 I Sample Total/NA : 127255
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-127254 Matrix: Water Analysis Batch: 127594 Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: MRL 380-12725 Matrix: Water Analysis Batch: 127594	MBL Result ND ND MBL %Recovery 96 5/29-A LCS LCS %Recovery Qua 103 5/2-A MRL MRI	MBL Qualifier MBL Qualifier	RL 0.010 0.010 0.010 0.010 0.010 Limits 60 - 140 0.200 0.200 Limits 60 - 140	LCS Result 0.202	MDL ug/L LCS Qualifier	– <mark>Unit</mark> ug/L ug/L	C	P 01/1 01/1 <i>P</i> 01/1 lient	repared 0/25 18:00 0/25 18:00 0/25 18:00 Sample %Rec 103 101 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130 ID: Lab Contro Prep Batch %Rec Limits 70 - 130 Prep Type: Prep Type: Prep Type:	Dil Fac 1 1 Dil Fac 1 I Sample Total/NA : 127255 I Sample Total/NA : 127255
Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: LCS 380-12725 Matrix: Water Analyte Ethylene Dibromide (EDB) Dibromochloropropane (DBCP) Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: MRL 380-12725 Matrix: Water Analysis Batch: 127594 Surrogate 1,2-Dibromopropane (Surr) Lab Sample ID: MRL 380-12725 Matrix: Water Analysis Batch: 127594	MBL Result ND ND MBL %Recovery 96 5/29-A LCS LCS %Recovery Qua 103 55/2-A MRL MRI %Recovery Qua	MBL Qualifier MBL Qualifier	RL 0.010 0.010 	LCS Result 0.206 0.202	MDL ug/L LCS Qualifier	<mark>Unit</mark> ug/L ug/L	CI	P 01/1 01/1 P 01/1 lient	repared 0/25 18:00 0/25 18:00 0/25 18:00 Sample %Rec 103 101 Sample	Analyzed 01/11/25 07:07 01/11/25 07:07 Analyzed 01/11/25 07:07 ID: Lab Contro Prep Type: Prep Batch %Rec Limits 70 - 130 70 - 130 TO: Lab Contro Prep Type: Prep Type: Prep Type:	Dil Fac

1/23/2025

Method: 504.1 - EDB, DBCP and 1,2,3-TCP (GC) (Continued)

Lab Sample ID: MRL 380-12	7255/3-A						Clie	nt Sam	ple ID: Lab Contro	I Sample
Matrix: Water									Prep Type:	Total/NA
Analysis Batch: 127594									Prep Batcl	n: 127255
			Spike	MRL	MRL				%Rec	
Analyte			Added	Result	Qualifier	Unit		0 %Re	c Limits	
Ethylene Dibromide (EDB)			0.0100	0.00887	J	ug/L		- 8	9 60 - 140	
Dibromochloropropane (DBCP)			0.0100	0.00965	J	ug/L		9	6 60 - 140	
	MRL MR	L								
Surrogate	%Recovery Qu	alifier	Limits							
1,2-Dibromopropane (Surr)	94		60 - 140							
Method: 505 - Organochl	lorine Pesticide	s/PCBs	(GC)							
_ Lab Sample ID: MB 380-127	543/32-A							Clien	t Sample ID: Meth	od Blank
Matrix: Water									Prep Type:	Total/NA
Analysis Batch: 127716									Prep Batcl	n: 127543
	MB	MB							. top Eator	
Analyte	Result	Qualifier	RL		MDL Unit		D	Prepare	d Analvzed	Dil Fac
Chlordane	ND)	0.10		ua/L		01	1/13/25 13	3:24 01/14/25 01:09	1
Toxaphene	ND)	0.50		ug/L		01	1/13/25 13	3·24 01/14/25 01·09	1
PCB-1016)	0.070		ug/L		01	1/13/25 13	3·24 01/14/25 01:09	1
PCB-1221	ΝC		0.070		ug/L		01	1/13/25 13	3·24 01/14/25 01:00	
PCB 1221		, ,	0.10		ug/L		01	1/13/25 13	3:24 01/14/25 01:09	1
PCB-1232		, ,	0.10		ug/L		01	1/13/23 13	0.24 $01/14/2501.09$	1
POD-1242			0.10		ug/L		01	1/13/23 13	01/14/25 01:09	
PCB-1240	NL	,	0.10		ug/L		01	1/13/2013	01/14/25 01:09 01/14/25 01:09	1
PCB-1254	NL)	0.10		ug/L		01	1/13/25 13	3:24 01/14/25 01:09	1
	NL		0.070		ug/L		0	1/13/25 13	3:24 01/14/25 01:09	
Polychlorinated biphenyls, Total	NL)	0.10		ug/L		01	1/13/25 13	3:24 01/14/25 01:09	1
	ME	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepare	d Analyzed	Dil Fac
Tetrachloro-m-xylene	96	3 	70 - 130				01	1/13/25 13	3:24 01/14/25 01:09	1
- Lab Sample ID: LCS 380-127	7543/16-A						Clie	nt Sam	ple ID: Lab Contro	ol Sample
Matrix: Water									Prep Type:	Total/NA
Analysis Batch: 127716									Prep Batcl	n: 127543
Analysis Baton. 121716			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit) %Re	c Limits	
Chlordane			0.500	0.501		ug/L		10	0 70 - 130	
						3				
	LCS LCS	S								
Surrogate	%Recovery Qu	alifier	Limits							
Tetrachloro-m-xylene	105		70 - 130							
Lab Sample ID: LCS 380-127	7543/24-A						Clie	nt Sam	ple ID: Lab Contro	ol Sample
Matrix: Water									Prep Type:	Total/NA
Analysis Batch: 127716									Prep Batcl	n: 127543
-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit) %Re	c Limits	
PCB-1221			0.500	0.535		ug/L		10	7 70 - 130	
		-								
	LCS LC	S								
Surrogate	%Recovery Qu	alifier	Limits							

SurrogateZorocoveryQualifierLimitsTetrachloro-m-xylene10770 - 130

QC Sample Results

Job ID: 380-129268-1

Method: 505 - Organochlorine Pesticides/PCBs (GC) (Continued)

Lab Sample ID: LCS 380-1275	43/57-A						Client	Sample	BID: Lab Co	ontrol Sa	ample
Matrix: Water									Prep 1	ype: To	tal/NA
Analysis Batch: 127716									Prep I	Batch: 1	27543
-			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Toxaphene			2.50	3.23		ug/L		129	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
letrachloro-m-xylene	107		70 - 130								
Lab Sample ID: LCS 380-1275	43/59-4						Client	Sample	D' Lah Co	ontrol S	amnle
Matrix: Water									Prep 1	vpe: To	tal/NA
Analysis Batch: 127716									Pren	Batch: 1	27543
·			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chlordane			0.500	0.557		ua/L	<u> </u>	111	70 - 130		
						3/					
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	103		70 - 130								
Γ								_			
Lab Sample ID: LCS 380-1275	43/60-A						Client	Sample	D: Lab C	ontrol Sa	ample
Matrix: Water									Prep	ype: To	tal/NA
Analysis Batch: 127716									Prep I	Batch: 1	27543
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1221			0.500	0.499		ug/L		100	70 - 130		
	LCS	LCS									
Surrogate	%Recoverv	Qualifier	Limits								
Tetrachloro-m-xylene	98		70 - 130								
Lab Sample ID: LCS 380-1275	43/8-A						Client	Sample	D: Lab Co	ontrol Sa	ample
Matrix: Water									Prep 1	ype: To	tal/NA
Analysis Batch: 127716									Prep I	Batch: 1	27543
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Toxaphene			2.50	2.60		ug/L		104	70 - 130		
		1.00									
Summerine		LUS	1 ins 14 -								
Surrogate	%Recovery	Quaimer									
Tetrachioro-m-xylene	101		70 - 130								
Lab Sample ID: LCSD 380-127	543/58-A					CI	lient Sam	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Water									Prep 1	vpe: To	tal/NA
Analysis Batch: 127716									Pren	Batch: 1	27543
,			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toxaphene			2.50	2.74		ua/L		110	70 - 130	16	20
						0					
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	96		70 - 130								

Dalapon

Picloram

Method: 505 - Organochlorine Pesticides/PCBs (GC) (Continued)

Matrix: Water								C	lient	t Sample	ID: Lab Control	Sample
											Prep Type:	Total/NA
Analysis Batch: 127716											Prep Batch	: 127543
-				Spike	MRL	MRL					%Rec	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits	
Toxaphene				0.500	0.559		ug/L			112	50 - 150	_
	MRI	MDI										
Surrogate	%Recovery	Qua	lifier	l imits								
Tetrachloro-m-xvlene	106	Quu		70 - 130								
Lab Sample ID: MRL 380-1275	543/31-A							c	lient	t Sample	ID: Lab Control	Sample
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 127716											Prep Batch	: 127543
				Spike	MRL	MRL					%Rec	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits	
Chlordane				0.100	0.107		ug/L			107	50 - 150	
		MD										
0	MRL	MRL		1 : :4-								
	%Recovery	Qua	lifier									
Tetrachioro-m-xylene -	94			70 - 130								
-											Prep Batch	: 127276
Australia		MBL	MBL	51				_			Prep Batch	: 127276
Analyte	Re	MBL esult	MBL Qualifier			MDL Uni	it	D	P	Prepared	Analyzed	: 127276
Analyte 2,4,5-TP (Silvex)	R.	MBL esult ND	MBL Qualifier	RL 0.10		MDL Uni	it	<u>D</u>	P 01/1	Prepared 13/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/20/05 23:04	: 127276 Dil Fac
Analyte 2,4,5-TP (Silvex) Dinoseb	R(MBL esult ND ND	MBL Qualifier	RL 0.10 0.20		MDL Uni ug/ ug/	it 'L'	<u>D</u>	P 01/1 01/1	Prepared 13/25 08:25 13/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04	: 127276 Dil Fac
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D	R(MBL esult ND ND ND	MBL Qualifier	RL 0.10 0.20 0.10		MDL Uni ug/ ug/ ug/	it L L	<u> </u>	P 01/1 01/1 01/1	Prepared 13/25 08:25 13/25 08:25 13/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04	: 127276 Dil Fac
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon	R	MBL esult ND ND ND ND	MBL Qualifier	RL 0.10 0.20 0.10 0.50		MDL Uni ug/ ug/ ug/ ug/ ug/ ug/	it L L L	<u>D</u>	P 01/1 01/1 01/1 01/1	Prepared 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25	: 127276 Dil Fac 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol	<u>R</u> ı	MBL esult ND ND ND ND ND	MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040		MDL Uni ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/	it L L L L	D	P 01/1 01/1 01/1 01/1 01/1	Prepared 3/25 08:25 3/25 08:25 3/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25	: 127276 Dil Fac 1 1 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picksram	R	MBL esult ND ND ND ND ND	MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0		MDL Uni ug/ ug/	it L L L L	D	P 01/1 01/1 01/1 01/1 01/1	Prepared 13/25 08:25 13/25 08 13/25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 01/15 01/13/25 01/15 01/15 01/15 01/15 01/15 01/	: 127276 Dil Fac 1 1 1 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram	<u></u> <u>R</u> ı	MBL esult ND ND ND ND ND ND	MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10		MDL Uni ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/	it L L L L L	<u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1	Prepared 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram	R	MBL esult ND ND ND ND ND ND ND ND	MBL Qualifier MBL	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10		MDL Uni ug/ ug/ ug/ ug/ ug/ ug/	it L L L L L	<u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1	Prepared 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate	R	MBL ND ND ND ND ND ND ND ND ND	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 Limits		MDL Uni ug/ ug/ ug/ ug/ ug/ ug/	it L L L L L	<u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1	Prepared 3/25 08:25 3/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed	: 127276 Dil Fac 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr)	Reco	MBL esuit ND ND ND ND ND ND MBL overy 97	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 0.70		MDL Uni ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/	it L L L L	<u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 P 01/1	Prepared 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 Prepared 13/25 08:25	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed 01/13/25 23:04	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 2 1 <i>Dil Fac</i> 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272	<u>R</u> %Reco	MBL esult ND ND ND ND ND ND ND ND ND ND	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.110 0.50 0.040 1.0 0.10 0.10 70 - 130		MDL Uni ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/ ug/	it L L L L L	_ <u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 Prepared 13/25 08:25 t Sample	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 D1/13/25 23:04 D1/13/25 D1/13/25 D1/13/25	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 2 1 2 1 5 2 3 3 2 1 2 2 3 2 3 1 2 3 1 2 3 1 3 1 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272 Matrix: Water	R %Reco	MBL esult ND ND ND ND ND ND ND ND ND ND	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 0.10 70 - 130		MDL Uni ug/ ug/ ug/ ug/ ug/	it L L L L	_ <u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 13/25 08:25 Prepared 13/25 08:25 t Sample	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed 01/13/25 23:04 ID: Lab Control Prep Type:	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 2 5 0// Fac 1 5 Sample Total/NA
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272 Matrix: Water Analysis Batch: 127846	<u>R</u> %Reco	MBL esuit ND ND ND ND ND ND ND ND ND ND ND ND 97	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 0.10		MDL Uni ug/ ug/ ug/ ug/ ug/	it L L L L	_ <u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 3/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 Prepared 13/25 08:25 t Sample	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed 01/13/25 23:04 ID: Lab Control Prep Type: Prep Batch	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 2 <i>Dil Fac</i> 7 Sample Total/NA : 127276
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272 Matrix: Water Analysis Batch: 127846	<u></u>	MBL esuit ND ND ND ND ND ND ND ND ND ND ND ND 97	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 1.0 0.10 1.0 0.10	LCS	MDL Uni ug/ ug/ ug/ ug/ ug/	it L L L L	_ <u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 3/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 Prepared 13/25 08:25 t Sample	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed 01/13/25 23:04 ID: Lab Control Prep Type: Prep Batch %Rec	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 2 <i>Dil Fac</i> 7 Sample Total/NA : 127276
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272 Matrix: Water Analysis Batch: 127846 Analyte	<u>R</u> %Reco	MBL esuit ND ND ND ND ND ND ND ND ND ND ND ND 97	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 0.10 50 0.040 1.0 0.10 50 50 50 Added	LCS Result	MDL Uni ug/ ug/ ug/	it L L L L Unit	_ <u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 t Sample %Rec	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 ID: Lab Control Prep Type: ' Prep Batch %Rec Limits	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 7 Sample Total/NA : 127276
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272 Matrix: Water Analysis Batch: 127846 Analyte 2,4,5-TP (Silvex)	<u></u>	MBL esult ND ND ND ND ND MBL overy 97	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 0.10 0.50 0.040 1.0 0.10	LCS Result 2.92	MDL Uni ug/ ug/	it L L L L L Unit ug/L	_ D	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 2/25 08:25 3/25 08:25 2/25 08:25 3/25 08:25 2/25 08:	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed 01/13/25 23:04 ID: Lab Control Prep Type: Prep Batch %Rec Limits 70 - 130	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272 Matrix: Water Analysis Batch: 127846 Analyte 2,4,5-TP (Silvex) Dinoseb	<u></u>	MBL esult ND ND ND ND ND MBL wery 97	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 0.10 0.50 0.040 1.0 0.10	LCS Result 2.92 2.88	MDL Uni ug/ ug/	it L L L L L Unit ug/L ug/L	_ <u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 2007 20	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed 01/13/25 23:04 ID: Lab Control Prep Type: ' Prep Batch %Rec Limits 70 - 130 70 - 130 70 - 130	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272 Matrix: Water Analysis Batch: 127846 Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D	<u>R</u> %Reco ?76/35-A	MBL ND ND ND ND ND ND ND ND ND ND 97	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 0.10 0.50 0.040 1.0 0.10 1.50	LCS Result 2.92 2.88 1.45	MDL Uni ug/ ug/ ug/ ug/ ug/ Ug/ Ug/	it L L L L L Unit ug/L ug/L ug/L	_ <u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 13/25 08:25 Prepared 13/25 08:25 t Sample <u>%Rec</u> 97 96 96	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 D1/13/25 23:04 D1/13/25 23:04 D1/13/25 23:04 D1/13/25 23:04 D1/13/25 23:04 D1/13/25 23:04 D1/13/25 23:04 D1/13/25 23:04 D1/13/25 23:04 01/13/25 23:04 D1/13/25 23:04 01/13/25 23:04 D1/13/25 23:04 01/13/25 23:04 D1/13/25 23:04 01/13/25 23:04	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon Pentachlorophenol Dalapon Picloram Surrogate 2,4-Dichlorophenylacetic acid (Surr) Lab Sample ID: LCS 380-1272 Matrix: Water Analysis Batch: 127846 Analyte 2,4,5-TP (Silvex) Dinoseb 2,4-D Bentazon	R	MBL ND ND ND ND ND ND ND ND ND ND ND ND ND	MBL Qualifier MBL Qualifier	RL 0.10 0.20 0.10 0.50 0.040 1.0 0.10 0.10 0.50 0.040 1.0 0.10 </td <td>LCS Result 2.92 2.88 1.45 6.87</td> <td>MDL Uni ug/ ug/ ug/ ug/ ug/ Ug/ Ug/</td> <td>it L L L L L Unit ug/L ug/L ug/L ug/L</td> <td>_ <u>D</u></td> <td>P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/</td> <td>Prepared 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 Prepared 3/25 08:25 t Sample %Rec 97 96 96 92</td> <td>Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed 01/13/25 23:04 ID: Lab Control Prep Type: * Prep Batch %Rec Limits 70 - 130 70 - 10 70 - 10</td> <td>: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	LCS Result 2.92 2.88 1.45 6.87	MDL Uni ug/ ug/ ug/ ug/ ug/ Ug/ Ug/	it L L L L L Unit ug/L ug/L ug/L ug/L	_ <u>D</u>	P 01/1 01/1 01/1 01/1 01/1 01/1 01/1 01/	Prepared 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 3/25 08:25 Prepared 3/25 08:25 t Sample %Rec 97 96 96 92	Prep Batch Analyzed 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 01/13/25 23:04 Analyzed 01/13/25 23:04 ID: Lab Control Prep Type: * Prep Batch %Rec Limits 70 - 130 70 - 10 70 - 10	: 127276 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1

17

Eurofins Eaton Analytical Pomona

70 - 130

70 - 130

94

92

14.0

1.38

ug/L

ug/L

15.0

1.50

Lab Sample ID: LCS 380-127276/35-A

Matrix: Water

Analysis Batch: 127846

Method: 515.4 - Herbicides (GC) (Continued)

Prep Type: Total/NA Prep Batch: 127276

10

Surrogate	%Recovery	Qualifier	Limits			
2,4-Dichlorophenylacetic acid (Surr)	101		70 - 130			
Lab Sample ID: LCS 380-12	7276/36-A					
Matrix: Water						
Analysis Batch: 127846						
-			Spike	LCS	LCS	
Analyte			Added	Result	Qualifier	Unit
2,4,5-TP (Silvex)			4.00	4.26		ug/L
Dinoseb			4.00	4.37		ug/L
2,4-D			2.00	2.08		ug/L
Bentazon			10.0	10.5		ug/L
Pentachlorophenol			0.800	0.851		ug/L
Dalapon			20.0	21.5		ug/L
Picloram			2.00	2.05		ug/L
	LCS	105				

LCS LCS

	LCS	LUS	
Surrogate	%Recovery	Qualifier	Limits
2,4-Dichlorophenylacetic acid	101		70 - 130
(Surr)			

Lab Sample ID: LCSD 380-127276/37-A Matrix: Water				Clie	∍nt Sam	ple ID:	Lab Contro Prep 1	l Samp Type: T
Analysis Batch: 127846	Spiko						Prep I	Batch:
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD
2,4,5-TP (Silvex)	4.00	4.26		ug/L		107	70 - 130	0
Dinoseb	4.00	4.31		ug/L		108	70 - 130	2
2,4-D	2.00	2.04		ug/L		102	70 - 130	2
Bentazon	10.0	10.5		ug/L		105	70 - 130	0
Pentachlorophenol	0.800	0.847		ug/L		106	70 - 130	1
Dalapon	20.0	20.4		ug/L		102	70 - 130	6
Picloram	2.00	2.08		ug/L		104	70 - 130	1

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2,4-Dichlorophenylacetic acid	99		70 - 130
(Surr)			

Lab Sample ID: MRL 380-127276/10-A Matrix: Water Analysis Batch: 127846

Analysis Batch: 127846							Prep Ba	tch: 127276
	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dinoseb	0.200	0.247		ug/L		123	50 - 150	
2,4-D	0.100	0.114		ug/L		114	50 - 150	
Bentazon	0.500	0.551		ug/L		110	50 - 150	
Pentachlorophenol	0.0400	0.0419		ug/L		105	50 - 150	
Dalapon	1.00	1.02		ug/L		102	50 - 150	
Picloram	0.100	0.111		ug/L		111	50 - 150	

Page 33 of 63

Eurofins Eaton Analytical Pomona

Client Sample ID: Lab Control Sample

,	Sa	mp	le	Res	sult	t
---	----	----	----	-----	------	---

Client Sample ID: Lab Control Sample

Limits

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

D

%Rec

106

109

104

105

106

108

103

Client Sample ID: Lab Control Sample

Prep Type: Total/NA
Prep Batch: 127276
%Rec

RPD Limit

30

30

30

30

30

30

30

0

2

2

1

6

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Prep Batch: 127276

QC Sample Results

Job ID: 380-129268-1

Method: 515.4 - Herbicides (GC) (Continued)

Analysis Batch: 127846 Prop Batch: 127276 surrogate %Recovery Guiller Limita 2.4-Obtimorpheryleade and 101 70.130 Client Sample ID: MRL 380-127276/9-A Client Sample ID: Lab Control Sample Matrix: Water Analysis Spike MRL MRL Analysis Batch: 127846 Spike MRL MRL Prop Typo: TotalNA Analysis Batch: 127846 Spike MRL MRL Spike MRL MRL 2.4-Obtimorpheryleade and MRL MRL Spike MRL MRL Spike Spike Spike MRL MRL Spike Spike MRL MRL Spike	Lab Sample ID: MRL 380-1272 Matrix: Water	276/10-A								Clie	nt Sam	ple ID: Lab (Prep	Control S Type: To	ample tal/NA
MRL 3urogate 2.4-Dichlosophenylacetic acid (Burry) Vinece 101 Limits 70 - 130 Lab Sample ID: MRL 380-127276/9-A Matrix: Water Analysis Batch: 127646 Spike Added MRL MRL Result Cualifier (Jurr) Client Sample ID: Lab Control Sample Prop Batch: 127276 Analyte 2.4.5.TF (Shork) Outfier Water Added Result Cualifier (Jurr) Unit D %Rec Units Prop Batch: 127276 Surrogate 2.4.5.TF (Shork) MRL MRL 300 Added Result Cualifier (Jurr) Unit D %Rec Units Imits Analyte 2.4.5.TF (Shork) MRL MRL 300.0 - Anions, Ion Chromatography (Burbic): 300.0 - Anions, Ion Chromatography Limits D Prepared (Jurr) Analyzed DI Pac Di Metrix: Water Di Prepared Di Metrix: Water Analyzed Di Metrix: Water Di Prepared Di Metrix: Water Analyzed Di Metrix: Water Di Pac Di Metrix: Water Di Pac Di Metrix: Water Di Metrix: Water Analyte Matrix: Water Analysis Batch: 127098 MB MB NB ELS LCS LCS LCS Metrix: Client Sample ID: Lab Control Sample Di Metrix: Water Di Mete Analyte Di Mete Nitrite as N ND 0.050 mgL Di Mete Di Mete Nitrite as N Di Mete Nitrite as N Di Mete Nitrite as N Di Mete Nitrite as N Di Mete Nitrite as N	Analysis Batch: 127846											Prep	Batch: 1	27276
Surrogate SRecovery 2.4-Dichomorphenylacetic acid Secovery 101 Cualifier 70.130 Limits 70.130 Lab Sample ID: MRL 380-127276/9-A Matrix: Water Analysis Batch: 127846 Spike Added MRL MRL Result Qualifier 0.050 Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 127276 Analysis Surrogate MRL MRL 2.4.5.TP (Silvex) MRL MRL MRL MRL MRL Unit MRL MRL 0.050 MRL MRL 0.050 MRL MRL 0.050 MRL MRL 0.050 Limits		MRL	MRL											
Z.4 - Dichtorghenyleredite acid Internal of the second of th	Surrogate	%Recovery	Qualif	ïer	Limits									
(Surr) Client Sample ID: MRL 380-127276/9-A Matrix: Water Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 12726 Analyse Surrogate Spike Added Result Qualifer Unit Unit D WRC WRC WRL WRC HMRL Surrogate Spike 2.4-Orthorophorpulceatic acid 100 Unit D WRC WRL WRL WRL Surrogate Serveoury (Quilifer 2.4-Orthorophorpulceatic acid 100 To . 130 WRL WRL WRL WRL Unit D WRC WRL WRC WRL Lab Sample ID: MB 380-127098/4 Metrix: Water Analysis Batch: 12708 MB MB MB MD 0.050 mgL O II Fec Unitse as N D II Fec Unitse as N ND 0.050 mgL O III Fec Unitse as N D II Fec Unitse as N D II Fec Unitse as N ND 0.050 mgL O III Fec Unitse as N D II Fec Unitse as N ND 0.050 mgL O III Fec Unitse as N ND 0.050 mgL D III Fec Unitse as N ND 0.050 mgL O III Fec Unitse as N ND D III Fec Unitse as N ND 0.050 MII Fec Unitse as N ND 0.050 MII Fec Unitse as N ND	2 4-Dichlorophenylacetic acid	101	quum		70 - 130	_								
Lab Sample ID: MRL 380-127276/9-A Metrix: Weter Analysis Batch: 127846 Spike MRL MRL Surragete State: 22846 MRL MRL Surragete MRL MRL Analysis Batch: 127098 MRL MRL ND 0.0550 mgL Lab Sample ID: LCS 380-127098/7 Matrix: Water Analysis Batch: 127098 Analysis Batch: 127098 Analysis Batch: 127098 Analysis Batch: 127098 Analysis Batch: 127098 Spike LCS LCS Analysis Batch: 127098 MRL MRL Analysis Batch: 127098 Analysis Batch: 127098 Spike LCS LCS Client Sample ID: Lab Control Sample Dup Matrix: Water Analysis Batch: 127098 Analysis Batch: 127098 An	(Surr)													
Lab Sample ID: MRL 330-127276/9-A Client Sample ID: Lab Control Sample Matrix: Water Added Result Qualifier Prep Type: Total/NA Analysis Batch: 127246 MRL MRL MRL Sample ID: Lab Control Sample Prep Batch: 127276 Analyte Added Result Qualifier Unit D %Rec Limits 2.4-Dichtorophenylecetic acid 1700 70-130 Client Sample ID: MB 380-127098/4 Client Sample ID: Method Blank Matrix: Water ND 0.050 mgL D Prep Type: Total/NA Analyte Result Qualifier RL MB MB Analysis Batch: 127098 MB MB Analyte Result Qualifier RL MDL Unit D Prep Type: Total/NA Analyte as N ND 0.050 mgL D Marger D: Lab Control Sample Analyte ker ND 0.050 mgL D MRec Linits Analyte Nuter as N ND 0.050 mgL D MRec Linits Analyte Nuter as N .020 0.942 mgL 0 MRec Linits Prep Type:	— Г										_			
Matrix: Water Analysis Batch: 12736 Prep Type: Total/NA Prep Type: Total/NA Analysis Batch: 127276 Analysis Batch: 12736 MRL MRL Surragate Added Added Result Qualifier Unit D %Rec Units Watch: 127276 Surragate %Recovery Qualifier 100 Limits 0.0088 J Unit D %Rec Units Watch: 12708 A-dechtorpherylocatic acid (Surr) MRL MRL Limits Client Sample ID: MB 380-127098/4 Prep Type: Total/NA Prep Type: Total/NA Analysis Batch: 127098 Matrix: Water Analysis Batch: 127098 MB MB Matrix: Water MIL MRL ND 0.050 mgL 0.000/0025 10.22 01 Fac 0.00925 10.22 01 Fac 0.000925 10.22 01 Fac 0.00925 10.22 <t< td=""><td>Lab Sample ID: MRL 380-1272</td><td>276/9-A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Clie</td><td>nt Sam</td><td>ple ID: Lab (</td><td>Control S</td><td>ample</td></t<>	Lab Sample ID: MRL 380-1272	276/9-A								Clie	nt Sam	ple ID: Lab (Control S	ample
Analysis Batch: 127846 Prep Batch: 127276 Analysis Chiral Signature Spike MRL MRL Watt Watt Watt 2.4.5-TP (Silvex) 0.100 0.0988 J ugL D %Rec Limits Surgete %Recovery Qualifier Limits 99 50.150 99 50.150 Added 70.730 70.730 70.730 99 50.150 99 50.150 Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 380-127098/4 Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier Rt. MDL Unit D Prepared Analyzed Dil Fac Nitrie as N ND 0.050 mgL 0109/25 10.22 1 Lab Sample ID: LCS 380-127098/7 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Limits Nitrite as N 1.00 0.942 mgL 94 90.110 1	Matrix: Water											Prep	Туре: То	tal/NA
Spike MRL MRL WRec Analyte Added Result Qualifier Unit D %Rec 2.4.5-TP (Silvex) MRL MRL ugl D %Rec 100 MRL MRL Suprogram %Recovery Qualifier Units 99 50-150 2.4-Dichlorophenylacetic acid 100 70-130 September (Silvex) September (Silvex) Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 380-127098/4 Cilent Sample ID: Method Blank Matrix: Wator Analysis Batch: 127098 MB MB Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Fac Nitrate as N ND 0.050 mgL Cilent Sample ID: Lab Control Sample DI Fac No 0.050 mgL Cilent Sample ID: Lab Control Sample DI Fac Nec Minte as N ND 0.050 mgL 01/08/25 f0:22 1 ND ND 0.050 mgL DI Fac NRec NE	Analysis Batch: 127846											Prep	Batch: 1	27276
Analyte Added Result Qualifier Unit D %Rec Limits 2.4.5-P(Slivex) 0.100 0.0888 J ugit 99 50.150 Method: 300.0 Added Limits 99 50.150 2.4-Dichlorophenylacetic acid 100 70.130 Client Sample ID: MB 380-127098/4 Client Sample ID: Method Blank Matrix: Water Analysis Besult Qualifier Re MDL Unit D Prepared Analyzed DI Fac Nitrate as N ND 0.050 mgit. 0100/25 10.22 1 Lab Sample ID: LCS 380-127098/7 ND 0.050 mgit. D Prepared Analyzed DI Fac Nitrate as N ND 0.050 mgit. D 0109/25 10.22 1 Lab Sample ID: LCS 380-127098/7 Kee Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyce Added Result Qualifier unit D %Rec Wite A Natitae as N					Spike		MRL	MRL				%Rec		
2,4.5-TP (Silvex) 0.100 0.0988 J ug/L 99 50-150 MRL MRL 2-4-Dichbrophenylacetic acid 100 Limits 2-4.5-Dichbrophenylacetic acid 100 Limits 70-130 Cilient Sample ID: MB 380-127098/4 Cilient Sample ID: Method Blank Prop Type: Total/NA Matrix: Water Analysis Batch: 127098 MB MB Propared Analyzed Dil Fac Nitrate as N ND 0.050 mg/L 0109025 10:22 1 Lab Sample ID: LCS 380-127098/7 KE Cilient Sample ID: Lab Control Sample Dil Fac Nitrate as N ND 0.050 mg/L 0109025 10:22 1 Lab Sample ID: LCS 380-127098/7 Cilient Sample ID: Lab Control Sample Prop Type: Total/NA Analyzis Batch: 127098 Spike LCS LCS %Rec Limits Analysis Batch: 127098 Spike LCS LCS Sife %Rec Nec Analysis Batch: 127098 Spike LCS LCS Matrix: Water Analysis Batch: 127098 Spike Cilent Sample ID: Lab Control Sample Dup Mitrite as N 1.00 0.942 mg/L 94 90.110 0 <td>Analyte</td> <td></td> <td></td> <td></td> <td>Added</td> <td></td> <td>Result</td> <td>Qualifie</td> <td>r Unit</td> <td></td> <td>%Re</td> <td>c Limits</td> <td></td> <td></td>	Analyte				Added		Result	Qualifie	r Unit		%Re	c Limits		
MRL MRL MRL Streesway Qualifier Limits 24-Dickhorophenylacetic acid 100 70 - 130 70 - 130 Method: 300.0 - Anions, Ion Chromatography Client Sample ID: MB 380-127098/4 Client Sample ID: Method Blank Matrix: Water Analyte Result Qualifier RL MD 0.050 mgL 010025 10-22 1 Nitrate as N ND 0.050 mgL 010025 10-22 1 Lab Sample ID: LCS 380-127098/7 ND 0.050 mgL 010025 10-22 1 Matrix: Water Analyte Recuit Qualifier RL ML Unit D Prepared Analyzed DI Fac Analyte ND 0.050 mgL 010025 10-22 1 1 Lab Sample ID: LCS 380-127098/7 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec NRec Nitrate as N 1.00 0.942 mgL 94 90.110 Prep Type: Total/N	2,4,5-TP (Silvex)				0.100		0.0988	J	ug/L		9	9 50 - 150		
Surrogate 'kRecovery' Qualifier Limits 2.4-Dichlorophenylacetic acid 100 70-130 Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 380-127098/4 Client Sample ID: MB 380-127098/4 Matrix: Water Result Qualifier RL MDL Unit D Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Di Fac Nitret as N ND 0.050 mgL 010925 10:22 1 Nitret as N ND 0.050 mgL Di O10925 10:22 Di Fac Analyte Water Result Qualifier Result Qualifier Client Sample ID: Lab Control Sample Matrix: Water Analyte Added Result Qualifier Unit D %Rec Analyte Matrix: Water Added Result Qualifier Unit D %Rec Limits Analyte Matrix: Water 1.00 0.942 mg/L D %Rec RPD Limits Analyte Matrix: Water 2.50 2.35 mg/L D %Rec RPD Limits Analyte Matrix: Water 1.00 0.942 mg/L D %Rec RPD Limits <		MRL	MRL											
Z.4-Dichlorphanylacetic acid International control TO-130 (Surr) TO-130 Method: 300.0 - Anions, ion Chromatography Lab Sample ID: MB 380-127098/4 Client Sample ID: Method Blank Matrix: Water Analyzed Analyte Result Qualifier ND 0.050 mgL 01/09/25 10:22 ND 0.050 mgL 01/09/25 10:22 1 Difference ND 0.050 mgL 01/09/25 10:22 1 Client Sample ID: LCS 380-127098/7 Matrix: Water Analyzed Analyte Added Result Qualifier Unit D %Rec Intrate as N 1:00 ND 0:342 matrix: Water Client Sample ID: Lab Control Sample Analyte Added Result Qualifier Unit Mitrate as N 1:00 Nitret as N <td< td=""><td>Surrogate</td><td>%Recovery</td><td>Qualif</td><td>ïer</td><td>Limits</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Surrogate	%Recovery	Qualif	ïer	Limits									
Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 380-127098/4 Matrix: Water Analysis Batch: 127098 MB MB Analyte Result Qualifier RL Mitrate as N ND 0.050 mgL D Prepared Analyzed D II Fac 01/09/25 10:22 D II Fac 01/09/25 10:22 ND 0.050 mgL D Prepared Analyzed D II Fac 01/09/25 10:22 D II Fac 01/09/25 10:22 Lab Sample ID: LCS 380-127098/7 Matrix: Water Analysis Batch: 127098 ND 0.050 mgL D %Rec Analyte Added Result Qualifier Unit D %Rec Nitrate as N 2.50 2.35 mgL 94 90.110 Lab Sample ID: LCSD 380-127098/8 Nitrate as N Spike LCS LCS Size %Rec Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit	2.4-Dichlorophenylacetic acid	100			70 - 130	_								
Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 380-127098/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analyte Result Qualifier ML Unit D Prepared Analyzed Dil Fac Ntrate as N ND 0.050 mg/L 0/109/25 10:22 1 Ntrate as N ND 0.050 mg/L 0/109/25 10:22 1 Lab Sample ID: LCS 380-127098/7 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Analyzed Added Result Qualifier Unit D %Rec Limits Analyze 2.50 2.53 mg/L 94 90.110 Prep Type: Total/NA Nitrite as N 1.00 0.942 mg/L D %Rec RPD Nitrite as N 2.50 2.35 mg/L 94 90.110 D 20 Lab Sample ID: LCSD 380-127098/8 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD<	(Surr)													
Method: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 380-127098/4 Client Sample ID: Method Blank Matrix: Water Analysis Batch: 127098 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fac Nitrate as N ND 0.050 mg/L 0.109/25 10:22 1 Nutrite as N ND 0.050 mg/L 01/09/25 10:22 1 Matrix: Water Analyzed DII Fac Ol 1/09/25 10:22 1 Matrix: Water ND 0.050 mg/L 01/09/25 10:22 1 Analyte Added Result Qualifier Unit D %Rec Frep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Mintis Nitrite as N 1.00 0.942 mg/L 94 90.110 Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Prep Type: Total/NA Analyte Analyte Added Result Qualifier Unit D %Rec RPD														
Lab Sample ID: MB 380-127098/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 127098 MB MB Analysis Batch: 127098 MB MB MD O.050 mg/L D Prepared Analyzed DI Fac Nitrite as N ND O.050 mg/L D Prepared Analyzed DI Fac Lab Sample ID: LCS 380-127098/7 ND O.050 mg/L D Prepared Analyze DI Fac Analyte ND O.050 mg/L D Prepared Analyze DI Fac Analyte ND O.050 mg/L D Prepared Analyze DI Fac Analyte ND O.050 mg/L D Prepared Analyze DI Fac Nitrate as N ND O.050 mg/L D Prep Type: Total/NA Analyte Added Resuit Qualifier Unit D %Rec Rec Nitrate as N 1.00 0.942 mg/L D %Rec RPD Limits RPD Limits <td>Method: 300.0 - Anions, Ic</td> <td>on Chromat</td> <td>ogra</td> <td>phy</td> <td></td>	Method: 300.0 - Anions, Ic	on Chromat	ogra	phy										
Lab Sample ID: MB 330-12/098/4 NB 330-12/098/4 Prep Type: Total/NA Analysis Batch: 127098 MB MB Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Fac Nitrate as N ND 0.050 mgL 01/09/25 10:22 1 Lab Sample ID: LCS 380-127098/7 Client Sample ID: Lab Control Sample DI Fac Matrix: Water Analyte Added Result Qualifier Unit D %Rec Limits Analyte Added Result Qualifier Unit D %Rec Limits Prep Type: Total/NA Nitrite as N 1.00 0.942 mg/L 94 90.110 Prep Type: Total/NA Analyte Added Result Qualifier mg/L 94 90.110 Prep Type: Total/NA Analyte Analyte Added Result Qualifier mg/L 94 90.110 Prep Type: Total/NA Analyte 2.50 2.35 mg/L 94 90.110 0 20 Nitrate as N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.1</td><td></td><td></td><td>Dist</td></t<>											0.1			Dist
Matrix: Water Prep Type: Total/NA Analysis Batch: 127098 MB MB Analysis Batch: 127098 MB MB Nitrate as N ND 0.050 mg/L D Prepared Analyzed Dil Fac Nitrate as N ND 0.050 mg/L Ottrop/25 10:22 1 Lab Sample ID: LCS 380-127098/7 Katrix: Water Client Sample ID: Lab Control Sample Analysis Batch: 127098 Spike LCS LCS LS Analyte Medded Result Qualifier Unit D %Rec Analyte Mitrate as N 2.50 2.35 mg/L 94 90.110 Nitrite as N 1.00 0.942 Mg/L 94 90.110 Lab Sample ID: LCSD 380-127098/8 Client Sample ID: Lab Control Sample Dup Matrix: Water Kacc RPD Analyte Added Result Qualifier Unit D %Rec RPD Analysis Batch: 127098 Spike LCSD LCSD LCSD LSD Meded RPD Mitrite as N 1.00 0.942 mg/L D %Rec RPD Analysis Batch: 127098 Spike LCSD LSD Spike Matrix Mat	Lab Sample ID: MB 380-1270	98/4									Clien	it Sample ID	Method	Blank
Analyte MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Fac Nitrite as N ND 0.050 mg/L 01/09/25 10.22 1 Nitrite as N ND 0.050 mg/L 01/09/25 10.22 1 Lab Sample ID: LCS 380-127098/7 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier mg/L 94 90 - 110 Nitrite as N 1.00 0.942 mg/L 94 90 - 110 Prep Type: Total/NA Natrix: Water Added Result Qualifier mg/L 94 90 - 110 Prep Type: Total/NA Nitrite as N 1.00 0.942 mg/L 94 90 - 110 Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Analyte 0.0942 mg/L 94 90 - 110 0 20	Matrix: Water											Prep	Туре: То	tal/NA
Mis MisAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacNitrite as NND0.050mg/L01/09/25 10:221Noticite as NND0.050mg/L01/09/25 10:221Lab Sample ID: LCS 380-127098/7Client Sample ID: Lab Control SamplePrep Type: Total/NAAnalyteAddedResultQualifierUnitD%RecAnalyteAddedResultQualifierUnitD%RecAnalyteAddedResultQualifierUnitD%RecNitrite as N1.000.942mg/L9490.110Nitrite as N1.000.942mg/L9490.110Lab Sample ID: LCSD 380-127098/8Client Sample ID: Lab Control Sample Dup Prep Type: Total/NAMatrix: Water Analysis Batch: 127098AddedResultQualifierUnitD%RecRPD 49LimitsNitrite as N1.000.942mg/LD%RecRPD 49LimitsRPD 20LimitsNitrite as N1.000.942mg/LD%RecRPD 49LimitsPrep Type: Total/NANitrite as N1.000.942mg/LD%RecRPD 49LimitsPrep Type: Total/NANitrite as N0.01250.01150.01250.0110020Lab Sample ID: MRL 380-127098/5SpikeMRLMRLMRLMecPrep Type: Total/NA <td>Analysis Batch: 127098</td> <td></td>	Analysis Batch: 127098													
AnalyteResultQualifierRLMDUnitDPreparedAnalyzedDil FacNirate as NND0.050mg/L0109/25 10.221Lab Sample ID: LCS 380-127098/7ND0.050mg/L0109/25 10.221Lab Sample ID: LCS 380-127098/7SpikeLCSLCSSample ID: Lab Control SampleMatrix: WaterAnalyzeAddedResultQualifierUnitD%RecAnalyzeAddedResultQualifiermg/L9490.110Nitrite as N1.000.942mg/L9490.110Nitrite as N1.000.942mg/L9490.110Lab Sample ID: LCSD 380-127098/8SpikeLCSDLCSDClient Sample ID: Lab Control Sample Dup mg/LMatrix: WaterAnalyteAddedResultQualifierUnitD%RecRPDAnalyteAddedResultQualifierUnitD%RecRPDLimitsNitrite as N1.000.942mg/L9490.110020Nitrite as N1.000.942mg/L9490.110020Nitrite as N1.000.942mg/L9490.110020Lab Sample ID: MRL 380-127098/51.000.942mg/L9490.110020Lab Sample ID: MRL 380-127098/5SpikeMRLMRLMRLY-RecPrep Type: Total/NAAnalyte0.01250.01250.		_	мвг	ИВ						_	_			
Nitrite as N ND 0.050 mg/L 01/09/25 10:22 1 Nitrite as N ND 0.050 mg/L 01/09/25 10:22 1 Lab Sample ID: LCS 380-127098/7 Matrix: Water Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 127098 Added Result Qualifier Unit D %Rec Limits Nitrite as N 2.50 2.35 mg/L 94 90.110 94 Nitrite as N 1.00 0.942 mg/L 94 90.110 Lab Sample ID: LCSD 380-127098/8 Spike LCSD LCSD Client Sample ID: Lab Control Sample Dup mg/L Matrix: Water Analysis Batch: 127098 Spike LCSD LCSD LCSD Sector RPD mg/L Nitrite as N 1.00 0.942 mg/L 94 90.110 Prep Type: Total/NA Analysis Batch: 127098 Added Result Qualifier Unit D %Rec RPD Nitrite as N 1.00 0.942 mg/L 94 90.110 0 20 Lab Sample ID: MRL 380-127098/5 1.00 0.942 mg/L 94 90.110 0 20 Lab Sample ID: MRL 380-127098/5 Spike MRL MRL	Analyte	R	esult (Qualifier		RL		MDL Ur	nit	<u> </u>	Prepare	d Analy	/zed	Dil Fac
Nitrite as N ND 0.050 mg/L 01/09/25 10:22 1 Lab Sample ID: LCS 380-127098/7 Matrix: Water Analysis Batch: 127098 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 127098 Spike LCS LCS LCS Limits Nitrite as N 1.00 0.942 mg/L 9 %Rec Limits Nitrite as N 1.00 0.942 mg/L 94 90 - 110 Lab Sample ID: LCSD 380-127098/8 Matrix: Water Analysis Batch: 127098 Spike LCSD LCSD LCSD LSD Client Sample ID: Lab Control Sample Dup Matrix: Water Analyte Matrix: Water Madded Result Qualifier Unit D %Rec RPD Analyte Mirate as N 1.00 0.942 mg/L Q 94 90 - 110 20 Nitrite as N 1.00 0.942 mg/L D %Rec RPD Analyte Matrix: Water Matrix: Water Matrix: Water MRL MRL MRL MRL Analyte Matrix: Water Analyte Matrix: Water Matrix: Water Prep Type: Total/NA Analyte Matrix: Water MRL MRL MRL MRL D %Rec	Nitrate as N		ND			0.050		mį	g/L			01/09/2	5 10:22	1
Lab Sample ID: LCS 380-127098/7 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 127098 Spike LCS LCS Matrix: Water Analyte Added Result Qualifier Unit D %Rec Limits	Nitrite as N		ND			0.050		mį	g/L			01/09/2	5 10:22	1
Lab Sample ID: LCS 360-12/050// Spike LCS LCS LCS LCS LCS LCS LCS Limits Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Limits — Nitrite as N 2.50 2.35 mg/L 94 90.110 — — Nitrite as N 1.00 0.942 mg/L 94 90.110 — Lab Sample ID: LCSD 380-127098/8 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Analyte ID: LCSD 380-127098/8 Spike LCSD LCSD Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Nitrite as N 1.00 0.942 mg/L 94 90.110 0 20 Nitrite as N 1.00 0.942 mg/L 94 90.110 0 20 Lab Sample ID: MRL 380-127098/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec	Lab Sample ID: LCS 280 4270	7,000								Clie	nt Com		Control C	omnio
Matrix: Water Prep type: Total/NA Analysis Batch: 127098 Spike LCS LCS VRec Analyte Added Result Qualifier Unit D %Rec Nitrite as N 1.00 0.942 mg/L 94 90.110 Nitrite as N 1.00 0.942 mg/L 94 90.110 Lab Sample ID: LCSD 380-127098/8 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Analyte Added Result Qualifier Unit D %Rec RPD Nitrate as N 2.50 2.35 mg/L 94 90.110 0 20 Nitrite as N 1.00 0.942 mg/L D %Rec RPD Limit Nitrite as N 1.00 0.942 mg/L 94 90.110 0 20 Lab Sample ID: MRL 380-127098/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit Matrix: Water Analysis Batch: 127098 Spike MRL MRL MRL Nitrate as N 0.	Lab Sample ID. LCS 360-1270	J 3 0/7								Cile	ni Sam		Junitor S	
Spike LCS LCS LCS Mark Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 1.00 0.942 mg/L 94 90 - 110 Lab Sample ID: LCSD 380-127098/8 Transport Client Sample ID: Lab Control Sample Dup Matrix: Water Analyte Added Result Qualifier Unit D %Rec RPD Analyte Added Added Result Qualifier Unit D %Rec RPD Analyte Added Result Qualifier Unit D %Rec RPD Analyte Added Result Qualifier Unit D %Rec RPD Nitrate as N 1.00 0.942 mg/L 94 90 - 110 0 20 Lab Sample ID: MRL 380-127098/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Analyte Analyte Added Result Qualifier <t< td=""><td>Analysis Batah: 127000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Frep</td><td>Type: To</td><td></td></t<>	Analysis Batah: 127000											Frep	Type: To	
AnalyteAddedResultQualifierUnitD%RecLimitsNitrate as N2.502.35mg/L9490.110Nitrite as N1.000.942mg/L9490.110Lab Sample ID: LCSD 380-127098/8Client Sample ID: Lab Control Sample Dup Prep Type: Total/NAMatrix: Water AnalyteAddedResultQualifierUnitD%RecRPD UnitsAnalyteAddedResultQualifierUnitD%RecRPD UnitsLimitsNitrate as N2.502.35mg/L9490.110020Nitrate as N1.000.942mg/L9490.110020Lab Sample ID: MRL 380-127098/51.000.942mg/L9490.110020Lab Sample ID: MRL 380-127098/5SpikeMRLMRLMRL%RecRPD LimitsLimits Prep Type: Total/NAAnalyteAddedSpikeMRLMRL9490.110020Lab Sample ID: MRL 380-127098/5SpikeMRLMRLMRL%RecPrep Type: Total/NAAnalyteAddedO.01250.001250.0015Jmg/L950.150—Nitrate as N0.01250.001250.00125Jmg/L7750.150—Nitrate as N0.01250.001250.00965mg/L7750.150—	Analysis Batch. 127090				Sniko		1.09	1.05				% Poc		
AnalyteAddedResultQualifierUnitD%RecLimitsNitrate as N2.502.35mg/L9490.110Nitrite as N1.000.942mg/L9490.110Lab Sample ID: LCSD 380-127098/8Client Sample ID: Lab Control Sample Dup Prep Type: Total/NAAnalyteAddedCSDLCSDAnalyteAddedResultQualifierNitrate as N1.000.942mg/LDNitrate as N1.000.942mg/L94Nitrate as N1.000.942mg/L94Nitrate as N1.000.942mg/L94Nitrate as N1.000.942mg/L94Nitrate as N1.000.942mg/L94Nitrate as N0.01250.0115Jmg/LDNitrate as N0.01250.0115Jmg/LD%RecAnalyte0.01250.0115Jmg/LD%RecLimitsNitrate as N0.01250.01250.0155Jmg/L7750.150	Anchite				Spike		Decult	Ovelifie		-	. % ⊡ -			
Nitrite as N 2.30 2.33 Ing/L 34 30.10 Nitrite as N 1.00 0.942 mg/L 94 90.110 Lab Sample ID: LCSD 380-127098/8 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Analyte Nitrate as N 2.50 2.35 mg/L 94 90.110 0 20 Nitrate as N 1.00 0.942 mg/L D %Rec RPD Limit Nitrite as N 1.00 0.942 mg/L 94 90.110 0 20 Lab Sample ID: MRL 380-127098/5 1.00 0.942 mg/L 94 90.110 0 20 Lab Sample ID: MRL 380-127098/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec Analyte Analysis Batch: 127098 Spike MRL MRL Matrix: Matrix Water Analyte Nitrate as N 0.0125 0.00155 0.0015					2 50		2 25	Quaime		L	- <u>%Re</u>	$\frac{1}{4}$ $\frac{1}{00}$ $\frac{110}{110}$		
Nume as N1.000.942Ing/L9490.110Lab Sample ID: LCSD 380-127098/8 Matrix: Water Analysis Batch: 127098Client Sample ID: Lab Control Sample Dup Prep Type: Total/NAAnalyte Nitrate as NAdded 2.50Result 2.50Qualifier 94Unit 94D 90.110%Rec 94RPD 90.110Lab Sample ID: MRL 380-127098/5 Matrix: Water Analysis Batch: 127098Spike 1.00MRL 0.942MRL mg/LD 94%Rec 94RPD 90.110Limit 0Lab Sample ID: MRL 380-127098/5 Matrix: Water Analysis Batch: 127098Spike Added 0.0125MRL 0.0115MRL JMRL mg/LMRL 92%Rec 50.150Analyte Nitrate as N Nitrite as N0.0125 0.001250.00155 0.00125J mg/LTo 77 50.150J	Nitrite as N				2.50		2.30		mg/L		9	4 90 - 110		
Lab Sample ID: LCSD 380-127098/8 Matrix: Water Analysis Batch: 127098Client Sample ID: Lab Control Sample Dup Prep Type: Total/NAAnalyte Nitrate as NSpike 2.50LCSD 2.35Unit mg/LD%Rec 94RPD 90 - 110Limit 020Nitrite as N1.000.942mg/L9490 - 110020Lab Sample ID: MRL 380-127098/5 Matrix: Water Analysis Batch: 127098Client Sample ID: Lab Control Sample 94Client Sample ID: Lab Control Sample Prep Type: Total/NAAnalyte Nitrite as NSpike 4ddedMRL Result 0.0125MRL 0.0115MRL JMRL mg/L9490 - 110020Lab Sample ID: MRL 380-127098/5 Matrix: Water Analysis Batch: 127098Spike Added 0.0125MRL 0.0115MRL Jmg/L9%Rec 92Limits 50 - 150Nitrite as N Nitrite as N0.01250.00965Jmg/L7750 - 150	Nitrite as N				1.00		0.942		mg/L		9	4 90-110		
Matrix: Water Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec RPD Limits Nitrate as N 2.50 2.35 mg/L 94 90.110 0 20 Nitrite as N 1.00 0.942 mg/L 94 90.110 0 20 Lab Sample ID: MRL 380-127098/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Added Result Qualifier Unit D %Rec RPD Limit Analyte Matrix: Water Added Result Qualifier Unit D %Rec Prep Type: Total/NA Analyte Matrix: Water Added Result Qualifier Unit D %Rec Analyte Nitrate as N 0.0125 0.0115 J mg/L D %Rec Nitrite as N 0.0125 0.0115 J mg/L 77 50.150	Lab Sample ID: LCSD 380-12	7098/8							C	liont Sa	mole II	D: Lab Contr	ol Samo	
Analysis Batch: 127098 Spike LCSD LCSD LCSD WRec RPD Analyte Added Result Qualifier Unit D %Rec RPD Limits RPD Limit Nitrate as N 2.50 2.35 mg/L 94 90 - 110 0 20 Nitrite as N 1.00 0.942 mg/L 94 90 - 110 0 20 Lab Sample ID: MRL 380-127098/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Added Result Qualifier Unit D %Rec Analysis Batch: 127098 Spike MRL MRL %Rec Prep Type: Total/NA Nitrate as N 0.0125 0.0115 J mg/L D %Rec Limits Nitrate as N 0.0125 0.0115 J mg/L 77 50 - 150	Matrix: Water	1030/0									imple i	D. Lab Conti Prop		
SpikeLCSDLCSDLCSD%RecRPDAnalyteAddedResultQualifierUnitD%RecLimitsRPDLimitNitrate as N2.502.352.35mg/L9490-110020Nitrite as N1.000.942mg/L9490-110020Lab Sample ID: MRL 380-127098/51.000.942mg/L9490-110020Matrix: WaterAnalysis Batch: 127098SpikeMRLMRLPrep Type: Total/NAAnalyteAddedResultQualifierUnitD%RecNitrate as N0.01250.0115Jmg/L9250-150Nitrite as N0.01250.00965Jmg/L7750-150	Analysis Batch: 127098											Tieb	Type. To	
AnalyteAddedResultQualifierUnitD%RecLimitsRPDLimitNitrate as N2.502.35mg/L9490 - 110020Nitrite as N1.000.942mg/L9490 - 110020Lab Sample ID: MRL 380-127098/5Client Sample ID: Lab Control SampleMatrix: WaterSpikeMRLMRLPrep Type: Total/NAAnalyteAddedResultQualifierUnitD%RecAnalyte0.01250.0115Jmg/LD%RecLimitsNitrite as N0.01250.00965Jmg/L7750 - 150	Analysis Batch. 127030				Snike							%Rec		RPD
Added Result Claimer Ont D Added RFD Linit Nitrate as N 2.50 2.35 mg/L 94 90 - 110 0 20 Nitrite as N 1.00 0.942 mg/L 94 90 - 110 0 20 Lab Sample ID: MRL 380-127098/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Prep Type: Total/NA Analysis Batch: 127098 Spike MRL MRL %Rec Added Result Qualifier Unit D %Rec Nitrate as N 0.0125 0.00965 mg/L 77 50 - 150	Analuto						Bocult	Qualifia	r Unit	г) % ₽o	, Limite	חפפ	Limit
Nitrite as N 2.00 2.00 2.00 100 0.4 00 - 110 0 20 Nitrite as N 1.00 0.942 mg/L 94 90 - 110 0 20 Lab Sample ID: MRL 380-127098/5 Matrix: Water Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 127098 Spike MRL MRL %Rec Analyte Added Result Qualifier Unit D %Rec Nitrate as N 0.0125 0.0115 J mg/L 77 50 - 150	Nitrate as N				2 50		2 35	Quanne				4 90 110		20
Lab Sample ID: MRL 380-127098/5 Client Sample ID: Lab Control Sample Matrix: Water Client Sample ID: Lab Control Sample Analysis Batch: 127098 Spike MRL MRL %Rec Analyte Added Result Qualifier Unit D %Rec Nitrate as N 0.0125 0.0125 0.00965 J mg/L 77 50 - 150	Nitrito as N				1.00		0.042		mg/L		0	4 90 110	0	20
Lab Sample ID: MRL 380-127098/5 Matrix: Water Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 127098 Spike MRL MRL %Rec Analyte Added Result Qualifier Unit D %Rec Nitrate as N 0.0125 0.0115 J mg/L 77 50 - 150	Nume as N				1.00		0.942		mg/L		9	4 90-110	0	20
Matrix: Water Prep Type: Total/NA Analysis Batch: 127098 Spike MRL MRL %Rec Analyte Added Result Qualifier Unit D %Rec Nitrate as N 0.0125 0.0115 J mg/L 77 50 - 150	Lab Sample ID: MRL 380-1270	098/5								Clie	nt Sam	nle ID: Lab (Control S	ample
Analysis Batch: 127098 Spike MRL MRL %Rec Analyte Added Result Qualifier Unit D %Rec Nitrate as N 0.0125 0.0115 J mg/L 92 50 - 150 Nitrite as N 0.0125 0.00965 J mg/L 77 50 - 150	Matrix: Water									5110	Juin	Pren	Type: To	tal/NA
Analyte Spike MRL MRL MRL %Rec Analyte Added Result Qualifier Unit D %Rec Nitrate as N 0.0125 0.0115 J mg/L 92 50 - 150 Nitrite as N 0.0125 0.00965 J mg/L 77 50 - 150	Analysis Batch: 127098											p	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 0.0125 0.0115 J mg/L 92 50 - 150 Nitrite as N 0.0125 0.00965 J mg/L 77 50 - 150	Analysis Batell. 121000				Snike		MRI	MRL				%Rec		
Nitrate as N 0.0125 0.0115 J mg/L 92 50 - 150 Nitrite as N 0.0125 0.00965 J mg/L 77 50 - 150	Analyte				hahhA		Result	Qualifie	r Unit	г) %Ro	c Limits		
Nitrite as N 0.0125 0.00965 J mg/L 77 50 - 150	Nitrate as N				0.0125		0.0115	J			9	2 50 - 150		
	Nitrite as N				0.0125		0.00965	J	ma/L		7	7 50 - 150		

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MRL 380-127098/6									Cli	ent	Sample	e ID: Lab C	ontrol S	ample
Matrix: Water												Prep	Type: To	tal/NA
Analysis Batch: 127098														
			Spike		MRL	MRL						%Rec		
Analyte			Added		Result	Qual	ifier	Unit		<u>D</u>	%Rec	Limits		
Nitrate as N			0.0500		0.0462	J		mg/L			92	50 - 150		
Nitrite as N			0.0500		0.0456	J		mg/L			91	50 - 150		
Lab Sample ID: MB 380-127099/4											Client S	Sample ID:	Method	Blank
Matrix: Water												Prep	Type: To	tal/NA
Analysis Batch: 127099													.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	МВ	МВ												
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pi	repared	Analy	zed	Dil Fac
Chloride	ND			0.50			mg/L					01/09/25	10:22	1
Sulfate	ND			0.25			mg/L					01/09/25	10:22	1
Lab Sample ID: LCS 280 427000/7									CI	ont	Samul		ontrol C	omnlo
Lab Sample ID. LCS 360-127099/7 Matrix: Water									CI	ent	Sample	Bron		
Matrix. Water												Prep	Type: To	
Analysis Batch. 127035			Snike		LCS	LCS						%Rec		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride			25.0		24.8			ma/L		_	99	90 - 110		
Sulfate			50.0		48.5			mg/L			97	90 - 110		
								~					10	
Lab Sample ID: LCSD 380-127099/8								C	lient S	Sam	ple ID:	Lab Contr	ol Sampl	le Dup
Lab Sample ID: LCSD 380-127099/8 Matrix: Water								C	lient S	Sam	ple ID:	Lab Contro Prep	ol Sampl Type: To	le Dup tal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099			Spiko			1.05		C	lient S	Sam	ple ID:	Lab Contro Prep	ol Sampl Type: To	le Dup tal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099			Spike		LCSD	LCSI) ifior	C	lient S	Sam	ple ID:	Lab Contro Prep %Rec	DI Sampl Type: To	le Dup tal/NA RPD
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099			Spike Added		LCSD Result	LCSI Qual) ifier	Cl Unit	lient S	Sam	ple ID: %Rec	Lab Contro Prep %Rec Limits	DI Sampl Type: To 	RPD Limit
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride			Spike Added 25.0		LCSD Result 24.7 48.4	LCSI Qual) ifier	C Unit mg/L mg/l	lient S	Sam	ple ID: %Rec 99 97	Lab Contro Prep %Rec Limits 90 - 110	DI Sampl Type: To RPD 0	RPD Limit 20
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate			Spike Added 25.0 50.0		LCSD Result 24.7 48.4	LCSI Qual) ifier	Unit mg/L mg/L	lient S	Sam	ple ID: %Rec 99 97	Lab Contro Prep %Rec Limits 90 - 110 90 - 110	Sampl Type: To RPD 0 0	RPD Limit 20 20
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5			Spike Added 25.0 50.0		LCSD Result 24.7 48.4	LCSI Qual) ifier	Unit mg/L mg/L	lient S	<u>D</u>	ple ID: %Rec 99 97 Sample	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110	ol Sampl Type: To RPD 0 0 ontrol S	RPD Limit 20 20 ample
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water			Spike Added 25.0 50.0		LCSD Result 24.7 48.4	LCSI Qual) ifier	C Unit mg/L mg/L	Lient S	<u>D</u> ent	%Rec 99 97 Sample	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 e ID: Lab C Prep	ol Sampl Type: To RPD 0 0 ontrol S Type: To	RPD Limit 20 20 ample tal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099			Spike Added 25.0 50.0		LCSD Result 24.7 48.4	LCSI Qual) ifier	Cl mg/L mg/L	lient S	<u>D</u>	%Rec 99 97 Sample	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 90 - 110 Prep	RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RPD Limit 20 20 ample ttal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099			Spike Added 25.0 50.0 Spike		LCSD Result 24.7 48.4 MRL	LCSI Qual) ifier	Cl mg/L mg/L	Lient S	<u>D</u>	%Rec 99 97 Sample	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 e ID: Lab C Prep %Rec	ol Sampl Type: To RPD 0 0 0 ontrol S Type: To	RPD Limit 20 20 ample ttal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analyte			Spike Added 25.0 50.0 Spike Added		LCSD Result 24.7 48.4 MRL Result	LCSI Qual MRL Qual) ifier ifier	Cl Unit mg/L mg/L	Lient S	<u>D</u> ent	%Rec 99 97 Sample %Rec	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 e ID: Lab C Prep %Rec Limits	ol Sampl Type: To RPD 0 0 ontrol S Type: To	le Dup ttal/NA RPD Limit 20 20 ample ttal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analysis Batch: 127099 Analysis Batch: 127099 Analyte Chloride			Spike Added 25.0 50.0 Spike Added 0.125		LCSD Result 24.7 48.4 MRL Result 0.123	LCSI Qual MRL Qual) ifier ifier	Cl mg/L mg/L <u>Unit</u> mg/L	Cli	<u>D</u> ent	%Rec 99 97 Sample %Rec 98	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 90 - 110 e ID: Lab C Prep %Rec Limits 50 - 150	ol Sampl Type: To RPD 0 0 ontrol S Type: To	le Dup ttal/NA RPD Limit 20 20 ample ttal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate			Spike Added 25.0 50.0 Spike Added 0.125 0.250		LCSD Result 24.7 48.4 MRL Result 0.123 0.257	LCSI Qual MRL Qual) ifier	Cl mg/L mg/L mg/L mg/L	Cli	D ent	%Rec 99 97 Sample %Rec 98 103	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 e ID: Lab C Prep %Rec Limits 50 - 150 50 - 150	ol Sampl Type: To 0 0 ontrol S Type: To	le Dup tal/NA RPD Limit 20 20 ample tal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/6			Spike Added 25.0 50.0 Spike Added 0.125 0.250		LCSD Result 24.7 48.4 MRL Result 0.123 0.257	LCSI Qual MRL J) ifier	Cl mg/L mg/L Mg/L mg/L mg/L	Cli	ent	%Rec 99 97 Sample %Rec 98 103 Sample	Lab Contr Prep %Rec Limits 90 - 110 90 - 110 90 - 110 e ID: Lab C Frep %Rec Limits 50 - 150 50 - 150	ol Sampl Type: To	e Dup tal/NA RPD Limit 20 20 ample tal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/6 Matrix: Water			Spike Added 25.0 50.0 Spike Added 0.125 0.250		LCSD Result 24.7 48.4 MRL Result 0.123 0.257	LCSI Qual MRL Qual) ifier	Cl mg/L mg/L mg/L mg/L mg/L	Cli	<u>D</u> ent	%Rec 99 97 Sample %Rec 98 103 Sample	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 90 - 110 e ID: Lab C 70 - 150 50 - 150 50 - 150 e ID: Lab C Prep	ol Sampl Type: To RPD 0 0 ontrol S Type: To ontrol S Type: To	tal/NA RPD Limit 20 20 ample tal/NA ample tal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/6 Matrix: Water Analysis Batch: 127099			Spike Added 25.0 50.0 Spike Added 0.125 0.250		LCSD Result 24.7 48.4 MRL Result 0.123 0.257	LCSI Qual MRL Qual) ifier	Cl mg/L mg/L mg/L mg/L	Cli	<u>D</u> ent	%Rec 99 97 Sample %Rec 98 103 Sample	Lab Contro Prep %Rec Limits 90 - 110 90 - 100 90	ol Sampl Type: To RPD 0 ontrol S Type: To ontrol S Type: To	e Dup tal/NA RPD Limit 20 20 ample tal/NA ample
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/6 Matrix: Water Analysis Batch: 127099			Spike Added 25.0 50.0 Spike Added 0.125 0.250 Spike		LCSD Result 24.7 48.4 MRL Result 0.123 0.257 MRL	LCSI Qual MRL Qual) ifier	Cl mg/L mg/L mg/L mg/L	Cli	<u>D</u> ent	%Rec 99 97 Sample %Rec 98 103 Sample	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 90 - 110 90 - 110 90 - 110 90 - 150 50 - 150	ol Sampl Type: To	e Dup tal/NA RPD Limit 20 20 ample tal/NA ample tal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/6 Matrix: Water Analysis Batch: 127099 Analyte			Spike Added 25.0 50.0 Spike Added 0.125 0.250 Spike Added 0.250		LCSD Result 24.7 48.4 MRL Result 0.123 0.257 MRL Result	LCSI Qual MRL Qual J MRL Qual) ifier ifier	Cl mg/L mg/L mg/L mg/L mg/L	Cli	<u>D</u> ent	%Rec 99 97 Sample %Rec 98 103 Sample %Rec	Lab Contro Prep %Rec Limits 90 - 110 90 - 110 90 - 110 e ID: Lab C Prep %Rec Limits 50 - 150 50 - 150 e ID: Lab C Prep %Rec Limits	ol Sampl Type: To	e Dup ttal/NA RPD Limit 20 20 ample ttal/NA
Lab Sample ID: LCSD 380-127099/8 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Matrix: Water Analysis Batch: 127099 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/5 Analyte Chloride Sulfate Lab Sample ID: MRL 380-127099/6 Matrix: Water Analysis Batch: 127099 Analysis Batch: 127099 Analysis Batch: 127099 Analysis Batch: 127099			Spike Added 25.0 50.0 Spike Added 0.125 0.250 Spike Added 0.250		LCSD Result 24.7 48.4 MRL Result 0.123 0.257 MRL Result 0.435	LCSI Qual MRL Qual J) ifier ifier	Cl mg/L mg/L mg/L mg/L	Cli	<u>D</u> ent <u>D</u>	%Rec 99 97 Sample %Rec 98 103 Sample %Rec 98 103 Sample %Rec	Lab Contri Prep %Rec Limits 90 - 110 90 - 110 90 - 110 90 - 110 91 - 110 91 - 110 91 - 110 92 - 150 50 - 150 50 - 150 9 - 150 %Rec Limits 50 - 150	ol Sampl Type: To 0 0 ontrol S Type: To Ontrol S Type: To	ample

17

Matrix: Water

Analyte

Glyphosate

Analysis Batch: 127377

Method: 531.2 - Carbamate Pesticides (HPLC)

Lab Sample ID: MBL 380-12729	5/3-A										Client Sa	ample ID: Metho	od Blank
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 127376												Prep Batch	: 127295
-	М	BL MBL											
Analyte	Res	ult Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Carbofuran		ND		0.50			ug/L			01/1	0/25 14:27	01/11/25 02:24	1
Oxamvl		ND		0.50			ua/L			01/1	0/25 14:27	01/11/25 02:24	1
y.							3						
	M	BL MBL											
Surrogate	%Recove	ery Qualifier	Limi	ts						P	repared	Analyzed	Dil Fac
BDMC	1	113	70 - 1	130						01/1	0/25 14:27	01/11/25 02:24	1
_ Lab Sample ID: LCS 380-12729	5/28-A								С	lient	Sample	ID: Lab Control	Sample
Matrix: Water									_			Pren Type:	Total/NA
Analysis Batch: 127376												Pren Batch	• 127295
Analysis Batch. 127070			Snike		LCS	LCS						%Rec	. 12/200
Analyte			Addad		Posult	0112	lifior	Unit		п	%Pec	Limite	
			5.00		5.08	Qua					102	70 130	
Oxomul			5.00		1.60			ug/L			04	70 - 130	
Oxamyi			5.00		4.00			ug/L			94	70 - 130	
	LCS L	cs											
Surrogate	%Recovery 0	Qualifier	Limits										
BDMC	102		70 - 130										
-													
Lab Sample ID: MRL 380-12729	5/2-A								С	lient	Sample	ID: Lab Control	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 127376												Prep Batch	: 127295
			Spike		MRL	MRL						%Rec	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Carbofuran			0.500		0.614			ug/L			123	50 - 150	
Oxamvl			0.500		0.312	J		ua/L			62	50 - 150	
								0					
	MRL N	<i>NRL</i>											
Surrogate	%Recovery	Qualifier	Limits										
BDMC	99		70 - 130										
Mathadi E47 Chuphagata (
method: 547 - Gryphosate (i													
- Lab Sample ID: MBL 290 12724	2/2 1										Client Sc	mplo ID: Moth	d Blank
Lab Sample ID. WBL 500-12/54	2/ 3- A										Chefft 3d		
Matrix: Water												Prep Type:	10tal/NA
Analysis Batch: 12/3//												Prep Batch	: 12/342
	M	BL MBL		-					_	_		.	
Analyte	Res	Qualifier		RL		MDL	Unit		_ D	P	repared	Analyzed	Dil Fac
Glyphosate	I	ND		6.0			ug/L			01/1	0/25 11:54	01/10/25 20:21	1
- Lab Sample ID: LCS 380-127342	2/23-A								С	lient	Sample	ID: Lab Control	Sample

	5
	8
	0
	3
1	9 0
1	9 0 1
	9 1 2
	9 1 2 3
1 1 1 1	9 0 1 2 3
	9 0 1 2 3 4
	9 0 1 2 3 4 5

Eurofins Eaton Analytical Pomona

%Rec

Limits

80 - 120

Spike

Added

10.0

LCS LCS

10.6

Result Qualifier

Unit

ug/L

D

%Rec

106

Prep Type: Total/NA

Prep Batch: 127342

Job ID: 380-129268-1

Method: 547 - Glyphosate (DAI HPLC) (Continued)

Lab Sample ID: MRL 380-127342/2-A								CI	ient	Sample	ID: Lab Contro	ol Sample
Matrix: Water											Prep Type	: Total/NA
Analysis Batch: 127377											Prep Batc	h: 127342
			Spike		MRL	MRL					%Rec	
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Glyphosate			6.00		6.28		ug/L		_	105	50 - 150	
Method: 549.2 - Diquat and Paraq	uat (HF	PLC)										
Lab Sample ID: MB 380-127237/1-A										Client Sa	ample ID: Meth	nod Blank
Matrix: Water											Prep Type	: Total/NA
Analysis Batch: 127573											Prep Batc	h: 127237
	MB	МВ									-	
Analyte	Result	Qualifier		RL		MDL Unit		D	Р	repared	Analyzed	Dil Fac
Diquat	ND			0.40		ug/L			01/1	0/25 11:57	01/11/25 16:01	1
Lab Sample ID: CS 380-127237/4-A								CI	ient	Sample	ID: Lab Contro	ol Sample
Matrix: Water											Pren Type	: Total/NA
Analysis Batch: 127573											Pren Batc	h. 127237
Analysis Batch. 121010			Snike		LCS	LCS					%Rec	
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Diquat			5.00		3.60		ug/L		-	72	70 - 130	
Lab Sample ID: LCSD 380-127237/5-A							С	lient \$	Sam	nple ID: L	ab Control Sa	mple Dup
Matrix: Water											Prep Type	: Total/NA
Analysis Batch: 127573											Prep Batc	h: 127237
			Spike		LCSD	LCSD					%Rec	RPD
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits R	PD Limit
Diquat			4.99		4.42		ug/L			89	70 - 130	20 20
Lab Sample ID: MRL 380-127237/2-A								CI	ient	Sample	ID: Lab Contro	ol Sample
Matrix: Water											Prep Type	: Total/NA
Analysis Batch: 127573											Prep Batc	h: 127237
· · · · · · · · · · · · · · · · · · ·			Spike		MRL	MRL					%Rec	
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Diquat			0.400		ND		ug/L		_	60	50 - 150	
Method: 331.0 - Perchlorate (LC/N	IS/MS)											
										Client S	ample ID: Meth	od Blank
Matrix: Water										Short O	Pren Type	· Total/NA
Analysis Batch: 127238											i i op i j pe	
Analysis Batch. 121200	MBL	MBL										
Analyte	Result	Qualifier		RL		MDL Unit		D	Р	repared	Analyzed	Dil Fac
Perchlorate	ND	quamor		0.50		ug/L			· ·	iopulou	01/10/25 12:23	1
										_		
Lab Sample ID: LCS 380-127238/11								CI	ient	Sample	ID: Lab Contro	ol Sample
Matrix: Water											Prep Type	: Total/NA
Analysis Batch: 127238												
			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qualifier	Unit		<u>D</u>	%Rec	Limits	
Perchlorate			19.6		19.0		ug/L			97	80 - 120	

1 -1 2 -3 -3 -3 -4 42 5 -6 -7 nk 8 -37 9 Fac 10

Job ID: 380-129268-1

10

17

Method: 331.0 - Perchlorate (LC/MS/MS) (Continued)

Lab Sample ID: LCSD 380-1	27238/12					Clie	ent San	nple ID: L	ab Contro	I Samp	le Dup
Matrix: Water									Prep 1	Type: To	otal/NA
Analysis Batch: 127238									~-		
Amelute			Spike	LCSD	LCSD	11		% Dee	%Rec		RPD
Analyte Perchlorate			10.6	10.5	Qualifier						20
			19.0	19.0		ug/L		55	00 - 120	5	20
Lab Sample ID: MRL 380-12	7238/1008						Clien	t Sample	ID: Lab C	ontrol S	ample
Matrix: Water									Prep 1	Г <mark>уре: Т</mark> о	otal/NA
Analysis Batch: 127238											
			Spike	MRL	MRL				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Perchlorate			0.490	0.537		ug/L		110	50 - 150		
Method: 1613B - Tetra C	hlorinated Di	oxin (GC/N	IS/MS)								
Lab Sample ID: MBL 380-12	8005/21-A							Client Sa	ample ID:	Method	Blank
Matrix: Water									Prep 1	Type: To	otal/NA
Analysis Batch: 128307									Prep l	Batch: 1	128005
-		MBL MBL									
Analyte	R	esult Qualifier	RL		MDL Unit		D F	Prepared	Analyz	ed	Dil Fac
2,3,7,8-TCDD		ND	4.9		pg/L		01/	15/25 10:30	01/16/25	11:31	1
		MBL MBL									
Isotope Dilution	%Reco	very Qualifier	Limits				F	Prepared	Analyz	ed	Dil Fac
13C-2,3,7,8-TCDD		108	31 - 137				01/	15/25 10:30	01/16/25	11:31	1
Lab Sample ID: LCS 380-12	8005/19_0						Clion	t Samnlo	ID: Lab C	ontrol S	amplo
Matrix: Water	0003/13-A						Clien	t Sample	Pron 1	Type: To	otal/NΔ
Analysis Batch: 128307									Pren	Batch:	128005
Analysis Batch. 120007			Spike	LCS	LCS				%Rec	Baten.	120000
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
2,3,7,8-TCDD			197	182		pg/L		92	73 - 146		
	LCS	LCS									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C-2,3,7,8-TCDD	84		25 - 141								
Lab Sample ID: LCSD 380-1	28005/20-A					Clie	ent San	nple ID: L	ab Contro	ol Samp	le Dup
Matrix: Water									Prep	ype: To	otal/NA
Analysis Batch: 128307			0	1.000	1.000				Prep	Batch: '	128005
Anchite			Spike	LCSD	LUSD	11	_	0/ Dee	%Rec		RPD
				196	Quaimer				73 146	2	20
2,3,7,6-1600	1.050	1000	197	100		pg/L		90	75 - 140	2	20
Isotone Dilution	%Recovery	Qualifier	l imits								
13C-2 3 7 8-TCDD	<u>90</u>		25 - 141								
	50		20-141								
Lab Sample ID: MRL 380-12	8005/22-A						Clien	t Sample	ID: Lab Co	ontrol S	ample
Matrix: Water									Prep 1	Type: To	otal/NA
Analysis Batch: 128307									Prep	Batch: "	128005
			Spike	MRL	MRL				%Rec		
Analyte			Added	Result	Qualifier	Unit	<u>D</u>	%Rec	Limits		
2,3,7,8-TCDD			4.92	4.51	J	pg/L		92	50 - 150		
	MRL	MRL									
Isotope Dilution	%Recovery	Qualifier	Limits								
130-2,3,7,8-10DD	86		25 - 141								

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MBL 380-128044/1-A Matrix: Water											Client S Prep	ample ID: Type: Tota	Method al Recov	I Blank verable
Analysis Datch. 120510	MBL	MBL										Tieb	Daten.	120044
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analy	zed	Dil Fac
Calcium	ND			1.0			mg/L		· _	01/1	5/25 10:12	01/15/25	18:13	1
Iron	ND			0.010			mg/L			01/1	5/25 10:12	01/15/25	18:13	1
Magnesium	ND			0.10			mg/L			01/1	5/25 10:12	01/15/25	18:13	1
Potassium	ND			1.0			mg/L			01/1	5/25 10:12	01/15/25	18:13	1
Sodium	ND			1.0			mg/L			01/1	5/25 10:12	01/15/25	18:13	1
Lab Sample ID: LCS 380-128044/3-A									С	lient	Sample	ID: Lab C	ontrol S	Sample
Matrix: Water											Prep	Type: Tota	al Recov	verable
Analysis Batch: 128310												Prep	Batch:	128044
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Calcium			50.0		48.5			ma/L			97	85 - 115		
Iron			5.00		4.73			ma/L			95	85 - 115		
Magnesium			20.0		19.3			ma/l			97	85 - 115		
Potassium			20.0		19.4			ma/l			97	85 - 115		
Sodium			50.0		48.4			ma/l			97	85 115		
			00.0		10.1			iiig/E			01	001110		
Lab Sample ID: LCSD 380-128044/4-A								С	ient	Sam	nole ID: I	Lab Contro	ol Samp	le Dup
Matrix: Water											Prep	Type: Tota	al Recov	verable
Analysis Batch: 128310												Prep	Batch:	128044
······,····			Spike		LCSD	LCS	D					%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Calcium			50.0		49.4			ma/L			99	85 - 115	2	20
Iron			5.00		4.82			ma/L			96	85 - 115	2	20
Magnesium			20.0		19.7			ma/L			99	85 - 115	2	20
Potassium			20.0		19.8			ma/L			99	85 - 115	2	20
Sodium			50.0		49.6			ma/l			99	85 - 115	2	20
			00.0					<u>g</u> /_				00 - 110	-	20
Lab Sample ID: LLCS 380-128044/2-A									С	lient	Sample	ID: Lab C	ontrol S	Sample
Matrix: Water											Prep	Type: Tota	al Recov	verable
Analysis Batch: 128310												Prep	Batch:	128044
			Spike		LLCS	LLC	s					%Rec		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Calcium			1.00		0.995	J		mg/L			100	50 - 150		
Iron			0.0100		0.0103			mg/L			103	50 - 150		
Magnesium			0.100		0.103			mg/L			103	50 - 150		
Potassium			1.00		0.965	J		mg/L			96	50 - 150		
Sodium			1.00		0.994	J		mg/L			99	50 _ 150		
Method: 200.8 - Metals (ICP/MS)														
Lab Sample ID: MBI_380-127526/1-4				_		_	_		_	_	Client S	ample ID [.]	Method	Blank
Matrix: Water											Pren	Type: Tot	al Recov	verable
Analysis Batch: 127638												Pren	Batch	127526
	MRI	MBL										iicp	201011.	
	INDE													

Eurofins Eaton Analytical Pomona

17

Job ID: 380-129268-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: MBL 380-127526/1-A **Matrix: Water**

Analysis Batch: 127638

	MBL	WBL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		0.30		ug/L		01/13/25 09:30	01/13/25 15:48	1
Cadmium	ND		0.50		ug/L		01/13/25 09:30	01/13/25 15:48	1
Chromium	ND		0.90		ug/L		01/13/25 09:30	01/13/25 15:48	1
Copper	ND		1.0		ug/L		01/13/25 09:30	01/13/25 15:48	1
Lead	ND		0.50		ug/L		01/13/25 09:30	01/13/25 15:48	1
Manganese	ND		2.0		ug/L		01/13/25 09:30	01/13/25 15:48	1
Selenium	ND		2.0		ug/L		01/13/25 09:30	01/13/25 15:48	1
Silver	ND		0.50		ug/L		01/13/25 09:30	01/13/25 15:48	1
Thallium	ND		0.30		ug/L		01/13/25 09:30	01/13/25 15:48	1
Vanadium	ND		2.0		ug/L		01/13/25 09:30	01/13/25 15:48	1
Zinc	ND		20		ug/L		01/13/25 09:30	01/13/25 15:48	1

Lab Sample ID: LCS 380-127526/3-A

Matrix: Water Analysis Batch: 127638

Spike LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Aluminum 50.0 56.4 ug/L 113 85-115 Antimony 50.0 50.7 ug/L 101 85.115 Arsenic 50.0 52.3 ug/L 102 85.115 Barium 50.0 51.2 ug/L 103 85.115 Beryllinin 50.0 51.2 ug/L 103 85.115 Cadmium 50.0 51.4 ug/L 103 85.115 Cadmium 50.0 50.4 ug/L 101 85.115 Cadmium 50.0 50.4 ug/L 101 85.115 Cadmium 50.0 50.5 ug/L 104 85.115 Lead 50.0 50.8 ug/L 104 85.115 Selenium 50.0 50.8 ug/L 101 85.115 Silver 50	Analysis Batch: 127638							Prep Ba	tch: 127526
Analyte Added Result Qualifier Unit D %Rec Limits Aluminum 50.0 56.4 ug/L 113 85 - 115 Antimony 50.0 50.7 ug/L 101 85 - 115 Arsenic 50.0 52.3 ug/L 102 85 - 115 Barium 50.0 51.2 ug/L 103 85 - 115 Beryllium 50.0 51.4 ug/L 103 85 - 115 Cadmium 50.0 50.4 ug/L 101 85 - 115 Copper 50.0 50.4 ug/L 101 85 - 115 Lead 50.0 50.5 ug/L 104 85 - 115 Manganese 50.0 50.6 ug/L 101 85 - 115 Silver 50.0 50.8 ug/L 101 85 - 115 Silver 50.0 50.8 ug/L 102 85 - 115 Yanadium 50.0 50.0 ug/L		Spike	LCS	LCS				%Rec	
Aluminum 50.0 56.4 ug/L 113 85.115 Antimony 50.0 50.7 ug/L 101 85.115 Arsenic 50.0 52.3 ug/L 105 85.115 Barium 50.0 51.2 ug/L 102 85.115 Beryllium 50.0 51.4 ug/L 103 85.115 Cadmium 50.0 50.4 ug/L 101 85.115 Cadmium 50.0 50.4 ug/L 101 85.115 Copper 50.0 50.5 ug/L 101 85.115 Lead 50.0 51.8 ug/L 101 85.115 Selenium 50.0 50.6 ug/L 101 85.115 Silver 50.0 50.8 ug/L 101 85.115 Silver 50.0 50.8 ug/L 101 85.115 Thallium 50.0 50.0 ug/L 100 85.115 Vanadium 50.0 50.0 ug/L 100 85.115	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony50.050.7ug/L10185 - 115Arsenic50.052.3ug/L10285 - 115Barium50.051.2ug/L10385 - 115Beryllium50.051.4ug/L10185 - 115Cadmium50.050.4ug/L10185 - 115Copper50.050.5ug/L10185 - 115Lead50.051.8ug/L10485 - 115Selenium50.050.6ug/L10185 - 115Selenium50.050.6ug/L10185 - 115Silver50.050.8ug/L10785 - 115Silver50.050.8ug/L10285 - 115Thallium50.050.0ug/L10085 - 115Vanadium50.050.0ug/L10085 - 115Zinc50.050.0ug/L10085 - 115Lead50.050.0ug/L10085 - 115Silver50.050.0ug/L10085 - 115Silver50.050.0ug/L10085 - 115Linum50.050.0ug/L10085 - 115Linum50.050.0ug/L10685 - 115Linum50.050.1ug/L10685 - 115	Aluminum	50.0	56.4		ug/L		113	85 - 115	
Arsenic50.052.3ug/L10585.115Barium50.051.2ug/L10285.115Beryllium50.051.4ug/L10385.115Cadmium50.050.4ug/L10185.115Chromium50.050.5ug/L10185.115Copper50.051.8ug/L10485.115Lead50.050.6ug/L10185.115Manganese50.050.6ug/L10185.115Silver50.050.8ug/L10785.115Silver50.050.8ug/L10285.115Thallium50.050.0ug/L10085.115Yanadium50.050.0ug/L10085.115Zinc50.050.0ug/L10085.115	Antimony	50.0	50.7		ug/L		101	85 - 115	
Barium50.051.2ug/L10285 - 115Beryllium50.051.4ug/L10385 - 115Cadmium50.050.4ug/L10185 - 115Chromium50.050.5ug/L10185 - 115Copper50.051.8ug/L10485 - 115Lead50.048.9ug/L9885 - 115Manganese50.050.6ug/L10185 - 115Selenium50.050.8ug/L10785 - 115Silver50.050.8ug/L10285 - 115Thallium50.050.0ug/L10085 - 115Vanadium50.050.0ug/L10085 - 115Zinc50.053.1ug/L10685 - 115	Arsenic	50.0	52.3		ug/L		105	85 _ 115	
Beryllium50.051.4ug/L10385.115Cadmium50.050.4ug/L10185.115Chromium50.050.5ug/L10185.115Copper50.051.8ug/L10485.115Lead50.048.9ug/L9885.115Manganese50.050.6ug/L10185.115Selenium50.053.3ug/L10785.115Silver50.050.8ug/L10285.115Thallium50.050.0ug/L10085.115Vanadium50.050.0ug/L10085.115Zinc50.053.1ug/L10685.115	Barium	50.0	51.2		ug/L		102	85 _ 115	
Cadmium50.050.4ug/L10185 - 115Chromium50.050.5ug/L10485 - 115Copper50.051.8ug/L10485 - 115Lead50.048.9ug/L9885 - 115Manganese50.050.6ug/L10185 - 115Selenium50.053.3ug/L10785 - 115Silver50.050.8ug/L10285 - 115Thallium50.050.090.49.710085 - 115Vanadium50.053.1ug/L10685 - 115	Beryllium	50.0	51.4		ug/L		103	85 - 115	
Chromium 50.0 50.5 ug/L 101 85 - 115 Copper 50.0 51.8 ug/L 104 85 - 115 Lead 50.0 48.9 ug/L 98 85 - 115 Manganese 50.0 50.6 ug/L 101 85 - 115 Selenium 50.0 50.3 ug/L 107 85 - 115 Silver 50.0 50.8 ug/L 102 85 - 115 Thallium 50.0 50.0 ug/L 100 85 - 115 Vanadium 50.0 49.7 ug/L 99 85 - 115 Zinc 50.0 53.1 ug/L 106 85 - 115	Cadmium	50.0	50.4		ug/L		101	85 - 115	
Copper 50.0 51.8 ug/L 104 85 - 115 Lead 50.0 48.9 ug/L 98 85 - 115 Manganese 50.0 50.6 ug/L 101 85 - 115 Selenium 50.0 53.3 ug/L 107 85 - 115 Silver 50.0 50.8 ug/L 102 85 - 115 Thallium 50.0 50.0 ug/L 100 85 - 115 Vanadium 50.0 49.7 ug/L 99 85 - 115 Zinc 50.0 53.1 ug/L 106 85 - 115	Chromium	50.0	50.5		ug/L		101	85 _ 115	
Lead50.048.9ug/L9885.115Manganese50.050.6ug/L10185.115Selenium50.053.3ug/L10785.115Silver50.050.8ug/L10285.115Thallium50.050.0ug/L10085.115Vanadium50.049.7ug/L9985.115Zinc50.053.1ug/L10685.115	Copper	50.0	51.8		ug/L		104	85 - 115	
Manganese 50.0 50.6 ug/L 101 85 - 115 Selenium 50.0 53.3 ug/L 107 85 - 115 Silver 50.0 50.8 ug/L 102 85 - 115 Thallium 50.0 50.0 ug/L 100 85 - 115 Vanadium 50.0 49.7 ug/L 99 85 - 115 Zinc 50.0 53.1 ug/L 106 85 - 115	Lead	50.0	48.9		ug/L		98	85 _ 115	
Selenium 50.0 53.3 ug/L 107 85 - 115 Silver 50.0 50.8 ug/L 102 85 - 115 Thallium 50.0 50.0 ug/L 100 85 - 115 Vanadium 50.0 49.7 ug/L 99 85 - 115 Zinc 50.0 53.1 ug/L 106 85 - 115	Manganese	50.0	50.6		ug/L		101	85 - 115	
Silver 50.0 50.8 ug/L 102 85 - 115 Thallium 50.0 50.0 ug/L 100 85 - 115 Vanadium 50.0 49.7 ug/L 99 85 - 115 Zinc 50.0 53.1 ug/L 106 85 - 115	Selenium	50.0	53.3		ug/L		107	85 - 115	
Thallium 50.0 50.0 ug/L 100 85 - 115 Vanadium 50.0 49.7 ug/L 99 85 - 115 Zinc 50.0 53.1 ug/L 106 85 - 115	Silver	50.0	50.8		ug/L		102	85 - 115	
Vanadium 50.0 49.7 ug/L 99 85 - 115 Zinc 50.0 53.1 ug/L 106 85 - 115	Thallium	50.0	50.0		ug/L		100	85 - 115	
Zinc 50.0 53.1 ug/L 106 85 - 115	Vanadium	50.0	49.7		ug/L		99	85 _ 115	
	Zinc	50.0	53.1		ug/L		106	85 - 115	

Lab Sample ID: LCSD 380-127526/4-A Matrix: Water

Analysis Batch: 127638

Client Sample ID: Lab Control Sample Dup
Prep Type: Total Recoverable

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Pren Batch: 127526

Analysis Datch. 127030							Fiehi	Saturi. I.	21 520
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	50.0	54.7		ug/L		109	85 - 115	3	20
Antimony	50.0	51.6		ug/L		103	85 - 115	2	20
Arsenic	50.0	52.7		ug/L		105	85 - 115	1	20
Barium	50.0	51.3		ug/L		103	85 _ 115	0	20
Beryllium	50.0	52.4		ug/L		105	85 - 115	2	20
Cadmium	50.0	52.0		ug/L		104	85 - 115	3	20
Chromium	50.0	50.7		ug/L		101	85 - 115	1	20
Copper	50.0	51.5		ug/L		103	85 - 115	1	20
Lead	50.0	50.7		ug/L		101	85 - 115	4	20
Manganese	50.0	50.8		ug/L		102	85 - 115	0	20
Selenium	50.0	53.0		ug/L		106	85 - 115	1	20

Eurofins Eaton Analytical Pomona

10

Lab Sample ID: LCSD 380-127526/4-A

Matrix: Water

Analyte

Thallium

Vanadium

Silver

Zinc

Analysis Batch: 127638

Method: 200.8 - Metals (ICP/MS) (Continued)

LCSD LCSD

53.8

51.8

49.6

53.3

Result Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

Spike

Added

50.0

50.0

50.0

50.0

Prep Batch: 127526

RPD

6

3

0

0

Prep Type: Total Recoverable

3 4 5 6

10

17

RPD

Limit

20

20

20

20

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 127526 %Rec

Client Sample ID: Lab Control Sample Dup

%Rec

108

104

99

107

D

%Rec

Limits

85 - 115

85 - 115

85 - 115

85 - 115

Lab Sample ID: LLCS 380-127526/2-A Matrix: Water Analysis Batch: 127638

Analysis Datch. 12/030							Ртер Ба	CII: 12/52
	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	20.0	22.8		ug/L		114	50 _ 150	
Antimony	1.00	1.03		ug/L		103	50 - 150	
Arsenic	1.00	1.07		ug/L		107	50 - 150	
Barium	2.00	2.03		ug/L		102	50 _ 150	
Beryllium	0.300	0.310		ug/L		103	50 - 150	
Cadmium	0.500	0.490	J	ug/L		98	50 _ 150	
Chromium	0.900	0.712	J	ug/L		79	50 _ 150	
Copper	1.00	1.07		ug/L		107	50 - 150	
Lead	0.500	0.506		ug/L		101	50 - 150	
Manganese	2.00	2.13		ug/L		106	50 - 150	
Selenium	2.00	2.04		ug/L		102	50 - 150	
Silver	0.500	0.526		ug/L		105	50 - 150	
Thallium	0.300	0.299	J	ug/L		100	50 - 150	
Vanadium	2.00	2.51		ug/L		125	50 - 150	
Zinc	20.0	21.7		ug/L		108	50 _ 150	

Method: 200.8 - Mercury (ICP/MS)

 Lab Sample ID: MBL 380-127526/1-A Matrix: Water										•	Client Sa Prep 1	ample ID: Type: Tota	Method I Recov	Blank erable
Analysis Batch: 127639												Prep E	Batch: 1	27526
	MBL	MBL												
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyz	ed	Dil Fac
Hg	ND			0.20			ug/L			01/13	3/25 09:30	01/13/25	15:48	1
									Clie	ent	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water											Prep 1	Type: Tota	l Recov	erable
Analysis Batch: 127639												Prep E	Batch: 1	27526
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Hg			1.00		0.974			ug/L			97	85 - 115		
								С	lient S	am	ple ID: L	ab Contro	I Sampl	e Dup
Matrix: Water											Prep 1	Type: Tota	l Recov	erable
Analysis Batch: 127639												Prep E	Batch: 1	27526
			Spike		LCSD	LCSI	D					%Rec		RPD
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Ha			1.00		0.983			ua/L			98	85 - 115	1	20

QC Sample Results

Job ID: 380-129268-1

Method: 200.8 - Mercury (ICP/MS) (Continued)

Lab Sample ID: LLCS 380-127526/2-A									Cli	ent	Sample	ID: Lab Cor	ntrol S	ample
Matrix: Water											Prep	Type: Total	Recov	erable
Analysis Batch: 127639												Prep Ba	atch: 1	27526
			Spike		LLCS	LLCS						%Rec		
Analyte			Added		Result	Qualifi	er	Unit		D	%Rec	Limits		
Hg			0.200		0.208			ug/L		_	104	50 - 150		
Method: 335.4 - Cyanide, Total														
Lab Sample ID: MB 380-128316/1-A											Client S	ample ID: M	ethod	Blank
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 128499												Prep Ba	atch: 1	28316
	MB	MB							_	_			_	
Analyte	Result	Qualifier		RL		MDL U	Init		D	P	repared	Analyze	d	Dil Fac
Cyanide, Total	ND		(0.0050		n	ng/L		(01/1	6/25 08:34	01/16/25 11	:27	1
Lab Sample ID: LCS 380-128316/4-A									Cli	ent	Sample	ID: Lab Cor	ntrol S	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 128499												Prep Ba	atch: 1	28316
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qualifi	er	Unit		D	%Rec	Limits		
Cyanide, Total			0.100		0.0942			mg/L			94	90 - 110		
Lab Sample ID: LCSD 380-128316/5-A								CI	ient S	Sam	ple ID: L	ab Control	Sampl	e Dup
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 128499												Prep Ba	atch: 1	28316
			Spike		LCSD	LCSD						%Rec		RPD
Analyte			Added		Result	Qualifi	er	Unit		D	%Rec	Limits	RPD	Limit
Cyanide, Total			0.100		0.0982			mg/L			98	90 - 110	4	20
Lab Sample ID: LLCS 380-128316/3-A									Cli	ent	Sample	ID: Lab Cor	ntrol S	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 128499												Prep Ba	atch: 1	28316
-			Spike		LLCS	LLCS						%Rec		
Analyte			Added		Result	Qualifi	er	Unit		D	%Rec	Limits		
Cyanide, Total			0.0200		0.0213			mg/L		_	107	80 - 120		
Lab Sample ID: MRL 380-128316/2-A									Cli	ent	Sample	ID: Lab Cor	ntrol S	ample
Matrix: Water												Prep Tv	pe: To	tal/NA
Analysis Batch: 128499												Prep Ba	atch: 1	28316
			Spike		MRL	MRL						%Rec		
Analyte			Added		Result	Qualifi	er	Unit		D	%Rec	Limits		
Cyanide, Total			0.00500		0.00550			mg/L		_	110	50 - 150		
Method: 4500 CN F - Cyanide, Free	e													
Lab Sample ID: MB 380-127530/1											Client S	ample ID: M	ethod	Blank
Matrix: Water												Prep Tv	pe: To	tal/NA
Analysis Batch: 127530												1.00	• • • •	
····	мв	мв												
Analyte	Result	Qualifier		RL		MDL U	Init		D	P	repared	Analyzed	d	Dil Fac
Cyanide	ND			0.025			ng/L					01/13/25 09):42	1
10

17

Method: 4500 CN F - Cyanide, Free (Continued)

Lab Sample ID: LCS 380-127530/5										Clier	nt S	Sample	e ID: Lab Co	ontrol S	Sample
Matrix: Water													Prep 1	ype: To	otal/NA
Analysis Batch: 127530															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qua	lifier	Unit	D		%Rec	Limits		
Cyanide				0.100		0.0993			mg/L			99	90 - 110		
Lab Sample ID: LCSD 380-127530/	6								CI	ient Sa	mp	le ID:	Lab Contro	I Samp	le Dup
Matrix: Water													Prep 1	ype: To	otal/NA
Analysis Batch: 127530															
				Spike		LCSD	LCS	D					%Rec		RPD
Analyte				Added		Result	Qua	lifier	Unit	D) '	%Rec	Limits	RPD	Limit
Cyanide				0.100		0.0991			mg/L			99	90 - 110	0	20
Lab Sample ID: MRL 380-127530/4										Clier	nt S	Sample	e ID: Lab Co	ontrol S	Sample
Matrix: Water													Prep 1	ype: To	otal/NA
Analysis Batch: 127530															
				Spike		MRL	MRL	-					%Rec		
Analyte				Added		Result	Qua	lifier	Unit	D	, ,	%Rec	Limits		
Cyanide				0.0250		0.0325			mg/L			130	50 - 150		
Lab Sample ID: 380-129268-1 MS													Client San	nple ID:	Baker
Matrix: Water													Prep 1	vpe: To	otal/NA
Analysis Batch: 127530															
······ ,···	Sample	Sam	ple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit	D	, ,	%Rec	Limits		
Cyanide	ND			0.100		0.0967			mg/L			97	80 - 120		
Lab Sample ID: 380-129268-1 MSD													Client San		Bakor
Matrix: Water													Pron 1	ipie iD. ivne: To	
Analysis Batch: 127530													Перт	ype. It	
Analysis Baton. 127000	Sample	Sam	ple	Spike		MSD	MSD)					%Rec		RPD
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit	D	, ,	%Rec	Limits	RPD	Limit
Cyanide	ND			0.100		0.101			mg/L			101	80 - 120	4	20
Mothod: SM 2150P Odor															
Lab Sample ID: MB 380-127044/1											С	lient S	Sample ID:	Method	l Blank
Matrix: Water													Prep 1	ype: To	otal/NA
Analysis Batch: 127044															
		MB	MB												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pre	pared	Analyz	ed	Dil Fac
Odor		ND			1.0			T.O.N					01/09/25	11:32	1
Method: SM 2320B - Alkalinity	,														
Lab Sample ID: MB 380-127532/1											С	lient S	Sample ID:	Method	l Blank
Matrix: Water													Pren 1	vpe: To	otal/NA
Analysis Batch: 127532														J po. 10	
······ ,···		мв	МВ												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pre	pared	Analvz	ed	Dil Fac
Total Alkalinity as CaCO3		ND			2.0			mg/L					01/10/25	15:38	1
Bicarbonate Alkalinity as CaCO3		2.76			2.0			mg/L					01/10/25	15:38	1
Carbonate Alkalinity as CaCO3		ND			2.0			mg/L					01/10/25	15:38	1
Hydroxide Alkalinity as CaCO3		ND			2.0			mg/L					01/10/25	15:38	

Job ID: 380-129268-1

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: MB 380-127532/1 Matrix: Water Analysis Batch: 127532											Client S	ample ID: Prep	Method Type: To	Blank tal/NA
	МВ	MB												
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pi	repared	Analy	zed	Dil Fac
Phenolphthalein Alkalinity as CaCO3	ND			2.0			mg/L					01/10/25	15:38	1
Lab Sample ID: LCS 380-127532/4									Clie	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Water												Prep [·]	Type: To	tal/NA
Analysis Batch: 127532														
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Total Alkalinity as CaCO3			100		95.6			mg/L			96	90 - 110		
								С	lient Sa	am	ple ID: I	Lab Contro	ol Samp	le Dup
Matrix: Water												Prep [·]	Type: To	tal/NA
Analysis Batch: 127532														
			Spike		LCSD	LCS	D					%Rec		RPD
Analyte			Added		Result	Qual	ifier	Unit	!	D	%Rec	Limits	RPD	Limit
Total Alkalinity as CaCO3			100		94.8			mg/L			95	90 - 110	1	20
Lab Sample ID: LLCS 380-127532/5									Clie	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Water												Prep [•]	Туре: То	tal/NA
Analysis Batch: 127532														
			Spike		LLCS	LLC	3					%Rec		
Analyte			Added		Result	Qual	ifier	Unit	!	D	%Rec	Limits		
Total Alkalinity as CaCO3			20.0		19.3			mg/L			96	90 - 110		
Lab Sample ID: MRL 380-127532/2									Clie	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Water												Prep	Type: To	tal/NA
Analysis Batch: 127532														
			Spike		MRL	MRL						%Rec		
Analyte			Added		Result	Qua	ifier	Unit	I	D	%Rec	Limits		
Total Alkalinity as CaCO3			2.00		2.64			mg/L			132	50 - 150		

Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: MB 380-127537/3 Matrix: Water Analysis Batch: 127537										Client S	Sample ID: Metho Prep Type:	od Blank Total/NA
	МВ	МВ										
Analyte	Result	Qualifier		RL		MDL	Unit	0) Р	repared	Analyzed	Dil Fac
Specific Conductance	ND			2.0			umhos	s/cm			01/10/25 15:38	1
									Client	Sample	ID: Lab Contro	Sample
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 127537												
			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qual	lifier	Unit	D	%Rec	Limits	
Specific Conductance			1000		1000			umhos/cm		100	90 - 110	

Method: SM 2510B - Conductivity, Specific Conductance (Continued)

Lab Sample ID: LCSD 380-127537/17							Clie	ent Sa	mple ID	: Lab Contro	I Samp	le Dup
Matrix: Water										Prep 1	Type: To	otal/NA
Analysis Batch: 127537												
			Spike		LCSD	LCSD				%Rec		RPD
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Specific Conductance			1000		1000		umhos/ci	m	100	90 - 110	0	10
								Clier	nt Samp	le ID: Lab C	ontrol S	Sample
Matrix: Water										Prep 1	Type: To	otal/NA
Analysis Batch: 127537												
			Spike		MRL	MRL				%Rec		
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits		
Specific Conductance			2.00		1.90	J	umhos/ci	m	95	50 - 150		
Method: SM 2540C - Solids, Total	l Dissol	ved (TD	S)									
_ Lab Sample ID: MB 380-127127/1									Client	Sample ID:	Method	l Blank
Matrix: Water										Prep 1	Type: To	otal/NA
Analysis Batch: 127127										-		
	МВ	МВ										
Analyte	Result	Qualifier		RL		MDL Unit		D	Prepared	Analyz	ed	Dil Fac
Total Dissolved Solids	ND			10		mg/L				01/09/25	16:39	1
- Lab Sample ID: HLCS 380-127127/5								Clier	nt Samp	le ID: Lab C	ontrol S	Sample
Matrix: Water										Prep 1	vpe: To	otal/NA
Analysis Batch: 127127												
· · · · · , · · · · · · · · · · · · · · · ·			Spike		HLCS	HLCS				%Rec		
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids			700		704		mg/L		101	80 - 114		
- Lab Sample ID: LCS 380-127127/4								Clie	nt Samp	le ID: Lab C	ontrol S	Sample
Matrix: Water										Prep 1	vpe: To	otal/NA
Analysis Batch: 127127												
			Spike		LCS	LCS				%Rec		
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids			175		184		mg/L		105	80 - 114		
- Lab Sample ID: MRL 380-127127/2								Clie	nt Samo	le ID: Lab C	ontrol S	Sample
Matrix: Water										Prep 1	ype: To	otal/NA
Analysis Batch: 127127												
			Spike		MRL	MRL				%Rec		
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids			10.0		10.0		mg/L		100	50 - 150		
- Lab Sample ID: MRL 380-127127/3								Clie	nt Samn	le ID: Lab Co	ontrol S	Sample
Matrix: Water										Prep	vpe: To	otal/NA
Analysis Batch: 127127											, 1	
			Spike		MRL	MRL				%Rec		
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids			10.0		9.00	J	mg/L		90	50 - 150		
_							5					

Job ID: 380-129268-1

Method: SM 4500 F C - Fluoride

Lab Sample ID: MB 380-128313/6 Matrix: Water										Client S	Sample ID: Prep	Method Type: To	Blank
Analysis Batch: 128313													
	MB	МВ											
Analyte	Result	Qualifier		RL		MDL U	Jnit	D	P	repared	Analy	zed	Dil Fac
Fluoride	ND			0.050		n	ng/L				01/15/25	13:39	1
Lab Sample ID: LCS 380-128313/8 Matrix: Water									Clien	t Sample	e ID: Lab C Prep ⁻	ontrol S Type: To	ample otal/NA
Analysis Batch: 128313													
			Spike		LCS	LCS			_	~ -	%Rec		
Analyte			Added		Result	Qualifi	ier Uni	it "	D	%Rec			
Fluoride			1.00		1.03		mg	/L		103	90 - 110		
Lab Sample ID: LCSD 380-128313/9								Clier	nt San	nple ID:	Lab Contro	ol Samp	le Dup
Matrix: Water										· · ·	Prep [·]	Type: To	otal/NA
Analysis Batch: 128313													
			Spike		LCSD	LCSD					%Rec		RPD
Analyte			Added		Result	Qualifi	ier Uni	it	D	%Rec	Limits	RPD	Limit
Fluoride			1.00		1.03		mg	/L		103	90 _ 110	0	10
Lab Sample ID: MRL 380-128313/7 Matrix: Water Analysis Batch: 128313									Clien	t Sample	e ID: Lab C Prep	ontrol S Type: To	ample otal/NA
			Spike		MRL	MRL			_		%Rec		
Analyte			Added		Result	Qualifi	ier Uni	it //	D	%Rec	Limits		
Fluoride			0.0500		0.0505		mg	/L		101	50 - 150		
Method: SM 4500 H+ B - pH													
Lab Sample ID: MB 380-127538/5 Matrix: Water Analysis Batch: 127538										Client S	Sample ID: Prep	Method Type: To	l Blank otal/NA
	MB	MB											
Analyte	Result	Qualifier		RL		MDL L	Jnit	D) F	repared	Analy	zed	Dil Fac
рН	5.7			0.01		S	SU				01/10/25	15:38	1
Lab Sample ID: LCS 380-127538/6 Matrix: Water									Clien	t Sample	e ID: Lab C Prep	ontrol S Type: To	ample otal/NA
Analysis Batch: 127538													
			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Qualifi	ier Uni	it	D	%Rec	Limits		
рН			6.00		6.0		SU			100	98 - 102		
Lab Sample ID: LCSD 380-127538/18 Matrix: Water								Clier	nt San	nple ID:	Lab Contro Prep ⁻	ol Samp Type: To	le Dup otal/NA
Analysis Batch: 127538													
			Spike		LCSD	LCSD			_		%Rec		RPD
Analyte			Added		Result	Qualifi	ier Uni	t	D	%Rec	Limits	RPD	Limit
рн			6.00		6.0		SU			100	98 - 102	0	2

17

Method: SM 5540C - Methylene Blue Active Substances (MBAS)

Lab Sample ID: MB 380-128297/2											Client S	ample ID:	Method	Blank
Matrix: water												Prep	iype: io	tal/NA
Analysis Batch: 128297														
	MB	MB							_	_				
Analyte	Result	Qualifier		RL		MDL	Unit		<u> </u>	Pi	repared	Analyz	2ed	Dil Fac
Methylene Blue Active Substances	ND			0.10			mg/L					01/16/25	07:08	1
 Lab Sample ID: LCS 380-128297/4									Clie	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Water												Prep 1	Type: To	tal/NA
Analysis Batch: 128297													.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Methylene Blue Active			0.200		0.192			ma/L		-	96	90 - 110		
Substances														
Lab Sample ID: LCSD 380-128297/5								C	lient Sa	am	ple ID: I	ab Contro	l Sampl	e Dup
Matrix: Water												Prep 1	Type: To	tal/NA
Analysis Batch: 128297														
			Spike		LCSD	LCSE	C					%Rec		RPD
Analyte			Added		Result	Quali	ifier	Unit	I	D	%Rec	Limits	RPD	Limit
Methylene Blue Active			0.200		0.188			mg/L			94	90 - 110	2	20
Substances														
Lab Sample ID: MRL 380-128297/3									Clie	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Water												Prep 1	Type: To	tal/NA
Analysis Batch: 128297														
			Spike		MRL	MRL						%Rec		
Analyte			Addad			~		Unit		n	% Pac	Limite		
Analyte			Audeu		Result	Qual	itier	Unit		U	/onec	Linnis		
Methylene Blue Active			0.100		Result 0.0913	J	itier	mg/L		_	91	75 - 125		

QC Association Summary

Job ID: 380-129268-1

17

GC/MS VOA

MRL 380-127221/22-A

Lab Control Sample

Analysis Batch: 127793

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	524.2	
MB 380-127793/13	Method Blank	Total/NA	Water	524.2	
LCS 380-127793/10	Lab Control Sample	Total/NA	Water	524.2	
LCSD 380-127793/11	Lab Control Sample Dup	Total/NA	Water	524.2	
MRL 380-127793/12	Lab Control Sample	Total/NA	Water	524.2	
MRL 380-127793/9	Lab Control Sample	Total/NA	Water	524.2	
Analysis Batch: 128096	;				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	524.2	
MB 380-128096/13	Method Blank	Total/NA	Water	524.2	
LCS 380-128096/10	Lab Control Sample	Total/NA	Water	524.2	
LCSD 380-128096/11	Lab Control Sample Dup	Total/NA	Water	524.2	
MRL 380-128096/12	Lab Control Sample	Total/NA	Water	524.2	
MRL 380-128096/9	Lab Control Sample	Total/NA	Water	524.2	
Analysis Batch: 129057	,				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	CA DWRL	
380-129268-2	Trip Blank	Total/NA	Water	CA DWRL	
MB 380-129057/12	Method Blank	Total/NA	Water	CA DWRL	
LCS 380-129057/1010	Lab Control Sample	Total/NA	Water	CA DWRL	
MRL 380-129057/11	Lab Control Sample	Total/NA	Water	CA DWRL	
380-129268-1 DU	Baker	Total/NA	Water	CA DWRL	
GC/MS Semi VOA					
Prep Batch: 127156					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	548.1	
MB 380-127156/1-A	Method Blank	Total/NA	Water	548.1	
LCS 380-127156/3-A	Lab Control Sample	Total/NA	Water	548.1	
MRL 380-127156/2-A	Lab Control Sample	Total/NA	Water	548.1	
Prep Batch: 127221					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	525.2	
MB 380-127221/21-A	Method Blank	Total/NA	Water	525.2	
LCS 380-127221/23-A	Lab Control Sample	Total/NA	Water	525.2	
LCSD 380-127221/24-A	Lab Control Sample Dup	Total/NA	Water	525.2	
MRL 380-127221/22-A	Lab Control Sample	Total/NA	Water	525.2	
380-129268-1 MS	Baker	Total/NA	Water	525.2	
380-129268-1 MSD	Baker	Total/NA	Water	525.2	
Analysis Batch: 127547	,				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	525.2	127221
MB 380-127221/21-A	Method Blank	Total/NA	Water	525.2	127221
LCS 380-127221/23-A	Lab Control Sample	Total/NA	Water	525.2	127221
LCSD 380-127221/24-A	Lab Control Sample Dup	Total/NA	Water	525.2	127221

525.2

Total/NA

Water

GC/MS Semi VOA (Continued)

Analysis Batch: 127547 (Continued)

Lab Sample ID 380-129268-1 MS	Client Sample ID Baker	Prep Type Total/NA	Matrix Water	Method	Prep Batch 127221
380-129268-1 MSD	Baker	Total/NA	Water	525.2	127221
Analysis Batch: 12799	1				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method
380-129268-1	Baker	Total/NA	Water	548.1
MB 380-127156/1-A	Method Blank	Total/NA	Water	548.1
LCS 380-127156/3-A	Lab Control Sample	Total/NA	Water	548.1
MRL 380-127156/2-A	Lab Control Sample	Total/NA	Water	548.1

GC Semi VOA

Prep Batch: 127255

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	504.1	
MBL 380-127255/4-A	Method Blank	Total/NA	Water	504.1	
LCS 380-127255/29-A	Lab Control Sample	Total/NA	Water	504.1	
MRL 380-127255/2-A	Lab Control Sample	Total/NA	Water	504.1	
MRL 380-127255/3-A	Lab Control Sample	Total/NA	Water	504.1	
Prep Batch: 127276					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	515.4	
MBL 380-127276/11-A	Method Blank	Total/NA	Water	515.4	

MBL 380-127276/11-A	Method Blank	Total/NA	Water	515.4
LCS 380-127276/35-A	Lab Control Sample	Total/NA	Water	515.4
LCS 380-127276/36-A	Lab Control Sample	Total/NA	Water	515.4
LCSD 380-127276/37-A	Lab Control Sample Dup	Total/NA	Water	515.4
MRL 380-127276/10-A	Lab Control Sample	Total/NA	Water	515.4
MRL 380-127276/9-A	Lab Control Sample	Total/NA	Water	515.4

Prep Batch: 127543

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	505	
MB 380-127543/32-A	Method Blank	Total/NA	Water	505	
LCS 380-127543/16-A	Lab Control Sample	Total/NA	Water	505	
LCS 380-127543/24-A	Lab Control Sample	Total/NA	Water	505	
LCS 380-127543/57-A	Lab Control Sample	Total/NA	Water	505	
LCS 380-127543/59-A	Lab Control Sample	Total/NA	Water	505	
LCS 380-127543/60-A	Lab Control Sample	Total/NA	Water	505	
LCS 380-127543/8-A	Lab Control Sample	Total/NA	Water	505	
LCSD 380-127543/58-A	Lab Control Sample Dup	Total/NA	Water	505	
MRL 380-127543/30-A	Lab Control Sample	Total/NA	Water	505	
MRL 380-127543/31-A	Lab Control Sample	Total/NA	Water	505	

Analysis Batch: 127594

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	504.1	127255
MBL 380-127255/4-A	Method Blank	Total/NA	Water	504.1	127255
LCS 380-127255/29-A	Lab Control Sample	Total/NA	Water	504.1	127255
MRL 380-127255/2-A	Lab Control Sample	Total/NA	Water	504.1	127255
MRL 380-127255/3-A	Lab Control Sample	Total/NA	Water	504.1	127255

Matrix	Method	Prep

Prep Batch	
	17

GC Semi VOA

Analysis Batch: 127716

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	505	127543
MB 380-127543/32-A	Method Blank	Total/NA	Water	505	127543
LCS 380-127543/16-A	Lab Control Sample	Total/NA	Water	505	127543
LCS 380-127543/24-A	Lab Control Sample	Total/NA	Water	505	127543
LCS 380-127543/57-A	Lab Control Sample	Total/NA	Water	505	127543
LCS 380-127543/59-A	Lab Control Sample	Total/NA	Water	505	127543
LCS 380-127543/60-A	Lab Control Sample	Total/NA	Water	505	127543
LCS 380-127543/8-A	Lab Control Sample	Total/NA	Water	505	127543
LCSD 380-127543/58-A	Lab Control Sample Dup	Total/NA	Water	505	127543
MRL 380-127543/30-A	Lab Control Sample	Total/NA	Water	505	127543
MRL 380-127543/31-A	Lab Control Sample	Total/NA	Water	505	127543
Analysis Batch: 127846	3				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	515.4	127276
MBL 380-127276/11-A	Method Blank	Total/NA	Water	515.4	127276

380-129268-1	Baker	Total/NA	Water	515.4	127276
MBL 380-127276/11-A	Method Blank	Total/NA	Water	515.4	127276
LCS 380-127276/35-A	Lab Control Sample	Total/NA	Water	515.4	127276
LCS 380-127276/36-A	Lab Control Sample	Total/NA	Water	515.4	127276
LCSD 380-127276/37-A	Lab Control Sample Dup	Total/NA	Water	515.4	127276
MRL 380-127276/10-A	Lab Control Sample	Total/NA	Water	515.4	127276
MRL 380-127276/9-A	Lab Control Sample	Total/NA	Water	515.4	127276

HPLC/IC

Analysis Batch: 127098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	300.0	
MB 380-127098/4	Method Blank	Total/NA	Water	300.0	
LCS 380-127098/7	Lab Control Sample	Total/NA	Water	300.0	
LCSD 380-127098/8	Lab Control Sample Dup	Total/NA	Water	300.0	
MRL 380-127098/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 380-127098/6	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 127099

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	300.0	
MB 380-127099/4	Method Blank	Total/NA	Water	300.0	
LCS 380-127099/7	Lab Control Sample	Total/NA	Water	300.0	
LCSD 380-127099/8	Lab Control Sample Dup	Total/NA	Water	300.0	
MRL 380-127099/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 380-127099/6	Lab Control Sample	Total/NA	Water	300.0	

Prep Batch: 127237

Lab Sample ID 380-129268-1	Client Sample ID Baker	Prep Type Total/NA	Matrix Water	Method Prep Batch 549.2
MB 380-127237/1-A	Method Blank	Total/NA	Water	549.2
LCS 380-127237/4-A	Lab Control Sample	Total/NA	Water	549.2
LCSD 380-127237/5-A	Lab Control Sample Dup	Total/NA	Water	549.2
MRL 380-127237/2-A	Lab Control Sample	Total/NA	Water	549.2

HPLC/IC	
Filtration Batch: 127298	5

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
380-129268-1	Baker	Total/NA	Water	Filtration	
MBL 380-127295/3-A	Method Blank	Total/NA	Water	Filtration	
LCS 380-127295/28-A	Lab Control Sample	Total/NA	Water	Filtration	
MRL 380-127295/2-A	Lab Control Sample	Total/NA	Water	Filtration	
iltration Batch: 12734	2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
380-129268-1	Baker	Total/NA	Water	Filtration	
MBL 380-127342/3-A	Method Blank	Total/NA	Water	Filtration	
LCS 380-127342/23-A	Lab Control Sample	Total/NA	Water	Filtration	
MRL 380-127342/2-A	Lab Control Sample	Total/NA	Water	Filtration	
nalysis Batch: 127376	6				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
380-129268-1	Baker	Total/NA	Water	531.2	12729
MBL 380-127295/3-A	Method Blank	Total/NA	Water	531.2	12729
LCS 380-127295/28-A	Lab Control Sample	Total/NA	Water	531.2	12729
MRL 380-127295/2-A	Lab Control Sample	Total/NA	Water	531.2	12729
nalysis Batch: 127377	7				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
380-129268-1	Baker	Total/NA	Water	547	12734
MBL 380-127342/3-A	Method Blank	Total/NA	Water	547	12734
LCS 380-127342/23-A	Lab Control Sample	Total/NA	Water	547	12734
MRL 380-127342/2-A	Lab Control Sample	Total/NA	Water	547	12734
nalysis Batch: 127573	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
380-129268-1	Baker	Total/NA	Water	549.2	12723
MB 380-127237/1-A	Method Blank	Total/NA	Water	549.2	12723
LCS 380-127237/4-A	Lab Control Sample	Total/NA	Water	549.2	12723
LCSD 380-127237/5-A	Lab Control Sample Dup	Total/NA	Water	549.2	12723
MRL 380-127237/2-A	Lab Control Sample	Total/NA	Water	549.2	12723
CMS					
analysis Batch: 127238	В				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
380-129268-1	Baker	Total/NA	Water	331.0	
MBL 380-127238/10	Method Blank	Total/NA	Water	331.0	
LCS 380-127238/11	Lab Control Sample	Total/NA	Water	331.0	
LCSD 380-127238/12	Lab Control Sample Dup	Total/NA	Water	331.0	
MRL 380-127238/1008	Lab Control Sample	Total/NA	Water	331.0	

Prep Batch: 128005

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Bato
380-129268-1	Baker	Total/NA	Water	1613B
MBL 380-128005/21-A	Method Blank	Total/NA	Water	1613B
LCS 380-128005/19-A	Lab Control Sample	Total/NA	Water	1613B
LCSD 380-128005/20-A	Lab Control Sample Dup	Total/NA	Water	1613B

QC Association Summary

Specialty Organics (Continued)

Prep Batch: 128005 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MRL 380-128005/22-A	Lab Control Sample	Total/NA	Water	1613B	
Analysis Batch: 128307					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	1613B	128005
MBL 380-128005/21-A	Method Blank	Total/NA	Water	1613B	128005
LCS 380-128005/19-A	Lab Control Sample	Total/NA	Water	1613B	128005
LCSD 380-128005/20-A	Lab Control Sample Dup	Total/NA	Water	1613B	128005
MRL 380-128005/22-A	Lab Control Sample	Total/NA	Water	1613B	128005

Metals

Prep Batch: 127526

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total Recoverable	Water	200.8	
MBL 380-127526/1-A	Method Blank	Total Recoverable	Water	200.8	
LCS 380-127526/3-A	Lab Control Sample	Total Recoverable	Water	200.8	
LCSD 380-127526/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	
LLCS 380-127526/2-A	Lab Control Sample	Total Recoverable	Water	200.8	
Analysis Batch: 127638					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch

•	•				•
380-129268-1	Baker	Total Recoverable	Water	200.8	127526
MBL 380-127526/1-A	Method Blank	Total Recoverable	Water	200.8	127526
LCS 380-127526/3-A	Lab Control Sample	Total Recoverable	Water	200.8	127526
LCSD 380-127526/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	127526
LLCS 380-127526/2-A	Lab Control Sample	Total Recoverable	Water	200.8	127526

Analysis Batch: 127639

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-129268-1	Baker	Total Recoverable	Water	200.8	127526
MBL 380-127526/1-A	Method Blank	Total Recoverable	Water	200.8	127526
LCS 380-127526/3-A	Lab Control Sample	Total Recoverable	Water	200.8	127526
LCSD 380-127526/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.8	127526
LLCS 380-127526/2-A	Lab Control Sample	Total Recoverable	Water	200.8	127526

Prep Batch: 128044

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total Recoverable	Water	200.7	
MBL 380-128044/1-A	Method Blank	Total Recoverable	Water	200.7	
LCS 380-128044/3-A	Lab Control Sample	Total Recoverable	Water	200.7	
LCSD 380-128044/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.7	
LLCS 380-128044/2-A	Lab Control Sample	Total Recoverable	Water	200.7	

Analysis Batch: 128310

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total Recoverable	Water	200.7 Rev 4.4	128044
MBL 380-128044/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	128044
LCS 380-128044/3-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	128044
LCSD 380-128044/4-A	Lab Control Sample Dup	Total Recoverable	Water	200.7 Rev 4.4	128044
LLCS 380-128044/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	128044

Client Sample ID

Baker

Metals

Analysis Batch: 128579

Lab Sample ID

380-129268-1

QC Association Summary

Prep Type

Total/NA

Matrix

Water

Method

Method

Method

SM 2150B

SM 2150B

Method

SM 2540C

SM 2540C

SM 2540C

SM 2540C

SM 2540C

SM 2540C

Method

4500 CN F

Method

SM 2320B

SM 2320B

SM 2320B

SM 2320B

SM 2320B

SM 2320B

200.7 Rev 4.4

SM 2340B

Job ID: 380-129268-1

Prep Batch

Prep Batch

Prep Batch

Prep Batch

Prep Batch

Prep Batch

128044

Analysis Batch: 128604 Lab Sample ID **Client Sample ID** Matrix Prep Type 380-129268-1 Baker Total Recoverable Water General Chemistry Analysis Batch: 127044 Lab Sample ID **Client Sample ID** Matrix Prep Type 380-129268-1 Total/NA Baker Water MB 380-127044/1 Method Blank Total/NA Water Analysis Batch: 127127 Lab Sample ID **Client Sample ID** Prep Type Matrix 380-129268-1 Baker Total/NA Water Total/NA MB 380-127127/1 Method Blank Water HLCS 380-127127/5 Lab Control Sample Total/NA Water LCS 380-127127/4 Total/NA Lab Control Sample Water MRL 380-127127/2 Lab Control Sample Total/NA Water MRL 380-127127/3 Total/NA Lab Control Sample Water Analysis Batch: 127530 Lab Sample ID **Client Sample ID** Matrix Prep Type 380-129268-1 Baker Total/NA Water MB 380-127530/1 Method Blank Total/NA Water Total/NA LCS 380-127530/5 Lab Control Sample Water LCSD 380-127530/6 Lab Control Sample Dup Total/NA Water MRL 380-127530/4 Lab Control Sample Total/NA Water 380-129268-1 MS Baker Total/NA Water 380-129268-1 MSD Baker Total/NA Water Analysis Batch: 127532 Lab Sample ID **Client Sample ID** Matrix Prep Type 380-129268-1 Baker Total/NA Water MB 380-127532/1 Method Blank Total/NA Water LCS 380-127532/4 Lab Control Sample Total/NA Water LCSD 380-127532/19 Lab Control Sample Dup Total/NA Water LLCS 380-127532/5 Lab Control Sample Total/NA Water MRL 380-127532/2 Lab Control Sample Total/NA Water Analysis Batch: 127537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	SM 2510B	
MB 380-127537/3	Method Blank	Total/NA	Water	SM 2510B	
LCS 380-127537/5	Lab Control Sample	Total/NA	Water	SM 2510B	
LCSD 380-127537/17	Lab Control Sample Dup	Total/NA	Water	SM 2510B	
MRL 380-127537/4	Lab Control Sample	Total/NA	Water	SM 2510B	

QC Association Summary

Job ID: 380-129268-1

General Chemistry Analysis Batch: 127538

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	SM 4500 H+ B	
MB 380-127538/5	Method Blank	Total/NA	Water	SM 4500 H+ B	
LCS 380-127538/6	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
LCSD 380-127538/18	Lab Control Sample Dup	Total/NA	Water	SM 4500 H+ B	
Analysis Batch: 128297	7				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	SM 5540C	
MB 380-128297/2	Method Blank	Total/NA	Water	SM 5540C	
LCS 380-128297/4	Lab Control Sample	Total/NA	Water	SM 5540C	
LCSD 380-128297/5	Lab Control Sample Dup	Total/NA	Water	SM 5540C	
MRL 380-128297/3	Lab Control Sample	Total/NA	Water	SM 5540C	
Analysis Batch: 128313	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	SM 4500 F C	
MB 380-128313/6	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 380-128313/8	Lab Control Sample	Total/NA	Water	SM 4500 F C	
LCSD 380-128313/9	Lab Control Sample Dup	Total/NA	Water	SM 4500 F C	
MRL 380-128313/7	Lab Control Sample	Total/NA	Water	SM 4500 F C	
Prep Batch: 128316					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	Distill/CN	
MB 380-128316/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 380-128316/4-A	Lab Control Sample	Total/NA	Water	Distill/CN	
LCSD 380-128316/5-A	Lab Control Sample Dup	Total/NA	Water	Distill/CN	
LLCS 380-128316/3-A	Lab Control Sample	Total/NA	Water	Distill/CN	
MRL 380-128316/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
Analysis Batch: 128499)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-129268-1	Baker	Total/NA	Water	335.4	128316
MB 380-128316/1-A	Method Blank	Total/NA	Water	335.4	128316
LCS 380-128316/4-A	Lab Control Sample	Total/NA	Water	335.4	128316
LCSD 380-128316/5-A	Lab Control Sample Dup	Total/NA	Water	335.4	128316
LLCS 380-128316/3-A	Lab Control Sample	Total/NA	Water	335.4	128316
MRL 380-128316/2-A	Lab Control Sample	Total/NA	Water	335.4	128316

Dilution

Batch

Batch

Batch

Client Sample ID: Baker Date Collected: 01/07/25 10:07 Date Received: 01/09/25 09:43

Lab Sample ID: 380-129268-1

Prepared

Matrix: Water

5
8
9
12
13
16
17

Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	524.2		1	127793	UKCP	EA POM	01/14/25 17:43
Total/NA	Analysis	524.2		1	128096	UKCP	EA POM	01/15/25 19:17
Total/NA	Analysis	CA DWRL		1	129057	Q6AD	EA POM	01/20/25 20:24
Total/NA	Prep	525.2			127221	ОТМЗ	EA POM	01/10/25 07:00
Total/NA	Analysis	525.2		1	127547	UPAC	EA POM	01/13/25 13:29
Total/NA	Prep	548.1			127156	E2HD	EA POM	01/09/25 14:30
Total/NA	Analysis	548.1		1	127991	X8AA	EA POM	01/15/25 11:44
Total/NA	Prep	504.1			127255	LZ8Q	EA POM	01/10/25 18:00 - 01/10/25 19:30 1
Total/NA	Analysis	504.1		1	127594	LZ8Q	EA POM	01/11/25 09:35
Total/NA	Prep	505			127543	DR5R	EA POM	01/13/25 13:24 - 01/13/25 14:45 1
Total/NA	Analysis	505		1	127716	DR5R	EA POM	01/14/25 08:12
Total/NA	Prep	515.4			127276	K9GY	EA POM	01/13/25 08:25
Total/NA	Analysis	515.4		1	127846	K9GY	EA POM	01/14/25 02:24
Total/NA	Analysis	300.0		5	127098	DXD4	EA POM	01/09/25 16:48
Total/NA	Analysis	300.0		5	127099	DXD4	EA POM	01/09/25 16:48
Total/NA	Filtration	Filtration			127295	Q6XM	EA POM	01/10/25 14:27
Total/NA	Analysis	531.2		1	127376	Q6XM	EA POM	01/11/25 15:27
Total/NA	Filtration	Filtration			127342	UD4M	EA POM	01/10/25 11:54
Total/NA	Analysis	547		1	127377	UD4M	EA POM	01/11/25 00:38
Total/NA	Prep	549.2			127237	X5FS	EA POM	01/10/25 11:57
Total/NA	Analysis	549.2		1	127573	UD4M	EA POM	01/11/25 20:29
Total/NA	Analysis	331.0		1	127238	R6YA	EA POM	01/10/25 15:07
Total/NA	Prep	1613B			128005	U7RS	EA POM	01/15/25 10:30
Total/NA	Analysis	1613B		1	128307	X8AA	EA POM	01/16/25 18:56
Total Recoverable	Prep	200.7			128044	Z45W	EA POM	01/15/25 10:12
Total Recoverable	Analysis	200.7 Rev 4.4		1	128310	MF7S	EA POM	01/15/25 18:48
Total Recoverable	Prep	200.7			128044	Z45W	EA POM	01/15/25 10:12
Total Recoverable	Analysis	200.7 Rev 4.4		2	128604	MF7S	EA POM	01/16/25 13:42
Total Recoverable	Prep	200.8			127526	Z45W	EA POM	01/13/25 09:30
Total Recoverable	Analysis	200.8		1	127638	VB9B	EA POM	01/13/25 16:47
Total Recoverable	Prep	200.8			127526	Z45W	EA POM	01/13/25 09:30
Total Recoverable	Analysis	200.8		1	127639	VB9B	EA POM	01/13/25 16:47
Total/NA	Analysis	SM 2340B		1	128579	D5TU	EA POM	01/16/25 22:55
Total/NA	Prep	Distill/CN			128316	MH2L	EA POM	01/16/25 08:34
Total/NA	Analysis	335.4		1	128499	MH2L	EA POM	01/16/25 12:26
Total/NA	Analysis	4500 CN F		1	127530	MQP5	EA POM	01/13/25 09:42
Total/NA	Analysis	SM 2150B		1	127044	DN4H	EA POM	01/09/25 11:32
Total/NA	Analysis	SM 2320B		1	127532	D5MQ	EA POM	01/10/25 17:12
Total/NA	Analysis	SM 2510B		1	127537	D5MQ	EA POM	01/10/25 17:12
Total/NA	Analysis	SM 2540C		1	127127	WZH3	EA POM	01/09/25 16:39
Total/NA	Analysis	SM 4500 F C		1	128313	PK4Q	EA POM	01/15/25 15:03
Total/NA	Analysis	SM 4500 H+ B		1	127538	D5MQ	EA POM	01/10/25 17:12

Matrix: Water

Lab Sample ID: 380-129268-1

Client Sample ID: Baker Date Collected: 01/07/25 10:07 Date Received: 01/09/25 09:43

Date Received	: 01/09/25 09:4	3							
	Batch	Batch		Dilution	Batch			Prepared	
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	SM 5540C		1	128297	ZJ2C	EA POM	01/16/25 07:08	
Client Samp	le ID: Trip B	ank						Lab Sample ID	: 380-129268-2
Date Collected	l: 01/07/25 10:0	7						-	Matrix: Water
Date Received	: 01/09/25 09:4	3							
	Batch	Batch		Dilution	Batch			Prepared	
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	CA DWRL			129057	Q6AD	EA POM	01/20/25 21:09	
¹ This procedure us	ses a method stipul	ated length of time for	the process. Bo	oth start and end t	imes are disp	layed.			

Laboratory References:

EA POM = Eurofins Eaton Analytical Pomona, 941 Corporate Center Drive, Pomona, CA 91768-2642, TEL (626)386-1100

Laboratory: Eurofins Eaton Analytical Pomona

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Galfornia State 2813 06-8-25 The bioloxing analytes are included in this report, but he laboratory is not certified by the governing authority. This list may include analytes for which the agency does not for certificator. 66 Analytic Method Prop. Method Matrix Analyte 77 200.8 200.8 Water Hig 77 30.10 Water Hig 77 30.10 Water Perchitotale 78 4500 CN F Water User Opencid/Proprograms (DSCP) 93 604.1 504.1 Water Differomothoropogname (DSCP) 93 605 505 Water PCR-1010 101 505 505 Water PCR-1012 101 505 505 Water PCR-1012 101 505 505 Water PCR-102 101 505 505 Water PCR-103 102 505 505 Water PCR-104 101 505 505 Water <td< th=""><th>_ Autho</th><th>ority</th><th></th><th>Program</th><th>Identification Number</th><th>Expiration Date</th><th></th></td<>	_ Autho	ority		Program	Identification Number	Expiration Date	
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not office certificators. 6 Analysie Minister 6 19138 16138 19138 16138 200.8 Water 2.37,67 CDD 201.8 Water 2.37,67 CDD 201.8 Water Cynnice 4000 CDF 60.4 Water Cynnice 504.1 504.1 Water Cynnice 9 504.1 504.1 Water Chirdrane 10 505.0 505.0 Water Chirdrane 10 506.1 505.0 Water PCB-1242 10 505.0 S05.0 Water PCB-1242 10 505.1 Water PCB-1242 10 10	Califo	ornia		State	2813	06-18-25	
In blockwing analyses in not certified by the governing authorby. This list may include analyses for which the certification: Analyse Method Analyse Method Analyse Method Analyse Method Analyse Method Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2"							5
Analysis MatriceProgrammed 16138MinerAnalysisAnalysisI200.8Water2.27,247.000733.1.0WaterPartinization733.1.0WaterCyanide84000 CNFWaterDibromochropopane (DBCP)9504.1WaterDibromochropopane (DBCP)9504.1WaterChioriane9505.0505.0WaterChioriane505.0505.0WaterPCB-1221505.0505.0WaterPCB-1222505.0505.0WaterPCB-1224505.0505.0WaterPCB-1224505.0505.0WaterPCB-1243505.0505.0WaterPCB-1244505.0505.0WaterPCB-1244505.0505.0WaterPCB-1244505.0505.0WaterPCB-1244505.0505.0WaterPCB-1244505.0505.0WaterPCB-1244515.4515.4WaterPCB-1244515.4515.4WaterPCB-1244515.4515.4WaterPCB-1244515.4515.4WaterPCB-1244515.4515.4WaterPCB-1244515.4515.4WaterPCB-1244515.4WaterPCB-1244515.4WaterPCB-1244515.4WaterPCB-1244515.4WaterPCB-1244515.4WaterPCB-1244 </td <td></td> <td>The following analytes ar for which the agency doe</td> <td>e included in this re s not offer certifica</td> <td>eport, but the laboratory is nc tion.</td> <td>t certified by the governing authority. This list</td> <td>may include analytes</td> <td>C</td>		The following analytes ar for which the agency doe	e included in this re s not offer certifica	eport, but the laboratory is nc tion.	t certified by the governing authority. This list	may include analytes	C
19138 19138 Worr 2.2.7.8°CDD 7 200.3 200.8 Water Pachwale 8 301.0 Water Dibonochkropropane (DBCP) 8 504.1 504.1 Water Dibonochkropropane (DBCP) 9 505. 505 Water CPC-total 9 505. 505 Water CPC-total 90 505. 505 Water CPC-total 10 505. 505 Water CPC-total 12 505. 505 Water CPC-total 13 505. 505 Water CPC-total 13 505. 505 Water CPC-total 13 505. 505 Water CPC-total 14 515.4 515.		Analysis Method	Prep Method	Matrix	Analyte		
20.820.8WaterHgMaterHg331.0WaterCyanide204500 CN FWaterDibromochiosopopane (DBCP)3504.1504.1WaterChiochane3604.1604.1WaterChiochane3605.605WaterPCB-101610605.605WaterPCB-122111605.605WaterPCB-122412605.605WaterPCB-124212605.605WaterPCB-124412605.605WaterPCB-124413605.605WaterPCB-124413605.605WaterPCB-124414605.605WaterPCB-124414605.605WaterPCB-124414605.605WaterPCB-124414615.4615.4WaterPCB-124414615.4615.4WaterPCB-124414615.4615.4WaterPCB-124414615.4615.4WaterPCB-124414615.4615.4WaterPCB-124414615.4615.4WaterPCB-124414615.4615.4WaterPCB-124415615.4615.4WaterPCB-124415615.4WaterPCB-124415615.4WaterPCB-124414615.4WaterPCB-1244 <td></td> <td>1613B</td> <td>1613B</td> <td>Water</td> <td>2,3,7,8-TCDD</td> <td></td> <td></td>		1613B	1613B	Water	2,3,7,8-TCDD		
331.0 Water Parchionals 8 4500 CN F Water Cynnide 0 504.1 504.1 Water Dibromochioropropane (DBCP) 9 505. 505. Water Diordnahe 9 505. 505. Water PCB-1016 10 505. 505. Water PCB-1221 10 505. 505. Water PCB-1224 12 505. 505. Water PCB-1246 12 505. 505. Water Polychionalaed bipenyls, Total 13 505. 505. Water Polychionalaed bipenyls, Total 14 515.4 515.4 Water Polychionalaed bipenyls, Total 16 515.4 515.4 Water Dalapon 16 515.4 Water Dalapon 16 515.4 Water 1,1.2 Trinchiorophane 17 524.2 Water 1,2.2 Tri		200.8	200.8	Water	Hg		
460 CN FVeterQuarierQuarierB504.1504.1WaterDistronchiceopogane (BCP)9505.505.WaterChisriane10505.505.WaterChisriane10505.505.WaterPCB-1221.11505.505.WaterPCB-1222.11505.505.WaterPCB-1242.12505.505.WaterPCB-1242.12505.505.WaterPCB-1244.12505.505.WaterPCB-1244.13505.505.WaterPCB-1246.13505.505.WaterPCB-1246.13505.505.WaterPCB-1246.14505.505.WaterPCB-1246.14515.4515.4WaterPCB-1240.14515.4515.4WaterPCB-1240.16515.4515.4WaterPCB-1240.16515.4515.4WaterPCB-1240.16515.4515.4WaterPCB-1240.16515.4515.4WaterPCB-1240.16515.4515.4WaterPCB-1240.16515.4WaterPCB-1240.16515.4WaterPCB-1240.16515.4WaterPCB-1240.16515.4WaterPCB-1240.16515.4WaterPCB-1240.16515.4Water <td< td=""><td></td><td>331.0</td><td></td><td>Water</td><td>Perchlorate</td><td></td><td></td></td<>		331.0		Water	Perchlorate		
994.1 504.1 Water Disconchlorogropane (DBCP) 9 505.1 505.1 Water Chlordane 10 505.1 505.1 Water PC8-1016.1 10 505.1 505.1 Water PC8-122.1 10 505.1 505.1 Water PC8-122.1 10 505.1 505.1 Water PC8-124.2 11 505.1 505.1 Water PC8-124.2 12 505.1 505.1 Water PC8-124.2 13 505.1 505.1 Water PC8-124.2 13 505.1 505.1 Water PC8-128.1 13 505.1 505.1 Water PC8-128.1 14 505.1 S05.1 Water PC8-128.1 14 515.4 515.4 Vater Polybiomated biphenyls, Total 15 515.4 515.4 Water Participhenyls, Total 16 515.4 Water 1,12-Trichorosthane		4500 CN F		Water	Cyanide		8
904.1 504.1 Water En/ordane 9 905.6 505 Water Chiordane 10 505.6 505. Water CP3-121 10 505.6 505. Water CP3-122.1 11 505.6 505. Water CP3-123.2 11 505.6 505. Water CP3-124.2 11 505.6 505. Water CP3-124.1 12 505.6 505. Water CP3-124.1 13 505.6 505. Water CP3-126.1 14 515.4 515.4 Water CP3-126.1 16 515.4 Water CP3-126.1 16 17 515.4 Water 1.1.2.7ticP		504.1	504.1	Water	Dibromochloropropane (DB	CP)	
595 505 Water Charane 10 595 505 Water PCB-1016 10 595 505 Water PCB-122 11 595 505 Water PCB-124 11 595 505 Water PCB-124 12 595 505 Water PCB-124 12 595 505 Water PCB-124 13 595 505 Water PCB-124 14 595 505 Water PCB-124 14 5154 5154 Water 2,4,5-TP (Shvex) 14 5154 5154 5154 Water 2,45-TP (Shvex) 14 5154 5154 Water 2,45-TP (Shvex) 14 5154 5154 Water 2,45-TP (Shvex) 16 5154 5154 Water Dapon 16 5154 5154 Water 1,12-Trohoro-12,2-Unfurcheratione 17 524.2 Water 1,12-Trohoro-12,2-Unfurcheratione 17 524.2		504.1	504.1	Water	Ethylene Dibromide (EDB)		9
505 505 Water PCB-1016 10 505 505 Water PCB-122 11 505 505 Water PCB-122 11 505 505 Water PCB-124 12 505 505 Water PCB-124 13 505 505 Water Polychioniated tiphenyts, Total 13 505 505 Water Polychioniated tiphenyts, Total 14 515.4 515.4 Water Polychioniated tiphenyts, Total 14 515.4 515.4 Water Pentazon 15 515.4 515.4 Water Pentazon 16 515.4 515.4 Water Pentazon 17 515.4 515.4 Water 1,12-Trichioroethane 524.2 Water 1,12-Trichioroethane 17 524.2 Water 1,12-Trichioroethane 14 524.2 Water 1,20-chioroethane		505	505	Water	Chlordane		
505 505 Water PCB-121 11 506 505 Water PCB-122 11 506 505 Water PCB-124 12 506 505 Water PCB-124 12 505 505 Water PCB-124 12 505 505 Water PCB-124 12 505 505 Water PCB-124 13 505 505 Water PCB-124 13 505 505 Water PCB-124 13 5154 5154 Water Valor 14 5154 5154 Water Valor 15 5154 5154 Water Dinsoe 16 5154 5154 Water Dinsoe 16 5154 5154 Water Dinsoe 16 5154 5154 Water 11/2-Trichorosthane 17 5242 Water 11/2-Trichorosthane 12 12 5242 Water 1,2-Trichorosthane 12		505	505	Water	PCB-1016		
606 605 Water PCB-1232 11 505 505 Water PCB-1242 12 505 505 Water PCB-1248 12 505 505 Water PCB-1248 12 505 505 Water PCB-1260 13 505 505 Water PCB-1261 13 505 505 Water PCB-1260 13 5154 5154 Vater Polyhiotinited biphenyls, Total 13 5154 5154 Water 24-D 15 5154 5154 Vater Balpon 16 5154 5154 Water Dinoseb 16 5154 5154 Water Pertachlorophenol 17 5242 Water 1,1,1,Trohhoroethane 17 5242 Water 1,1,2,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		505	505	Water	PCB-1221		
505505WaterPC-B-124505505WaterPC-B-12412505505WaterPC-B-12613505505WaterPcychionited bipanyts, Total13505505WaterPcychionited bipanyts, Total1451545154WaterPcychionited bipanyts, Total1451545154WaterPcychionited bipanyts, Total1451545154WaterPalapon1651545154WaterPalapon1651545154WaterDanoseb1651545154WaterPolachorophonol17524.2WaterPolachorophane17524.2Water1,1,2,7tertachorophane17524.2Water1,1,2,7tertachorophane17524.2Water1,1,2,7tertachorophane17524.2Water1,2,4Trichloroethane17524.2Water1,2,4Trichloroethane17524.2Water1,2,4Trichloroethane17524.2Water1,2,0thloroethane17524.2Water1,2,0thloroethane17524.2Water1,2,0thloroethane17524.2Water1,2,0thloroethane17524.2Water1,2,0thloroethane17524.2Water1,2,0thloroethane17524.2Water1,2,0thloroethane17524.2Water1,2,0thloroethane17 </td <td></td> <td>505</td> <td>505</td> <td>Water</td> <td>PCB-1232</td> <td></td> <td></td>		505	505	Water	PCB-1232		
506505WaterPCB-12812505505WaterPCB-128013505505WaterPOlychorinated biphenyls, Total13505505WaterPolychorinated biphenyls, Total1451545154Water2.4.517 (Slivax).1451545154Water2.4.517 (Slivax).1551545154Water2.4.517 (Slivax).1651545154WaterPatapon1651545154WaterDiapon1651545154WaterPolocam1751545154WaterPolocam1751545154WaterPolocam1751545154WaterPolocam175242Water1.1.2.Trichkroethane175242Water1.1.2.Trichkroethane175242Water1.1.2.Trichkroethane175242Water1.2.2.trikhroethane175242Water1.2.2.trikhroethane175242Water1.2.2.trikhroethane175242Water1.2.2.trikhroethane175242Water1.2.2.trikhroethane175242Water1.2.2.trikhroethane175242Water1.2.2.trikhroethane175242Water1.2.0.thkroethane175242Water1.2.0.thkroethane175242Water1.2.0.thkroethane17		505	505	Water	PCB-1242		
505 505 Water PCB-1284 13 506 505 Water PCB-1280 13 505 505 Water PCB-1280 13 505 505 Water PCB-1280 14 5154 5154 Water 2,4.5 TP (Silvex) 14 5154 515.4 Water 2,4.5 TP (Silvex) 14 5154 515.4 Water 2,4.5 TP (Silvex) 15 5154 515.4 Water Datapon 15 5154 515.4 Water Datapon 16 5154 515.4 Water Datapon 16 5154 515.4 Water Patachtorophanol 17 5242 Water 1,12-Trichtoroethane 17 5242 Water 1,20-Dichtoroethane 17 5242 Water 1,20-Dichtoroethane 17 15242<		505	505	Water	PCB-1248		
505505WaterPCB-126013505505WaterPolychlorinated biphenys. Total13505505WaterTotaphene14515.4515.4Water2,4.5 TP (Silvex)14515.4515.4WaterBentazon15515.4515.4WaterDalapon16515.4515.4WaterDinoseb16515.4515.4WaterDinoseb16515.4515.4WaterPickolorophenol17524.2VaterPickoram1,1.1*Tickloroethane524.2Water1,1.2.2*Tetrachloroethane17524.2Water1,1.2.2*Tetrachloroethane17524.2Water1,1.2.2*Tetrachloroethane17524.2Water1,1.2.2*Tetrachloroethane17524.2Water1,1.2.2*Tetrachloroethane17524.2Water1,1.2*Tickloroethane17524.2Water1,2.2*Tetrachloroethane17524.2Water1,2.2*Tetrachloroethane17524.2Water1,2.2*Tetrachloroethane17524.2Water1,2.2*Tetrachloroethane17524.2Water1,2.2*Tetrachloroethane17524.2Water1,2.2*Tetrachloroethane17524.2Water1,2.2*Tetrachloroethane17524.2Water1,2.2*Tetrachloroethane17524.2Water1,2.2*Tetrachloroethane17524.		505	505	Water	PCB-1254		
505505WaterPolychorinated biphenyls, TotalI505505WaterToxaphene144515.4515.4Water2,4-D155515.4515.4WaterBentazon165515.4515.4WaterDalapon166515.4515.4WaterDinoseb166515.4515.4WaterPortachtorophenol177514.4515.4WaterPortachtorophenol177524.2Water1,1,1-Trichloroethane177524.2Water1,1,2-Trichloro-1,2,2-Hifurorothane177524.2Water1,1,2-Trichloro-1,2,2-Hifurorothane177524.2Water1,1,2-Trichloro-1,2,2-Hifuropethane178524.2Water1,1,2-Trichloro-1,2,2-Hifuropethane178524.2Water1,2-Trichloroethane178524.2Water1,2-Trichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethane178524.2Water1,2-Dichloroethylene178		505	505	Water	PCB-1260		12
505S05WaterToxaphene1451545154Water2,4,5-TP (Silvex).1451545154WaterBentazon1551545154WaterDelapon1651545154WaterDinoseb1651545154WaterPentachlorophenol1751545154WaterPentachlorophenol1751545154WaterPentachlorophenol1751545154Water1,12-Trichloro-1,22-trifluoroethane175242Water1,12-Trichloro-1,22-trifluoroethane175242Water1,12-Trichloro-1,22-trifluoroethane175242Water1,12-Trichloro-1,22-trifluoroethane175242Water1,12-Trichloro-1,22-trifluoroethane185242Water1,12-Trichloro-1,22-trifluoroethane185242Water1,12-Trichloro-1,22-trifluoroethane185242Water1,12-Trichloro-1,22-trifluoroethane185242Water1,20-Trichloroethane185242Water1,20-Trichloroethane185242Water1,20-Trichloroethane185242Water1,20-Trichloroethane185242Water1,20-Trichloroethane185242Water1,20-Trichloroethane185242Water1,20-Trichloroethane185242Water1,20-Trichloroethane185242Water1,20		505	505	Water	Polychlorinated biphenyls, 1	otal	10
515.4515.4Water2,4,5-TP (Silvex)11615.4615.4Water2,4-013615.4615.4WaterDalapon13615.4515.4WaterDinoseb16615.4615.4WaterDinoseb16615.4615.4WaterPentachlorophenol16615.4515.4WaterPentachlorophenol17624.2Water1,1,2-Trichloroethane17624.2Water1,1,2-Trichloroethane17624.2Water1,1,2-Trichloroethane17624.2Water1,1,2-Trichloroethane17624.2Water1,1-Dichloroethane17624.2Water1,1-Dichloroethane17624.2Water1,2-Dichloroethane17624.2Water1,2-Dichloroethane18624.2Water1,2-Dichloroethane18624.2Water1,2-Dichloroethane18624.2Water1,2-Dichloroppane18624.2Water1,2-Dichloroppane18624.2Water1,3-Dichloroppane18624.2Water1,3-Dichloroppane18624.2Water1,3-Dichloroppane18624.2Water1,3-Dichloroppane18624.2Water1,3-Dichloroppane18624.2Water1,3-Dichloroppane18624.2Water1,3-Dichlorophraene18624.2Water <t< td=""><td></td><td>505</td><td>505</td><td>Water</td><td>Toxaphene</td><td></td><td></td></t<>		505	505	Water	Toxaphene		
515.4 515.4 Water Belazon 15 515.4 515.4 Water Belazon 16 515.4 515.4 Water Dinoseb 16 515.4 515.4 Water Dinoseb 16 515.4 515.4 Water Pertachforophenol 17 524.2 Water Nater 1,1.1.Trichforoethane 17 524.2 Water 1,2.2.Tetrachforoethane 17 524.2 Water 1,2.2.Trichforoethane 17 524.2 Water 1,1.2.4.Trichforoethane 17 524.2 Water 1,1.2.4.Trichforoethane 18 524.2 Water 1,1.2.4.Trichforoethane 19 524.2 Water 1,2.Dichforoethane 19 524.2 Water 1,3.Dichforopropeane 1,4.Dichforoethane <td></td> <td>515.4</td> <td>515.4</td> <td>Water</td> <td>2,4,5-TP (Silvex)</td> <td></td> <td></td>		515.4	515.4	Water	2,4,5-TP (Silvex)		
515.4 515.4 Water Dalapon 15 515.4 515.4 Water Dalapon 16 515.4 515.4 Water Dentachlorophenol 16 515.4 515.4 Water Pertachlorophenol 17 515.4 515.4 Water Picloram 17 524.2 Water 1,1.2.7 Trichloroethane 17 524.2 Water 1,2.2.7 Trichloroethane		515.4	515.4	Water	2,4-D		
5154515.4WaterDalapon515.4515.4WaterDinoseb515.4515.4WaterPictoram524.2Water1,1.1.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.Dichloroethane524.2Water1,2.4.Tichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,3.Dichlorophopene524.2Wate		515.4	515.4	Water	Bentazon		
515.4515.4WaterDinoseb16515.4515.4WaterPicloram1524.2Water1,1,1-Tichloroethane1524.2Water1,1,2-Tichloroethane1524.2Water1,1,2-Tichloroethane1524.2Water1,1,2-Tichloroethane1524.2Water1,1,2-Tichloroethane1524.2Water1,1-Dichloroethane1524.2Water1,1-Dichloroethane1524.2Water1,1-Dichloroethane1524.2Water1,2-Dichloroethane1524.2Water1,2-Dichloroethane1524.2Water1,2-Dichloroethane1524.2Water1,2-Dichloroethane1524.2Water1,2-Dichlorophraene1524.2Water1,2-Dichlorophraene1524.2Water1,2-Dichlorophraene1524.2Water1,2-Dichlorophraene1524.2Water1,2-Dichlorophraene1524.2Water1,2-Dichlorophraene1524.2Water1,2-Dichlorophraene1524.2Water1,2-Dichloroethylene1524.2Water1,2-Dichloroethylene1524.2Water1,2-Dichloroethylene1524.2Water1,2-Dichloroethylene1524.2Water1,2-Dichloroethylene1524.2Water1,2-Dichloroethylene1 <tr< td=""><td></td><td>515.4</td><td>515.4</td><td>Water</td><td>Dalapon</td><td></td><td></td></tr<>		515.4	515.4	Water	Dalapon		
5154515.4WaterPentachlorophenol515.4515.4WaterPicloram11524.2Water1,1.2.Tichloroethane11524.2Water1,1.2.Tichloro.1.2.2.tiflworoethane11524.2Water1,1.2.Tichloro.1.2.2.tiflworoethane11524.2Water1,1.2.Tichloro.1.2.tiflworoethane11524.2Water1,1.2.Tichloro.1.2.tiflworoethane11524.2Water1,1.2.Tichloro.1.2.tiflworoethane11524.2Water1,2.4.Tichloro.1.2.tiflworoethane11524.2Water1,2.4.Tichloro.1.2.tiflworoethane11524.2Water1,2.2.tiflworoethylene11524.2Water1,2.2.tiflworoethylene11524.2Water1,2.Dichlorobenzene11524.2Water1,2.Dichloropropane. Total11524.2Water1,3.Dichloropropane. Total11524.2Water1,4.Dichlorobenzene11524.2Water1,4.Dichlorobenzene11524.2Water1,3.Dichloropropane. Total11524.2Water1,3.Dichloropropane. Total11524.2Water1,3.Dichloropropane. Total11524.2Water1,3.Dichloropropane. Total11524.2Water1,3.Dichloropropane. Total11524.2Water1,3.Dichloropropane. Total11524.2Water1,3.Dichloropropane. Total11524.2Water1,3		515.4	515.4	Water	Dinoseb		
515.4515.4WaterPicloram17524.2Water1,1.1.Tichloroethane524.2Water1,1.2.2.Titchloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.2.Tichloroethane524.2Water1,1.Dichloroethane524.2Water1,1.Dichloroethane524.2Water1,2.4.Tichloroethane524.2Water1,2.Dichlorobenzene524.2Water1,2.Dichlorobenzene524.2Water1,2.Dichloropopane524.2Water1,2.Dichloropopene, Total524.2Water1,3.Dichloropopene, Total524.2Water1,3.Dichlorobenzene524.2WaterGarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterGarbon tetrachloride524.2WaterGisl.1.3.Dichloropopene524.2WaterGisl.1.3.Dichloropopene524.2WaterGisl.1.3.Dichloropopene524.2WaterGisl.1.3.Dichloropopene524.2WaterGisl.1.3.Dichloropopene524.2WaterGisl.1.3.Dichloropopene524.2WaterGisl.1.3.Dichloropopene524.2WaterGisl.1.3.Dichloropopene524.2WaterMater524.2WaterGisl.1.3.Dichloropopene524.2WaterMater524.2WaterGisl.1.3.Dichloropopene524.2WaterMater		515.4	515.4	Water	Pentachlorophenol		
524.2 Water 1,1,2-Trichloroethane 524.2 Water 1,1,2-Trichloroethane 524.2 Water 1,1,2-Trichloroethane 524.2 Water 1,1,2-Trichloroethane 524.2 Water 1,1-Dichloroethane 524.2 Water 1,1-Dichloroethane 524.2 Water 1,1-Dichloroethane 524.2 Water 1,2-Trichloroethane 524.2 Water 1,2-Dichlorobenzene 524.2 Water 1,2-Dichlorobenzene 524.2 Water 1,2-Dichlorobenzene 524.2 Water 1,2-Dichloropthane 524.2 Water 1,2-Dichloropthane 524.2 Water 1,3-Dichloroptopane 524.2 Water 1,3-Dichloroptopane 524.2 Water Benzene 524.2 Water Carbon tetrachoride 524.2 Water cai-1,2-Dichloroethylene 524.2 Water cai-1,2-Dichloroethylene 524.2 Water cai-1,2-Dichloroethylene 524.2 Water cai-1,3-Dichloropropene		515.4	515.4	Water	Picloram		17
524.2Water1,1,2-Tictaloroethane524.2Water1,1,2-Tictaloroethane524.2Water1,1-2.Tictaloroethane524.2Water1,1-Dichloroethane524.2Water1,1-Dichloroethane524.2Water1,1-Dichloroethane524.2Water1,2-Dichloroethane524.2Water1,2-Dichloroethane524.2Water1,2-Dichloroethane524.2Water1,2-Dichloroethane524.2Water1,2-Dichloroptane524.2Water1,2-Dichloroptane524.2Water1,2-Dichloroptane, Total524.2Water1,2-Dichloroptane, Total524.2Water1,4-Dichloroethane524.2Water1,4-Dichloroethane524.2Water1,4-Dichloroptane, Total524.2Water1,4-Dichloroptane, Total524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterChorobenzene524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterDichloromethane524.2WaterMater524.2Water <td< td=""><td></td><td>524.2</td><td></td><td>Water</td><td>1,1,1-Trichloroethane</td><td></td><td></td></td<>		524.2		Water	1,1,1-Trichloroethane		
524.2Water1,1,2.Trichloro-1,2,2.trifluoroethane524.2Water1,1.2.Trichloroethane524.2Water1,1.Dichloroethane524.2Water1,1.Dichloroethylene524.2Water1,2.4.Trichlorobenzene524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloroethane524.2Water1,2.Dichloropenzene524.2Water1,2.Dichloropenzene524.2Water1,2.Dichloropopane524.2Water1,3.Dichloropopane, Total524.2Water1,4.Dichlorobenzene524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCisl.1,3.Dichloroppene, Total524.2WaterCisl.1,3.Dichloroptene524.2WaterCisl.1,3.Dichloroptene524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDich		524.2		Water	1,1,2,2-Tetrachloroethane		
524.2Water1,1,2-Trichloroethane524.2Water1,1-Dichloroethane524.2Water1,2-A-Trichlorobenzene524.2Water1,2-Dichlorobenzene524.2Water1,2-Dichlorobenzene524.2Water1,2-Dichloropenane524.2Water1,2-Dichloropenane524.2Water1,3-Dichloropenane524.2Water1,3-Dichloropropane524.2Water1,3-Dichloropropane, Total524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2Watercis-1,2-Dichloropropene524.2Watercis-1,2-Dichloroptopene524.2Watercis-1,3-Dichloroptopene524.2Watercis-1,3-Dichloroptopene524.2WaterCislonomethane524.2WaterDichloromethane524.2WaterDichloroptopene524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater		524.2		Water	1,1,2-Trichloro-1,2,2-trifluoro	pethane	
524.2Water1,1-Dichloroethane524.2Water1,2-Dichloroethylene524.2Water1,2-Dichlorobenzene524.2Water1,2-Dichloroethane524.2Water1,2-Dichloroponpane524.2Water1,2-Dichloroponpen, Total524.2Water1,3-Dichloroponpen, Total524.2Water1,3-Dichloroponpen, Total524.2Water1,4-Dichlorobenzene524.2Water1,4-Dichloroponpen, Total524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterChlorobenzene524.2WaterCarbon tetrachloride524.2WaterChlorobenzene524.2WaterChloropene, Total524.2WaterChloropene, Total524.2WaterChlorobenzene524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChloromethane524.2WaterChlorome		524.2		Water	1,1,2-Trichloroethane		
524.2Water1,1-Dichloroethylene524.2Water1,2-Arichlorobenzene524.2Water1,2-Dichlorobenzene524.2Water1,2-Dichloroppane524.2Water1,3-Dichloroppone, Total524.2Water1,3-Dichloroppone, Total524.2Water1,4-Dichlorobenzene524.2Water1,4-Dichlorobenzene, Total524.2Water0524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCichloroptylene524.2WaterCichloroptylene524.2WaterDichloroptylene524.2WaterDichloroptylene524.2WaterDichloroptylene524.2WaterEthylbenzene524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2Water		524.2		Water	1,1-Dichloroethane		
524.2Water1,2.4.Trichlorobenzene524.2Water1,2.Dichlorobenzene524.2Water1,2.Dichloroptopane524.2Water1,3.Dichloroptopene, Total524.2Water1,4.Dichlorobenzene524.2Water1,4.Dichlorobenzene524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCish 1,2-Dichloroptopene524.2WaterCish 1,2-Dichloroptopene524.2WaterCish 1,3-Dichloroptopene524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterMater524.2WaterDichloromethane524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater		524.2		Water	1,1-Dichloroethylene		
524.2Water1,2-Dichlorobenzene524.2Water1,2-Dichloroppane524.2Water1,3-Dichloroppane, Total524.2Water1,4-Dichlorobenzene, Total524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2WaterCarbon tetrachloride524.2Watercis-1,2-Dichloroptene524.2Watercis-1,3-Dichloroptene524.2Watercis-1,3-Dichloroptene524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterMater524.2WaterMater524.2WaterMater524.2Waterm,p-Xylenes524.2WaterMethyl-tetr-butyl Ether (MTBE)524.2WaterNater		524.2		Water	1,2,4-Trichlorobenzene		
524.2Water1,2-Dichloroptane524.2Water1,3-Dichloroptane, Total524.2Water1,4-Dichlorobenzene, Total524.2WaterBenzene524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterCarbon terachloride524.2WaterChlorobenzene524.2WaterCarbon terachloride524.2WaterCish 1,2-Dichlorothylene524.2Watercis-1,2-Dichlorothylene524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichlorothylene524.2WaterDichlorothylene524.2WaterMater <td< td=""><td></td><td>524.2</td><td></td><td>Water</td><td>1,2-Dichlorobenzene</td><td></td><td></td></td<>		524.2		Water	1,2-Dichlorobenzene		
524.2Water1,2-Dichloropropane524.2Water1,3-Dichloropropene, Total524.2Water1,4-Dichlorobenzene524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterChlorobenzene524.2Watercis-1,2-Dichloroethylene524.2Watercis-1,3-Dichloropropene524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterMater		524.2		Water	1,2-Dichloroethane		
524.2Water1,3-Dichloropropen, Total524.2Water1,4-Dichlorobenzene524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterChlorobenzene524.2Watercis-1,2-Dichloroethylene524.2Watercis-1,3-Dichloropropene524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterO-Xylene		524.2		Water	1,2-Dichloropropane		
524.2Water1,4-Dichlorobenzene524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterChlorobenzene524.2Watercis-1,2-Dichloroethylene524.2Watercis-1,3-Dichloropropene524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterMater524.2WaterMater524.2Waterm,p-Xylenes524.2WaterMethyl-tether (MTBE)524.2Watero-Xylene		524.2		Water	1,3-Dichloropropene, Total		
524.2WaterBenzene524.2WaterCarbon tetrachloride524.2WaterChlorobenzene524.2Watercis-1,2-Dichloroethylene524.2Watercis-1,3-Dichloropropene524.2WaterDichloromethane524.2WaterDichloromethane524.2WaterMater524.2WaterMater524.2WaterDichloromethane524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterMater524.2WaterO-Xylene524.2WaterO-Xylene		524.2		Water	1,4-Dichlorobenzene		
524.2WaterCarbon tetrachloride524.2WaterChlorobenzene524.2Watercis-1,2-Dichloroethylene524.2Watercis-1,3-Dichloropropene524.2WaterDichloromethane524.2WaterEthylbenzene524.2Waterm,p-Xylenes524.2WaterMethyl-tetr-(MTBE)524.2Watero-Xylene		524.2		Water	Benzene		
524.2WaterChlorobenzene524.2Watercis-1,2-Dichloroethylene524.2Watercis-1,3-Dichloropropene524.2WaterDichloromethane524.2WaterEthylbenzene524.2Waterm,p-Xylenes524.2WaterMethyl-tert-butyl Ether (MTBE)524.2Watero-Xylene		524.2		Water	Carbon tetrachloride		
524.2Watercis-1,2-Dichloroethylene524.2Watercis-1,3-Dichloropropene524.2WaterDichloromethane524.2WaterEthylbenzene524.2Waterm,p-Xylenes524.2WaterMethyl-tert-butyl Ether (MTBE)524.2Watero-Xylene		524.2		Water	Chlorobenzene		
524.2Watercis-1,3-Dichloropropene524.2WaterDichloromethane524.2WaterEthylbenzene524.2Waterm,p-Xylenes524.2WaterMethyl-tert-butyl Ether (MTBE)524.2Watero-Xylene		524.2		Water	cis-1,2-Dichloroethylene		
524.2WaterDichloromethane524.2WaterEthylbenzene524.2Waterm,p-Xylenes524.2WaterMethyl-tert-butyl Ether (MTBE)524.2Watero-Xylene		524.2		Water	cis-1,3-Dichloropropene		
524.2WaterEthylbenzene524.2Waterm,p-Xylenes524.2WaterMethyl-tert-butyl Ether (MTBE)524.2Watero-Xylene		524.2		Water	Dichloromethane		
524.2Waterm,p-Xylenes524.2WaterMethyl-tert-butyl Ether (MTBE)524.2Watero-Xylene		524.2		Water	Ethylbenzene		
524.2WaterMethyl-tert-butyl Ether (MTBE)524.2Watero-Xylene		524.2		Water	m,p-Xylenes		
524.2 Water o-Xylene		524.2		Water	Methyl-tert-butyl Ether (MTE	BE)	
		524.2		Water	o-Xylene		

SM 2340B

SM 2340B

SM 4500 F C

Laboratory: Eurofins Eaton Analytical Pomona (Continued) Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority **Identification Number Expiration Date** Program 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 524.2 Water Styrene 524.2 Water Tetrachloroethylene 524.2 Water Toluene 524.2 Water trans-1,2-Dichloroethylene 524.2 Water trans-1,3-Dichloropropene 524.2 Water Trichloroethylene 524.2 Water Trichlorofluoromethane 524.2 Water Vinyl chloride 524.2 Water Xylenes, Total 525.2 525.2 Water Alachlor Water 525.2 525.2 Atrazine 525.2 525.2 Water Benzo[a]pyrene 525 2 525 2 Di (2-ethylhexyl)phthalate Water 525.2 525.2 Water Di(2-ethylhexyl)adipate 525.2 525.2 Water Endrin 13 525.2 525.2 Water gamma-BHC (Lindane) 525.2 525.2 Water Heptachlor 525.2 525.2 Water Heptachlor epoxide 525.2 525.2 Water Hexachlorobenzene 525.2 525.2 Water Hexachlorocyclopentadiene 525.2 525.2 Water Methoxychlor 525 2 Molinate 525.2 Water 525.2 525.2 Water Simazine Thiobencarb 525.2 525.2 Water 531.2 Filtration Water Carbofuran 531.2 Filtration Water Oxamyl 547 Filtration Water Glyphosate 548.1 548.1 Water Endothall 549.2 5492 Water Diquat CA DWRL Water 1,2,3-Trichloropropane SM 2150B Water Odor SM 2320B Water Phenolphthalein Alkalinity as CaCO3

Calcium hardness as CaCO3 Magnesium hardness as CaCO3

Fluoride

Water

Water

Water

Client: SWCA Environmental Consultants Project/Site: 2024T: CA SWRCB/DDW Title 22

Method	Method Description	Protocol	Laboratory
524.2	Volatile Organic Compounds (GC/MS)	EPA-DW	EA POM
CA DWRL	Volatile Organic Compounds (GC/MS)	CADHS	EA POM
525.2	Semivolatile Organic Compounds (GC/MS)	EPA	EA POM
548.1	Endothall (GC/MS)	EPA	EA POM
504.1	EDB, DBCP and 1,2,3-TCP (GC)	EPA-DW2	EA POM
505	Organochlorine Pesticides/PCBs (GC)	EPA	EA POM
515.4	Herbicides (GC)	EPA-DW	EA POM
300.0	Anions, Ion Chromatography	EPA	EA POM
531.2	Carbamate Pesticides (HPLC)	EPA	EA POM
547	Glyphosate (DAI HPLC)	EPA	EA POM
549.2	Diquat and Paraquat (HPLC)	EPA	EA POM
331.0	Perchlorate (LC/MS/MS)	EPA	EA POM
1613B	Tetra Chlorinated Dioxin (GC/MS/MS)	EPA	EA POM
200.7 Rev 4.4	Metals (ICP)	EPA	EA POM
200.8	Mercury (ICP/MS)	EPA	EA POM
200.8	Metals (ICP/MS)	EPA	EA POM
SM 2340B	Total Hardness (as CaCO3) by calculation	SM	EA POM
335.4	Cyanide, Total	EPA	EA POM
4500 CN F	Cyanide, Free	SM	EA POM
SM 2150B	Odor	SM	EA POM
SM 2320B	Alkalinity	SM	EA POM
SM 2510B	Conductivity, Specific Conductance	SM	EA POM
SM 2540C	Solids, Total Dissolved (TDS)	SM	EA POM
SM 4500 F C	Fluoride	SM	EA POM
SM 4500 H+ B	рН	SM	EA POM
SM 5540C	Methylene Blue Active Substances (MBAS)	SM	EA POM
1613B	Solid-Phase Extraction (SPE)	EPA	EA POM
200.7	Preparation, Total Recoverable Metals	EPA	EA POM
200.8	Preparation, Total Recoverable Metals	EPA	EA POM
504.1	Microextraction	EPA-DW	EA POM
505	Extraction, Organohalide Pesticides	EPA	EA POM
515.4	Extraction of Chlorinated Acids	EPA-DW	EA POM
525.2	Extraction of Semivolatile Compounds	EPA	EA POM
548.1	Extraction of Endothall	EPA-DW	EA POM
549.2	Extraction of Diquat and Paraquat	EPA	EA POM
Distill/CN	Distillation, Cyanide	None	EA POM
Filtration	Sample Filtration	None	EA POM

Protocol References:

CADHS = California Department of Health Services

EPA = US Environmental Protection Agency

EPA-DW = "Methods For The Determination Of Organic Compounds In Drinking Water", EPA/600/4-88/039, December 1988 And Its Supplements. EPA-DW2 = "Methods For The Determination of Organic Compounds in Drinking Water - Supplement III ",, EPA/600/R-95-131, August 1995 None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EA POM = Eurofins Eaton Analytical Pomona, 941 Corporate Center Drive, Pomona, CA 91768-2642, TEL (626)386-1100

Sample Summary

Client: SWCA Environmental Consultants Project/Site: 2024T: CA SWRCB/DDW Title 22

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
380-129268-1	Baker	Water	01/07/25 10:07	01/09/25 09:43
380-129268-2	Trip Blank	Water	01/07/25 10:07	01/09/25 09:43

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive Pomona, CA 91768-2642 Phone: 626-386-1100	Chain of Cust	ody Rec	ord						•••	s eurofins	Ervironment Testing
Client Information	Sampler Aust/n NullU	Lab PM: Harlin, Te	E			Carrier 1	racking No(COC Ne: 380-77857-22814	11
Client Contact Nolan Perryman	Phone: 303-479-2552	E-Mail Terri Harl	in@et.eurof	insus com		State of	nigin:			Page: Page 1 of 2	
Company SWCA Environmental Consultants	- PWSID:		,	Ana	lysis Re	aqueste				lob #:	
Address: 320 N Halstead Street Suite 120	Due Date Requested RUSH									Preservation Code R - NaThioSO4	:58
City Pasadena	TAT Requested (days):									u - Nacsous N - None D - HNO3	
State, Zp: CA, 91107	Compliance Project: 🛆 Yes 🛆 No									PZ - NaThio/KDiHydC HA - AscbAcd&HCL	÷
Phone: 303-478-252	Por# Purchase Order not required	(0	se				5		401		
Email: Nolan.Perryman@swca.com	"# OM	a or No	(ON				sticide:		נפ ר"ו גזו		
Project Name: 2024T CA SWRCB/DDW Title 22	Project #: 38008519	зө <u></u> д) ө	ae or		91 		ate Pe:		awu_, enlitin		
Sile. Mary CA	SSOW#:	Iqmað	Y) OSI 0T-8,7,0 eninoidi	teupi edtobri	issond	8H_8.0	arbami arbami	2079	AD ,D∃ 100 TO	Other ⁻	
	Sample	Matrix (www.ater S=solid,	атр MS/M	LPREC - EI	PREC - GIY	2, 200.8, 200	2-DFREC-C	- Calcd, 5	19dmuN li 19dmuN li		
Sample Identification	Sample Date Time G=grab)	O=wasta/oli,	919') 1913 1913	· 879 (2472 - 7472	2002	2WS 1ES	5640	901	Special In:	structions/Note:
	FIESENAU		XR 0	R R	х х		Z Z	z			
DALES 6W-01	11/07/25/jo/07 4	Water N]		\prod						
		Water									
	8										
										1	3
										51 	
											8
										380-12	9268 COC
Possible Hazard Identification			Sample Dis	posal (A fe	e may be	assesse	d if samp	les are	retaine ∫	d longer than 1	month) Montho
Non-Hazard Hammable Skin imtant Fois Deliverable Requested I, II III IV Other (specify)	son b Unknown Raululugical		Special Instru	uctions/QC	Requirem	ents:	Dy Lau		AIGH.	ve roi	MUIUS
Empty Kit Relinquished by	Date	Tim	aj			Me	thod of Shi	ment			
Relinquished by ALISTIN MI (IC BUILD	DateTime: Not 01/08/25 11/19 0	sucd	Received b	x /U			Da Da	te/Time://c	1/25	- 0043	Company EEAO
Relinquished by	Date/Time	ompany	Received b	ż			Da	te/Time:			Company
Relinquished by	Date/Time: C	ompany	Received b	Y			Da	te/Time:			Company
Custody Seals Intact: Custody Seal No			Cooler Ten	perature(s) °C	and Other I	Remarks: ナリ ピ ご	3	4			
				X	,						Ver 10/10/2024

Pomone, CA 91768-2642 Phone 626-386-100		, nain (rody ke	COLO										Environment	Testing
Client Information	Sampler Jush	W V	1110	Lab PM. Harlin,	Tern				<u>ö</u>	mer Tra	cking No	(s):		COC No: 380-77857-;	22814.2	
Client Contact Nolan Perryman	Phone: 1-4	101	1 < < 1	E-Mail: Terri H	arlin@et.e	eurofinsu	s.com		5	ate of O	gin:			Page: Page 2 of 2		
company SWCA Environmental Consultants			PWSID:				Ana	lysis	Requ	ested				ind #		
Address: 320 N Halstead Street Suite 120	Due Date Requeste	Y V ₹							-					Preservation OA - Na2SO3/I	Codes:	
city Pasadena	TAT Requested (da	ys):				ວ								HB - AscbAcd8 N - None R - NaThioSO2	NaOH	
State, Zp: CA, 91107	Compliance Projec	t: ∆Yes ((oN	T		1005		θL				- <u></u> -	<u>em</u>	HA - AscbAcd8	HCL	
Prone: 202-478-2552	Po #: Purchase Order	not require	q			'OBHo		iedoido								
Email: Nolan.Perryman@swca.com	:# OM				(o)	H87	8	ichlore								
Project Name: 2024T CA SWRCB/DDW Title 22	Project #- 38008519			89 <u>7) 9</u>	NOC ²		terold:	лТ-£,2,								
She DALL - ICA	:#MOSS			Iamez	26.2 S/	иес' 3(- Perc	r- 901						other 0		
() Samolo Identification	Samulo Date	Sample Time	Sample Type (C=comp,	Matrix Matrix (www.ter, S=solid, O=waste/oil, O=waste/oil,	26.2 PREC - 67	35.4, 4500_CN	31.0_PREC_CA	1621_JAWQ_A:							al Instructions/Not	à
		X	Preservat	ion Code:	۹ d A	с <mark>и</mark> с 9	2 3 2 3	₽₩								;
BAKET 64-01	16705	(0,0)	2	Water					-							
	<u>}</u>		6	Water					┼─	-	-					
						-		-	+			+				T
						-										
					_	_			-		_					
Possible Hazard Identification	oison B		<u> Radiological</u>		Sample	Dispos a eturn To	al (A fe Client	e may		essed posal B	i f sam i y Lab	oles au	ereta ∀	ned longer th chive For	an 1 month) Months	
Deliverable Requested 1, II III IV Other (specify)					Special I	nstructic	ins/QC I	Sequire	ments							
Empty Kit Reinquished by		Date		Ë.	me.					Metho	d of Shi	oment:				
Relipquished by At 54 m. 170- M. L.	Date/Time D//OY/2S	11/1	×	SCUCT	Recei	ved by'	Ì	2			<u>6</u>	te/Time	191	25-094	3 ビビカク	
Relinquished by	Date/Time		<u> </u>	Company	Recei	ved by					<u> </u>	te/Time:			Company	
Relinquished by	Date/Time:			Company	Recei	ved by ^r					Da	te/Time:			Company	
Custody Seals Intact: Custody Seal No Δ Yes Δ No					Coole	r Tempera	ture(s) °C	and Othe	ir Remai	1 1 1 3	OA	3	4	5. 6 - 2- 6	tel	
															Ver 10/10/2024	

22 eurofins |

Eurofins Eaton Analytical Pomona 941 Corporate Center Drive

٢ Ċ . 4

Login Sample Receipt Checklist

Client: SWCA Environmental Consultants

Login Number: 129268 List Number: 1

Creator: Sanchez Velasquez, Gustavo

Question	Answer	Comment	6
The coolers custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
Samples were received on ice.	True		0
Cooler(s) Temperature is acceptable.	True		0
Cooler(s) Temperature is recorded.	True		9
COC is present.	True		
COC is filled out in ink and is legible.	True		
COC is filled out with all pertinent information.	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		13
Sample collection date/times are provided.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	False	Headspace larger than 1/4".	
CIO4 headspace requirement met (>50% for CA, >30% for other states).	True		
Samples do not require splitting or compositing.	True		
Container provided by EEA	True		17

List Source: Eurofins Eaton Analytical Pomona

Job Number: 380-129268-1

APPENDIX B

Aquifer Test Results

			B	Pumping	Test Analysis	s Repor	t		
				Project:	Soda Moun	ntain Aq	uifer Test		
				Number:	68347-002-	PAS			
				Client:					
tion: Baker, Califo	rnia	Pumping Te	st: Pump	ing Test 1		Pump	ing Well: We	ell 1	
Conducted by: So	phie Swanson					Test [Date: 1/7/202	25	
er Thickness: 240	.00 ft	Discharge R	ate: 250	[U.S. gal/	min]				
Analysis Name	Analysis Performed	Analysis Date	Method r	name	Well		T [ft²/d]	K [ft/d]	S
Theis Groundwater V	∧Sophie Swanson	1/22/2025	Theis		Well 1		6.13 × 10 ²	2.56 × 10 ⁰	1.30 × 10 ⁻³
Theis with Jacobs C	oSophie Swanson	1/22/2025	Theis		Well 1		1.27 × 10 ³	5.28 × 10 ⁰	1.00 × 10 ⁻⁷
Boulton	Sophie Swanson	1/22/2025	Boulton		Well 1		1.30 × 10 ³	5.41 × 10 ⁰	1.00 × 10 ⁻⁷
	ion: Baker, Califo Conducted by: So er Thickness: 240 Analysis Name Fheis Groundwater V Fheis with Jacobs C Boulton	ion: Baker, California Conducted by: Sophie Swanson er Thickness: 240.00 ft Analysis Name Analysis Performed Fheis Groundwater NSophie Swanson Fheis with Jacobs CpSophie Swanson Boulton Sophie Swanson	ion: Baker, California Pumping Te Conducted by: Sophie Swanson er Thickness: 240.00 ft Discharge R Analysis Name Analysis Performed pAnalysis Date Theis Groundwater NSophie Swanson 1/22/2025 Theis with Jacobs C Sophie Swanson 1/22/2025 Boulton Sophie Swanson 1/22/2025	ion: Baker, California Pumping Test: Pump Conducted by: Sophie Swanson er Thickness: 240.00 ft Discharge Rate: 250 Analysis Name Analysis Performed pAnalysis Date Method r Theis Groundwater NSophie Swanson 1/22/2025 Theis Theis with Jacobs CpSophie Swanson 1/22/2025 Theis Boulton Sophie Swanson 1/22/2025 Boulton	Project: Number: ion: Baker, California Pumping Test: Pumping Test 1 Conducted by: Sophie Swanson er Thickness: 240.00 ft Analysis Name Analysis Performed pAnalysis Date Method name Theis Groundwater Nophie Swanson 1/22/2025 Theis Boulton	Project: Soda Mour Project: Soda Mour Number: 68347-002- Client: Client: conducted by: Sophie Swanson er Thickness: 240.00 ft Discharge Rate: 250 [U.S. gal/min] Analysis Name Analysis Performed pAnalysis Date Method name Project: Sophie Swanson 1/22/2025 Theis Well 1 Theis with Jacobs CpSophie Swanson 1/22/2025 Theis Well 1 Boulton Sophie Swanson 1/22/2025 Boulton Well 1	Project: Soda Mountain Aquity Project: Soda Mountain Aquity Number: 68347-002-PAS Client: Client: ion: Baker, California Pumping Test: Pumping Test 1 Conducted by: Sophie Swanson er Thickness: 240.00 ft Discharge Rate: Discharge Rate: 250 [U.S. gal/min] Analysis Name Analysis Performed pAnalysis Date Method name Well Theis Groundwater NSophie Swanson 1/22/2025 Theis Well 1 Boulton Sophie Swanson 1/22/2025 Boulton	Project: Soda Mountain Aquifer Test Project: Soda Mountain Aquifer Test Number: 68347-002-PAS Client: Client: ion: Baker, California Pumping Test: Pumping Test 1 Pumping Well: Well Conducted by: Sophie Swanson er Thickness: 240.00 ft Discharge Rate: 250 [U.S. gal/min] Analysis Name Analysis Performed pAnalysis Date Method name Well T [ft²/d] Theis Groundwater NSophie Swanson 1/22/2025 Theis Well 1 1.27 × 10 ³ Boulton Sophie Swanson 1/22/2025	Project: Soda Mountain Aquifer Test Project: Soda Mountain Aquifer Test Number: 68347-002-PAS Client: Client: ion: Baker, California Pumping Test: Pumping Test 1 Pumping Well: Well 1 Conducted by: Sophie Swanson r Discharge Rate: 250 [U.S. gal/min] Analysis Name Analysis Date Analysis Name Analysis Date Analysis Name Analysis Date Method name Well T [ft/2/d] K [ft/d] Cheis with Jacobs CoSophie Swanson 1/22/2025 Theis Well 1 1.27 × 10 ³ Boulton Sophie Swanson 1/22/2025

APPENDIX C

DWR Well Completion Report

State of California Well Completion Report Form DWR 188 Auto-Completed 2/4/2021 WCR2020-016662

Owner's V	Well Numb	er 1				Date Work	k Began	09/2	3/2020			Date Wo	rk Ended	10/01/	2020
Local Per	mit Agenc	y San Be	ernardino Co	unty D	PH - Environr	nental Hea	Ith Serv	ices Saf	e Drinking	g Wat	er Permi	t Section			
Secondar	y Permit A	gency				Permit	Numbe	r 2020	0100823			Pe	ermit Date	08/20/	2020
Well C	Owner (must re	main con	fide	ntial purs	uant to	Wate	er Cod	le 1375	52)		Plann	ed Use	and A	ctivity
Name	XXXXXXX	(XXXXXXXXX	xxxxx								Activity	/ New	Well		
Mailing A	ddress	XXXXXXX	XXXXXXXXX	XXXX	<						Planne	nd I lse	Water S		mestic
		XXXXXXX	xxxxxxxx	xxxx	<										
City XX	XXXXXXX	XXXXXXXXX	XXXX			State	XX	Zip	XXXXX						
						We	ll Loc	ation							
Address	0 death	n valley rd								API	N				
City b	aker			Zip	92365	County	/ San	Bernard	ino	Тоу	vnship				
Latitude	35	18	21.5999	Ν	Longitude	-116	5	18.4	199 W	Rar	nge				
	Deg.	Min.	Sec.	-	-	Deg.	Min.	Se	C.	Sec	ction	al all a se			
Dec. Lat.	35.306				Dec. Long.	-116.088	845			Bas		eridian 	otion		
Vertical D	Datum			н	orizontal Datu	ım WGS	84			Fle	vation Ac				
Location	Accuracy		L	.ocatio	n Determinati	on Method				Ele	vation De	eterminati	on Method		
		Dere	hala Infa		lon				Watar			Vield			
		Bore	nole into	rma	lion				water	Lev	er and		of Con	ipiete	
Orientatio	on Verti	cal			Spec	ify		Depth t	o first wat	ter -		30	- (Feet be	elow surf	ace)
Drilling N	lethod D	Direct Rotary	′ C	Drilling	Fluid Bento	nite		Water I	evel		30	(Feet)	Date Me	asured	09/29/2020
								Estimat	ted Yield*		400	(GPM)	Test Typ	e	Air Lift
Total Dep	oth of Borii	ng 400			Feet			Test Le	ength		2	(Hours)	Total Dra	wdown	(feet)
Total Dep	oth of Com	pleted Well	400		Feet			*May n	ot be repr	esent	tative of a	a well's lo	ng term yie	eld.	
					G	eologic	Log ·	- Free	Form						
Depth Surf Feet to	from ace o Feet							Descri	iption						
0	100	blue clay													
100	250	sand grave													
250	400	brown clay													

							Casin	gs								
Casing #	Depth fro Feet t	n Surface o Feet	Casi	ng Type	Material	Casings S	Specificaton	Wall Thickno (inche	e ss es)	Outside Diameter (inches)	Screen Type	Slot Size if any (inches)		Desc	ription	
1	0	160	Blanl	<	PVC	OD: 6.62 17 Thicl in.	5 in. SDR kness: 0.39	: 0.3 ¹	9	6.625						
1	160	400	Scre	en	PVC	OD: 6.62 17 Thicl in.	5 in. SDR kness: 0.39	: 0.3 ¹	9	6.625	Saw Cut	7				
						Ar	nular M	aterial								
Depth Sur Feet t	f rom face o Feet	Fill			Fill T	ype Detail	s			Filter Pack	Size		De	scriptio	n	
0	20	Ceme	ent	10.3 Sa	ick Mix											
20	400	Filter F	Pack	6 x 16												
Other	Observa	ations:														
	E	Boreho	le Sp	pecific	ations					Certific	ation S	statemen	t			
Dept Su Feet	h from rface to Feet		Bor	ehole Dia	ameter (inches)		I, the unders	gned, certify t	hat thi	is report is com EAGLE WE	plete and accu	urate to the best	of my k P SEF	knowledge RVICE	and belief	
0	400	12.25						Person, r	-ım ∘	or Corporat	ion N			CA	023	865
								Add	Iress	50		City		State	- <u>92365</u> Zip	
							Signed	electron	ic sir	nnaturo ro	coived	12/03/20	20	7	68952	
								C-57 Licer	nsed	Water Well C	ontractor	Date Sign	ed	C-57 Lic	ense Nu	imber
										DV	/R Use	Only				
							CSG #	State V	Vell	Number	Si	te Code		Local W	/ell Nu	nber
											N					w
							La	titude D	eg/I	Min/Sec		Longitu	ide l	Deg/M	in/Seo	:
							TRS:									
							APN:									