DOCKETED				
Docket Number:	24-IEPR-04			
Project Title:	Wave and Tidal Energy			
TN #:	258337			
Document Title:	Presentation - CALWAVE Unlocking the Power of the Ocean			
Description:	: 5A. Marcus Lehmann, CalWave			
Filer:	Raquel Kravitz			
Organization:	CalWave			
Submitter Role:	Public			
Submission Date:	8/6/2024 3:07:44 PM			
Docketed Date:	8/6/2024			

CALWAVE

Unlocking the Power of the Ocean

CEC Public Workshop (August 8th)

xWave Architecture

Installation and maintenance on the surface.

Third party product validation:

Operates and shelters fully submerged!

Key Features

Scalable farms (1 to 500+ MW)

Operates fully submerged

Autonomous control & shutdown

Data driven / adaptive controls

~ 40 - 50% capacity factor

Designed to operate 20+ years

Active load management

Proven industrial subcomponents

Hours operational offshore: 7000+ hours continuous 99% Uptime

Utility scale wave parks

- 20-100 MW wave parks •
- Require min. 1 2MW or larger rated WECs •
- Deployment potential where Offshore Wind is not possible •

Hybridizing with Offshore Wind

- Higher joint Capacity Factor ullet
- Higher capacity in same lease area (up to factor 2-3x)
- Optimized utilization of shared supply chains (equipment, offshore IO&M)
- Lower steel per MW installed for wave

CALWAVE **CalWave's Submerged Product Lines & Background**

Name	x200	xMW		
Power [kW]	200	1000		
Capacity Factor [%]	40-50%	40-50%		

Founded in 2014 in California Offices in Berkeley, Oakland, and Alameda, CA R&D contracts to UC Berkeley, UCSD, and others Four multi \$M federal contracts from US DOE

Memberships

CA-based partners

Sandia National

Laboratories

Promoting BlueTech & Blue Jobs®

cyclotronroad **Activate**

Google for Startups

Breakout Labs

1517

xl Ocean Pilot – 2021 – 2022, San Diego, CA

Location: SIO, San Diego

Duration: 10 months

Partners:

Scripps Pier, CalWave deployment site

- # Test objective
- 1 Installation & recovery procedures
- 2 Operations
- 3 Autonomous controls
- 4 Performance
- 5 Reliability
- 6 Survivability

3rd Party Environmental Monitoring - PNNL

Report shows acceptability of risks:

- 1. Entanglement
- 2. Sound
- 3. Collision and pinch points
- 4. Electromagnetic fields
- 5. Discharge and spill

CALWAVE

Link to report:

*/***TETHYS**

Home » Content » OES-Environmental Metodata » CalWave xWave Demonstration OES-Environmental distributes metadata forms (questionnaires) to solici information from developers involved in environmental monitor renemable nergy projets tiss a around the word. This page provides projet descriptions, baseline assessment, post-installation monitoring

CalWave xWave Demonstration

Descript

Location

The device was deployed west of the Scripps Institute of Oceanography pler, close to San Diego, California. Licensing Information

Department of Energy, Water Power Technologies Office DE-EE0008097

and/or permission obtained by the following agencies: Landower Permission: University of California, San Diego – Scripps Institute James Generations, Barell Adv. 2012 2010, 2012 J DEC

- tal Commission, #9-18-0333-W rtment of Fish and Wildlife, #SC-013978
- California Waterboards, #R-2019-0158:85917
 National Marine Fisheries Service, #WCR0-20
- National Marine Fisheries Service, #WCRO-2019
 US Coast Guard, Aid to Navigation #CG-2554

x200 at PacWave (2026)

Loc Goa	ation:	Newport, Oregon 2 years grid connect & PPA		0	K Miles	(ilometers 1 5	10
#	ltem		Status	N A	2	4	
1	Full System & Controls Co- Optimization		~	w $\ensuremath{Q}\sim s$	Ε		PacWave South
2	Data-d	riven/Adaptive Controls	\checkmark				(
3	Detaile Design	d PTO, WEC, and Mooring	~				
4	IEC/IEE	E/DNV conformity achieved	\checkmark				
5	Interco	nnection studies	~				
6	At-Scal House)	e PTO HIL Test Rig (In-	2024	Pac	Wave		
5	WEC C Deploy	onstruction & /ment at PacWave	2025/26			1 A	a land

Wave power is an abundant and stable clean power source. As a complement to other renewables:

It's more predictable.

It's 20 to 60 times more energy dense.

Benefits of Marine Energy for CA

- 1. Reduced costs for ratepayers: Integrating marine energy into California's energy mix would reduce reliance on solar and wind energy and would reduce the need to overbuild transmission and storage infrastructure.
- 2. Energy security and stability: The consistency, predictability, and proximity of marine energy resources would flatten the Duck Curve, provide grid stability, and reduce transmission costs.
- **3. Job creation and industry growth:** California has an opportunity to supplement its growing offshore wind workforce with a local industry that builds and exports marine energy technologies instead of importing them.
- **4. Climate impact:** Marine energy technologies have the lowest lifecycle emissions of any renewable energy technology and can play a major role in reaching 100% renewables in California by 2045.

Unlocking the power of the ocean!

www.calwave.energy marcus@calwave.energy

CALWAVE

CALWAVE

91.0

13 CLIMATE ACTION

AND COMMUNITIES

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

CalWave's Recommendations:

- Quantify savings for CA ratepayers resulting from integration of marine energy. 1)
- Encourage further legislation to create the same pathway for marine energy as offshore wind. 2)
- 3) Implement marine energy targets of 100 MW by 2030, 500 MW by 2035, and 2,500 MW by 2040.
- 4) Work with CPUC to determine path toward setting a price per MWh for marine energy.
- 5) Provide matching funds for U.S. DOE and other federal awards and investments in technology RDD&D relevant to marine energy.
- 6) Clarify state regulatory processes for deployment of marine energy projects and encourage the appropriate federal agencies to clarify federal regulatory processes for deployment of marine energy projects.
- 7) Partner with the BOEM to begin planning efforts related to deployment of marine energy in both federal and state waters off the coast of California, including the potential of expanding offshore wind lease areas for multi-use opportunities to include marine energy.
- 8) Encourage the Humboldt Bay Harbor, Recreation, and Conservation District to ensure that their \$426.7 million investment from U.S. DOT can also support the marine energy sector.

