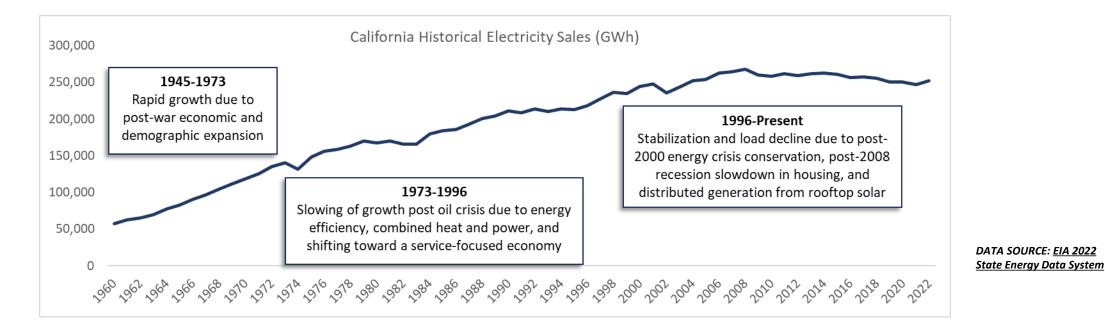
DOCKETED	
Docket Number:	24-IEPR-03
Project Title:	Electricity Demand Forecast
TN #:	256421
Document Title:	Presentation - Forecasting Electric System Impacts of New Large Loads Challenges and Opportunities
Description:	Daniel Nelli, Jennifer Goncalves, and Shengnan Shao, PG&E
Filer:	Raquel Kravitz
Organization:	PG&E
Submitter Role:	Public Agency
Submission Date:	5/16/2024 8:20:56 AM
Docketed Date:	5/16/2024

Forecasting Electric System Impacts of New Large Loads: Challenges and Opportunities

Daniel Nelli, PG&E May 16, 2024

- New large loads present a load growth opportunity, which deviates from historical trends and may not be captured by current forecasting methodology.
- PG&E currently has ~4,000 MW (installed capacity) of large load applications, the majority being data centers. However, new large load forecasting is challenging due to numerous uncertainties.
- PG&E combines data and expert assessments to quantify forecast uncertainty.
- PG&E anticipates using its forecasting approach, including the Delphi method, to address uncertainties in data center load.
- Hydrogen production is another example of new large load. PG&E has completed a forecast for the electricity impact of hydrogen fuel cell electric vehicles.
- PG&E looks forward to collaborating with the CEC on the IEPR's large load forecasting process.

Motivation and Level-setting


New large loads present a load growth opportunity, which deviates from historical trends and may not be captured by current forecasting methodology.

- Driven by decarbonization and emerging industries, new large load applications have been entering the interconnection queue.
 - Data centers

PGSF

- Manufacturing
- Hydrogen manufacturing
- Industrial loads are currently forecast using regression-based approaches, which rely on historical trends.

- The potential impact represents a departure from the relatively flat or declining electricity demand over the past 15 years.
- Forecasting these loads is important due to impacts on:
 - Interconnection planning
 - Resource adequacy and generation planning
 - California's infrastructure and economy

Challenges of Forecasting New Large Loads

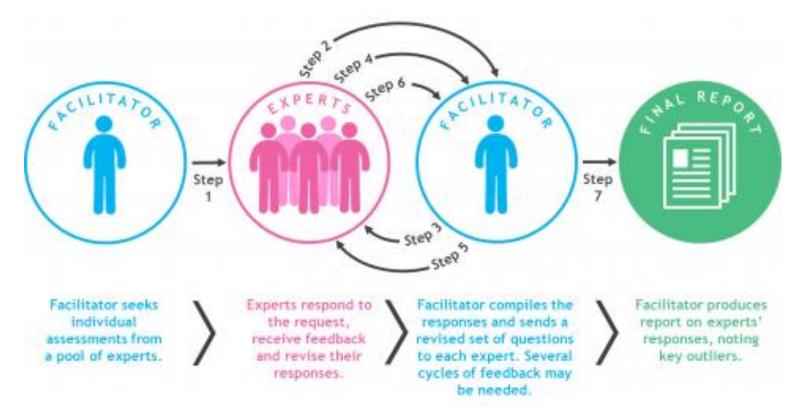
PG&E currently has ~4,000 MW (installed capacity) of large load applications, the majority being data centers. However, new large load forecasting is challenging due to numerous uncertainties.

Forecasting Challenges:

PGSF

- Inherent uncertainty due to often developing nature of industry
- Discrete, yet difficult-to-predict timeline
- Installed capacity vs. load materialization
- Location dependence
- Behind-the-meter resources and generation
- Limited historical data that may not be representative of future trends

PG&E's approach to forecasting uncertainty

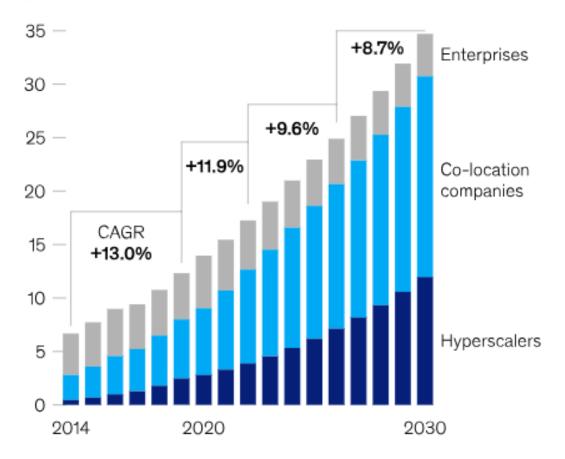

PG&E combines data and expert assessments to quantify forecast uncertainty.

 PG&E begins its forecast development by looking at external sources for information and data.

PG<mark>S</mark>E

- PG&E also employs the Delphi Method with its internal subject matter experts, relying on expert assessments to establish assumptions about uncertain attributes.
- PG&E uses this forecasting methodology to estimate behind-the-meter generation (e.g., PV) and storage, electric vehicles (including hydrogenpowered), building electrification, and energy efficiency.

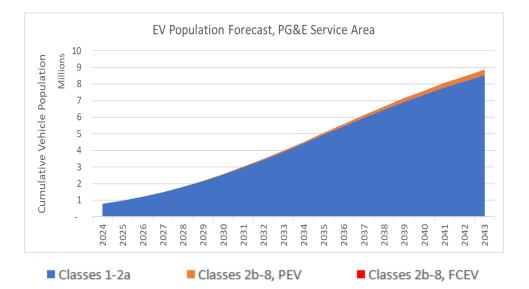
General Delphi Method

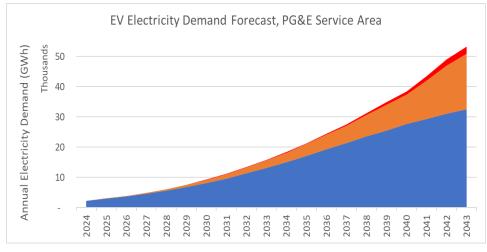


Opportunities for Forecasting New Large Loads: Data Centers

PG&E anticipates using its forecasting approach, including the Delphi method, to address uncertainties in data center load.

Data center power consumption, by providers/enterprises,¹ gigawatts


PFSF



- Most third-party estimates of data center growth align around 10% CAGR over the next ~5 years.
- A 2022 study* showed significant divergence of global data center energy estimates (150-8,000 TWh in 2030).
- Key uncertainties (to investigate using Delphi method):
 - Pace of construction
 - Pace of interconnection
 - Impacts of future energy efficiency
 - The impact of generative AI
 - Behind-the-meter generation
 - Load factor
 - Peak impact
 - Pace of load materialization
 - Location-specific considerations

Opportunities for Forecasting New Large Loads: Hydrogen for Fuel Cell Electric Vehicles (FCEVs)

Hydrogen production is another example of new large load. PG&E has completed a forecast for the electricity impact of hydrogen fuel cell electric vehicles.

- We assume a small portion* of future medium- and heavy-duty electric vehicles will be FCEVs (rather than plug-in electric vehicles/PEVs), comparable to the CEC's assumption in its 2023 IEPR.
- We assume 1) a minority of hydrogen necessary to power these FCEVs is produced via electrolysis which will increase PG&E's retail electricity sales, and 2) FCEVs are less efficient than PEVs – when considering total energy required to move the vehicle (including losses).
- Key uncertainties:
 - Future growth of hydrogen FCEVs
 - Method of hydrogen production
 - Location of hydrogen production
 - Hydrogen FCEV and electrolyzer energy conversion efficiency

GRAPHIC SOURCE: PG&E

- PG&E looks forward to collaborating with the CEC on the IEPR's large load forecasting process. For example, aligning on:
 - Data sources
 - Forecasting methodology
- PG&E will continue advancing its own data center forecasting methodologies to inform its load forecast.