DOCKETED					
Docket Number:	23-SB-100				
Project Title:	SB 100 Joint Agency Report				
TN #:	#: 258363				
Document Title:	Senate Bill 100 Demand Scenarios Demand Flexibility Resource Potential				
Description:	**This document supersedes TN # 258330**				
Filer:	J Padilla				
Organization:	California Energy Commission				
Submitter Role:	Submitter Role: Commission Staff				
Submission Date:	8/7/2024 8:37:42 AM				
Docketed Date:	8/7/2024				

SB 100 Demand Scenarios: Demand Flexibility (DF) Resource Potential

Ingrid Neumann, Ph.D.

Decarbonization Principal, Advanced Electrification Analysis Branch August 7, 2024

- Purpose and Context
- Overview of Current Work
- Methodology and Sources
- Inputs for Production Cost Modeling
- Demand Flexibility Potential Results

Acronyms and Initialisms

AAEE – Additional Achievable Energy Efficiency

AAFS - Additional Achievable Fuel Substitution

BTM – Behind the meter

CAISO – California Independent System Operator

CARB – California Air Resources Board

CEC – California Energy Commission

CPUC – California Public Utilities Commission

DF – Demand Flexibility

DS – Demand Scenario

LSG - Load Shift Goal

LBNL - Lawrence Berkeley National Lab

MF = Multi-Family

PCM – Production Cost Model

SF = Single Family

TE – Transportation Electrification

Past CEC & Interagency efforts analyzing Demand Flexibility Potential

Keeping the lights on and emissions low!

- In 2020, the CEC engaged Guidehouse to develop a tool with which to estimate statewide potential for demand flexibility.
- First iteration of the D-Flex Tool customized for setting California's
 LSG under Senate Bill 846 in 2023
- CEC facilitated an interagency working group to use the D-Flex tool for analysis of load shift potential and development of policy recommendations

New Use for D-Flex Tool for DS & SB 100

- Generate <u>potentials</u> for each hour of the year for use in the PCM
- Establish operation parameters (e.g., limited flex events in a day)
- Cost estimates for D-Flex options
- Not directly comparable to a load modifier

D-Flex Tool Basics

- Shed/Shift across multiple technologies
 - > Four Sectors
 - > 34 building types/segments
 - > DERs such as EVs and BTM storage
- Draws on existing research from LBNL (supported by CPUC)

DF Potential Development

Note potential estimates are only for event-based, economically-dispatched programmatic interventions, not dynamic rates/CalFUSE

DF Tool Functionality Overview

1. Hourly Gross Load and Capacity Estimates

Estimate magnitude of resource that can be leveraged for DF:

- Gross building load by end use, including EV charging
- Available capacity from BTM battery and EV V2X resources

2. Apply DF Parameters and Assumptions

Calculate **hourly load reduction potential** for 38 DF options using:

- Eligibility/Capability Per centage
- Participation Percentage
- Unit Impacts Load Dispatch

3. Group and Simplify Results for use in PCM

Simplify DF tool outputs for use in the PCM:

- Group 38 DF options into 7 resources
- Group resources into PAs
- Develop average 24-hour profiles by month

Caveats on the D-Flex Tool

- DF potentials represent availability estimates of load reduction or load shifting that could be realized in future programmatic constructs.
 - > By itself, it does not contain any predictions about when or to what extent DF resources are dispatched or utilized.
- DF resources are one component of the resource mix in the PCM for the SB 100 modeling.
- The final SB 100 analysis will likely contain only a portion of the potential load shed/shift resources as selected by the PCM.

DF Potential Flowchart

Goal: Forecast Hourly DF Potential Resource "Availability"

Granularity: Forecast Zone (FZ), Sector, Size, Building Type, End Use

DF Parameters and Annual **Assumptions Electricity** (Impacts, Participation, Summary Consumption **Potential Results** Adoption – By Tech/End Use) Inputs (By PA, Option **Hourly Gross** Group, average **Load Projections** 24-hr profile by month) **Hourly Load Cost Estimates Hourly BTM** Shapes (Marginal Dispatch **Battery Hourly DF Potential** (Building & EV & Levelized Costs) **Availability Estimates** Charging) (By FZ, Tech/End Use) Dispatch **Hourly EV Constraints and** Capacity (V2X) **Parameters Availability**

Legend

Input

Calculation

Result for PCM

DF Potential Data Sources [1]

Goal: Forecast Hourly DF Potential Resource "Availability"

Granularity: Forecast Zone (FZ), Sector, Size, Building Type, End Use

Annual
Electricity
Consumption
Inputs

Demand Forecast Inputs (IEPR)

- Baseline consumption forecast
- AAEE and AAFS load modifiers
- TE forecasts
 - BTM storage forecasts

Load Projections

Hourly Load Shapes (Building & EV Charging)

LBNL DR Potential Study (Phase 4)

• Building load shapes, derived from IOU AMI data

CEC TE Forecast

EV charging load shapes

Capacity (V2X)

Availability

Legend

Input

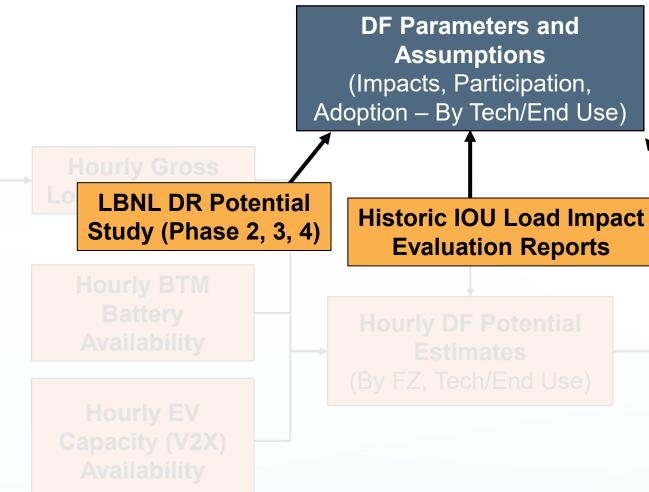
Calculation

Result for PCM

Summary
Potential Results
(By PA, Option
Group, average
24-hr profile by
month)

Cost Estimates
(Marginal Dispatch
& Levelized Costs)

Dispatch
Constraints and
Parameters


DF Potential Data Sources [2]

Goal: Forecast Hourly DF Potential Resource "Availability"

Granularity: Forecast Zone (FZ), Sector, Size, Building Type, End Use

Annual
Electricity
Consumption
Inputs

Hourly Load
Shapes
(Building & EV
Charging)

Legend

Input

Calculation

Result for PCM

Forecast Team
Assumptions

(Marginal Dispatch & Levelized Costs)

Dispatch
Constraints and
Parameters

DF Potential Data Sources [3]

Goal: Forecast Hourly DF Potential Resource "Availability"

Granularity: Forecast Zone (FZ), Sector, Size, Building Type, End Use

(By EZ Tech/End Use) **Existing IOU Program** Rules

Legend

Input

Calculation

Result for PCM

Summary Potential Results

(By PA, Option Group, average 24-hr profile by month)

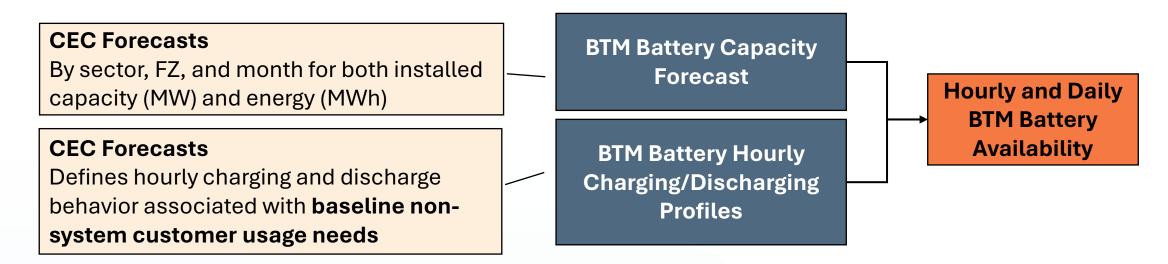
Cost Estimates

(Marginal Dispatch & Levelized Costs)

Dispatch
Constraints and
Parameters

LBNL Phase 4 Potential Study

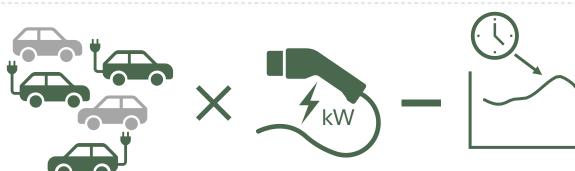
End Use	DR Measure		
HVAC	Programmable communicating thermostat		
HVAC	HVAC Direct Load Control Switch		
HVAC	Manual thermostat adjustment		
Dishwasher	Internal connection for remote control		
Dishwasher	Manual delay cycle		
Washer	Internet connection for remote control		
Washer	Manual delay cycle		
Dryer	Internet connection for remote control		
Dryer	Manual delay cycle		
Refrigeration	Internet connection for remote control		
Refrigeration, Freezer	Smart power outlet		


- List of end use and enabling technology DF options & eligibility assumptions
- Shed fractions (unit impacts)
- Participation rates
- Cost assumptions

*Gerke, B, et al. The California Demand Response Potential Study, Phase 4: Report on Shed and Shift Resources Through 2050. May 2024. Lawrence Berkeley National Laboratory. Report Number LBNL-2001596. https://eta-publications.lbl.gov/publications/california-demand-response-0.

BTM Existing Battery Availability

• The DF potential analysis considers potential only from **existing** BTM battery resources that are expected to be installed for **customer needs**, such as **daily TOU arbitrage**, **back-up**, or **resiliency**.



- Battery capacity that is not used for pre-existing customer needs within a given hour, according to the baseline charging and discharging profiles, is considered available for grid dispatch.
- Battery energy that is not used for pre-existing customer needs within a given day is considered available for grid dispatch, subject to a reserve margin of 25%. The reserve margin assumes that customers will be unwilling to fully discharge the full extent of their battery nameplate energy capacity for operational, degradation, and backup purposes.

13

EV Capacity (V2X) Availability

Theoretical Discharge Power at Hour

EVs [times] Charger Power [minus] EV Charging Load at Hour

m

% EV Drivers
Participating in
V2G Program

% EVs/Sites with Technical Capabilities

% EVs Plugged In

% EVs at Suitable V2G Site at Hour

Results of Potentials Are Summarized and Grouped for PCM Use

Option Groups

DF Tool Output

Ap-DLC Balloh-Punging Control
Water-SupplyMyruphing control
Ap-Battery Dispatch
Ind-Battery D

Res DLC-HWIG-Dwitch
Res-HWIG-Thermostat
Com-Lygistre central
Com-Other End Uses Control
Com-Refigeration control
Com-Refigeration control
Com-Refigeration control
Res-Splinting Control
Res-Chief Residual Control
Res-Chief Residual Control
Com-Citic Water Resign Switch

38 Individual DF Options

7 Option Groupings

Ag Pumping

Battery – Non-Res

EV Charging

HVAC

Battery – Res

EV V2X

Other

Grouped based on similarities in end use, magnitude of potential, and common programmatic constructs

Geographic Granularity

DF Tool Output

20 FZs

Hourly Averaging

DF Tool Output

Full 8760 hourly results per year

Option Group (7)
Planning Area (7)

Year (2023-2050)

Average 24hour potential by month (288 values per

Option Group (7)

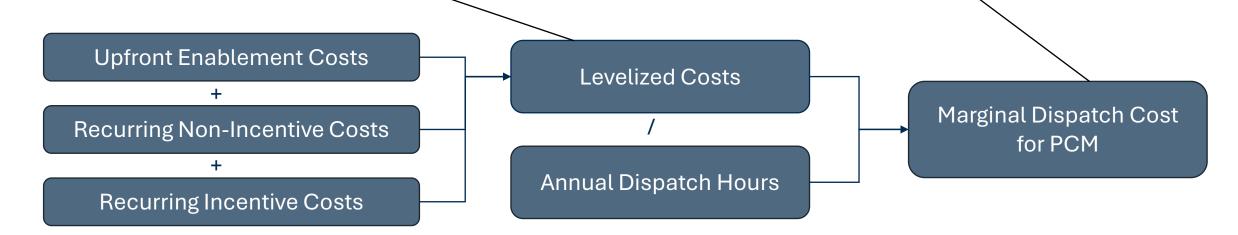
Planning Area (7)

Year (2023-2050)

year)

PCM Input PCM Input PCM Input

Cost Estimates for PCM


First, the DF Tool calculates **levelized costs** (\$/kW) to represent all costs for DF resource availability.

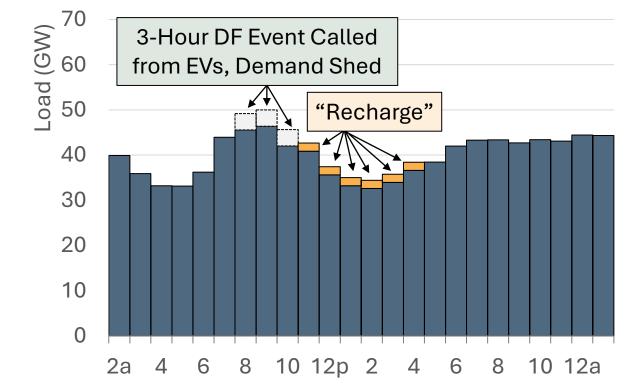
Includes upfront enablement, recurring non-incentive costs, and recurring incentive cost components.

Sourced from the LBNL Phase 4 Study.

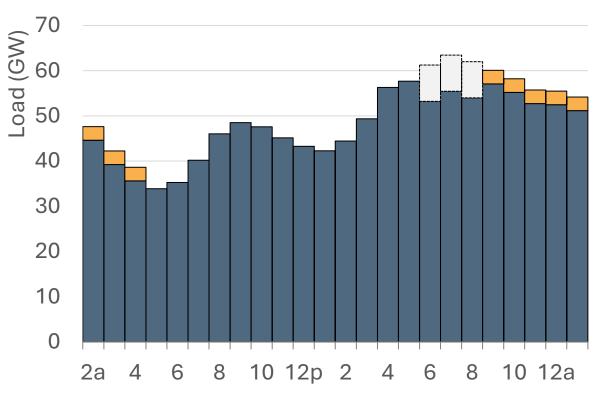
The Tool calculates marginal dispatch costs (\$/MWh) to represent the "bid" cost for a resource. Calculated by spreading the levelized cost over an assumed number of dispatch hours in each year.

Marginal dispatch costs (\$/MWh) are utilized by the PCM.

Dispatch and Load Shift Parameters


- Limited customer willingness to curtail/shift
- Dispatch constraints based on physical characteristics of technologies

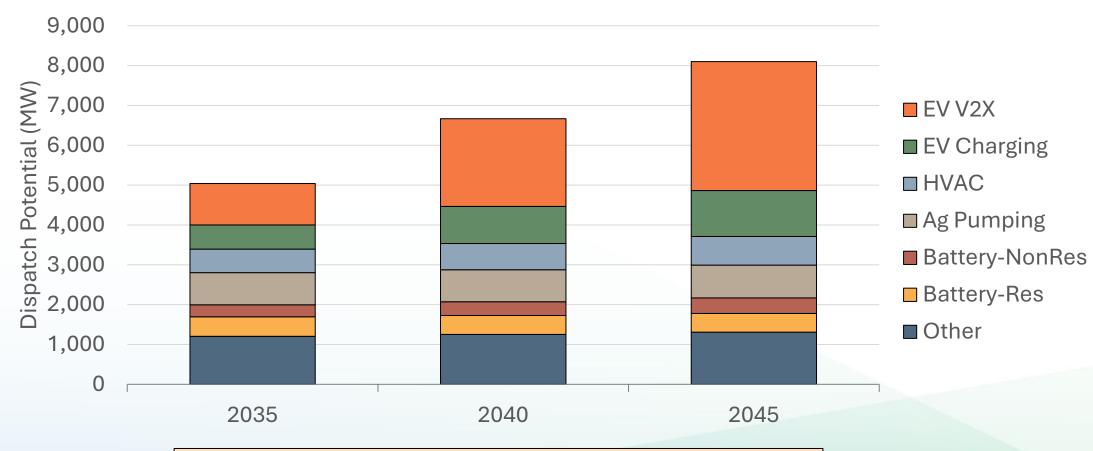
Option	Max Hours per Dispatch	Max Dispatches per Day	Max Dispatches per Month or Year	Load Shift Timing	
Ag Pumping	6	1	10/month, 30/year	Up to 8 hours before dispatch	
BTM Battery (Res)	(Res) 4 2		50/season, 100/year	Up to 6 hours after dispatch	
BTM Battery (Nonres)	4	2	50/season, 100/year	Up to 6 hours after dispatch	
EV Charging	harging 4 2		50/season, 100/year	Up to 6 hours after dispatch	
EV V2X	4	1	50/season, 100/year	Up to 6 hours after dispatch	
HVAC	AC 4 1 (Summer) 2 (Winter) 2		25/season, 50/year	2-hour pre-cool, 6-hour snapback	
Other	6	1	72/year	Up to 4 hours before and after dispatch	



Example Demand Flex and "Recharge" Event

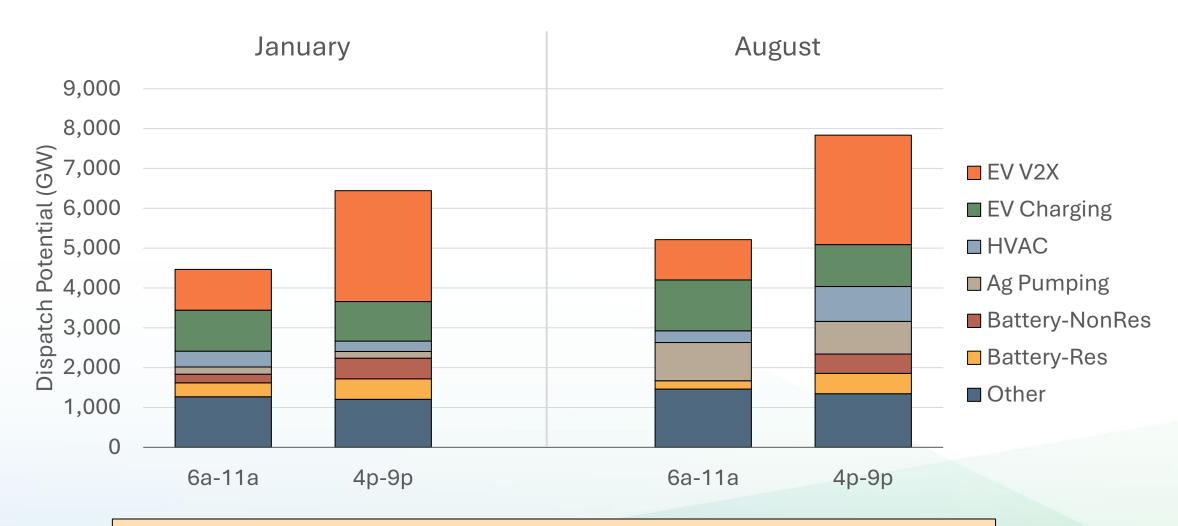
Reference Scenario September Day, 2040

In earlier hours of the day, there is less EV potential, leading to less EV flexibility during winter peaks


DF Scenarios

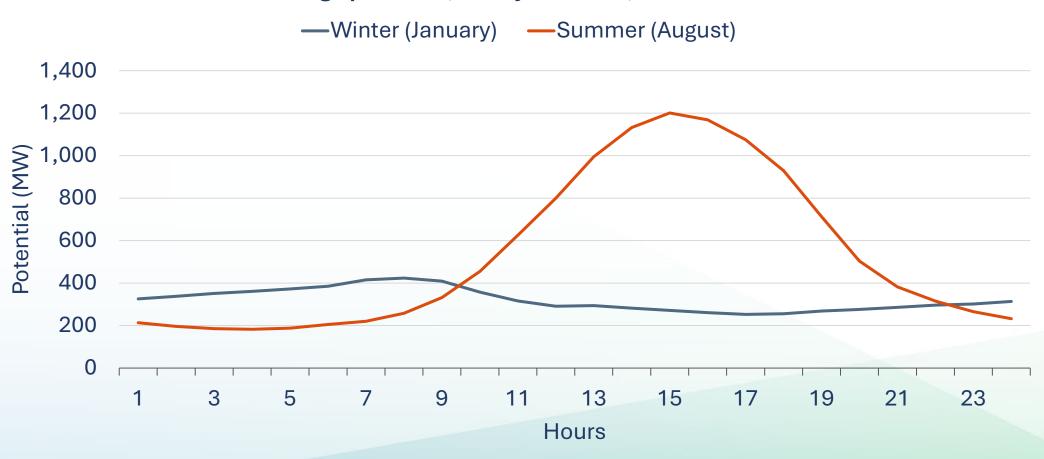
		Input	Policy Scenario (Moderate DF)	Policy Scenario (High DER & High DF)	Policy Scenario (High Hydrogen Use & Moderate DF)
	Demand Scenario Inputs	AAEE 3 Adjustment	AAEE 3	AAEE 4 (res/com) AAEE 3 (all other)	AAEE 3
		AAFS Adjustment	AAFS 4	AAFS 4	AAFS 4
		TE Adjustment	Policy Scenario TE	Policy Scenario TE	Policy Scenario with HFS
	Demand Flexibility Inputs	BTM Battery Forecast	2023 IEPR	Augmented Forecast	2023 IEPR
		EV V2X LD Applicability	SF Only	SF + MF + Commercial Fleet	SF Only
		EV V2X Plugged-In Factor	50%	65%	50%

DF Potential Results (Policy Scenario with Moderate DF)



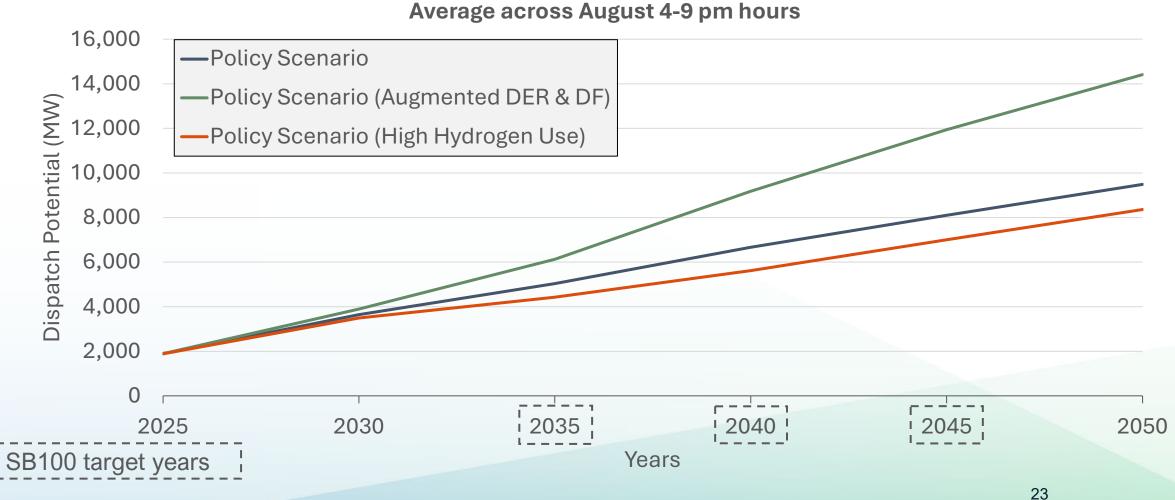
Long-Term potential growth dominated by EVs

Seasonal Variation at Key Times During the Day (2045)


Winter and Early Hours Have Less Potential than Summer Later Hours

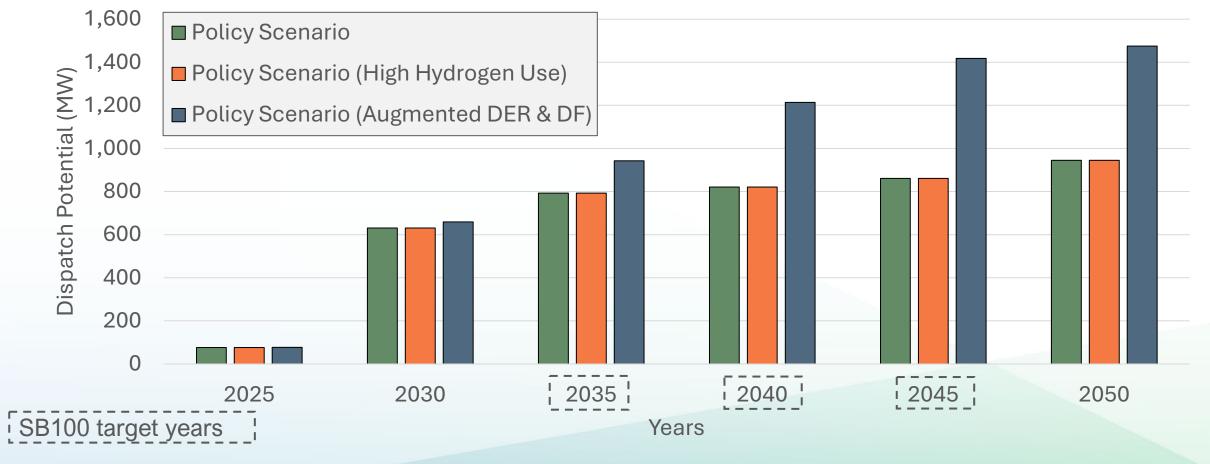
HVAC Seasonal and Hourly Variation

Large hourly dispatch shape change between summer and winter for HVAC


Average potential, Policy Scenario, 2045

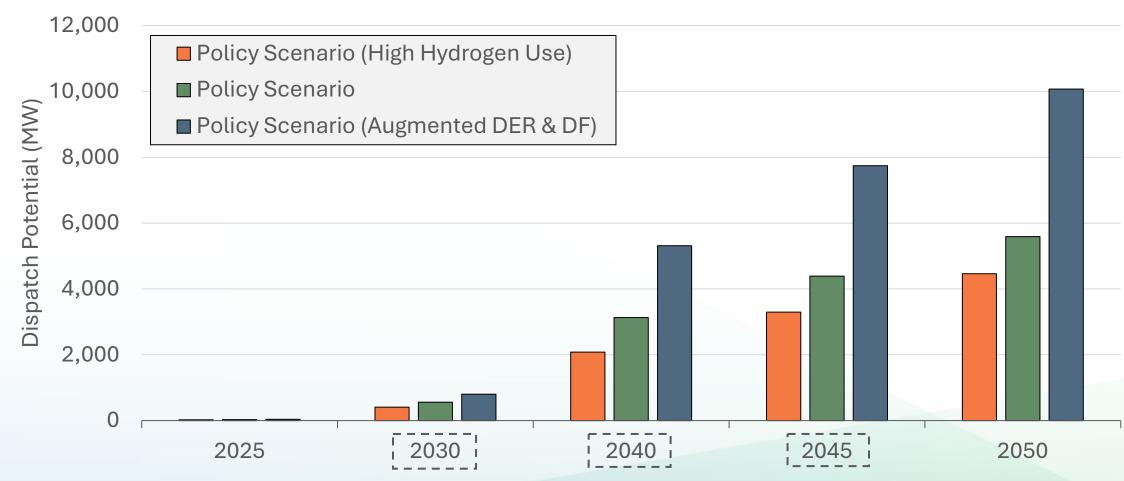
Potential by Scenario

The primary driver of differences between scenarios are in the BTM Battery and Electric Vehicle (Managed Charging and V2X) Options



BTM Battery Scenario Comparison

Scenarios with **DER Augmentation** include a higher forecast of installed BTM batteries, primarily from the residential sector.


Battery average across August 4-9 pm hours

EV Scenario Comparison

Key Takeaways

- The expanded D-Flex tool allows for full 8760 load flex potentials for a given demand scenario
- D-Flex tool outputs are <u>potentials</u>, not actual load or load modifiers
- The "realization" of potentials depends on PCM selections and resource mixes.
- The largest contributor to potential is the EV category
- Seasonal factors play a role
 - > Summer hours 12-19 have high HVAC potential
 - ➤ Winter hours 6-10 have lower total potential, critical hours of expected heating loads in the demand scenarios

Thank You!

Ingrid.Neumann@energy.ca.gov