DOCKETED	
Docket Number:	24-IEPR-03
Project Title:	Electricity Demand Forecast
TN #:	258126
Document Title:	Presentation - Climate Change Impacts on the Hourly Demand Forecast
Description:	5B. Nick Fugate, CEC
Filer:	Raquel Kravitz
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	7/29/2024 12:17:46 PM
Docketed Date:	7/29/2024

Climate Change Impacts on the Hourly Demand Forecast

Nick Fugate, Energy Assessments

- 1. Review current use of climate analysis/data within the CEC's peak and hourly forecasts
- 2. Identify potential uses for climate tools beyond current practice
- 3. Provide an update on staff efforts to re-estimate the hourly consumption profile
- 4. Identify challenges seeking stakeholder discussion/feedback

Constructing the Hourly Forecast

- 1. Apply a base "consumption" profile to the annual "consumption" forecast
- 2. Adjust hourly consumption using profiles for:
 - Hourly climate impacts
 - Electric vehicle charging
 - Behind-the-meter PV generation and storage
 - "Additional Achievable" efficiency and electrification
- 3. Calibrate to a weather-normal peak estimate

Weather-Normal Peak

<u>Objective</u>: Estimate what base-year peak load would have been given weather that is characteristic of "normal" peak load conditions

- 1. Create a counterfactual hourly system load history
 - Begin with observed CAISO loads
 - Remove demand response impacts
 - Remove LESR/HYBD charge load
- 2. Create models to predict system load (using historical data)
 - Models are specific to TAC and hour of the day
- 3. Simulate daily peaks over a distribution of weather patterns (using climate-informed data products)
- 4. Take the maximum simulated value for each year and examine the distribution

Process Flow (Prior to CED 2023)

Process Flow (Current)

- Staff are not currently considering methodological changes to the peak normalization process
- For CED 2024 consider the use of newly available WRF data sets
 - Temperatures further processed into detrended libraries
- Specific considerations include:
 - Continued use of calculated dewpoint library
 - New data sets are generally warmer, with implications for baseyear peak estimate
- Staff will conduct and compare analyses with both data sets

Distribution of Daily Max Temp

- Shows distribution of summer daily maximum temperatures
- Compares latest 30year historical record to detrended temperature series (centered on 2023)
- New temperature libraries are generally warmer

Distribution of daily tmax

Source: CEC Staff

Distribution of Daily Min Temp

Distribution of daily tmin

- Shows distribution of summer daily minimum temperature
- New detrended temperature library shows larger increases in daily minimum temperatures relative to CED 2023
- Minimum temperatures begin to exceed historical range

Source: CEC Staff

Hourly Climate Impacts

<u>Objective</u>: Construct a profile representing expected incremental load changes resulting from average hourly temperature increases over time

- 1. Construct a counterfactual hourly consumption history
 - Add BTM PV generation to counterfactual system load
- 2. Estimate hourly load elasticities to temperature
- 3. Calculate average % change in hourly temperature
- 4. Calculate average % change in hourly consumption

Process Flow (Current)

Hourly Climate Change Profile

CAISO Planning Scenario - Month 9 Weekday

- Current process creates one relatively static profile
- Increasing magnitude reflects growing consumption and increasing average temperatures
- Average changes do not reflect varying rate of change across different temperature quantiles

CLIMATE CHANGE 600 YEAR - 2023 400 _____ 2025 MM 2030 2035 _____ 2040 200 0 13 14 15 16 17 18 19 20 21 22 23 24 12 HOUR

Source: CEC Staff

- Staff are not currently considering methodological changes to this process
- For CED 2024 consider the use of newly available WRF data sets

Future Considerations:

- Staff are considering a more direct use of climate data to develop hourly consumption profiles
- Embedding climate-impacted weather into the base consumption profile would eliminate the need for an incremental modifier
- Conceptually, this approach would better support the development of profiles to support stochastic reliability modeling

Consumption Profile

<u>Objective</u>: Construct a base hourly consumption profile reflecting reasonable expectations around weather

- 1. Construct a counterfactual hourly consumption history
- 2. Build regression models for each territory and hour of day
 - Models predict consumption ratios as a function of weather and calendar variables
- 3. Ratios are simulated using varying weather/calendar patterns
- 4. Ratios are rank-ordered and medians selected by rank
- 5. Median ratios are assigned to the forecast calendar according to rank

- Initially, calendar ranks were established with a single "average" historical load pattern
 - "Average" historical years will have extreme events/months
 - Historical years look "average" in one territory but not another
- More recently, ranks were constructed by averaging many historical load patterns across "day-type" (first Tuesday in May, for example)
 - 1. Average historical load ratios by day-type and hour, then rank days in each month
 - 2. Average historical days in a month by rank of peak hour
 - 3. Assign levels from (2) to day-ranks from (1)

Need for an Updated Profile

- By CED 2019, the addition of substantial levels of BTM PV complicated the process of reconstituting historical consumption
 - Counterfactual loads would "spike" when actual generation was misaligned with the assumed generation profile
 - Evolving load patterns complicated the "averaging" process used for calendar assignment
- CED 2020 through CED 2022 left the base consumption profile unadjusted
 - Timing of daily peaks misaligned with historical observations
 - Daily ramps exceeded recent historical levels

Model Re-estimation (CED 2023)

- For CED 2023, staff re-estimated the base consumption profile
 - Recently procured metered PV generation data used to reconstitute consumption
 - Calendarization step averaged across simulated load patterns rather than historical patterns
 - Revised profiles showed some improvement regarding peak timing and daily ramps
 - Raised other concerns around coincidence and timing of annual peak

Process Flow (Current)

Historical Load

Hourly System
Load

 Demand Response Impact Estimates

Estimate Hourly Load Models

- Predicts consumption load ratio
- Specific to TAC and hour

Distribution of 8760 Load Patterns

 Simulated using a variety of weather patterns

Normal Load Duration Curve

- Load patterns are rankordered
- Median selected from each rank

Historical PV Generation

- Installed Capacity
- Average Generation Profile

Historical Weather • Hourly

- Temperature
- Hourly Dewpoint

Consumption Profile

- Loads assigned to hour of the year by rank
- Calendar ranks established by averaging load across "day-types"

Process Flow (Proposed)

- For CED 2024, staff will re-estimate the base consumption profile using the current methodology
- Staff are working to identify and resolve issues with this process and improve model performance

Future Considerations:

- Explore direct use of climate data in the hourly load model
 - Embed climate change impacts within the consumption profile
 - Simulated consumption profiles would reflect climate trends and novel weather patterns

- Data Procurement: In 2023, CEC procured a large sample of BTM PV generation data
- Annual capacity factors calculated from new vendor data are 3-4% points lower than CED 2023
- Monthly average capacity factors were calculated from 2018-2022
 - Monthly average factors from vendor data are 2-5% points lower than CED 2023

		Year					
ра	source	2018	2019	2020	2021	2022	
CAISO	CED 2023	21%	20%	21%	21%	22%	
CAISO	Vendor Data	18%	17%	18%	18%	18%	

			Month										
ра	source	1	2	3	4	5	6	7	8	9	10	11	12
CAISO	CED 2023	13%	18%	21%	26%	27%	29%	28%	26%	22%	18%	14%	11%
CAISO	Vendor Data	11%	16%	18%	22%	23%	24%	24%	22%	18%	16%	12%	9%

- Over 13 GW of BTM PV in 2022 contributed to generation estimates
- On average, the daily maximum generation estimate using vendor data is ~1,260MW lower than CED 2023
- Less counterfactual "consumption" during hours of high PV generation

Source: CEC Staff

QFER Sales vs CAISO EMS

- Staff applies transmission and distribution loss factors to scale load measured at the customer meter to load measured at the CAISO generation level
- Table shows the ratio of CAISO EMS totals to QFER utility sales data as well as assumed CED loss factors
- In 2022, the ratio of system load to sales is significantly higher than the assumed loss factor
- Resolving this discrepancy will mitigate the need to "stretch" the PG&E hourly profile

	SDGE	SCE	PGE
2016	6.1%	9.6%	9.2%
2017	8.0%	12.6%	9.3%
2018	8.4%	10.8%	10.1%
2019	8.8%	9.5%	8.4%
2020	8.7%	7.2%	11.2%
2021	7.6%	8.3%	12.5%
2022	9.0%	8.4%	13.1%
CED Assumed:	8.2%	6.8%	9.1%

Increasing Temperature Response

- Staff observed that CED 2023 model fit in the high temperature range progressively worsened with each subsequent year from 2016 to 2022
- The table here shows percent change in load for each percent increase in temperature (above 70 degrees, hour 16)
- The increasing trend exists across hours 15 – 18, presumably a response to increased saturation of air conditioning

	SDGE	SCE	PGE
2016	2.1%	2.1%	2.0%
2017	2.3%	2.2%	2.1%
2018	2.3%	2.3%	2.0%
2019	2.2%	2.2%	2.2%
2020	2.9%	2.5%	2.0%
2021	2.9%	2.5%	2.2%
2022	3.4%	2.4%	2.2%
2023	3.5%	2.4%	2.3%

Increasing Temperature Response

- Increasing temperature response can be accounted for in the model
- These charts show out-of-sample predictions for SDG&E hour 16 in year 2023
- Top: CED 2023 vintage model estimated with 2016-2022 weather/load data underpredicts at high temperatures
- Bottom: Interacting temperature with a yearly index significantly improves performance

Evolving Load Pattern

oct

- Other trends exist that were not robustly captured in the CED 2023 vintage models
- Load has shifted away from the peak window across all territories and to the mid-day and early morning hours
- CED battery and electric vehicle charging profiles reflect similar characteristic patterns

PGE 0.08 -0.04 -0.00 --0.04 -SCE change 0.08 -0.04 -0.00 --0.04 -SDGE 0.08 -0.04 -0.00 --0.04 -17 18 19 20 21 22 16 hour

percent change in avg load ratio - 2023 vs 2016

Source: CEC Staff

Thank you

Email:

Nicholas.Fugate@energy.ca.gov