DOCKETED	
Docket Number:	24-IEPR-03
Project Title:	Electricity Demand Forecast
TN #:	259935
Document Title:	Presentation - Data Center Forecasts
Description:	6A. Jenny Chen, CEC
Filer:	Raquel Kravitz
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	11/6/2024 4:01:24 PM
Docketed Date:	11/6/2024

Data Center Forecasts

Presenter: Jenny Chen, Supervisor, Sector Modeling Unit Date: Nov 07, 2024

- 1. Data received and methodology
- 2. Forecasts for two scenarios

- Installed Capacity / Nameplate Capacity
 - Capacity of the facility
- Peak Demand / Load
 - Highest level of power consumption used by the data center during a specific timeframe ("max demand")
- Utilization Factor (UF)
 - Percentage of installed or nameplate capacity at which data center operates at peak demand, based on historical AMI data for a sample of data centers (peak demand ÷ installed capacity)
- Hourly Load Factor
 - Data center consumption for the hour ÷ (data center peak demand)
- Average Demand
 - Load averaged over 8760 hours of the year
- Method of Service (MOS) Study
 - Type of service that utilities provide to new and existing customers requesting to connect load at 66 kV or higher. It addresses all technical requirements of the customer facility.

Data Received & Methodology

Estimated Peak Load, using Assumptions from Existing Data Centers

PG&E	 Projections of incremental installed capacity from 2025 – 2037, based on customer-provided ramping schedule
SCE	 Peak demand of planned data centers to be served at the distribution-level from 2024 - 2028, Installed capacity of planned data centers at the sub-transmission level
City of San Jose	Received start dates and total capacity for potential data center projects.

Unaltered Utility-provided Data

SVP	 Annual peak demand for SVP system under 1-in-2 weather scenario. Broke out peak demand for data centers.
City of Palo Alto	 Annual peak demand for City of Palo Alto system under 1-in-2 weather scenario. Broke out peak demand for data centers.

Estimating Peak Load & Annual Consumption

Based on historical load of 60+ data centers in SVP territory:

- 1. Demand of either new or existing project requests assumed to be 5.0 MW at Year 1.
- Year 1 demand ramped up year over year (YoY) 149% from Year 1 5; 113% from Year 6 – 10, until peak demand of data center is reached.
- 3. Peak demand of data center: ~67% of installed capacity
- 4. Normalize 2023 data center consumption by data center peak demand to create hourly load factors (8760 hours).
- 5. Calculate hourly load factors for weekday and weekend (24 hours).
- 6. Multiply estimated peak demand (MW) for each year by hourly load factors.
- 7. Sum consumption across all hours of each year to derive annual consumption (GWh).

Source: Silicon Valley Power (SVP). Data Center Load Estimation Data & Methods. SVP Engineering Division. Sep 11, 2024.

Scenario 1:

- Included only applications received as today, not those anticipated in the future.
- Results considered for the Planning Forecast.
- Scenario 2:
 - Excluded:
 - 50% of PG&E projected incremental capacity (MW) over 2025 2037, based on initial confidence level
 - Pre-MOS projects in SCE territory,
 - One project application in City of San Jose.

• Scenario 3:

- Will incorporate utility-provided updates or future applications, in addition to results from Scenario 1.
- Results considered for the Local Reliability Scenario.

References

- "US data center demand is forecast to grow by some **10 percent / year** until 2030."
 Source: McKinsey & Co. Investing in the rising data center economy. Exhibit 1. Jan 17, 2023.
- Projection range for new US data center growth (CAGR) from 2023 2030 : approximately 9 16% / year
 - o Source: Energy + Environmental Economics (E3). Figure ES-2. "Load Growth is Here to Stay, but Are Data Centers?" Page 2. July 2024.

Peak Data Center Demand (GW)

Annual Consumption (GWh)

Source: CEC Staff (with data inputs from PG&E, Palo Alto, SVP, San Jose, SCE) 9

- Next Steps
 - Continue to coordinate with SMUD for data center growth in its service territory.
 - Meet with SVP and others to obtain feedback on draft results.
 - Seek feedback regarding use of Scenario 1 results for Planning Forecasts; Scenario 3 results for Local Reliability Scenario.

- Staff at PG&E, SCE, SVP, Palo Alto, San Jose who provided data and spent many hours with us explaining their projections
- Eric Shum, P.E., Silicon Valley Power (SVP)
- Taylor Harms, P.E., CEC
- Claire Petersen, CEC
- Chris Kavalec, CEC
- Heidi Javanbakht, CEC
- Jeremy Smith, CEC

Thank You!

Written Comments or Questions via Email Jenny Chen (jenny.chen@energy.ca.gov)