DOCKETED	
Docket Number:	09-AFC-08C
Project Title:	Genesis Solar Energy Project
TN #:	257996
Document Title:	2024 S1 Groundwater Detection Monitoring Report
Description:	N/A
Filer:	Cynthia Keller
Organization:	NexteraEnergy Resources
Submitter Role:	Applicant
Submission Date:	7/25/2024 12:36:47 PM
Docketed Date:	7/25/2024

2024 FIRST SEMIANNUAL GROUNDWATER DETECTION MONITORING REPORT Genesis Solar Energy Project

Riverside County, California

COC S&W-6

July 11, 2024

Prepared By:

Northstar Environmental Remediation

26225 Enterprise Court

Lake Forest, California 92630

SIGNATURE PAGE

2024 FIRST SEMIANNUAL GROUNDWATER DETECTION MONITORING REPORT RIVERSIDE COUNTY, CALIFORNIA

PROFESSIONAL STATEMENT

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

I further certify that this report has been reviewed by the appropriate authority at NextEra Energy Resources and is being submitted with their written consent.

Arlin W. Brewster

Professional Geologist 9207

July 11, 2024

Table of Contents

1.0 INTRODUCTION	1
1.1 Background	1
1.2 Geographic Setting	2
1.3 Hydrogeologic Setting	2
1.4 Monitoring Program Objectives	3
2.0 EVAPORATION PONDS	4
2.1 Evaporation Pond Overview	4
2.2 Monitoring Methods	4
2.3 Evaporation Pond Sample Results	5
3.0 LEAKAGE DETECTION SYSTEM	5
3.1 Leakage Detection System Overview	5
3.2 Monitoring Methods	5
3.3 Monitoring Results	5
4.0 DETECTION MONITORING WELLS	6
4.1 Detection Monitoring Well Overview	6
4.2 Monitoring Methods	6
4.3 Results of Water Level Measurements	8
4.4 Groundwater Flow Velocity	8
4.5 General Chemical Analysis	9
4.6 Non-Statistical Analysis	10
4.7 Quality Assurance/Quality Control	10
5.0 LAND TREATMENT UNIT SUMMARY	12
6.0 ANNUAL SUMMARY	13
7.0 CONCLUSIONS	13
0.	1.1

LIST OF FIGURES

Figure 1 Site Vicinity Map

Figure 2 Hydrogeologic Setting

Figure 3 Monitoring Area Showing Detection Monitoring Wells

Figure 4 Groundwater Elevation Contour Map – June 2024

Figure 5 Leak Detection System Detail

LIST OF TABLES

Table 1 Detection Monitoring Well Details
 Table 2 Groundwater Level Measurements
 Table 3 Field Data Collected During the Most Recent Groundwater Monitoring Event
 Table 4 Summary of Laboratory Analytical Results
 Table 5 Summary of Leakage Detection System Data

LIST OF APPENDICES

Appendix A Field Data Sheets

Appendix B Laboratory Analytical Report – Monitoring Wells and Evaporation Ponds

Appendix C Laboratory Analytical Reports – Land Treatment Units

1.0 INTRODUCTION

Northstar Environmental Remediation (Northstar) has prepared this 2024 First Semiannual Groundwater Detection Monitoring Report on behalf of Genesis Solar, LLC (Genesis). This report details groundwater detection monitoring performed in the first half of 2024 at the Genesis Solar Energy Project (GSEP).

The GSEP lies roughly 25 miles west of the city of Blythe, California in eastern Riverside County on lands managed by the Bureau of Land Management (BLM) (**Figure 1**). The GSEP consists of two independent concentrated solar electric generating facilities with a nominal net electrical output of 125 megawatts (MW) each (a total net electrical output of 250 MW).

Northstar conducts groundwater detection monitoring in accordance with Condition of Certification Soil & Water 6 (COC S&W-6) as presented in the California Energy Commission (CEC) Final Decision document dated October 12, 2010 (CEC, 2010). The COC S&W-6 requires compliance with Waste Discharge Requirements (WDR) and Monitoring and Reporting Program (MRP) Board Order No. R7-2013-0005, issued by the California Regional Water Quality Control Board, Colorado River Basin Region (CRWQCB).

1.1 Background

Genesis submitted an updated Plan of Development (POD) for the GSEP in September 2010 (Genesis Solar, LLC 2010). In addition, Genesis filed an Application for Certification (AFC) for the GSEP to the CEC in August 2009 (Genesis Solar, LLC 2009). The CEC issued its Final Decision on the GSEP on October 12, 2010 (CEC, 2010). The BLM issued the Final Environmental Impact Statement (FEIS) for the GSEP for public comment on August 27, 2010.

The GSEP uses dry cooling technology and relies on groundwater as a water source during operation. Three groundwater production wells installed at the GSEP between July and October 2011 are permitted to pump groundwater at an average rate of 202 acre-feet per year (afy) (up to 1,348 afy during construction).

The Final Decision and FEIS discuss the potential impacts associated with the proposed groundwater use by the GSEP. Groundwater drawdown impacts are anticipated to be less than significant, but because the prediction of groundwater level effects by computer modeling entails inherent uncertainty, both the Final Decision and the FEIS adopted COC S&W-2 for the GSEP to monitor groundwater level at the vicinity of the GSEP.

Two evaporation ponds (licensed as Class II Surface Impoundments) located between Solar Fields 1 and 2 accept wastewater generated during GSEP operation (**Figure 3**). Three detection monitoring wells (DM-1, DM-2, and DM-3) were installed, per the Final Decision, along the west, east, and south perimeter of the

evaporation ponds in February 2012 (**Figure 4**). Groundwater samples were collected for four quarterly events prior to GSEP operation to establish baseline conditions. Semiannual sampling will be conducted to comply with the requirements of COC S&W-6 and the WDR and MRP documents.

1.2 Geographic Setting

The GSEP lies between the communities of Blythe and Desert Center, California. Land use is predominantly open space and conservation and wilderness areas occupied by a community of low creosote and bursage vegetation. Chuckwalla and Ironwood State Prisons are located approximately 6 miles southeast of the GSEP.

The GSEP lies on broad, relatively flat topography sloping north to south at elevations between 400 and 370 feet above mean sea level (amsl). The surface is underlain by alluvial deposits derived from the Palen Mountains to the north-northwest, and the McCoy Mountains to the northeast (**Figure 1**).

The deposits immediately adjacent to the mountains have formed alluvial fans from multiple identifiable sources, and multiple fan surfaces have coalesced into a single bajada surface that wraps around each of these mountain fronts. Between the bajada surfaces from each mountain chain lies a broad valley-axial drainage that extends southward between the mountains and drains to the Ford Dry Lake playa, located about 1 mile south of the GSEP facility.

Climatic data collected from Weather Station Blythe Riverside Airport (33.61°N, -114.71°W, at an elevation of about 387 feet amsl) indicate the average maximum temperature in the airport vicinity is approximately 87.8°F (31.0°C). Average rainfall is reported to be approximately 3.83 inches (97.3 mm). Northstar obtained this data from the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information 1981-2010 Normals.

1.3 Hydrogeologic Setting

The GSEP lies within the Chuckwalla Valley Groundwater Basin (Chuckwalla Basin) which has a surface area of 940 mi² (2,435 km²) underlying Chuckwalla Valley. It is bounded upgradient by three groundwater basins including the eastern part of the Orocopia Valley and Pinto Valley Groundwater Basins and the southern part of the Cadiz Valley Groundwater Basin, and downgradient by the Palo Verde Mesa Groundwater Basin (Palo Verde Basin) (Figure 2). Groundwater occurs at depths of about 80 to 140 feet below ground surface (bgs) and groundwater flow is generally southeast to eastward, from the Chuckwalla Basin to the Palo Verde Basin (Figure 2).

Sources of groundwater recharge to the Chuckwalla Basin includes precipitation, inflow from the Orocopia Valley and Pinto Valley Groundwater Basins, and return flows from agricultural sources and treated wastewater effluent. Groundwater is the only available water resource in Chuckwalla Valley, with extraction to meet local demand the primary source of groundwater outflow. Other minor sources of

outflow include underflow to the Palo Verde Basin and evapotranspiration in portions of Palen Dry Lake (where shallow groundwater is present).

Calculations of the Chuckwalla Basin groundwater budget prior to GSEP operations indicate a stable surplus of 2,600 afy (CEC, 2010). Current operational demand, based on calendar year 2022 extraction data, is approximately 126.0 afy.

The region of the Chuckwalla Basin occupied by the GSEP and associated groundwater monitoring wells is underlain by four geological units. The shallowest unit is the unconsolidated Holocene-aged Alluvium, consisting of geologically recent lake, river, and wind deposits (DWR, 1963). Beneath the Alluvium is the unconsolidated Pleistocene-aged Pinto Formation, consisting of coarse alluvial fan deposits (known as fanglomerate), interspersed with clays and basalt (DWR, 1963). Beneath the Pinto Formation is the unconsolidated to partially consolidated Pliocene-aged Bouse Formation, consisting of coarse alluvium and fanglomerate deposits (Wilson and Owen-Joyce, 1994). Below the Bouse Formation is bedrock consisting of metamorphic rocks and intrusive igneous basalts (DWR, 1963).

Groundwater in the GSEP monitoring region occurs in two aquifers: the shallower Alluvium aquifer (extending to a maximum approximate depth of 250 feet below ground surface); and, the deeper Bouse Formation aquifer (extending between approximately 250 to 6,500 feet below ground surface) (Wilson and Owen-Joyce, 1994). The Pinto Formation exists only on the eastern fringe of the Chuckwalla Basin and is generally not encountered by the GSEP monitoring wells. Monitoring data indicate a downward vertical hydraulic gradient of groundwater flow from the Alluvium to the Bouse Formation aquifer.

Based on recent monitoring data, the depth to groundwater in the Bouse Formation ranges from approximately 87.35 feet bgs (300.05 feet amsl) in TW-1, located upgradient of the site, to 136.37 feet bgs (255.73 feet amsl) in Well 23a, located downgradient of the site. Perched water exists at the Chuckwalla State Prison but is unlikely to occur within the GSEP boundaries as there is no irrigation.

1.4 Monitoring Program Objectives

Northstar performs groundwater detection monitoring in accordance with COC S&W-6 as described in the CEC's Final Decision. The primary objectives for the evaporation pond detection as outlined in the MRP are to:

- Establish baseline conditions by conducting four quarters of monitoring prior to discharge of wastewater to the ponds;
- Collect water level elevation data to characterize groundwater flow conditions in the uppermost water-bearing zone beneath the evaporation pond area;
- Collect and evaluate water quality data using approved statistical and other methods to identify
 potential changes in the existing water quality of the aquifer immediately underlying the
 evaporation ponds; and,

 Demonstrate compliance with the discharge requirements contained in COC S&W-6 and the WDR for the GSEP.

2.0 EVAPORATION PONDS

2.1 Evaporation Pond Overview

The North and South Evaporation Ponds (sometimes referred to as the West and East ponds, respectively) were designed by Fluor Corp. and are identified on **Figure 3**. Each pond is constructed with multiple layers of containment that drain to a centralized collection sump. The pond drainage sump slopes away from the centerline of the ponds to the north and south and is equipped with a set of three moisture detection probes in each side. Each pond is also equipped with a pump to return all accumulated water back to the pond surface.

2.2 Monitoring Methods

On a semiannual basis, a sample is collected from each of the evaporation ponds and identified as the North Pond and South Pond. Representative water is collected in a clean, dedicated 5-gallon bucket and processed into sample containers inside the containment area. Laboratory samples are submitted to SunStar Laboratories, Inc. (SunStar) of Lake Forest, California. SunStar subcontracts the heat transfer fluid analysis to Eurofins Calscience Laboratories, Inc. (Eurofins) of Tustin, California. All laboratories are state and federally certified and analyze the samples by the following methods, as detailed in the Final Decision, WDR, and MRP documents:

- Chloride, Sulfate, and Nitrate by EPA Method 300.0;
- Mercury by Standard Method 7470A;
- Total Dissolved Solids by Standard Method 2540C;
- pH by Standard Method 4500H;
- Specific Conductance by Standard Method 2510B;
- Heat Transfer Fluid (HTF) by EPA Method 8015B;
- Heavy Metals by EPA Method 200.7 and 200.8;
- Oil & Grease by EPA Method 1664A; and,
- Oxygen-18 and Deuterium by Isotope Geochemistry.

2.3 Evaporation Pond Sample Results

Analytical data for the evaporation ponds is included in **Table 4** and certified laboratory reports are included in **Appendix B**. In summary:

- The laboratory did not detect copper, iron, antimony, cadmium, chromium (total), cobalt, lead, nickel, zinc, mercury, oil & grease, or heat transfer fluid in either pond; and,
- Compound concentrations were slightly higher in the North Pond.

3.0 POND DRAINAGE SUMP SYSTEM

3.1 Pond Drainage Sump System Overview

A cross-sectional schematic of the pond drainage sump system is included in **Figure 5**. As shown in the figure, each pond is equipped with a total of six probes (Watermark Model 200SS electrical resistance probes) installed at a distance of 15, 70, and 110 feet from the pond centerline.

The water return pumps are installed on the north side of the North Pond and the south side of the South Pond. Readings from the totalizers on each pump are recorded on a quarterly basis.

3.2 Monitoring Methods

Terminals attached to the probe wire leads are stored in a weatherproof vault at the north and south end of each pond, where resistivity readings can be collected using a Watermark 30-KTCD-NL meter. Values can range from 0-10 centibars (saturated) to 199 centibars (dry). Readings are collected from the probes and the nearby water return pumps on a quarterly basis and summarized in **Table 5**. If the pump totalizers show any signs of increase, or if the probes display values within the saturated range (usually started with probe #1 in the lowest part of the sump), Northstar notifies NextEra operations who then conduct further investigation.

3.3 Monitoring Results

No water was pumped from the North or South Pond during the reporting period and the totalizers currently read 607.01 and 7.48 gallons, respectively.

None of the moisture detection probes showed signs of water saturation during monitoring. Probe #1W in the North Pond currently shows signs of increasing humidity, though there was no signs of moisture building up in the well cap.

4.0 DETECTION MONITORING WELLS

4.1 Detection Monitoring Well Overview

A total of three detection monitoring wells were installed around the perimeter of the evaporation ponds (**Figure 4**). Detection monitoring wells DM-1, DM-2, and DM-3 were installed to a total depth of 120 feet bgs into the shallow Alluvium aquifer with screened intervals between 100 to 120 feet bgs. **Table 1** provides construction details for the wells. Well DM-1 is located upgradient, west of the ponds. Well DM-2 and DM-3 are located downgradient, east and south of the ponds, respectively.

4.2 Monitoring Methods

Northstar measured the depth to groundwater in each well using a Solinst interface probe. Field staff documented depth to water to the nearest hundredth (0.01) foot below a surveyed measuring mark located on the north side of the top of casing (toc) on a groundwater level measurement form (**Appendix A**). **Table 2** includes the groundwater level measurements and calculated water level elevations. **Figure 4** illustrates the groundwater elevation contours and flow direction.

Each detection monitoring well has a dedicated 1.66-inch diameter Geotech® stainless steel submersible bladder pump and dedicated Teflon-lined tubing with water intakes set at the middle of wetted screen at approximately 115 feet btoc. Field staff collect samples from these wells using the low flow purging method in accordance with the most recent EPA guidance document (USEPA, 2017).

Field staff decontaminated reusable/non-dedicated equipment (water level probe and flow-through cell) prior to use at each well. Decontamination of reusable equipment consisted of washing with a laboratory-grade non-phosphate detergent (Liquinox or equivalent) and potable water solution followed by a double rinse with demineralized water.

Field staff measure groundwater parameters with a Horiba water quality field instrument. Staff calibrate the Horiba at the beginning of each day and decontaminate the instrument prior to use and between wells. Measurements of field parameters (pH, electrical conductivity (EC), temperature, turbidity, and oxidation-reduction potential (ORP)) were taken at 5-minute intervals and at the time of sampling as part of the low flow purge method of sampling.

Wells were purged until water quality parameters stabilized over three successive readings (+/- 0.2 for pH, +/- 10% for EC, ORP and turbidity) and the discharge volume exceeded the drawdown, tubing, and flow-through cell volume. Northstar staff recorded the sampling methods, volume of water purged, pumping rate, field parameter measurements, and observations of water turbidity and odor on the groundwater sampling field form (Appendix A).

After purging and parameter stabilization, the flow-through cell was disconnected so samples could be collected from the pump discharge. Field staff wore new nitrile gloves to collect groundwater samples in clean bottles (preserved as appropriate) provided by the laboratory. Where required, samples were field filtered with a new 0.45-micron filter attached to the end of the discharge tubing. Staff labeled sample containers with the well identification, date, time, sampler, analytical method, and placed them in a chilled ice chest. Northstar delivered the samples under proper chain-of-custody protocol to the laboratory.

Groundwater purged from DM-1, DM-2, and DM-3 was temporarily contained in a sealed 5-gallon bucket and then disposed in the evaporation ponds as directed in the MRP (Part II A.1.b.). **Table 3** includes the measured field parameters documented at the end of purging activities.

Laboratory samples are submitted to SunStar Laboratories, Inc. (SunStar) of Lake Forest, California. SunStar subcontracts the heat transfer fluid analysis to Eurofins Calscience Laboratories, Inc. (Eurofins) of Tustin, California. They also subcontract the oxygen-18 and deuterium analysis to Isotech Laboratories, Inc. of Champaign, Illinois. All laboratories are state and federally certified and analyze the samples by the following methods, as detailed in the Final Decision, WDR, and MRP documents:

- Chloride, Sulfate, and Nitrate by EPA Method 300.0;
- Mercury by Standard Method 7470A;
- Total Dissolved Solids by Standard Method 2540C;
- pH by Standard Method 4500H;
- Specific Conductance by Standard Method 2510B;
- Heat Transfer Fluid (HTF) by EPA Method 8015B;
- Heavy Metals by EPA Method 200.7 and 200.8;
- Oil & Grease by EPA Method 1664A; and,
- Oxygen-18 and Deuterium by Isotope Geochemistry.

The laboratory conducted standard Quality Assurance/Quality Control (QA/QC) to assure analytical accuracy and precision. This included preparation and analysis of method blanks, surrogate spikes, matrix spike/matrix spike duplicate (MS/MSD) pairs and laboratory control samples (LCS), as required, with each analytical batch.

Northstar collects a duplicate sample once per sampling event that is submitted to the laboratory without identifiers that associate the sample with a well, date, or time. During this event, a duplicate sample from well PW-2 was collected for analysis. **Table 4** of the *Groundwater Quality Monitoring Report* (Northstar, 2024) provides a summary of analytical results for the duplicate sample.

In addition to these methods, a set of quality control blank samples is collected and put on hold at the laboratory pending analysis of the groundwater samples. These samples include a field blank and trip blank. The field blank bottle set is filled with demineralized water and set adjacent to the work area with the lids off during the workday and is intended to screen out constituents in ambient air. The trip blank

bottle sets are prepared at the laboratory and are sealed throughout the groundwater sampling event. They are stored inside the sample coolers and are intended to screen out constituents in the coolers. The quality control blank samples are only analyzed if there is anomalous data present for the groundwater sampling results.

4.3 Results of Water Level Measurements

Table 2 provides the wellhead reference elevation (toc elevation), depth-to-groundwater, and water level elevations for each detection monitoring well. Depth to groundwater ranged from 104.56 (well DM-3) to 107.79 (well DM-2) feet bgs, and the calculated groundwater elevations range from 283.53 (well DM-2) to 284.05 (well DM-1) feet amsl.

Northstar used groundwater elevation data to generate a potentiometric surface contour map of the uppermost water-bearing zone beneath the evaporation pond (**Figure 4**). The groundwater flow direction and gradient beneath the site were determined based on linear interpolation between contours of equal elevation. Groundwater flow beneath the evaporation ponds was determined to be predominantly in an east to southeast direction at a gradient of approximately 0.0005 feet/foot. The groundwater flow direction and gradient are consistent with historical monitoring events. Groundwater flow direction has historically ranged between east-northeast and southeast and the gradient has ranged between 0.0004 and 0.0007 feet/foot.

4.4 Groundwater Flow Velocity

The average horizontal groundwater flow velocity beneath the evaporation ponds was estimated using the following equation:

V = (KhI)/ne

Where:

V = average linear groundwater velocity (in feet per day)

Kh = aquifer horizontal hydraulic conductivity (in feet per day)

I = average hydraulic gradient (vertical change in groundwater elevation/corresponding horizontal distance in feet per lateral feet), and

ne = effective aquifer porosity.

Each monitoring well is screened from 100-120 feet bgs in fine-grained sand, as detailed in the Detection Monitoring Well Installation Report (WorleyParsons, 2012). The reported hydraulic conductivity for fine-grained sand is approximately 0.03 to 60 feet/day, as stated in scientific references (Domenico and Schwartz, 1990). Based on the characteristics of the shallow Alluvium aquifer in which the detection monitoring wells are screened, this calculation assumes an average hydraulic conductivity value of 15 to 30 feet/day, an effective porosity of 25 percent, and an average gradient of 0.0005 feet/foot, as estimated from **Figure 4**.

Based on these calculations, the average groundwater velocity estimated in the uppermost water-bearing zone beneath the evaporation ponds is approximately 0.030 to 0.060 feet laterally per day, or 10.95 to 21.90 lateral feet per year. Historically, estimates of groundwater flow velocity have ranged from 8.76 to 30.66 lateral feet per year.

4.5 General Chemical Analysis

Table 4 provides a summary of the detection monitoring well groundwater sample analytical results. **Appendix B** contains copies of the laboratory analytical reports for the groundwater samples. Groundwater samples from detection monitoring wells DM-1, DM-2, and DM-3 were analyzed for the parameters listed in Section 4.2. The concentration of detected analytes is generally similar between the detection monitoring wells. Similarity in the concentrations of analytes is expected as the three wells are located within 1,000 feet of each other and are screened at the same depth interval (100-120 feet bgs).

The following is a summary of the groundwater monitoring results for the detection monitoring wells since the beginning of the monitoring program:

- **Chloride** detections have been consistent for all wells and have ranged from 4,400 to 9,760 milligrams per liter (mg/L), averaging 5,392 mg/L.
- Sulfate as SO₄ detections have been consistent for all wells and have ranged from 1,600 to 4,350 mg/L, averaging 2,116 mg/L.
- Nitrate as NO₃ detections have been consistent for all wells and have ranged from non-detect to 21.2 mg/L, averaging 7.63 mg/L.
- **Total Dissolved Solid** concentrations have been consistent for all wells and have ranged from 6,800 to 14,000 mg/L, averaging 10,577 mg/L.
- pH levels have been consistent for all wells and have ranged from 7.2 to 8.2 standard units, averaging 7.8 standard units.
- Specific Conductivity levels have been consistent for all wells and have ranged from 13,000 to 22,000 microSiemens per centimeter (μs/cm), averaging 17,723 μs/cm.
- Antimony has not been detected above the reporting limit for all wells.
- Arsenic detections have been consistent for all wells and have ranged from non-detect to 26 μg/L, averaging 11.2 μg/L.
- **Barium** detections have been inconsistent between all wells, averaging 33.7 μg/L in upgradient well DM-1, 61.1 μg/L in downgradient well DM-2, and 18.4 μg/L in downgradient well DM-3.
- Cadmium has not been detected above the reporting limit for all wells.
- Calcium detections have been consistent for all wells and have ranged from 190 to 470 mg/L, averaging 251 mg/L.
- Chromium (Total) detections have been inconsistent because the concentrations are frequently between the MDL and RL. Reportable concentrations have ranged from 3.1 to 3.7 μg/L, averaging 3.4 μg/L.
- Cobalt has not been detected above the reporting limit for all wells.

- Copper detections have been inconsistent because the concentrations are frequently between the MDL and RL. Reportable concentrations have ranged from 0.006 to 0.027 mg/L, averaging 0.011 mg/L.
- Lead has not been detected above the reporting limit for all wells.
- Mercury has only been detected once above the reporting limit in upgradient well DM-1 at a concentration of 0.26 μg/L. Mercury has not been detected at or above the reporting limit in wells DM-2 and DM-3.
- Nickel has only been detected once above the reporting limit in downgradient well DM-3 at a concentration of 10 μg/L. Nickel has not been detected at or above the reporting limit in wells DM-1 or DM-2.
- Selenium detections have been inconsistent because the concentrations are frequently between the MDL and RL. Reportable concentrations have ranged from 0.68 to 55 μg/L, averaging 14.1 μg/L.
- Zinc detections have been inconsistent because the concentrations are frequently between the MDL and RL. Reportable concentrations have ranged from 0.55 to 76 μg/L, averaging 21.8 μg/L.

4.6 Non-Statistical Analysis

In accordance with the MRP Part II.A.5 and Part III.A.2, a non-statistical analysis has been applied to the groundwater analytical results for this sampling event.

The non-statistical analysis requires all detections of the constituents of concern (ie, those defined in Part II.A.4 of the same document) reported above the method detection limit (MDL) in the downgradient wells (DM-2 and DM-3) that do not appear in the upgradient well (DM-1) be identified, and where there are either a) two or more constituents identified in this list from a single downgradient monitoring point, or b) one of the identified constituents in this list exceeds the Practical Quantification Limit (PQL), a release is tentatively indicated.

For the purposes of this report, the PQL is equal to the reporting limit (RL) as identified for each constituent in the laboratory report, which is generally 5 times the MDL. The results of the non-statistical method for this sampling event is as follows:

- Well DM-2: There are no constituents of concern that meet the release detection criteria.
- Well DM-3: There are no constituents of concern that meet the release detection criteria.

4.7 Quality Assurance/Quality Control

As documented in the attached laboratory reports (see **Appendix B**), groundwater samples collected from the evaporation pond detection monitoring wells during this sampling event were received by the laboratory in good condition, within the temperature limits required, and analyzed within the required

holding times using the specified methods (with the exception of pH, which has a 15-minute hold time, and nitrate as NO3, which has a 48-hour hold time).

No analytes were detected in the method blank sample.

Matrix spike/matrix spike duplicate (MS/MSD) and laboratory control sample (LCS) recoveries for each method and analytical batch were within the laboratory's established control limits for the final report, with the following exceptions:

 The spike recovery was outside acceptable limits for the MS and/or MSD due to possible matrix interference. The LCS was within acceptable criteria and the data was accepted because the chemist determined that there should be no impact to the final results. This may have affected the results for analytes including chloride and sulfate as SO4.

Duplicate sample control: For this event, a duplicate sample (named DUP) was collected from sample point PW-2 (as reported in the *Groundwater Quality Monitoring Report* (Northstar, 2024). The sample was submitted to the laboratory without date or time qualifiers. For this event, all sample results for PW-2 and DUP agreed within 10%.

5.0 LAND TREATMENT UNIT SUMMARY

The Land Treatment Unit (LTU) is an onsite bioremediation landfarm utilized for the treatment of soil contaminated with the heat transfer fluid (HTF) Therminol. Soil from all HTF spills is excavated within 48 hours and placed in one of four treatment bays, numbered LTU #1 to 4. The soil is then tested to determine whether it can be effectively treated onsite (under 10,000 mg/kg of HTF) or if it is hazardous and would be more effectively treated offsite (above 10,000 mg/kg of HTF).

Soil in the LTUs is overturned on a weekly basis by onsite staff to aid in the bioremediation of the soil. A representative composite soil sample is collected from each bay on a quarterly basis (or as needed) and analyzed by EPA Method 8015M for Therminol (characterized by the chemical markers 1,1'-oxybis-benzene and 1,1'-biphenyl) to monitor the progress of remediation. Once the concentration is less than 100 mg/kg of HTF, the soil may be removed from the LTU and staged onsite for later use. Treatment is enhanced by the addition of moisture and fertilizers. Laboratory reports for the data referenced below is included in **Appendix C**.

Sample Date: January 15, 2024

Reason for Sample: Initial sample of new soil stockpile after minor HTF spill on 01/11/24

Sample ID: Staging Area

Results: 1,1'-oxybis-benzene: 7,700 mg/kg; 1,1'-biphenyl: 2,800 mg/kg

Outcome: Soil moved to LTU #3 to begin onsite treatment

Sample Date: March 27, 2024

Reason for Sample: Routine quarterly sampling of soil in LTU bays

Sample ID: LTU #3

Results: 1,1'-oxybis-benzene: 6,700 mg/kg; 1,1'-biphenyl: 2,300 mg/kg

Outcome: Onsite treatment continued

Sample Date: April 4, 2024

Reason for Sample: Initial sample of new soil stockpile after minor HTF spill on 04/02/24

Sample ID: Waste Soil

Results: 1,1'-oxybis-benzene: 14,000 mg/kg; 1,1'-biphenyl: 5,300 mg/kg

Outcome: Soil transported offsite as hazardous waste

Sample Date: April 15, 2024

Reason for Sample: Initial samples of four stockpiles and six roll-top bins of soil after large HTF spill on 04/11/24

Sample IDs: Bin #RB23103, 5247, PT1416, PT6369, 5063, and 4917 (all combined into sample ID

Composite (Samples 1-6)); SP #1, 2, 3, and 4

Results for Composite Sample: 1,1'-oxybis-benzene: 25,000 mg/kg; 1,1'-biphenyl: 8,900 mg/kg Results for SP #1, 2, and 3: 1,1'-oxybis-benzene: ranged from 3,200 to 9,400 mg/kg; 1,1'-biphenyl: ranged from 1,100 to 3,400 mg/kg

Results for SP #4: 1,1'-oxybis-benzene: 16,000 mg/kg; 1,1'-biphenyl: 5,600 mg/kg

Outcome: All soil in roll-top bins and from stockpile #4 were transported offsite as hazardous waste; soil from stockpiles 1, 2, and 3 were transferred to the LTU bays 1, 2, and 3 for onsite treatment.

Sample Date: June 6, 2024

Reason for Sample: Routine quarterly sampling of soil in LTU bays

Sample ID: LTU #1, 2, and 3

Results: 1,1'-oxybis-benzene: ranged from 3,100 to 7,600 mg/kg; 1,1'-biphenyl: ranged from 890

to 2,700 mg/kg

Outcome: Onsite treatment continued

6.0 ANNUAL SUMMARY

The 2024 annual summary will be included in the 2024 First Semiannual and Annual Groundwater Detection Monitoring Report, produced by Northstar by January 15, 2025.

7.0 CONCLUSIONS

Based on the available data obtained during this sample event:

- None of the compounds detected in the downgradient detection monitoring wells DM-2 and DM-3 met the criteria for a potential release.
- Available groundwater quality data is generally stable with minor trend fluctuations.
- Groundwater flow direction, gradient, and velocity is consistent with historical events.

All data currently indicates compliance with the discharge requirements contained in COC S&W-6 and the WDR for the GSEP, with exceptions as noted above.

8.0 REFERENCES

Bureau of Land Management, 2010. Final Environmental Impact Statement, Genesis Solar Energy Project. August 27, 2010.

California Department of Water Resources (DWR), 1963. Data on Water Wells and Springs in the Chuckwalla Valley Area, Riverside County, California. Bulletin No. 91-7.

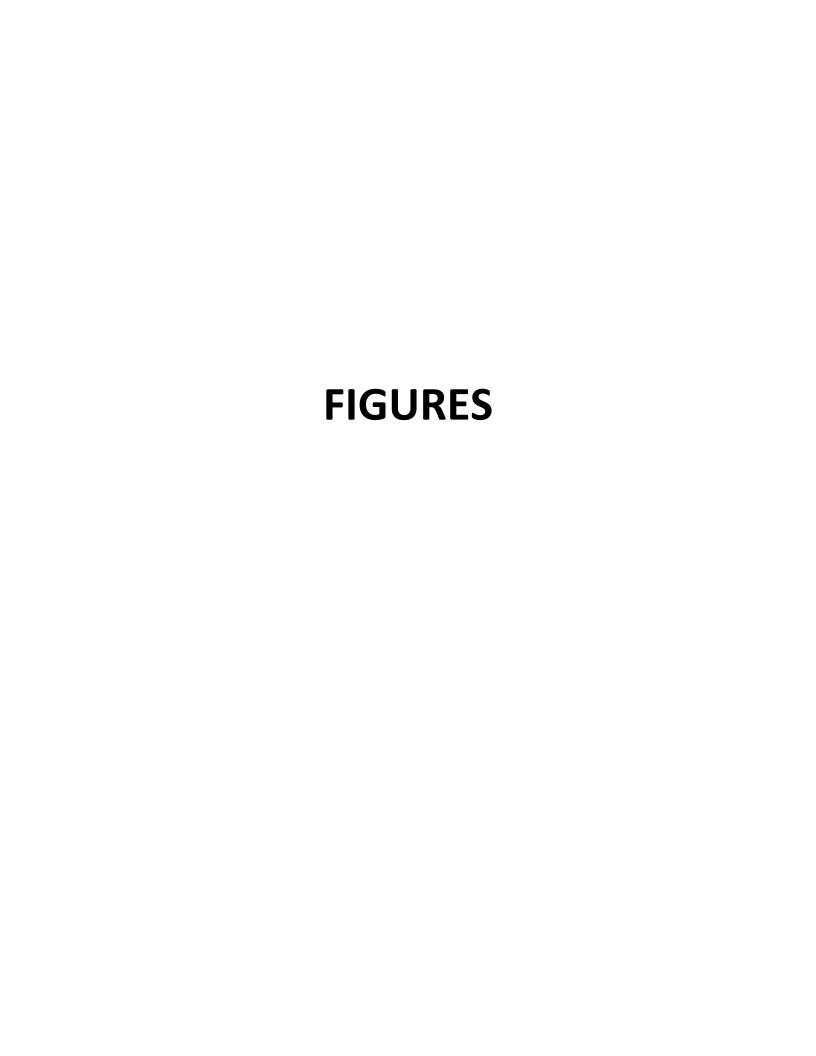
California Energy Commission (CEC), 2010. *Genesis Solar Energy Project Commission Decision*. October 12, 2010.

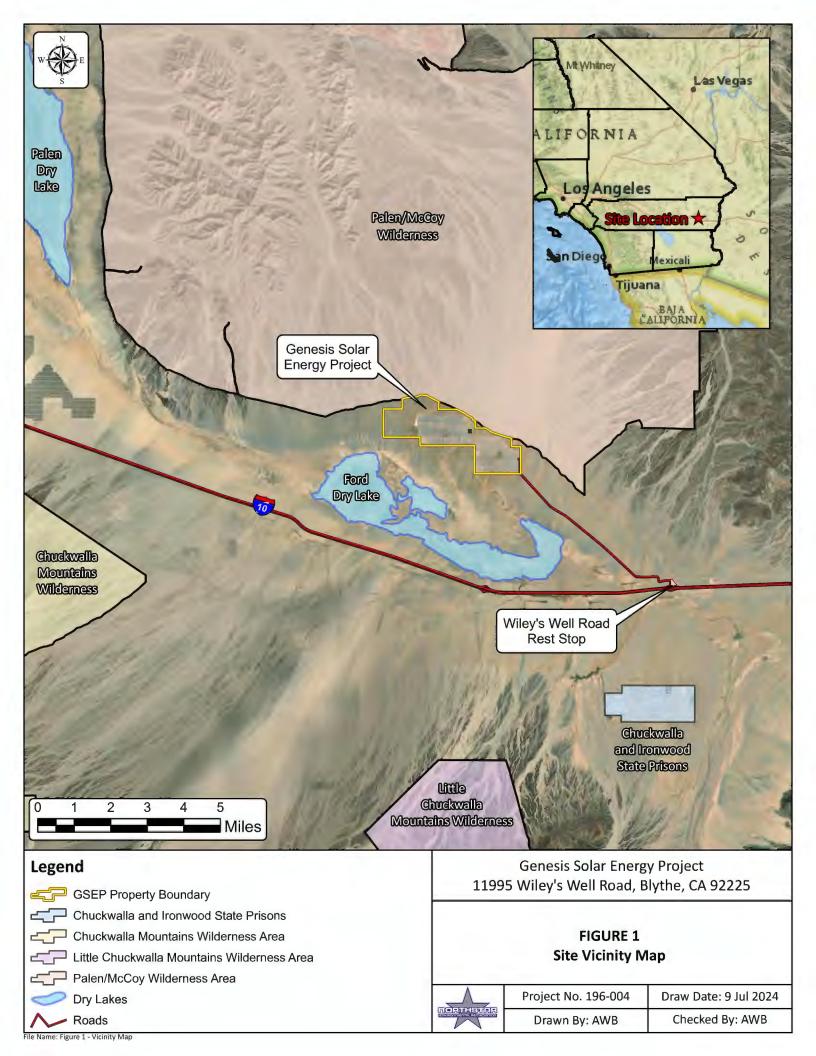
California Regional Water Quality Control Board – Colorado River Basin Region, 2013a. *Monitoring and Reporting Program R7-2013-0005 for Genesis Solar, LLC.* March 21, 2013.

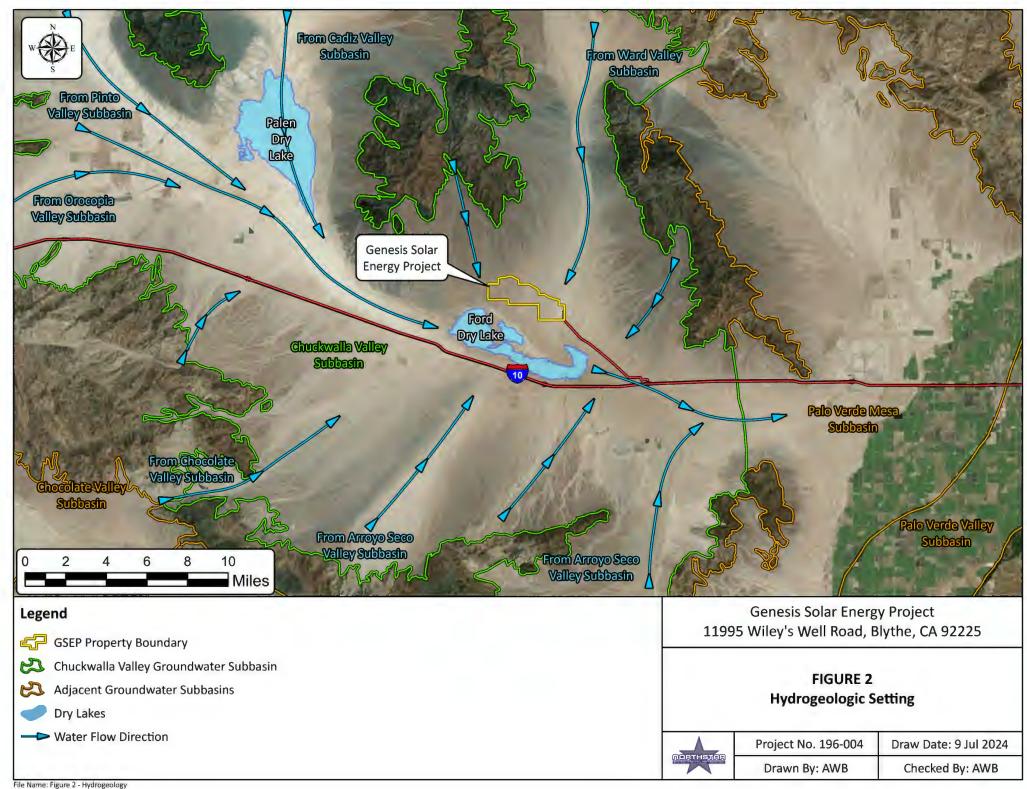
California Regional Water Quality Control Board – Colorado River Basin Region, 2013b. *Board Order R7-2013-0005 Waste Discharge Requirements for Genesis Solar, LLC.* March 21, 2013.

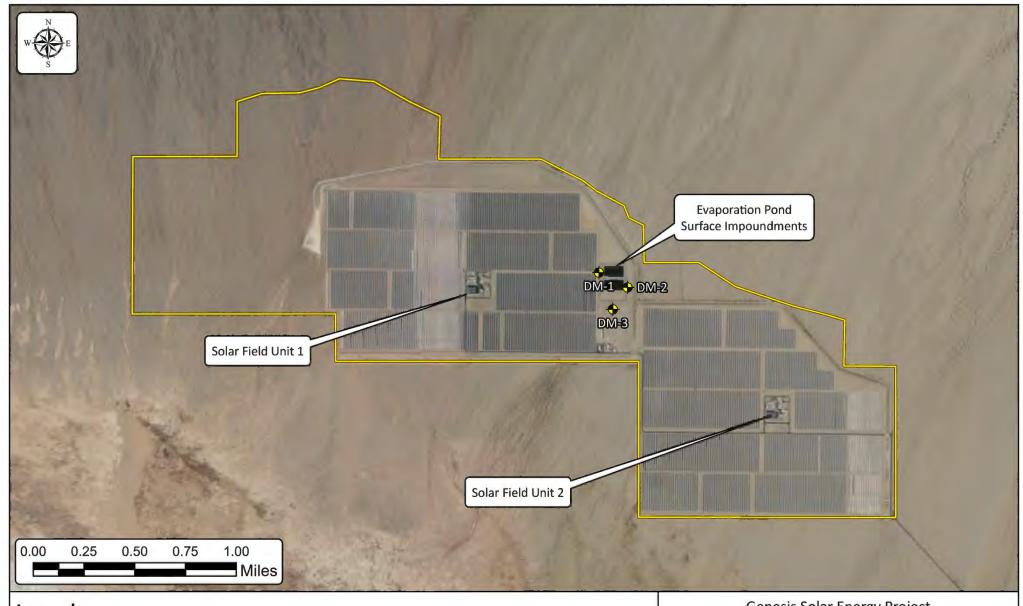
Domenico, P. and Schwartz, F., 1990. Physical and Chemical Hydrogeology. J. Wiley & Sons.

Genesis Solar, LLC, 2009. *Application for Certification, Genesis Solar Energy Project, Riverside County, California*. August 31, 2009.


Genesis Solar, LLC, 2010. Plan of Development CA48880, Genesis Solar Energy Project, Riverside County, California. October 2010.


Northstar Environmental Remediation, 2024. 2024 First Semiannual Groundwater Quality Monitoring Report, Genesis Solar Energy Project, Riverside County, California. July 10, 2024.


- U.S. Bureau of Reclamation, 1972. *Inland Basins Project, California-Nevada, Summary Report:* Reconnaissance Investigations. 1972.
- U.S. Environmental Protection Agency (USEPA), 2017. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. September 19, 2017.


Wilson, R.P., and Owen-Joyce, S.J., 1994. *Method to identify wells that yield water that will be replaced by Colorado River water in Arizona, California, Nevada, and Utah*. U.S. Geological Survey, Water Resources Investigation Report 94-4005.

WorleyParsons, 2012. *Detection Monitoring Well Installation Report*. Genesis Solar Energy Project, March 30, 2012.

Legend

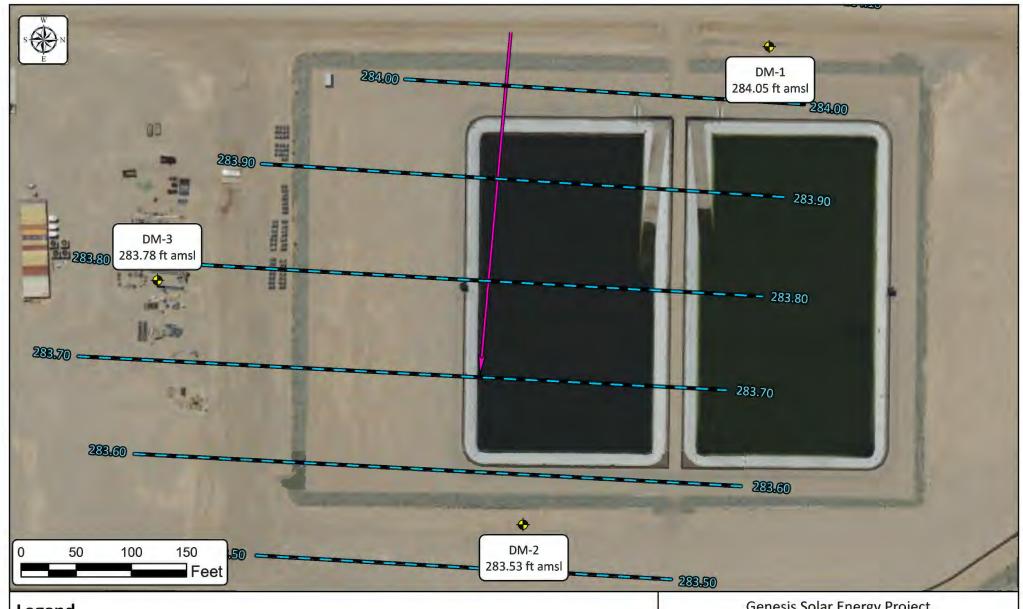
GSE GSE

GSEP Property Boundary

Detection Monitoring Wells

Genesis Solar Energy Project 11995 Wiley's Well Road, Blythe, CA 92225

FIGURE 3 Monitoring Area Showing Detection Monitoring Wells



Project No. 196-004

Draw Date: 11 Jun 2024

Drawn By: AWB

Checked By: AWB

Legend

Detection Monitoring Wells

Groundwater Elevation Contour Lines (feet above mean sea level)

Groundwater Gradient Direction

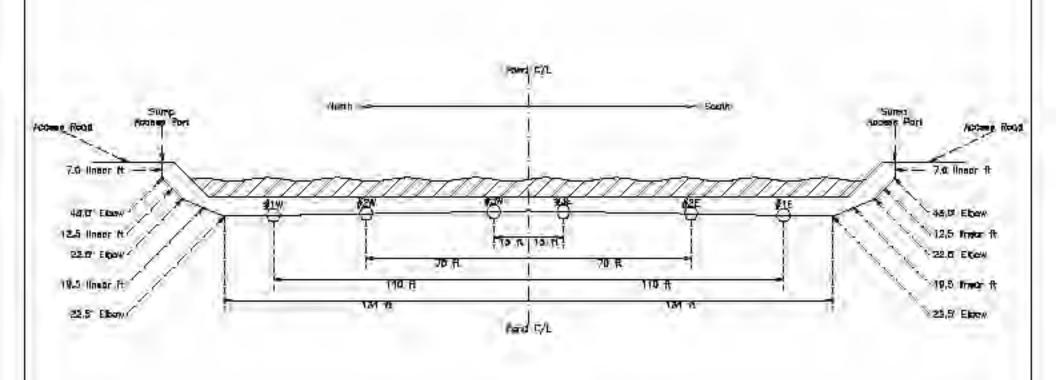
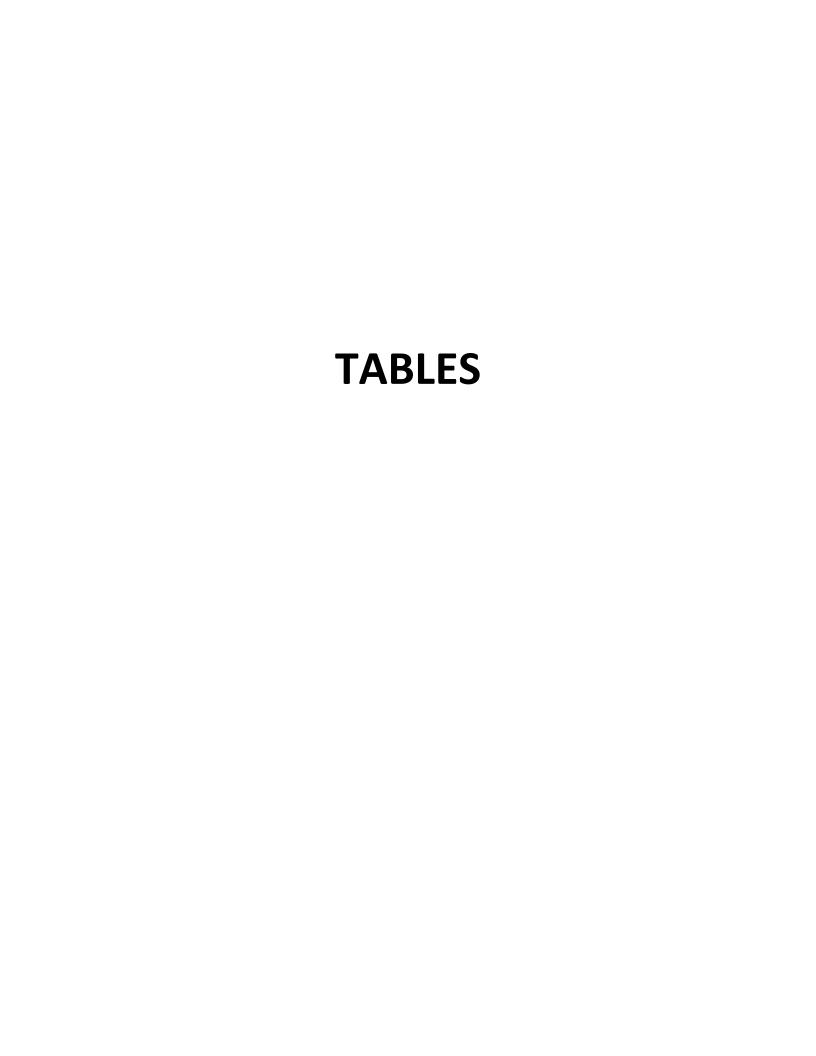

Genesis Solar Energy Project 11995 Wiley's Well Road, Blythe, CA 92225

FIGURE 4 Groundwater Elevation Contour Map June 2024

<u>Монтнатев</u>

Project No. 196-004 Draw Date: 11 Jul 2024

Drawn By: AWB Checked By: AWB


Thorses in the state of the sta

Probes installed in 4-inch diameter perforated pipe with approximate 1 degree slope away from C/L.
 Moisture probes furnished with two leads for direct read by Watermark Model 30 KTCD-NL meter.

Project Name Genesis Solar Energy Project	Project Number 196-004-05
11995 Wiley's Well Rd, Blythe, CA	AWB
Northstar Environmental Remediation	01/13/2023
Pond Drainage Sump System Detail	Figure 5

TABLE 1

DETECTION MONITORING WELL DETAILS

Genesis Solar Energy Project, Riverside County, California

Well ID	Other Name	Owner	Installation Date	Use/Status	Well Casing Diameter (inches)	Approximate Ground Surface Elevation (feet amsl)	Top Of Casing Elevation (feet amsl)	Well Depth (feet bgs)	Screened Interval (feet bgs)	Geologic Unit
			WELLS INCLUD	ED IN THE GROUNDWA	ATER MONITO	RING PROGRAM				
DM-1	Detection Monitoring Well 1	Genesis Solar, LLC	2/22/2012	Monitoring / Active	4		391.49	120	100 to 120	Alluvium
DM-2	Detection Monitoring Well 2	Genesis Solar, LLC	2/21/2012	Monitoring / Active	4		391.32	120	100 to 120	Alluvium
DM-3	Detection Monitoring Well 3	Genesis Solar, LLC	2/20/2012	Monitoring / Active	4		388.34	120	100 to 120	Alluvium

Notes:

-- = information is not available or unknown

amsl = above mean sea level

bgs = below ground surface

TABLE 2 GROUNDWATER LEVEL MEASUREMENTS

Genesis Solar Energy Project, Riverside County, California

Well ID	Date	Source	Top of Casing Elevation (feet amsl)	Depth to Water (feet below TOC)	Groundwater Elevation (feet amsl)	Difference from Baseline (feet)	Comments / Use
		WEL			N MONITORING PROGRAM		
DM-1	2/27/2012	WorleyParsons	391.49	106.63	284.86	N/A	Monitoring
DM-1	5/24/2012	WorleyParsons	391.49	107.11	284.38	0.00	Baseline
DM-1	7/26/2012	WorleyParsons	391.49	107.10	284.39	0.01	Monitoring
DM-1	11/14/2012	WorleyParsons	391.49	108.15	283.34	-1.04	Monitoring
DM-1	3/29/2013	WorleyParsons	391.49	107.34	284.15	-0.23	Monitoring
DM-1	6/19/2013	WorleyParsons	391.49	107.19	284.30	-0.08	Monitoring
DM-1	8/13/2013	WorleyParsons	391.49	107.07	284.42	0.04	Monitoring
DM-1	11/12/2013	WorleyParsons	391.49	107.22	284.27	-0.11	Monitoring
DM-1	2/26/2014	WorleyParsons	391.49	107.13	284.36	-0.02	Monitoring
DM-1	5/22/2014	Northstar	391.49	107.05	284.44	0.06	Monitoring
DM-1	8/8/2014	Northstar	391.49	107.11	284.38	0.00	Monitoring
DM-1	12/4/2014	Northstar	391.49	107.03	284.46	0.08	Monitoring
DM-1	3/26/2015	Northstar	391.49	107.22	284.27	-0.11	Monitoring
DM-1	6/11/2015	Northstar	391.49	107.01	284.48	0.10	Monitoring
DM-1 DM-1	12/10/2015	Northstar	391.49 391.49	106.98 107.18	284.51	0.13 -0.07	Monitoring
	6/2/2016	Northstar			284.31		Monitoring
DM-1 DM-1	11/30/2016 6/1/2017	Northstar	391.49 391.49	107.27 107.12	284.22 284.37	-0.16 -0.01	Monitoring Monitoring
		Northstar					
DM-1 DM-1	12/5/2017 5/30/2018	Northstar Northstar	391.49 391.49	107.38 107.10	284.11 284.39	-0.27 0.01	Monitoring Monitoring
DM-1	12/4/2018	Northstar	391.49	107.10	284.04	-0.34	Monitoring
DM-1	6/14/2019	Northstar	391.49	107.45	284.31	-0.34	Monitoring
DM-1	12/5/2019	Northstar	391.49	107.42	284.07	-0.07	Monitoring
DM-1	6/4/2020	Northstar	391.49	107.10	284.39	0.01	Monitoring
DM-1	12/3/2020	Northstar	391.49	107.70	283.79	-0.59	Monitoring
DM-1	6/3/2021	Northstar	391.49	107.06	284.43	0.05	Monitoring
DM-1	12/2/2021	Northstar	391.49	107.35	284.14	-0.24	Monitoring
DM-1	6/2/2022	Northstar	391.49	107.25	284.24	-0.14	Monitoring
DM-1	12/1/2022	Northstar	391.49	107.40	284.09	-0.29	Monitoring
DM-1	6/8/2023	Northstar	391.49	107.49	284.00	-0.38	Monitoring
DM-1	12/7/2023	Northstar	391.49	107.41	284.08	-0.30	Monitoring
DM-1	6/6/2024	Northstar	391.49	107.44	284.05	-0.33	Monitoring
DM-2	2/27/2012	WorleyParsons	391.32	106.92	284.40	N/A	Monitoring
DM-2	5/24/2012	WorleyParsons	391.32	107.37	283.95	0.00	Baseline
DM-2	7/26/2012	WorleyParsons	391.32	107.33	283.99	0.04	Monitoring
DM-2	11/14/2012	WorleyParsons	391.32	108.33	282.99	-0.96	Monitoring
DM-2	3/29/2013	WorleyParsons	391.32	107.59	283.73	-0.22	Monitoring
DM-2	6/19/2013	WorleyParsons	391.32	107.41	283.91	-0.04	Monitoring
DM-2	8/13/2013	WorleyParsons	391.32	107.31	284.01	0.06	Monitoring
DM-2	11/12/2013	WorleyParsons	391.32	107.63	283.69	-0.26	Monitoring
DM-2	2/26/2014	WorleyParsons	391.32	107.40	283.92	-0.03	Monitoring
DM-2	5/22/2014	Northstar	391.32	107.28	284.04	0.09	Monitoring
DM-2	8/8/2014	Northstar	391.32	107.28	284.04	0.09	Monitoring
DM-2	12/4/2014	Northstar	391.32	107.43	283.89	-0.06	Monitoring
DM-2	3/26/2015	Northstar	391.32	107.61	283.71	-0.24	Monitoring
DM-2	6/11/2015	Northstar	391.32	107.40	283.92	-0.03	Monitoring
DM-2	12/10/2015	Northstar	391.32	107.30	284.02	0.07	Monitoring
DM-2	6/2/2016	Northstar	391.32	107.38	283.94	-0.01	Monitoring
DM-2	11/30/2016	Northstar	391.32	107.52	283.80	-0.15	Monitoring
DM-2	6/1/2017	Northstar	391.32	107.47	283.85	-0.10	Monitoring
DM-2	12/5/2017	Northstar	391.32	107.78	283.54	-0.41	Monitoring
DM-2	5/30/2018	Northstar	391.32	107.45	283.87	-0.08	Monitoring
DM-2	12/4/2018	Northstar	391.32	107.80	283.52	-0.43	Monitoring
DM-2	6/14/2019	Northstar	391.32	107.55	283.77	-0.18	Monitoring
DM-2	12/5/2019	Northstar	391.32	107.72	283.60	-0.35	Monitoring
DM-2 DM-2	6/4/2020 12/3/2020	Northstar	391.32 391.32	107.45 108.03	283.87 283.29	-0.08 -0.66	Monitoring Monitoring
DM-2	6/3/2021	Northstar Northstar	391.32 391.32	108.03	283.29	-0.66 -0.27	Monitoring
DM-2	12/2/2021	Northstar	391.32	107.64	283.61	-0.27 -0.34	Monitoring
DM-2	6/2/2022	Northstar	391.32	107.71	283.67	-0.34	Monitoring
DM-2	12/1/2022	Northstar	391.32	107.72	283.60	-0.26	Monitoring
DM-2	6/8/2023	Northstar	391.32	107.82	283.50	-0.45	Monitoring
DM-2	12/7/2023	Northstar	391.32	107.74	283.58	-0.45	Monitoring
DM-2	6/6/2024	Northstar	391.32	107.79	283.53	-0.42	Monitoring
2.11 2	5,5,2024		331.32	205	200.00	U.7E	
DM-3	2/27/2012	WorleyParsons	388.34	103.85	284.49	N/A	Monitoring
DM-3	5/24/2012	WorleyParsons	388.34	104.35	283.99	0.00	Baseline
DM-3	7/26/2012	WorleyParsons	388.34	104.28	284.06	0.07	Monitoring
DM-3	11/14/2012	WorleyParsons	388.34	105.25	283.09	-0.90	Monitoring
DM-3	3/29/2013	WorleyParsons	388.34	104.35	283.99	0.00	Monitoring
		•					

TABLE 2 GROUNDWATER LEVEL MEASUREMENTS

Genesis Solar Energy Project, Riverside County, California

W-II ID	D-t-	C	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Difference from Baseline	Comments /III-
Well ID	Date	Source	(feet amsl)	(feet below TOC)	(feet amsl)	(feet)	Comments / Use
DM-3	6/19/2013	WorleyParsons	388.34	104.20	284.14	0.15	Monitoring
DM-3	8/13/2013	WorleyParsons	388.34	104.31	284.03	0.04	Monitoring
DM-3	11/12/2013	WorleyParsons	388.34	104.43	283.91	-0.08	Monitoring
DM-3	2/26/2014	WorleyParsons	388.34	104.31	284.03	0.04	Monitoring
DM-3	5/22/2014	Northstar	388.34	104.20	284.14	0.15	Monitoring
DM-3	8/8/2014	Northstar	388.34	104.21	284.13	0.14	Monitoring
DM-3	12/4/2014	Northstar	388.34	104.39	283.95	-0.04	Monitoring
DM-3	3/26/2015	Northstar	388.34	104.59	283.75	-0.24	Monitoring
DM-3	6/12/2015	Northstar	388.34	104.18	284.16	0.17	Monitoring
DM-3	12/11/2015	Northstar	388.34	103.96	284.38	0.39	Monitoring
DM-3	6/3/2016	Northstar	388.34	104.38	283.96	-0.03	Monitoring
DM-3	12/2/2016	Northstar	388.34	104.28	284.06	0.07	Monitoring
DM-3	6/1/2017	Northstar	388.34	104.25	284.09	0.10	Monitoring
DM-3	12/5/2017	Northstar	388.34	104.62	283.72	-0.27	Monitoring
DM-3	5/30/2018	Northstar	388.34	104.27	284.07	0.08	Monitoring
DM-3	12/4/2018	Northstar	388.34	104.68	283.66	-0.33	Monitoring
DM-3	6/14/2019	Northstar	388.34	104.38	283.96	-0.03	Monitoring
DM-3	12/6/2019	Northstar	388.34	104.66	283.68	-0.31	Monitoring
DM-3	6/5/2020	Northstar	388.34	104.32	284.02	0.03	Monitoring
DM-3	12/3/2020	Northstar	388.34	104.80	283.54	-0.45	Monitoring
DM-3	6/3/2021	Northstar	388.34	104.29	284.05	0.06	Monitoring
DM-3	12/2/2021	Northstar	388.34	104.50	283.84	-0.15	Monitoring
DM-3	6/2/2022	Northstar	388.34	104.50	283.84	-0.15	Monitoring
DM-3	12/1/2022	Northstar	388.34	104.50	283.84	-0.15	Monitoring
DM-3	6/8/2023	Northstar	388.34	104.68	283.66	-0.33	Monitoring
DM-3	12/7/2023	Northstar	388.34	104.52	283.82	-0.17	Monitoring
DM-3	6/6/2024	Northstar	388.34	104.56	283.78	-0.21	Monitoring

Notes:

amsl = above mean sea level TOC = top of casing

TABLE 3

FIELD DATA COLLECTED DURING THE MOST RECENT GROUNDWATER MONITORING EVENT

Genesis Solar Energy Project, Riverside County, California

			Groundwater Pu	rging			Field Par	ameters		
Well ID	Date	Rate of Groundwater Discharge (mL/min)	Purging Method	Total Volume Purged (mL)	Temperature (°C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	D.O. (mg/L)
DM-1	6/6/2024	180	Bladder Pump	3,600	32.1	6.93	17.8	7.6	+83	5.45
DM-2	6/6/2024	138	Bladder Pump	3,600	29.9	7.01	18.1	89.0	+89	0.74
DM-3	6/6/2024	143	Bladder Pump	3,600	34.2	6.78	17.0	0.2	+120	5.42

NOTES:

mV = millivolts

mL = milliliters
mL/min = milliliters per minute
mS/cm = millisiemens per centermeter
NTU = Nephelometric Turbidity Units
DO = Dissolved Oxygen
mg/L = milligrams per liter

OC = degree Celsius

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Genesis Solar Energy Project, Riverside County, California

																								Total			Oil &			
				Sulfate	Nitrate											Chromium								Total Dissolved	Specific	pН	Grease /		Deuterium	Oxygen-18
			Chloride	(SO4)	(NO3)-N	Calcium	Copper	Sodium	Potassium	Iron	Magnesium	Antimony	Arsenic	Barium	Cadmium	(All Species)	Cobalt	Lead	Manganese	Nickel	Selenium	Zinc	Mercury	Solids	Conductance		-	HTF [†]	(‰ relative	
		Sampling	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)			(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(us/cm)	Units)	(mg/L)		to VSMOW)	to VSMOW)
Well ID	Date Sampled	Method		Method 3		252	0.40		ethod 200.7	0.40						EPA	Method 200	.8			1		SM7470A	SM2540C	SM2510B		SM1664A	8015B		eochemistry
DM-1	5/24/2012	Low Flow	4,600 5,400	2,000 2,300	3.9 <1.1	250 210	<0.10 <0.010	3,800 3,200	23.0	<0.40 <0.040	56 58	-	-	-	-	-	-	-	11	-	-	-	<u>-</u>	12,000 11,000	16,000 18,000	7.84 7.83	-	-	-65.1 -72.1	-8.8 -8.6
DM-1 DM-1	10/24/2012 5/22/2014	Low Flow Low Flow	5,300	2,000	-	240	<0.010	3,700	20.0	<0.040	54	<10	6.2	52	<5.0	<10	<5.0	- <5.0	2.5	4.6 ^J	3.0 ^J	<100	<0.20	11,000	19,000	7.81	<5.0	-	-68.50	-8.51
DM-1	5/22/2014 ¹	Low Flow	5,200	2,000	-	230	<0.010	3,600	22	<0.040	53	<10	5.6	50	<5.0	<10	<5.0	<5.0	<5.0	3.9 ^J	3.1 ^J	<100	<0.20	11,000	19,000	7.74	<5.3	-	-69.47	-8.74
DM-1	12/4/2014	Low Flow	4,800	1,700	2.9	230	<0.050	3,600	21	<0.20	57	<10	7.7	50	<5.0	<10	<5.0	<5.0	<5.0	9.2 ^J	<10	25 ^J	0.15 ^J	11,000	19,000	7.92	<4.7	<0.094	N/A ²	N/A ²
DM-1	6/11/2015	Low Flow	4,600	2,000	3.7 ^J	230	<0.10	3,600	21	<0.40	52	<10	3.8 ^J	36	<5.0	2.9 ^J	<5.0	<5.0	3.6 ^J	6.3 ^J	3.6 ^J	<100	0.26	10,000	19,000	7.81	<4.7	<0.10	-69.2	-8.47
DM-1	12/10/2015	Low Flow	5,300	2,100	4.9 ^J	260	<0.010	3,700	22	<0.040	57	<10	5.6	38	<5.0	<10	<5.0	<5.0	<5.0	<10	5.2 ^J	<100	<0.20	12,000	19,000	7.79	<5.0	<0.094	-70.3	-8.57
DM-1	6/2/2016	Low Flow	4,700	1,800	7.8	230	<0.10	3,800	18	<0.40	57	<2.0	5.1	31	<1.0	1.9 ^J	<1.0	<1.0	0.99 ^J	1.1 ^J	3.3	2.5 ^J	<0.20	11,000	20,000	7.87	<4.7	<0.094	-69.87	-8.83
DM-1	11/30/2016	Low Flow	5,200	2,000	<5.5	230	<0.010	3,700	23	<0.040	59	<20	6.7 ^J	31	<10	<20	<10	<10	<10	<10	13 ^J	<200	<0.20	11,000	17,000	7.8	<4.7	<0.093	-70.70	-8.68
DM-1	6/1/2017	Low Flow	4,600	1,900	4.2 ^J	250	<0.10	4,100	21	<1.0	62	<10	4.8 ^J	28	<5.0	5.9 ^J	<5.0	<5.0	<5.0	7.6 ^J	6.9 ^J	<100	<0.20	11,000	16,000	7.9	<5.1	<0.094	-70.30	-8.57
DM-1	12/5/2017	Low Flow	7,130	2,770	12.8	230	0.025	1,100	30	<1.0	59	<1.0	6.2	28	<2.5	3.1	<2.5	<2.5	-	<2.5	5.1	6.6	<0.50	10,000	17,200	7.8	<5.0	<0.10	-69.14	-8.90
DM-1	5/30/2018	Low Flow	5,190	2,030	14.7	270	0.096 ^J	5,200	63	0.78 ^J	64	<0.50	5.0	30	<0.50	<5.0	<0.50	<5.0	-	<5.0	5.9	9.5	<0.50	11,000	17,300	7.9	<5.0	<0.10	-71.10	-8.57
DM-1	12/4/2018	Low Flow	8,180	3,280	9.00	260	<0.5	4,800	33	<20	68	<10	10	31	<10	<10	<10	<10	-	<10	<10	<10	<0.50	11,000	17,400	7.7	<5.0	<0.10	-70.10	-8.55
DM-1	6/14/2019	Low Flow	5,040	1,930	8.76	280	0.006	4,800	65	0.35	63	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	-	<0.50	9,600	17,700	7.2	<5.0	<0.10	-70.40	-8.58
DM-1	12/5/2019	Low Flow	7,460	2,150	16.3	250	0.004	4,200	32	<0.20	67	<5.0	0.80 '	32	<5.0	2.1	<5.0	<5.0	-	<5.0	0.80 '	47	<0.50	11,000	17,600	7.7	<5.0	<0.10	-70.10	-8.55
DM-1 DM-1	6/4/2020	Low Flow	5,500 5,530	2,090 2,150	8.04 8.50	220 230	0.007 <0.005	4,300 9,500	24 35	<0.20 <0.20	53 49	<5.0 <5.0	<5.0 <5.0	33 35	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	-	<5.0 <5.0	13 0.87	16 <0.50	<0.50 <0.50	12,000 12,000	17,800 18,000	7.3 7.9	<5.0 <5.0	<0.096 <0.11	-70.30 -70.20	-8.57 -8.57
DM-1	12/3/2020 6/3/2021	Low Flow Low Flow	5,520	2,050	8.28	220	<0.50	3,800	<50	<20	57	<10	<10	31	<10	<10	<10	<10	_	<10	17	<10	<0.50	8,100	17,800	7.7	<5.0	<0.11	-70.20	-8.62
DM-1	12/2/2021	Low Flow	5,360	1,930	8.59	230	<0.50	4,200	<50	<20	58	<10	<10	29	<10	<10	<10	<10	-	<10	16	<10	<1.0	14,000	17,800	7.8	<5.0	<0.099	-70.10	-8.58
DM-1	6/2/2022	Low Flow	5,530	2,070	8.70	240	<2.5	4,500	<250	<100	69	<50	<50	<50	<50	<50	<50	<50	-	<50	52	<50	<1.0	9,300	17,800	7.8	<5.0	<0.095	-70.20	-8.62
DM-1	12/1/2022	Low Flow	5,130	1,960	7.36	230	<0.005	4,500	58	<0.20	61	<25	<25	26	<25	<25	<25	<25	-	<25	<25	<25	<1.0	11,000	17,900	7.8	<5.0	<0.096	-70.20	-8.62
DM-1	6/8/2023	Low Flow	5,300	2,000	7.58	240	<0.50	4,100	<50	<20	65	<10	<10	29	<10	<10	<10	<10	-	<10	<10	<10	<1.0	10,000	18,000	7.8	<5.0	<0.097	-69.30	-8.53
DM-1 DM-1	12/7/2023 6/6/2024	Low Flow Low Flow	5,290 5,510	1,830 1,920	7.18 7.81	230 230	<0.50 <0.50	4,500 4,200	<50 <50	<20 <20	65 62	<25 <5.0	<25 5.6	29 25	<25 <5.0	<25 <5.0	<25 <5.0	<25 <5.0	-	<25 <5.0	<25 7.2	<25 8.8	<1.0 <1.0	10,000 10,000	18,400 18,600	8.2 8.0	<5.0 <5.0	<0.100 <0.100	-69.80 -70.10	-8.59 -8.63
DIVI-I	0/0/2024	LOW HOW	3,310	1,320	7.01	230	10.50	4,200	\30	\20	02	٧٥.٥	3.0	23	\3.0	\3.0	\5.0	٧٥.٥		٧٥.٥	7.2	0.0	1.0	10,000	10,000	0.0	\3.0	10.100	70.10	0.03
DM-2	5/24/2012	Low Flow	4,500	2,000	2.9	290	<0.10	3,500	25.0	<0.40	59	-	-	-	-	-	-	-	-	-	-	-	-	13,000	16,000	7.80	-	-	-71.7	-8.8
DM-2	10/23/2012	Low Flow	4,800	2,000	<1.1	470	<0.010	2,600	27.0	<0.040	54	-	-	-	-	-	-	-	110	-	-	-	-	9,900	16,000	7.72	-	-	-70.9	-8.9
DM-2	5/22/2014	Low Flow	5,100	2,000	-	320	<0.020	3,500	23	0.022 ^J	54	<10	4.7 ^J	97	<5.0	<10	<5.0	<5.0	59	4.1 ^J	3.3 ^J	<100	<0.20	11,000	18,000	7.79	<5.1	-	-69.95	-8.72
DM-2	12/4/2014	Low Flow	4,400	1,600	3.0	300	<0.050	3,100	20	0.082 ^J	55	<10	5.7	140	<5.0	<10	<5.0	<5.0	90	8.4 ^J	<10	<100	<0.20	9,900	17,000	7.90	<4.7	<0.095	N/A ²	N/A ²
DM-2	6/11/2015	Low Flow	4,500	2,000	3.8	290	<0.10	3,500	22	<0.40	55	<10	4.1	110	<5.0	2.9 ^J	<5.0	<5.0	40	4.9 ^J	<10	<100	<0.20	9,600	18,000	7.92	<4.7	<0.10	-68.2	-8.52
DM-2	12/10/2015	Low Flow	5,400	2,200	<5.5	290	<0.010	3,600	21	0.062	61	<10	5.9	85	<5.0	<10	<5.0	<5.0	88	<10	5.5 ¹	<100	<0.20	12,000	18,000	7.85	<5.0	<0.096	-69.4	-8.43
DM-2	6/2/2016	Low Flow	4,800	1,900	8.0	280	<0.10	3,800	20	0.27	60	0.51	4.7	62	<1.0	1.5	<1.0	<1.0	62	1.1'	3.5	<20	<0.20	12,000	22,000	7.95	<4.9	<0.097	-69.53	-8.63
DM-2	11/30/2016	Low Flow	5,300	2,200	2.8	290	<0.010	4,200	28	<0.040	61	<20	5.9 ¹	56	<10	<20	<10	<10	40	<20	18	<200	<0.20	11,000	17,000	7.8	<4.7	<0.097	-70.20	-8.37
DM-2	6/1/2017	Low Flow	4,800	1,900	3.1	280	<0.10	4,100	21	<1.0	62	<10	4.4	52	<5.0	<10	<5.0	<5.0	17	5.2	5.6	<100	<0.20	12,000	16,000	7.9	<5.2	<0.097	-70.10	-8.51
DM-2	12/5/2017	Low Flow	4,930	1,960	13.4	250	<0.025	1,400	34	<1.0	62	<1.0	5.5	69	<2.5	3.7	<2.5	<2.5	-	<2.5	5.7	4.5	<0.50	11,000	17,200	7.8	<5.0	<0.10	-67.66	-8.63
DM-2 DM-2	5/30/2018 12/4/2018	Low Flow Low Flow	6,000 5,290	2,280 1,770	17.5 11.4	300 240	0.11 ³ <0.5	4,800 4,900	68 35	<10 <20	67 60	<5.0 <10	5.1 <10	51 57	<0.50 <10	<5.0 <10	<0.50 <10	<0.50 <10	-	<0.50 <10	6.3 <10	<5.0 28	<0.50 <0.50	9,900 7,100	17,000 13,000	7.9 7.8	<5.0 <5.0	<0.11 <0.10	-69.20 -72.30	-8.39 -8.98
DM-2	6/14/2019	Low Flow	5,240	2,080	11.2	300	<0.005	5,100	68	<0.20	67	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	-	<0.50	9,300	18,000	7.3	<5.0	<0.10	-70.10	-8.50
DM-2	12/5/2019	Low Flow	7,680	2,330 J	21.2	310	0.007	4,400	30	<0.20	65	<5.0	<5.0	50	<5.0	2.9 J	<5.0	<5.0	-	<5.0	3.2	76	<0.50	10,000	17,000	7.6	<5.0	<0.10	-70.00	-8.48
DM-2	6/4/2020	Low Flow	5,580	2,240	10.4	280	0.007	4,100	41	<0.20	55	<5.0	<5.0	46	<5.0	<5.0	<5.0	<5.0	-	<5.0	9.8	24	<0.50	11,000	18,100	7.4	<5.0	<0.096	-69.90	-8.47
DM-2	12/3/2020	Low Flow	5,730	2,340	9.46	250	<0.005	11,000	34	<0.20	51	<5.0	<5.0	49	<5.0	<5.0	<5.0	<5.0	-	<5.0	0.94	<0.50	<0.50	10,000	18,000	7.8	<5.0	<0.11	-70.10	-8.50
DM-2	6/3/2021	Low Flow	5,610	2,210	7.85	230	<0.50	3,800	<50	<20	58	<10	<10	45	<10	<10	<10	<10	-	<10	16	<10	<0.50	9,000	18,200	7.6	<5.0	<0.092	-69.90	-8.50
DM-2	12/2/2021 6/2/2022	Low Flow	5,470 5,860	2,100 2,160	10.0 10.9	270 240	<0.50 <2.5	4,500 4,200	<50 <250	<20 <100	63 67	<10 <50	<10 <50	44 <50	<10 <50	<10 <50	<10 <50	<10 <50	-	<10 <50	16 53	<10 <50	<1.0 <1.0	13,000 9,300	18,200 18,200	7.8 7.7	<5.0 <5.0	<0.095 <0.093	-69.50 -69.60	-8.47 -8.51
DM-2 DM-2	12/1/2022	Low Flow Low Flow	5,450	2,180	9.45	250	<0.005	4,700	57	<0.20	65	<25	<25	37	<25	<25	<25	<25	-	<25	<25	<25	<1.0	10,000	18,300	7.7	<5.0 <5.0	<0.098	-69.50	-8.49
DM-2	6/8/2023	Low Flow	5,470	2,190	9.73	300	<0.50	4,800	<50	<20	85	<10	<10	37	<10	<10	<10	<10	-	<10	<10	<10	<1.0	6,800	18,300	7.6	<5.0	<0.100	-70.00	-8.51
DM-2	12/7/2023	Low Flow	5,390	1,930	6.21	240	<0.50	4,300	<50	<20	66	<25	<25	40	<25	<25	<25	<25	-	<25	<25	<25	<1.0	11,000	18,900	7.9	<5.0	<0.100	-69.60	-8.49
DM-2	6/6/2024	Low Flow	4,910	2,110	8.84	240	<0.50	4,100	<50	<20	64	<5.0	6.1	35	<5.0	<5.0	<5.0	<5.0	-	<5.0	8.6	13	<1.0	10,000	19,000	7.9	<5.0	<0.090	-69.60	-8.49
DM-3	5/24/2012	Low Flow	4,600	2,000	<2.2	220	<0.10	3,500	20.0	<0.40	51	-	-	-	-	-	-	-	-	-	-	-	-	12,000	16,000	7.83	-	-	-71.4	-8.9
DM-3	10/23/2012	Low Flow	5,100	2,100	<2.2	210	<0.10	3,000	20.0	<0.40	52	-	-	-	-	-	-	-	<1.0	-	-	-	-	11,000	18,000	7.83	-	-	-71.4	-8.7
DM-3	5/22/2014	Low Flow	5,400	2,100	-	230	<0.010	3,600	21	<0.040	51	<10	13	18	<5.0	<10	<5.0	<5.0	<5.0	10	<10	<100	<0.20	11,000	19,000	7.66	<4.9	-	-68.86	-8.52
DM-3	12/5/2014	Low Flow	4,900	1,800	1.8 ^J	230	<0.050	3,600	20	<0.20	56	<10	16	18	<5.0	<10	<5.0	<5.0	<5.0	9.6 ^J	<10	<100	<0.20	11,000	18,000	7.82	<4.7	<0.099	N/A ²	N/A ²
DM-3	6/12/2015	Low Flow	4,400	1,900	<5.5	220	<0.10	3,600	18	<0.40	50	<10	14	17	<5.0	<10	<5.0	<5.0	<5.0	4.5 ^J	<10	<100	<0.20	9,800	18,000	7.75	<4.9	<0.10	-69.6	-8.90
DM-3	12/11/2015	Low Flow	5,100	2,200	<5.5	250	0.0057 ^J	3,500	19	<0.040	51	<10	17	21	<5.0	<10	<5.0	<5.0	<5.0	<10	3.1 ^J	<100	<0.20	11,000	18,000	7.79	<5.0	<0.094	-70.6	-8.73
DM-3	6/3/2016	Low Flow	4,700	1,900	7.1	220	<0.10	3,700	17	<0.40	53	<2.0	14	16	<1.0	0.66 ^J	<1.0	<1.0	0.64 ^J	0.88 ^J	1.0 ^J	5.1 ^J	<0.20	11,000	20,000	7.86	<4.7	<0.093	-69.29	-8.75
DM-3	12/2/2016	Low Flow	4,900	2,100	<5.5	240	0.0052 ^J	4,100	23	<0.040	56	<10	16	18	<5.0	<10	<5.0	<5.0	<5.0	<10	5.6 ^J	<100	<0.20	11,000	17,000	7.8	<4.8	<0.097	-72.20	-8.75
DM-3	6/1/2017	Low Flow	4,800	2,000	<5.5	240	<0.10	3,900	19	<1.0	55	<10	15	18	<5.0	<10	<5.0	<5.0	<5.0	3.9 ^J	2.7 ^J	<100	<0.20	11,000	16,000	7.9	<5.1	<0.095	-70.80	-8.71
DM-3	12/5/2017	Low Flow	4,880	2,020	2.77	230	0.027	1,200	31	0.073 ^J	59	<2.5	15	15	<2.5	<2.5	<2.5	<2.5	-	<2.5	<2.5	5.6	<0.50	13,000	17,000	7.8	<5.0	<0.10	-69.57	-8.87
DM-3	5/30/2018	Low Flow	6,350	2,600	10.7	260	0.11 ^J	4,100	61	<10	61	<0.50	14	15	<0.50	<5.0	<0.50	<0.50	-	<0.50	<5.0	<5.0	<0.50	12,000	17,100	7.9	<5.0	<0.11	-70.60	-8.67
DM-3	12/4/2018	Low Flow	6,770	2,840	2.50	280	<0.5	5,200	33	<20	69	<10	20	34	<10	<10	<10	<10	-	<10	<10	<10	<0.50	9,700	17,100	7.8	<5.0	<0.10	-70.60	-8.67
DM-3	6/14/2019	Low Flow	4,880	1,960	2.87	270	0.009	4,900	60	<0.20	59	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	-	<0.50	9,300	16,800	7.5	<5.0	<0.10	-70.80	-8.69
DM-3	12/6/2019	Low Flow	9,760 5,250	4,350 2,080	3.52 2.44	240 230	0.006 0.007	4,100 4,000	31 35	<0.20 <0.20	58 48	<5.0 <5.0	11	18 17	<5.0 <5.0	0.90 ³ <5.0	<5.0 <5.0	<5.0 <5.0	-	<5.0 <5.0	0.40 ³ 6.4	51 13	<0.50 <0.50	11,000 11,000	17,800 17,400	7.7 7.5	<5.0 <5.0	<0.10 <0.097	-70.50 -70.70	-8.64 -8.65
DM-3 DM-3	6/5/2020 12/3/2020	Low Flow	5,250 5,420	2,300	2.44	220	<0.007	9,100	29	<0.20	45	<5.0 <5.0	16 <5.0	20	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	-	<5.0 <5.0	0.68	0.55	<0.50	10,000	17,400	7.5	<5.0 <5.0	<0.097	-70.70	-8.03
DIVI-3	12,3,2020	LOVV I IUVV	3,420	2,300	2.7/	220	3.003	3,100	-23	3.20	43	.5.5	15.0	20	13.0	-5.5	-5.5	٦٥.0		15.0	0.00	0.55	.0.30	20,000	17,000	,.5	1 -5.5	.0.11	. 0.50	5.,1

Page 1 of 2

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Genesis Solar Energy Project, Riverside County, California

																								Total			Oil &			
				Sulfate	Nitrate											Chromium								Dissolved	Specific	pН	Grease /		Deuterium	Oxygen-18
			Chloride			Calcium	Copper	Sodium	Potassium	Iron	Magnesium	Antimony	Arsenic	Barium	Cadmium	(All Species)	Cobalt	Lead	Manganese	Nickel	Selenium	Zinc	Mercury	Solids	Conductance		HEM	HTF [†]	(‰ relative	,0
		Sampling	(mg/L)	(mg/L)	(mg/L)		(mg/L)		(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(us/cm)	Units)	(mg/L)	(mg/L)	to VSMOW)	`
Well ID	Date Sampled	Method		Method 3		(0, /	(0, 7		thod 200.7	(0, ,	(0/ /	(-0)	(-0,-7	(-0, /	(-0/-/		Method 200		(*0/ /	(*0/ /	(*0/ /	(-0//	SM7470A	SM2540C	SM2510B	SM4500H	SM1664A	8015B	Isotope Geo	
DM-3	6/3/2021	Low Flow	5,380	2,130	2.44	190	<0.50	3,500	<50	<20	48	<10	17	18	<10	<10	<10	<10	-	<10	20	10	<0.50	7,700	17,400	7.7	<5.0	<0.093	-70.40	-8.69
DM-3	12/2/2021	Low Flow	5,230	2,020	3.06	220	<0.50	4,000	<50	<20	53	<10	26	17	<10	<10	<10	<10	-	<10	11	<10	<1.0	12,000	17,400	7.8	<5.0	<0.094	-70.60	-8.69
DM-3	6/2/2022	Low Flow	5,570	2,110	2.82	240	<2.5	4,500	<250	<100	59	<50	<50	<50	<50	<50	<50	<50	-	<50	55	50	<1.0	8,500	17,400	7.8	<5.0	<0.090	-70.50	-8.71
DM-3	12/1/2022	Low Flow	5,300	2,110	3.11	210	<0.005	4,400	55	<0.20	56	<25	<25	<25	<25	<25	<25	<25	-	<25	<25	<25	<1.0	9,900	17,600	7.8	<5.0	<0.099	-70.50	-8.71
DM-3	6/8/2023	Low Flow	5,230	2,100	2.61	240	<0.50	4,200	<50	<20	66	<10	16	17	<10	<10	<10	<10	-	<10	<10	<10	<1.0	9,800	17,600	7.7	<5.0	<0.099	-71.10	-8.76
DM-3	12/7/2023	Low Flow	5,300	1,940	2.65	220	<0.50	4,100	<50	<20	60	<25	<25	<25	<25	<25	<25	<25	-	<25	<25	<25	<1.0	10,000	18,100	8.0	<5.0	<0.099	-71.50	-8.76
DM-3	6/6/2024	Low Flow	4,650	2,060	3.01	220	<0.50	4,100	<50	<20	59	<5.0	17	15	<5.0	<5.0	<5.0	<5.0	-	<5.0	5.6	6.2	<1.0	9,900	18,200	8.0	<5.0	<0.100	-70.40	-8.67
North Pond	6/1/2018	Composite	61,700	21,000	0.870	230	<0.015	12,000	430	< 0.35	4.6 ^J	<10	470	230	<10	<0.50	<10	<0.50	-	25	<25	62	<0.50	120,000	148,000	9.4	<1.40	<0.095	N/A	N/A
North Pond	12/3/2018	Composite	241,000	18,600	24.3	630	2.9	46,000	8,300	<20	27	<25	1,000	68	<25	<25	<25	<25	-	59	<25	<25	<0.50	400,000	241,000	7.6	<5.00	<0.099	N/A	N/A
North Pond	6/13/2019	Composite	39,800	12,000	<0.500	280	0.038	41,000	<0.10	<0.20	5.7	<10	25	12	<10	<10	<10	<10	-	<10	<10	-	<0.50	72,000	108,000	9.1	<5.00	<0.094	N/A	N/A
North Pond	12/5/2019	Composite	83,000	27,000	<500	380	0.090	43,000	340	<0.20	3.0	<5.0	800	200	<5.0	<50	<50	<5.0	-	<50	<50	4,300	<0.50	120,000	120,000	8.8	<5.00	<0.095	N/A	N/A
North Pond	6/4/2020	Composite	40,900	11,300	27.4	510	3.4	20,000	240	<20	570	<25	560	76	<25	<25	<25	<25	-	<25	38	39	<0.50	70,000	107,000	9.4	<5.00	<0.090	N/A	N/A
North Pond	12/3/2020	Composite	38,000	11,800	7.73	390	<0.5	30,000	250	<20	19	<25	8.7	330	<25	<25	<25	<25	-	<25	0.81	0.81	<0.50	57,000	95,000	8.9	<5.00	<0.10	N/A	N/A
North Pond	6/4/2021	Composite	48,200	15,200	53.1	400	<0.50	31,000	230	<20	12	<25	510	130	<25	<25	<25	<25	-	30	53	<25	<0.50	16,000	119,000	9.4	<5.00	<0.087	N/A	N/A
North Pond	12/2/2021	Composite	57,500	18,600	<50.0	470	<0.50	44,000	300	<20	17	<20	640	170	<20	<20	<20	<20	-	<20	31	<20	<1.0	91,000	142,000	8.9	<5.00	<0.092	N/A	N/A
North Pond	6/2/2022	Composite	86,200	30,400	47.8	<100	<5.0	79,000	<500	<200	<100	<50	940	300	<50	<50	<50	<50	-	<50	89	<50	<1.0	180,000	175,000	8.6	<5.00	<0.098	N/A	N/A
North Pond	12/1/2022	Composite	24,200	8,040	47.8	250	<1.2	21,000	<250	<50	<25	<25	340	170	<25	<25	<25	<25	-	<25	41	56	<1.0	41,000	70,300	8.4	<5.00	<0.100	N/A	N/A
North Pond	6/8/2023	Composite	28,700	7,800	1,910	380	<2.0	23,000	<200	<80	<40	<10	340	280	<10	<10	<10	<10	-	<10	<10	<10	<1.0	46,000	75,500	8.8	<5.00	<0.099	N/A	N/A
North Pond	12/7/2023	Composite	37,200	9,530	<250	390	<2.0	28,000	<200	<80	<40	<25	420	100	<25	<25	<25	<25	-	<25	<25	<25	<1.0	65,000	100,000	9.1	<5.00	<0.100	N/A	N/A
North Pond	6/6/2024	Composite	57,700	17,000	44.6	410	<0.50	4,500	310	<20	16	<50	460	140	<50	<50	<50	<50	-	<50	66	<50	<1.0	110,000	147,000	8.7	<5.00	<0.088	N/A	N/A
																														
South Pond	6/1/2018	Composite	152,000		22.2	27	<0.015	17,000	1,100	<0.35	17	<10	1,100	85	<25	<10	<10	<0.50	-	46	43	79	<0.50	310,000	218,000	8.3	<1.40	<0.090	N/A	N/A
South Pond	12/3/2018	Composite	33,200	8,710	65.1	410	2.8	34,000	420	<20	27	<25	390	310	<25	<25	<25	<25	-	<25	<25	160	<0.50	39,000	61,200	8.9	36.4	<0.097	N/A	N/A
South Pond	6/13/2019	Composite	38,700	10,800	57.2	430	0.064	40,000	<0.10	<0.20	16	<10	28	25	<10	<10	<10	<10	-	<10	<10	-	<0.50	68,000	104,000	9.3	<5.00	<0.097	N/A	N/A
South Pond	12/5/2019	Composite	30,000	6,770	2.17	200	0.041	14,000	160	<0.20	13	<5.0	200	170	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	190	<0.50	35,000	49,700	9.0	<5.00	<0.099	N/A	N/A
South Pond	6/4/2020	Composite	74,600	23,900	14.8	390	4.2	62,000	470	<20	1,100	<25	1,100	360	<25	<25	<25	<25	-	36	68	48	<0.50	130,000	166,000	8.8	<5.00	<0.091	N/A	N/A
South Pond	12/3/2020	Composite	73,700	16,600	10.6	370	<0.5	42,000	480	<20	23	<25	14	290	<25	<25	<25	<25	-	<25	0.73	3.0	<0.50	92,000	150,000	8.6	<5.00	<0.099	N/A	N/A
South Pond	6/4/2021	Composite	91,000	22,300	<50.0	420	<0.50	55,000	620	<20	29	<25	1,100	420	<25	<25	<25	<25	-	56	69	100	<0.50	25,000	183,000	9.0	<5.00	<0.091	N/A	N/A
South Pond	12/2/2021	Composite	24,000	6,560	<50.0	240	<0.50	19,000	150	<20	16	<10	290	200	<10	<10	<10	<20	-	21	18	64	<1.0	38,000	67,500	8.9	<5.00	<0.090	N/A	N/A
South Pond	6/2/2022	Composite	80,200	21,900	45.2	300	<5.0	65,000	<500	<200	100	<50	920	310	<50	<50	<50	<50	-	<50	82	<50	<1.0	140,000	168,000	8.4	<5.00	<0.095	N/A	N/A
South Pond	12/1/2022	Composite	24,000	5,500	<25.0	300	<1.2	20,000	<250	<50	<25	<25	260	210	<25	<25	<25	<25	-	<25	59	60	<1.0	35,000	67,400	8.5	<5.00	<0.100	N/A	N/A
South Pond	6/8/2023	Composite	25,800	5,600	959	270	<2.0	19,000	<200	<80	<40	<10	280	210	<10	<10	<10	<10	-	<10	12	39	<1.0	22,000	66,300	8.2	<5.00	<0.099	N/A	N/A
South Pond	12/7/2023	Composite	17,900	4,040	449	240	<2.0	17,000	<200	<80	<40	<25	250	190	<25	<25	<25	<25	-	<25	<25	170	<1.0	35,000	59,500	9.3	<5.00	<0.100	N/A	N/A
South Pond	6/6/2024	Composite	53,600	11,800	44.7	460	<0.50	4,000	340	<20	30	<50	540	390	<50	<50	<50	<50	-	<50	52	<50	<1.0	110,000	142,000	9.1	<4.47	<0.092	N/A	N/A
					1	1		1																					1	

NOTES:

mg/L = milligrams per liter

ug/L = micrograms per liter

uS/cm = microsiemens per centimeter

‰ = parts per thousand

VSMOW = Vienna Standard Mean Ocean Water

- <= not detected at or above the indicated reporting limit
 -= information is unknown / not applicable / not analyzed
 J Result is less than the reporting limit but greater than or equal to the method detection limit, thus the concentration is an approximate value.
 † Heat Transfer Fluid (HTF) is characterized by the analytes 1,1'-oxybis-benzene and 1,1'-biphenyl.

1 - Duplicate sample
2 - Analytical results not available at time of reporting due to laboratory equipment failure.

Analytical data shaded grey is a monitored Contaminant of Concern as defined in the Waste Discharge Requirements, Condition 79, Page 16

TABLE 5
SUMMARY OF POND DRAINAGE SUMP DATA
Genesis Solar Energy Project, Riverside County, California

							Sensor R	eadings ¹							
				North Pond							South Pond				
Date of Reading	#1W	#2W	#3W	#1E	#2E	#3E	Totalizer	#1W	#2W	#3W	#1E	#2E	#3E	Totalizer	Comments
1st Qtr 2014	199	199	199	199	199	199	-	199	199	199	199	199	199	-	All probes are dry
2nd Qtr 2014	199	199	199	199	199	199	-	199	199	199	199	199	199	-	
3rd Qtr 2014	199	199	199	199	199	199	-	199	199	199	199	199	199	-	
12/05/2014	199	199	199	199	199	199	-	199	199	199	199	199	199	-	
03/26/2015	199	199	199	199	199	199	-	199	199	199	199	199	199	-	
06/12/2015	133	199	199	199	199	199	-	199	199	199	199	199	199	-	
09/03/2015	78	199	199	199	199	199	-	199	199	199	199	199	199	-	
09/15/2015	67	199	199	199	199	199	-	199	199	199	199	199	199	-	
12/10/2015	0	75	199	199	199	199	-	199	199	199	199	199	199	-	Sump pumps turned on - no water
03/01/2016	6	101	199	199	199	199	-	199	199	199	199	199	199	-	
06/02/2016	4	80	199	199	199	199	-	199	199	199	199	199	199	-	
09/01/2016	0	42	146	199	175	105	-	199	199	199	199	199	199	-	
12/01/2016	0	59	199	199	199	188	1,144.79	199	199	199	183	199	199	24.21	Readings on arrival
12/01/2016	199	199	199	199	199	199	1,144.79	199	199	199	183	199	199	24.21	Readings on departure, new probes in North Pond
03/02/2017	199	199	199	199	199	199	1,144.79	199	199	199	199	199	199	24.21	
06/01/2017	199	199	199	199	199	199	1,144.79	199	199	199	199	199	199	24.21	
09/04/2017	199	199	199	199	199	199	1,695.44	199	199	199	192	178	199	24.21	
12/05/2017	114	165	199	199	179	180	1,695.66	199	199	199	166	199	199	24.21	To date, all totalizer increases are from pump testing
03/06/2018	186	199	199	199	199	199	1,695.66	199	199	199	199	199	199	24.21	
06/01/2018	159	199	199	199	199	199	1,695.66	199	199	199	177	186	199	24.21	
09/12/2018	78	192	199	199	199	192	1,694.83	199	199	199	197	187	199	24.21	
12/03/2018	119	181	199	199	199	199	1,688.26	199	199	199	199	168	199	24.21	
03/08/2019	150	199	199	199	199	199	1,690.80	199	199	199	115	168	199	24.21	
06/13/2019	199	199	199	199	199	199	1,687.19	199	199	199	188	199	199	24.21	
09/08/2019	199	199	199	199	199	199	1,686.68	199	199	199	188	199	199	24.21	
12/05/2019	145	199	199	199	199	199	1,683.78	199	199	199	199	199	199	24.21	
03/17/2020	168	199	199	199	199	199	1,681.87	199	199	199	199	199	199	24.21	
06/04/2020	109	199	199	199	199	199	1,657.23	199	199	199	199	199	199	22.64	
09/16/2020	199	199	199	199	199	199	1,619.72	199	199	199	199	199	199	20.34	
12/03/2020	98	199	199	199	199	199	1,624.77	199	199	199	199	199	199	20.34	
03/23/2021	104	199	199	199	199	199	1,628.91	199	199	199	199	199	199	20.34	
06/04/2021	119	199	199	199	199	199	2,017.91	199	199	199	199	199	199	205.98	Sump pumps tested prior to readings
09/21/2021	89	199	199	199	199	199	2,188.61	199	199	199	199	199	199	197.30	
12/02/2021	97	199	199	199	199	199	2,186.30	199	199	199	199	199	199	N/A ²	
03/30/2022	134	199	199	199	199	199	2,183.93	199	199	199	199	199	199	N/A ²	
06/02/2022	151	199	199	199	199	199	7.48	199	199	199	189	199	199	7.48	New pumps and totalizers installed in 2nd quarter
08/04/2022	109	191	199	199	199	105	605.44	199	199	199	188	199	199	7.48	Verification readings following leak reported by NextEra
09/30/2022	105	189	199	199	199	122	605.44	199	199	199	199	199	199	7.48	a de la constant de l
12/01/2022	103	179	199	199	197	176	605.55	171	199	199	189	174	199	7.48	
03/29/2023	181	199	199	199	199	199	605.55	199	199	199	199	199	199	7.48	
06/08/2023	56	198	199	199	199	196	605.55	199	199	199	198	199	199	7.48	
09/28/2023	75	153	199	199	199	149	605.55	199	199	199	199	199	199	7.48	Moisture under both western caps
12/07/2023	70	110	199	199	199	98	605.55	199	199	199	167	199	199	7.48	Moisture under north pond, western cap
03/27/2024	199	199	199	199	199	199	607.01	199	199	199	198	199	199	7.48	Moisture under north pond, western cap
06/06/2024	130	199	199	199	199	199	607.01	199	199	199	199	199	199	7.48	No moisture observed under caps
33,00,2024	130	155	155	133	100	155	307.01	133	133	155	133	133	155	7.70	no moistare observed under caps

^{1 -} Readings in centibars, collected with a Watermark 30 KTCD-NL Soil Moisture Meter

^{2 -} Pump totalizer not functioning

APPENDIX A

FIELD DATA SHEETS

GROUNDWATER SAMPLING FIELD FORM

Date: 06/06/24Site: Genesis Solar Energy ProjectProject No: 196-004-07Project: Groundwater Detection Monitoring ProgramProject Manager: AWBTechnicians: AWBWeather: Hot

Sampling Method: Low-flow sampling with submersible pump (EPA 2017 protocols) and flow-through cell

Well No.	DM-1	Time	Water Level	Temp °C	pН	Cond (mS/cm)		ORP	DO
77011 110.	DIVI-1	(5 Min Int)	(ft btoc)	(3%)	(+/- 0.1)	(3%)	(NTUs) (10%)	(mV) (+/- 10)	(mg/L) (10%)
Casing Diameter (in.)	4.0	20:10	107.48	33.8	6.83	17.8	12.4	+88	4.02
Total Depth (ft btoc)	120	20:15	107.45	32.2	6.91	17.7	7.8	+85	5.49
Screen Interval (ft btoc)	100 - 120	20:20	107.45	32.1	6.94	17.8	7.6	+84	5.48
Depth to Water (ft btoc)	107.44	20:25	107.45	32.1	6.93	17.8	7.6	+83	5.45
Depth of Inlet (ft btoc)	115.00								
Discharge Time (sec)	30								
Fill Time (sec)	20								
Cycles per Minute	1.2								
Volume per Cycle (mL)	150								
Pump Rate (mL/min)	180								
Volume Purged (mL)	3,600								
Sample Date	06/06/24								
Sample Time	20:50								

Purge Volume Calculation: Total must exceed tubing volume (1,204 mL) plus drawdown volume (2,460 mL/foot) = 1,229 mL

Well No.	DM-2	Time	Water Level	Temp °C	pН	Cond (mS/cm)	-	ORP	DO
		(5 Min Int)	(ft btoc)	(3%)	(+/- 0.1)	(3%)	(NTUs) (10%)	(mV) (+/- 10)	(mg/L) (10%)
Casing Diameter (in.)	4.0	21:25	108.06	30.8	6.94	17.9	104.0	+89	1.55
Total Depth (ft btoc)	120	21:30	108.18	30.1	6.97	18.1	86.0	+89	0.76
Screen Interval (ft btoc)	100 - 120	21:35	108.23	30.0	6.99	18.1	87.0	+89	0.75
Depth to Water (ft btoc)	107.79	21:40	108.25	29.9	7.01	18.1	89.0	+89	0.74
Depth of Inlet (ft btoc)	115.00								
Discharge Time (sec)	28								
Fill Time (sec)	37								
Cycles per Minute	0.9								
Volume per Cycle (mL)	150								
Pump Rate (mL/min)	138								
Volume Purged (mL)	3,600								
Sample Date	06/06/24								
Sample Time	22:15								

Purge Volume Calculation: Total must exceed tubing volume (1,204 mL) plus drawdown volume (2,460 mL/foot) = 2,336 mL

Well No.	DM-3	Time	Water Level	Temp °C	рН	Cond (mS/cm)	Turbidity	ORP	DO
		(5 Min Int)	(ft btoc)	(3%)	(+/- 0.1)	(3%)	(NTUs) (10%)	(mV) (+/- 10)	(mg/L) (10%)
Casing Diameter (in.)	4.0	18:55	104.60	35.9	6.69	17.2	1.4	+118	5.80
Total Depth (ft btoc)	120	19:00	104.60	34.4	6.76	17.0	0.0	+121	5.44
Screen Interval (ft btoc)	100 - 120	19:05	104.60	34.3	6.78	17.0	0.3	+120	5.43
Depth to Water (ft btoc)	104.56	19:10	104.60	34.2	6.78	17.0	0.2	+120	5.42
Depth of Inlet (ft btoc)	115.00								
Discharge Time (sec)	28								
Fill Time (sec)	35								
Cycles per Minute	1.0								
Volume per Cycle (mL)	150								
Pump Rate (mL/min)	143								
Volume Purged (mL)	3,600								
Sample Date	06/06/24								
Sample Time	19:50								

Purge Volume Calculation: Total must exceed tubing volume (1,204 mL) plus drawdown volume (2,460 mL/foot) = 1,303 mL

APPENDIX B

LABORATORY ANALYTICAL RESULTS MONITORING WELLS AND EVAPORATION PONDS

25 June 2024

Arlin Brewster
Northstar Environmental Remediation
26225 Enterprise Court
Lake Forest, CA 92630

RE: Genesis Solar Groundwater

Enclosed are the results of analyses for samples received by the laboratory on 06/07/24 10:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeff Lee

Project Manager

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/25/24 12:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DM-1	T242360-01	Water	06/06/24 20:50	06/07/24 10:30
DM-2	T242360-02	Water	06/06/24 22:15	06/07/24 10:30
DM-3	T242360-03	Water	06/06/24 19:50	06/07/24 10:30
North Pond	T242360-04	Water	06/06/24 17:50	06/07/24 10:30
South Pond	T242360-05	Water	06/06/24 18:00	06/07/24 10:30

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 1 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

DETECTIONS SUMMARY

ample ID: DM-1	Labora	tory ID:	T242360-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	5.6	5.0	ug/l	200.8	FILT
Barium	25	5.0	ug/l	200.8	FILT
Calcium	230	50	mg/l	EPA 200.7	FIL
Selenium	7.2	5.0	ug/l	200.8	FIL
Magnesium	62	10	mg/l	EPA 200.7	FIL
Zinc	8.8	5.0	ug/l	200.8	FIL
Sodium	4200	50	mg/l	EPA 200.7	FIL
pН	8.0	0.10	pH Units	SM 4500-H+B	
Total Dissolved Solids	10000	10	mg/l	TDS by SM2540C	
Specific Conductance (EC)	18600	10.0	mho/cm @25°(SM2510b mod.	
pH Temperature °C	20		pH Units	SM 4500-H+B	
Chloride	5510	500	mg/l	EPA 300.0	
Sulfate as SO4	1920	500	mg/l	EPA 300.0	
Nitrate as NO3	7.81	0.500	mg/l	EPA 300.0	O-0
Nitrate as N	1.76	0.200	mg/l	EPA 300.0	O-0
ample ID: DM-2	Labora	tory ID:	T242360-02		
imple ID: DM-2	Labora	tory ID:	T242360-02		
Analyte	Labora Result	•	T242360-02 Units	Method	Note
•		Reporting		Method 200.8	
Analyte	Result	Reporting Limit	Units		FIL
Analyte Arsenic	Result 6.1	Reporting Limit 5.0	Units ug/l	200.8	FIL'
Analyte Arsenic Barium	Result 6.1 35	Reporting Limit 5.0 5.0	Units ug/l ug/l	200.8 200.8	FIL: FIL: FIL:
Analyte Arsenic Barium Calcium	Result 6.1 35 240	Reporting Limit 5.0 5.0 50	Units ug/l ug/l mg/l	200.8 200.8 EPA 200.7	FIL: FIL: FIL:
Analyte Arsenic Barium Calcium Selenium	Result 6.1 35 240 8.6	Reporting Limit 5.0 5.0 50 50 50	Units ug/l ug/l mg/l ug/l	200.8 200.8 EPA 200.7 200.8	FIL FIL FIL FIL
Analyte Arsenic Barium Calcium Selenium Magnesium	Result 6.1 35 240 8.6 64	Reporting Limit 5.0 5.0 5.0 50 10	Units ug/l ug/l mg/l ug/l ug/l	200.8 200.8 EPA 200.7 200.8 EPA 200.7	FILE FILE FILE FILE FILE FILE
Analyte Arsenic Barium Calcium Selenium Magnesium Zinc	Result 6.1 35 240 8.6 64 13	Reporting Limit 5.0 5.0 50 10 5.0	Units ug/l ug/l mg/l ug/l ug/l mg/l	200.8 200.8 EPA 200.7 200.8 EPA 200.7 200.8	FIL: FIL: FIL: FIL: FIL:
Analyte Arsenic Barium Calcium Selenium Magnesium Zinc Sodium	Result 6.1 35 240 8.6 64 13	Reporting Limit 5.0 5.0 50 50 5.0 10 5.0 5.0	Units ug/l ug/l mg/l ug/l mg/l mg/l mg/l ug/l	200.8 200.8 EPA 200.7 200.8 EPA 200.7 200.8 EPA 200.7	FIL: FIL: FIL: FIL: FIL:
Analyte Arsenic Barium Calcium Selenium Magnesium Zinc Sodium pH	Result 6.1 35 240 8.6 64 13 4100 7.9	Reporting Limit 5.0 5.0 50 50 50 5.0 10 5.0 50 0.10	Units ug/l ug/l mg/l ug/l mg/l ug/l ug/l pH Units	200.8 200.8 EPA 200.7 200.8 EPA 200.7 200.8 EPA 200.7 SM 4500-H+B	FIL: FIL: FIL: FIL: FIL:
Analyte Arsenic Barium Calcium Selenium Magnesium Zinc Sodium pH Total Dissolved Solids	Result 6.1 35 240 8.6 64 13 4100 7.9 10000	Reporting Limit 5.0 5.0 50 50 50 5.0 10 5.0 50 0.10	Units ug/l ug/l mg/l ug/l mg/l ug/l pH Units mg/l	200.8 200.8 EPA 200.7 200.8 EPA 200.7 200.8 EPA 200.7 SM 4500-H+B TDS by SM2540C	FILE FILE FILE FILE FILE FILE
Analyte Arsenic Barium Calcium Selenium Magnesium Zinc Sodium pH Total Dissolved Solids pH Temperature °C	Result 6.1 35 240 8.6 64 13 4100 7.9 10000	Reporting Limit 5.0 5.0 50 50 10 5.0 50 0.10	Units ug/l ug/l mg/l ug/l mg/l ug/l mg/l pH Units mg/l pH Units	200.8 200.8 EPA 200.7 200.8 EPA 200.7 200.8 EPA 200.7 SM 4500-H+B TDS by SM2540C SM 4500-H+B	Note: FILD FILD FILD FILD FILD

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 2 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/25/24 12:37

Sample ID: DM-2	Labora	tory ID:	T242360-02		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Nitrate as NO3	8.84	0.500	mg/l	EPA 300.0	O-07
Nitrate as N	2.00	0.200	mg/l	EPA 300.0	O-07
Sample ID: DM-3	Labora	tory ID:	T242360-03		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	17	5.0	ug/l	200.8	FILT
Barium	15	5.0	ug/l	200.8	FILT
Calcium	220	50	mg/l	EPA 200.7	FILT
Selenium	5.6	5.0	ug/l	200.8	FILT
Magnesium	59	10	mg/l	EPA 200.7	FILT
Zinc	6.2	5.0	ug/l	200.8	FILT
Sodium	4100	50	mg/l	EPA 200.7	FILT
Total Dissolved Solids	9900	10	mg/l	TDS by SM2540C	
pН	8.0	0.10	pH Units	SM 4500-H+B	
Specific Conductance (EC)	18200	10.0	mho/cm @25°(SM2510b mod.	
pH Temperature °C	20		pH Units	SM 4500-H+B	
Chloride	4650	2500	mg/l	EPA 300.0	
Sulfate as SO4	2060	250	mg/l	EPA 300.0	
Nitrate as NO3	3.01	0.500	mg/l	EPA 300.0	O-07
Nitrate as N	0.680	0.200	mg/l	EPA 300.0	O-07
Sample ID: North Pond	Labora	tory ID:	T242360-04		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	460	50	ug/l	200.8	FILT
Barium	140	50	ug/l	200.8	FILT
Calcium	410	50	mg/l	EPA 200.7	FILT
Selenium	66	50	ug/l	200.8	FILT
Magnesium	16	10	mg/l	EPA 200.7	FILT
Potassium	310	50	mg/l	EPA 200.7	FILT
Sodium	4500	500	mg/l	EPA 200.7	FILT
рН	8.7	0.10	pH Units	SM 4500-H+B	
Total Dissolved Solids	110000	10	mg/l	TDS by SM2540C	
Specific Conductance (EC)	147000	10.0	mho/cm @25°0	SM2510b mod.	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 3 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/25/24 12:37

Sample ID: North Pond	Labora	tory ID:	T242360-04		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
pH Temperature °C	20		pH Units	SM 4500-H+B	
Chloride	57700	5000	mg/l	EPA 300.0	
Sulfate as SO4	17000	5000	mg/l	EPA 300.0	
Nitrate as NO3	44.6	25.0	mg/l	EPA 300.0	
Nitrate as N	10.0	10.0	mg/l	EPA 300.0	
Sample ID: South Pond	Labora	tory ID:	T242360-05		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	540	50	ug/l	200.8	FILT
Barium	390	50	ug/l	200.8	FILT
Calcium	460	50	mg/l	EPA 200.7	FILT
Selenium	52	50	ug/l	200.8	FILT
Magnesium	30	10	mg/l	EPA 200.7	FILT
Potassium	340	50	mg/l	EPA 200.7	FILT
Sodium	4000	500	mg/l	EPA 200.7	FILT
pН	9.1	0.10	pH Units	SM 4500-H+B	
Total Dissolved Solids	110000	10	mg/l	TDS by SM2540C	
Specific Conductance (EC)	142000	10.0	mho/cm @25°0	SM2510b mod.	
pH Temperature °C	20		pH Units	SM 4500-H+B	
Chloride	53600	5000	mg/l	EPA 300.0	
Sulfate as SO4	11800	5000	mg/l	EPA 300.0	
Nitrate as NO3	44.7	25.0	mg/l	EPA 300.0	
Nitrate as N	10.0	10.0	mg/l	EPA 300.0	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 4 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

DM-1 T242360-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratori	es, Inc.					
Metals by EPA 200 Series Methods									
Calcium	230	50	mg/l	100	24F0096	06/07/24	06/13/24	EPA 200.7	FILT
Copper	ND	0.50	"	"	**	17	H	**	FILT, R-01
Iron	ND	20	"	"	**	**	11	**	FILT, R-01
Magnesium	62	10	**	"	"	"	"	"	FILT
Potassium	ND	50	"	"	17	17	II	"	FILT, R-01
Sodium	4200	50	"	"	"	"	R	"	FILT
Antimony	ND	5.0	ug/l	10	24F0114	06/07/24	06/13/24	200.8	FILT, R-01
Arsenic	5.6	5.0	"	"	**	**	11	**	FILT
Barium	25	5.0	**	11	***	17	"	TT TT	FILT
Cadmium	ND	5.0	"	**	"	"	"	**	FILT, R-01
Chromium	ND	5.0	**	**	**	**	"	tt.	FILT, R-01
Cobalt	ND	5.0	"	"	**	**	11	**	FILT, R-01
Lead	ND	5.0	**	"	"	"	"	"	FILT, R-01
Nickel	ND	5.0	**	"	"	"	"	"	FILT, R-01
Selenium	7.2	5.0	"	**	"	"	"	**	FILT
Zinc	8.8	5.0	**	"	"	"	n	"	FILT
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	1.0	ug/l	1	24F0064	06/07/24	06/11/24	EPA 7470A Water	FILT
Conventional Chemistry Parameters by AF	PHA/EPA/AST	M Methods							
Oil & Grease	ND	5.00	mg/l	1	24F0108	06/07/24	06/10/24	EPA 1664B	
Specific Conductance (EC)	18600	10.0	umho/cm @25°C	"	24F0145	06/11/24	06/12/24	SM2510b mod.	
рН	8.0	0.10	pH Units	"	24F0111	06/07/24	06/11/24	SM 4500-H+B	
pH Temperature °C	20		"	"	**	Ħ	11	n.	
Total Dissolved Solids	10000	10	mg/l	"	24F0143	06/11/24	06/14/24	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 5 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

DM-1 T242360-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	5510	500	mg/l	100	24F0110	06/07/24	06/10/24	EPA 300.0	
Sulfate as SO4	1920	500	"	**	**	**	"	**	
Nitrate as NO3	7.81	0.500	"	1	"	"	06/10/24	**	O-07
Nitrate as N	1.76	0.200	"	"	**	"	"	"	O-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 6 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

DM-2 T242360-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	aboratori	es, Inc.					
Metals by EPA 200 Series Methods									
Calcium	240	50	mg/l	100	24F0096	06/07/24	06/13/24	EPA 200.7	FILT
Copper	ND	0.50	"	"	"	"	"	"	FILT, R-01
Iron	ND	20	"	**	"	**	H	**	FILT, R-01
Magnesium	64	10	"	**	**	ti .	n	11	FILT
Potassium	ND	50	"	11	**	**	II.	11	FILT, R-01
Sodium	4100	50	"	"	"	**	H	**	FILT
Antimony	ND	5.0	ug/l	10	24F0114	06/07/24	06/13/24	200.8	FILT, R-01
Arsenic	6.1	5.0	"	"	"	"	H	**	FILT
Barium	35	5.0	"	"	"	**	H	**	FILT
Cadmium	ND	5.0	"	"	**	v	H	**	FILT, R-01
Chromium	ND	5.0	"	"	"	"	H	**	FILT, R-01
Cobalt	ND	5.0	"	**	"	**	"	**	FILT, R-01
Lead	ND	5.0	"	11	**	**	n.	**	FILT, R-01
Nickel	ND	5.0	"	"	17	TT TT	II	17	FILT, R-01
Selenium	8.6	5.0	"	"	"	"	"	11	FILT
Zinc	13	5.0	"	"	"	"	**	**	FILT
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	1.0	ug/l	1	24F0064	06/07/24	06/11/24	EPA 7470A Water	FILT
Conventional Chemistry Parameters by AF	PHA/EPA/AST	M Methods							
Oil & Grease	ND	5.00	mg/l	1	24F0108	06/07/24	06/10/24	EPA 1664B	
Specific Conductance (EC)	19000	10.0	umho/cm @25°C	11	24F0145	06/11/24	06/12/24	SM2510b mod.	
рН	7.9	0.10	pH Units	"	24F0111	06/07/24	06/11/24	SM 4500-H+B	
pH Temperature °C	20		"	"	17	"	II	n	
Total Dissolved Solids	10000	10	mg/l	"	24F0143	06/11/24	06/14/24	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 7 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

DM-2 T242360-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	4910	2500	mg/l	500	24F0110	06/07/24	06/10/24	EPA 300.0	
Sulfate as SO4	2110	250	"	50	**	**	06/07/24	**	
Nitrate as NO3	8.84	0.500	"	1	"	11	06/10/24	Ħ	O-07
Nitrate as N	2.00	0.200	"	"	Ħ	Ħ	"	**	O-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 8 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/25/24 12:37

DM-3 T242360-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratori	es, Inc.					
Metals by EPA 200 Series Methods									
Calcium	220	50	mg/l	100	24F0096	06/07/24	06/13/24	EPA 200.7	FILT
Copper	ND	0.50	**	"	**	**	"	"	FILT, R-01
Iron	ND	20	**	"	**	**	"	**	FILT, R-01
Magnesium	59	10	**	"	**	**	"	**	FILT
Potassium	ND	50	"	"	**	**	"	**	FILT, R-01
Sodium	4100	50	**	"	**	**	m .	**	FILT
Antimony	ND	5.0	ug/l	10	24F0114	06/07/24	06/13/24	200.8	FILT, R-01
Arsenic	17	5.0	"	"	**	**	"	"	FILT
Barium	15	5.0	**	"	**	**	m .	**	FILT
Cadmium	ND	5.0	**	"	**	**	"	**	FILT, R-01
Chromium	ND	5.0	"	"	**	n	II	**	FILT, R-01
Cobalt	ND	5.0	**	"	"	"	"	"	FILT, R-01
Lead	ND	5.0	**	"	**	**	"	"	FILT, R-01
Nickel	ND	5.0	**	"	**	**	"	"	FILT, R-01
Selenium	5.6	5.0	**	"	11	**	m .	ti .	FILT
Zinc	6.2	5.0	**	"	**	**	"	**	FILT
Cold Vapor Extraction EPA 7470/747	1								
Mercury	ND	1.0	ug/l	1	24F0064	06/07/24	06/11/24	EPA 7470A Water	FILT
Conventional Chemistry Parameters	by APHA/EPA/ASTM	Methods							
Oil & Grease	ND	5.00	mg/l	1	24F0108	06/07/24	06/10/24	EPA 1664B	
Specific Conductance (EC)	18200	10.0	umho/cm @25°C	"	24F0145	06/11/24	06/12/24	SM2510b mod.	
рН	8.0	0.10	pH Units	"	24F0111	06/07/24	06/11/24	SM 4500-H+B	
pH Temperature °C	20		"	"	17	**	III	"	
Total Dissolved Solids	9900	10	mg/l	11	24F0143	06/11/24	06/14/24	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 9 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

DM-3 T242360-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	4650	2500	mg/l	500	24F0110	06/07/24	06/10/24	EPA 300.0	
Sulfate as SO4	2060	250	"	50	**	**	06/07/24	n	
Nitrate as NO3	3.01	0.500	"	1	**	"	06/10/24	n	O-07
Nitrate as N	0.680	0.200	"	"	**	"	"	"	O-07

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 10 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/25/24 12:37

North Pond T242360-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	aboratori	es, Inc.					
Metals by EPA 200 Series Methods									
Calcium	410	50	mg/l	100	24F0096	06/07/24	06/13/24	EPA 200.7	FILT
Copper	ND	0.50	"	"	Ħ	**	11	**	FILT, R-01
Iron	ND	20	"	"	**	**	11	**	FILT, R-01
Magnesium	16	10	"	"	**	"	"	"	FILT
Potassium	310	50	"	"	"	"	"	"	FILT
Sodium	4500	500	"	1000	**	"	"	"	FILT
Antimony	ND	50	ug/l	100	24F0114	06/07/24	06/13/24	200.8	FILT, R-01
Arsenic	460	50	"	11	**	**	II.	11	FILT
Barium	140	50	"	"	**	"	"	**	FILT
Cadmium	ND	50	"	"	**	"	n n	"	FILT, R-01
Chromium	ND	50	"	**	**	"	H	**	FILT, R-01
Cobalt	ND	50	"	"	**	**	II.	11	FILT, R-01
Lead	ND	50	m .	"	**	**	H	**	FILT, R-01
Nickel	ND	50	"	"	**	"	"	**	FILT, R-01
Selenium	66	50	"	**	**	**	H	**	FILT
Zinc	ND	50	"	"	**	"	"	"	FILT, R-01
Cold Vapor Extraction EPA 7470/7471	Į								
Mercury	ND	1.0	ug/l	1	24F0064	06/07/24	06/11/24	EPA 7470A Water	FILT
Conventional Chemistry Parameters l	by APHA/EPA/ASTM	I Methods							
Oil & Grease	ND	5.00	mg/l	1	24F0108	06/07/24	06/10/24	EPA 1664B	
Specific Conductance (EC)	147000	10.0	umho/cm @25°C	11	24F0145	06/11/24	06/12/24	SM2510b mod.	
рН	8.7	0.10	pH Units	"	24F0111	06/07/24	06/11/24	SM 4500-H+B	
pH Temperature °C	20		"	"	11	11	11	"	
Total Dissolved Solids	110000	10	mg/l	"	24F0143	06/11/24	06/14/24	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 11 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

North Pond T242360-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	57700	5000	mg/l	1000	24F0110	06/07/24	06/11/24	EPA 300.0	
Sulfate as SO4	17000	5000	**	"	**	"	"	"	
Nitrate as NO3	44.6	25.0	"	50	"	"	06/07/24	n	
Nitrate as N	10.0	10.0	"	"	**	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 12 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

South Pond T242360-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorio	es, Inc.					
Metals by EPA 200 Series Methods									
Calcium	460	50	mg/l	100	24F0096	06/07/24	06/13/24	EPA 200.7	FILT
Copper	ND	0.50	"	"	**	"	n	**	FILT, R-01
Iron	ND	20	"	**	**	"	H	**	FILT, R-01
Magnesium	30	10	"	**	**	**	n	**	FILT
Potassium	340	50	"	"	**	17	H.	**	FILT
Sodium	4000	500	"	1000	**	"	H	**	FILT
Antimony	ND	50	ug/l	100	24F0114	06/07/24	06/13/24	200.8	FILT, R-01
Arsenic	540	50	"	"	**	17	H	**	FILT
Barium	390	50	"	**	**	"	H	**	FILT
Cadmium	ND	50	"	"	**	"	H	**	FILT, R-01
Chromium	ND	50	"	"	**	17	H	**	FILT, R-01
Cobalt	ND	50	"	"	**	17	H	**	FILT, R-01
Lead	ND	50	**	"	**	"	"	**	FILT, R-01
Nickel	ND	50	"	"	**	"	H	**	FILT, R-01
Selenium	52	50	**	"	n	**	n	**	FILT
Zinc	ND	50	"	"	**	"	"	"	FILT, R-01
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	1.0	ug/l	1	24F0064	06/07/24	06/11/24	EPA 7470A Water	FILT
Conventional Chemistry Parameters by AF	PHA/EPA/AST	M Methods							
Oil & Grease	ND	4.47	mg/l	1	24F0108	06/07/24	06/10/24	EPA 1664B	
Specific Conductance (EC)	142000	10.0	umho/cm @25°C	11	24F0145	06/11/24	06/12/24	SM2510b mod.	
рН	9.1	0.10	pH Units	"	24F0111	06/07/24	06/11/24	SM 4500-H+B	
pH Temperature °C	20		"	"	"	"	"	"	
Total Dissolved Solids	110000	10	mg/l	"	24F0143	06/11/24	06/14/24	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 13 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

South Pond T242360-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	borator	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	53600	5000	mg/l	1000	24F0110	06/07/24	06/11/24	EPA 300.0	
Sulfate as SO4	11800	5000	n	**	**	tt	"	**	
Nitrate as NO3	44.7	25.0	"	50	"	"	06/07/24	***	
Nitrate as N	10.0	10.0	**	**	Ħ	**	11	**	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 14 of 21

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Northstar Environmental Remediation Project: Genesis Solar Groundwater

Result

1.64

0.030

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

Reporting

Limit

Metals by EPA 200 Series Methods - Quality Control

SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

						, , , , ,				
Batch 24F0096 - EPA 3010A										
Blank (24F0096-BLK1)				Prepared: (06/06/24 Aı	nalyzed: 06	5/13/24			
Cadmium	ND	0.005	mg/l							
Chromium	ND	0.005	"							
Copper	ND	0.005	"							
Lead	ND	0.005	"							
Nickel	ND	0.005	"							
Silver	ND	0.030								
Zinc	ND	0.030	"							
LCS (24F0096-BS1)				Prepared: (06/06/24 Aı	nalyzed: 06	5/13/24			
Cadmium	1.48	0.005	mg/l	1.50		98.6	85-115			
Chromium	1.47	0.005		1.50		97.7	85-115			
Copper	1.49	0.005		1.50		99.3	85-115			
Lead	1.50	0.005	"	1.50		99.7	85-115			
Nickel	1.47	0.005	"	1.50		98.0	85-115			
Zinc	1.48	0.030	"	1.50		98.7	85-115			
Matrix Spike (24F0096-MS1)	Sourc	e: T242330-	06	Prepared: (06/06/24 Aı	nalyzed: 06	5/13/24			
Cadmium	1.55	0.005	mg/l	1.50	0.076	98.5	70-130			
Chromium	1.50	0.005	n	1.50	ND	99.9	70-130			
Copper	1.55	0.005	11	1.50	0.018	102	70-130			
Lead	1.49	0.005	11	1.50	0.002	99.5	70-130			
Nickel	1.48	0.005	m	1.50	0.001	98.6	70-130			
Zinc	1.61	0.030	"	1.50	0.017	106	70-130			
Matrix Spike Dup (24F0096-MSD1)	Sourc	e: T242330-	06	Prepared: (06/06/24 Aı	nalyzed: 06	5/13/24			
Cadmium	1.58	0.005	mg/l	1.50	0.076	99.9	70-130	1.37	30	
Chromium	1.52	0.005		1.50	ND	101	70-130	1.16	30	
Copper	1.57	0.005		1.50	0.018	104	70-130	1.86	30	
Lead	1.51	0.005	n	1.50	0.002	101	70-130	1.20	30	
Nickel	1.51	0.005	11	1.50	0.001	100	70-130	1.71	30	

SunStar Laboratories, Inc.

Zinc

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

108

70-130

1.54

30

Jeff Lee, Project Manager Page 15 of 21

1.50

0.017

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/25/24 12:37

Metals by EPA 200 Series Methods - Quality Control

SunStar Laboratories, Inc.

	_	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 24F0114 - EPA 3010A										
Blank (24F0114-BLK1)				Prepared: (06/07/24 Aı	nalyzed: 06	/13/24			
Antimony	ND	0.50	ug/l							
Arsenic	ND	0.50	"							
Barium	ND	0.50	11							
Cadmium	ND	0.50	"							
Chromium	ND	0.50	11							
Cobalt	ND	0.50	"							
Lead	ND	0.50	11							
Nickel	ND	0.50	**							
Selenium	ND	0.50	11							
Zinc	ND	0.50	11							
LCS (24F0114-BS1)				Prepared: (06/07/24 Aı	nalyzed: 06	/13/24			
Arsenic	26.1	0.50	ug/l	25.0		104	85-115			
Barium	25.0	0.50	"	25.0		100	85-115			
Cadmium	25.2	0.50	11	25.0		101	85-115			
Chromium	23.6	0.50	11	25.0		94.6	85-115			
Lead	25.0	0.50	11	25.0		99.8	85-115			
Matrix Spike (24F0114-MS1)	Sou	Source: T242356-01		Prepared: (06/07/24 Aı	nalyzed: 06	/13/24			
Arsenic	28.7	5.0	ug/l	25.0	1.70	108	70-130			
Barium	40.6	5.0	11	25.0	16.2	97.6	70-130			
Cadmium	24.0	5.0	11	25.0	0.400	94.4	70-130			
Chromium	24.0	5.0	11	25.0	0.300	94.8	70-130			
Lead	25.8	5.0	11	25.0	0.500	101	70-130			
Matrix Spike Dup (24F0114-MSD1)	Sou	rce: T242356-	01	Prepared: (06/07/24 Aı	nalyzed: 06	/13/24			
Arsenic	27.2	5.0	ug/l	25.0	1.70	102	70-130	5.37	20	
Barium	38.9	5.0	"	25.0	16.2	90.8	70-130	4.28	20	
Cadmium	23.8	5.0	11	25.0	0.400	93.6	70-130	0.837	20	
Chromium	23.3	5.0	11	25.0	0.300	92.0	70-130	2.96	20	
Lead	24.6	5.0	11	25.0	0.500	96.4	70-130	4.76	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 16 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 24F0064 - EPA 7470A Water										
Blank (24F0064-BLK1)				Prepared: (06/05/24 A	nalyzed: 06	/11/24			
Mercury	ND	1.0	ug/l							
LCS (24F0064-BS1)				Prepared: (06/05/24 A	nalyzed: 06	/11/24			
Mercury	6.93	1.0	ug/l	7.50		92.4	80-120			
Matrix Spike (24F0064-MS1)	Sour	ce: T242306-)2	Prepared: (nalyzed: 06					
Mercury	6.56	1.0	ug/l	7.50	ND	87.4	80-120			
Matrix Spike Dup (24F0064-MSD1)	Sour	ce: T242306-)2	Prepared: (06/05/24 A	nalyzed: 06	/11/24			
Mercury	6.63	1.0	ug/l	7.50	ND	88.4	80-120	1.06	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 17 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Prepared: 0	6/07/24 Aı	nalyzed: 06	/10/24			
ND	5.00	mg/l							
			Prepared: 0	6/07/24 Aı	nalyzed: 06	/10/24			
51.8	5.00	mg/l	53.1		97.6	78-114			
			Prepared: 0	6/07/24 Aı	nalyzed: 06	/10/24			
48.0	5.00	mg/l	53.1		90.4	78-114	7.62	20	
Sou	rce: T242356	-01	Prepared: 0	6/07/24 Aı	nalyzed: 06	/11/24			
Sou 8.46	7.10 0.10	pH Units	Prepared: 0	6/07/24 A ₁ 8.47	nalyzed: 06	/11/24	0.118	10	
			Prepared: 0		nalyzed: 06	/11/24	0.118 2.49	10 200	
8.46		pH Units	Prepared: 0	8.47	nalyzed: 06	/11/24			
8.46		pH Units	Prepared: 0 Prepared: 0	8.47 19.8					
8.46		pH Units	•	8.47 19.8					
8.46 20.3	0.10	pH Units	•	8.47 19.8 6/11/24 Ar	nalyzed: 06	/14/24			
8.46 20.3	0.10	pH Units	Prepared: 0	8.47 19.8 6/11/24 Ar	nalyzed: 06	/14/24			
8.46 20.3 ND	0.10	pH Units " mg/l mg/l	Prepared: 0	8.47 19.8 6/11/24 Ar 6/11/24 Ar	nalyzed: 06 nalyzed: 06 108	/14/24 /14/24 80-120			
	ND 51.8	Result Limit ND 5.00 51.8 5.00	Result Limit Units ND 5.00 mg/l 51.8 5.00 mg/l	Result Limit Units Level ND 5.00 mg/l Frepared: 0 51.8 5.00 mg/l 53.1 Prepared: 0 Prepared: 0	Prepared: 06/07/24 Ar Prepared: 06/07/24 Ar Prepared: 06/07/24 Ar Prepared: 06/07/24 Ar	Prepared: 06/07/24 Analyzed: 06 ND 5.00 mg/l Prepared: 06/07/24 Analyzed: 06 51.8 5.00 mg/l 53.1 97.6 Prepared: 06/07/24 Analyzed: 06 Prepared: 06/07/24 Analyzed: 06 Prepared: 06/07/24 Analyzed: 06 Prepared: 06/07/24 Analyzed: 06 Prepared: 06/07/24 P	Result Limit Units Level Result %REC Limits ND 5.00 mg/l Prepared: 06/07/24 Analyzed: 06/10/24 51.8 5.00 mg/l 53.1 97.6 78-114 Prepared: 06/07/24 Analyzed: 06/10/24 Prepared: 06/07/24 Analyzed: 06/10/24	Result Limit Units Level Result %REC Limits RPD Prepared: 06/07/24 Analyzed: 06/10/24 ND 5.00 mg/l Prepared: 06/07/24 Analyzed: 06/10/24 51.8 5.00 mg/l 53.1 97.6 78-114 Prepared: 06/07/24 Analyzed: 06/10/24	Result Limit Units Level Result %REC Limits RPD Limit Prepared: 06/07/24 Analyzed: 06/10/24 ND 5.00 mg/l Prepared: 06/07/24 Analyzed: 06/10/24 51.8 5.00 mg/l 53.1 97.6 78-114 Prepared: 06/07/24 Analyzed: 06/10/24

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 18 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/25/24 12:37

Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 24F0145 - General Preparation

Duplicate (24F0145-DUP1)	Source:	T242356-01	Prepared: 06/11/24 Analyzed: 06/12/24		
Specific Conductance (EC)	2740	10.0 umho/ @25°		0.00	15

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 19 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/25/24 12:37

Anions by EPA Method 300.0 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 24F0110 - General Preparation										
Blank (24F0110-BLK1)				Prepared &	z Analyzed:	06/07/24				
Chloride	ND	5.00	mg/l							
Sulfate as SO4	ND	5.00	"							
Nitrate as NO3	ND	0.500	"							
Nitrate as N	ND	0.200	"							
LCS (24F0110-BS1)				Prepared &	z Analyzed:	06/07/24				
Chloride	23.2	5.00	mg/l	25.0		92.6	75-125			
Sulfate as SO4	23.1	5.00	"	25.0		92.5	75-125			
Nitrate as NO3	23.3	0.500	"	25.0		93.1	75-125			
Matrix Spike (24F0110-MS1)	Source	e: T242356-	01	Prepared &	. Analyzed:	06/07/24				
Chloride	418	250	mg/l	25.0	407	40.8	75-125			QM-0:
Sulfate as SO4	383	250	"	25.0	372	45.0	75-125			QM-0:
Nitrate as NO3	23.3	0.500	11	25.0	0.888	89.7	75-125			
Matrix Spike (24F0110-MS2)	Source	e: T242360-	01	Prepared: (06/07/24 A	nalyzed: 06	5/11/24			
Chloride	5120	500	mg/l	25.0	5510	NR	75-125			QM-0:
Sulfate as SO4	1830	500	11	25.0	1920	NR	75-125			QM-03
Nitrate as NO3	33.7	0.500	11	25.0	7.81	103	75-125			
Matrix Spike Dup (24F0110-MSD1)	Source	e: T242356-	01	Prepared &	. Analyzed:	06/07/24				
Chloride	420	250	mg/l	25.0	407	50.2	75-125	0.561	20	QM-0:
Sulfate as SO4	386	250		25.0	372	56.4	75-125	0.741	20	QM-0:
Nitrate as NO3	23.6	0.500	"	25.0	0.888	90.9	75-125	1.31	20	
Matrix Spike Dup (24F0110-MSD2)	Source	e: T242360-	01	Prepared: (06/07/24 A	nalyzed: 06	5/11/24			
Chloride	5050	500	mg/l	25.0	5510	NR	75-125	1.43	20	QM-0:
Sulfate as SO4	1790	500	n	25.0	1920	NR	75-125	2.21	20	QM-0:
Nitrate as NO3	33.7	0.500	II .	25.0	7.81	104	75-125	0.0979	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 20 of 21

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/25/24 12:37

Notes and Definitions

R-01 The Reporting Limit has been raised to account for dilution necessary due to matrix interference.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

O-07 The sample was analyzed outside the EPA recommended holding time of 48 hours.

FILT The sample was filtered prior to analysis.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 21 of 21

Chain of Custody Record

boratories, Inc.

Imercentre Dr t, CA 92630 120

star Environmental Remediation

225 Enterprise Court, Lake Forest, CA 92630

274-1719

ager: Arlin Brewster

Date:

Page: 1 of 1

Project Name: Genesis Solar Groundwater

EDF #: T1000006093

Client Project #: 196-004-06 Collector: Arlin Brewster
Ratch #: T242360

	2						 		}	†]]		
nple ID	Date Sampled	Time	Sample Type	Container	200.7 - Dissolved Metals: Ca, Cu, Na, K, Fe, Mg (FIELD FILTERED)	200.8 - Dissolved Metals: Sb, As, Ba, Cd, Ct, Co, Pb, Ni, Se, Zn (F.F.)	300.0 - Chloride, Nitrate, Sulfate	۲۹۲۵۸ - Mercury	Hd - 0+06	SM2510B - Conductivity, Specific	SM2540C - Total Dis. Solids	Martine Organical (Subcontract)	Deuterium, Oxygen-18(Subcont.)	Laboratory ID #	Comment	Comments/Preservativ
JM-1	pc/9/91	2050	Μ	Various		×	+	-	 	×	₩	ــــ	-			
M-2	Je/9/9	2215	M	Various	×	 	⊢	-	祌	×	—	⊢				
M-3	ht/9/9	1950	M	Various	×	H		-	╌	×	├	⊢-				V.
h Pond	he/9/01	1,50	Μ	Various	×	×	×	-	×	×	<u> </u>	×				
h Pond	PE/9/01	1800	Μ	Various	×	×	×	┝	×	×	×	×				
													4			
							_	_	L			-				
					-							_				
							-	_				H				
												_				
												3.7				
								- 			-	-				
by: (signature)	Date / Tir	Filme 1030	Received by	Received by: (signature)	0/4/2	Date / Time	me (0.20)		<u> </u>	T To	tal #	of co	Total # of containers	28	** Deuter	Notes ** Deuterium & Oxva
by: (signature)	Date / Time	me	Received by	by: (signature)	- / / /	Date / Time) e			Sei	als int	act?	Seals intact? Y/N/NA		subcontra	subcontract has 10 da
									Recei	ved g	ood c	ondit	Received good condition/cold	[. [<u> </u>	limite milet
ɔy: (signature)	Date / Time	ше	Received by	Received by: (signature)		Date / Time	Ле		rn ar	punc	time	Sta	Turn around time: Standard *	**	prey prey	Reporting innits intest previous reports
I Instructions: Dis	Disposal @ \$2.00 each	ach	Return to client	o client	Pickup	g.		7						-		

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #: T242366	
Client Name: Northster Environmental	Project: Genesi's Solar Groundwater
Delivered by: Sclient SunStar Couries	r 🗌 GLS 🔲 FedEx 🔲 Other
If Courier, Received by:	Date/Time Courier Received:
Lab Received by:	Date/Time Lab Received: 6/7/24 1030
Total number of coolers received: \ Thermometer ID:	SC-1 Calibration due: 11/17/2024
Temperature: Cooler #1 $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	= \.\ °C corrected temperature
Temperature: Cooler #2 °C +/- the CF (+ 0.1°C)	= °C corrected temperature
Temperature: Cooler #3 °C +/- the CF (+ 0.1°C)	= °C corrected temperature
Temperature criteria = $\leq 6^{\circ}$ C Within cr (no frozen containers)	iteria? \ \ Yes \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
If NO:	□No→
Samples received on ice? ☐Yes	Complete Non-Conformance Sheet
If on ice, samples received same day ☐Yes → collected?	Acceptable
Custody seals intact on cooler/sample	□Yes □No* ⊠Ñ/A
Sample containers intact	
Sample labels match Chain of Custody IDs	⊠Yes □No* ,
Total number of containers received match COC	⊠Yes □No*
Proper containers received for analyses requested on COC	✓Yes □No*
Proper preservative indicated on COC/containers for analyses	s requested Yes \(\sum No* \sum N/A
Complete shipment received in good condition with correct to containers, labels, volumes preservatives and within method holding times	
* Complete Non-Conformance Receiving Sheet if checked Co	oler/Sample Review - Initials and date: 88 6/7/24
Comments:	
등에는 생각되었다. 한다고 한다고 한다고 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 	
. 보통 (1971) - 보통 보통 보통 보통 보통 경기 등이 보통하는 경기 등이 되었다. 그 보통 기계 등이 보통 기계 등이 되었다. 그	

131415

ANALYTICAL REPORT

PREPARED FOR

Attn: Jeff Lee SunStar Laboratories Inc 25712 Commercentre Drive Lake Forest, California 92630

Generated 6/20/2024 8:49:04 AM

JOB DESCRIPTION

T242630

JOB NUMBER

570-187549-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 6/20/2024 8:49:04 AM

Authorized for release by Sandy Tat, Project Manager I Sandy.Tat@et.eurofinsus.com (714)895-5494

7

14

3

5

6

Client: SunStar Laboratories Inc Project/Site: T242630 Laboratory Job ID: 570-187549-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

_

1

5

6

8

9

11

12

1/

Definitions/Glossary

Client: SunStar Laboratories Inc Job ID: 570-187549-1

Project/Site: T242630

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit

PRES Presumptive

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: SunStar Laboratories Inc

Project: T242630

Job ID: 570-187549-1 Eurofins Calscience

Job Narrative 570-187549-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/10/2024 1:40 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C.

Diesel Range Organics

Method 8015B_DRO: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 570-450249. The laboratory control sample (LCS) was performed in duplicate (LCSD) to provide precision data for this batch.

Method: 8015B_DRO

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 570-187549-1

3

6

7

10

Detection Summary

Client: SunStar Laboratories Inc Project/Site: T242630	Job ID: 570-187549-1					
Client Sample ID: T242360-01	Lab Sample ID: 570-187549-1					
No Detections.						
Client Sample ID: T242360-02	Lab Sample ID: 570-187549-2					
No Detections.						
Client Sample ID: T242360-03	Lab Sample ID: 570-187549-3					
No Detections.						
Client Sample ID: T242360-04	Lab Sample ID: 570-187549-4					
No Detections.						
Client Sample ID: T242360-05	Lab Sample ID: 570-187549-5					
No Detections.						

Client Sample Results

Client: SunStar Laboratories Inc Job ID: 570-187549-1

Project/Site: T242630

Method: SW846 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: T242360-01						Lah Sami	ple ID: 570-18	7549-1
Date Collected: 06/06/24 20:50						Lab Gain	•	: Water
Date Received: 06/10/24 13:40							Matrix	. water
Analyte	Pocult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	Qualifier	100	ug/L	_ =	06/12/24 13:53	06/13/24 17:42	DII Fac
•				•				1
1,1'-Biphenyl	ND		100	ug/L		06/12/24 13:53	06/13/24 17:42	ı
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr) -	64		53 - 151			06/12/24 13:53	06/13/24 17:42	1
Client Sample ID: T242360-02						Lab Sam	ple ID: 570-18	7549-2
Date Collected: 06/06/24 22:15								: Water
Date Received: 06/10/24 13:40								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND		90	ug/L		06/12/24 13:53	06/13/24 18:06	1
1,1'-Biphenyl	ND		90	ug/L		06/12/24 13:53	06/13/24 18:06	1
				Ŭ				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	67		53 - 151			06/12/24 13:53	06/13/24 18:06	1
Client Sample ID: T242360-03						Lab Sami	ple ID: 570-18	7549-3
Date Collected: 06/06/24 19:50							Matrix	
Date Received: 06/10/24 13:40							Matrix	· Water
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	<u>Qualifier</u>	100	Ug/L	_ =	06/12/24 13:53	06/13/24 18:31	1
1,1'-Biphenyl	ND		100	ug/L			06/13/24 18:31	1
1, 1 -Diphenyi	ND		100	ug/L		00/12/24 13.33	00/13/24 10.51	'
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	68		53 - 151			06/12/24 13:53	06/13/24 18:31	1
Client Sample ID: T242360-04						Lab Sam	ple ID: 570-18	7549-4
Date Collected: 06/06/24 17:50								: Water
Date Received: 06/10/24 13:40								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	-	88	ug/L		06/12/24 13:53	06/13/24 18:55	1
1,1'-Biphenyl	ND		88	ug/L		06/12/24 13:53	06/13/24 18:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	58		53 - 151			•	06/13/24 18:55	1
Client Sample ID: T242360-05						Lah Sami	ple ID: 570-18	7540 5
Date Collected: 06/06/24 18:00						Lau Jaiii		
							watrix	: Water
Date Received: 06/10/24 13:40	Daniel	Ouglifica	DI.	11:4	_	Dronger	Analyses	Dil C
Analyte		Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND		92	ug/L		06/12/24 13:53	06/13/24 19:19	1
1,1'-Biphenyl	ND		92	ug/L		06/12/24 13:53	06/13/24 19:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	58		53 - 151			06/12/24 13:53	00/40/04 40:40	1

2

Surrogate Summary

Client: SunStar Laboratories Inc Job ID: 570-187549-1

Project/Site: T242630

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(53-151)	
570-187549-1	T242360-01	64	
570-187549-2	T242360-02	67	
570-187549-3	T242360-03	68	
570-187549-4	T242360-04	58	
570-187549-5	T242360-05	58	
LCS 570-450249/2-A	Lab Control Sample	88	
LCSD 570-450249/3-A	Lab Control Sample Dup	67	
MB 570-450249/1-A	Method Blank	63	
Surrogate Legend			

2

3

12

14

QC Sample Results

Client: SunStar Laboratories Inc Job ID: 570-187549-1

Project/Site: T242630

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-450249/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Ratch: 450621	Pren Batch: 450249

-	MB MB						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND ND	100	ug/L		06/12/24 13:52	06/13/24 13:38	1
1,1'-Biphenyl	ND	100	ug/L		06/12/24 13:52	06/13/24 13:38	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	63		53 - 151	06/12/24 13:52	06/13/24 13:38	1

Lab Sample ID: LCS 570-45 Matrix: Water Analysis Batch: 452056	50249/2-A				Clie	nt Sai	mple ID	: Lab Control Samp Prep Type: Total/N Prep Batch: 4502	IA
•		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene, 1,1'-oxybis-		1000	792.7		ug/L		79	57 - 120	
1,1'-Biphenyl		1000	774.6		ug/L		77	45 - 120	
	LCS LCS								
Surrogate	%Recovery Qualifier	l imits							

Lab Sample ID: LCSD 570-450249/3-A			(Client Sa	mple	ID: Lab	Control	Sample	Dup
Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 450621							Prep Ba	tch: 45	50249
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene, 1,1'-oxybis-	1000	695.9		ug/L		70	57 - 120	13	20
1,1'-Biphenyl	1000	675.3		ug/L		68	45 - 120	14	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
n-Octacosane (Surr)	67		53 - 151

88

n-Octacosane (Surr)

6/20/2024

QC Association Summary

Client: SunStar Laboratories Inc Job ID: 570-187549-1

Project/Site: T242630

GC Semi VOA

Prep Batch: 450249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-187549-1	T242360-01	Total/NA	Water	3510C	<u> </u>
570-187549-2	T242360-02	Total/NA	Water	3510C	
570-187549-3	T242360-03	Total/NA	Water	3510C	
570-187549-4	T242360-04	Total/NA	Water	3510C	
570-187549-5	T242360-05	Total/NA	Water	3510C	
MB 570-450249/1-A	Method Blank	Total/NA	Water	3510C	
LCS 570-450249/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 570-450249/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 450621

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-187549-1	T242360-01	Total/NA	Water	8015B	450249
570-187549-2	T242360-02	Total/NA	Water	8015B	450249
570-187549-3	T242360-03	Total/NA	Water	8015B	450249
570-187549-4	T242360-04	Total/NA	Water	8015B	450249
570-187549-5	T242360-05	Total/NA	Water	8015B	450249
MB 570-450249/1-A	Method Blank	Total/NA	Water	8015B	450249
LCSD 570-450249/3-A	Lab Control Sample Dup	Total/NA	Water	8015B	450249

Analysis Batch: 452056

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 570-450249/2-A	Lab Control Sample	Total/NA	Water	8015B	450249

2

3

7

0

10

Ш

13

14

Lab Chronicle

Client: SunStar Laboratories Inc Job ID: 570-187549-1

Project/Site: T242630

Client Sample ID: T242360-01 Lab Sample ID: 570-187549-1

Date Collected: 06/06/24 20:50 **Matrix: Water** Date Received: 06/10/24 13:40

Batch Batch Dil Initial Final Batch **Prepared** Method Number or Analyzed **Prep Type** Type Run **Factor** Amount **Amount** Analyst Total/NA 3510C 245.5 mL 450249 06/12/24 13:53 H6FE EET CAL 4 Prep 2.5 mL Total/NA 8015B 450621 06/13/24 17:42 SP9M **EET CAL 4** Analysis 1 mL 1 mL Instrument ID: GC70B

Client Sample ID: T242360-02

Lab Sample ID: 570-187549-2 Date Collected: 06/06/24 22:15 **Matrix: Water**

Date Received: 06/10/24 13:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			278.5 mL	2.5 mL	450249	06/12/24 13:53	H6FE	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	450621	06/13/24 18:06	SP9M	EET CAL 4
	Instrumer	nt ID: GC70B								

Lab Sample ID: 570-187549-3 Client Sample ID: T242360-03 **Matrix: Water**

Date Collected: 06/06/24 19:50

Date Received: 06/10/24 13:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			248.1 mL	2.5 mL	450249	06/12/24 13:53	H6FE	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	450621	06/13/24 18:31	SP9M	EET CAL 4
	Instrumer	nt ID: GC70B								

Client Sample ID: T242360-04 Lab Sample ID: 570-187549-4 **Matrix: Water**

Date Collected: 06/06/24 17:50 Date Received: 06/10/24 13:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			284.5 mL	2.5 mL	450249	06/12/24 13:53	H6FE	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	450621	06/13/24 18:55	SP9M	EET CAL 4
	Instrumer	nt ID: GC70B								

Lab Sample ID: 570-187549-5 Client Sample ID: T242360-05 Date Collected: 06/06/24 18:00 **Matrix: Water**

Date Received: 06/10/24 13:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			272.8 mL	2.5 mL	450249	06/12/24 13:53	H6FE	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	450621	06/13/24 19:19	SP9M	EET CAL 4
	Instrumer	nt ID: GC70B								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Eurofins Calscience

3

2

Accreditation/Certification Summary

Client: SunStar Laboratories Inc Job ID: 570-187549-1

Project/Site: T242630

Laboratory: Eurofins Calscience

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Oregon	NELAP	4175	02-02-25	

1

2

3

4

5

7

8

10

11

40

14

Method Summary

Client: SunStar Laboratories Inc

Project/Site: T242630

 Method
 Method Description
 Protocol
 Laboratory

 8015B
 Diesel Range Organics (DRO) (GC)
 SW846
 EET CAL 4

 3510C
 Liquid-Liquid Extraction (Separatory Funnel)
 SW846
 EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

1

2

Job ID: 570-187549-1

3

4

5

6

9

10

40

13

14

Sample Summary

Client: SunStar Laboratories Inc

Project/Site: T242630

Job ID: 570-187549-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
570-187549-1	T242360-01	Water	06/06/24 20:50	06/10/24 13:40	
570-187549-2	T242360-02	Water	06/06/24 22:15	06/10/24 13:40	
570-187549-3	T242360-03	Water	06/06/24 19:50	06/10/24 13:40	
570-187549-4	T242360-04	Water	06/06/24 17:50	06/10/24 13:40	-
570-187549-5	T242360-05	Water	06/06/24 18:00	06/10/24 13:40	

3

2

4

5

6

8

9

. .

-

13

14

SUBCONTRACT ORDER

Loc 570 187549

SunStar Laboratories, Inc.

T242360

SENDING LABORATORY:

SunStar Laboratories, Inc. 25712 Commercentre Drive Lake Forest, CA 92630 Phone: (949) 297-5020

Fax: (949) 297-5027
Project Manager Jeff Lee

RECEIVING LABORATORY:

Eurofins Calscience (Tustin) 2841 Dow Ave, Suite 100 Tustin, CA 92780 Phone :(949) 261-1022

Fax: N/A

570-18	7549	Chain	of	Custody	1

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: T242360-01	Water	Sampled:06/06/24 20:50	1	
Misc Water Testing #1 Containers Supplied.	06/14/24 15 0	12/03/24 20 50		8015M- Therminol
Sample ID: T242360-02	Water	Sampled:06/06/24 22:15	2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
Misc Water Testing #1 Containers Supplied.	06/14/24 15 0	12/03/24 22 15		8015M- Therminol
Sample ID: T242360-03	Water	Sampled:06/06/24 19:50	7	
Misc Water Testing #1 Containers Supplied.	06/14/24 15 0	12/03/24 19 50		8015M- Therminol
Sample ID: T242360-04	Water	Sampled:06/06/24 17:50	4	
Misc Water Testing #1 Containers Supplied.	06/14/24 15 0	12/03/24 17 50		8015M- Therminol
Sample ID: T242360-05	Water	Sampled:06/06/24 18:00	5	
Misc Water Testing #1 Containers Supplied.	06/14/24 15 0	12/03/24 18 00		8015M- Therminol

Released By

6-10-24

13:40 lel

6/10/24 13:40

Released By

Date

Received By

Date

Login Sample Receipt Checklist

Client: SunStar Laboratories Inc Job Number: 570-187549-1

Login Number: 187549 List Source: Eurofins Calscience

List Number: 1

Creator: Vitente, Precy

Creator. Vitente, Precy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

I

4

5

8

10

12

13

14

www.isotechlabs.com

Sample Name: T242360-01 **Co. Lab#:** T242360-01

Company: SunStar Laboratories, Inc

Container: Amber Bottle
Field/Site Name: T242360
Sampling Point: DM-1

δD of water	-70.1‰ relative to VSMOW
δ^{18} O of water	-8.63‰ relative to VSMOW
Tritium content of water	na
$\delta^{13}\text{C}$ of DIC	na
¹⁴ C content of DIC	na
δ^{15} N of nitrate	na
$\delta^{18}\text{O}$ of nitrate	na
δ^{34} of sulfate	na
δ^{18} O of sulfate	na
Vacuum Distilled? *	No

Remarks:

www.isotechlabs.com

Lab #: 925901 **Job** #: 58892 **CoreTrac**: IS-101168 **Co. Job**#: T242360

Sample Name: T242360-02 **Co. Lab#:** T242360-02

Company: SunStar Laboratories, Inc

Container: Amber Bottle
Field/Site Name: T242360
Sampling Point: DM-2

δD of water	-69.6‰ relative to VSMOW
δ^{18} O of water	-8.49‰ relative to VSMOW
Tritium content of water	na
$\delta^{13}\text{C}$ of DIC	na
¹⁴ C content of DIC	na
δ^{15} N of nitrate	na
$\delta^{18}\text{O}$ of nitrate	na
δ^{34} of sulfate	na
δ^{18} O of sulfate	na
Vacuum Distilled? *	No

Remarks:

www.isotechlabs.com

 Lab #: 925902
 Job #: 58892
 CoreTrac: IS-101168
 Co. Job#: T242360

Sample Name: T242360-03 **Co. Lab#:** T242360-03

Company: SunStar Laboratories, Inc

Container: Amber Bottle
Field/Site Name: T242360
Sampling Point: DM-3

δD of water	-70.4‰ relative to VSMOW
δ^{18} O of water	-8.67‰ relative to VSMOW
Tritium content of water	na
$\delta^{13}\text{C}$ of DIC	na
¹⁴ C content of DIC	na
$\delta^{15} N$ of nitrate	na
$\delta^{18}\text{O}$ of nitrate	na
δ^{34} of sulfate	na
δ^{18} O of sulfate	na
Vacuum Distilled? *	No

Remarks:

Printed: 6/7/2024 1:11:13PM

WORK ORDER

T242360

Client: Northstar Environmental Remediation Project Manager: Jeff Lee
Project: Genesis Solar Groundwater Project Number: 196-004-06

Report To:

Northstar Environmental Remediation Arlin Brewster

26225 Enterprise Court Lake Forest, CA 92630

Date Due: 06/14/24 17:00 (5 day TAT)

Received By: Dave Berner Date Received: 06/07/24 10:30 Logged In By: Jeff Lee Date Logged In: 06/07/24 13:05

Samples Received at: 1.1°C

Custody Seals No Received On Ice Yes

COC/Labels Agree Yes
Preservation Confir Yes

Analysis	Due	TAT	Expires	Comments
T242360-01 DM-1 [Water (US &	·] Sampled 06/06/24 20:	:50 (GMT-	08:00) Pacific Time	e
1664	06/14/24 15:00	5	07/04/24 20:50	Oil & Grease
200.7	06/14/24 15:00	5	12/03/24 20:50	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/14/24 15:00	5	12/03/24 20:50	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/14/24 15:00	5	07/04/24 20:50	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/14/24 15:00	5	06/08/24 20:50	Nitrate
7470/71 Hg	06/14/24 15:00	5	09/04/24 20:50	
Conductivity	06/14/24 15:00	5	07/04/24 20:50	
pH water SM 4500-H+B	06/12/24 15:00	3	06/07/24 20:50	
TDS-160.1	06/14/24 15:00	5	06/13/24 20:50	
T242360-02 DM-2 [Water (US & 1664	7] Sampled 06/06/24 22: 06/14/24 15:00	:15 (GMT- 5	08:00) Pacific Time	
	00/14/24 15.00			() Il Xr (France
200.7	06/14/24 15:00			Oil & Grease Ca Cu Na K Fe Ma (Field Filtered)
	06/14/24 15:00 06/14/24 15:00	5 5	12/03/24 22:15 12/03/24 22:15	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8		5	12/03/24 22:15	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.7 200.8 300.0 - F, Cl, Br, SO4 300.0 - NO2, NO3, PO4	06/14/24 15:00	5	12/03/24 22:15 12/03/24 22:15	Ca,Cu,Na,K,Fe,Mg (Field Filtered) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
200.8 300.0 - F, Cl, Br, SO4 300.0 - NO2, NO3, PO4	06/14/24 15:00 06/14/24 15:00	5 5 5	12/03/24 22:15 12/03/24 22:15 07/04/24 22:15	Ca,Cu,Na,K,Fe,Mg (Field Filtered) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered) Chloride,Sulfate only
200.8 300.0 - F, Cl, Br, SO4 300.0 - NO2, NO3, PO4 7470/71 Hg	06/14/24 15:00 06/14/24 15:00 06/14/24 15:00	5 5 5 5	12/03/24 22:15 12/03/24 22:15 07/04/24 22:15 06/08/24 22:15	Ca,Cu,Na,K,Fe,Mg (Field Filtered) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered) Chloride,Sulfate only
200.8 300.0 - F, Cl, Br, SO4	06/14/24 15:00 06/14/24 15:00 06/14/24 15:00 06/14/24 15:00	5 5 5 5 5	12/03/24 22:15 12/03/24 22:15 07/04/24 22:15 06/08/24 22:15 09/04/24 22:15	Ca,Cu,Na,K,Fe,Mg (Field Filtered) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered) Chloride,Sulfate only

Printed: 6/7/2024 1:11:13PM

WORK ORDER

T242360

Client: Northstar Environmental Remediation Project Manager: Jeff Lee
Project: Genesis Solar Groundwater Project Number: 196-004-06

Analysis	Due	TAT	Expires	Comments
T242360-03 DM-3 [Water]] Sampled 06/06/24 19	:50 (GMT	-08:00) Pacific Tim	e
1664	06/14/24 15:00	5	07/04/24 19:50	Oil & Grease
200.7	06/14/24 15:00	5	12/03/24 19:50	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/14/24 15:00	5	12/03/24 19:50	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/14/24 15:00	5	07/04/24 19:50	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/14/24 15:00	5	06/08/24 19:50	Nitrate
7470/71 Hg	06/14/24 15:00	5	09/04/24 19:50	
Conductivity	06/14/24 15:00	5	07/04/24 19:50	
pH water SM 4500-H+B	06/12/24 15:00	3	06/07/24 19:50	
TDS-160.1	06/14/24 15:00	5	06/13/24 19:50	
T242360-04 North Pond [V Time (US &	Water] Sampled 06/06	/24 17:50 (GMT-08:00) Pacifi	c
1664	06/14/24 15:00	5	07/04/24 17:50	Oil & Grease
200.7	06/14/24 15:00	5	12/03/24 17:50	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/14/24 15:00	5	12/03/24 17:50	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/14/24 15:00	5	07/04/24 17:50	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/14/24 15:00	5	06/08/24 17:50	Nitrate
7470/71 Hg	06/14/24 15:00	5	09/04/24 17:50	
Conductivity	06/14/24 15:00	5	07/04/24 17:50	
pH water SM 4500-H+B	06/12/24 15:00	3	06/07/24 17:50	
TDS-160.1	06/14/24 15:00	5	06/13/24 17:50	
T242360-05 South Pond [V Time (US &	Water] Sampled 06/06	/24 18:00 (GMT-08:00) Pacifi	c
1664	06/14/24 15:00	5	07/04/24 18:00	Oil & Grease
200.7	06/14/24 15:00	5	12/03/24 18:00	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/14/24 15:00	5	12/03/24 18:00	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/14/24 15:00	5	07/04/24 18:00	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/14/24 15:00	5	06/08/24 18:00	Nitrate
7470/71 Hg	06/14/24 15:00	5	09/04/24 18:00	
Conductivity	06/14/24 15:00	5	07/04/24 18:00	
pH water SM 4500-H+B	06/12/24 15:00	3	06/07/24 18:00	
TDS-160.1	06/14/24 15:00	5	06/13/24 18:00	

Eurofins Calscience (Tustin)

Misc Water Testing #2

WORK ORDER

T242360

Client: Northstar Environmental Remediation **Project Manager:** Jeff Lee **Project: Genesis Solar Groundwater Project Number:** 196-004-06 **Analysis** Due TAT **Expires** Comments **Eurofins Calscience (Tustin)** T242360-01 DM-1 [Water] Sampled 06/06/24 20:50 (GMT-08:00) Pacific Time (US & 8015M-Therminol Misc Water Testing #1 06/14/24 15:00 12/03/24 20:50 T242360-02 DM-2 [Water] Sampled 06/06/24 22:15 (GMT-08:00) Pacific Time (US & Misc Water Testing #1 06/14/24 15:00 5 12/03/24 22:15 8015M-Therminol T242360-03 DM-3 [Water] Sampled 06/06/24 19:50 (GMT-08:00) Pacific Time (US & 8015M-Therminol Misc Water Testing #1 06/14/24 15:00 5 12/03/24 19:50 T242360-04 North Pond [Water] Sampled 06/06/24 17:50 (GMT-08:00) Pacific Time (US & Misc Water Testing #1 06/14/24 15:00 12/03/24 17:50 8015M-Therminol T242360-05 South Pond [Water] Sampled 06/06/24 18:00 (GMT-08:00) Pacific Time (US & Misc Water Testing #1 06/14/24 15:00 12/03/24 18:00 8015M-Therminol 5 Isotech Laboratories, Inc. T242360-01 DM-1 [Water] Sampled 06/06/24 20:50 (GMT-08:00) Pacific Time (US & 06/14/24 15:00 5 12/03/24 20:50 Deuterium, Oxygen-18 Misc Water Testing #2 T242360-02 DM-2 [Water] Sampled 06/06/24 22:15 (GMT-08:00) Pacific Time (US & Misc Water Testing #2 06/14/24 15:00 12/03/24 22:15 Deuterium, Oxygen-18 T242360-03 DM-3 [Water] Sampled 06/06/24 19:50 (GMT-08:00) Pacific Time

12/03/24 19:50

5

Deuterium, Oxygen-18

06/14/24 15:00

APPENDIX C

LABORATORY ANALYTICAL RESULTS LAND TREATMENT UNITS

13

1 E

ANALYTICAL REPORT

PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630

Generated 1/23/2024 6:32:18 PM

JOB DESCRIPTION

Genesis

JOB NUMBER

570-168127-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 1/23/2024 6:32:18 PM

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
Lab Chronicle	10
QC Sample Results	11
QC Association Summary	13
Certification Summary	14
Method Summary	15
Chain of Custody	16
Receipt Checklists	17

3

4

6

R

9

1 U

12

4 /

Definitions/Glossary

Client: Northstar Environmental Remediation Job ID: 570-168127-1

Project/Site: Genesis

Qualifiers

GC Semi VOA

Qualifier Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

6

9

10

12

13

1

Eurofins Calscience

Case Narrative

Client: Northstar Environmental Remediation

Project: Genesis

Job ID: 570-168127-1

Eurofins Calscience

Job ID: 570-168127-1

Job Narrative 570-168127-1

Receipt

The sample was received on 1/15/2024 1:55 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.8° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-168127-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-168127-1	Staging Area	Solid	01/15/24 09:15	01/15/24 13:55

4

5

7

8

10

11

13

14

Detection Summary

Client: Northstar Environmental Remediation

Client Sample ID: Staging Area

Project/Site: Genesis

Job ID: 570-168127-1

Lab Sample ID: 570-168127-1

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene, 1,1'-oxybis DL	7700	500	mg/Kg	100	8015B	Total/NA
1,1'-Biphenyl - DL	2800	500	mg/Kg	100	8015B	Total/NA

3

4

6

8

4.6

11

4.0

14

Client Sample Results

Client: Northstar Environmental Remediation Job ID: 570-168127-1

Project/Site: Genesis

Lab Sample ID: 570-168127-1 **Client Sample ID: Staging Area**

Date Collected: 01/15/24 09:15 **Matrix: Solid**

Date Received: 01/15/24 13:55

Method: SW846 8015B -	Diesel Range Organio	cs (DRO) (GC) - DL					
Analyte	Result Quali	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	7700	500	mg/Kg		01/17/24 18:01	01/23/24 17:16	100
1,1'-Biphenyl	2800	500	mg/Kg		01/17/24 18:01	01/23/24 17:16	100
Surrogate	%Recovery Quali	ifier Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	97	60 - 138			01/17/24 18:01	01/23/24 17:16	100

Surrogate Summary

Client: Northstar Environmental Remediation Job ID: 570-168127-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		OTCSN1	Percent Surrogate Recovery (Acceptance Limits)
		OTCSNT	
Lab Sample ID	Client Sample ID	(60-138)	
570-168127-1 - DL	Staging Area	97	
570-168127-1 MS - DL	Staging Area	89	
570-168127-1 MSD - DL	Staging Area	92	
LCS 570-402101/2-A	Lab Control Sample	73	
LCSD 570-402101/3-A	Lab Control Sample Dup	71	
MB 570-402101/1-A	Method Blank	73	
Surrogate Legend			

Eurofins Calscience

Page 9 of 17 1/23/2024

Lab Chronicle

Client: Northstar Environmental Remediation

Project/Site: Genesis

Date Received: 01/15/24 13:55

Client Sample ID: Staging Area Lab Sample ID: 570-168127-1

Date Collected: 01/15/24 09:15

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run **Factor Amount** Number or Analyzed **Amount** Analyst Lab Total/NA Prep 3550C DL 10.04 g 10 mL 402101 01/17/24 18:01 E5RH EET CAL 4 01/23/24 17:16 SP9M EET CAL 4 Total/NA 8015B DL 100 403676 Analysis 1 mL 1 mL Instrument ID: GC70B

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Job ID: 570-168127-1

Client: Northstar Environmental Remediation Job ID: 570-168127-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-402101/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 403676

Lab Sample ID: LCS 570-402101/2-A

Prep Type: Total/NA

Prep Batch: 402101

Result Qualifier RL Unit Prepared Analyzed Dil Fac Analyte 01/17/24 18:01 01/23/24 13:25 Benzene, 1,1'-oxybis-ND 5.0 mg/Kg 1,1'-Biphenyl ND 5.0 mg/Kg 01/17/24 18:01 01/23/24 13:25

MB MB

MB MB

%Recovery Qualifier Surrogate I imite Prepared Analyzed Dil Fac n-Octacosane (Surr) 73 60 - 138 01/17/24 18:01 01/23/24 13:25

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 402101

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit D %Rec 68 - 120 Benzene, 1,1'-oxybis-100 114 mg/Kg 114 mg/Kg 1,1'-Biphenyl 100 82.8 83 57 - 120

LCS LCS

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138 73

Lab Sample ID: LCSD 570-402101/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Matrix: Solid

Analysis Batch: 403676

Analysis Batch: 403676

Prep Type: Total/NA

Prep Batch: 402101

LCSD LCSD Spike %Rec **RPD** Result Qualifier Limits **RPD** Analyte Added Unit %Rec Limit 100 68 - 120 Benzene, 1,1'-oxybis-115 mg/Kg 115 20 100 83.3 83 57 - 120 1,1'-Biphenyl mg/Kg 20

LCSD LCSD

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138

Method: 8015B - Diesel Range Organics (DRO) (GC) - DL

Lab Sample ID: 570-168127-1 MS Client Sample ID: Staging Area **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 403676

Prep Batch: 402101 MS MS %Rec Sample Sample Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits 6350 4 -1402 Benzene, 1,1'-oxybis- - DL 7700 95.6 mg/Kg 68 - 120 1,1'-Biphenyl - DL 2800 95.6 2370 4 57 - 120 mg/Kg -485

MS MS

%Recovery Qualifier Limits Surrogate n-Octacosane (Surr) - DL 89 60 - 138

Lab Sample ID: 570-168127-1 MSD

Matrix: Solid

Analysis Batch: 403676

Client Sample ID: Staging Area Prep Type: Total/NA

Prep Batch: 402101

MSD MSD %Rec **RPD** Sample Sample Spike Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Benzene, 1,1'-oxybis- - DL 7700 96.1 6080 4 -1671 68 - 120 20 mg/Kg 1,1'-Biphenyl - DL 2800 96.1 2280 4 mg/Kg -578 57 - 120 20

Eurofins Calscience

Page 11 of 17

QC Sample Results

Client: Northstar Environmental Remediation Job ID: 570-168127-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC) - DL (Continued)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
n-Octacosane (Surr) - DL	92		60 - 138

- 5

4

5

7

0

10

12

13

QC Association Summary

Client: Northstar Environmental Remediation Job ID: 570-168127-1

Project/Site: Genesis

GC Semi VOA

Prep Batch: 402101

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-168127-1 - DL Staging Area		Total/NA	Solid	3550C	- <u> </u>	
MB 570-402101/1-A	Method Blank	Total/NA	Solid	3550C		
LCS 570-402101/2-A	Lab Control Sample	Total/NA	Solid	3550C		
LCSD 570-402101/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C		
570-168127-1 MS - DL	Staging Area	Total/NA	Solid	3550C		
570-168127-1 MSD - DL	Staging Area	Total/NA	Solid	3550C		

Analysis Batch: 403676

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-168127-1 - DL	Staging Area	Total/NA	Solid	8015B	402101	
MB 570-402101/1-A	Method Blank	Total/NA	Solid	8015B	402101	
LCS 570-402101/2-A	Lab Control Sample	Total/NA	Solid	8015B	402101	
LCSD 570-402101/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	402101	
570-168127-1 MS - DL	Staging Area	Total/NA	Solid	8015B	402101	
570-168127-1 MSD - DL	Staging Area	Total/NA	Solid	8015B	402101	

4

9

10

11

12

1 4

Accreditation/Certification Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-168127-1

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority Program salifornia State		am	Identification Number	Expiration Date 07-31-24	
			3082		
The following analyte	a are included in this rene	rt but the leberatory is a	not contified by the accomping outbori	tu. This list may inc	
,	•	•	not certified by the governing authori	ty. This list may inc	
for which the agency	does not offer certification		, , ,	ity. This list may inc	
,	•	•	Analyte	ity. This list may inc	
for which the agency	does not offer certification		, , ,	iy. This list may inc	

Eurofins Calscience

Page 14 of 17

3

4

7

10

12

1 1

Method Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-168127-1

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3550C	Ultrasonic Extraction	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

2

9

10

13

14

2841 Dow Avenue Tustin, CA 92780

(714) 730-7950

Chain of Custody Record

Loc: 570

💸 eurofins	16812 Environment Testing America
COC No:	
Page:	
Page 1 of 1	
Job #:	
Preservation Cod	des:
A - HCL	M - Hexane
B - NaOH	N - None
C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
E - NaHSO4	Q - Na2SO3
F - MeOH	R - Na2S2O3
G - Amchlor	S - H2SO4
G - Amchlor H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate
I - Ice	U - Acetone
O - DI TTALLEI	4 - 1410701
K-EDTA	W - pH 4-5
L - EDA	Z - other (specify)
Other:	
	structions/Note:
EDF file	NOT required
EDF file	NOT required
EDF file	NOT required
EDF TILE	NOT required
J - DI Water K - EDTA L - EDA Other: Special In EDF file	NOT required
EDF TILE	Not required
EDF file	NOT required
EDF file	
Chain of Custod	
Chain of Custod	
Chain of Custod	month)
Chain of Custod	
	month)
Chain of Custod	month) Months
Chain of Custod	month)

Client Information	Sample V Cont	Dela	larra		Sheri F	ama							Carrier Hacking IV	0(3).	555 No.
Client Contact: Mr. Arlin Brewster	Phone: (949)	702-0	568		-Mail: heri.fa	ma@	Deur	ofins	et co	m			State of Origin: California		Page: Page 1 of 1
Company:	((1)	1020	PWSID:		nen.ia	maiu	peun	Ullisi	er.co	_	- alve	ie D	equested		Job #:
Northstar Environmental Remediation Address:	Due Date Request	ed:			-					AI	lalys	SIS K	equested	111	Preservation Codes:
26225 Enterprise Court	Due Date Heques														A - HCL M • Hexane
City:	TAT Requested (d	ays):	1										1		B - NaOH N - None C - Zn Acetate O - AsNaO2
Lake Forest State, Zip:	-	1100	mal												D - Nitric Acid P - Na2O4S
CA, 92630	Compliance Proje	ct: A Yes	Δ No												E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3
Phone (949) 274-1719	PO #: 196-004-06										- 1		1 1 1 1		G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email:	WO#				- 2			IO.			İ				I - Ice U - Acetone
Arlin.Brewster@NorthstarER.com					S o	or No)		Motor			1	6		S S	J - DI Water V - MCAA K - EDTA W - pH 4-5
Project Name Genesis	Project #:				3	80		+				(6010)	1	ig.	L - EDA Z - other (specify)
Site:	SSOW#:				출	(Yes		Diesel				Metals		8	Other:
Genesis					Sa	MSD	lou	+			ő	8 Me		l o	
			Sample	Matri		MS/	8015M Thermino	Gasoline	22 Metals		8260B - Total VOCs	TCLP - RCRA 8		Total Number	0
			Туре	(W=wate S=solid		E	M Th	3 Ga	22 M	ury.	E -	÷		2	Special Instructions/Note: EDF file NOT required
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab)	O=waste/o		Perform	1015	8015B	Title	Mercury	1260	고 -		Cota	
oumple recitimenton		>		ation Cod		Ż	Ī	1	1	ī	ī	ī		X	
ITUM Staging area	1-15-24	0915	С	S	S.	10	χ								
LTU#2			С	S	2										
LTU#3			С	S	2										
LTU #4			С	s	2										
	-		-			\vdash		-			-	+	1-1-1-1	-	. BER 1881 1888 BIRTE BIRTE BIRTE BIRTE BIRTE BIRTE
					_	Ц						_		- 44 44 41 9 1 4	### ####
															AN XAN NAKAN MAKAN KAN KAN KANAN KAN KAN KAN KAN KAN K
						İΠ							4 -	570-168127	Chain of Custody
				1	+	\vdash								070-100127	Chair of Custody
					_	Н					-	-	+		
				1									1111		
				-	-	Н		-			-	-	+		
Possible Hazard Identification														•	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant P	oison B Unkn	own F	Radiologica	1		_	_	etum	_	_	_		Disposal By Lab	rch	nive For Months
Deliverable Requested: I, II, III, IV, Other (specify)				-		Spe	ecial	Instru	uction	1s/QC	J Red	uirem	ents:		
Empty Kit Relinquished by:		Date:			Tie	me:							Method of Si	nipment:	
Relinquished by:	Date/Time:	ו מ עונ	1) ca-	Campany	111		Rece	ived b	у:	1	1	/		Date/Time:	Company C
Palipavished hu	Date/Time:	19 C1	555	Company	JAR		Desc	ived b	0				-	1-15-3	24 1355 + C
Relinquished by:	Date/Time:			Company			Rece	ivea D	ıy.					rater time.	Company
Custody Seals Intact: Custody Seal No.:							Coole	er Tem	peratu	ıre(s)	°C and	Other	Remarks	0.16	12
Δ Yes Δ No														· X /()	8 5012

Login Sample Receipt Checklist

Client: Northstar Environmental Remediation

Job Number: 570-168127-1

Login Number: 168127 List Source: Eurofins Calscience

List Number: 1

Creator: Khana, Piyush

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

3

4

5

_

_

10

12

13

14

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630

Generated 4/11/2024 5:13:16 PM

JOB DESCRIPTION

Genesis

JOB NUMBER

570-178469-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 4/11/2024 5:13:16 PM

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

13

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
Lab Chronicle	10
QC Sample Results	11
QC Association Summary	13
Certification Summary	14
Method Summary	15
Chain of Custody	16
Receipt Checklists	17

6

8

46

11

13

14

Definitions/Glossary

Client: Northstar Environmental Remediation Job ID: 570-178469-1

Project/Site: Genesis

Qualifiers

GC Semi VOA

Qualifier **Qualifier Description**

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

F2 MS/MSD RPD exceeds control limits

Glossary A bbrowletier

Appreviation	These commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** 0C

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Calscience

Page 4 of 17 4/11/2024

Case Narrative

Client: Northstar Environmental Remediation

Project: Genesis

Job ID: 570-178469-1 Eurofins Calscience

Job Narrative 570-178469-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/29/2024 3:29 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.2°C.

Diesel Range Organics

Method 8015B_DRO: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 570-426558 and analytical batch 570-429291 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Calscience

Job ID: 570-178469-1

Page 5 of 17 4/11/2024

Sample Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-178469-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-178469-1	LTU #3	Solid	03/27/24 06:45	03/29/24 15:29

Detection Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Client Sample ID: LTU #3

Job ID: 570-178469-1

Lab Sample ID: 570-178469-1

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene, 1,1'-oxybis DL	6700 F2	250	mg/Kg	50	8015B	Total/NA
1,1'-Biphenyl - DL	2300	50	mg/Kg	10	8015B	Total/NA

2

4

5

6

8

11

12

14

Client Sample Results

Client: Northstar Environmental Remediation Job ID: 570-178469-1

Project/Site: Genesis

Client Sample ID: LTU #3 Lab Sample ID: 570-178469-1

Date Collected: 03/27/24 06:45

Date Received: 03/29/24 15:29

Method: SW846 8015B - Diesel Range Organics (DRO) (GC) - DL								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	6700	F2	250	mg/Kg		04/02/24 13:38	04/10/24 17:50	50
1,1'-Biphenyl	2300		50	mg/Kg		04/02/24 13:38	04/10/24 16:01	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	117		60 - 138			04/02/24 13:38	04/10/24 16:01	10
n-Octacosane (Surr)	113		60 - 138			04/02/24 13:38	04/10/24 17:50	50

5

7

8

10

12

13

4 5

11-5

Surrogate Summary

Client: Northstar Environmental Remediation Job ID: 570-178469-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

OTCSN1 (60-138) 117 113 115 98	
117 113 115	
113 115	
115	
08	
30	
106	
109	
trol Sample 75	
trol Sample Dup 77	
Blank 73	
t	rol Sample 75 rol Sample Dup 77

Lab Chronicle

Client: Northstar Environmental Remediation

Project/Site: Genesis

Client Sample ID: LTU #3 Lab Sample ID: 570-178469-1

Date Collected: 03/27/24 06:45 Matrix: Solid

Date Received: 03/29/24 15:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Type Prep	Method 3550C	Run	Factor	Amount 9.98 q	Amount 10 mL	Number 426558	or Analyzed 04/02/24 13:38	Analyst	EET CAL 4
Total/NA	Analysis	8015B at ID: GC70B	DL	10	9.90 g 1 mL	1 mL	429291	04/10/24 16:01		EET CAL 4
Total/NA Total/NA	Prep Analysis	3550C 8015B	DL DL	50	9.98 g 1 mL	10 mL 1 mL	426558 429291	04/02/24 13:38 04/10/24 17:50		EET CAL 4 EET CAL 4
	Instrumen	t ID: GC70B								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Job ID: 570-178469-1

3

4

6

<u>۾</u>

9

10

12

Job ID: 570-178469-1

Client: Northstar Environmental Remediation

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-426558/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 429027

Analysis Batch: 429027

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 426558

	MB MB						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND ND	5.0	mg/Kg		04/02/24 13:38	04/09/24 22:21	1
1,1'-Biphenyl	ND	5.0	mg/Kg		04/02/24 13:38	04/09/24 22:21	1
	MB MB						

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac n-Octacosane (Surr) 73 60 - 138

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 426558

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit D %Rec 68 - 120 Benzene, 1,1'-oxybis-100 79.8 mg/Kg 80 1,1'-Biphenyl 100 77.4 mg/Kg 77 57 - 120

LCS LCS Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 75 60 - 138

Lab Sample ID: LCSD 570-426558/3-A

Lab Sample ID: LCS 570-426558/2-A

Matrix: Solid

Analysis Batch: 429027

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 426558

Spike LCSD LCSD %Rec **RPD** Result Qualifier Limits RPD Analyte Added Unit %Rec Limit 100 83.8 68 - 120 Benzene, 1,1'-oxybismg/Kg 84 5 20 100 81 57 - 120 1,1'-Biphenyl 81.4 mg/Kg 5 20

LCSD LCSD Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138

Lab Sample ID: 570-178469-1 MS

Matrix: Solid

Analysis Batch: 429291

Client Sample ID: LTU #3 Prep Type: Total/NA

Prep Batch: 426558

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1,1'-Biphenyl 2300 95.9 2140 4 mg/Kg -211 57 - 120

MS MS

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 115 60 - 138

Lab Sample ID: 570-178469-1 MS

Matrix: Solid

Analysis Batch: 429291

Client Sample ID: LTU #3 **Prep Type: Total/NA**

Prep Batch: 426558

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit %Rec Limits 6700 F2 95.9 -1743 Benzene, 1,1'-oxybis-5030 4 mg/Kg

MS MS %Recovery Qualifier Limits Surrogate 60 - 138 n-Octacosane (Surr) 98

Eurofins Calscience

QC Sample Results

Client: Northstar Environmental Remediation Job ID: 570-178469-1

Project/Site: Genesis

1,1'-Biphenyl

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: 570-178469 Matrix: Solid	-1 MSD							Clie	ent Samp Prep Ty		
Analysis Batch: 429291									Prep B	atch: 42	26558
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit

97.8

2190 4

mg/Kg

-150

57 - 120

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
n-Octacosane (Surr)	106		60 - 138

2300

Lab Sample ID: 570-1784	69-1 MSD							Clie	nt Sampl	e ID: L	ΓU #3
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 429291									Prep Ba	tch: 42	26558
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene 1 1'-oxybis-	6700	F2	97.8	6610	4 F2	ma/Ka		-95	68 - 120	27	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
n-Octacosane (Surr)	109		60 - 138

QC Association Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-178469-1

GC Semi VOA

Prep Batch: 426558

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-178469-1 - DL	LTU #3	Total/NA	Solid	3550C	
MB 570-426558/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-426558/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-426558/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
570-178469-1 MS	LTU #3	Total/NA	Solid	3550C	
570-178469-1 MSD	LTU #3	Total/NA	Solid	3550C	

Analysis Batch: 429027

Lab Sample ID MB 570-426558/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 8015B	Prep Batch 426558
LCS 570-426558/2-A	Lab Control Sample	Total/NA	Solid	8015B	426558
LCSD 570-426558/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	426558

Analysis Batch: 429291

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-178469-1 - DL	LTU #3	Total/NA	Solid	8015B	426558
570-178469-1 - DL	LTU #3	Total/NA	Solid	8015B	426558
570-178469-1 MS	LTU #3	Total/NA	Solid	8015B	426558
570-178469-1 MS	LTU #3	Total/NA	Solid	8015B	426558
570-178469-1 MSD	LTU #3	Total/NA	Solid	8015B	426558
570-178469-1 MSD	LTU #3	Total/NA	Solid	8015B	426558

2

5

6

Ö

40

11

12

1 1

| "

Accreditation/Certification Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-178469-1

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date
California	State		3082	07-31-24
The fellowing a small de	and the standard the Alexander	. 4 . 1 4 . 41 1 . 1		4 This is a second of
i ne tollowing analyte	s are included in this rebo	rt, but the laboratory is i	not certified by the doverning authori	tv. I nis iist mav inc
,	s are included in this repo does not offer certification	•	not certified by the governing authori	ty. This list may inc
,	•	•	not certified by the governing authori Analyte	ty. I nis list may inc
for which the agency	does not offer certification	1.	, , ,	ty. This list may inc

2

6

7

0

10

12

14

Method Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-178469-1

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3550C	Ultrasonic Extraction	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

7

9

10

19

13

Eurofins Calscience

2841 Dow Avenue Tustin, CA 92780 (714) 730-7950

Chain of Custody Record

💸 eurofins

Loc: 570 Environi 178469

Client Information	Sampler: A. Br	ewster		Lab		ri Fama			Carrier Tracking No(s):		COC No:			
Client Contact: Mr. Arlin Brewster	Sampler A . B(1)	274-	1719	E-M			ırofins	set.co	m			State of Origin: California		Page: Page 1 of 1
Company: Northstar Environmental Remediation		- , .	PWSID:	<u> </u>	T				Δι	nalve	is R	equested		Job #:
Address:	Due Date Request	ted:									7.5			Preservation Codes:
26225 Enterprise Court City:	TAT Requested (d	lavs):	·	-							Н			A - HCL M - Hexane B - NaOH N - None
Lake Forest	Standard	-,-,-												C - Zn Acetate O - AsNaO2
State, Zip: CA, 92630	Compliance Proje	Compliance Project: Δ Yes Δ No				15								D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone:	PO #: 196-004-07													F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
(949) 274-1719 Email:	WO#	-			- S		₽							H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone
Arlin.Brewster@NorthstarER.com	Drainet #				es or	U I	Motor				6		ers e	J - DI Water V - MCAA K - EDTA W - pH 4-5
Project Name: Genesis	Project #:				٥		+ lesei				(6010)		container	L - EDA Z - other (specify)
Site Genesis	SSOW#:				Samp	3 -	10			SCS	Metals		of col	Other:
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=wastefoli, BT=Tissue, A=Ali	Field Filtered	8015M Thermino	8015B Gasoline	Title 22 Metals	Mercury	8260B - Total VOCs	TCLP - RCRA 8 Metals		Total Number	Special Instructions/Note: EDF file NOT required
Outriple Identification		><		ation Code:		1	Ī	Ī	î	ī				
L TU #1			- C	S	2		1							
NU#2			C	s	9									
LTU #3	03/27/24	0645	С	s	2	X							1	
LTU#4			С	S	0	/	-				-			
					Π									
1000					11	Ť	1	П		Н			1	
					+	+	+				+	++++		
					+	+	+				+			
					44	+	-				-			
												57	0-178469	Chain of Custody
					П									
					+									
Possible Hazard Identification				1	s	amp	le Dis	posa	(A	fee m	ay be	assessed if samples	re retaine	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant P	oison B Unkn	own 🗆 F	Radiologica	1				n To (Disposal By Lab	rchi	ve For Months
Deliverable Requested: I, II, III, IV, Other (specify)					S	pecia	I Insti	ruction	ns/Q	C Rec	quirem	ents:		
Empty Kit Relinquished by:		Date:			Time	e:				,		Method of Shipment		
Relinquished by:	Date/Time: 03/29/2	4010	530	Company Norths	far	Re	ceived	by:	10	V		Date/Tim	29/20	- 15:29 EC
Relinquished by:	Date/Time:			Company			ceived	by.				Date/Tim		Company
Custody Seals Intact: Custody Seal No.:						Co	oler Te	mperat	ure(s)	°C and	Other	Remarks:	5.0	0/5.2 5014

Login Sample Receipt Checklist

Client: Northstar Environmental Remediation

Job Number: 570-178469-1

Login Number: 178469 List Source: Eurofins Calscience

List Number: 1

Creator: Khana, Piyush

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

4

6

o

9

11

12

14

PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630

Generated 4/18/2024 5:05:20 PM

JOB DESCRIPTION

Genesis

JOB NUMBER

570-179152-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 4/18/2024 5:05:20 PM

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
Lab Chronicle	10
QC Sample Results	11
QC Association Summary	13
Certification Summary	14
Method Summary	15
Chain of Custody	16
Receint Checklists	17

11

13

14

Definitions/Glossary

Client: Northstar Environmental Remediation

Job ID: 570-179152-1 Project/Site: Genesis

Qualifiers

GC Semi VOA

Qualifier **Qualifier Description**

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

Not Calculated NC

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Eurofins Calscience

Case Narrative

Client: Northstar Environmental Remediation

Project: Genesis

Job ID: 570-179152-1 Eurofins Calscience

Job Narrative 570-179152-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 4/4/2024 1:35 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C.

Diesel Range Organics

Method 8015B_DRO: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-428290 and analytical batch 570-431566 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS/D) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Calscience

Page 5 of 17 4/18/2024

2

Job ID: 570-179152-1

3

4

5

7

8

9

1 1

12

Sample Summary

04/04/24 09:00 04/04/24 13:35

Solid

Client: Northstar Environmental Remediation

Waste Soil

Project/Site: Genesis

570-179152-1

Job ID: 570-179152-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received

Q

9

11

12

14

Detection Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-179152-1

Client Sample ID: Waste Soil Lab Sample ID: 570-179152-1

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene, 1,1'-oxybis DL	14000	500	mg/Kg	100	8015B	Total/NA
1,1'-Biphenyl - DL	5300	500	mg/Kg	100	8015B	Total/NA

4

5

6

8

9

11

40

14

Client Sample Results

Client: Northstar Environmental Remediation Job ID: 570-179152-1

Project/Site: Genesis

Client Sample ID: Waste Soil Lab Sample ID: 570-179152-1

Date Received: 04/04/24 13:35

Method: SW846 8015B -	Diesel Range Org	ganics (DF	RO) (GC) - DL					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	14000		500	mg/Kg		04/08/24 11:13	04/17/24 16:23	100
1,1'-Biphenyl	5300		500	mg/Kg		04/08/24 11:13	04/17/24 16:23	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)			60 - 138			04/08/24 11:13	04/17/24 16:23	100

6

7

9

11

13

14

Surrogate Summary

Client: Northstar Environmental Remediation Job ID: 570-179152-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
₋ab Sample ID	Client Sample ID	(60-138)	
570-179152-1 - DL	Waste Soil	116	
570-179152-1 MS - DL	Waste Soil	108	
570-179152-1 MSD - DL	Waste Soil	106	
CS 570-428290/2-A	Lab Control Sample	81	
CSD 570-428290/3-A	Lab Control Sample Dup	82	
MB 570-428290/1-A	Method Blank	79	
Surrogate Legend			

Eurofins Calscience

Page 9 of 17

3

4

6

8

9

10

12

1 1

Lab Chronicle

Client: Northstar Environmental Remediation

Project/Site: Genesis

Date Received: 04/04/24 13:35

Client Sample ID: Waste Soil Lab Sample ID: 570-179152-1

Date Collected: 04/04/24 09:00

Matrix: Solid

Job ID: 570-179152-1

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run **Factor Amount** Number or Analyzed Analyst **Amount** Lab Total/NA Prep 3550C DL 10.01 g 10 mL 428290 04/08/24 11:13 JE EET CAL 4 Total/NA 04/17/24 16:23 SP9M EET CAL 4 8015B DL 100 431566 Analysis 1 mL 1 mL Instrument ID: GC70B

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Job ID: 570-179152-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-428290/1-A

Client: Northstar Environmental Remediation

Matrix: Solid

Analysis Batch: 431566

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 428290

	MB	MB					
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND		5.0	mg/Kg	04/08/24 11:13	04/17/24 12:56	1
1,1'-Biphenyl	ND		5.0	mg/Kg	04/08/24 11:13	04/17/24 12:56	1

MB MB

Surrogate %Recovery Qualifier I imite Prepared Analyzed Dil Fac n-Octacosane (Surr) 79 60 - 138

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 428290

%Rec

Spike LCS LCS Added Result Qualifier Limits **Analyte** Unit D %Rec 68 - 120 Benzene, 1,1'-oxybis-100 81.9 mg/Kg 82 1,1'-Biphenyl 100 79.8 mg/Kg 80 57 - 120

LCS LCS %Recovery Qualifier Limits 60 - 138 81

Lab Sample ID: LCSD 570-428290/3-A

Lab Sample ID: LCS 570-428290/2-A

Matrix: Solid

n-Octacosane (Surr)

Surrogate

Matrix: Solid

Analysis Batch: 431566

Analysis Batch: 431566

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 428290

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene, 1,1'-oxybis-	100	85.5		mg/Kg		86	68 - 120	4	20
1,1'-Biphenyl	100	83.1		mg/Kg		83	57 - 120	4	20

LCSD LCSD

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138

Method: 8015B - Diesel Range Organics (DRO) (GC) - DL

Lab Sample ID: 570-179152-1 MS

Analysis Batch: 431566

Matrix: Solid

Client Sample ID: Waste Soil Prep Type: Total/NA

Prep Batch: 428290

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Benzene, 1,1'-oxybis- - DL 14000 100 13300 4 -1091 68 - 120 mg/Kg 1,1'-Biphenyl - DL 100 4950 4 57 - 120 5300 mg/Kg -355

MS MS

%Recovery Qualifier Limits Surrogate n-Octacosane (Surr) - DL 108 60 - 138

Lab Sample ID: 570-179152-1 MSD

Matrix: Solid

Analysis Batch: 431566

Client Sample ID: Waste Soil Prep Type: Total/NA

Prep Batch: 428290

MSD MSD %Rec **RPD** Sample Sample Spike Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Benzene, 1,1'-oxybis- - DL 14000 96.5 13400 4 -1051 68 - 120 20 mg/Kg 1,1'-Biphenyl - DL 5300 96.5 4950 4 mg/Kg -366 57 - 120 20

Eurofins Calscience

Page 11 of 17

4/18/2024

QC Sample Results

Client: Northstar Environmental Remediation Job ID: 570-179152-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC) - DL (Continued)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
n-Octacosane (Surr) - DL	106		60 - 138

3

4

5

8

11

13

14

QC Association Summary

Client: Northstar Environmental Remediation Job ID: 570-179152-1

Project/Site: Genesis

GC Semi VOA

Prep Batch: 428290

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-179152-1 - DL	Waste Soil	Total/NA	Solid	3550C	
MB 570-428290/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-428290/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-428290/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
570-179152-1 MS - DL	Waste Soil	Total/NA	Solid	3550C	
570-179152-1 MSD - DL	Waste Soil	Total/NA	Solid	3550C	

Analysis Batch: 431566

Lab Samı	ole ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-1791	52-1 - DL	Waste Soil	Total/NA	Solid	8015B	428290
MB 570-4	28290/1-A	Method Blank	Total/NA	Solid	8015B	428290
LCS 570-4	428290/2-A	Lab Control Sample	Total/NA	Solid	8015B	428290
LCSD 570)-428290/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	428290
570-1791	52-1 MS - DL	Waste Soil	Total/NA	Solid	8015B	428290
570-1791	52-1 MSD - DL	Waste Soil	Total/NA	Solid	8015B	428290

6

6

7

10

<u>11</u>

40

14

Accreditation/Certification Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-179152-1

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date
California	State		3082	07-31-24
The fellowing a small de	and the standard the Alexander	. 4 . 1 4 . 41 1 . 1		4 This is a second of
i ne tollowing analyte	s are included in this rebo	rt, but the laboratory is i	not certified by the doverning authori	tv. I nis iist mav inc
,	s are included in this repo does not offer certification	•	not certified by the governing authori	ty. This list may inc
,	•	•	not certified by the governing authori Analyte	ty. I nis list may inc
for which the agency	does not offer certification	1.	, , ,	ty. This list may inc

4

_

7

10

12

14

Method Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-179152-1

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3550C	Ultrasonic Extraction	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

-

-

9

10

13

14

Eurofins Calscience

2841 Dow Avenue Tustin CA 92780

Chain of Custody Record

eurofins En

Loc: 570 179152

(714) 730-7950																		
Client Information	Sampler R DeLaParra				PM eri F	ama							Carrie	er Tracki	ng No(s).			COC No:
Client Contact Mr Arlin Brewster	Phone: (949) 702-0968			E-N		ma@	Deurc	ofinse	et.con	n				of Origin				Page: Page 1 of 1
Company:	<u>K</u>		PWSID.		Т													Job #.
Northstar Environmental Remediation	T				_	I SECURITY				An	nalys	is Re	ques	ted		-	-	Draw a water Codes
Address. 26225 Enterprise Court	Due Date Request	ed.							-									Preservation Codes A - HCL M - Hexane
City:	TAT Requested (da 10 Days	iys)																B - NaOH N - None C - Zn Acetate O AsNaO2
Lake Forest State, Zip [.]										ĺ								D Nitric Acid P - Na2O4S
CA 92630	Compliance Project PO #:	t: ∆ Yes	Δ No															E - NaHSO4 Q Na2SO3 F - MeOH R Na2S2O3
Phone. (949) 274-1719	196-004-07				6			_										G - Amchlor S H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email. Arlın.Brewster@NorthstarER.com	WO #:				o lo	No)		tor Oil									0	I - Ice U Acetone J - DI Water V - MCAA
Project Name:	Project #:				Yes	or N		+ Motor		1	1	(6010)					containers	K - EDTA W pH 4-5 L - EDA Z other (specify)
Genesis	00000				- 음	Yes		Diesel + I				9 8					onta	Other:
Site: Genesis	SSOW#:				Sam	gs.	_	+ 1			SOC	Meta					of c	out.
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab) Preservatio		dr) iii	Perform MSIM	- 8015M Thermino	- 8015B Gasoline	- Title 22 Metals	- Mercury	- 8260B - Total VOCs	TCLP - RCRA 8 Metals					Total Number	Special Instructions/Note EDF file NOT required
W 10 "	11 11 211		1	S	 		-		-	-	-	-				_		
Waste Soil	4-4-24	0900	С		Ž		X		_		_	-						
					\bot													
					T													
					+	Н						+						
					+	H				-	-		-		++		H	
						Ш					_				\perp			
														-				
			570-1	79152 (Chair	n of	Cust	ody				-						
					ı	1 1		I	1 1	I	1	1						
					1													
Possible Hazard Identification			L			San	mple	Disp	osal	(A)	fee m	ay be	asses	sed if	amples	are ret	taine	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant Poise	on B 🗀 Unkno	own \square_F	Radiological				□R€	eturn	To C	lient	!	X	Dispos	sal By L	ab]rchi	ve For Months
Deliverable Requested I II III IV Other (specify)						Spe	ecial I	Instru	uction	s/Q(C Req	uirem	ents					
Empty Kit Relinquished by		Date			Ti	me								Method	of Shipme	د د		
Relinquished by the Color of th	Date/Time:	1325	Co	mpany (-		Recei	ived b	y			1			Date/T	ime:	4.	1355 Company
Relinquished by	Date/Time:	/ 1/1/		mpany	a,		Recei	ived b	y.	-		(Date/T		-	Company
Custody Seals Intact: Custody Seal No							Coole	r Tem	nerst	re(c)	°C and	Other	?emarke	10	~			0 /11
Δ Yes Δ No								.,	peratu	(3)	O all	7	emarks	10.	8			5014

Login Sample Receipt Checklist

Client: Northstar Environmental Remediation

Job Number: 570-179152-1

Login Number: 179152 List Source: Eurofins Calscience

List Number: 1 Creator: Le, Sunny

Creator: Le, Sunny		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

_

4

5

0

10

12

13

10 11

12

14

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630

Generated 4/18/2024 4:49:20 PM

JOB DESCRIPTION

Genesis

JOB NUMBER

570-180649-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 4/18/2024 4:49:20 PM

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	9
Surrogate Summary	12
Lab Chronicle	13
QC Sample Results	16
QC Association Summary	20
Certification Summary	22
Method Summary	23
Chain of Custody	24
Receipt Checklists	25

6

ŏ

10

12

13

Definitions/Glossary

Client: Northstar Environmental Remediation Job ID: 570-180649-1

Project/Site: Genesis

Qualifiers

GC Semi VOA

Qualifier Qualifier Description

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

S1+ Surrogate recovery exceeds control limits, high biased.

Metals

F1 MS and/or MSD recovery exceeds control limits.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this rep
--

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Calscience

4/18/2024

Page 4 of 25

•

3

Δ

5

6

Q

9

11

13

14

Case Narrative

Client: Northstar Environmental Remediation

Project: Genesis

Job ID: 570-180649-1 Eurofins Calscience

Job Narrative 570-180649-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/15/2024 5:51 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.1°C.

Diesel Range Organics

Method 8015B_DRO: Surrogate recovery for the following samples were outside control limits: Composite (Samples 1-6) (570-180649-7), SP # 4 (570-180649-11), (570-180649-A-7-A MS) and (570-180649-A-7-B MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for Thallium were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Organic Prep

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Calscience

Job ID: 570-180649-1

Page 5 of 25 4/18/2024

Sample Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-180649-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-180649-1	Bin # RB23103	Soil	04/15/24 09:45	04/15/24 17:51
570-180649-2	Bin # 5247	Soil	04/15/24 09:50	04/15/24 17:51
570-180649-3	Bin # PT1416	Soil	04/15/24 10:05	04/15/24 17:51
570-180649-4	Bin # PT6369	Soil	04/15/24 10:00	04/15/24 17:51
570-180649-5	Bin # 5063	Soil	04/15/24 10:20	04/15/24 17:51
570-180649-6	Bin # 4917	Soil	04/15/24 10:25	04/15/24 17:51
570-180649-7	Composite (Samples 1-6)	Soil	04/15/24 10:25	04/15/24 17:51
570-180649-8	SP # 1	Soil	04/15/24 10:10	04/15/24 17:51
570-180649-9	SP # 2	Soil	04/15/24 10:12	04/15/24 17:51
570-180649-10	SP#3	Soil	04/15/24 10:14	04/15/24 17:51
570-180649-11	SP # 4	Soil	04/15/24 10:16	04/15/24 17:51

3

5

6

9

10

11

4.0

14

Job ID: 570-180649-1

Client: Northstar Environmental Remediation

Project/Site: Genesis

Client Sample ID: Bin # RB23103 Lab Sample ID: 570-180649-1 Result Qualifier Unit Dil Fac D Method Analyte RL Prep Type NONE Composited Yes Composite Total/NA Client Sample ID: Bin # 5247 Lab Sample ID: 570-180649-2 Analyte Result Qualifier RL Unit Dil Fac D Method **Prep Type** NONE Composited Yes Composite Total/NA Client Sample ID: Bin # PT1416 Lab Sample ID: 570-180649-3 Analyte Result Qualifier Unit Dil Fac D Method Composited Yes NONE Composite Total/NA Lab Sample ID: 570-180649-4 Client Sample ID: Bin # PT6369 Dil Fac D Method Analyte Result Qualifier RL Unit **Prep Type** NONE Composited Yes Composite Total/NA Lab Sample ID: 570-180649-5 Client Sample ID: Bin # 5063 Analyte Result Qualifier Unit Dil Fac D Method Prep Type NONE Total/NA Composited Yes Composite Client Sample ID: Bin # 4917 Lab Sample ID: 570-180649-6 Analyte Result Qualifier RL Unit Dil Fac D Method Prep Type Composited Yes NONE Composite Total/NA Client Sample ID: Composite (Samples 1-6) Lab Sample ID: 570-180649-7 Qualifier Unit Dil Fac D Method Result Prep Type Benzene, 1,1'-oxybis- - DL 25000 510 100 8015B Total/NA mg/Kg 1,1'-Biphenyl - DL 8900 510 mg/Kg 100 8015B Total/NA Arsenic 4 1 3.0 mg/Kg 5 6010B Total/NA 5 Barium 70 3.0 mg/Kg 6010B Total/NA Cobalt 3.6 1.0 mg/Kg 5 6010B Total/NA Total/NA Chromium 7.1 1.0 mg/Kg 5 6010B Copper 14 2.0 mg/Kg 5 6010B Total/NA 5 6010B Total/NA Nickel 5.9 2.0 mg/Kg 5 6010B Total/NA Vanadium 16 1.0 mg/Kg Zinc 30 5.1 5 6010B Total/NA mg/Kg 5.9 5 6010B Total/NA Lead 2.0 mg/Kg Lab Sample ID: 570-180649-8 Client Sample ID: SP # 1 Dil Fac D Analyte Result Qualifier RL Unit Method **Prep Type** Benzene, 1,1'-oxybis- - DL 7600 99 20 8015B Total/NA mg/Kg 1,1'-Biphenyl - DL 2700 99 mg/Kg 20 8015B Total/NA Client Sample ID: SP # 2 Lab Sample ID: 570-180649-9 Analyte Result Qualifier RL Unit Dil Fac Method Prep Type Benzene, 1,1'-oxybis- - DL 3200 48 10 8015B Total/NA mg/Kg 1,1'-Biphenyl - DL 1100 48 10 8015B Total/NA mg/Kg

This Detection Summary does not include radiochemical test results.

Eurofins Calscience

-1

7

9

11

12

14

15

4/18/2024

Detection Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-180649-1

Client Sample ID: SP # 3	Lab Sample ID: 570-180649-10

Analyte	Result Qu	ualifier RL	Unit	Dil Fac	D	Method	Prep T	уре
Benzene, 1,1'-oxybis DL	9400	250	mg/Kg	50	_	8015B	Total/N	1A
1,1'-Biphenyl - DL	3400	250	mg/Kg	50		8015B	Total/N	1A

Client Sample ID: SP # 4 Lab Sample ID: 570-180649-11

Analyte	Result Qualifier	RL	Unit	Dil Fac	O Method	Prep Type
Benzene, 1,1'-oxybis DL	16000	500	mg/Kg	100	8015B	Total/NA
1,1'-Biphenyl - DL	5600	500	mg/Kg	100	8015B	Total/NA

Matrix: Soil

Matrix: Soil

Matrix: Soil

Matrix: Soil

Lab Sample ID: 570-180649-3

Client Sample ID: Bin # RB23103

Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-1 Date Collected: 04/15/24 09:45 Matrix: Soil

Method: Composite - Sample Compositing

Client: Northstar Environmental Remediation

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Composited NONE 04/16/24 10:39 Yes

Client Sample ID: Bin # 5247 Lab Sample ID: 570-180649-2

Date Collected: 04/15/24 09:50

Date Received: 04/15/24 17:51

Method: Composite - Sample Compositing

Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared NONE 04/16/24 10:39 Composited Yes

Client Sample ID: Bin # PT1416

Date Collected: 04/15/24 10:05 Date Received: 04/15/24 17:51

Method: Composite - Sample Compositing Analyte Result Qualifier RL Unit D Analyzed Dil Fac NONE 04/16/24 10:39 Composited Yes

Client Sample ID: Bin # PT6369 Lab Sample ID: 570-180649-4

Date Collected: 04/15/24 10:00

Date Received: 04/15/24 17:51

Method: Composite - Sample Compositing

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac NONE 04/16/24 10:39 Composited Yes

Lab Sample ID: 570-180649-5 Client Sample ID: Bin # 5063 Matrix: Soil

Date Collected: 04/15/24 10:20 Date Received: 04/15/24 17:51

Method: Composite - Sample Compositing

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Composited Yes NONE 04/16/24 10:39

Client Sample ID: Bin # 4917 Lab Sample ID: 570-180649-6

Date Collected: 04/15/24 10:25

Date Received: 04/15/24 17:51

Method: Composite - Sample Compositing Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac NONE 04/16/24 10:39 Composited Yes

Client Sample ID: Composite (Samples 1-6)

Date Collected: 04/15/24 10:25

Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-7 **Matrix: Soil**

04/16/24 10:36

Method: SW846 8015B - Diesel Range Organics (DRO) (GC) - DL

Analyte Result Qualifier RL Dil Fac Unit D Prepared Analyzed Benzene, 1,1'-oxybis-25000 510 mg/Kg 04/16/24 10:36 04/18/24 13:21 100 510 04/16/24 10:36 04/18/24 13:21 1,1'-Biphenyl mg/Kg 100 8900 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

157 n-Octacosane (Surr) S1+ 60 - 138

Eurofins Calscience

4/18/2024

100

04/18/24 13:21

RL

1.5

3.0

3.0

0.51

0.51

1.0

1.0

2.0

2.0

2.0

10

3.0

10

1.0

5.1

2.0

Unit

mg/Kg

Result Qualifier

ND

4.1

70

ND

ND

3.6

7.1

14

ND

5.9

ND

ND

ND

16

30

5.9

Client: Northstar Environmental Remediation

Method: SW846 6010B - Metals (ICP)

Project/Site: Genesis

Silver

Arsenic

Barium

Beryllium

Cadmium

Chromium

Molybdenum

Cobalt

Copper

Nickel

Antimony

Selenium

Thallium

Zinc

Lead

Vanadium

Client Sample ID: Composite (Samples 1-6)

Date Collected: 04/15/24 10:25 Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-7

Matrix: Soil

D	Prepared	Analyzed	Dil Fac
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 12:53	5
	04/16/24 07:11	04/17/24 13:57	5
	04/16/24 07:11	04/17/24 12:53	5

04/16/24 07:11

04/16/24 07:11

04/16/24 07:11

04/16/24 07:11

Method: SW846 7471A - Mercury (CVAA) Result Qualifier Dil Fac Analyte RL Unit Prepared Analyzed 04/16/24 13:15 Mercury ND 0.083 mg/Kg 04/16/24 16:35

Client Sample ID: SP # 1

Date Collected: 04/15/24 10:10

Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-8

04/17/24 12:53

04/17/24 12:53

04/17/24 12:53

04/17/24 12:53

Matrix: Soil

5

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	7600		99	mg/Kg		04/16/24 10:36	04/18/24 13:46	20
1,1'-Biphenyl	2700		99	mg/Kg		04/16/24 10:36	04/18/24 13:46	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)			60 - 138			04/16/24 10:36	04/18/24 13:46	20

Client Sample ID: SP # 2 Lab Sample ID: 570-180649-9 Date Collected: 04/15/24 10:12 **Matrix: Soil**

Date Received: 04/15/24 17:51

Method: SW846 8015B - Diesel Range Organics (DRO) (GC) - DL											
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene, 1,1'-oxybis-	3200		48	mg/Kg		04/16/24 10:36	04/18/24 14:10	10			
1,1'-Biphenyl	1100		48	mg/Kg		04/16/24 10:36	04/18/24 14:10	10			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
n-Octacosane (Surr)	103		60 - 138			04/16/24 10:36	04/18/24 14:10	10			

Client Sample ID: SP # 3 Lab Sample ID: 570-180649-10

Date Collected: 04/15/24 10:14 Date Received: 04/15/24 17:51

Method: SW846 8015B - Diesel Range Organics (DRO) (GC) - DL								
	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene, 1,1'-oxybis-	9400	250	mg/Kg		04/16/24 10:36	04/18/24 14:34	50

Eurofins Calscience

Matrix: Soil

Client Sample Results

Client: Northstar Environmental Remediation

Project/Site: Genesis

Lab Sample ID: 570-180649-10

Client Sample ID: SP # 3 Date Collected: 04/15/24 10:14

Matrix: Soil

Job ID: 570-180649-1

Date Received: 04/15/24 17:51

Method: SW846 8015B - Diesel Range Organics (DRO) (GC) - DL (Continued) Result Qualifier Unit D Prepared Analyzed Dil Fac 250 04/16/24 10:36 04/18/24 14:34 1,1'-Biphenyl 3400 mg/Kg Surrogate %Recovery Qualifier Limits Dil Fac Prepared Analyzed 60 - 138 04/16/24 10:36 n-Octacosane (Surr) 119 04/18/24 14:34 50

Client Sample ID: SP # 4 Lab Sample ID: 570-180649-11

Date Collected: 04/15/24 10:16 **Matrix: Soil**

Date Received: 04/15/24 17:51

Method: SW846 8015B - Diesel Range Organics (DRO) (GC) - DL Analyte Result Qualifier RL Unit Dil Fac D Prepared Analyzed 500 Benzene, 1,1'-oxybis-16000 mg/Kg 04/16/24 10:36 04/18/24 14:59 100 1,1'-Biphenyl 5600 500 mg/Kg 04/16/24 10:36 04/18/24 14:59 100 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 60 - 138 04/16/24 10:36 100 n-Octacosane (Surr) 146 S1+ 04/18/24 14:59

Eurofins Calscience

Surrogate Summary

Client: Northstar Environmental Remediation Job ID: 570-180649-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Soil Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(60-138)	
570-180649-7 - DL	Composite (Samples 1-6)	157 S1+	
570-180649-7 MS - DL	Composite (Samples 1-6)	143 S1+	
570-180649-7 MSD - DL	Composite (Samples 1-6)	144 S1+	
570-180649-8 - DL	SP # 1	112	
570-180649-9 - DL	SP#2	103	
570-180649-10 - DL	SP#3	119	
570-180649-11 - DL	SP#4	146 S1+	
Surrogate Legend			
OTCSN = n-Octacosane	(Surr)		

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(60-138)	
LCS 570-431082/2-A	Lab Control Sample	79	
LCSD 570-431082/3-A	Lab Control Sample Dup	85	
MB 570-431082/1-A	Method Blank	77	
Surrogate Legend			

5

7

9

44

12

1 A

Matrix: Soil

Client Sample ID: Bin # RB23103

Date Collected: 04/15/24 09:45 Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-1

Matrix: Soil

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Composite		1			431085	04/16/24 10:39	KZX6	EET CAL 4
	Instrume	nt ID: NOEQUIP								

Client Sample ID: Bin # 5247

Date Collected: 04/15/24 09:50 Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-2 Matrix: Soil

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 431085 04/16/24 10:39 KZX6 EET CAL 4 Analysis Composite

Instrument ID: NOEQUIP

Client Sample ID: Bin # PT1416 Lab Sample ID: 570-180649-3

Date Collected: 04/15/24 10:05 Date Received: 04/15/24 17:51

Batch Dil Initial Batch Final Batch Prepared Method or Analyzed Prep Type Type Run Factor Amount Amount Number Analyst Lab Total/NA Analysis Composite 431085 04/16/24 10:39 KZX6 EET CAL 4 Instrument ID: NOEQUIP

Client Sample ID: Bin # PT6369 Lab Sample ID: 570-180649-4 Matrix: Soil

Date Collected: 04/15/24 10:00 Date Received: 04/15/24 17:51

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Type Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Composite 431085 04/16/24 10:39 KZX6 EET CAL 4 Instrument ID: NOEQUIP

Client Sample ID: Bin # 5063

Lab Sample ID: 570-180649-5 Date Collected: 04/15/24 10:20 Matrix: Soil

Date Received: 04/15/24 17:51

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Composite		1			431085	04/16/24 10:39	KZX6	EET CAL 4
	Instrumo	nt ID: NOFOLIID								

Client Sample ID: Bin # 4917

Date Collected: 04/15/24 10:25 **Matrix: Soil**

Date Received: 04/15/24 17:51

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Composite		1			431085	04/16/24 10:39	KZX6	EET CAL 4
	Instrument	ID: NOEQUIP								

Eurofins Calscience

Lab Sample ID: 570-180649-6

Project/Site: Genesis

Client Sample ID: Composite (Samples 1-6)

Client: Northstar Environmental Remediation

Date Collected: 04/15/24 10:25 Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-7

Matrix: Soil

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL		9.88 g	10 mL	431082	04/16/24 10:36	JE	EET CAL 4
Total/NA	Analysis	8015B	DL	100	1 mL	1 mL	431965	04/18/24 13:21	SP9M	EET CAL 4
	Instrume	nt ID: GC70B								
Total/NA	Prep	3050B			1.97 g	50 mL	431005	04/16/24 07:11	GYR8	EET CAL 4
Total/NA	Analysis	6010B		5			431635	04/17/24 12:53	VZ0K	EET CAL 4
	Instrume	nt ID: ICP10								
Total/NA	Prep	3050B			1.97 g	50 mL	431005	04/16/24 07:11	GYR8	EET CAL 4
Total/NA	Analysis	6010B		5			431628	04/17/24 13:57	VZ0K	EET CAL 4
	Instrume	nt ID: ICP11								
Total/NA	Prep	7471A			0.50 g	50 mL	431178	04/16/24 13:15	VCN7	EET CAL 4
Total/NA	Analysis	7471A		1			431099	04/16/24 16:35	ECX6	EET CAL 4
	Instrume	nt ID: HG8								

Client Sample ID: SP # 1

Date Collected: 04/15/24 10:10

Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-8

Matrix: Soil

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL		10.14 g	10 mL	431082	04/16/24 10:36	JE	EET CAL 4
Total/NA	Analysis	8015B	DL	20	1 mL	1 mL	431965	04/18/24 13:46	SP9M	EET CAL 4
	Instrume	nt ID: GC70B								

Client Sample ID: SP # 2

Date Collected: 04/15/24 10:12

Date Received: 04/15/24 17:51

Lab Sample ID: 570-180649-9

Lab Sample ID: 570-180649-10

Matrix: Soil

Matrix: Soil

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL		10.39 g	10 mL	431082	04/16/24 10:36	JE	EET CAL 4
Total/NA	Analysis	8015B	DL	10	1 mL	1 mL	431965	04/18/24 14:10	SP9M	EET CAL 4
	Instrume	nt ID: GC70B								

Client Sample ID: SP # 3

Date Collected: 04/15/24 10:14

Date Received: 04/15/24 17:51

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL		10.16 g	10 mL	431082	04/16/24 10:36	JE	EET CAL 4
Total/NA	Analysis	8015B	DL	50	1 mL	1 mL	431965	04/18/24 14:34	SP9M	EET CAL 4
	Instrume	nt ID: GC70B								

4/18/2024

Lab Chronicle

Client: Northstar Environmental Remediation

Project/Site: Genesis

Lab Sample ID: 570-180649-11

Matrix: Soil

Job ID: 570-180649-1

Date Collected: 04/15/24 10:16 Date Received: 04/15/24 17:51

Client Sample ID: SP # 4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL		9.97 g	10 mL	431082	04/16/24 10:36	JE	EET CAL 4
Total/NA	Analysis	8015B	DL	100	1 mL	1 mL	431965	04/18/24 14:59	SP9M	EET CAL 4
	Instrume	nt ID: GC70B								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-180649-1

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-431082/1-A

Lab Sample ID: LCS 570-431082/2-A

Matrix: Solid

Benzene, 1,1'-oxybis-1,1'-Biphenyl

Matrix: Solid

Analysis Batch: 431566

Analyte

Analysis Batch: 431566

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 431082

MB	MB						
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
ND		5.0	mg/Kg		04/16/24 10:36	04/17/24 18:29	1
ND		5.0	mg/Kg		04/16/24 10:36	04/17/24 18:29	1

MB MB

%Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed n-Octacosane (Surr) 77 60 - 138 04/16/24 10:36 04/17/24 18:29

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 431082

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Benzene, 1,1'-oxybis-	100	76.2	mg/K	g	76	68 - 120	
1,1'-Biphenyl	100	74.4	mg/K	g	74	57 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 79 60 - 138

Lab Sample ID: LCSD 570-431082/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 431566

Prep Type: Total/NA

Prep Batch: 431082

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene, 1,1'-oxybis-	100	70.8		mg/Kg		71	68 - 120	7	20	
1,1'-Biphenyl	100	80.5		mg/Kg		80	57 - 120	8	20	

LCSD LCSD

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 85 60 - 138

Method: 8015B - Diesel Range Organics (DRO) (GC) - DL

Lab Sample ID: 570-180649-7 MS

Matrix: Soil

Analysis Batch: 431965

Client Sample ID: Composite (Samples 1-6)

Prep Type: Total/NA **Prep Batch: 431082**

Spike MS MS %Rec Sample Sample Result Qualifier Result Qualifier Added Unit Limits %Rec Benzene, 1,1'-oxybis- - DL 25000 103 22200 4 -2669 68 - 120 mg/Kg 1,1'-Biphenyl - DL 103 57 - 120 8900 8000 4 mg/Kg -854

MS MS

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) - DL 143 S1+ 60 - 138

Lab Sample ID: 570-180649-7 MSD **Matrix: Soil**

Analysis Batch: 431965

Client Sample ID: Composite (Samples 1-6)

Prep Type: Total/NA

Prep Batch: 431082

MSD MSD Sample Sample Spike %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Benzene, 1,1'-oxybis- - DL 25000 98 1 21800 4 -3187 68 - 120 2 20 mg/Kg 1,1'-Biphenyl - DL 8900 98.1 7860 4 -1039 57 - 120 mg/Kg

Eurofins Calscience

Page 16 of 25

10

4/18/2024

QC Sample Results

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-180649-1

Method: 8015B - Diesel Range Organics (DRO) (GC) - DL (Continued)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
n-Octacosane (Surr) - DL	144	S1+	60 - 138

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 570-431005/1-A ^5

Matrix: Solid

Analysis Batch: 431635

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 431005

Analysis Batom 401000							i rop Baton.	401000
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		1.5	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Arsenic	ND		3.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Barium	ND		3.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Beryllium	ND		0.50	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Cadmium	ND		0.50	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Cobalt	ND		1.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Chromium	ND		1.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Copper	ND		2.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Molybdenum	ND		2.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Nickel	ND		2.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Antimony	ND		10	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Selenium	ND		3.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Thallium	ND		10	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Vanadium	ND		1.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Zinc	ND		5.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5
Lead	ND		2.0	mg/Kg		04/16/24 06:48	04/17/24 12:31	5

Lab Sample ID: LCSD 570-431005/3-A ^5

Matrix: Solid

Analysis Batch: 431635

Client Sample ID: Lab Control Sample Dup	9
Prep Type: Total/NA	4
Prop Ratch: 43100	5

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silver	25.3	24.3		mg/Kg		96	80 - 120	2	20
Arsenic	50.5	47.6		mg/Kg		94	80 - 120	2	20
Barium	50.5	49.0		mg/Kg		97	80 - 120	2	20
Beryllium	50.5	48.9		mg/Kg		97	80 - 120	2	20
Cadmium	50.5	47.9		mg/Kg		95	80 - 120	1	20
Cobalt	50.5	49.3		mg/Kg		98	80 - 120	2	20
Chromium	50.5	48.9		mg/Kg		97	80 - 120	2	20
Copper	50.5	48.4		mg/Kg		96	80 - 120	2	20
Molybdenum	50.5	50.1		mg/Kg		99	80 - 120	2	20
Nickel	50.5	49.1		mg/Kg		97	80 - 120	2	20
Antimony	50.5	51.1		mg/Kg		101	80 - 120	1	20
Selenium	50.5	44.9		mg/Kg		89	80 - 120	3	20
Thallium	50.5	48.0		mg/Kg		95	80 - 120	2	20
Vanadium	50.5	48.4		mg/Kg		96	80 - 120	2	20
Zinc	50.5	47.6		mg/Kg		94	80 - 120	1	20
Lead	50.5	48.8		mg/Kg		97	80 - 120	1	20

Page 17 of 25

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-180649-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 570-180658-A-1-B MS ^5

Matrix: Solid

Analysis Batch: 431628

Client Sample ID: Matrix Spike **Prep Type: Total/NA**

Prep Batch: 431005

Samp	e Sample	Spike	MS	MS				%Rec	
Analyte Resu	lt Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Silver	D	25.0	24.9		mg/Kg		100	75 - 125	
Arsenic N	D	50.0	47.5		mg/Kg		95	75 - 125	
Barium 4	3	50.0	53.7		mg/Kg		99	75 - 125	
Beryllium N	D	50.0	49.4		mg/Kg		99	75 - 125	
Cadmium N	D	50.0	48.3		mg/Kg		97	75 - 125	
Cobalt 1	3	50.0	50.3		mg/Kg		98	75 - 125	
Chromium 7	6	50.0	61.6		mg/Kg		108	75 - 125	
Copper 5	7	50.0	57.6		mg/Kg		104	75 - 125	
Molybdenum N	D	50.0	49.7		mg/Kg		99	75 - 125	
Nickel 3	2	50.0	52.3		mg/Kg		98	75 - 125	
Antimony N	D	50.0	44.7		mg/Kg		89	75 - 125	
Selenium N	D	50.0	45.4		mg/Kg		91	75 - 125	
Thallium N	D F1	50.0	35.9	F1	mg/Kg		72	75 - 125	
Vanadium 6	2	50.0	58.7		mg/Kg		105	75 - 125	
Zinc	3	50.0	61.6		mg/Kg		98	75 - 125	
Lead 2	7	50.0	51.6		mg/Kg		98	75 - 125	

Lab Sample ID: 570-180658-A-1-C MSD ^5

Matrix: Solid

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Analysis Batch: 431628									Prep I	Batch: 4	31005
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silver	ND		24.9	22.9		mg/Kg		92	75 - 125	8	20
Arsenic	ND		49.8	44.2		mg/Kg		89	75 - 125	7	20
Barium	4.3		49.8	51.5		mg/Kg		95	75 - 125	4	20
Beryllium	ND		49.8	45.5		mg/Kg		91	75 - 125	8	20
Cadmium	ND		49.8	44.5		mg/Kg		89	75 - 125	8	20
Cobalt	1.3		49.8	46.4		mg/Kg		91	75 - 125	8	20
Chromium	7.6		49.8	57.7		mg/Kg		101	75 - 125	6	20
Copper	5.7		49.8	52.9		mg/Kg		95	75 - 125	9	20
Molybdenum	ND		49.8	49.5		mg/Kg		99	75 - 125	0	20
Nickel	3.2		49.8	48.5		mg/Kg		91	75 - 125	8	20
Antimony	ND		49.8	44.5		mg/Kg		90	75 - 125	0	20
Selenium	ND		49.8	41.3		mg/Kg		83	75 - 125	9	20
Thallium	ND	F1	49.8	32.9	F1	mg/Kg		66	75 - 125	9	20
Vanadium	6.2		49.8	54.7		mg/Kg		98	75 - 125	7	20
Zinc	13		49.8	57.0		mg/Kg		89	75 - 125	8	20
Lead	2.7		49.8	47.7		mg/Kg		91	75 - 125	8	20

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 570-431178/1-A

Matrix: Solid

Analysis Batch: 431099

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 431178

Result Qualifier Analyte RL Unit Prepared Analyzed Dil Fac ND 0.080 04/16/24 13:15 04/16/24 14:59 Mercury mg/Kg

Eurofins Calscience

QC Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-180649-1

Project/Site: Genesis

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 570-180656-A-1-E MS

Lab Sample ID: LCS 570-431178/2-A		Client Sample ID: Lab Control Sample
Matrix: Solid		Prep Type: Total/NA
Analysis Batch: 431099		Prep Batch: 431178
	0.11	0/ 5

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.392	0.350		mg/Kg		89	80 - 120	

Lab Sample ID: LCSD 570-431178/3-A Matrix: Solid				Clie	nt Sam	ple ID:	Lab Contro Prep	ol Sampl Type: To	
Analysis Batch: 431099						Prep	Batch: 4	31178	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.392	0.332		mg/Kg		85	80 - 120	5	10

Matrix: Solid									Prep	Type: Total/NA
Analysis Batch: 431099									Prep	Batch: 431178
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		0.385	0.352		mg/Kg		83	80 - 120	

L	Mercury	ND		0.385	0.352		mg/Kg	83	č	60 - 120	
	 Lab Sample ID: 570-180656-A-1-F MSI)					C	Client Sample I	D: N	Matrix Spike Duplic	cate
	Matrix: Solid									Prep Type: Total	I/NA
	Analysis Batch: 431099									Prep Batch: 431	1178
	Sa	ample	Sample	Spike	MSD I	MSD			•	%Rec	RPD

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.385	0.349		mg/Kg		82	80 - 120	1	20

2

3

4

6

R

10

Client Sample ID: Matrix Spike

11

12

14

4 -

4/18/2024

QC Association Summary

Client: Northstar Environmental Remediation

Job ID: 570-180649-1 Project/Site: Genesis

GC Semi VOA

Prep Batch: 431082

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-180649-7 - DL	Composite (Samples 1-6)	Total/NA	Soil	3550C	
570-180649-8 - DL	SP # 1	Total/NA	Soil	3550C	
570-180649-9 - DL	SP#2	Total/NA	Soil	3550C	
570-180649-10 - DL	SP#3	Total/NA	Soil	3550C	
570-180649-11 - DL	SP#4	Total/NA	Soil	3550C	
MB 570-431082/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-431082/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-431082/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
570-180649-7 MS - DL	Composite (Samples 1-6)	Total/NA	Soil	3550C	
570-180649-7 MSD - DL	Composite (Samples 1-6)	Total/NA	Soil	3550C	

Analysis Batch: 431566

Lab Sample ID MB 570-431082/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 8015B	Prep Batch 431082
LCS 570-431082/2-A	Lab Control Sample	Total/NA	Solid	8015B	431082
LCSD 570-431082/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	431082

Analysis Batch: 431965

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-180649-7 - DL	Composite (Samples 1-6)	Total/NA	Soil	8015B	431082
570-180649-8 - DL	SP # 1	Total/NA	Soil	8015B	431082
570-180649-9 - DL	SP#2	Total/NA	Soil	8015B	431082
570-180649-10 - DL	SP#3	Total/NA	Soil	8015B	431082
570-180649-11 - DL	SP#4	Total/NA	Soil	8015B	431082
570-180649-7 MS - DL	Composite (Samples 1-6)	Total/NA	Soil	8015B	431082
570-180649-7 MSD - DL	Composite (Samples 1-6)	Total/NA	Soil	8015B	431082

Metals

Prep Batch: 431005

Lab Sample ID 570-180649-7	Client Sample ID Composite (Samples 1-6)	Prep Type Total/NA	Matrix Soil	Method 3050B	Prep Batch
MB 570-431005/1-A ^5	Method Blank	Total/NA	Solid	3050B	
LCSD 570-431005/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	3050B	
570-180658-A-1-B MS ^5	Matrix Spike	Total/NA	Solid	3050B	
570-180658-A-1-C MSD ^5	Matrix Spike Duplicate	Total/NA	Solid	3050B	

Analysis Batch: 431099

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-180649-7	Composite (Samples 1-6)	Total/NA	Soil	7471A	431178
MB 570-431178/1-A	Method Blank	Total/NA	Solid	7471A	431178
LCS 570-431178/2-A	Lab Control Sample	Total/NA	Solid	7471A	431178
LCSD 570-431178/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	431178
570-180656-A-1-E MS	Matrix Spike	Total/NA	Solid	7471A	431178
570-180656-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	431178

Prep Batch: 431178

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-180649-7	Composite (Samples 1-6)	Total/NA	Soil	7471A	
MB 570-431178/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 570-431178/2-A	Lab Control Sample	Total/NA	Solid	7471A	

Eurofins Calscience

Page 20 of 25

QC Association Summary

Client: Northstar Environmental Remediation Job ID: 57

Project/Site: Genesis

Metals (Continued)

Prep Batch: 431178 (Continued)

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS	SD 570-431178/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
570	-180656-A-1-E MS	Matrix Spike	Total/NA	Solid	7471A	
570	-180656-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	

Analysis Batch: 431628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-180649-7	Composite (Samples 1-6)	Total/NA	Soil	6010B	431005
570-180658-A-1-B MS	^5 Matrix Spike	Total/NA	Solid	6010B	431005
570-180658-A-1-C MSI	O ^5 Matrix Spike Duplicate	Total/NA	Solid	6010B	431005

Analysis Batch: 431635

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-180649-7	Composite (Samples 1-6)	Total/NA	Soil	6010B	431005
MB 570-431005/1-A ^5	Method Blank	Total/NA	Solid	6010B	431005
LCSD 570-431005/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	6010B	431005

Organic Prep

Analysis Batch: 431085

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-180649-1	Bin # RB23103	Total/NA	Soil	Composite	
570-180649-2	Bin # 5247	Total/NA	Soil	Composite	
570-180649-3	Bin # PT1416	Total/NA	Soil	Composite	
570-180649-4	Bin # PT6369	Total/NA	Soil	Composite	
570-180649-5	Bin # 5063	Total/NA	Soil	Composite	
570-180649-6	Bin # 4917	Total/NA	Soil	Composite	

3

6

8

9

11

12

1 1

Accreditation/Certification Summary

Client: Northstar Environmental Remediation

Job ID: 570-180649-1 Project/Site: Genesis

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

у	Progra	am	Identification Number	Expiration Date
a	State		3082	07-31-24
he following analytes ส	are included in this report, bu	it the laboratory is not certif	ied by the governing authority. This lis	t may include analytes
or which the agency do	oes not offer certification.			
nalysis Method	Prep Method	Matrix	Analyte	
010B	3050B	Soil	Antimony	
010B	3050B	Soil	Arsenic	
010B	3050B	Soil	Barium	
010B	3050B	Soil	Beryllium	
010B	3050B	Soil	Cadmium	
010B	3050B	Soil	Chromium	
010B	3050B	Soil	Cobalt	
010B	3050B	Soil	Copper	
010B	3050B	Soil	Lead	
010B	3050B	Soil	Molybdenum	
010B	3050B	Soil	Nickel	
010B	3050B	Soil	Selenium	
010B	3050B	Soil	Silver	
010B	3050B	Soil	Thallium	
010B	3050B	Soil	Vanadium	
010B	3050B	Soil	Zinc	
471A	7471A	Soil	Mercury	
015B	3550C	Soil	1,1'-Biphenyl	
015B	3550C	Soil	Benzene, 1,1'-oxybis-	
Composite		Soil	Composited	

Method Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-180649-1

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
6010B	Metals (ICP)	SW846	EET CAL 4
7471A	Mercury (CVAA)	SW846	EET CAL 4
Composite	Sample Compositing	None	EET CAL 4
3050B	Preparation, Metals	SW846	EET CAL 4
3550C	Ultrasonic Extraction	SW846	EET CAL 4
7471A	Preparation, Mercury	SW846	EET CAL 4

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

6

a

10

13

14

2841 Dow Avenue Tustin CA 92780 (714) 730-7950

Chain of Custody Record

💸 eurofins

(714) 780-7800	Sampler			Lab I							Carri	er Tracking	No(s)		C	OC No:			
Client Information	R. DeLaParra			She E-Ma	eri Fama						State	of Origin:			P.	age:		44000000000000000000000000000000000000	
Client Contact: Mr Arlin Brewster	(949) 702-0968				ri.fama@	Deurofir	set.co	<u>om</u>				fornia			Р	age 1 of 1	i		
Compary Northstar Environmental Remediation			PWSID.					Δ:	nalv	sis R	eques	ted			Jo	ob #:			
Address:	Due Date Requeste	ed					T		laly	13 10	Jques		T	ı	P	reservation	n Codes		
26225 Enterprise Court													' (I II						
City Lake Forest	TAT Requested (da	ays)			24 - 17 - 17 ANA					Į									
State Zip	Standards A																		
CA, 92630	Compliance Project	t ∆ Yes /	No																
Phone ⁻ (949) 274-1719	PO #: 196-004-07									1			570)-18064	49 Cha	ain of Cus	stody		
Email	WO#:				18	2							١.		г ж	D1 \4/stss	1,	- MCAA	
Arlin.Brewster@NorthstarER.com	Project #:				SS OF	Diesel + Motor				6			1 1		ers K	- DI Water (- EDTA	W	/ pH 4-5	
Project Name: Genesis	Project #.				e (Yes	+				(601					containers	. EDA	Z	other (spec	cify)
Site:	SSOW#:				mpl (Y)	l e			ر د	stals					og o	ther			
Genesis					ered Sam MS/MSD		;		8260B - Total VOCs	TCLP - RCRA 8 Metals (6010)					er of				
			Sample	Matrix (W=water	MS	8016M Therminol	Title 22 Metals		otal	GRA					Total Number	Spec	ial Inetr	uctions/N	Inte
		Sample	Type (C=comp,	S=solid,	orm o	E G	22 N	rury n	[]	ě.					ž			OT require	
Sample Identification	Sample Date	Time	G=grab) BT	0=waste/oll, =Tissue, A=Air	Field Filt Perform	8016M	Title	Meroury	8260	170					Tot				
		> <	Preservation		XX	1 1		1	1	1					X				
Bin # RB23 103	4-15-29	0945	6	s		Х	X								1	(omp	105 }+	-c al	1
Bn 井 5247		0950	6			X	X			_					1	Bin	Sami	c al	6)
B.n# PT1416		1005				X	X			_					1	Bin W/a	port	as	
B.n# PT 6369		1000			Ш	K	X								1	Bin	Com	posite	Sour
B.n # 5063		1020				X	X								1	W/a	tim	eop	1025
B.n # 49 (7		1025				X	X								1	6			
SP#-		lolu			11	1	+								1				
Sp # 2 Sp # 3 Sp # 4		1012		_	++-	X	+	1			_		1		1				
2) # Z		-		_	+	<u>λ</u>	+	-		_	_	-	++		i				
		1014			+	-	+	-	\vdash	_			1	_	-				
SD # 4	_	1016				X									1				
							\top												
Possible Hazard Identification				-	Sai	mple Di	sposa	I (A	fee n	nay be	asses	sed if s	ample	are ret	tained	longer th	ian 1 mo	onth)	
Non-Hazard Flammable Skin Irritant	Poison B 🗀 Unkr	nown 🗆	Radiological			Retu	ırn To	Clien	nt		Dispo	sal By L	ab		rchive	e For		Months	
Deliverable Requested II III IV Other (specify)					Spe	ecial Ins	tructio	ns/Q	C Re	quirem	ents								
Empty Kit Relinquished by		Date			Time.							Method o	f Shipme	ent:					
Relinguistra by	Date/Time:	240	12010	mpany	B) -	Received	by.	1	7				Date/1	ime:	L/	17:5	- 1 0	ompany E	C
Relinquished by:	7-11 -	290	1/) (/	JULYA.	JAV	Received	l bur	ije	6				Y-	15~ 2	7	1/.5		ompany	
relinquisned by:	Dater i me.			прапу		Received	a by						Date/	n46.				outparty	
Custody Seals Intact: Custody Seal No.						Cooler T	empera	ture(s)	°C an	d Other	Remarks	:				1 -		501	
Δ Yes Δ No														2	(1)	/ 2	. /	/	4

Login Sample Receipt Checklist

Client: Northstar Environmental Remediation Job Number: 570-180649-1

Login Number: 180649 List Source: Eurofins Calscience

List Number: 1

Creator: Fama, Sheri M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	False	Sample compositing requested.
Residual Chlorine Checked.	True	

2

5

4

6

9

11

42

14

12

14

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630

Generated 6/26/2024 2:23:11 PM

JOB DESCRIPTION

Genesis

JOB NUMBER

570-187307-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 6/26/2024 2:23:11 PM

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
Lab Chronicle	10
QC Sample Results	11
QC Association Summary	13
Certification Summary	14
Method Summary	15
Chain of Custody	16
Receipt Checklists	17

4

5

9

10

12

Definitions/Glossary

Client: Northstar Environmental Remediation

Job ID: 570-187307-1 Project/Site: Genesis

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
-----------	-----------------------

LCS/LCSD RPD exceeds control limits.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive 0C**Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Calscience

Page 4 of 17 6/26/2024

Case Narrative

Client: Northstar Environmental Remediation

Project: Genesis

Job ID: 570-187307-1 Eurofins Calscience

Job Narrative 570-187307-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/7/2024 10:10 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C.

Diesel Range Organics

Method 8015B_DRO: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 570-449057 and analytical batch 570-452056 recovered outside control limits for the following analytes: 1,1'-Biphenyl.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Calscience

Page 5 of 17 6/26/2024

2

Job ID: 570-187307-1

3

4

5

7

ŏ

9

12

Sample Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-187307-1

٠.	ojood onto. O	0110010		

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-187307-1	LTU #1	Solid	06/06/24 18:20	06/07/24 10:10
570-187307-2	LTU #2	Solid	06/06/24 18:22	06/07/24 10:10
570-187307-3	LTU #3	Solid	06/06/24 18:24	06/07/24 10:10

0-107307-1

3

4

0

8

9

11

12

11

Detection Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Client Sample ID: LTU #1

Job ID: 570-187307-1

I ab	Sample	ID: 57	0-1873	07-1

Analyte	Result Qualifier	RL	Unit	Dil Fac [Method	Prep Type
Benzene, 1,1'-oxybis DL	6100	250	mg/Kg	50	8015B	Total/NA
1,1'-Biphenyl - DL	2200 *1	250	mg/Kg	50	8015B	Total/NA

Client Sample ID: LTU #2 Lab Sample ID: 570-187307-2

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Benzene, 1,1'-oxybis DL	7600	250	mg/Kg	50	8015B	Total/NA
1,1'-Biphenyl - DL	2700 *1	250	mg/Kg	50	8015B	Total/NA

Client Sample ID: LTU #3 Lab Sample ID: 570-187307-3

Analyte	Result Qualifier	RL	Unit	Dil Fac	Method	Prep Type
Benzene, 1,1'-oxybis-	3100	50	mg/Kg	10	8015B	Total/NA
1.1'-Biphenyl	890 *1	50	ma/Ka	10	8015B	Total/NA

6/26/2024

3

8

9

10

14

Client Sample Results

Client: Northstar Environmental Remediation

Project/Site: Genesis

Client Sample ID: LTU #1 Lab Sample ID: 570-187307-1

Date Collected: 06/06/24 18:20 Date Received: 06/07/24 10:10

Matrix: Solid

Job ID: 570-187307-1

Method: SW846 8015B -	Diesel Range Or	ganics (DF	RO) (GC) - DL					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	6100		250	mg/Kg		06/08/24 15:29	06/24/24 21:05	50
1,1'-Biphenyl	2200	*1	250	mg/Kg		06/08/24 15:29	06/24/24 21:05	50
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	82		60 - 138			06/08/24 15:29	06/24/24 21:05	50

Client Sample ID: LTU #2 Lab Sample ID: 570-187307-2 Matrix: Solid

250

250

Unit

mg/Kg

mg/Kg

Date Collected: 06/06/24 18:22

Date Received: 06/07/24 10:10

Benzene, 1,1'-oxybis-

n-Octacosane (Surr)

1,1'-Biphenyl

Surrogate

D	Prepared	Analyzed	Dil Fac
	06/08/24 15:29	06/24/24 21:29	50
	06/08/24 15:29	06/24/24 21:29	50
	Prepared	Analyzed	Dil Fac

06/08/24 15:29 06/24/24 21:29

Client Sample ID: LTU #3 Lab Sample ID: 570-187307-3

Limits

60 - 138

Date Collected: 06/06/24 18:24

Date Received: 06/07/24 10:10

Method: SW846 8015B - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B - Diesel Range Organics (DRO) (GC) - DL

Result Qualifier

7600

2700 *1

%Recovery Qualifier

92

Method. SWOTO OUTSD -	nod. 344040 00 13b - Dieser Range Organics (DRO) (GO)								
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene, 1,1'-oxybis-	3100	50	mg/Kg		06/08/24 15:29	06/24/24 19:09	10		
1,1'-Biphenyl	890 *1	50	mg/Kg		06/08/24 15:29	06/24/24 19:09	10		
0	0/5	1.1			5	A t	D# F		

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac n-Octacosane (Surr) 91 60 - 138 06/08/24 15:29 06/24/24 19:09

50

Matrix: Solid

Surrogate Summary

Client: Northstar Environmental Remediation Job ID: 570-187307-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
ab Sample ID	Client Sample ID	(60-138)	
570-187307-1 - DL	LTU #1	82	
570-187307-1 MS - DL	LTU #1	79	
70-187307-1 MSD - DL	LTU #1	80	
570-187307-2 - DL	LTU #2	92	
570-187307-3	LTU #3	91	
.CS 570-449057/2-A	Lab Control Sample	78	
CSD 570-449057/3-A	Lab Control Sample Dup	70	
MB 570-449057/1-A	Method Blank	66	
Surrogate Legend			

Eurofins Calscience

Page 9 of 17 6/26/2024

Lab Chronicle

Client: Northstar Environmental Remediation

Project/Site: Genesis

Lab Sample ID: 570-187307-1

ab Sample 15. 370-107307-1

Matrix: Solid

Job ID: 570-187307-1

Date Collected: 06/06/24 18:20 Date Received: 06/07/24 10:10

Client Sample ID: LTU #1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL		10.04 g	10 mL	449057	06/08/24 15:29	NV8K	EET CAL 4
Total/NA	Analysis	8015B	DL	50	1 mL	1 mL	454024	06/24/24 21:05	SP9M	EET CAL 4
	Instrumer	nt ID: GC70B								

Client Sample ID: LTU #2 Lab Sample ID: 570-187307-2

Matrix: Solid

Date Collected: 06/06/24 18:22 Date Received: 06/07/24 10:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL		10.03 g	10 mL	449057	06/08/24 15:29	NV8K	EET CAL 4
Total/NA	Analysis	8015B	DL	50	1 mL	1 mL	454024	06/24/24 21:29	SP9M	EET CAL 4
	Instrumer	t ID: GC70B								

Client Sample ID: LTU #3 Lab Sample ID: 570-187307-3

Date Collected: 06/06/24 18:24 Matrix: Solid

Date Received: 06/07/24 10:10

Dil Initial Batch Batch Final Batch Prepared **Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed Analyst Lab Total/NA Prep 3550C 10.01 g 10 mL 449057 06/08/24 15:29 NV8K EET CAL 4 Total/NA Analysis 8015B 1 mL 454024 06/24/24 19:09 SP9M EET CAL 4 10 1 mL Instrument ID: GC70B

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

3

<u>-</u>5

6

9

11

12

14

Client: Northstar Environmental Remediation Job ID: 570-187307-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-449057/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 452056

Prep Type: Total/NA

Prep Batch: 449057

MB MB Result Qualifier RL Unit Prepared Analyzed Dil Fac Analyte 06/08/24 15:29 Benzene, 1,1'-oxybis-ND 5.0 mg/Kg 06/18/24 20:02 1,1'-Biphenyl ND 5.0 mg/Kg 06/08/24 15:29 06/18/24 20:02

MB MB

Surrogate %Recovery Qualifier I imite Prepared Analyzed Dil Fac n-Octacosane (Surr) 66 60 - 138 06/08/24 15:29 06/18/24 20:02

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 449057

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit D %Rec 68 - 120 Benzene, 1,1'-oxybis-100 84.8 mg/Kg 85 mg/Kg 1,1'-Biphenyl 100 92.2 92 57 - 120

LCS LCS

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138 78

Lab Sample ID: LCSD 570-449057/3-A

Lab Sample ID: LCS 570-449057/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 454363

Analysis Batch: 452056

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 449057 RPD

Spike LCSD LCSD %Rec Result Qualifier Limits RPD Analyte Added Unit %Rec Limit 100 76 68 - 120 Benzene, 1,1'-oxybis-76.1 mg/Kg 11 20 74.5 *1 100 74 57 - 120 1,1'-Biphenyl mg/Kg 21 20

LCSD LCSD

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138

Method: 8015B - Diesel Range Organics (DRO) (GC) - DL

Client Sample ID: LTU #1 Lab Sample ID: 570-187307-1 MS **Matrix: Solid** Prep Type: Total/NA Prep Batch: 449057

Analysis Batch: 454024

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Benzene, 1,1'-oxybis- - DL 6100 99.2 6030 4 -122 68 - 120 mg/Kg 99.2 2180 4 57 - 120 1,1'-Biphenyl - DL 2200 *1 mg/Kg 10

MS MS

%Recovery Qualifier Limits Surrogate n-Octacosane (Surr) - DL 79 60 - 138

Lab Sample ID: 570-187307-1 MSD

Matrix: Solid

Analysis Batch: 454024

Client Sample ID: LTU #1 Prep Type: Total/NA Prep Batch: 449057

%Rec MSD MSD **RPD** Sample Sample Spike Result Qualifier Added Result Qualifier %Rec Limits RPD Analyte Unit Limit Benzene, 1,1'-oxybis- - DL 6100 99.8 6480 4 327 68 - 120 20 mg/Kg 1,1'-Biphenyl - DL 2200 *1 99.8 2330 4 mg/Kg 162 57 - 120 20

Eurofins Calscience

Page 11 of 17

QC Sample Results

Client: Northstar Environmental Remediation Job ID: 570-187307-1

Project/Site: Genesis

Method: 8015B - Diesel Range Organics (DRO) (GC) - DL (Continued)

	MSD MSD	
Surrogate	%Recovery Qualifier	Limits
n-Octacosane (Surr) - DL	80	60 - 138

QC Association Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-187307-1

GC Semi VOA

Prep Batch: 449057

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-187307-1 - DL	LTU #1	Total/NA	Solid	3550C	
570-187307-2 - DL	LTU #2	Total/NA	Solid	3550C	
570-187307-3	LTU #3	Total/NA	Solid	3550C	
MB 570-449057/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-449057/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-449057/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
570-187307-1 MS - DL	LTU #1	Total/NA	Solid	3550C	
570-187307-1 MSD - DL	LTU #1	Total/NA	Solid	3550C	

Analysis Batch: 452056

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-449057/1-A	Method Blank	Total/NA	Solid	8015B	449057
LCSD 570-449057/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	449057

Analysis Batch: 454024

Lab Sample ID 570-187307-1 - DL	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 8015B	Prep Batch 449057
570-187307-2 - DL	LTU #2	Total/NA	Solid	8015B	449057
570-187307-3	LTU #3	Total/NA	Solid	8015B	449057
570-187307-1 MS - DL	LTU #1	Total/NA	Solid	8015B	449057
570-187307-1 MSD - DL	LTU #1	Total/NA	Solid	8015B	449057

Analysis Batch: 454363

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 570-449057/2-A	Lab Control Sample	Total/NA	Solid	8015B	449057

Accreditation/Certification Summary

Client: Northstar Environmental Remediation Job ID: 570-187307-1

Project/Site: Genesis

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ıthority	Progra	am	Identification Number	Expiration Date
lifornia	State		3082	07-31-24
The following analyte	s are included in this reno	rt but the laboratory is r	not certified by the governing authori	ty This list may inc
0 ,	•	•	for certified by the governing authori	ty. This list may inc
for which the agency	does not offer certification	I.	, , ,	ty. This list may inc
0 ,	•	•	Analyte 1,1'-Biphenyl	ty. This list may me

3

4

7

9

11

12

14

Method Summary

Client: Northstar Environmental Remediation

Project/Site: Genesis

Job ID: 570-187307-1

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3550C	Ultrasonic Extraction	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

9

-

4

e

9

4 4

46

13

-

Eurofins Calscience

2841 Dow Avenue Tustin CA 92780

Chain of Custody Record

Loc: 570 187307

💸 eurofins

Environment Testing America

(714) 730-7950															
Client Information	Sampler A. Br	ewster 2741		Sh	PM. en Fa	ma						Carrier Trac	king No(s)		COC No.
Client Contact: Mr. Arlin Brewster	Phone: 949	2741	F19	E-N sh	lail eri.fam	na@e	eurofi	inset.	com			State of Original California	in.		Page: Page 1 of 1
Company [*]			PW\$ID.		T										Job#:
Northstar Environmental Remediation	<u> </u>		<u> </u>						A	naly	sis R	equested			
Address. 26225 Enterprise Court	Due Date Request	ed.			1 1			ļ							Preservation Codes
City City	TAT Requested (da	avs)			- 1										A HCL M Hexane B NaOH N None
Lake Forest	Standard														C Zn Acetate O AsNaO2
State, Zip					- 1	W. Commercial Commerci		į							D - Nitric Acid P Na2O4S E NaHSO4 Q Na2SO3
CA, 92630	Compliance Project	t: A Yes	∆ No		_	ni ari									E NaHSO4 Q Na2SO3 F MeOH R Na2S2O3
Phone: (949) 274-1719	PO#: 196-004-07														G - Amchlor S - H2SO4
Email.	WO#		·		- 일		i	ō							H Ascorbic Acid T TSP Dodecahydrate I - Ice U Acetone
Arlın.Brewster@NorthstarER.com					o	or No)		Motor						2	J DI Water V - MCAA
Project Name:	Project #:							Σ .			(6010)			ine	K - EDTA W pH 4-5 L EDA Z - other (specify)
Genesis	2221111				음	ξes.		Diesel +			9) 8			containers	Other ·
Site: Genesis	SSOW#:				E a	0	_ 1	ă		S	Metals			of co	Other
00110310						MS/MSD (Yes	8015M Therminol	e lue	,	Total VOCs	60 I				
			Sample	Matrix	tere	28	mai .	8015B Gasoline		otal	- RCRA			Number	Special Instructions/Note
		Comple	Type	(W≔water S≃solid,	Ē	E	F C	8 6	È		R.			ž	EDF file NOT required
Samula Identification	Sample Date	Sample Time	(C=comp,	O=waste/oil, BT≔Tissue, A=A		Perform	015	8015B	Mercury	8260B	TCLP			Total	
Sample Identification	Outilpie Date			ition Code:			200	ω F	- 2	80	-			<u> </u>	
	11/21	100	-		- / Y	4	2	'		1				\	
LTU #1	6/6/24	1820	С	S	೭		X)	_						1	
LTU #2		1822	С	S	윈		X							1	
LTU #3	V	१८४५	С	S	ž									1	
LTU#4			-	S	- 2		_								
					\Box	1			\neg						
					++	_	_			\perp					
															stody
					\Box										nost in the second of the seco
					++	_	-		-						<u> </u>
							l								Jo L
					\top										
					++	\perp	_	_	_	+	_			-	
							İ								307
					\top	\top									187
					++		_		_	1				_	-029
															w
Possible Hazard Identification			<u> </u>		15	Sam	ple D	ispos	sal (A	fee n	ay be	assessed i	samples are re	etaine	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant Poisc	n B 🗀 Unkno	own \square F	Radiological] Reti	um To	o Clier	nt	X	Disposal By	Lab 🗆	⊐rchi	ve For Months
Deliverable Requested Other (specify)					3						quirem				
Empty Kit Relinquished by		Date.			Tim	ie				7		Metho	d of Shipment:	-	
Relinquished by	Date/Time. 6/7/24	(2 /		Company	1	R	eceive	ed by.		/			Date/Time:		Company
umbr		3 (010		Company Worth	<u>Stai</u>			ri	4				6/7/2	4	
Relinquished by	Date/Time.			Company		R	eceive	ed by.	1				Date/Time:		Company
Custody Seals Intact: Custody Seal No Δ Yes Δ No						С	ooler 7	Tempe	rature(s	s) °C an	Other	Remarks	2-9/3	ت	544

nny9

Page 16 of 17

Ver. 01/16/2019 6/26/2024

Login Sample Receipt Checklist

Client: Northstar Environmental Remediation

Job Number: 570-187307-1

Login Number: 187307 List Source: Eurofins Calscience

List Number: 1

Creator: Mouton, Alain

Creator. Mouton, Alam		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

6

۹ Q

11

12

14