DOCKETED	
Docket Number:	00-AFC-01C
Project Title:	Contra Costa Power Plant Project Compliance
TN #:	255292
Document Title:	Annual Compliance Report RY 2023 for the PG&E Gateway Generating Station
Description:	N/A
Filer:	Angel B. Espiritu
Organization:	PG&E Gateway Generating Station
Submitter Role:	Applicant Representative
Submission Date:	3/27/2024 6:42:06 AM
Docketed Date:	3/27/2024

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509 (925) 522-7801

March 25, 2024

Mr. John Heiser Compliance Project Manager California Energy Commission Siting, Transmission and Environmental Protection Division 1516 Ninth Street, MS-15 Sacramento, CA 95814

Reference: PG&E Gateway Generating Station (00-AFC-01C)

Subject: <u>Annual Compliance Report for Reporting Period of January 1, 2023, to</u> December 31, 2023

Dear Mr. Heiser,

In compliance with the General Condition of Certification as set forth in the California Energy Commission's Final Decision for Pacific Gas and Electric Company Gateway Generating Station (GGS) pages 179-180, attached is the Annual Compliance Report for the reporting period of January 1, 2023, to December 31, 2023.

Included in this report are documents specifically required by Conditions of Certification SOILS&WATER-10, SOILS&WATER-4, HAZ-1, and SOILS&WATER-3, BIO-2 to be submitted along with the Annual Compliance Report and are attached herewith as Exhibits 3, 4, 5, 6, and 7, respectively. Also included in this report are updated compliance matrix, Project operating status, and statements of compliance with Conditions of Certifications VIS-1, and VIS-4.

If you have any questions regarding this report, please contact Angel Espiritu at (925) 522-7838, 510-861-1597 (m) or abe4@pge.com.

Sincerely,

Tim Wisdom

Tim Wisdom Senior Plant Manager

Attachments: a/s

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509 (925) 522-7801

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 (Reporting Period: January 1, 2023 - December 31, 2023)

March 31, 2024

Table of Contents

Annual Compliance Report	
Introduction	1
Compliance Activities	
1. Compliance Matrix	1
2. Summary of Project Operating Status	
3. Documents Required by Specific Conditions	1
4. Cumulative Listing of Post Certification Changes	
5. Missed Submittal Deadlines	6
6. List of Filings/Permits	6
7. Projected Compliance Activities for the Succeeding Year	12
8. Listing of Year's Addition to On-site Compliance File	14
9. Evaluation of On-site Contingency Plan	18
10. Complaints, NOVs, and Citations	18
List of Attachments	
1. Updated Compliance Matrix	Exhibit 1
2. Key Events List	Exhibit 2
3. Water Use Summary (SOIL&WATER-10)	Exhibit 3
4. Semi-annual Self-Monitoring Reports to Delta Diablo District	
(SOIL&WATER-4)	Exhibit 4
5. HAZ-1 Appendix C Table 8.12-4 (HAZ-1), and Hazardous	
Materials Inventory as submitted to CUPA through CERS	Exhibit 5
6. Copy of Notice of Intent (NOI), AND Revised SWPPP to	
comply with the requirements of new	
Statewide Industrial General Permit	
(SOIL & WATER-3)	Exhibit 6
7. Biological Record Summaries (BIO-2)	Exhibit 7

Public

Introduction

This document constitutes PG&E's Annual Compliance Report (ACR) for the Gateway Generating Station (GGS) Project. The information contained in this report covers the reporting period of January 2023 to December 2023 (RY 2023).

Compliance Activities

This section of the Annual Compliance Report focuses on PG&E's activities related to ensuring that compliance with all the Conditions of Certification, as specified in the California Energy Commission's Final Decision for the Gateway Generating Station Project, are achieved in a timely and satisfactory manner. The following information is provided per the requirements set forth on page 179 and 180 of the Final Decision, specifically General Conditions on Annual Compliance Report.

- 1. **Updated Compliance Matrix -** The compliance matrix has been updated for the reporting period to reflect the status of all conditions of certification. See matrix in **Exhibit 1**.
- Current Project Operating Status The PG&E Gateway Generating Station (GGS) achieved Plant Commercial Operation status on January 4, 2009. During the reporting period of January 2023 to December 2023, GGS continued its normal commercial operation activities. The Project key events list is included in Exhibit 2.
- 3 **Required Documents Submitted with This Report** The Final Decision sets forth specific conditions, many of which include reporting requirements that must be addressed in the project's ACR. The following paragraphs provide the status of ongoing compliance activities that were completed during the reporting period:
 - 3.1 <u>SOIL&WATER-10</u> GGS utilized potable water, supplied by the City of Antioch. The Water Use Summary for RY 2023 is included in this report as **Exhibit 3**. Also included in Exhibit 3 is monthly water consumption invoices information from the City of Antioch. The total water use for the reporting period is 54.17 AF (acre-feet). The metering devices are owned, and maintained by the City of Antioch,

Gateway Generating Station Project (00-AFC-1C) Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

hence GGS is not allowed to do servicing, testing, and calibration of the metering devices.

- 3.2 <u>VIS-1</u> The maintenance works on treatment of structures, buildings, and tanks at Gateway Generating Station (GGS) were performed on regular basis expeditiously. There are at least 3 separate routine plant inspections, which include among other items, the identification of treatment re-works on structures, buildings, and tanks. These are: (1) Semi-annual (Spring and Fall) Facility-wide Inspection by Safety Committee, (2) Weekly Plant Engineer's Walk-down, and (3) Daily Plant Technician's Walk-down Inspection. In each of these inspections, maintenance work is identified (as may be needed), and a job request notification is submitted. At GGS, there is Work Management (SAP) System which tracks job requests to ensure that works are completed in a timely manner.
- 3.3 <u>VIS-4</u> In compliance with the Condition of Certification VIS-4, GGS confirms that appropriate maintenance was performed to ensure continued establishment (of growth) of the planted trees and shrubs. A suitable drip irrigation system, equipped with automatic sprinkler timer, was installed and is in operation.
- 3.4 <u>SOIL&WATER-4</u> In compliance with Condition of Certification SOIL&WATER-4, attached in Exhibit 4a are copies of Quarterly Self-Monitoring Reports submitted to and received by the Delta Diablo (DD) on April 17, 2023, July 13, 2023, October 11, 2023, and January 11, 2024, to cover the reporting year (RY) 2023. Attached in Exhibit 4b is the status on agency citation.
- 3.5 <u>HAZ-1</u> In compliance with Condition of Certification HAZ-1, attached in **Exhibit 5** is Updated Table 8.12-4: Hazardous Materials to be Added at Gateway Generating Station During the Operational

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

Phase (of the Project). Also, a copy of Interim Update of August 23, 2023 on Hazardous Materials Inventory as submitted to Local CUPA (Contra Costa Health Services) through the California Environmental Reporting System (CERS) is attached.

- 3.6 <u>SOIL & WATER-3</u> In compliance with Condition of Certification SOIL & WATER-3, a copy of the correspondence with the State Water Resources Control Board, through SMARTS (Stormwater Application & Report Tracking Systems) on the most current NOI and Revised SWPPP to comply with the requirements of the Industrial General Permit (WQ Order No. 2014-0057-DWQ) is submitted with this ACR. (See **Exhibit 6**.)
- 3.7 <u>BIO-2</u> In compliance with Condition of Certification BIO-2, the biology record summaries of the tasks described in BIO-2 is submitted with this ACR. (See Exhibit 7)
- 4. **Cumulative Listing of All Post-Certification Changes Approved by the CEC** – The following is a cumulative listing of all post-certification changes as approved by the CEC or cleared by the CPM.
 - 4.1 <u>ORDER Approving Addition, of Pacific Gas and Electric Company as</u> <u>Co-Owner and Operator with Mirant Delta, LLC on the Gateway</u> <u>Power Plant Unit 8 Project</u> – Approved on July 19, 2006.
 - 4.2 <u>Removing Mirant Delta LLC As A Co-Owner, And Changing The</u> <u>Name Of The Project To The Gateway Generating Station</u> – Approved on January 3, 2008
 - 4.3 <u>Order to Change Construction Work Hours And Noise-8 for the</u> <u>Gateway Generating Station</u> – Approved on May 23, 2007
 - 4.4 <u>Order Amending the Energy Commission Decision to Eliminate the</u> <u>use of San Joaquin River Water as the Cooling Water Source and</u> <u>Complete Ten Associated project design Changes</u> - Approved on August 1, 2007

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 - Reporting Period: January 1, 2023, to December 31, 2023

- 4.5 <u>Order to Amend the Energy Commission Decision to Allow Use of</u> <u>Anhydrous Ammonia as the Refrigerant in the Inlet Air Chiller</u> – Approved on December 5, 2007.
- 4.6 Order Approving a Petition to Amend the Energy Commission Decision to Allow Use of Two Additional Water Tanks – January 2, 2008
- 4.7 <u>Petition for Insignificant Project Change -</u> On February 4, 2008, PG&E filed a request for an insignificant project change related to a modification to the route for the sewer line. The CEC approved PG&E's request on March 10, 2008.
- 4.8 Approval of the Pacific Gas & Electric Company Petition to use a diesel fire pump engine, and make other minor changes to Air Quality Conditions of Certification of the Energy Commission Decision for the Gateway Generating Station (Order Amending the CEC Decision to Modify Equipment & Change Air Quality Conditions of Certification) Approved August 26, 2009.
- 4.9 <u>Commission Adoption Order Adoption of the Proposed Decision of</u> <u>the Siting Committee on the Complaint for Noncompliance</u> -Approved on February 17, 2010
- 4.10 <u>Notice of Approval to Modify Gateway Generating Station Project:</u> <u>Petition for Insignificant Project Change to Plant Facility</u> – Approved on October 18, 2010
- 4.11 <u>On May 27, 2010, the CEC (Mr. Joseph Douglas) approved AQ-SC-</u> <u>11 submittal on the Preliminary Compliance Review on the Authority</u> to Construct Application for the Fire Pump Diesel Engine.
- 4.12 Order Approving a Petition to Modify Several Air Quality Conditions to reflect the Bay Area Management District current conditions and the Prevention of Significant Deterioration (PSD) Action, September 7, 2011.
- 4.13 <u>Notice of Decision by California Energy Commission</u> on: Amendment to Modify Several Air Quality Conditions to Reflect the (BAAQMD)

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

current conditions and the Prevention of Significant Deterioration (PSD) Enforcement Actions, dated and posted: September 9, 2011.

- 4.14 <u>Storage of One Spare Generator Step-Up (GSU) Transformer</u>, January 26, 2012
- 4.15 <u>Notice of Determination on Petition to Install additional 40,000-gallon</u> <u>Storage Tank</u>, April 3, 2012
- 4.16 <u>Approval of Project Change: to Install additional 40,000-gallon</u> <u>Storage Tank</u>, April 19, 2012
- 4.17 <u>Approval of Petition for Insignificant Project Change to Plant Facility</u>: (a) to acquire the 29% aqueous ammonia system (from NRG, Inc., (b) to install a new stainless steel above-ground aqueous ammonia delivery piping system, and (c) to build security fence around the aqueous ammonia system and remainder of the west side of facility property. Staff-level approval: April 9, 2013. A request to modify this petition to include installation of 2 gate structures (one for GGS and the other for NRG, Inc., was sent to CEC on October 23, 2013. The modification was approved on October 23, 2013. A second modification to install only one gate structure for GGS was sent to CEC on November 13, 2014. The second modification was approved on November 13, 2014.
- 4.18 <u>Approval of proposed stormwater BMP: Construction Work to Cover</u> <u>the Asphalt Drainage Ditch</u>: The request was submitted to CEC on October 14, 2013. The request was approved on October 14, 2013.
- 4.19 <u>Approval of proposed construction of additional turbine decking</u>: The request was submitted on May 23, 2014. The request was approved on September 15, 2014.
- 4.20 <u>Approval of proposed access stairs upgrades at three separate</u> <u>switchgear rooms</u>: The request was submitted on August 11, 2014. The request was approved on October 2, 2014.
- 4.21 <u>Approval of proposed installation of fixed hydrogen tube bank at the south side of the facility</u>: The request was submitted on December 5, 2014. The request was approved on March 19, 2015

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

- 4.22 <u>Approval of proposed construction of additional grating-type decking</u> <u>on the east side of the steam turbine</u>: The request was submitted on May 21, 2015. The request was approved on August 14, 2015.
- 4.23 <u>Approval of proposed construction of a temporary stormwater</u> <u>treatment system</u>. The request was submitted on August 26, 2016. The request was approved on December 22, 2016.
- 4.24 Response to a project change questionnaire for work to be conducted by PG&E Gas Department on natural gas pipelines located within the site parcel boundaries of Gateway Generating Station, RE: Removal and Replacement of Underground Natural Gas Pipelines at Gateway Generating Station. The questionnaire was submitted to CEC on January 24, 2019. The CEC responded on March 15, 2019. The CEC determined that the approval by the CEC is not required. However, the trees that would be impacted by the pipeline work would have to be replanted when the work is completed. This is to comply with the Condition of Certification VIS-4.
- 4.25 <u>Approval of Title IV Acid Rain Permit Renewal</u> -The Bay Area Air Quality Management District (BAAQMD) approved the Title IV Acid Rain permit renewal on September 3, 2020. A copy of this permit was submitted to the CEC CPM on September 7, 2020.
- 4.26 <u>Approval of Title V Major Facility Review Permit Renewal</u> The Bay Area Air Quality Management District (BAAQMD) approved the Title V Major Facility Review permit renewal on September 3, 2020. A copy of this permit was submitted to the CEC CPM on September 7, 2020.
- 5. Missed Submittal Deadline: None
- 6. Filings Submitted to / Permits Issued by Other Government. Agencies During the Reporting Period - The following is a list of filings submitted to, or permits issued by other government agencies during the reporting period:
 - 6.1. January 12, 2023 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: October 2022 to December 2022

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 - Reporting Period: January 1, 2023, to December 31, 2023

- 6.2. January 12, 2023 GGS submitted to DD the Result of Resampling for Zinc (in response to Warning Notice dated 12/30/2022)
- 6.3. January 23, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for December 2022
- 6.4. January 26, 2023 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q4-2022 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.5. January 26, 2023 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q4-2022 was submitted to CEC/BAAQMD
- 6.6. January 27, 2023 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2022 (Part 75 Compliance)
- 6.7. January 30, 2023 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on December 26, 2022 in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.8. February 16, 2023 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on January 19, 2023, in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.9. February 23, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for January 2023
- 6.10. February 27, 2023 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on February 3, 2023, in Storm Water Multiple Application and Report Tracking Systems (SMARTS)

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 - Reporting Period: January 1, 2023, to December 31, 2023

- 6.11. February 27, 2023 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Annual Update for 2022, through the California Environmental Reporting System (CERS)
- 6.12. February 28, 2023 The revised Priority Pollutant Exemption Form with Certification Statement was re-submitted to DD.
- 6.13. February 28, 2023 (Condition of Certification AQ-29, AQ-30, AQ-31, AQ-32) GGS submitted to BAAQMD/CEC Source Test Report and 2023 Relative Accuracy Test Audit & Compliance Test Report. The tests were completed January 9-13, 2023.
- 6.14. March 10, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for February 2023
- 6.15. March 20, 2023 (General Condition of Certification, pages 179-180): GGS submitted the Annual Compliance Report for RY 2022
- 6.16. March 30, 2023 submitted Notification of limit exceedance to Delta diablo Sanitation District on 2023 Q1 self-monitoring for parameter metal zinc.
- 6.17. April 17, 2023 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: January 2023 to March 2023
- 6.18. April 17, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for March 2023
- 6.19. April 17, 2023 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q1-2023 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.20. April 17, 2023 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q1 2023 was submitted to CEC/BAAQMD
- 6.21. April 17, 2023 GGS submitted to BAAQMD the Permit to Operate

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

(PTO) Renewal Data update (July 2023-August 2024)

- 6.22. April 24, 2023 GGS submitted to BAAQMD/CEC the Semi-annual Monitoring report for the period October 1, 2023 to March 31, 2023. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit.
- 6.23. April 24, 2023 submitted result of first resampling to Delta Diablo Sanitation District on parameter metal zinc.
- 6.24. April 26, 2023 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q1-2023 (Part 75 Compliance)
- 6.25. May 10, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for April 2023
- 6.26. May 11, 2023 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Notification on Visual Emission Evaluation for the earliest anticipated re-start date of May 26, 2023.
- 6.27. June 1, 2023 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Report on Visual Emission Evaluation for the restart dates of May 27, 2023 and May 29, 2023.
- 6.28. June 15, 2023 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.29. June 26, 2023 submitted result of second resampling to Delta Diablo Sanitation District on parameter metal zinc.
- 6.30. June 26, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for May 2023
- 6.31. June 29, 2023 A reportable compliance activity (RCA) was submitted to BAAQMD/CEC. The cold start up mass emission limit for NOx was exceeded.

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

- 6.32. July 6, 2023 A 10-day Follow-up Report was submitted to BAAQMD/CEC on the RCA submitted on June 29, 2023. The cold start up mass emission limit for NOx was exceeded.
- 6.33. July 10, 2023 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, the 2022-2023 Annual Report was submitted to Central Valley Regional Water Quality Control Board
- 6.34. July 13, 2023 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: April 2023 to June 2023
- 6.35. July 19, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for June 2023
- 6.36. July 19, 2023 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q2-2023 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.37. July 20, 2023- (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q2 2023 was submitted to CEC/BAAQMD
- 6.38. July 26, 2023 A 30-day Follow-up Report was submitted to BAAQMD/CEC on the RCA submitted on June 29, 2023. The cold start up mass emission limit for NOx was exceeded.
- 6.39. July 26, 2023 submitted result of third resampling to Delta Diablo Sanitation District on parameter metal zinc.
- 6.40. July 27, 2023 GGS received the renewal on the Permit to Operate (PTO) from BAAQMD. The PTO expires on August 1, 2024.
- 6.41. July 28, 2023 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q2-2023 (Part 75 Compliance)
- 6.42. August 22, 2023 (Condition of Certification AQ-33) GGS submitted

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

to BAAQMD Monthly CEMS Report for July 2023

- 6.43. August 23, 2023 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Interim Update Aug 23, 2023, through the California Environmental Reporting System (CERS)
- 6.44. September 25, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for August 2023
- 6.45. September 27, 2023 GGS submitted to BAAQMD/EPA, and copied CEC, on the Annual Compliance Certification for the reporting period of September 1, 2022 to August 31, 2023 as required under permit condition I.G of the Major Facility Review (Title V) permit.
- 6.46. October 11, 2023 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: July 2023 to September 2023
- 6.47. October 24, 2023 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q3-2023 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.48. October 25, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for September 2023
- 6.49. October 26, 2023 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q3 2023 was submitted to CEC/BAAQMD
- 6.50. October 26, 2023 GGS submitted to BAAQMD/CEC the Semiannual Monitoring report for the period April 1, 2023 to September 30, 2023. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit
- 6.51. October 26, 2023 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q3-2023 (Part 75 Compliance)

Annual Compliance Report No. 15 - Reporting Period: January 1, 2023, to December 31, 2023

Gateway Generating Station Project (00-AFC-1C)

- 6.52. November 22, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for October 2023
- 6.53. December 11, 2023 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.54. December 12, 2023 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for November 2023
- 6.55. December 16, 2023 (Conditions of Certification AQ-31) GGS submitted to BAAQMD and CEC the 2024 Annual RATA and Source Test Protocol for the proposed dates of January22-26, 2024
- Projected Compliance Activities for Next Year (RY January 1, 2024 December 31, 2024) - The following is a list of compliance activities/documents that PG&E anticipates for the January 1, 2024 to December 31, 2024 reporting period:
 - 7.1 (Condition of Certification AQ-14) Quarterly Air Compliance Reports will be submitted within 30 days after the reporting period
 - 7.2 (Condition of Certification AQ-33) Monthly CEMS Reports will be submitted to BAAQMD within 30 days after the reporting period
 - 7.3 (Air Quality Compliance) PG&E anticipates the issuance of Permit to Operate (PTO Annual Renewal) in July 2024
 - 7.4 Quarterly Air Quality EDR reports to EPA due on January 30, 2024, April 30, 2024, July 30, 2024, and October 30, 2024
 - 7.5 Quarterly Self-Monitoring Reports to DD due on January 15, 2024, April 15, 2024, July 15, 2024, and October 15, 2024
 - 7.6 Quarterly Industrial Flow Data Report to DD due January 15, 2024, April 15, 2024, July 15, 2024, and October 15, 2024
 - 7.7 Annual HMBP update due to CCHS on March 1, 2024

Gateway Generating Station Project (00-AFC-1C) Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

- 7.8 2023-2024 Annual Report to comply with General Permit for Storm Water Associated with Industrial Activity, due to Central Valley Regional Water Quality Control Board on July 15, 2024
- 7.9 Sampling results of all qualified storm events due to Central Valley Regional Water Quality Control Board within 30 days of receiving analytical results from laboratory.
- 7.10 (Conditions of Certification AQ-30 and AQ-31) To submit to BAAQMD and CEC the Annual Source Test and RATA Plan for 2025
- 7.11 (Conditions of Certification AQ-29, AQ-30, AQ-31, and AQ-32) To submit to BAAQMD and CEC Source Test Report and 2024 Relative Accuracy Test Audit & Compliance Test Report within 60 days of test date.
- 7.12 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on January 30, 2024, April 30, 2024, July 30, 2024, and October 30, 2024
- 7.13 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the CO Projected Exceedance Date (on semi-annual basis). This is incompliance with the requirement of Paragraph 11 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on June 15, 2024, and December 15, 2024.
- 7.14 To submit to BAAQMD/EPA Annual and Semi-annual Title V reports. These reports are due on September 30, 2024, April 30, 2024, and October 30, 2024, respectively.
- 7.15 (Conditions of Certification General Conditions) CEC Annual Compliance Report for RY2023 due March 30, 2024, as prearranged with the CPM

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 - Reporting Period: January 1, 2023, to December 31, 2023

8. **Listing of the Year's Addition to Compliance File** - During the reporting period, the following compliance submittals were submitted to the CEC CPM and other regulatory agencies as required for review and approval.

Date	То	Condition	Subject
1/12/2023	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: Oct 2022 to Dec 2022
1/23/2023	BAAQMD	AQ-33	Monthly CEMS Report for December 2022
1/26/2023	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q4-2022
1/26/2023	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q4-2022
1/27/2023	EPA	Part 75	EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-202
1/30/2023	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Dec 26, 2022
2/16/2023	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Jan 19, 2023
2/23/2023	BAAQMD	AQ-33	Monthly CEMS Report for January 2023
2/27/2023	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on Feb 3, 2023
2/27/2023	CCHS/CERS		Hazardous Materials Business Plan Annual Update for 2022
2/28/2023	DD	SOILS&WATER- 4	Revised Priority Pollutant Exemption Form/Certification Statement re-submitted

Date	То	Condition	Subject
2/28/2023	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Source Test Report and 2023 Relative Accuracy Test Audit and Compliance Test Report; the tests were completed January 9- 13, 2023
3/10/2023	BAAQMD	AQ-33	Monthly CEMS Report for February 2023
3/20/2023	CEC	GEN (pp.179- 180)	Annual Compliance Report #14 RY 2022
3/30/2023	DD	SOILS&WATER- 4	Submitted Notification of limit exceedance in 2023 Q1 self- monitoring
4/17/2023	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: January 2023 to March 2023
4/17/2023	BAAQMD	AQ-33	Monthly CEMS Report for March 2023
4/17/2023	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q1-2023
4/17/2023	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q1 2023
4/17/2023	BAAQMD	РТО	PTO Renewal Data Update
4/24/2023	DD	SOILS&WATER- 4	Submitted result of first resampling for metal zinc
4/24/2023	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Oct 1, 2022 to Mar 31, 2023
4/26/2023	EPA	Part 75	EPA ECMPS (EDR) for Q1-2023
5/10/2023	BAAQMD	AQ-33	Monthly CEMS Report for April 2023
5/11/2023	CEC/BAAQMD	AQ-SC13	Notification on Visual Emission Evaluation (VEE) for May 26, 2023 Restart

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 15 - Reporting Period: January 1, 2023, to December 31, 2023

Date	То	Condition	Subject
6/1/2023	CEC/BAAQMD	AQ-SC13	Report on Visual Emission Evaluation (VEE) for May 27, 2023, and May 29, 2023 Restart
6/15/2023	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date
6/26/2023	BAAQMD	AQ-33	Monthly CEMS Report for May 2023
6/26/2023	DD	SOILS&WATER- 4	Submitted result of second resampling for metal zinc
6/29/2023	BAAQMD/CEC	AQ-20, AQ-33, Title V	Reportable compliance activity, RCA, The cold start mass emission limit for NOx was exceeded
7/6/2023	BAAQMD/CEC	AQ-20, AQ-33, Title V	10-day Follow-up report on RCA submitted on 6/29/2023. The cold start mass emission limit for NOx was exceeded
7/10/2023	CVRWQCB- SMARTS	IGP	Storm Water Annual Report for 2022-2023
7/13/2023	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: April 2023 to June 2023
7/19/2023	BAAQMD	AQ-33	Monthly CEMS Report for June 2023
7/19/2023	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q2-2023
7/20/2023	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q2 2023
7/26/2023	DD	SOILS&WATER- 4	Submitted result of third resampling for metal zinc
7/26/2023	BAAQMD/CEC	AQ-20, AQ-33, Title V	30-day Follow-up report on RCA submitted on 6/29/2023. The cold start mass emission limit for NOx was exceeded
7/28/2023	EPA	Part 75	EPA ECMPS EDR for Q2-2023

Date	То	Condition	Subject
8/22/2023	BAAQMD	AQ-33	Monthly CEMS Report for July 2023
8/23/2023	CCHS/CERS		Hazardous Materials Business Plan Interim Update Aug 23, 2023
9/25/2023	BAAQMD	AQ-33	Monthly CEMS Report for August 2023
9/27/2023	BAAQMD/EPA /CEC	Title V	Annual Compliance Certification (Sep 1, 2022- Aug 31, 2023)
10/11/2023	DD	SOILS&WATER- 4	Quarterly Self-Monitoring Report for the period: July 2023 to September 2023
10/24/2023	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q3-2023
10/25/2023	BAAQMD	AQ-33	Monthly CEMS Report for September 2023
10/26/2023	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q3 2023
10/26/2023	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Apr 1, 2023 to Sep 30, 2023
10/26/2023	EPA	Part 75	EPA ECMPS EDR for Q3-2023
11/22/2023	BAAQMD	AQ-33	Monthly CEMS Report for October 2023
12/11/2023	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date

Gateway Generating Station Project (00-AFC-1C) Annual Compliance Report No. 15 – Reporting Period: January 1, 2023, to December 31, 2023

Date	То	Condition	Subject
12/12/2023	BAAQMD	AQ-33	Monthly CEMS Report for November 2023
12/26/2023	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Notification on 2024 Source Test and Relative Accuracy Test Audit for Jan 22-26, 2024

- 9. Evaluation of On-site Contingency Plan The On-site Contingency Plan for Unexpected Facility Closure (previously submitted to CEC 12/30/2008) has been evaluated. PG&E determined that the plan is adequate and does not need revision. PG&E, however, will continue to evaluate the plan and make necessary revisions as may be needed. A copy of the revision will be submitted to CEC promptly.
- Listing of Complaints, NOVs, Citations Received A Notice of Violation (NOV) with compliance schedule dated May 4, 2023, was received from the Delta diablo Sanitation District on zinc limit violation. See Exhibit 4b for details.

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 15

Exhibit 1 Updated Compliance Matrix

PG&E Gateway Generating Station Project California Energy Commission Compliance Matrix

December 31, 2023

Color Code Legend

Construction Phase Commissioning Condition Phase Condition

Operations Phase Condition Submitted / Approved / Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-13	3_OPS	CTs and HRSGs shall be fired on gas with a maximum sulfur content of no greater than 1 grain per 100 standard cubic feet.	Conduct monthly sulfur analysis and incorporate results into QAQR.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-14	3_OPS		Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-15	3_OPS	Combined heat input rate to each power train shall not exceed 49,950 MM BTU per calendar day.	Demonstrate compliance in QAQR due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-16	3_OPS	Combined cumulative heat input rate for the CTs and HRSG shall not exceed 34,900,000 MM BTU per year.	Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-17	3_OPS	HRSG duct burners shall not be fired without CT in operation.	Include info on date, time, an duration of any violation in Quarterly Air Quality Reports (due January 30, April 30, July 30, and October 30)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-18	3_OPS	CT 1 and HRSG 1 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-19	3_OPS	CT 2 and HRSG 2 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-20	3_OPS		Provide info listed in Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-21	3_OPS	Regulated air pollutant mass emission rates shall not exceed limits shown in the Condition. (PSD)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-22	3_OPS	(PSD).	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-23	3_OPS	Total combined emissions from CTs and HRSG shall not exceed limits specified in Condition during any calendar day.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 (of each year) Public	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	

PG&E Gateway Generating Station Project California Energy Commission Compliance Matrix December 31, 2023

Construction Phase Commissioning Condition Phase Condition Operations Phase Condition Submitted Approved / Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-24	3_OPS		Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-25	3_OPS	Maximum projected annual toxic air contaminant emissions from CTs and HRSGs shall not exceed limits specified in Condition.	Owner shall perform a health risk assessment using emission rates determined by source test and most current BAAQMD approved procedures and unit risk factors in effect at the time of the analysis.	Within 60 days of source test date	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-26	3_OPS	Demonstrate compliance with Conditions AQ-14 through 17, 20(a) through 20 (d), 21, 23 (a), 24(a), and 24(b) with CEMs during all hours of operation including equipment startup and shutdowns for all parameters listed in Condition.	Detailed plan on how the measurements and recordings will be performed. CEMS Monitoring Plan	At least 60 days prior to initial operation	8/21/2008		Submitted to CEC & BAAQMD	Record keeping to demonstrate compliance is on- going.
AQ-27	3_OPS	Calculate and record daily the POC, PM10, and SO2 from each power train using actual heat input rates calculated per AQ-26, actual CT startup and shutdown times, and CEC/BAAQMD approved emission factors to calculate emissions. (See additional reporting requirements listed in Condition.)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-28	3_OPS	Calculate and record on an annual basis the maximum projected emissions of formaldehyde, benzene, and specified PAHs.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-30	3_OPS	Conduct District approved source test on exhaust points while CTs and HRSGs are operating at max. load and min. load to demonstrate compliance with AQ- 20, and to verify accuracy of CEMS (per Condition AQ- 26).	Submit Source Test Protocols /Conduct Source Test 60 days of initial operation and annually thereafter	Within 60 days of first fire, & annually thereafter	Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			
AQ-31a	3_OPS	Obtain approval for all source test procedures from BAAQMD Source Test Section and CPM prior to conducting tests.	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates .	At least 7 days prior to source test dates	Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			
AQ-31b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/11/2021			
AQ-32a	3_OPS	Conduct source test on exhaust point P-11 or P-12 while CT and HRSGs are operating at maximum allowable operating rates to demonstrate compliance with AQ-25 (see Condition for more details).	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates. Conduct Source test 60 days of initial operation and biennial thereafter	At least 7 days prior to source test dates	Notification: 12/15/2020 (for 2021 ST/RATA), Test (01/11/2021 to 01/15/2021)			

PG&E Gateway Generating Station Project California Energy Commission Compliance Matrix December 31, 2023

Co	lor	Code	Leg	end
----	-----	------	-----	-----

Construction Phase Commissioning Condition Phase Condition Operations Phase Condition Submitted Submitted / Approved / Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-32b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/11/2021			
AQ-33	3_OPS	Submit all reports (monitor breakdowns, CEMS, emission access reports, equipment breakdowns) as required by District Rules or Regulations	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-34	3_OPS	Maintain ongoing records and reports on site for a minimum of 5 years (to include but not limited to: CEMS records (firing hours, fuel flows, emission rates, monitor excesses, breakdowns, etc.). Source and analytical records, natural gas sulfur content analysis results, emission calculation record, plant upsets and related incidents.)	Make records available to BAAQMD, ARB, EPA, and CEC.	Ongoing	N/A		On-going (Records are maintained)	
AQ-35	3_OPS	Notify District and CPM of violation of any permit conditions in accordance with applicable BAAQMD rules and regulations.	Submit written notification to Enforcement Division within 96 hours of the violation.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	event occurred on 10/19/16
AQ-44	3_OPS	Take monthly gas samples.		Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-45b	3_OPS	WSAC shall be properly installed/maintained to minimize drift losses	Sample the water once in July, August and September each year while WSAC is in operation and submit results in QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-46b	3_OPS	Have WSAC field rep inspect drift eliminators and certify installation was performed satisfactorily. Verify that PM10 emissions do not exceed 4.7 lbs/day based on most recent TDS (see formula in condition).	Report calculated PM10 emissions from WSAC in QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-47	3_OPS	Fuel gas preheater shall not be operated more than 16 hours in any day.	Submit verification of hours of operation as part of QACR.	Quarterly after COD (Recurring)	Q1: 4/17/2020, Q2: 7/20/2020, Q3:10/23/2020, Q4: 1/27/2021		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AM-1	3_OPS	Conduct Source Test to determine ammonia emission concentration	Submit the results of Source Test with in 60 days of completion	Annually (recurring)	3/11/2021			
BIO-02	3_OPS	Designated Biologist to submit record summaries in the Annual Compliance Report	Provide statement in the Annual Compliance Report whether any actions that affected biological resources occurred on site for the reporting year.	Annually in ACR	3/24/2020		Submitted with this Annual Compliance Report (ACR)	

PG&E Gateway Generating Station Project California Energy Commission Compliance Matrix December 31, 2023

Color Code Legend

Construction Phase Commissioning Condition Phase Condition Operations Phase Condition Submitted Submitted / Approved / Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
BIO-09	3_OPS	Incorporate a Biological Resource Element that includes biological resource facility closure measures into the facility closure plan and BRMIMP.	at least 12 months prior to commencement of permanent closure activities.	at least 12 months prior to facility closure or earlier if needed				Not needed yet
GEN	3_OPS	Annual Compliance Report (ACR)	Submit Annual Compliance Report (ACR): March 31st of the following calendar year	Annually (recurring)	3/24/2020		Submitted w/ this report	
GEN-09	3_OPS	Submit closure/decommissioning plan	Submit closure/decommissioning plan. Meet with CPM prior to submittal.	12 months prior to closing				Not needed yet
HAZ-01	3_OPS	Do not use any hazardous material not listed in Appendix C of the Final Decision.	Provide list of all hazardous materials used at site in the Annual Compliance Report	Annually in ACR	3/24/2020		Submitted w/ this report (see Exhibit 5)	
PAL-07	3_OPS	Include in facility closure plan a description regarding facility closure activity's potential to impact paleontological resources.	Include description of closure activities.	12 months prior to closure of the facility.				Not needed yet
SOILS & WATER- 03	3_OPS	Keep the CPM informed of any modification to the permit, Stormwater Industrial General Permit (IGP).	Submit to CPM: any modification of IGP, submit copy of correspondence with the County on MS4 permit and CVRWQCB, maintain in SWPPP a copy of NOI.	during operation	3/24/2020		Submitted w/ this report	NOI and revised SWPPP was submitted to Waterboard through SMARTS copied on this report
SOILS & WATER-4	3_OPS	During operation, any monitoring reports provided to DD shall be provided to the CPM. The CPM shall be notified of any violations of discharge limits/amounts	Submit any water quality monitoring required by DD to the CPM in annual compliance report. Submit any NOV from DD to the CPM within 10 days of receipt explaining corrective actions taken.	Annually	3/24/2020		Submitted w/ this report	
SOILS & WATER- 10b	3_OPS	Submit a water use summary to the CPM in the annual compliance report. Also report on the servicing, testing, and calibration of the meters in the ACR.		Annually in ACR	3/24/2020		Submitted with ACR: Water use for RY 2016 = 63.6 AF	

PG&E Gateway Generating Station Project California Energy Commission Compliance Matrix _

Color Code Legend

California Energy Commission Compliance Matrix December 31, 2023			Construction Phase Condition	Commissioning Phase Condition	Operations Phase Condition	Submitted	Submitted / Approved Completed	
CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
TLSN-03	3_OPS	Identify and correct complaints of interference with radio or television communications from operation of transmission line. Maintain record of complaints for first five year of operation	Submit reports of line-related interferences and action taken to CPM for the first five year of operation.	Annually in ACR (for 2009-2013)	No longer required starting in RY 2014			
VIS-04c	3_OPS	Install aesthetic screening (trees) along south, east, and north boundaries	Verify in the annual compliance report that maintenance has been performed	Annually in ACR	3/24/2020		Submitted with ACR: appropriate maintenance was performed in RY 2016	

Key Dates:

ney butes.		
First Fire	11/1/2008	(CT-A = 11/01/08, CT-B = 11/04/08)
Perf. Tests (Target)	12/6/2008	
Source Test (Started)	1/4/2009	Unit A:1/4/2009, Unit B: 01/06/2009
Source Test (Completed)	1/14/2009	For Both Units
COD (Target)	2/5/2009	
COD (Actual)	1/4/2009	
COD (Guaranteed)	2/28/2009	
Aq. Ammonia on Site	12/4/2008	
Steam Blow	11/4/2008	
Install Catalyst (SCR/CO)	11/24/2008	(SCR Catalyst = 11/24/08)
Q4 2009 Report	<mark>1/30/2010</mark>	
Sulfuric Acid on Site	3/1/2009	Planned: March 2009
First Lube	7/14/2008	
Noise Survey(Completed)	1/21/2009	Both Community and in-plant surveys
Sustained output	1/4/2009	
Connection Potable Water	3/17/2008	
Pre-energy E/MF	<mark>5/19/2008</mark>	
Post-energy E/MF	5/9/2009	(W/in 6 mos of start of operation = first synchronization to grid)
First Synchronization	11/10/2008	(First Synchronization to grid: CT-A : 11/11/08, CT-B : 11/10/08)
Start of operation	1/4/2009	
Annual Compliance Report	3/30/2024	RY 2023 ACR

Gateway Generating Station (03-AFC-01)

Annual Compliance Report No. 15

Exhibit 2 Key Events List

KEY EVENTS LIST

PROJECT: GATEWAY GENERATING STATION DOCKET #: 00-AFC-1C

DATE EVENT DESCRIPTION 05-30-01 Date of Certification POWER PLANT SITE ACTIVITIES Start Site Pre-Mobilization 01-08-07 Start Ground Disturbance 02-02-07 03-12-07 Start Grading Start Construction 02-05-07 **Begin Pouring Major Foundation Concrete** 04-09-07 Begin Installation of Major Equipment 02-12-07 Completion of Installation of Major Equipment 10-16-08 First Combustion of Gas Turbine 10-25-08 Start Commercial Operation 12-31-08 Acquisition of second ammonia tank, tank farm December 2013 facility, and associated property **Regulated Substances Deregistration of Anhydrous** 05/23/2016 Ammonia Granted exemption to forego sampling of 126 7/23/2019 priority pollutants per 40CFR423.17(a)(4)(ii) Renewal of Title IV and Title V Permits was 09/03/2020 approved SWITCHYARD & TRANSMISSION TIE-IN **ACTIVITIES** Start Switchyard Construction 10-01-07 Switchyard & Tie-in Complete 04-30-08 Synchronization with Grid and Interconnection 12-01-08 FUEL SUPPLY LINE ACTIVITIES Started Gas Pipeline Construction and 07-13-07 Interconnection 07-01-08

Completed Gas Pipeline Construction

Gateway Generating Station (03-AFC-01)

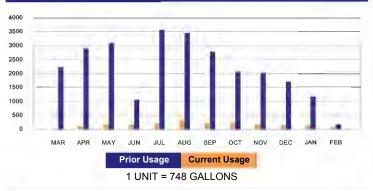
Annual Compliance Report No. 15

Exhibit 3 Water Use Summary and City of Antioch Invoices

(To comply with CEC Condition of Certification: SOIL & WATER-10)

PG&E Gateway Generating Station Water Use Summary Reporting Period: Jan 2023 - Dec 2023

Date	Water Consumption			
	(gals.)	(cu. feet)	(acre-feet)	
Jan-23	57,232	7,650.81	0.18	
Feb-23	614,656	82,167.56	1.89	
Mar-23	1,303,008	174,186.83	4.00	
Apr-23	1,487,248	198,816.14	4.56	
May-23	845,152	112,980.39	2.59	
Jun-23	1,379,840	184,457.78	4.23	
Jul-23	2,656,192	355,081.22	8.15	
Aug-23	2,830,240	378,348.06	8.69	
Sep-23	2,281,440	304,984.17	7.00	
Oct-23	1,851,024	247,445.92	5.68	
Nov-23	1,298,304	173,558.00	3.98	
Dec-23	1,047,424	140,020.22	3.21	
Annual Total:	17,651,760.00	2,359,697.08	54.17	



Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday Utility Billing: (925)779-70 Public Works: (925)779-69

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	117481	117554	73

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

ACCOUNT INFORMATION

004-01511-01
3225 Wilbur Ave
01/01/23 TO 02/01/23
02/02/23

CURRENT CHARGES

WATER		\$332.15
USAGE TIER 1 = 73 Units @ 4.55 / UNIT	\$332.15	
2 " WATER MAINT FEE		\$165.00
SEWER		\$100.23
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$927.20
TOTAL PAYMENTS (LAST PAYMENT 01/26/2023)	(\$927.20)
CURRENT CHARGES DUE 02/23/2023	\$622.48
TOTAL BALANCE	\$622.48

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment	
Ĉoi	ipon
	pon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 01/01/23 TO 02/01/23 02/02/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$0.00 CURRENT CHARGES DUE 02/23/2023 \$622.48 TOTAL BALANCE \$622.48 AMOUNT ENCLOSED REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

€
\mathcal{P}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

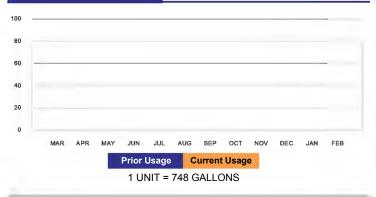
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 01/01/23 TO 02/01/23 02/02/23

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 01/26/2023)	(\$77.50)
CURRENT CHARGES DUE 02/23/2023	\$77.50
TOTAL BALANCE	\$77.50
PAYMENT IS NOW DUE IE NOT PAID BY THE DATE LISTED	ABOVE A 5%

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 01/01/23 TO 02/01/23 02/02/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$0.00 CURRENT CHARGES DUE 02/23/2023 \$77.50 TOTAL BALANCE \$77.50 AMOUNT ENCLOSED REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

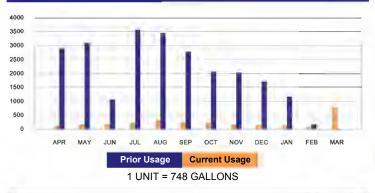
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.


Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.

All Offices are open Monday-Friday Utility Billing: (925)779-70 Public Works: (925)779-69

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	117554	118338	784

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

ACCOUNT INFORMATION

ACCOUNT:	004-01511-01
SERVICE ADDRESS:	3225 Wilbur Ave
SERVICE PERIOD:	02/01/23 TO 03/02/23
BILLING DATE:	03/07/23

CURRENT CHARGES

WATER	\$3,567.20	1
USAGE TIER 1 = 784 Units @ 4.55 / UNIT	\$3,567.20	
2 " WATER MAINT FEE	\$165.00	1
SEWER	\$1,031.64	
BACKFLOW DEVICE	\$25.10	ļ

AMOUNT NOW DUE

PREVIOUS BALANCE	\$622.48
TOTAL PAYMENTS (LAST PAYMENT 02/21/2023)	(\$622.48)
CURRENT CHARGES DUE 03/28/2023	\$4,788.94
TOTAL BALANCE	\$4,788.94

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

TOTAL BALANCE

AMOUNT ENCLOSED

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01

004-01511-01 3225 Wilbur Ave 02/01/23 TO 03/02/23 03/07/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$0.00 CURRENT CHARGES DUE 03/28/2023 \$4,788.94

REMIT PAYMENT TO:

\$4,788.94

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

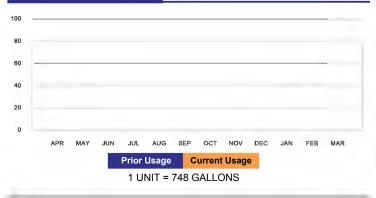
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 02/01/23 TO 03/02/23 03/07/23

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 02/21/2023)	(\$77.50)
CURRENT CHARGES DUE 03/28/2023	\$77.50
TOTAL BALANCE	\$77.50
PAYMENT IS NOW DUE IE NOT PAID BY THE DATE LISTED	

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 02/01/23 TO 03/02/23

03/07/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$0.00 CURRENT CHARGES DUE 03/28/2023 \$77.50 TOTAL BALANCE \$77.50 AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

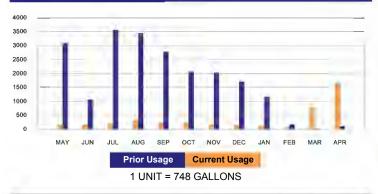
Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.


Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday Utility Billing: (925)779-70 Public Works: (925)779-69

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	118338	120000	1662

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT:	004-01511-01
SERVICE ADDRESS:	3225 Wilbur Ave
SERVICE PERIOD:	03/02/23 TO 04/01/23
BILLING DATE:	04/04/23

CURRENT CHARGES

	\$7,562.10
\$7,562.10	
	\$165.00
	\$2,181.82
	\$25.10
	\$7,562.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$4,788.94
TOTAL PAYMENTS (LAST PAYMENT 03/29/2023)	(\$5,028.39)
TOTAL PENALTIES	\$239.45
CURRENT CHARGES DUE 04/25/2023	\$9,934.02
TOTAL BALANCE	\$9,934.02

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 03/02/23 TO 04/01/23 04/04/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$0.00 CURRENT CHARGES DUE 04/25/2023 \$9,934.02 TOTAL BALANCE \$9,934.02 AMOUNT ENCLOSED REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 03/02/23 TO 04/01/23 04/04/23

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 03/29/2023)	(\$81.38)
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 04/25/2023	\$77.50
TOTAL BALANCE	\$77.50
DAVMENT IS NOW DUE IE NOT DAID BY THE DATE LISTED	ABOVE A FO

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 03/02/23 TO 04/01/23 04/04/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$0.00 CURRENT CHARGES DUE 04/25/2023 \$77.50 TOTAL BALANCE \$77.50 AMOUNT ENCLOSED REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

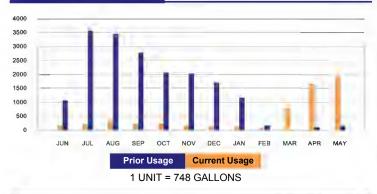
Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.


Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday Utility Billing: (925)779-70 Public Works: (925)779-69

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	120000	121897	1897

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT:	004-01511-01
SERVICE ADDRESS:	3225 Wilbur Ave
SERVICE PERIOD:	04/01/23 TO 05/01/23
BILLING DATE:	05/02/23

CURRENT CHARGES

WATER		\$8,631.35
USAGE TIER 1 = 1897 Units @ 4.55 / UNIT	\$8,631.35	
2 " WATER MAINT FEE		\$165.00
SEWER		\$2,489.67
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE PREVIOUS BALANCE \$9,934.02 TOTAL PAYMENTS \$0.00 TOTAL PENALTIES \$496.71 CURRENT CHARGES DUE 05/23/2023 \$11,311.12 TOTAL BALANCE \$21,741.85

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 04/01/23 TO 05/01/23 05/02/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$10,430.73 CURRENT CHARGES DUE 05/23/2023 \$11,311.12 TOTAL BALANCE \$21,741.85 AMOUNT ENCLOSED REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

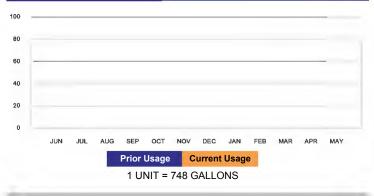
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 04/01/23 TO 05/01/23 05/02/23

\$77.50

\$0.00

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE PREVIOUS BALANCE TOTAL PAYMENTS TOTAL PENALTIES

 TOTAL PENALTIES
 \$3.88

 CURRENT CHARGES DUE 05/23/2023
 \$77.50

 TOTAL BALANCE
 \$158.88

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 04/01/23 TO 05/01/23

05/02/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$81.38 CURRENT CHARGES DUE 05/23/2023 \$77.50 TOTAL BALANCE \$158.88 AMOUNT ENCLOSED REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

€
\mathcal{P}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

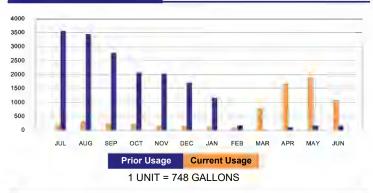
Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.


Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday Utility Billing: (925)779-70 Public Works: (925)779-69

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31682	WATER	121897	122975	1078

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT:	004-01511-01
SERVICE ADDRESS:	3225 Wilbur Ave
SERVICE PERIOD:	05/01/23 TO 06/01/23
BILLING DATE:	06/06/23

CURRENT CHARGES

WATER		\$4,904.90
USAGE TIER 1 = 1078 Units @ 4.55 / UNIT	\$4,904.90	
2 " WATER MAINT FEE		\$165.00
SEWER		\$1,416.78
BACKFLOW DEVICE		\$25.10

¢1 001 00

AMOUNT NOW DUE

PREVIOUS BALANCE	\$21,741.85
TOTAL PAYMENTS (LAST PAYMENT 06/05/2023)	(\$21,819.35)
TOTAL PENALTIES	\$565.56
CURRENT CHARGES DUE 06/27/2023	\$6,511.78
TOTAL BALANCE	\$6,999.84

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 05/01/23 TO 06/01/23 06/06/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$488.06 CURRENT CHARGES DUE 06/27/2023 \$6,511.78 TOTAL BALANCE \$6,999.84 AMOUNT ENCLOSED REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 05/01/23 TO 06/01/23 06/06/23

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$158.88
TOTAL PAYMENTS (LAST PAYMENT 05/02/2023)	(\$81.38)
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 06/27/2023	\$77.50
TOTAL BALANCE	\$158.88

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 05/01/23 TO 06/01/23 06/06/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT AMOUNT DUE PAST DUE BALANCE \$81.38 CURRENT CHARGES DUE 06/27/2023 \$77.50 TOTAL BALANCE \$158.88 AMOUNT ENCLOSED REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch

PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

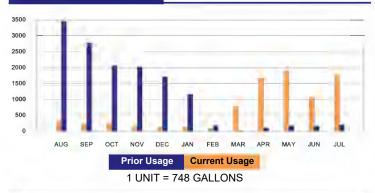
Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.


Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday Utility Billing: (925)779-706 Public Works: (925)779-695

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	122975	124735	1760

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

004-01511-01
3225 Wilbur Ave
06/01/23 TO 07/01/23
07/06/23

CURRENT CHARGES

WATER		\$8,008.00
USAGE TIER 1 = 1760 Units @ 4.55 / UNIT	\$8,008.00	
2 " WATER MAINT FEE		\$165.00
SEWER		\$2,310.20
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$6,999.84
TOTAL PAYMENTS (LAST PAYMENT 06/29/2023)	(\$6,999.84)
TOTAL PENALTIES	\$325.60
CURRENT CHARGES DUE 07/27/2023	\$10,508.30
TOTAL BALANCE	\$10,833.90

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 06/01/23 TO 07/01/23 07/06/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$325.60
CURRENT CHARGES DUE 07/27/2023	\$10,508.30
TOTAL BALANCE	\$10,833.90
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

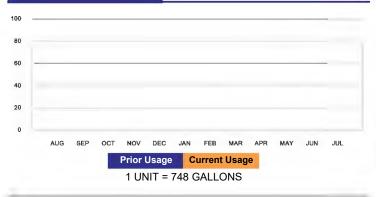
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 06/01/23 TO 07/01/23 07/06/23

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

8.88
.88)
3.88
7.50
1.38
3

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 06/01/23 TO 07/01/23 07/06/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$3.88
CURRENT CHARGES DUE 07/27/2023	\$77.50
TOTAL BALANCE	\$81.38
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

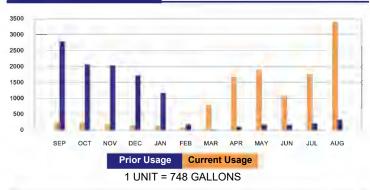
Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.


Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday Utility Billing: (925)779-7060 Public Works: (925)779-6950

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	124735	128123	3388

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

004-01511-01
3225 Wilbur Ave
07/01/23 TO 08/01/23
08/03/23

CURRENT CHARGES

\$15,415.40
\$15,415.40
\$165.00
\$4,442.88
\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$10,833.90
TOTAL PAYMENTS (LAST PAYMENT 07/28/2023)	(\$10,833.90)
TOTAL PENALTIES	\$525.42
CURRENT CHARGES DUE 08/24/2023	\$20,048.38
TOTAL BALANCE	\$20,573.80

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 07/01/23 TO 08/01/23 08/03/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$525.42
CURRENT CHARGES DUE 08/24/2023	\$20,048.38
TOTAL BALANCE	\$20,573.80
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

	Æ
\triangleleft	\mathcal{I}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

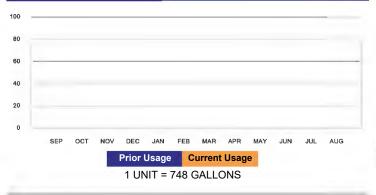
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 07/01/23 TO 08/01/23 08/03/23

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$81.38
TOTAL PAYMENTS (LAST PAYMENT 07/28/2023)	(\$81.38)
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 08/24/2023	\$77.50
TOTAL BALANCE	\$81.38

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 07/01/23 TO 08/01/23 08/03/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$3.88
CURRENT CHARGES DUE 08/24/2023	\$77.50
TOTAL BALANCE	\$81.38
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

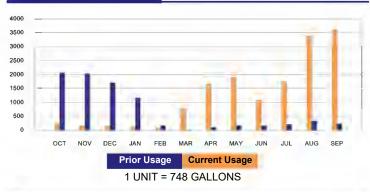
Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.


Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday Utility Billing: (925)779-7060 Public Works: (925)779-6950

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	128123	131733	3610

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

004-01511-01
3225 Wilbur Ave
08/01/23 TO 09/01/23
09/06/23

CURRENT CHARGES

WATER		\$16,425.50
USAGE TIER 1 = 3610 Units @ 4.55 / UNIT	\$16,425.50	
2 " WATER MAINT FEE		\$165.00
SEWER		\$4,733.70
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$20,573.80
TOTAL PAYMENTS (LAST PAYMENT 08/25/2023)	(\$20,573.80)
TOTAL PENALTIES	\$1,002.42
CURRENT CHARGES DUE 09/27/2023	\$21,349.30
TOTAL BALANCE	\$22,351.72

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 08/01/23 TO 09/01/23 09/06/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$1,002.42
CURRENT CHARGES DUE 09/27/2023	\$21,349.30
TOTAL BALANCE	\$22,351.72
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

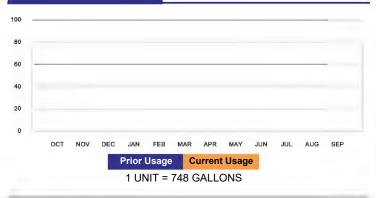
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 08/01/23 TO 09/01/23 09/06/23

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$81.38
TOTAL PAYMENTS (LAST PAYMENT 08/25/2023)	(\$81.38)
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 09/27/2023	\$77.50
TOTAL BALANCE	\$81.38

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 08/01/23 TO 09/01/23 09/06/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$3.88
CURRENT CHARGES DUE 09/27/2023	\$77.50
TOTAL BALANCE	\$81.38
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

	Æ
\triangleleft	\mathcal{I}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

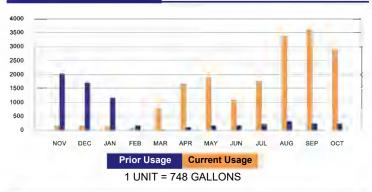
Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.


Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday Utility Billing: (925)779-7060 Public Works: (925)779-6950

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31682	WATER	131733	134643	2910

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT:	004-01511-01
SERVICE ADDRESS:	3225 Wilbur Ave
SERVICE PERIOD:	09/01/23 TO 10/01/23
BILLING DATE:	10/04/23

CURRENT CHARGES

WATER		\$13,240.50
USAGE TIER 1 = 2910 Units @ 4.55 / UNIT	\$13,240.50	
2 " WATER MAINT FEE		\$165.00
SEWER		\$3,816.70
BACKFLOW DEVICE		\$25.10
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$22,351.72
TOTAL PAYMENTS (LAST PAYMENT 09/19/2023)	(\$22,351.72)
CURRENT CHARGES DUE 10/25/2023	\$17,247.30
TOTAL BALANCE	\$17,247.30

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 09/01/23 TO 10/01/23 10/04/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$0.00
CURRENT CHARGES DUE 10/25/2023	\$17,247.30
TOTAL BALANCE	\$17,247.30
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

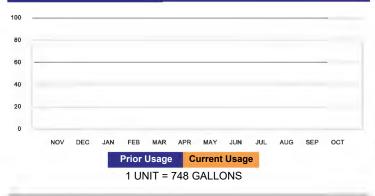
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 09/01/23 TO 10/01/23 10/04/23

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$81.38
TOTAL PAYMENTS (LAST PAYMENT 09/19/2023)	(\$81.38)
CURRENT CHARGES DUE 10/25/2023	\$77.50
TOTAL BALANCE	\$77.50
DAVMENT IS NOW DUE IE NOT DAID BY THE DATE LISTED	

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 09/01/23 TO 10/01/23 10/04/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$0.00
CURRENT CHARGES DUE 10/25/2023	\$77.50
TOTAL BALANCE	\$77.50
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

	Æ
\triangleleft	\mathcal{I}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App For iOS and Android

Dropbox

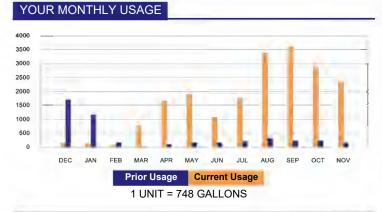
Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.


You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday Utility Billing: (925)779-7060 8:00 A.M.-5:00 P.M. Public Works: (925)779-6950 7:00 A.M.-4:00 P.M.

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	134643	137004	2361

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT:	004-01511-01
SERVICE ADDRESS:	3225 Wilbur Ave
SERVICE PERIOD:	10/01/23 TO 11/01/23
BILLING DATE:	11/06/23

CURRENT CHARGES

,742.55
\$165.00
,097.51
\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$17,247.30
TOTAL PAYMENTS (LAST PAYMENT 10/17/2023)	(\$17,247.30)
CURRENT CHARGES DUE 11/27/2023	\$14,030.16
TOTAL BALANCE	\$14,030.16

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 10/01/23 TO 11/01/23 11/06/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$0.00
CURRENT CHARGES DUE 11/27/2023	\$14,030.16
TOTAL BALANCE	\$14,030.16
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	+
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

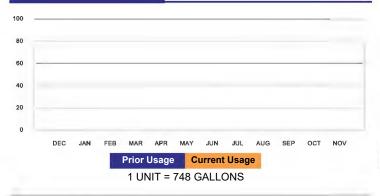
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752-A	WATER	0	0	0
31752	WATER	0	0	0

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 10/01/23 TO 11/01/23 11/06/23

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 10/17/2023)	(\$77.50)
CURRENT CHARGES DUE 11/27/2023	\$77.50
TOTAL BALANCE	\$77.50
PAYMENT IS NOW DUE IE NOT PAID BY THE DATE LISTE	

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 10/01/23 TO 11/01/23 11/06/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

\$0.00
\$77.50
\$77.50
REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	+
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

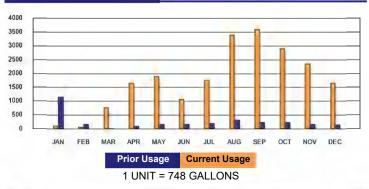
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday Utility Billing: (925)779-7060 Public Works: (925)779-6950

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	137004	138660	1656

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT:	004-01511-01
SERVICE ADDRESS:	3225 Wilbur Ave
SERVICE PERIOD:	11/01/23 TO 12/01/23
BILLING DATE:	12/04/23

CURRENT CHARGES

	\$7,534.80
\$7,534.80	
	\$165.00
	\$2,173.96
	\$25.10
	\$7,534.80

AMOUNT NOW DUE	
PREVIOUS BALANCE	\$14,030.16
TOTAL PAYMENTS	\$0.00
TOTAL PENALTIES	\$701.52
CURRENT CHARGES DUE 12/27/2023	\$9,898.86
TOTAL BALANCE	\$24,630.54

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 11/01/23 TO 12/01/23 12/04/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE			
PAST DUE BALAN	CE		\$14,731.68
CURRENT CHARGES DUE 12/27/2023			\$9,898.86
TOTAL BALANCE			\$24,630.54
AMOUNT ENCL	OSED		
			REMIT PAYMENT TO:

00401511010000024630540000025125491

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

<u>ات</u>

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.

Pay Online: www.municipalonlinepayments.com/antiochca

 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Having trouble paying your water bill? You may qualify for assistance. Please call 925-267-6624 or visit csbheap@ehsd.cccounty,us for more information.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT:	
SERVICE ADDRESS:	
SERVICE PERIOD:	
BILLING DATE:	

004-01512-01 3225 Wilbur Ave 11/01/23 TO 12/01/23 12/04/23

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS	\$0.00
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 12/27/2023	\$77.50
TOTAL BALANCE	\$158.88

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 11/01/23 TO 12/01/23 12/04/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$81.38
CURRENT CHARGES DUE 12/27/2023	\$77.50
TOTAL BALANCE	\$158.88
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

0040151201000000158880000000162760

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

<u>ات</u>

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

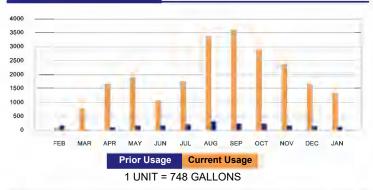
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.



Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-FridayUtility Billing:(925)779-7060Public Works:(925)779-6950

(925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	Current	Consumption
31682	WATER	138660	139996	1336

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT:	004-01511-01
SERVICE ADDRESS:	3225 Wilbur Ave
SERVICE PERIOD:	12/01/23 TO 01/01/24
BILLING DATE:	01/04/24

CURRENT CHARGES

WATER		\$6,078.80
USAGE TIER 1 = 1336 Units @ 4.55 / UNIT	\$6,078.80	
2 " WATER MAINT FEE		\$165.00
SEWER		\$1,754.76
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$24,630.54
TOTAL PAYMENTS (LAST PAYMENT 12/27/2023)	(\$24,630.54)
CURRENT CHARGES DUE 01/25/2024	\$8,023.66
TOTAL BALANCE	\$8,023.66

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01511-01 3225 Wilbur Ave 12/01/23 TO 01/01/24 01/04/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$0.00
CURRENT CHARGES DUE 01/25/2024	\$8,023.66
TOTAL BALANCE	\$8,023.66
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

004015110100000802366000008424858

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

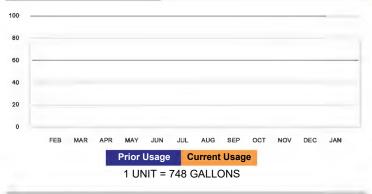
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

 All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	Previous	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Would you like to receive your water bill electronically? If so, please visit www.antiochca.gov to enroll in E-billing. You can also enroll in our autopay program using your debit or credit card.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave 12/01/23 TO 01/01/24 01/04/24

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$158.88
TOTAL PAYMENTS (LAST PAYMENT 12/27/2023)	(\$158.88)
CURRENT CHARGES DUE 01/25/2024	\$77.50
TOTAL BALANCE	\$77.50
DAVMENT IS NOW DUE IE NOT DAID BY THE DATE LISTED	

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 12/01/23 TO 01/01/24 01/04/24

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE	
PAST DUE BALANCE	\$0.00
CURRENT CHARGES DUE 01/25/2024	\$77.50
TOTAL BALANCE	\$77.50
AMOUNT ENCLOSED	
	REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

004015120100000007750000000081387

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

~	
6]	-H
14	
\checkmark	\mathcal{D}

Online https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail City of Antioch PO Box 981476 West Sacramento, CA 95798

Ó

Smart Phone App MyCivic Utilities App <u>https://qrs.ly/x8cemoz</u> For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 15

Exhibit 4 Quarterly Self-Monitoring Reports to DD, Notice of Violation/Corrective Action (Condition of Certification SOIL&WATER-4) Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 15

Exhibit 4a Quarterly Self-Monitoring Reports to DD, (Condition of Certification SOIL&WATER-4)

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509 (925) 522-7801

RECIENCED BT : Sy 4/17/23

April 12, 2023

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

e: Pacific Gas and Electric Company - Gateway Generating Station DD Industrial Wastewater Discharge Permit Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report Diablo Industrial Wastewater Discharge Permit Number 0208841-C (For Period Ending March 31, 2023)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2023, as required under Delta Diablo Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, Monthly Flow, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

The quarterly self-monitoring of the combined flows in Q1 2023 indicated an exceedance in zinc parameter. The laboratory report was received on 3/29/2023. A notification of exceedance was submitted to the Delta Diablo on 3/30/2023. A corrective action plan to address the exceedance was discussed on the phone with the Delta Diablo and a summary of it was submitted on 4/4/2023. The result of the resampling of the discharge flow for zinc will be submitted to Delta diablo on 4/30/2023.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at <u>abe4@pge.com</u>. Thank you.

Sincerely,

Tim Wisslow

Tim Wisdom Senior Plant Manager

Attachment: a/s

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509 (925) 522-7801

April 12, 2023

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:	Pacific Gas and Electric Company - Gateway Generating Station DD Industrial Wastewater Discharge Permit Permit Number: 0208841-C
Subject:	Quarterly Self-Monitoring Report Diablo Industrial Wastewater Discharge Permit Number 0208841-C

(For Period Ending March 31, 2023)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2023, as required under Delta Diablo Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, Monthly Flow, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

The quarterly self-monitoring of the combined flows in Q1 2023 indicated an exceedance in zinc parameter. The laboratory report was received on 3/29/2023. A notification of exceedance was submitted to the Delta Diablo on 3/30/2023. A corrective action plan to address the exceedance was discussed on the phone with the Delta Diablo and a summary of it was submitted on 4/4/2023. The result of the resampling of the discharge flow for zinc will be submitted to Delta diablo on 4/30/2023.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at <u>abe4@pge.com</u>. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Attachment: a/s

Quarterly Self-Monitoring Report For the reporting period ending in March 31, 2023

This report is to comply with the requirements of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (Delta Diablo) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023. The permit renewal application was submitted to Delta Diablo on 11/22/2022.

The report includes the following attachments:

Attachment 1:	Certification Statement
Attachment 2:	Industrial User Compliance Report
Attachment 3:	Industrial Monitoring Report Summary
Attachment 4:	Discharge Flow Data
Attachment 5:	Monthly Flow Data
Attachment 6:	WSAC Operating Hours Report
Attachment 7:	Cycles of Concentration
Attachment 8:	Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business:	PG&E Gateway Generating Station
Address:	3225 Wilbur Avenue, Antioch, CA. 94509
Phone:	<u>925-522-7805</u>
Period Covered:	Period ending: March 31, 2023

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature:	Date:

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn:Jason YunPretreatmentFax # (925)756-1961Phone: (925)756-1929From:Tim WisdomCompany:Pacific Gas and Electric Company – Gateway Generating StationPeriod Covered:Period ending March 31, 2023

Industrial User Checklist for self –monitoring reports, as specified by the wastewater discharge permit issued by Delta Diablo:

Self-monitoring reports

- $\underline{\sqrt{}}$ Flow discharge summary (Discharge Permit Section E.1.h.) (See Attachment 4)
- ____ Calibration of flow meters, as required. (Section E.1.g.)
- <u> $\sqrt{}$ </u> Monitoring results- <u>All</u> required tests completed, results reviewed, results included, QA/QC, chain of custody (section F.7.) (See Attachment 8)
- $\underline{\sqrt{}}$ Certification statement included (See Attachment 1)

Violations (if applicable)

- $\sqrt{-}$ All wastewater discharge exceedance are reported during this reporting period
- $\sqrt{}$ Delta Diablo was contacted. (See Additional Notes below)
- ____A follow-up report on characterization re-sampling was submitted on
- $\sqrt{}$ Corrective actions to resolve violation: (See Additional Notes below)
- Other violations i.e. Reporting, spills to sewer, or prohibited discharges

Additional Notes:

- 1. The result of Q1 2023 quarterly monitoring was received on 3/29/2023.
- 2. The notification of exceedance on zinc parameter was submitted to the Delta Diablo on 3/30/2023 (via email to -Jason Yun).
- 3. In an email dated 3/30/2023, the Delta Diablo indicated that the exceedance places PG&E Gateway into significant noncompliance (SNC) for the October 2022 through March 2023 monitoring period. A formal enforcement action will be issued.
- 4. A corrective action plan to address exceedance was discussed on the phone and a summary of it was submitted via email to Delta Diablo on 4/4/2023. A corrective action plan with implementation timeline will be submitted to Delta Diablo
- 5. The result of resampling of discharge flow for zinc will be submitted on 4/30/2023.

Significant changes

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

U NAME :	PG&E Gateway Ge			ID #:	0208841-C			SIC:	4911
DDRESS:	3225 Wilbur Aven	ue		TYPE:	Power Generation	Plant			
ITY :	Antioch	5						 	
		DATE	3/20/2023	3/21/2023	3/21/2023	3/21/2023	3/21/2023	 	
		TYPE	G	G	C24	G	G		
		STATION	E-001	E-001	E-001	E-001	E-001		
		SMP.BY	Muskan	Muskan	Muskan	Muskan	Muskan		
			Compliance	Compliance	Compliance	Compliance Semi-	Compliance		
		PURPOSE	Quarterly (Q1)	Quarterly (Q1)	Quarterly (Q1)	annually (SA1)	Annually (A)		
		Units:	mg/l					L	
ARAMETERS		LIMITS							
FLOW	/, DAILY (gal)	51,120							
FLOW,	, MONTH (gal)								
	рН	6-10 s.u.	8.06			1			
	BOD				6.3	· · · · · · · · · · · · · · · · · · ·	10		
	COD				40.0		<u>}</u>		
	TDS				388.0				
	TSS				8				
	Arsenic	0.15			0.00066				
C	Cadmium	0.1			0.000089	1			
Cl	hromium	0.5			0.0024	1)		
	Copper	0.5			0.0480				
	Iron				1.2				
	Lead	0.5			0.00065				
1	Mercury	0.003		2	ND(<0.00013)	1			
Mo	olybdenum		1.2 ······	6	0.021				
	Nickel	0.5			0.0039	-			
S	elenium	0.25			0.00026	·			
	Silver	0.2			0.00010	(• · · · · · · · · · · · · · · · · · ·			
	Zinc	1.00			2.800	6			
(Cyanide	0.2	1.7	0.011			- ini		
	Phenol	1.00		ND(<0.0014)		1 H H			
A	mmonia	200		28)		
O&G Petro/M	lin (E1664A w/ Silica)	100	ND(<1.4)	ND(<1.4)		1			
O&G Anin	nal/Vegetable Oil	300	ND(<0.89)	ND(<0.86)					
	O EPA 608					ND(<0.00002)			
TT	O EPA 624	1				0.0094			
TT	O EPA 625					0.011			
	TTO	2.00				0.0204			
	Sulfide		-		12		ND (<0.044)		
	Sulfate						100		

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

January 2023-March 2023

	Industrial Flow			Sanitary Flow					
			Did it ever			۔ Time Meter	Did it ever		
	Instantaneous	Time Over	go over	Daily Total	Instantaneous	went Bad	go over	Daily Total	Site Total
Date	Flow (GPM)	35.5 GPM	35.5 GPM	(Gallons)	Flow (GPM)	Quality	35.5 GPM	(Gallons)	(Gallons)
	FIOW (GPIVI)	(minutes)	for 15	(Galions)	FIOW (GPIVI)		for 15	(Galions)	(Galions)
			mins?			(minutes)	mins?		
1/1/2023	34.7	0.0	NO	44,373	0.1	0	NO		44,373
1/2/2023	34.5	0.0	NO	48,661	0.0	0	NO		48,661
1/3/2023	34.3	0.0	NO	3,987	0.0	0	NO		3,987
1/4/2023	34.4	0.0	NO	32,813	25.4	0	NO	486	33,299
1/5/2023	34.5	0.0	NO	44,610	0.1	0	NO		44,610
1/6/2023	34.3	0.0	NO	11,601	27.5	0	NO	379	11,981
1/7/2023	34.5	0.0	NO	35,068	0.0	0	NO	2	35,070
1/8/2023	34.5	1.0	NO	36,030	0.0	2	NO	000	36,030
1/9/2023 1/10/2023	34.7 34.4	0.0	NO NO	38,886	25.8 0.1	0	NO NO	363	39,249
1/10/2023	34.4	0.0	NO	22,268 32,557	0.1	0	NO	363	22,631 32,557
1/12/2023	30.0	0.0	NO	22,825	25.8	0	NO	385	23,210
1/13/2023	34.4	0.0	NO	8,029	0.0	0	NO	505	8,029
1/14/2023	34.5	0.0	NO	29,836	0.0	0	NO		29,836
1/15/2023	34.4	0.0	NO	37,809	27.6	0	NO	390	38,199
1/16/2023	34.6	0.0	NO	38,864	0.1	0	NO	0	38,864
1/17/2023	34.3	0.0	NO	39,138	26.1	0	NO	361	39,499
1/18/2023	34.4	0.0	NO	21,148	0.0	0	NO		21,148
1/19/2023	36.5	0.0	NO	18,234	23.4	0	NO	376	18,610
1/20/2023	34.4	0.0	NO	20,387	0.1	0	NO		20,387
1/21/2023	34.3	0.0	NO	9,861	0.1	0	NO		9,861
1/22/2023	34.3	0.0	NO	18,753	0.0	0	NO		18,753
1/23/2023	34.4	0.0		24,693	23.4	0	NO	352	25,044
1/24/2023	34.5	0.0	NO	35,707	0.0	0	NO		35,707
1/25/2023	34.5	0.0	NO	22,319	25.2	0	NO	372	22,691
1/26/2023 1/27/2023	34.5 34.7	0.0	NO NO	19,307	0.1 24.1	0	NO NO	368	19,307
1/27/2023	34.7	0.0	NO	22,285 11,575	0.0	0	NO	300	22,652 11,575
1/29/2023	34.3	0.0	NO	26,557	0.0	0	NO		26,557
1/30/2023	34.7	0.0		36,512	0.0	0	NO		36,512
1/31/2023	34.6	0.0	NO	28,092	25.3	0	NO	378	28,470
	0.10	0.0		20,002		-		nit: 51,120):	48,661
								onthly Total:	847,359
2/1/2023	34.9	0.0	NO	7,631	0.0	0	NO	, í	7,631
2/2/2023	34.5	0.0	NO	7,153	25.7	0	NO	382	7,535
2/3/2023	34.9	0.0	NO	22,574	0.0	0	NO		22,574
2/4/2023	34.3	0.0	NO	20,869	27.3	0	NO	399	21,268
2/5/2023	34.3	0.0		34,190	0.1	0	NO	3	34,193
2/6/2023	34.3	0.0	NO	12,616	0.0	0	NO		12,616
2/7/2023	34.4	0.0	NO	7,706	25.9	0	NO	363	8,069
2/8/2023	34.6	1.0	NO	33,513	0.1	2	NO		33,513
2/9/2023	34.6	0.0	NO	26,684	25.7	0	NO	382	27,066
2/10/2023	34.4 34.6	0.0	NO NO	15,926 19,836	0.0	0	NO NO	382 373	16,308
2/11/2023 2/12/2023	34.6 34.7	0.0		29,914	26.4 0.1	0	NO	373	20,209 29,916
2/12/2023	34.7	0.0		18,759	0.1	0	NO	2	18,759
2/13/2023	34.6	0.0	NO	34,737	25.3	0	NO	372	35,109
2/15/2023	34.6	0.0	NO	20,106	0.0	0	NO	0,2	20,106
2/16/2023	35.1	0.0	NO	7,858	25.1	0	NO	372	8,229
2/17/2023	34.8	0.0	NO	21,828	0.1	0	NO		21,828
2/18/2023	34.6	0.0	NO	21 173	0.0	0	NO		21,173
2/19/2023	34.5	0.0	NO	42,136	25.7	0	NO	368	42,504

PG&E Gateway Generating Station

Discharge Flow Data

January 2023-March 2023

		Industria		Sanitary Flow					
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
2/20/2023	35.0	0.0	NO	16,604	0.0	0	NO		16,604
2/21/2023	35.0	0.0	NO	14,392	0.0	0	NO		14,392
2/22/2023	34.5	0.0	NO	27,353	25.5	0	NO	384	27,738
2/23/2023	34.8	0.0	NO	34,718	0.0	0	NO		34,718
2/24/2023	34.5	0.0	NO	34,651	25.2	0	NO	386	35,037
2/25/2023	34.3	0.0	NO	6,570	0.1	0	NO	4	6,574
2/26/2023	34.4	0.0	NO	22,328	0.0	0	NO		22,328
2/27/2023	34.5	0.0	NO	24,700	0.0	0	NO		24,700
2/28/2023	34.3	0.0	NO	17,427	25.5	0	NO	354	17,781
						Max D	aily Flow (Lir	nit: 51,120):	42,504
							M	onthly Total:	608,479
3/1/2023	34.5	0.0	NO	33,013	25.3	0	NO	361	33,374
3/2/2023	34.5	0.0	NO	43,505	0.1	0	NO		33,374
3/3/2023	34.5	0.0	NO	39,260	25.0	0	NO	360	43,505
3/4/2023	34.3	0.0	NO	9,001	0.1	0	NO	-	39,620
3/5/2023	34.4	0.0	NO	29,883	0.0	0	NO		9,001
3/6/2023	34.3	0.0	NO	9,245	0.0	0	NO		29,883
3/7/2023	34.4	0.0	NO	14,152	23.9	0	NO	355	9,245
3/8/2023	34.4	1.0	NO	19,552	0.0	2	NO		14,507
3/9/2023	34.5	0.0	NO	35,770	24.8	0	NO	359	19,552
3/10/2023	34.5	0.0	NO	41,593	0.0	0	NO	359	36,129
3/11/2023	34.4	0.0	NO	15,263	0.0	0	NO		41,952
3/12/2023	34.3	60.0	NO	8,372	0.0	60	NO		15,263
3/13/2023	34.5	0.0	NO	12,845	24.8	0	NO	368	8,372
3/14/2023	34.2	0.0	NO	6,652	0.0	0	NO		13,213
3/15/2023	34.5	0.0	NO	10,393	24.8	0	NO	362	6,652
3/16/2023	34.5	0.0		29,678	0.0	0			10,755
3/17/2023	34.5	0.0	NO	13,779	0.1	0	NO		29,678
3/18/2023	34.5	0.0	NO	41,742	0.0	0	NO		13,779
3/19/2023	34.4	0.0	NO	30,480	0.0	0	-		41,742
3/20/2023	34.6	0.0	NO	40,844	26.1	0		519	30,480
3/21/2023	34.6	0.0	NO	45,651	0.0	0	NO		41,363
3/22/2023	34.5	0.0		34,139	24.4			343	45,651
3/23/2023	34.4	0.0		24,711	0.0				34,482
3/24/2023	34.5	0.0		34,230	25.5			369	24,711
3/25/2023	34.4	0.0	NO	27,978	0.0	0	NO		34,599
3/26/2023	34.8	0.0		24,518	0.0	0			27,978
3/27/2023	35.0	0.0	NO	19,792	24.2	0		351	24,518
3/28/2023	34.6	0.0	NO	9,103	0.0	0	NO		20,143
3/29/2023	35.1	0.0	NO	27,282	23.1	0		354	9,103
3/30/2023		0.0		38,324	0.0				27,636
3/31/2023	34.3	0.0	NO	6,548	0.0	0	NO	nit: 51,120):	38,324 45.651

Max Daily Flow (Limit: 51,120): 45,651 Monthly Total:

808,584

Note: On 03/12/2023, there were no missing data. The 60 minute entry was a result of Daylight Savings Time clock adjustment.

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name:	PG&E Gateway Generating Station	
Address:	3225 Wilbur Avenue, Antioch, CA 94	4509
City:	Antioch	
Contact Name:	Tim Wisdom	
Flow Meter:	Sewer Final Effluent	City Water Meter
	(The data are based on flowmeter r	eadings as recorded by the plant's "Pi Historian" data
	acquisition/handling system)	

Year:

2023

Month	Flow (gallons)	Due Date
January	847,359	4/15/2023
February	608,479	4/15/2023
March	808,584	4/15/2023
April		
May		
June		
July		
August		
September		
October		
November		
December		

Note:

1) Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

2) The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report January 2023 - March 2023

	WSAC Operation							
Month	Hours of Operation							
January-23	0.00							
February-23	0.00							
March-23	2.00							
April-23								
May-23								
June-23								
July-23								
August-23								
September-23								
October-23								
November-23								
December-23								

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report January 2023 - March 2023

	WSAC Operation							
Month	Average Daily Blowdown Cycles							
January-23	WSAC not in operation							
February-23	WSAC not in operation							
March-23	3.61							
April-23								
May-23								
June-23								
July-23								
August-23								
September-23								
October-23								
November-23								
December-23								

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8 Laboratory Results Monitoring of Combined Site Stream (E-001) Attachment 8a Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2303E50

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:	
Project P.O.:	
Project:	

Angel Espiritu

Quarterly Sampling (March 2023)

Project Received: 03/21/2023

Analytical Report reviewed & approved for release on 03/29/2023 by:

Jena Alfaro Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

McCampbell Analytical, Inc. "When Ouality Counts"

> 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/ E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

WorkOrder:

2303E50

Client: PG&E Gateway Generating Station Project: Quarterly Sampling (March 2023)

rruject: Quarte	Quarterly sampling (March 2020)
Glossary Abbreviation	eviation
%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
CPT	Consumer Product Testing not NELAP Accredited
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit 1
ML	Minimum Level of Quantitation
SW	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting limit ²
RPD	Relative Percent Difference
RRT	Relative Retention Time
RSD	Relative Standard Deviation
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure

distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2303E50

- Quarterly Sampling (March 2023) **Project:**
- TEQ **Toxicity Equivalents**
- TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.
- WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J

Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/27/2023Project:Quarterly Sampling (March 2023)

 WorkOrder:
 2303E50

 Extraction Method:
 E1664A_SG

 Analytical Method:
 E1664A

 Unit:
 mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2303E50-001B	Water	03/20/202	3 10:20	O&G	266345
Analytes	Result	MDL	RL	DF	-	Date Analyzed
SGT-HEM	ND	1.4	4.8	1		03/28/2023 14:35

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2303E50-002B	Water	03/21/202	3 12:15	O&G	266345
Analytes	Result	MDL	RL	DF		Date Analyzed
SGT-HEM	ND	1.4	4.7	1		03/28/2023 14:40

Analyst(s): HN

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/27/2023Project:Quarterly Sampling (March 2023)

WorkOrder:	2303E50
Extraction Method:	E1664A
Analytical Method:	E1664A
Unit:	mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2303E50-001A	Water	03/20/202	3 10:20	O&G	266444
Analytes	Result	MDL	RL	DF	-	Date Analyzed
HEM	ND	0.89	4.9	1		03/28/2023 18:00

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2303E50-002A	Water	03/21/202	23 12:15	O&G	266444
Analytes	Result	MDL	RL	DF		Date Analyzed
HEM	ND	0.86	4.7	1		03/28/2023 18:05

Analyst(s): HN

"E http://www.mccampbell.com/E-mail: main@mccampbell.com/E-mail: main@mccampbell.com/
McCampbell Analytical, Inc. Toll Free Telephone: (877) 252-9267 Fax: (925) 252-9269

PG&E Gateway Generating Station	Date Received: 03/21/2023 14:00	Date Prepared: 03/27/2023	Quarterly Sampling (March 2023)
g Station			h 2023)

WorkOrder:2303E50Extraction Method:SM4500-NH3 BGAnalytical Method:SM4500-NH3 BGUnit:mg/L

		Ammonia as N	N			1
Client ID	Lab ID Matrix		Date Co	llected	Date Collected Instrument	Batch ID
E-001 Grab	2303E50-002D Water	Water	03/21/2023 12:15	3 12:15	WC_SKALAR 230327A1_101 266348	266348
Analytes	Result	MDL	뫼	비	Date	Date Analyzed
Ammonia, total as N	28	0.95	1.0	10	03/27	03/27/2023 15:28

Analyst(s): CC

Toll http:/
McCampbell Analytical, Inc. "When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

Analytical Report

WorkOrder:2303E50Extraction Method:SM5210BAnalytical Method:SM5210 BUnit:mg/L

	Biochemic	Biochemical Oxygen Demand (BOD)	emand (I	30D)		
Client ID	Lab ID	Matrix	Date Collected	lected	Instrument	Batch ID
E-001 Comp	2303E50-003A Water	Water	03/21/2023 12:02	3 12:02	WetChem	266056
Analytes	Result	WDL	Ъ	DF		Date Analyzed
BOD	6.3	4.1	4.1	1.02		03/27/2023 12:12

Analyst(s): JRA

McCampbell Analytical, Inc.	"When Quality Counts"
	Ż

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/24/2023Project:Quarterly Sampling (March 2023)

WorkOrder:2303E50Extraction Method:SM4500-CN^ EAnalytical Method:SM4500-CN^ CEUnit:µg/L

		Cyamue, 10tal				
Client ID	Lab ID Matrix		Date Collected		Instrument	Batch ID
E-001 Grab	2303E50-002C Water	Water	03/21/2023 12:15	3 12:15	WC_Skalar3 230324A1_24 266243	266243
<u>unalytes</u>	Result	MDL	R	비	Date	Date Analyzed
Total Cyanide	1	0.59	1.0	-	03/2	03/24/2023 11:29

Analyst(s): CC

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/23/2023Project:Quarterly Sampling (March 2023)

WorkOrder:2303E50Extraction Method:SM5220 DAnalytical Method:SM5220 D-1997Unit:mg/L

	Chemical Oxygen Demand (COD) as mg O2 /L	en Demand ((COD) as	: mg O2 /	1	
Client ID	Lab ID	Matrix	Date Collected	llected	Instrument	Batch ID
E-001 Comp	2303E50-003B Water	Water	03/21/2023 12:02	3 12:02	SPECTROPHOTOMETER2	266176
Analytes	Result	MDL	R	비	Date	Date Analyzed
COD	40	8.2	10	-	03/2	03/23/2023 16:56

Analyst(s): IGC

McCampbell Analytical, Inc. "When Quality Counts"	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	Date Received: 03/21/2023 14:00
Date Prepared: 03/22/2023	03/22/2023
Project:	Quarterly Sampling (March 2023)

WorkOrder:2303E50Extraction Method:E245.2Analytical Method:E245.2Unit:μg/L

	Mercury by Cold Vapor Atomic Absorption	old Vapor A	tomic Ab	sorption		
Client ID	Lab ID Matrix		Date Collected		Instrument	Batch ID
E-001 Comp	2303E50-003E Water	Water	03/21/2023 12:02	3 12:02	AA1 _23	265993
Analytes	Result	MDL	R	비		Date Analyzed
Mercury	ND	0.13	0.20	٢		03/22/2023 16:02

Analyst(s): DMA

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/21/2023Project:Quarterly Sampling (March 2023)

WorkOrder:	2303E50
Extraction Method:	E200.8
Analytical Method:	E200.8
Unit:	μg/L

		Me	etals				
Client ID	Lab ID	Matrix	_	Date Colle	cted	Instrument	Batch ID
E-001 Comp	2303E50-003F	Water		03/21/2023	12:02	ICP-MS6 164SMPL.d	265989
Analytes	Result	Qualifiers	MDL	RL	DF		Date Analyzed
Arsenic	0.66		0.074	0.50	1		03/22/2023 14:23
Cadmium	0.089	J	0.043	0.50	1		03/22/2023 14:23
Chromium	2.4		0.28	0.50	1		03/22/2023 14:23
Copper	48		0.75	1.5	1		03/22/2023 14:23
Iron	1200		26	50	1		03/22/2023 14:23
Lead	0.65		0.19	0.50	1		03/22/2023 14:23
Molybdenum	21		0.13	0.50	1		03/22/2023 14:23
Nickel	3.9		0.33	0.50	1		03/22/2023 14:23
Selenium	0.26	J	0.16	0.50	1		03/22/2023 14:23
Silver	0.10	J	0.092	0.50	1		03/22/2023 14:23
Zinc	2800		14	20	1		03/22/2023 14:23
Surrogates	REC (%)			Limits			
Terbium	108			70-130			03/22/2023 14:23
Analyst(s): WV							

- McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/23/2023Project:Quarterly Sampling (March 2023)

WorkOrder:2303E50Extraction Method:E420.4Analytical Method:E420.4Unit:μg/L

		Phenolics				1
Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 Grab	2303E50-002D Water	Water	03/21/2023 12:15	3 12:15	WC_SKALAR 230323B1_34 266158	266158
Analytes	Result	MDL	R	비	Date	Date Analyzed
Phenolics	QN	1.4	2.0	-	03/23	03/23/2023 11:23

Analyst(s): CC

McCampbell Analytical, Inc.	When Quanty Counts
3) 	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/ E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/23/2023Project:Quarterly Sampling (March 2023)

WorkOrder:2303E50Extraction Method:SM2540 C-1997Analytical Method:SM2540 C-1997Unit:mg/L

	To	Total Dissolved Solids	l Solids			1
Client ID	Lab ID Matrix		Date Collected		Instrument	Batch ID
E-001 Comp	2303E50-003C Water	Water	03/21/20	03/21/2023 12:02	WetChem	266186
Analytes	Result	WDL	R	비		Date Analyzed
Total Dissolved Solids	388	10.0	10.0	4		03/24/2023 13:35

Analyst(s): JME

Analytical ReportDient:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Received:03/21/2023 14:00Extraction Method:SM2540 D-1997Analytical Method:SM2540 D-1997Project:Quarterly Sampling (March 2023)Date Prepared:03/28/2023Project:Quarterly Sampling (March 2023)Project:Quarterly Sampling (March 2023)Date Prepared:03/28/2023Project:Init:Project:Date CollectedInit:Date CollectedProject:SamplingProject:SamplingProject:Date CollectedInit:Date CollectedInit:Date CollectedProject:SamplingProject:Parity	PG&E Gateway Generating Stat ceived: 03/21/2023 14:00 pared: 03/28/2023 Quarterly Sampling (March 202 Quarterly Sampling (March 202 <u>p Lab ID</u> p 2303E50 pp 2303E50 spended Solids 8.00	A noluti				
PG&E Gateway Generating StationWorkOrder: 303250 Bartedion $63721/2023$ $14:00$ $8M2540$ Bartedion $8M2540$ $8M2540$ Barterly Sampling (March 2023) 10 10 Barterly Sampling (March 2	PG&E Gateway Genera ceived: 03/21/2023 14:00 pared: 03/28/2023 Quarterly Sampling (Ma p	WIIDIAN	cal R	eport		
Total Suspended Solids Lab ID Matrix Date Collected Instrument D 2303E50-003D Water 03/21/2023 12:02 Wetchem ended Solids Ensult I.67 I.67 I.67 JRA J.84 I.67 I.66 I.66	bended Solids	rating Station March 2023)		VorkOrder: Extraction Meth Analytical Metho Jnit:	2303E50 di: SM2540 D-1997 di: SM2540 D-1997 mg/L	
Lab IDMatrixDate CollectedInstrumentP2303E50-003DWater03/21/2023 12:02WetchemSolded SolidsResultMDLRLDFResult8.001.671.671.67JRMDL1.671.671.67	p ended Solids	Total Sus	pended	Solids		
p 2303E50-003D Water 03/21/2023 WetChem Result Result MDL PL PF ended Solids 8.00 1.67 1.67 1.67	Input the second solids			Date Collected	Instrument	Batch ID
Result MDL RL DF ended Solids 8.00 1.67 1.67	Re Ispended Solids			03/21/2023 12:02	WetChem	266489
		Result 8.00	1.67	2	2	Date Analyzed 03/28/2023 16:30

PG&E Gateway Generating Station WorkOrder:: 2303E50 pared: 03/27/2023 WorkOrder:: 2303E50 pared: 03/27/2023 BatchID:: 266345 alyzed: 03/28/2023 Extraction Method: E1664A_SG alyzed: 03/28/2023 Extraction Method: E1664A_SG alyzed: 08/G Analytical Method: E1664A_SG water 08/G Unit:: mg/L Water Vater Sample ID:: MB/LCS/LCS/LS/D-26634 Quarterly Sampling (March 2023) Sample ID:: MB/LCS/LCS/LS/D-26634 Quarterly Sampling (March 2023) Sample ID:: MB/LCS/LCS/LS/D-26634 March 08/L R R March 08/L R R March 15 5.0 - Masult ND R - Masult ND R - Masult ND 1.5 5.0 - Masult ND R - - Masult ND N - - Masult ND N - - Masult ND N - - Masult N - -		When Quality Counts"		£			T		
PG&E Gateway Generating StationWorkOrder: $2303E50$ pared: $03/27/2023$ BatchID: 266345 $03/28/2023$ Extraction Method: $E1664A$ $03/28/2023$ $03/28/2023$ $Analytical Method:E1664A0 \& G03/28/2023Analytical Method:E1664ASample ID:MB/LCS/LCSD-26634WaterUnit:mg/LWaterUnit:mg/LWaterUnit:mg/LWaterUnit:mg/LWaterUnit:mg/LWaterUnit:mg/LWaterMB/LCS/LCSD-26634WaterMB/LCS/LCSD-26634WaterMB/LCS/LCSD-26634WaterMB/LCS/LCSD-26634WaterMB/LCS/LCSD-26634WaterMB/LCS/LCSD-26634WaterMB/LCS/LCSD-26634WaterMB/LCS/LCSD-26634WaterMB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MB/LCS/LCSD-26634MD/LS/LCSD-26634MB/LCS/LCSD-26634MD/LS/LCSD-26634MB/LCS/LCSD-26634MD/LS/LCSD-26634MB/LCS/LCSD-26634MD/LS/$		Quality	Contr	ol kepo	rt				
aiyzed: 03/28/2023 Extraction Method: E1664A_SG ait Unit: mg/L Water MB/LCS/LCSD-26634 Water MB/L Quarterly Sampling (March 2023) Sample ID: MB/LCS/LCSD-26634 MB/LCS/LCSD-	Client: Date Prepared:	PG&E Gateway Generating Station . 03/27/2023		WorkOrder BatchID:		2303E50 266345			
ent: 0&G Water Water Unit: mg/L MB/LCS/LCSD-26634 Ample ID: MB/LCS/LCSD-26634 MB/L MB/LCS/LCSD-26634 MB/L RL RL RL RL RL RL RL RL RL R	Date Analyzed:	: 03/28/2023		Extraction 1	Method: E	31664A_S	Ð		
Water Quarterly Sampling (March 2023) Unit: Sample ID: MB/LCS/LCSD-26634 March 2023) Sample ID: MB/LCS/LCSD-26634 March 2023 March 2023 March 2023 March 2024	Instrument:	0&G		Analytical N	Method: E	31664A			
Quarterly Sampling (March 2023) Sample ID: MB/LCS/LCSD-26634 QC Summary Report for E1664A NDL RL Result NDL RL Result 1.5 5.0 ND 1.5 5.0 Easult ND ND 1.5 ND 1.5 Sample ID SPK ND 1.5 ND 1.5 Sample ID SPK ND SPK ND SPK Sample ID SPK	Matrix:	Water		Unit:	u	ng/L			
OC Summary Report for E1664A MB MDL RL Result ND 1.5 5.0 - ND 1.5 5.0 - - Image: Section Sectin Sectin Section Section Section Section Section Section Sectino	Project:	Quarterly Sampling (March 2023)		Sample ID:		MB/LCS/I	CSD-26634.	Ś	
MBL RL RL Result ND 1.5 5.0 -		QC Summ	ary Repo	rt for E1664	P				
ND 1.5 5.0 - - Image: Second Se	Analyte	MB Result							
LCS LCSD SPK LCS LCSD LCSD LCSD LCS/LCSD Result Result Val %REC %REC Limits 8.3 8.6 10.42 80 83 64-132	SGT-HEM	QN							
8.3 8.6 10.42 80 83 64-132	Analyte	<u>+</u>		P.K	LCS %REC	LCSD %REC	S	RPD	RPD Limit
	SGT-HEM	8.3		0.42	80	83	64-132	3.94	30

Date Analyzed: 03/28/2023 Instrument: 0&G Matrix: Water Project: Quarterly S	Water Quarterly Sampling (March 2023) QC Sum	mary Rel	QC Summary Report for E1664A		BatchID:266444Extraction Method:E1664AAnalytical Method:E1664AUnit:mg/LSample ID:MB/LCS/LCSD-266444for E1664A	
Analyte	MB Result		MDL RL			
НЕМ	Q		0.91 5.0			
Analyte	LCS Result	LCSD Result	SPK Val	LCS LCSD %REC %REC	D LCS/LCSD RPD	RPD Limit
		Ţ		0F 02		

PG&E Gateway Genera ed: 03/27/2023 ed: 03/27/2023 wC_SKALAR water Quarterly Sampling (Mt las N	Quality Control Reportting StationWorkOrder: BatchID: BatchID: Extraction Metho Unit: Unit: Sample ID:uch 2023)Sample ID: Sample ID: MBMBMDLResultResult	trol Repor WorkOrder: BatchID: Extraction M Analytical M Unit: Sample ID: t for SM4500-N	ti ti	2303E50 266348 SM4500-N SM4500-N mg/L MB/LCS/I	2303E50 266348 SM4500-NH3 BG SM4500-NH3 BG mg/L MB/LCS/LCSD-266348	
PG&E Gateway Genera 03/27/2023 03/27/2023 WC_SKALAR Water Quarterly Sampling (Mt	n nmary Repo	WorkO BatchII Extract Analyti Unit: Sample t for SM45	ų ų	2303E50 266348 SM4500-N SM4500-N mg/L MB/LCS/L	IH3 BG IH3 BG LCSD-266348	
ed: 03/21/2023 ed: 03/27/2023 WC_SKALAR Water Quarterly Sampling (ME las N	ımary Repo	Bacchu Extract Analyti Unit: Sample t for SM45	ÿ ų	200348 SM4500-N SM4500-N mg/L MB/LCS/I	(H3 BG (H3 BG LCSD-266348	
eu: 03/2//2023 WC_SKALAR Water Quarterly Sampling (Ma	mary Repo	Extract Analyti Unit: Sample t for SM45	ë ë	SM4500-N SM4500-N mg/L MB/LCS/I	LCSD-266348	
WC_SKALAK Water Quarterly Sampling (M	ımary Repo	Analyti Unit: Sample t for SM45	ë 🛛	sM4500-N mg/L MB/LCS/I	uh3 BG LCSD-266348	
Water Quarterly Sampling (Ma	ımary Repo	Unit: Sample t for SM45		mg/L MB/LCS/I	JCSD-266348	
Quarterly Sampling (Ma	ımary Repo	Sample t for SM45		MB/LCS/I	JCSD-266348	
	ımary Repo	t for SM45	00-NH3			
, total as N	Ŧ	IUM	ā			
		MUL	RL			
		0.095	0.10			
	LCSD It Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	PD RPD Limit
Ammonia, total as N 4.0	4.0	4	100	101	88-113 0.7	0.787

	When Quality Counts"	Inp//www.incampoel	http://www.mccampbell.com / E-mail: mam@mccampbell.com	ell.com	
		Quality Cullin Mepul L			
Client:	PG&E Gateway Generating Station	WorkOrder:	2303E50		
Date Prepared: 03/22/2023	03/22/2023	BatchID:	266056		
Date Analyzed: 03/27/2023	03/27/2023	Extraction Me	Extraction Method: SM5210B		
Instrument:	WetChem	Analytical Me	Analytical Method: SM5210 B		
Matrix:	Water	Unit:	mg/L		
Project:	Quarterly Sampling (March 2023)	Sample ID:	MB/LCS/LCSD-266056	D-266056	
Analyte	MB Result	MDL RL			
BOD	g	4.0 4.0			1
Analyte	LCS LCSD Result Result	D SPK Jit Val	LCS LCSD LC %REC %REC Lin	LCS/LCSD RPD Limits	RPD Limit
					l

= = +MC	WICCOLIPDEIL ANOIYIICOI, IIIC.	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9 http://www.mccampbell.com / E-mail: main@mccampbel	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com/E-mail: main@mccampbell.com	252-9269 npbell.com	
	Quality Co	Quality Control Report	÷		
Client: PG&E Gate	PG&E Gateway Generating Station	WorkOrder: BotchID:	2303E50 766743		
Date Analyzed: 03/24/2023	03/24/2023	Extraction M	Extraction Method: SM4500-CN ⁻ E	Е	
Instrument:	WC_Skalar3	Analytical M	Analytical Method: SM4500-CN ⁻ CE	V- CE	
Matrix:	Water	Unit:	μg/L		
Project:	Quarterly Sampling (March 2023)	Sample ID:	MB/LCS/LC	MB/LCS/LCSD-266243	
	QC Summary Repo	QC Summary Report for SM4500-CN ⁻ CE	CE		
Analyte	MB Result	MDL RL			
Total Cyanide	QN	0.59 1.0			
Analyte	LCS LCSD Result Result	o SPK t Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
Total Cyanide	49 47	50	98 95	90-110 3.08	20

Matrix: Project:	QC Summary Report for COD				
Analyte	MB Result		MDL RL		
	Ð		8.2 10		
Analyte	LCS LCS Result	LCSD Result	SPK Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits
					00 110 2 02

	"When Ouality Counts"	http://www.mccampbell.com/E-mail: main@mccampbell.com			1
	Quality C	Quality Control Report	ort		
Client: PG&E Gate Date Prepared: 03/22/2023	PG&E Gateway Generating Station : 03/22/2023	WorkOrder: BatchID:	der: 2303E5 265993	2303E50 265993	
Date Analyzed: 03/22/2023	. 03/22/2023	Extractio	Extraction Method: E245.2	5.2	
Instrument: Matrix:	AA1 Water	Analytica Unit:	Analytical Method: E245.2 Unit: ug/L	7.0	
Project:	Quarterly Sampling (March 2023)	Sample ID:		MB/LCS/LCSD-265993	
			0		
Analyte	MB Result	MDL RL	L		4
Mercury	DN	0.13 0.	0.20		1
	Ш	н	ш		н
Analyte	LCS LCSD Result Result	ult Val	LCS L %REC %	LCSU LCS/LCSU RPU %REC Limits	Limit
Mercury	2.0 2.0	7	100 1	100 85-115 0.493	3 20

Page 21 of 30

3	"When Quality Counts"		www.i.duu	шр.// www.писсапроеп.сопт/ Е-шан. пали@писсапроеп.сопт	u / E-man. m	BIII WILLUU	mboencom		
	Qua	Quality Control Report	ntrol R	eport					
Client: Date Prepared: Date Analyzed:	PG&E Gateway Generating Station 03/21/2023 03/21/2023	c	Wor Batc Extr	WorkOrder: BatchID: Extraction Method:		2303E50 265989 E200.8			
Instrument: Matrix: Project:	UCF-MISO Water Quarterly Sampling (March 2023)		Anauy Unit: Samp	Analyucal Meulou: Unit: Sample ID:		U.S L LCS/L	ь 200.8 µg/L MB/LCS/LCSD-265989	6	
	QC S	Summary Report for Metals	eport for	Metals					
Analyte	MB Result	, t	MDL	RL	<i>ω</i> >	SPK Val	MB SS %REC	MB	MB SS Limits
Arsenic	DN		0.074	0.50	·			•	
Cadmium	Ŋ		0.043	0.50	•				
Chromium	QN		0.28	0.50	'			'	
Copper			0.75 76	1.5	'			•	
Lead			0.19	0.50					
Molybdenum	Q		0.13	0.50	ľ		.		
Nickel	QN		0.33	0.50	·			•	
Selenium	DN		0.16	0.50					
Silver	ND		0.092	0.50				•	
Zinc	DN		14	20					
Surrogate Recovery	ſ								
Terbium	520				Ω	500	104	-02	70-130
Analyte	LCS Result	t Result	SPK Val	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	LCS L %REC %	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	50	50	50	-	100 1	100	85-115	0.299	20
Cadmium	52	53	50	Ę		106	85-115	0.887	20
Chromium	53	52	50	÷		104	85-115	0.772	20
Copper	52	52	50	7		104	85-115	0.224	20
Iron	2000	4800	5000	1		7	85-115	3.11	20
Lead	51	51	50	-	~	103	85-115	1.15	20
Molybdenum	99	47	20	86		95 10 -	85-115	3.68	20
NICKEI	52 27	25 25	nc	-	103 1	104	GTT-CS	0.07/3	07
Silver	2,000	51	20			102	85-115 85-115	0.151	202
Zinc	530	520	200	l		105	85-115	0.491	20
Surrogate Recovery	ľy								
Terhium	520	530	500	+	104	105	70-130	1 04	20

CA ELAP 1644 • NELAP 40330RELAP

Page 22 of 30

	MCC dmpbell Andlytical, Inc. "When Quality Counts."	1534 Willow Pass Road. Pittsburg. CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9 http://www.mccampbell.com/ E-mail: main@mccampbel	Toll Free Telephone: (877) 252-9262/Fax: (925) 252-9269 http://www.mccampbell.com/E-mail: main@mccampbell.com	g, CA 94.202. 2 / Fax: (925) 2 main@mccan	1701 52-9269 pbell.com	
	Quality C	Quality Control Report	ort			
Client: PG&E Gate Date Prepared: 03/23/2023	PG&E Gateway Generating Station 03/23/2023	WorkOrder: BatchID:	ler:	2303E50 266158		
Date Analyzed: 03/23/2023 Instrument: WC_SKAL	03/23/2023 WC_SKALAR	Extractic Analytics	Extraction Method: E420.4 Analytical Method: E420.4	20.4 20.4		
Matrix:	Water	Unit:	µg/L	/L		
Project:	Quarterly Sampling (March 2023)	Sample ID:		B/LCS/LC	MB/LCS/LCSD-266158	
	QC Summar	QC Summary Report for E420.4	20.4			
Analyte	MB Result	MDL R	RL			
Phenolics	Q	1.4	2.0			6.2
Analyte				LCSD	LCS/LCSD RPD	RPD :
Dhonolice	Result Result	ult Val	%REC		Limits	

Campbell Analytic "When Quality Counts"	McCampbell Analytical, Inc.	1534 ' Toll Free http://www	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Free Telephone: (877) 252-9262, Fax: (925) 252-9 /www.inccampbell.com/ E-mail: main@mccampbel	1534 Willow Pass Road, Pittsburg, CA 9565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	4565-1701 925) 252-9269 nccampbell.com		
	Quality Control Report	ontrol R	eport				
PG&E Gateway Generating Station 03/23/2023 03/24/2023 WetChem	station	WorkOrc BatchID: Extractio Analytica	WorkOrder: BatchID: Extraction Method: Analytical Method:		2303E50 266186 SM2540 C-1997 SM2540 C-1997		
Water Quarterly Sampling (March 2023)	March 2023)	Unit: Samp	Unit: Sample ID:		mg/L MB/LCS/LCSD-266186 2303E50-003C	86	
ð	QC Summary Report for Total Dissolved Solids	t for Total Di	ssolved So	olids			1
	MB Result	MDL	RL				É.
Total Dissolved Solids	ß	10.0	10.0				()
	LCS LCSD Result Result	o SPK It Val	۶Ľ ۱	LCS LCSD %REC %REC	C Limits	RPD	Limit B
Total Dissolved Solids	972 1000	1000	26	100	80-120	3.04	10
	SAMP Result	DUP Result				RPD	RPD Limit
Total Dissolved Solids	388	400				3.05	10
							T.

Page 24 of 30

	"When Quality Counts"	"When Quality Counts"				нцр.// w ww.писсапросп.сон// 12-нап. напиелиссапросп.сон	
	Quá	ality Co	Quality Control Report	port			
Client: PG&E Gate Date Prepared: 03/28/2023	PG&E Gateway Generating Station 03/28/2023	u	WorkOrder: BatchID:	ler:	2303E50 266489		
Date Analyzed: 03/28/2023	03/28/2023		Extract	Extraction Method: SM2540 D-1997	SM2540 D	-1997	
Instrument:	WetChem		Analyti	Analytical Method:	SM2540 D-1997	-1997	
Matrix:	Water		Unit:		mg/L		
Project:	Quarterly Sampling (March 2023)		Sample ID:		MB/LCS/I	MB/LCS/LCSD-266489	
	QC Summary Report for Total Suspended Solids	ry Report fo	r Total Susp	ended Solid	ls		
Analyte	MB Result	It	MDL	RL			
Total Suspended Solids	Solids		1.00	1.00			
	-			پن -	5		
Allalyte	Result	ult Result	Val	KEC %	REC	Limits	Limit
Total Suspended Solids	Solids 100	95.0	100	100	95	80-120 5.13	10

Page 25 of 30

McCampbe 1534 Willow Pa Pittsburg, CA 9	ass Rd	Inc.				N-OF-CU er: 2303E50		RECORD	Pag	e 1 of 1
(925) 252-9262		WaterTrax			EQuIS Detection	Dry-Weight	Email Excel	HardCopy		J-flag
Report to:					(III)	Bill to:	E.	Rec	uested TATs:	5 days;
Angel Espiritu PG&E Gateway Ge 3225 Wilbur Avenu Antioch, CA 94509 (925) 459-7212	e	cc/3rd Party: PO:		; j5ld@pge.com; c ling (March 2023)	lwy@pge.	Angel Espiritu PG&E Gateway 3225 Wilbur Av Antioch, CA 94	renue	Dat	te Received: te Logged:	7 days; 03/21/2023 03/21/2023
		_					Requested	Tests (See legend	below)	
Lab ID	ClientSamp	D	Matrix	Collection Date	Hold 1	2 3	4 5	6 7 8	8 9 1	0 11 12
2303E50-001	E-001 Grat)	Water	3/20/2023 10:20	ПВ	ATT	1 1	T T	A	D I
2303E50-002	E-001 Grat		Water	3/21/2023 12:15	B	AD	I C I			76 51

Test Legend:

2303E50-003

1664A_SG_W
CN_SM4500CE_W
PHENOLICS_W

E-001 Comp

1664A_W	_
COD_W	-
PRDisposal Fee	_
	COD_W

Wate

3/21/2023 12:02

3	AMMONIA-SM4500BG_W
71	HG_W
11	TDS_W
1.1	

BOD_W
METALSMS_TTLC_W
TSS_W

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense. McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client	t Name: PG&E GA t Contact: Angel Esp act's Email: abe4@pg	piritu	ENERATING STATION	Project: Comments	Quarterly Sam	npling	(Marc	h 2023)		QCI	Order: 230 Level: LEX gged: 3/21	VEL 2	
		U Water		Exce	el 🔲 EQul	S	En	nail	HardCopy		Party	J		
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative			Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content		Sub Out
001A	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl				3/20/2023 10:20	5 days	3/28/2023			
001B	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl				3/20/2023 10:20	5 days	3/28/2023			
002A	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl			E	3/21/2023 12:15	5 days	3/28/2023	-		
002B	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl				3/21/2023 12:15	5 days	3/28/2023			
002C	E-001 Grab	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH	Ш			3/21/2023 12:15	5 days	3/28/2023			
002D	E-001 Grab	Water	E420.4 (Phenolics)	1	- 500mL aG w/ H2SO4				3/21/2023 12:15	5 days	3/28/2023			
			SM4500-NH3 BG (Ammonia Nitrogen)							5 days	3/28/2023			
003A	E-001 Comp	Water	SM5210B (BOD)	1	1L HDPE, unprsv.				3/21/2023 12:02	7 days	3/30/2023	Present		
003B	E-001 Comp	Water	SM5220D (COD)	2	aVOA w/ H2SO4	T			3/21/2023 12:02	5 days	3/28/2023	Present		
-003C	E-001 Comp	Water	SM2540C (TDS)	I	500mL HDPE, unprsv.			E	3/21/2023 12:02	5 days	3/28/2023	Present	Ξ	Ð
003D	E-001 Comp	Water	SM2540D (TSS)	1	1L HDPE, unprsv.	· []	П	F	3/21/2023 12:02	5 days	3/28/2023	Present	П	Π

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

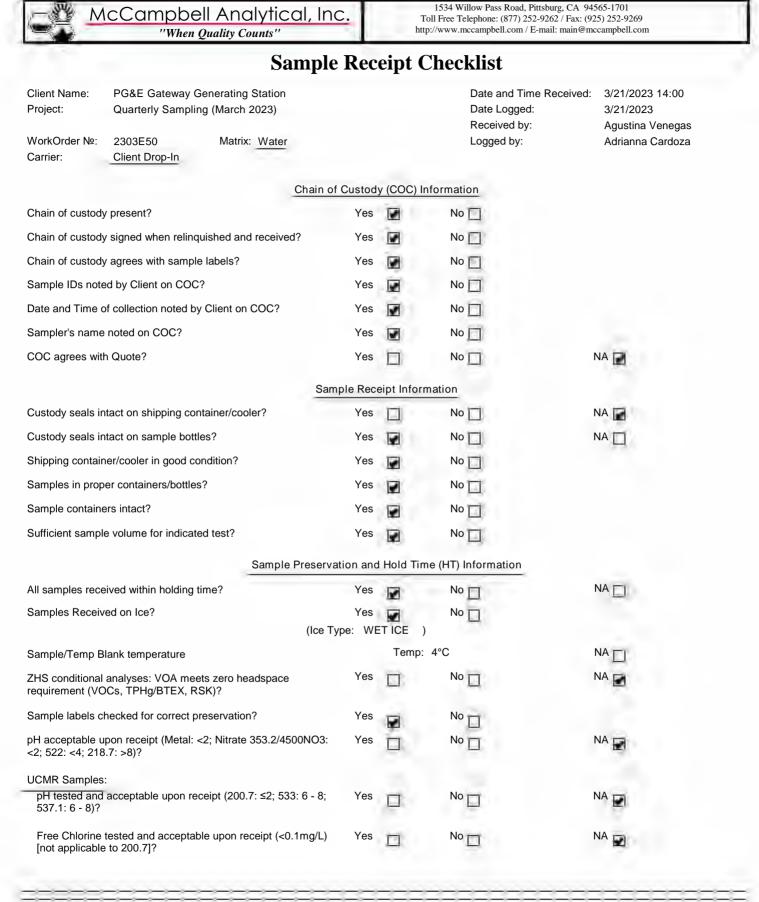
U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 McCampbell Analytical, Inc. Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com "When Ouality Counts" WORK ORDER SUMMARY **Client Name:** PG&E GATEWAY GENERATING STATION Work Order: 2303E50 **Project: Ouarterly Sampling (March 2023) Client Contact:** Angel Espiritu **OC Level:** LEVEL 2 Contact's Email: abe4@pge.com **Comments: Date Logged:** 3/21/2023 Excel CLIP TEDF EQuIS Email HardCopy ThirdParty J-flag WaterTrax LabID ClientSampID Matrix Test Name Containers Bottle & U** Head Drv-**Collection Date** TAT Test Due Date Sediment Hold Sub Space Weight /Composites Preservative & Time Content Out 003E E-001 Comp Water E245.2 (Mercury) 3/21/2023 12:02 250mL HDPE w/ 5 days 3/28/2023 Present 1 HNO3 003F E-001 Comp Water E200.8 (Metals) < Arsenic, Cadmium, 250mL HDPE w 3/21/2023 12:02 5 days 3/28/2023 Present HNO3 Chromium, Copper, Iron, Lead,

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.


Molybdenum, Nickel, Selenium, Silver,

Zinc>

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

	Websi	te: M		WILLOW ISBURG,	W PAS	S ROAD 565-1701 ail: main		amp	beli	C0111					AROU acker I	IND	TIK	ME			J HR	1	48 48 WT] HR ite ()	ORD 72 HR 5 DAY Dn (DW) D " flag is required
eport To	: Angel Es	piriti	a .		F	Bill To:	PG&	E Ga	tew	ay					Analysi	s Req	ves	t						Ren	marks
ompany	: PG&E G	atew	ay Genera	ting Sta	tion												Π			6	Π			Т	
el: (925)	522-7838,	(510) 861-1591	7 (Cell)	I	ax: (, til) 20			2.001	10 1			ated with the before SM 4500 CIV	Menule (Arsente and scientum by 200.5 Scientum by reaction mode	(USEPA 1664A) with it silica gel dean up	Total Planting (USEPA 430.4)	D-EHN-005F WS) N V		otusk, ehrantu d, állter, e, and zhec)					
roject Le	ame: Qua ocation: Co Signature: I	mbic	ed Site Fl	low		e h	20	Z	R		-			Prette Misaulh	Arsente : a by reac	e (USPPA	nettes Alf		(590)		4 521085	(S220D)	265401C1	2540D)	
		Composite	SAMP				Mat	trix	ME	THO	D PR	ESE	RVE	1 2 2 5 9	Menala (By 200.5 Selenium	Oil/Gread	Total Cha	Americita	Mercary (265.2)	Nietzin (200.A Copper, Ital, Midytodama	ROD (SM 5210B	COD (SM 5220D)	TUS (SM 2540C)	TSS (SM 2540D)	
AMPLE ID	LOCATION / Field Point Name	Sample Type Con (Grah	Date	Time	# Containers	Type Costainers	Waste Water	Sewer Water	None	ICE	NaOH	HCL	HNO,	Other											
8-001		G	3/20/23	10:20	2	IL Amb	x			x	T	X	H	1		x	Ħ				Π		1	1	
-001		G	3/21/23		2	IL Amb	X			X		X				X	Π			-	Π				
-001		G	3/21/23		1	500ml Amb	X			X		Π	Π				X	X	-		Π		T	T	
-001		G	3/21/23		1	250-ml Poly	X			X	X	Π	Π	X			Π				Π		1	T	
-001		С	3/21/23	1.1	1	1L Poly	X		x	X		Γ					Π			100	X				
-001		С	3/21/23		2	43-ml VOA	X			XZ		Π	T				П				Π	X	1		
-001		С	3/21/23		1	500-ml poly	x		х	X	Г		T	1			П			1772			X		
-001		С	3/21/23	and the second se	1	1L poly	X		x	X	T	Π					Π						T	X	
-001		С	3/21/23			250-ml Poly	x			X	Г	Γ	X				Π		x						
-001		C	3/21/23			250-ml poly	X			X	L		X		X		П			X			1	1	
_									4	+	-	H	4				Н	-			H	-	-	+	
elinquicheo elinquisho	1		Date: 2/21/23 Date:	Time: /Y:07 Time:	1	ived By:	ke	F.	6	A.	A			HEAD SP	NDITION NCE ABSE						C	OMA	MEN	ns:	

Comments:

Attachment 8b Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001) pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2303F26

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

2023)

Project Contact:	Sanjiv Gill
Project P.O.:	
Project:	pH Sampling (March

Project Received: 03/21/2023

Analytical Report reviewed & approved for release on 03/28/2023 by:

Jena Alfaro Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

McCampbell Analytical, Inc. "When Quality Counts"

> 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com/ E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Project: CPT %D TCLP ST SPLP RSD RRT RPD P RD 뭐 PDSD PDS NR B AN MSD SN ₹ MDL MB ဉ LCS ITEF ERS EDL DUP DLT DISS 무 95% Interval Glossary Abbreviation **Client:** SPKRef Val SPK Val MB % Rec DI WET pH Sampling (March 2023) PG&E Gateway Generating Station Spike Reference Value Data Not Reported due to matrix interference or insufficient sample amount. Not detected at or above the indicated MDL or RL Matrix Spike Duplicate Matrix Spike Minimum Level of Quantitation Method Detection Limit ¹ **Dilution Factor** Consumer Product Testing not NELAP Accredited 95% Confident Interval Sorbent Tube Synthetic Precipitation Leachate Procedure Spike Value **Relative Standard Deviation Relative Retention Time Relative Percent Difference** Reporting limit ² **Relative Difference** Prep Factor Post Digestion Spike Duplicate Post Digestion Spike Not Applicable % Recovery of Surrogate in Method Blank, if applicable Method Blank International Toxicity Equivalence Factor Estimated Detection Limit Duplicate **Dilution Test (Serial Dilution)** Dissolved (direct analysis of 0.45 µm filtered and acidified water sample) (DISTLC) Waste Extraction Test using DI water Serial Dilution Percent Difference Toxicity Characteristic Leachate Procedure Lowest Quantitation Level Laboratory Control Sample External reference sample. Second source calibration verification. WorkOrder: 2303F26

distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016 MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is

than the MDL.) conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

WorkOrder:

2303F26

Project: Client: TEQ TZA WET (STLC) pH Sampling (March 2023) PG&E Gateway Generating Station Waste Extraction Test (Soluble Threshold Limit Concentration) TimeZone Net Adjustment for sample collected outside of MAI's UTC. **Toxicity Equivalents**

	Accampbell Analytical, Inc.	"When Quality Counts"
1 1 Mar	WC	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Climt.	DC&F Cotomory Concerning Station
Cuent.	r uce date way usited atting station
Date Received:	Date Received: 03/21/2023 14:00
Date Prepared: 03/20/2023	03/20/2023
Project:	pH Sampling (March 2023)

WorkOrder:2303F26Extraction Method:SM4500H+B-2000Analytical Method:SM4500H+BUnit:pH units

		Hq			1
Client ID	Lab ID	Matrix	Date Collected Instrument	Instrument	Batch ID
E-001	2303F26-001A Water	Water	03/20/2023 10:15	WetChem	266497
Analytes	Result		Accuracy DF		Date Analyzed
Hd	8.06		±0.05 1		03/20/2023 10:16

Analyst(s): JRA

	Quality Cor	Quality Control Report	
Client:	PG&E Gateway Generating Station	WorkOrder:	2303F26
Date Prepared: 03/20/2023 Date Analyzed: 03/20/2023	03/20/2023 03/20/2023	Extraction Method: SM4500H+B-2000	266497 SM4500H+B-2000
Instrument:	WetChem	Analytical Method: SM4500H+B	SM4500H+B
Matrix:	Water	Unit:	pH units
Project:	pH Sampling (March 2023)	Sample ID:	CCV-266497
	QC Summary	QC Summary Report for pH	
Analyte	CCV Result		CCV Limits
Hd	7.08		6.9-7.1

McCampbell Analytica 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262	II, INC. □ WaterTrax □ CLIP	EDF	CHAIN-O WorkOrder: 2.			DECORD Ode: PGEA	le: PGEA					
	Д Д	<u>j</u> _L	Detection Sur	•	Excel			□]-fla	5			
Report to:			Bill to:		-	Req	uested TAT:	5 days;				
Sanjiv Gill	Email: sanjivgill@	comcast.net	San	ijiv Gil								
PG&E Gateway Generating Station	cc/3rd Party:		Mus	skan Environr	mental Servic							
3225 Wilbur Avenue	PO:		182	8 Nelda Ct.		Dat	te Received:	03/21/2	023			
Antioch, CA 94509 (925) 459-7212 FAX:	Project: pH Samplir	ng (March 2023)	Yub	a City, CA 95	5993	Dat	te Logged:	03/22/2	023			
			The second		Requested	Tests (See legend	below)					
Lab ID ClientSam	pID Matrix	Collection Date	Hold 1 2	3	4 5	6 7 8	3 9 10	0 11	12			
2303F26-001 E-001	Wate	r 3/20/2023 10:15		1 1	1 1	1	1 1	4	1			

Test Legend:

11-	PH_W_SANJIV	-
5		
9		

2	PRDisposal Fee	
6		
10		

3	
7	
11	

4 1	-
8	
12	

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Mc	Campbell Analytical, In "When Quality Counts"	nc.		Toll Free Teleph	v Pass Road, Pittsburg, C hone: (877) 252-9262 / F mpbell.com / E-mail: ma	ax: (925) 252-	9269		_ [
		WORK ORE	DER SUMMA	ARY					
Client Name:PG&E GAClient Contact:Sanjiv Gill	TEWAY GENERATING STATION	Project:	pH Sampling (Ma	rch 2023)				rder: 2303 Level: LEV	
Contact's Email: sanjivgill@	comcast.net	Comments:					Date Log	gged: 3/22	2/2023
	WaterTrax CLIP		EQuIS	Email	HardCopy		arty		
LabID ClientSampID	Matrix Test Name	Containers /Composites	Bottle & U* Preservative	* Head Dry- Space Weight	Collection Date & Time	ТАТ	Test Due Date	Sediment Content	Hold Sub Out
001A E-001	Water SM4500H+B (Field pH)	0 <	NOT RECEIVED>		3/20/2023 10:15	5 days	3/28/2023		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

							-																	-	2	30	D'	3	F	2	10
	M	cC/		CLL A 4 WILLC TSBURG	W PA	SS ROAI	D	L, I	N	C.					1	TUR	EN .	AR							U		0	DY	R	EC	CORD
	Web Tele	eite: y phoa	NWW.BECCA Ie: (877) 2	mpbell.ce	m En	nail: ma		:cam) (25) 2	pbe (52	1.004 -926	9				Ģ	Jeo ʻ	Tra	cke	r F	D				F	4]]]3	ICE	1 5	1 1	Wrl	IR 72 HR 5 DAY Ite On (DW) d "J" flag is required
Report	To: Senjiv	GIU			1	all To;	Musk	an E	avi	rens		al								A				ues							Remarks
Compa	IV: PG&E	Gate	Way Gen	arating S	itatio	<u> </u>																					Τ				
						-Mail:	easti		200			et																			
Tel: (44	8) 666-449	4 (Ce	4I)			ax: ()																					!			
	Name: pl						ξ)																							
	Location: 1												4	_																	1
Sample	r Signature		MINSKO	n F	بذبرم	onm	ente	$\overline{76}$	-0	<u>elì</u>	¥—	Ľ	1_																		
		Composite	SAMP	LING		E	Ma	trix	M	THO	D PI	DSD	RV	Ð												ŀ					
SAMPLE ID	LOCATION / Field Point Name		Date	Time	# Containers	Type Containers	Waste Water	Server Water	None	ICE	NaOH	HCL	HNO.	Zine Acetate	Ng																
E-001		G	3/20/23	10:15	NA	NA	x		X						x																Grab Time: 10:15 Analysis Time: 10:15
											1																				Temperature: 18.900 pH: 8.06
											Γ							IT											[]		
					1					-	1						1								_		1			$\neg \uparrow$	
											1					1	1													\square	
									T												-		-1				F				
									T			Т									-				_						
										Τ				Π			1				1										
									Τ	1							Τ				1										
																					T										_
	1									1																				T	
Relinquis	ied By:		Date: 3/21/23	Time: /4:00		ived By:	1	R	4	x	9	~	1.		GO	er_ Dod Ad S				T								1	COM	R. TR	vts: .
Relinquis	hed By:		Date:	Time:		ived By:	C	1							DE AP	CHI PRO ESEI	.ORI PRI/	NATI TE C	ED I CON	N L		s		-							
Relinguis	hed By:		Date:	Thme:	Rece	ived By:									JU 106	انو المبد	-L Y 21	- 214			 	C			-	~					Page 8 of

Date/Time	Sample ID	Matrix	1 st R	eading	2 nd R	leading	Ave	Standard		
Date/Time	Sample ID	IVIAULIX	pН	Temp.°c	pH	Temp.°c	pH	(lot # / exp. Date)	Comments	Analyst
3/20/23/09:45	Cal. pH # 7.00	L	7.08	20.6	7.08	20.5	-7.08	butk	ralibrated to 200	
3/20/23/09:45	Cal pH # 4.00	L	4.00	20.6	4.00	20.6	4.00	mik		
3/20/23/09:45	Cal. pH # 10-00	L	10.00	20-6	10-00	20.6	10.00	bulk		
		_								
						Moter	M	ycon L	Company	1
						N	Ara	Meter II	1	
						Seria	H	6222066		
						pt	Yon	COC 03/	20/23	
1							1	~		
						1	K	VLEF	listenia	Y
						1.				/

Page 49 of 100

1111

E1

A STATE OF STATE

* **Be**

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station pH Sampling (March 2023)			Date and Time Received: Date Logged:	: 3/21/2023 14:00 3/22/2023
WorkOrder №:	2303F26 Matrix: Water			Received by: Logged by:	Agustina Venegas Agustina Venegas
Carrier:	<u>Client Drop-In</u>				
	Chain of	Custod	y (COC) Info	ormation	
Chain of custody	present?	Yes	2	No 🖾	
Chain of custody	signed when relinquished and received?	Yes		No 🛄	
Chain of custody	agrees with sample labels?	Yes		No 🗔	
Sample IDs note	d by Client on COC?	Yes		No 🛄	
Date and Time o	f collection noted by Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	Quote?	Yes		No 🔲	NA 🗾
	Samp	ole Rece	eipt Informa	tion	
Custody seals in	tact on shipping container/cooler?	Yes		No 🔲	NA 🗾
Custody seals in	tact on sample bottles?	Yes		No 🔲	NA 🗾
Shipping contain	er/cooler in good condition?	Yes		No 🔲	
Samples in prope	er containers/bottles?	Yes	1	No 🔲	
Sample containe	rs intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes		No 🔲	
	Sample Preservat	ion and	Hold Time	(HT) Information	
All samples rece	ived within holding time?	Yes		No 🔲	
Samples Receive	ed on Ice?	Yes		No 🛃	
Sample/Temp BI	ank temperature		Temp:		NA 🕞
	analyses: VOA meets zero headspace	Yes		No 🗔	NA 🗖
	Cs, TPHg/BTEX, RSK)?				
Sample labels ch	necked for correct preservation?	Yes		No 🔲	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes		No 🔲	NA 💽
UCMR Samples:					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA
Free Chlorine t [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🔲	NA 🗾

Comments:

Attachment 8c Laboratory Results Semi-annual Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:

2303E79

Amended: 03/29/2023

1

Revision:

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:	Angel Espiritu
Project P.O.:	
Project:	Semi-Annual Sampling (March 2023)

Project Received: 03/21/2023

Analytical Report reviewed & approved for release on 03/28/2023 by:

Jena Alfaro Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Revision History

Client: PG&E Gateway Generating Station

Project: Semi-Annual Sampling (March 2023) WorkOrder: 2303E79

Date Revision 1

03/29/2023

Reason

Revised to include MDLs/J-Flags

> 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client:PG&E Gateway Generating StationProject:Semi-Annual Sampling (March 2023)

WorkOrder: 2303E79

Project:	Semi-Annual Sampling (March 2023)
Glossary	Glossary Abbreviation
%D	Serial Dilution Percent Difference
95% Interval	val 95% Confident Interval
CPT	Consumer Product Testing not NELAP Accredited
ΡF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	c % Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit 1
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting limit ²
RPD	Relative Percent Difference
RRT	Relative Retention Time
RSD	Relative Standard Deviation
SPK Val	Spike Value
SPKRef Val	al Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure

distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.)

Glossary of Terms & Qualifier Definitions

Client:	Client: PG&E Gateway Generating Station	WorkOrder:	2303E79
Project:	Project: Semi-Annual Sampling (March 2023)		
TEQ	Toxicity Equivalents		
TZA	TimeZone Net Adjustment for sample collected outside of MAI's UTC.		
WET (STLC)	LC) Waste Extraction Test (Soluble Threshold Limit Concentration)		

Analytical Qualifiers

Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated valu Surrogate recovery outside accepted recovery limits. Surrogate recovery outside of the control limits due to the dilution of the sample.
e MDL. The reported concentration is an estima nits. ue to the dilution of the sample.

Quality Control Qualifiers

	F5	F2	
allowable marginal exceedances.	LCS/LCSD recovery is outside of acceptance limits; however, the data is acceptable based upon the TNI	LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/22/2023Project:Semi-Annual Sampling (March 2023)

 WorkOrder:
 2303E79

 Extraction Method:
 E608.3/SW3620B

 Analytical Method:
 E608.3

 Unit:
 μg/L

Organochlorine Pesticides + PCBs w/ Florisil Clean-up

Client ID	Lab ID	Matrix	Date Collect	ted	Instrument	Batch ID
E-001	2303E79-001D	Water ()3/21/2023 12	::15	GC40 03232317.d	266079
Analytes	Result	MDL	<u>RL</u>	DF		Date Analyzed
Aldrin	ND	0.00028	0.0010	1		03/23/2023 16:47
a-BHC	ND	0.00031	0.0010	1		03/23/2023 16:47
b-BHC	ND	0.00069	0.0010	1		03/23/2023 16:47
d-BHC	ND	0.00014	0.0010	1		03/23/2023 16:47
g-BHC	ND	0.00045	0.0010	1		03/23/2023 16:47
Chlordane (Technical)	ND	0.0023	0.020	1		03/23/2023 16:47
a-Chlordane	ND	0.00085	0.0010	1		03/23/2023 16:47
g-Chlordane	ND	0.00015	0.0010	1		03/23/2023 16:47
p,p-DDD	ND	0.00011	0.0010	1		03/23/2023 16:47
p,p-DDE	ND	0.00018	0.0010	1		03/23/2023 16:47
p,p-DDT	ND	0.00017	0.0010	1		03/23/2023 16:47
Dieldrin	ND	0.00014	0.0010	1		03/23/2023 16:47
Endosulfan I	ND	0.00011	0.0010	1		03/23/2023 16:47
Endosulfan II	ND	0.00046	0.0010	1		03/23/2023 16:47
Endosulfan sulfate	ND	0.00033	0.0020	1		03/23/2023 16:47
Endrin	ND	0.00018	0.0010	1		03/23/2023 16:47
Endrin aldehyde	ND	0.00053	0.0010	1		03/23/2023 16:47
Endrin ketone	ND	0.00026	0.0010	1		03/23/2023 16:47
Heptachlor	ND	0.00041	0.0010	1		03/23/2023 16:47
Heptachlor epoxide	ND	0.00025	0.0010	1		03/23/2023 16:47
Methoxychlor	ND	0.00012	0.0010	1		03/23/2023 16:47
Toxaphene	ND	0.0020	0.020	1		03/23/2023 16:47
Aroclor1016	ND	0.0019	0.020	1		03/23/2023 16:47
Aroclor1221	ND	0.0024	0.020	1		03/23/2023 16:47
Aroclor1232	ND	0.0038	0.020	1		03/23/2023 16:47
Aroclor1242	ND	0.0028	0.020	1		03/23/2023 16:47
Aroclor1248	ND	0.0018	0.020	1		03/23/2023 16:47
Aroclor1254	ND	0.0015	0.020	1		03/23/2023 16:47
Aroclor1260	ND	0.0028	0.020	1		03/23/2023 16:47
PCBs, total	ND	NA	0.020	1		03/23/2023 16:47
Surrogates	REC (%)		Limits			
Decachlorobiphenyl	72		60-130			03/23/2023 16:47
Analyst(s): CN						

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	03/21/2023 14:00
Date Prepared:	03/21/2023
Project:	Semi-Annual Sampling (March 2023)
-	

WorkOrder:	2303E79
Extraction Method:	E624.1
Analytical Method:	E624.1
Unit:	μg/L

Client ID	Lab ID	Matrix		Date Col	lected	Instrument	Batch ID
E-001	2303E79-001B	Water		03/21/2023	8 12:15	GC10 03202332.D	266077
Analytes	Result		MDL	<u>RL</u>	DF		Date Analyzed
Acrolein (Propenal)	ND		3.9	5.0	1		03/21/2023 20:31
Acrylonitrile	ND		0.23	2.0	1		03/21/2023 20:31
2-Chloroethyl Vinyl Ether	ND		0.44	1.0	1		03/21/2023 20:31
Surrogates	REC (%)			Limits			
Dibromofluoromethane	108			70-130			03/21/2023 20:31
Analyst(s): LT							

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

WorkOrder:	2303E79
Extraction Method:	E624.1
Analytical Method:	E624.1
Unit:	µg/L

Client ID	Lab ID	Matrix		Date Coll	ected	Instrument	Batch ID
E-001	2303E79-001A	Water	1	03/21/2023	12:15	GC49 03212331.D	265971
Analytes	Result	Qualifiers	MDL	RL	DF		Date Analyzed
Benzene	ND		0.034	0.20	1		03/22/2023 03:34
Bromodichloromethane	3.1		0.022	0.050	1		03/22/2023 03:34
Bromoform	0.47	J	0.10	0.50	1		03/22/2023 03:34
Bromomethane	ND		0.26	0.50	1		03/22/2023 03:34
Carbon tetrachloride	0.044	J	0.033	0.050	1		03/22/2023 03:34
Chlorobenzene	ND		0.092	0.50	1		03/22/2023 03:34
Chloroethane	ND		0.23	0.50	1		03/22/2023 03:34
Chloroform	5.1		0.015	0.10	1		03/22/2023 03:34
Chloromethane	ND		0.18	0.50	1		03/22/2023 03:34
Dibromochloromethane	1.2		0.069	0.15	1		03/22/2023 03:34
1,2-Dichlorobenzene	ND		0.11	0.50	1		03/22/2023 03:34
1,3-Dichlorobenzene	ND		0.12	0.50	1		03/22/2023 03:34
1,4-Dichlorobenzene	ND		0.11	0.50	1		03/22/2023 03:34
1,1-Dichloroethane	ND		0.14	0.50	1		03/22/2023 03:34
1,2-Dichloroethane (1,2-DCA)	ND		0.011	0.020	1		03/22/2023 03:34
1,1-Dichloroethene	ND		0.0036	0.010	1		03/22/2023 03:34
trans-1,2-Dichloroethene	ND		0.12	0.50	1		03/22/2023 03:34
1,2-Dichloropropane	ND		0.029	0.20	1		03/22/2023 03:34
cis-1,3-Dichloropropene	ND		0.13	0.50	1		03/22/2023 03:34
trans-1,3-Dichloropropene	ND		0.20	0.50	1		03/22/2023 03:34
Ethylbenzene	ND		0.14	0.50	1		03/22/2023 03:34
Methylene chloride	ND		0.75	2.0	1		03/22/2023 03:34
1,1,2,2-Tetrachloroethane	ND		0.018	0.020	1		03/22/2023 03:34
Tetrachloroethene	ND		0.028	0.20	1		03/22/2023 03:34
Toluene	ND		0.096	0.50	1		03/22/2023 03:34
1,1,1-Trichloroethane	ND		0.14	0.50	1		03/22/2023 03:34
1,1,2-Trichloroethane	ND		0.026	0.20	1		03/22/2023 03:34
Trichloroethene	ND		0.030	0.50	1		03/22/2023 03:34
Trichlorofluoromethane	ND		0.13	0.50	1		03/22/2023 03:34
Vinyi chloride	ND		0.0027	0.0050	1		03/22/2023 03:34
Surrogates	REC (%)			Limits			
Dibromofluoromethane	118			70-130			03/22/2023 03:34
Toluene-d8	129			70-130			03/22/2023 03:34
4-BFB	92			70-130			03/22/2023 03:34

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/21/2023Project:Semi-Annual Sampling (March 2023)

WorkOrder:	2303E79
Extraction Method:	E625.1
Analytical Method:	E625.1
Unit:	μg/L

Semi-Volatile Organics

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	2303E79-001C	Water	03/21/2023	12:15	GC48 03232343.D	265964
Analytes	Result	MDL	RL	DF		Date Analyzed
Acenaphthene	ND	0.019	0.047	10		03/24/2023 04:13
Acenaphthylene	ND	0.0088	0.047	10		03/24/2023 04:13
Anthracene	ND	0.025	0.047	10		03/24/2023 04:13
Benzidine	ND	23	47	10		03/24/2023 04:13
Benzo (a) anthracene	ND	0.11	0.47	10		03/24/2023 04:13
Benzo (a) pyrene	ND	0.029	0.047	10		03/24/2023 04:13
Benzo (b) fluoranthene	ND	0.053	0.19	10		03/24/2023 04:13
Benzo (g,h,i) perylene	ND	0.048	0.19	10		03/24/2023 04:13
Benzo (k) fluoranthene	ND	0.049	0.19	10		03/24/2023 04:13
Benzyl Alcohol	ND	30	47	10		03/24/2023 04:13
Bis (2-chloroethoxy) Methane	ND	2.4	9.4	10		03/24/2023 04:13
Bis (2-chloroethyl) Ether	ND	0.019	0.047	10		03/24/2023 04:13
Bis (2-chloroisopropyl) Ether	ND	0.14	0.47	10		03/24/2023 04:13
Bis (2-ethylhexyl) Adipate	ND	2.5	9.4	10		03/24/2023 04:13
Bis (2-ethylhexyl) Phthalate	11	0.42	1.9	10		03/24/2023 04:13
4-Bromophenyl Phenyl Ether	ND	1.4	9.4	10		03/24/2023 04:13
Butylbenzyl Phthalate	ND	0.070	0.47	10		03/24/2023 04:13
4-Chloroaniline	ND	0.013	0.047	10		03/24/2023 04:13
4-Chloro-3-methylphenol	ND	3.5	9.4	10		03/24/2023 04:13
2-Chloronaphthalene	ND	2.1	9.4	10		03/24/2023 04:13
2-Chlorophenol	ND	0.12	0.47	10		03/24/2023 04:13
4-Chlorophenyl Phenyl Ether	ND	2.1	9.4	10		03/24/2023 04:13
Carbazole	ND	3.0	9.4	10		03/24/2023 04:13
Chrysene	ND	0.019	0.047	10		03/24/2023 04:13
Dibenzo (a,h) anthracene	ND	0.053	0.19	10		03/24/2023 04:13
n-Decane	ND	2.5	9.4	10		03/24/2023 04:13
Dibenzofuran	ND	0.014	0.047	10		03/24/2023 04:13
Di-n-butyl Phthalate	ND	0.17	0.47	10		03/24/2023 04:13
1,2-Dichlorobenzene	ND	1.6	9.4	10		03/24/2023 04:13
1,3-Dichlorobenzene	ND	2.6	9.4	10		03/24/2023 04:13
1,4-Dichlorobenzene	ND	2.6	9.4	10		03/24/2023 04:13
3,3-Dichlorobenzidine	ND	0.023	0.047	10		03/24/2023 04:13
2,4-Dichlorophenol	ND	0.028	0.094	10		03/24/2023 04:13
Diethyl Phthalate	ND	0.15	0.47	10		03/24/2023 04:13
2,4-Dimethylphenol	ND	4.6	9.4	10		03/24/2023 04:13
Dimethyl Phthalate	ND	0.045	0.094	10		03/24/2023 04:13
4,6-Dinitro-2-methylphenol	ND	18		10		03/24/2023 04:13

(Cont.)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/21/2023Project:Semi-Annual Sampling (March 2023)

WorkOrder:	2303E79
Extraction Method:	E625.1
Analytical Method:	E625.1
Unit:	µg/L

Semi-Volatile Organics

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	2303E79-001C	Water	03/21/2023	12:15	GC48 03232343.D	265964
Analytes	Result	MDL	RL	DF		Date Analyzed
2,4-Dinitrophenol	ND	3.6	9.4	10		03/24/2023 04:13
2,4-Dinitrotoluene	ND	0.19	0.47	10		03/24/2023 04:13
2,6-Dinitrotoluene	ND	0.18	0.47	10		03/24/2023 04:13
Di-n-octyl Phthalate	ND	7.3	9.4	10		03/24/2023 04:13
1,2-Diphenylhydrazine	ND	1.9	9.4	10		03/24/2023 04:13
Fluoranthene	ND	0.025	0.094	10		03/24/2023 04:13
Fluorene	ND	0.027	0.094	10		03/24/2023 04:13
Hexachlorobenzene	ND	0.015	0.047	10		03/24/2023 04:13
Hexachlorobutadiene	ND	0.019	0.047	10		03/24/2023 04:13
Hexachlorocyclopentadiene	ND	22	47	10		03/24/2023 04:13
Hexachloroethane	ND	0.027	0.094	10		03/24/2023 04:13
Indeno (1,2,3-cd) pyrene	ND	0.068	0.19	10		03/24/2023 04:13
Isophorone	ND	8.7	19	10		03/24/2023 04:13
2-Methylnaphthalene	ND	0.014	0.047	10		03/24/2023 04:13
2-Methylphenol (o-Cresol)	ND	3.1	9.4	10		03/24/2023 04:13
3 & 4-Methylphenol (m,p-Cresol)	ND	2.4	9.4	10		03/24/2023 04:13
Naphthalene	ND	0.11	0.47	10		03/24/2023 04:13
2-Nitroaniline	ND	12	47	10		03/24/2023 04:13
3-Nitroaniline	ND	17	47	10		03/24/2023 04:13
4-Nitroaniline	ND	18	47	10		03/24/2023 04:13
Nitrobenzene	ND	2.7	9.4	10		03/24/2023 04:13
2-Nitrophenol	ND	16	47	10		03/24/2023 04:13
4-Nitrophenol	ND	15	47	10		03/24/2023 04:13
N-Nitrosodimethylamine	ND	18	47	10		03/24/2023 04:13
N-Nitrosodiphenylamine	ND	2.2	9.4	10		03/24/2023 04:13
N-Nitrosodi-n-propylamine	ND	3.3	9.4	10		03/24/2023 04:13
n-Octadecane	ND	1.0	9.4	10		03/24/2023 04:13
Pentachlorophenol	ND	0.84	2.4	10		03/24/2023 04:13
Phenanthrene	ND	0.025	0.047	10		03/24/2023 04:13
Phenoi	ND	0.54	1.9	10		03/24/2023 04:13
Pyrene	ND	0.018	0.047	10		03/24/2023 04:13
Pyridine	ND	2.2	9.4	10		03/24/2023 04:13
1,2,4-Trichlorobenzene	ND	1.8	9.4	10		03/24/2023 04:13
2,4,5-Trichlorophenol	ND	0.024	0.094	10		03/24/2023 04:13
2,4,6-Trichlorophenol	ND	0.036	0.094	10		03/24/2023 04:13
_, .,		0.000	0.00.			

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/21/2023Project:Semi-Annual Sampling (March 2023)

WorkOrder:	2303E79
Extraction Method:	E625.1
Analytical Method:	E625.1
Unit:	µg/L

Client ID	Lab ID	Matrix	Date Collected	d Instrument	Batch ID
E-001	2303E79-001C	Water	03/21/2023 12:1	5 GC48 03232343.D	265964
Analytes	Result	MDL	<u>RL</u> D	<u>)F</u>	Date Analyzed
Surrogates	REC (%)	Qualifiers	Limits		
2-Fluorophenol	44		20-103		03/24/2023 04:13
Phenol-d5	26		20-120		03/24/2023 04:13
Nitrobenzene-d5	57	S	61-130		03/24/2023 04:13
2-Fluorobiphenyl	64		63-115		03/24/2023 04:13
2,4,6-Tribromophenol	78		48-149		03/24/2023 04:13
4-Terphenyl-d14	57		32-113		03/24/2023 04:13
Analyst(s): KVE		А	nalytical Comment	ts: c1	

TOTO L'POTUTUTUT	8000/00/20	Katch	F .	いていかい		
Date Analyzed: 03/23/2023		Batchin.	Extraction Method.	· HAN8 3/SV	N3620R	ŀ
Instrument:	GC40	Analy	Analytical Method:			
Matrix:	Water	Unit:				
Project:	Semi-Annual Sampling (March 2023)	Sample ID:	le ID:	MB/LCS/	LCSD-266079	
	QC Summary Report for E608.3 w/ Florisil Clean-up	rt for E608.3 w/ I	Iorisil Cle	an-up		
Analyte	MB	MDL	₽	SPK	MBSS	MB SS
	Incest			¥ GI		
Aldrin	ND	0.00028	0.0010			
A-BHC		0.00060	0.0010			
d-BHC	בא 20	0.00069	0.0010 0.0010			
g-BHC		0.00045	0.0010		1	
Chlordane (Technical)		0.0023	0.020			
a-Chlordane	ND	0.00085	0.0010			
g-Chlordane	ND	0.00015	0.0010			
p,p-DDD		0.00011	0.0010			
p.p-DDT	ND	0.00017	0.0010			. ,
Dieldrin	ND	0.00014	0.0010			
Endosulfan I	DN	0.00011	0.0010			
Endosulfan II		0.00046	0.0010			
Endosulfan sulfate		0.00033	0.0020			
Endrin aldehyde	D	0.00053	0.0010			
Endrin ketone	ND	0.00026	0.0010			
Heptachlor	ND	0.00041	0.0010			
Heptachlor epoxide	e ND	0.00025	0.0010			
Methoxychlor		0.00012	0.0010		1	
Toxaphene	ND	0.0020	0.020			
Aroclor1016		0.0019	0.020			•
Aroclor1232	ND	0.0038	0.020			
Aroclor1242	ND	0.0028	0.020			
Aroclor1248	ND	0.0018	0.020			•
Aroclor1254	ND	0.0015	0.020			
Aroclor1260	ND	0.0028	0.020		·	
Surrogate Recovery	ery					
Decachlorohinhen				0 0F	Ωл	60-130
Decachiorobiphenyi	yı 0.043			0.05	80	60-130

Page 11 of 28

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com/ E-mail: main@mccampbell.com

and the Page 12 of 28

	QC Summary Report for E608.3 w/ Florisil Clean-up	port for]	E608.3 w/ Flo	orisil Clean-	qn			
Analyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
	Result	Result	Val	%REC	%REC	Limits		Limit
Aldrin	0.051	0.053	0.050	103	106	54-130	2.81	20
a-BHC	0.057	0.058	0.050	114	116	70-130	2.52	20
b-BHC	0.045	0.047	0.050	89	93	70-130	4.06	20
d-BHC	0.061	0.063	0.050	122	127	70-130	3.79	20
g-BHC	0.045	0.047	0.050	91	94	60-130	4.10	20
a-Chlordane	0.052	0.054	0.050	103	107	55-130	3.84	20
g-Chlordane	0.056	0.058	0.050	112	117	55-130	3.94	20
p,p-DDD	0.057	0.061	0.050	114	121	70-130	6.31	20
p,p-DDE	0.053	0.055	0.050	105		70-130	5.08	20
p,p-DDT	0.056	0.061	0.050	113	121	70-130	7.33	20
Dieldrin	0.052	0.054	0.050	104	108	70-130	4.08	20
Endosulfan I	0.055	0.055	0.050	109	111	70-130	1.55	20
Endosulfan II	0.055	0.058	0.050	110	116	70-130	5.32	20
Endosulfan sulfate	0.059	0.063	0.050	119	126	70-130	5.73	20
Endrin	0.066	0.070	0.050	133,F2	140,F2	70-130	5.30	20
Endrin aldehyde	0.059	0.062	0.050	118	124	60-130	5.70	20
Endrin ketone	0.060	0.063	0.050	120	127	60-130	5.42	20
Heptachlor	0.058	0.060	0.050	115	120	43-130	3.43	20
Heptachlor epoxide	0.050	0.052	0.050	101	104	70-130	3.54	20
Methoxychlor	0.063	0.068	0.050	126	135,F2	70-130	7.52	20
Aroclor1016	0.15	0.15	0.15	101	102	70-130	0.888	20
Aroclor1260	0.13	0.14	0.15	88	00	70-130	2.48	20
Surrogate Recovery								
Decachlorohinhanvl	0.048	0.051	0.050	97	102	60-130	5.67	20

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Sample ID: Unit: Analytical Method: E608.3 WorkOrder: Extraction Method: E608.3/SW3620B **BatchID:** 266079 μg/L 2303E79

MB/LCS/LCSD-266079

PG&E Gateway Generating Station

Client: Matrix: Instrument: Date Analyzed: **Date Prepared:** 03/23/2023 GC40 03/22/2023 Water

Semi-Annual Sampling (March 2023)

Project:

CA ELAP 1644 • NELAP 4033 ORELAP

AC TO	AcCampbell Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/ E-mail: main@mccampbell.com	sburg, CA 94565-1701 9262 / Fax: (925) 252-9269 nail: main@mccampbell.com
	Quality Control Report	ol Report	
Client:	PG&E Gateway Generating Station	WorkOrder:	2303E79
Date Prepared: 03/21/2023	03/21/2023	BatchID:	266077
Date Analyzed: 03/21/2023	03/21/2023	Extraction Method: E624.1	E624.1
Instrument:	GC10	Analytical Method: E624.1	E624.1
Matrix:	Water	Unit:	μg/L
Project:	Semi-Annual Sampling (March 2023)	Sample ID:	MB/LCS/LCSD-266077

	inc our	UC SUIIIIIALY REPORT 101 E024.1	ישי ישי						
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC	ΞΞ	MB SS Limits
Acrolein (Propenal)	QN		3.9	5.0		.			1
Acrylonitrile	QN		0.23	2.0					
2-Chloroethyl Vinyl Ether	QN		0.44	1.0				•	
Surrogate Recovery									
Dibromofluoromethane	27					25	108	7(70-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD	RPD Limit
Acrolein (Propenal)	23	26	20		116	130	71-140	11.6	20
Acrylonitrile	20	21	20		98	107	67-145	8.70	20
2-Chloroethyl Vinyl Ether	17	18	20		86	06	70-124	4.62	20
Surrogate Recovery									
Dibromofluoromethane	27	27	25		107	106	70-130	0.934	20

Matrix: Date Prepared: 03/21/2023 **Client:** Ethylbenzene cis-1,3-Dichloropropene trans-1,2-Dichloroethene Dibromochloromethane Bromomethane Bromoform Benzene Project: Instrument: Date Analyzed: 1,1,2-Trichloroethane Toluene 1,1,2,2-Tetrachloroethane Methylene chloride trans-1,3-Dichloropropene 1,2-Dichloropropane 1,1-Dichloroethene 1,2-Dichloroethane (1,2-DCA) 1,1-Dichloroethane 1,3-Dichlorobenzene 1,2-Dichlorobenzene Chloromethane Chloroform. Bromodichloromethane 1.1.1-Trichloroethane 1,4-Dichlorobenzene Chloroethane Chlorobenzene Carbon tetrachloride Analyte Water 03/21/2023 GC49 Semi-Annual Sampling (March 2023) PG&E Gateway Generating Station QC Summary Report for E624.1 R B MB Result B B B ND Z B B B R F Ę Ę F F £ £ £ £ £ £ £ £ ŧ ₿ E 0.026 0.13 0.011 014 012 0.069 0.18 0.14 0.096 0.018 0.75 0.14 0.20 0.029 Ь 11 0.015 0.022 0.034 MDL 0.028 0.12 0.0036 0.23 0.092 0.033 0.26 0.10 Unit: Sample ID: **Analytical Method: Extraction Method: BatchID**: WorkOrder: 0.20 0.50 0.020 0.50 0.50 0.50 0.20 0.50 0.010 0.020 0.50 0.50 0.50 0.50 015 0.50 0.10 0.050 0.20 0.500.50 0.50 0.050 0.50 꾠 2.0 0.50 22 E624.1 E624.1 MB/LCS/LCSD-265971 µg/L 2303E79 265971 SPK Val . MB SS %REC . Limits MB SS

Quality Control Report

CA ELAP 1644 • NELAP 4033 ORELAP and the Page 14 of 28

4-BFB

(Cont.)

Toluene-d8

<u>3</u>

29

B D ZD

0.030

0.50

.

.

0.13

0.0027

0.0050 0.50

2.2

2.5 25 25

88 126 114

> 70-130 70-130

70-130

Dibromofluoromethane Surrogate Recovery Vinyl chloride

Trichlorofluoromethane

Trichloroethene

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:	PG&E Gateway Generating Station	ation		WorkOrder:		2303E79			
repared:				BatchID:		265971			
Date Analyzed: 03/21/2023	03/21/2023			Extraction Method:		E624.1			J
Instrument:	GC49			Analytical Method:		E624.1			
Matrix:	Water			Unit:		μg/L			J
Project:	Semi-Annual Sampling (March 2023)	h 2023)		Sample ID:		MB/LCS/LC	CSD-265971	71	
	0	CSum	marv R	OC Summary Report for E624.1					
Analyte				SDK					
maiyee	7	Result	Result	Val	%REC	%REC	Limits		Limit
Benzene	4	4.2	4.4	4	105	109	65-130	4.10	20
Bromodichloromothane	hane 4	.4	4.7	4		117	60-130	5.48	20
Bromoform		3.9	4.2	4	88	104	70-130	6.72	20
Bromomethane	u u	3.7	3.9	4	92	97	50-130	5.21	20
Carbon tetrachloride		4.5	4.8	4	113	119	70-130	5.51	20
Chlorobenzene	4	4.3	4.4	4	107	111	65-130	3.70	20
Chloroethane	ω	3.8	4.0	4	94	90	60-140	5.44	20
Chloroform	4	4.7	5.0	4	118	124	70-130	4.88	20
Chloromethane	4	4.8	5.0	4	120	126	50-130	4.43	20
Dibromochloromethane		4.6	4.9	4	116	123	70-130	6.17	20
1,2-Dichlorobenzene		4.0	4.2	4	100	105	65-130	4.77	20
1,3-Dichlorobenzene		4.2	4.4	4	106	110	70-130	3.84	20
1,4-Dichlorobenzene		4.3	4.4	4	107	110	65-130	3.30	20
1,1-Dichloroethane		4.5	4.7	4	113	118	70-130	3.74	20
1,2-Dichloroethane (1,2-DCA)	(1,2-DCA)	4.9	5.1	4	122	128	70-130	5.28	20
1,1-Dichloroethene		4.3	4.5	4	107	111	60-130	3.89	20
trans-1,2-Dichloroethene		4.4	4.6	4	110	116	70-130	5.11	20
1,2-Dichloropropane		4.3	4.6	4	109	114	60-130	4.87	20
cis-1,3-Dichloropropene		4.3	4.5	4	108	114	60-130	5.16	20
trans-1,3-Dichloropropene	пе	4.3	4.5	4	108	114	60-130	5.07	20
Ethylbenzene		4.4	4.6	4	110	114	60-130	3.86	20
Methylene chloride		4.6	4.7	4	114	118	60-130	3.63	20
1,1,2,2-Tetrachloroethane		4.0	4.2	4	101	105	60-130	4.24	20
Tetrachlornethene	4	3	44	4	107	111	70-130	363	20
Toluene	4	4.0	4.5	4	100	114	70-130	12.7	20
1.1.1-Trichloroethane		4.7	4.9	4	118	124	70-130	4.49	20
1,1,2-Trichloroethane		4.0	4.2	4	101	105	70-130	4.06	20
Trichloroethene	4	4.6	4.8	4	115	120	65-130	4.00	20
Trichlorofluoromethane		4.6	4.8	4	115	120	60-130	4.29	20
Vinyl chloride	2	2.0	2.1	2	100	104	60-130	4.14	20
Surrogate Recovery	erv								
1									

CA ELAP 1644 • NELAP 4033ORELAP

Toluene-d8 4-BFB

Dibromofluoromethane

29 31 2.3

29 32 2.3

25 25 2.5

116 126 93

117 126 93

70-130

70-130 70-130

1.03 0.487 0.317

20 20

Page 15 of 28

Client: PG&E Gateway Generating Station	tation	WorkOrder:)rder:	2303E79		
Date Prepared: 03/21/2023		BatchID	P	265964		
Date Analyzed: 03/21/2023		Extrac	Extraction Method:	d: E625.1		
Instrument: GC21		Analyt	Analytical Method:	d: E625.1		
		Unit:				
	h 2023)	Sample ID:	e ID:	MB/LCS/LC	LCSD-265964	
0	QC Summary Report for E625.1	Report for E	625.1			
Analyte N	MB	MDL	₽	SPK	MB SS MB SS	MB SS
7	Result			Val	%REC	Limits
Acenaphthene P	ND	0.0020	0.0050			
Acenaphthylene N		0.00093	0.0050			
ō		0.0027	0.0050			
Benzo (a) anthracene N		0.012	0.050			
	ND	0.0031	0.0050			
thene	ND	0.0056	0.020			
	ND	0.0051	0.020			
Benzo (k) fluoranthene N	ND	0.0052	0.020			-
	ND	3.2	5.0			-
nane		0,000,0				
Bis (2-chloroisopropyl) Ether N	חש	0.0020	0.050			
	ND	0.27	1.0		ı	
te	ND	0.045	0.20			
9r	ND	0.15	1.0			
halate	ND	0.0074	0.050			
		0.0014	0.0050			
4-Chloronaphthalana		0.37				
	ND	0.013	0.050			
Phenyl Ether	ND	0.22	1.0			
azole	ND	0.32	1.0			
		0.0000	0 0050			
Dibenzo (a,n) antifiacene		0.27	0.0∠0 1.0			
Iran	ND	0.0015	0.0050			
Di-n-butyl Phthalate	ND	0.018	0.050			
1,2-Dichlorobenzene		0.17	1.0			
		0.28	1.0	ı		•
Ð	ND	0.0024	0.0050		·	
0	ND	0.0030	0.010			·
	ND	0.016	0.050	ı		
Dimothyl Batholoto		0.49	0.010	,	,	,
lphenol	ND	1.9	5.0			
	ND	0.38	1.0			·
		- 7				N. K.

Quality Control Report

Client:

PG&E Gateway Generating Station

WorkOrder:

2303E79

Date Prepared:	: 03/21/2023		-BatchID:		265964		
Date Analyzed: 03/21/2023	: 03/21/2023		Extract	Extraction Method: E625.1			
Instrument:	GC21		Analyti	Analytical Method:			
Matrix:	Water		Unit:		μg/L		
Project:	Semi-Annual Sampling (March 2023)	h 2023)	Sample ID:	D:	LCS/	LCSD-265964	
		OC Summary Renort for E625.1	t for E	525.1			
Analvte	2	MB	MDL		SPK	MB SS	MB SS
	7	ult				%REC	Limits
2,4-Dinitrotoluene	P	ND 0.	0.020	0.050			
2,6-Dinitrotoluene		ND	0.019	0.050			
Di-n-octyl Phthalate		ND	0.77	1.0			
1,2-Diphenylhydrazine		ND 0.	0.20	1.0			ŀ
Fluoranthene	P	ND 0,	0.0027	0.010			
Fluorene			0.0029	0.010			
Hexachlorobenzene	,						
Hexachlorocyclonentadiana			0 2 0 2 0 2 0 2	л 0.0000 О	. ,		
Hexachloroethane			0.0029	0.010			
Indeno (1,2,3-cd) pyrene			0.0072	0.020			
Isophorone		ND 0.	0.92	2.0			
2-Methylnaphthalene			0.0015	0.0050		1	
2-Methylphenol (o-Cresol)	esol)	ND 0.	0.33	1.0			
3 & 4-Methylphenol (m,p-Cresol)		ND 0.	0.25	1.0			
Naphthalene	7	ND 0.	0.012	0.050			
2-Nitroaniline	7	ND 1.3	ω	5.0			
3-Nitroaniline	7	ND 1.8	8	5.0		1	
4-Nitroaniline	7	ND 1.9	9	5.0		1	
Nitrobenzene	7	ND 0.	0.29	1.0		1	
2-Nitrophenol	7	ND 1.7	7	5.0			
4-Nitrophenol	7	ND 1.6	6	5.0			
N-Nitrosodimethylamine		ND 1.9	9	5.0			
N-Nitrosodiphenylamine		D D	0.23	1 0	ŀ		ł
N-Nitrosodi-n-propylamine			0.35	1.0			
n-Octadecane	7	ND 0.	0.11	1.0			
Pentachloropheno		ND 0.	0.089	0.25		ı	
Phenanthrene	7	ND 0.	0.0026	0.0050			
Phenol	7	ND 0.	0.057	0.20			
Pyrene	7	ND 0.	0.0019	0.0050	•	•	•
Pyridine	7		0.23	1.0			
1,2,4-Trichlorobenzene		ND 0.	0.19	1.0		ı	
2,4,5-Trichlorophenol			0.0025	0.010			
2,4,6-Trichlorophenol		ND 0.	0.0038	0.010			•

	Quality Co	Quality Control Report		
Client:	PG&E Gateway Generating Station	WorkOrder:	2303E79	
Date Prepared: 03/21/2023	03/21/2023	BatchID:	265964	
Date Analyzed: 03/21/202	03/21/2023	Extraction Method: E625.1	l: E625.1	
Instrument:	GC21	Analytical Method: E625.1	: E625.1	
Matrix:	Water	Unit:	μg/L	
Project:	Semi-Annual Sampling (March 2023)	Sample ID:	MB/LCS/LCSD-265964	5964
Analyte	MB Result	MDL RL	SPK MB SS Val %REC	MB SS Limits
Surrogate Recovery	λ.			
2-Fluorophenol	2.6		5 51	20-103
Phenol-d5	1.6		5 33	20-120
Nitrobenzene-d5	3.7		5 74	61-130
2-Fluorobiphenyl	3.6		5 72	63-115
2,4,6-Tribromophenol	1ol 4.3		5 87	48-149
4-Terphenyl-d14	3.7		5 73	32-113

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

	Q	Ouality		Control Report					
Client: P	PG&E Gateway Generating Station	tion		WorkOrder:		2303E79			
repared:	03/21/2023			BatchID:		265964			
Date Analyzed: 03/21/2023	3/21/2023			Extraction Method: E625.1	fethod:	E625.1			
Instrument: (GC21			Analytical Method:	lethod:	E625.1			
	Water			Unit:		μg/L			
Project: S	Semi-Annual Sampling (March 2023)	2023)		Sample ID:		MB/LCS/LC	LCSD-265964	964	
	Q	Sum	mary R	QC Summary Report for E625.1					
Analyte	LCS	ió		SPK	LCS	LCSD		RPD	RPD
	Re	Result	Result	Val	%REC		Limits		Limit
Acenaphthene	0.25	5	0.25	0.25	86	100	60-132	1.98	25
Acenaphthylene	0.21		0.21	0.25	84	85	54-126	0.601	25
Anthracene	0.24	4	0.24	0.25	97	88	60-130	1.00	25
Benzidine	21		21	25	85	86	20-130	0.822	25
Benzo (a) anthracene		i iki	0.28	0.25	111	112	60-130	0.356	25
Benzo (a) pyrene		7	0.28	0.25	107	110	60-130	2.88	25
Benzo (a.h.i) pervlene	0.25	й.	0.26	0.25	99	103	50-130	3.97	25
Benzo (k) fluoranthene		7	0.28	0.25	109	112	60-130	2.83	25
Benzyl Alcohol			23	25	94	91	60-130	3.02	25
Bis (2-chloroethoxy) Methane	Jethane 4.7		4.7	σ	95	94	65-130	1.03	25
Bis (2-chloroethyl) Ether		ä	0.23	0.25	94	93	60-130	0.847	25
Bis (2-chloroisopropyl) Ether	ter	Ď	0.21	ū.25	80	82	63-139	2.63	2 25
Bis (2-ethylnexyl) Adipate	bate 0.33	Σ [0.34	0.25	133 F5	129 136 F5	60-130	1.14 2.38	25
4-Bromophenyl Phenyl Ether	9r		4.9	J J	95		65-120	4.20	25
Butylbenzyl Phthalate		22	0.32	0.25	126	127	60-140	0.322	25
4-Chloroaniline	0.25	ភ	0.25	0.25	66	66	60-130	0.357	25
4-Chloro-3-methylphenol	nol 5.9		5.8	IJ	118	115	65-130	2.38	25
2-Chloronaphthalene	4.7		4.8	ъ	94	96	65-120	1.17	25
2-Chlorophenol		9	0.19	0.25	77	78	60-130	1.40	25
4-Chlorophenyl Phenyl Ether			4.8	ו טז	94	96	65-130	2.52	25
Carbazole	5.7	ŏ	0.8 0.8	ວ ປາ ວາ	114	116	70-130	1.60	25
Dibenzo (a.h) anthracene		ത് മ	0.27	0.25	104	108	50-130	3.35	25
n-Decane		,	3.7	J	75	75	30-130	0.0321	25
Dibenzofuran	0.23	23	0.23	0.25	94	93	65-130	0.132	25
Di-n-butyl Phthalate	0.31	31	0.32	0.25	124	126	60-130	2.03	25
1,2-Dichlorobenzene	4.2	10	4.2	ы	83	85	60-130	1.82	25
1,3-Dichlorobenzene	3.8		3.9	ъ	77	79	60-130	2.51	25
1,4-Dichlorobenzene		i	4.0	о (Л 1	80	79	60-130	1.42	25
3,3-Dichlorobenzidine		27	0.27	0.25	107	109	60-130	1.80	25
2,4-UICNIOrophenoi	0.24 0.35	л 4	0.23	0.25	08 08	00 29	65-120	1.87	о Л
2,4-Dimethylphenol	4.7		4.6	ъ	94	92	60-130	1.63	25
Dimethyl Phthalate	0.19	9	0.19	0.25	76	76	60-130	0.171	25
4,6-Dinitro-2-methylphenol			30	25	117	120	60-130	2.12	25
	C.F		C.P		Ę	ā		0.102	Ľ
				- 1.1				~	2

Page 19 of 28

and the

(Cont.)

CA ELAP 1644 • NELAP 4033 ORELAP

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: nain@mccampbell.com

Quality Control Report

Client:	PG&E Gateway Generating Station	ating Station		WorkOrder:		2303E79			
Date Prepared:	03/21/2023			BatchID:		265964			
Date Analyzed: 03/21/2023	03/21/2023			Extraction Method: E625.1	Method: 1	3625.1			
Instrument:	GC21			Analytical Method:	Method: I	E625.1			
Matrix:	Water			Unit:	_	µg/L			
Project:	Semi-Annual Sampling (March 2023)	g (March 2023)		Sample ID:		MB/LCS/L	CSD-265964	4	
		QC Sur	nmary R	QC Summary Report for E625.1					
Analyte		LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
		Result	Result	Val	%REC	%REC	Limits		Limit
2,4-Dinitrotoluene		0.27	0.27	0.25	107	108	70-130	0.0644	25
2,6-Dinitrotoluene		0.26	0.26	0.25	105	103	68-137	1.41	25
Di-n-octyl Phthalate	Ø	5.8	5.9	σ	116	118	70-130	1.36	25
1,2-Diphenylhydrazine	zine	5.1	5 <u>.2</u>	σı	101	105	65-130	3.16	25
Fluoranthene		0.26	0.27	0.25	105	107	65-130	214	25
Hexachlorohenzene	Ð	0.25	0.25	0.20	00	100	60-130	1 08	25
Hexachlorobutadiene	ne	0.21	0.21	0.25	84	84	68-130	0.574	25
Hexachlorocyclopentadiene	ntadiene	22	22	25	87	90	50-130	2.34	25
Hexachloroethane		0.20	0.20	0.25	82	80	55-120	1.93	25
Indeno (1,2,3-cd) pyrene	yrene	0.26	0.27	0.25	103	108	50-130	4.34	25
Isophorone		4.8	4.7		96 90	95	52-130	0.982	25
z-Methylnaphilialette	Creenl)	3.9	40	5 0.20	0/ 77	81 0	60-130	4 46	25
3 & 4-Methylphenol (m,p-Cresol)	l (m.p-Cresol)	3.8	3.5	5	75	69	60-130	8.43	25
Naphthalene		0.21	0.21	0.25	86	84	70-130	1.54	25
2-Nitroaniline		29	28	25	114	114	65-130	0.576	25
3-Nitroaniline		29	29	25	115	116	70-140	0.825	25
4-Nitroaniline		32	31	25	126	124	70-130	1.74	25
Nitrobenzene		4.6	4.4	σ	92	88	60-130	4.38	25
2-Nitrophenol		27	26	25	109	106	70-130	2.77	25
4-Nitrophenol		14	14	25	58	57	30-130	1.98	25
N-Nitrosodimethylamine	amine	14	14	25	58	56	30-130	2.37	25
N-Nitrosodiphenylamine	mine	л У О	л О	ת ו	103	104	65-130	0 777	25
N-Nitrosodi-n-propylamine	ylamine	7 4.0	4 n - n	n U	4 07 2 B	444	59-130	0.972	2 2
Pentachlorophenol		1.8	1.8 نا	J.25	144.F5	146.F5	60-130	1.79	25
Phenanthrene		0.26	0.26	0.25	103	105	65-120	1.92	25
Phenol		0.38	0.39	-	38,F5	39,F5	48-120	0.596	25
Pyrene		0.26	0.26	0.25	104	105	70-120	0.819	25
Pyridine		1.7	1.8	ъ	33	35	30-130	5.28	25
1,2,4-Trichlorobenzene	zene	4.2	4.3	U	85	85	57-130	0.816	25
2,4,5-Trichlorophenol	nol	0.26	0.27	0.25	105	107	65-130	1.58	25
2,4,6-Trichlorophenol	nol	0.25	0.25	0.25	66	100	69-130	1.38	25

(Cont.) CA ELAP 1644 • NELAP 4033ORELAP

Page 20 of 28

Client:	way Generatin	ality	Cor	Quality Control Report	÷				
Client:	PG&E Gateway Generating Stat 03/21/2023			Woul-Oudour					
Date Prepared: 03/21/2023		ion		WORKUTGET: BatchID:	0 0	2303E79 265964			
Date Analyzed: 03/21/2023	03/21/2023			Extraction Method: E625.1	ethod: E	3625.1			
Instrument:	GC21			Analytical Method: E625.1	ethod: E	3625.1			
Matrix:	Water			Unit:	n.	µg/L			
Project:	Semi-Annual Sampling (March 2023)	2023)		Sample ID:	Z	AB/LCS/I	MB/LCS/LCSD-265964	4	
	QC	Sumn	ary R	QC Summary Report for E625.1					
Analyte	LCS	ž	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD	RPD Limit
Surrogate Recovery	ary .								
2-Fluorophenol	2.3		2.2	5	46	45	20-103	1.95	25
Phenol-d5	1.7		1.6	S	33	32	20-120	2.95	25
Nitrobenzene-d5	3.9		3.8	5	79	76	61-130	4.00	25
2-Fluorobiphenyl	3.9		3.9	Q	78	79	63-115	0.408	25
2,4,6-Tribromophenol	nol 5.0		5.2	5	100	103	48-149	2.76	25
4-Tamhanvi-d14	4.3		4.3	5	86	85	32-113	1.01	25

The

Page 21 of 28

McCampbell Analytico	ıl, Inc.				1-OF-CUS er: 2303E79		RECORD	Pag	ge 1 of 1	
(925) 252-9262	U WaterTrax		EDF	EQuIS Detection	Dry-Weight	Email Excel	☐ HardCopy	ThirdParty	⊡-flag	J
Report to: Angel Espiritu	Email:	abe4@pge.com		В	ill to: Angel Espiritu	1	Requ	uested TAT:	5 days;	
PG&E Gateway Generating Station 3225 Wilbur Avenue Antioch, CA 94509	PO:	a1he@pge.com; Semi-Annual Sar	; j5ld@pge.com; t mpling (March 20		PG&E Gateway 3225 Wilbur Ave Antioch, CA 945	enue	Date	e Received: e Logged:	03/21/2(03/21/2(
(925) 459-7212 FAX:	1 10,000			123)		09	Duit	e Loggea.	03/21/20	123
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Requested T	ests (See legend l	below)		
Lab ID ClientSar	າpID	Matrix	Collection Date	Hold 1	2 3	4 5	6 7 8	9 1	0 11	12
2303E79-001 E-001		Water	3/21/2023 12:15			CIAI				in

Test Legend:

1	608_W	
5	PRDisposal Fee	
9		-
		-

2	624_W	
6		
10		
		-

624ACR+2CEVE_W	
	624ACR+2CEVE_W

4 1	625_SCSM_W	1
8		
12		

Prepared by: Yvette Gallegos

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

M		bell Analytical, Inc. Then Quality Counts'			Toll	Free Telep	w Pass Road, Pittsburg, hone: (877) 252-9262 / I mpbell.com / E-mail: ma	Fax: (925) 25	52-9269		
		V	VORK OR	DER SUM	MARY						
Client Name: PG&E G Client Contact: Angel Es		ENERATING STATION	Project:	Semi-Annual	Sampling (N	Iarch 2	023)			order: 230 Level: LE	
Contact's Email: abe4@pg	ge.com		Comments	5:					Date Lo	gged: 3/2	1/2023
-	U Water		F Exce	el 🔤 EQu	IS Er	nail	HardCopy		dParty DJ-flag	9	_
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head Space	Dry- Weight	Collection Date & Time	ТАТ	Test Due Date	Sediment Content	Hold Sub Out
001A E-001	Water	E624.1 (VOCs) <1,1,1-Trichloroethan 1,1,2,2-Tetrachloroethane, 1,1,2- Trichloroethane, 1,1-Dichloroethane, Dichloroethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane (1,2-DCA), 1,2- Dichloropropane, 1,3-Dichlorobenzen 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Bromoform, Bromomethane, Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform, Chloromethane, cis-1,3- Dichloropropene, Dibromochloromethane, Ethylbenzene Methylene chloride, Tetrachloroethene, Toluene, trans-1,2-Dichloroethene, tra 1,3-Dichloropropene, Trichloroethene Trichlorofluoromethane, Vinyl chlorid	1,1- e, ,, ,, ns-	VOA w/ HCl			3/21/2023 12:15	5 days	3/28/2023	None	
001B E-001	Water	E624.1 (ACRO, ACRY, & 2-CEVE) Chloroethyl Vinyl Ether, Acrolein (Propenal), Acrylonitrile>		VOA, Unpres			3/21/2023 12:15	5 days	3/28/2023	None	

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

M		bell Analytical, Inc. Then Quality Counts''			Toll F	ree Telepi	v Pass Road, Pittsburg, (hone: (877) 252-9262 / I mpbell.com / E-mail: ma	Fax: (925) 25	52-9269		
		T	VORK OR	DER SUM	MARY						
Client Name: PG&E GA Client Contact: Angel Esp Contact's Email: abe4@pg	oiritu	ENERATING STATION	Project: Comment	Semi-Annual	Sampling (M	larch 2	023)		QCI	Order: 230 Level: LE ogged: 3/2	VEL 2
	U Water	Trax CLIP EI			IS Em	nail	HardCopy	Third		00	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head Space		Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out
001C E-001	Water	E625.1 (SVOCs) <1,2,4- Trichlorobenzene, 1,2-Dichlorobenze 1,2-Diphenylhydrazine, 1,3- Dichlorobenzene, 1,4-Dichlorobenzer 2,4,5-Trichlorophenol, 2,4,6- Trichlorophenol, 2,4-Dinitrophenol, 2,4-Dimethylphenol, 2,4-Dinitrotoluen Chloronaphthalene, 2,6-Dinitrotoluen Chloronaphthalene, 2-Chlorophenol, Methylnaphthalene, 2-Nitrophenol Cresol), 2-Nitroaniline, 2-Nitrophenol & 4-Methylphenol (m,p-Cresol), 3,3- Dichlorobenzidine, 3-Nitroaniline, 4, Dinitro-2-methylphenol, 4-Bromopher 4-Chloroaniline, 4-Chloro-3-methylpher Ether, 4-Nitroaniline, 4-Nitrophenol, Acenaphthene, Acenaphthylene, Anthracene, Benzo (a) pyrene, Benzo fluoranthene, Benzo (g,h,i) perylene, Benzo (k) fluoranthene, Benzyl Alcol Bis (2-chloroethoxy) Methane, Bis (2	ne, ol, e, 2- 2- (o- l, 3 6- nyl ol, nyl ol, nyl (b) nol,	1LA Narrow Moutl Unpres	n,	Π	3/21/2023 12:15	5 days	3/28/2023	None	

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCampbell Analytical, Inc. "When Quality Counts"			1534 Willow Pass Road, Pittsburg, C oll Free Telephone: (877) 252-9262 / Fe :://www.mccampbell.com / E-mail: mai	ax: (925) 252-9269	
W	ORK ORDE	R SUMMARY	7		
Client Name:PG&E GATEWAY GENERATING STATIONClient Contact:Angel Espiritu	Project: Se	mi-Annual Sampling	(March 2023)		order: 2303E79 Level: LEVEL 2
Contact's Email: abe4@pge.com	Comments:			Date Log	gged: 3/21/2023
WaterTrax CLIP EDF	Excel	EQuIS	Email HardCopy	ThirdParty)
AbID ClientSampID Matrix Test Name chloroethyl) Ether, Bis (2- chloroisopropyl) Ether, Bis (2- ethylhexyl) Adipate, Bis (2-ethylhexyl) Phthalate, Butylbenzyl Phthalate, Carbazole, Chrysene, Dibenzo (a,h) anthracene, Dibenzofuran, Diethyl Phthalate, Dinn- butyl Phthalate, Dinn- otyl Phthalate, Di-n- butyl Phthalate, Fluoranthene, Fluorene, Hexachlorobenzene, Hexachlorocyclopentadiene, Hexachlorocyclopentadiene, n- 			nd Dry- Collection Date ce Weight & Time	TAT Test Due Date	Sediment Hold Su Content Ou

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

M		bell Analytic Then Quality Counts'	al, Inc.			Toll Free	Willow Pass Road, Pittsburg Telephone: (877) 252-9262 .mccampbell.com / E-mail:	/ Fax: (925) 25	52-9269		
			W	ORK OR	DER SUM	MARY					
Client Name: PG&E G. Client Contact: Angel Esp		ENERATING STAT	ION	Project:	Semi-Annual S	Sampling (Mar	ch 2023))rder: 230 Level: LE	
Contact's Email: abe4@pg	e.com			Comments	5:				Date Lo	gged: 3/2	1/2023
	Water	Trax CLIP		Exc	el 🔤 EQul	S Email	HardCopy		Party J-flag	g	
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	U** Head D Space W		e TAT	Test Due Date	Sediment Content	Hold Sub Out
001D E-001	Water	E608.3 (OC Pesticides Clean-up) <a-bhc_1, Aldrin_1, Aroclor1016 Aroclor1221_1, Aroclor Aroclor1242_1, Aroclo BHC_1, Chlordane (Te BHC_1, Dieldrin_1, En Endosulfan II_1, Endos Endrin aldehyde_1, En Endrin_1, g-BHC_1, g Heptachlor epoxide_1, Methoxychlor_1, p,p-E DDE_1, p,p-DDT_1, P Toxaphene_1></a-bhc_1, 	A-Chlordane_1, _1, r1232_1, r1248_1, r1260_1, b- chnical)_1, d- idosulfan I_1, ulfan sulfate_1, drin ketone_1, Chlordane_1, Heptachlor_1, DD_1, p,p-	1	1LA Narrow Mouth Unpres		3/21/2023 12:15	5 days	3/28/2023	None	

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	💇	site; 1		4 WILLO TTSBURG, mpbell.co	W PA CA 9	SS ROAI 4565-1701 nail: mai) t	ccam	pbell	.con							RN ARC Frackei	DUND 1	FIN	Æ P	DIC	RUS	H 24 Exce	ня		48 48 Wr	HR •ite	ORD 72 HR 5 DAY On (DW) 'J" flag is required
Report To	: Angel Es	pirit)		F	Bill To:]	PG&I	E Ga	tewa	Ŋ					Τ		Analys	is Reque	st							F	lem	arks
Company	: PG&E G	atew	ay Genera	ting Stat	tion										1			4				Т	· .	Т	Т	Т	Γ	
-						-										624-Volatile Organic	ä	608 - Organochlorine PCBe)								Ł		
	be4@pge.co	And in case of the local division in which the local division in t	the second second second second second	A DESCRIPTION OF THE OWNER OF	COLUMN TWO IS NOT	a)pge.co	<u>m, ti</u> 1	NY(a)))):C	.COI	n				-{	5 3	Volatile	To sa								Ł		
	ame: Sem					Breh)	02	2)				┥	/olari	i i i i i i i i i i i i i i i i i i i	۶.								L		
the state of the s	cation: Co					MACE IN	<u> </u>				/					624-1	675	50								L		
Sampler S	ignature: I	Ausk	an Envir	onmental	San	apling		Û	~							(ebe	Value	V AN P										
		mposite	SAMP	LING		r	Mat	rix	M	ÈTHO	OD P	RES	ER	VED	,	TTO (USEPA (Compounds)	170 (USEPA 625- Semi Organic Canpounds)	TTO (USEPA (Pesticides and]										_
	LOCATION / Field Point Name	Sample Type Composite /Grah	Date	Time	# Containers	Type Containers	Waste Water	Somer Water	None	H.S.D.	NaOH	HCL	HNO.		Clier						1							
E-001		G	3/21/23	12:15	2	43 ml VOA	x		十	X		X		Γ	1	х								T	Γ	T	Π	
E-001		G	3/21/23	and the second se	2	43 ml VOA	Х		х	Х			Γ	Γ	T	х								T	T	T		
E-001		0	3/21/23		1	1L Amb	х		x	X				Γ	ヿ		x					T		Т		Г		
E-001			3 /21/23		1	lL Amb	х		X	X		Γ		T	1		··	х	·					T	\square	T	Π	
										1		T	F		1							T		T	t-	T	Π	
									+			T			1									T	1	T		
									+	1-					╈									T		╀╴		
									+	+-					╈									T		T		
									十	╈				t	T							1-	-	T	\square	Γ		
			-						1			\square	-		╈									╈		t		
									+	\uparrow		Π			1							1		T	1			
												\square		t	1		1.0	1.50						T		Γ		
Relinquiable	By:		Date:	Time:	Rece	ived By:			1.			استعال	>		+	ICE/r	4.0C	WES	F						CON	4MI	INT	S:
Relinquished) Aby:		7/21/2 3 Date:	<u> 4:07</u> Time:		ived By	C	p	1	<u>v/</u>	2	\checkmark	-		-	HEAD S DECHL APPRO	CONDITIC SPACE AB ORINATE PRIATE C RVED IN L	SENT D IN LAB ONTAINE							TT Ap	rO (EPA	608), TTO (EPA 624), 625) see ATTACHED and analyze only listed
Relinquished	By:		Date:	Time:	Rece	ived By:									1	(REAL)		VOAS O	&G	M	ETAL	s c	THER		col	mho	and	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Semi-Annual Sampling (March 2023)			Date and Time Received: Date Logged: Received by:	3/21/2023 14:00 3/21/2023 Agustina Venegas
WorkOrder №: Carrier:	2303E79 Matrix: <u>Water</u> Client Drop-In			Logged by:	Yvette Gallegos
	Chain c	of Custod	y (COC)	Information	
Chain of custody	present?	Yes		No 🔲	
Chain of custody	signed when relinquished and received?	Yes		No 🔲	
Chain of custody	agrees with sample labels?	Yes	2	No 🔲	
Sample IDs note	d by Client on COC?	Yes		No 🔲	
Date and Time o	f collection noted by Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	Quote?	Yes		No 🗔	NA 🖃
	Sar	nple Rece	eipt Infor	mation	
Custody seals in	tact on shipping container/cooler?	Yes		No 🔲	NA 🛃
Custody seals in	tact on sample bottles?	Yes		No 🔲	NA 🗾
Shipping contain	er/cooler in good condition?	Yes		No 🔲	
Samples in prope	er containers/bottles?	Yes		No 🔲	
Sample containe	rs intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes		No 🔲	
	Sample Preserv	ation and	Hold Ti	me (HT) Information	
All samples rece	ived within holding time?	Yes		No 🔲	
Samples Receive	ed on Ice?	Yes		No 🔲	
	(Ice T	ype: WE)	
Sample/Temp Bl			Temp	: 4°C	
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🛄	
Sample labels ch	necked for correct preservation?	Yes	2	No 🔲	
pH acceptable u <2; 522: <4; 218	oon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🛄	NA 🛃
UCMR Samples:					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🖬
Free Chlorine t [not applicable	ested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🛄	NA

Attachment 8d Laboratory Results Annual Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:

2303E80

Amended: 03/29/2023

1

Revision:

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Project P.O.: Project:

Angel Espiritu

Annnual Sampling (March 2023)

Project Received: 03/21/2023

Analytical Report reviewed & approved for release on 03/28/2023 by:

Jena Alfaro Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Revision History

Client: PG&E Gateway Generating Station

Project: Annnual Sampling (March 2023) **WorkOrder: 2303E80**

Date Revision 1

03/29/2023

Reason

Revised to include MDLs/J-Flags

> 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com/ E-mail: main@mccampbell.com

Glossary of **Terms & Qualifier Definitions**

Project: CPT %D ST SPLP RSD RRT RPD P RD 뭐 PDSD PDS NR B AN MSD SN ₹ MDL MB ဉ LCS ITEF ERS EDL DUP DLT DISS 무 95% Interval Glossary Abbreviation **Client:** SPKRef Val SPK Val MB % Rec DI WET Annnual Sampling (March 2023) PG&E Gateway Generating Station Spike Reference Value Data Not Reported due to matrix interference or insufficient sample amount. Not detected at or above the indicated MDL or RL Matrix Spike Duplicate Matrix Spike Minimum Level of Quantitation Method Detection Limit ¹ **Dilution Factor** Consumer Product Testing not NELAP Accredited 95% Confident Interval Sorbent Tube Synthetic Precipitation Leachate Procedure Spike Value **Relative Standard Deviation Relative Retention Time Relative Percent Difference** Reporting limit ² **Relative Difference** Prep Factor Post Digestion Spike Duplicate Post Digestion Spike Not Applicable % Recovery of Surrogate in Method Blank, if applicable Method Blank International Toxicity Equivalence Factor Estimated Detection Limit Duplicate **Dilution Test (Serial Dilution)** Dissolved (direct analysis of 0.45 µm filtered and acidified water sample) (DISTLC) Waste Extraction Test using DI water Serial Dilution Percent Difference Lowest Quantitation Level Laboratory Control Sample External reference sample. Second source calibration verification. WorkOrder: 2303E80

distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016 MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is TCLP

Toxicity Characteristic Leachate Procedure

than the MDL.) conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating

WorkOrder: 2303E80

Glossary of Terms & Qualifier Definitions

Client:	PG&E Gateway Generating Station
---------	---------------------------------

Project: Annnual Sampling (March 2023)

- TEQ Toxicity Equivalents
- TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.
- WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

S Surrogate recovery outside accepted recovery limits.
 c1 Surrogate recovery outside of the control limits due to the dilution of the sample.

Quality Control Qualifiers

F1

MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/22/2023Project:Annnual Sampling (March 2023)

WorkOrder:	2303E80
Extraction Method:	E300.1
Analytical Method:	E300.1
Unit:	mg/L

	Ino	rganic An	nions l	by IC			
Client ID	Lab ID	Matrix	I	Date Coll	ected	Instrument	Batch ID
E-001	2303E80-001B	Water	0)3/21/2023	12:15	IC4 03222350.D	266041
Analytes	Result	N	1DL	<u>RL</u>	DF		Date Analyzed
Sulfate	100	1	.6	5.0	50		03/22/2023 07:34
Surrogates	<u>REC (%)</u>	Qualifiers		Limits			
Malonate	0	S		90-115			03/22/2023 07:34
Analyst(s): ND			Anal	lytical Com	ments: c1		

McCampbell Analytical, Inc.	"When Quality Counts"
	ł

1534 Willow Pass Road, Pitsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:03/21/2023 14:00Date Prepared:03/23/2023Project:Annnual Sampling (March 2023)

WorkOrder:2303E80Extraction Method:SM4500-S^2 DAnalytical Method:SM4500 S^2 DUnit:mg/L

		C - aniling 101	2			
Client ID	Lab ID	Matrix	Date Co	llected	Date Collected Instrument	Batch ID
E-001	2303E80-001A Water	Water	03/21/2023 12:15	3 12:15	SPECTROPHOTOMETER2	266221
Analytes	Result	MDL	쾨	비	Date	Date Analyzed
Total Sulfide	QN	0.044	0.10	۲	03/2	3/23/2023 20:45

Analyst(s): IGC

McCampbell Analytical, Inc. "When Quality Counts."

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com/ E-mail: main@mccampbell.com

Quality Control Report

Client:	PG&E Gateway Generating Station
Date Prepared:	Date Prepared: 03/21/2023 - 03/22/2023
Date Analyzed:	Date Analyzed: 03/21/2023 - 03/22/2023
Instrument:	IC4
Matrix:	Water
Project:	Annnual Sampling (March 2023)

	, -
	4
	66
	9
	ß
	Ŋ
	Z
	CS/
L	Ĺ
àc	е

	nn con	UC Summary Report for E200.1	chut tut	TINNET				1
Analyte	MB Result		MDL	RL	SPK Val	MB SS %REC	MB	MB SS Limits
Sulfate	QN		0.031	0.10			•	
Surrogate Recovery Malonate	0.10				0.1	100	-06	90-115
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD C %REC	LCS/LCSD RPD Limits	RPD	RPD Limit
Sulfate	1.0	1.0	-	102	102	85-115	0.0489	20
Surrogate Recovery Malonate	0.10	0.10	0.10	101	101	90-115	0.263	20

Analytical Report Section Ketholic Signation aredino: 23/23/2023 aredino: 23/23/2023 aredino: 23/24500-5*1 areadino: 23/24500-5*1 analytical Metholic Signation 23/3600-5*1 analytical Metholic Signation 23/3600-5*1 annual Sampling (March 2023) analytical Metholic Signation water 03/23/2023 annual Sampling (March 2023) analytical Metholic Signation annual Sampling (March 2023) analytical Metholic Signation water 03/23/2023 annual Sampling (March 2023) analytical Metholic Signation annual Sampling (March 2023) analytical Metholic Signation annual Sampling (March 2023) analytical Metholic Signation analytical Metholic Signation mg/L analytical Metholic Signation mg/L analytical Metholic Signation mg/L analytical Metholic Signation analytical Metholic Signation analytical Metholic Signation mg/L analytical Metholic Signation analytical Metholic Signation analytical Metholic Signation mg/L analytical Metholic Signation analytical Metholic Signation analytical Metholic Signation analytical Metholic Signation <t< th=""><th></th><th>"When Quality Counts"</th><th>¹</th><th>į</th><th>Toll Fre http://ww</th><th>Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com</th><th>877) 252-926 .com/E-mail</th><th>Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 ttp://www.mccampbell.com / E-mail: main@mccampbell.cor</th><th>252-9269 mpbell.com</th><th></th><th></th></t<>		"When Quality Counts"	¹	į	Toll Fre http://ww	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	877) 252-926 .com/E-mail	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 ttp://www.mccampbell.com / E-mail: main@mccampbell.cor	252-9269 mpbell.com		
PG&E Gateway Generating Station WorkOrder: $3:03:580:3:0:3:0:3:0:3:0:3:0:3:0:3:0:3:0:3:0:3$		-	Qualit	y Cor	trol R	ceport					
Retraction Extraction Method: SM4500.5" 2 D Water Unit: mg/L Water Unit: mg/L Annual Sampling (March 2023) Sample ID: Mg/LCS/LCS/D.266221 Annual Sampling (March 2023) Sample ID: Mg/LCS/LCS/D.266221 Annual Sampling (March 2023) Sample ID: Mg/L Annual Sampling (March 2023) Mg/L Result Result Mg/L Result ND ND 0.044 0.10 - ND Result Val NR Result Result Val NR Sol 202 Mg Mg - - - - ND 0.69 0.50 91 2.28 Mg Mg NG NG 2.89 2.89 Mg Mg NG	Client: Date Prepared:		g Station		Wor Bato	kOrder: hID:		303E80 56221			
Water Manual Sampling (March 2023) Titit: Sample ID: Sample ID: 2303E80-001ANS/MSD 2302E80-001ANS/MSD 2302E80-001ANS/MSD 2302E80-001AN	Date Analyzed: Instrument:		82		Extr Ana	action Me lytical Me		M4500-S ⁻ M4500 S ⁻	² D		
Amoual Sampling (March 2023) Sample ID: MBATCSALCSD-266221 QC Summary Report For SM4500 S-2DT 2303880-001AMS/MSD Result MDL RL ND NDL NDL ND	Matrix:				Unit	'	E	g/L			
OC Summary Report For SM4500 S-2D MB ND RL Result MD RL ND 0.04 0.10	Project:		1 2023)		Sam	ple ID:	2 %	B/LCS/L 303E80-0	CSD-26623 01AMS/MS	51 21	
MBL Besult Instant MDL Instant RL Instant ND 0.04 0.10		Ő	C Summa	ry Repo	rt For SN	14500 S-	2D				
$\begin{tabular}{ c c c c c } & 0.04 & 0.10 & & & & & & & & & & & & & & & & & & &$	Analyte		MB Result		MDL	RL					111
LCS Result ResultLCS Result ResultLCS Result ValLCS REC RE<	Total Sulfide		Q		0.044	0.10					Y
0.45 0.46 0.50 91 93 80-120 2.28 No No<	Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
MS MS MSD SPK SPKRef MS MSD RSD SPK SFKRef MS MSD RSD RSD %REC Limits	Total Sulfide		0.45	0.46	0.50		91	93	80-120	2.28	20
1 0.23 0.23 0.50 ND 46,F1 46,F1 80-120	Analyte	MS PF	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC			RPD	RPD Limit
	Total Sulfide	~	0.23	0.23	0.50	QN	46,F1	46,F1	80-120	0	20

CA ELAP 1644 • NELAP 40330RELAP

Page 8 of 12

McCampbell Analytico 1534 Willow Pass Rd Pittsburg, CA 94565-1701	ıl, Inc.			I-OF-CUS		RECORD de: PGEA	Page	e 1 of 1	
(925) 252-9262	WaterTrax CLIP	EDF	EQuIS Detectio	Dry-Weight	Email Excel	☐ HardCopy	ThirdParty	J-flag	
Report to:			Bi	ll to:	-	Requ	uested TAT:	5 days;	
Angel Espiritu	Email: abe4@pge.com			Angel Espiritu					
PG&E Gateway Generating Station 3225 Wilbur Avenue	^{cc/3rd Party:} a1he@pge.com; PO:	j5ld@pge.com; t1V	WY@pg	PG&E Gateway 3225 Wilbur Ave	0		e Received:	03/21/2023	
Antioch, CA 94509 (925) 459-7212 FAX:	Project: Annnual Samplin	ıg (March 2023)		Antioch, CA 945	09	Date	e Logged:	03/21/2023	
-			1		Requested Te	ests (See legend k	below)		-
Lab ID ClientSar	mpID Matrix	Collection Date H	lold 1	2 3	4 5	6 7 8	9 10) 11 1	2
2303E80-001 E-007	1 Water	3/21/2023 12:15	П В		1		1		-

Test Legend:

-
-

PRDisposal Fee	
	-
	_
	PRDisposal Fee

3	SULFIDE_W	- 1
7		-
H		
2.4.2.0		

4	
8	
12	

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	Mc		bell Analytical hen Quality Counts''	l, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com									
				W	ORK OR	DER SUM	MAF	RY							
	PG&E GA Angel Espi		ENERATING STATIO	N	Project:	Annnual Samp	oling (I	March 20	23)				order: 230 Level: LE		
Contact's Email: a	abe4@pge	.com			Comments	:						Date Lo	gged: 3/2	1/2023	
		U Water	Trax CLIP		Exce	el 🔤 EQul	s	Email	⊡ ^{Har}	dCopy	Third	Party	9		
LabID ClientSa	mpID	Matrix	Test Name		Containers /Composites	Bottle & Preservative		lead Dr pace Wei	•		ТАТ	Test Due Date	Sediment Content		Sub Out
001A E-001		Water	SM4500S2D (Total Sulfide	2)	1	250mL HDPE w/ NaOH	Π] 3/21/202	23 12:15	5 days	3/28/2023	Trace		
001B E-001		Water	E300.1 (Inorganic Anions)	<sulfate></sulfate>	1	250mL HDPE, unprsv.			3/21/202	23 12:15	5 days	3/28/2023	Trace	Ш	E

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

																														2	303	ES	0
	WA M	cCA	MPBI	ELL A	NA	LYTI		L, İ	IN	С.									C	H	AL	N	OF	۲ С	U	ST	ΟΙ	DY	R	EC	CORD		
				4 WILLO											Т	UR	N A	R	OU	NI) T	IM	E]	1) [23
	Web	site:	www.mcca	TSBURG	m En	nail: mai	i in@m	ccam	pbel	l.cor	n										_	_						HR		48 F	IR 72		DAY
	Tele	phon	e: (877) 2	52-9262			'ax: (9							- 1	G	eo]	[ra	cke	r E	D	F L										ite On (
D	T		14 .				DCR							-			_					the second value of the se				amp	le is	ettl	uen	t an	d "J" fla	g is ree Remari	
	To: Angel l iy: PG&E					Bill To:	PG&	6. 68	tew	ay										A	nal	ysis	Re	que	st I						1	temari	13
Compar	IY: FGOL	Gate	way Gen	rating 5	oratio	1																			ľ								
E-Mail:	abe4@pge	.com	AIHE@	nge.com	JSL	dange.	com.	tIW	Ya	nge.	com			-																			
	5) 522-783					Fax: (1			3																							
	Name: A					rch	21	2	3)																						
	Location: (Flow																													
Sampler	· Signature	:		8_ M	nck	en F.	∞	n ine	~4	2	5	~	Liv	~															ļ				
		Composite h	SAMP		1		Ma			, ,	D PR	T	DV	5																			
		odu	SAMP	LING		4	Ma	ITIX	INTE	JHC	D Pr	LSE	RV.	ED																			
SAMPLE	LOCATION				1 🖫	Type Containers	1								76.2)	(1.00																	
ID	/ Fleld Point Name	Sample Type C /Grah	i i	1	Containers	D T 3	Waste Water	Sewer Water			ĺ			Zinc Acetate	Sulfide (EPA 376.2)	Sulfate (EPA 300.1)							ļ										
	Ivame	le T	Date	Time	E I	U N	l s	N N		1			ď	Āc	e (E)	e (E)																	
		ldm			U T	Ň	Vas	ewe	None	ICE U SO	NaOH	HCL	HNO	linc	សាព្រ	ulfat																	
E-001					<u> </u>	250-ml	x	<u> </u>		$\frac{1}{x}$	X					<u>s</u>		\vdash	_														
			3/21/23			poly 250-ml				_					^	77													<u> </u>				
E-001		G	3/21/23	1215		poly	X		X	<u>x</u>	ļ					x																	
							 			+-																							
							<u> </u>			-	<u> </u>										'												
											+						~~~																
									\vdash	+					_		_	$\left \right $												$\left - \right $			
																		\square		_													
					 							$\left - \right $												<u> </u>		<u> </u>							
																		 	.		_			<u> </u>									
										1							16	6	<														
Relinquish	e By:		Date:	Time:	Rece	ived By:	/		1			-		T		11.					1							C	OMN	MEN	TS:		
	/		3/21/23	14:00		10	11	Ry	41	VP.	5	-				OD O AD S						_											
Relinquish	ed By:		Date:	Time:	Rece	ived By	5	1								CHL							_										
						~	~									PROI ESER							_	-									
Relinquish	ed By:		Date:	Time:	Rece	ived By:																c	ME	TAT	5	отн	FP						
														- 1	PRI	ESER	VAT			49	00	.0	pH•		~	010	~1						

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Annnual Sampling (March 2023)			Date and Time Received Date Logged:	: 3/21/2023 14:00 3/21/2023
Floject.	Anninual Sampling (March 2023)			Received by:	Agustina Venegas
WorkOrder №: Carrier:	2303E80 Matrix: <u>Water</u> Client Drop-In			Logged by:	Yvette Gallegos
	Chain of	Custod	y (COC) Inf	ormation	
Chain of custody	present?	Yes		No 🔲	
Chain of custody	signed when relinquished and received?	Yes		No 🔲	
Chain of custody	agrees with sample labels?	Yes		No 🔲	
Sample IDs note	d by Client on COC?	Yes		No 🔲	
Date and Time of	f collection noted by Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	n Quote?	Yes		No 🔲	NA 🖃
	Sam	ole Rece	eipt Informa	ation	
Custody seals int	tact on shipping container/cooler?	Yes		No 🔲	NA 🛃
Custody seals int	tact on sample bottles?	Yes		No 🔲	NA 🗾
Shipping contain	er/cooler in good condition?	Yes		No 🔲	
Samples in prope	er containers/bottles?	Yes	52	No 🔲	
Sample containe	rs intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes	2	No 🔲	
	Sample Preservat	tion and	Hold Time	(HT) Information	
All samples recei	ived within holding time?	Yes	2	No 🔲	
Samples Receive		Yes		No 🔲	
	(Ice Ty	pe: WE	TICE)		
Sample/Temp Bl	ank temperature		Temp: 4	1°C	
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 💽
Sample labels ch	necked for correct preservation?	Yes		No 🔲	
pH acceptable up <2; 522: <4; 218.	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🛄	NA 💽
UCMR Samples:					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA
Free Chlorine t [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No	NA 🖬

Comments:

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509 (925) 522-7801

July 10, 2023

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference: Pacific Gas and Electric Company - Gateway Generating Station DD Industrial Wastewater Discharge Permit Permit Number: 0208841-C

Subject:

1.3

Quarterly Self-Monitoring Report Diablo Industrial Wastewater Discharge Permit Number 0208841-C (For Period Ending June 30, 2023)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2023, as required under Delta Diablo Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, Monthly Flow, WSAC Operating Months Report, Cycles of Concentration, Copy of Laboratory Results, and Annual Flowmeters Calibration.

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at <u>abe4@pge.com</u>. Thank you.

Sincerely,

Tim Wisdom

Tim Wisdom Senior Plant Manager

Attachment: a/s

Loieren dia to 23

Attachment 1 Certification Statement Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in June 30, 2023

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (Delta Diablo) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023. The permit renewal application was submitted to delta diablo on 11/22/2022.

The report includes the following attachments:

Attachment 1:	Certification Statement
Attachment 2:	Industrial User Compliance Report
Attachment 3:	Industrial Monitoring Report Summary
Attachment 4:	Discharge Flow Data
Attachment 5:	Monthly Flow Data
Attachment 6:	WSAC Operating Hours Report
Attachment 7:	Cycles of Concentration
Attachment 8:	Laboratory Results
Attachment 9:	Annual Flowmeters Calibration

Certification Statement

Name of Business:	PG&E Gateway Generating Station
Address:	3225 Wilbur Avenue, Antioch, CA. 94509
Phone:	<u>925-522-7805</u>
Period Covered:	Period ending: June 30, 2023

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tim Wisdom ___ Date:_ July 10, 2023 Signature:

Print Name: T

Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn:Jason YunPretreatmentFax # (925)756-1961Phone: (925)756-1929From:Tim WisdomCompany:Pacific Gas and Electric Company – Gateway Generating StationPeriod Covered:Period ending June 30, 2023

Industrial User Checklist for self –monitoring reports, as specified by the wastewater discharge permit issued by Delta Diablo:

Self-monitoring reports

- $\underline{\sqrt{}}$ Flow discharge summary (Discharge Permit Section E.1.h.) (See Attachment 4)
- $\sqrt{}$ Calibration of flow meters, as required. (Section E.1.g.) (See Attachment 9)
- ✓ Monitoring results- <u>All</u> required tests completed, results reviewed, results included, QA/QC, chain of custody (section F.7.) (See Attachment 8)
- $\underline{\sqrt{}}$ Certification statement included (See Attachment 1)

Violations (if applicable)

- ____All wastewater discharge exceedance are reported during this reporting period
- Delta Diablo was contacted. (See Additional Notes below)
- ____A follow-up report on characterization re-sampling was submitted
- ____Corrective actions to resolve violation
- Other violations i.e. Reporting, spills to sewer, or prohibited discharges

Additional Notes:

Significant changes

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

J NAME : DDRESS:	3225 Wilbur Aven	nerating Station ue		ID #: TYPE:	0208841-C Power Generation Plant		SIC:	<u>4911</u>
TY:	Antioch	DATE	6/20/2023	6/20/2023	6/21/2023			
		TYPE	G	G	C24			
		STATION	E-001	E-001	E-001	_		
		SMP.BY				 		
		SIVIP.DT	Muskan Compliance	Muskan Compliance	Muskan Compliance	 		
		PURPOSE	Quarterly (Q2)	Quarterly (Q2)	Quarterly (Q2)			
		Units:						
ARAMETERS		LIMITS	8,					
FLOV	V, DAILY (gal)	51,120						
FLOW	, MONTH (gal)	2						
	рН	6-10 s.u.	8.94					
	BOD				ND(<2.0)			
	COD	3			12.0			
	TDS	3			198.0			
	TSS				2.8			
	Arsenic	0.15		1	0.00067			
C	Cadmium	0.1			ND(<0.00005)			
C	hromium	0.5		*	ND(<0.00026)			
	Copper	0.5			0.0022			
	Iron				0.056			
	Lead	0.5			ND(<0.00019)			
1	Mercury	0.003		-	ND(<0.00013)			
Mc	olybdenum		-		0.023			
	Nickel	0.5			0.00078			
S	selenium	0.25			0.00024			
	Silver	0.2			ND(<0.000051)			
	Zinc	1.00			0.240			
	Cyanide	0.2		0.001				
	Phenol	1.00		ND(<0.0014)				
A	mmonia	200		ND(<0.095)				
O&G Petro/M	lin (E1664A w/ Silica)	100	ND(<1.5)	ND(<1.4)				
O&G Anir	nal/Vegetable Oil	300	ND(<0.93)	ND(<0.87)				
TT	O EPA 608							
TT	O EPA 624							
TT	O EPA 625							
	TTO	2.00						
	Sulfide							
	Sulfate							

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data April 2023-June 2023

44/27023 34.3 0.0 NO 16.315 23.2 0 NO 370 16.686 4/3/2023 35.6 0.0 NO 39.575 0.0 NO 39.575 4/4/2023 35.6 0.0 NO 35.657 0.0 NO 338 22.522 4/5/2023 34.4 0.0 NO 22.528 0 NO 366 30.364 4/7/2023 34.4 0.0 NO 22.528 0 NO 366 37.774 4/8/2023 34.8 0.0 NO 22.789 0.0 0 NO 22.774 4/10/2023 34.4 0.0 NO 22.798 0.0 NO 22.794 4/11/2023 34.4 0.0 NO 22.01 0 NO 22.175 4/11/2023 34.4 0.0 NO 22.618 0.0 NO 22.514 4/11/2023 34.4 0.0 NO 12.677 0.0		Industrial Flow			Sanitary Flow									
Date Instantaneous Flow (GPM) Time Over Minutesi (minutesi) go over for 15 (minutesi) go over minutesi (fallons) minutesi (fallons) minutesi (fallons) go over minutesi (fallons) 44/2/2023 34.6 0.0 NO 35.561 0.0 NO 33.82 22.52 44/2/2023 34.6 0.0 NO 22.682 0.0 NO 28.98 0.0 NO				Did it ever			Time Mater	Did it ever						
Date Flow (GPM) 35.5 GPM (minutes) 75.5 GPA (minutes) 53.5 GPA (minutes) (Gallons) (minutes) 63.5 GPA (minutes) (Gallons) (minutes) (Gallons) (minut			Time Over	go over				go over		o				
Flow (GPM) for: 15 (minutes) for: 15 (minutes) (Gallons) (minutes) for: 15 (minutes) (Gallons) (minutes) for: 15 (minutes) (Gallons) (minutes) (Gallons) (minutes) (Gallons) (minutes) (Gallons) (minutes) (Gallons) (minutes) 41/12023 34.5 0.0 NO 155,252 0 NO 35,257 41/12023 34.5 0.0 NO 25,357 0 NO 338 22,527 41/12023 34.4 0.0 NO 25,998 22,77 NO 386 33,567 41/12023 34.4 0.0 NO 28,734 0.0 NO 28,734 41/12023 34.4 0.0 NO 22,779 NO 366 33,567 41/12023 34.4 0.0 NO 22,799 0.0 NO 22,777 41/12023 34.4 0.0 NO 12,487 0.0 NO 22,671 41/12023 34.4 0.0 NO 22,152 0.1 NO 371	Date		35.5 GPM	35.5 GPM	-			35.5 GPM	· ·					
mins? mins? mins? 4/1/2023 34.5 0.0 NO 35.292 0.0 0 NO 35.292 4/2/2023 34.4 0.0 NO 15.252 0 NO 370 16.686 4/4/2023 34.5 0.0 NO 35.575 0.0 0 NO 338.775 4/4/2023 34.6 0.0 NO 22.510 NO 336 27.77 4/4/2023 34.4 0.0 NO 28.98 2.7 NO 366 27.77 4/4/2023 34.4 0.0 NO 28.98 0.0 NO 28.97 4/10/2023 34.6 0.0 NO 22.789 0.0 NO 22.781 4/11/2023 34.6 0.0 NO 22.48 0 NO 22.471 4/11/2023 34.6 0.0 NO 24.91 NO 374 14.482 4/11/2023 34.6 0.0 NO <td< td=""><td></td><td>Flow (GPM)</td><td></td><td></td><td>(Gallons)</td><td>Flow (GPM)</td><td>Quality</td><td></td><td>(Gallons)</td><td>(Gallons)</td></td<>		Flow (GPM)			(Gallons)	Flow (GPM)	Quality		(Gallons)	(Gallons)				
41/12/023 34.5 0.0 NO 35.292 0.0 NO 35.292 41/2/2023 34.3 0.0 NO 16.315 23.2 0 NO 370 16.684 41/2/2023 34.6 0.0 NO 23.575 0.0 0 NO 33.571 41/2/2023 34.6 0.0 NO 23.575 0.0 NO 33.8 2.262.1 41/2/2023 34.4 0.0 NO 23.550 0 NO 366 33.64 41/2/2023 34.4 0.0 NO 22.672 0 NO 366 33.64 41/12/2023 34.4 0.0 NO 22.0798 0.0 0 NO 22.674 41/12/2023 34.4 0.0 NO 22.182 0.1 0 NO 22.614 41/12/2023 34.4 0.0 NO 12.876 0.0 0 NO 22.614 41/12/2023 34.4 0.0			(minutes)				(minutes)							
44/27023 34.3 0.0 NO 16.315 23.2 0 NO 370 16.686 4/3/2023 35.6 0.0 NO 39.575 0.0 NO 39.575 4/4/2023 35.6 0.0 NO 35.657 0.0 NO 338 22.522 4/5/2023 34.4 0.0 NO 22.528 0 NO 366 30.364 4/7/2023 34.4 0.0 NO 22.528 0 NO 366 37.774 4/8/2023 34.8 0.0 NO 22.789 0.0 0 NO 22.774 4/10/2023 34.4 0.0 NO 22.798 0.0 NO 22.794 4/11/2023 34.4 0.0 NO 22.01 0 NO 22.175 4/11/2023 34.4 0.0 NO 22.618 0.0 NO 22.514 4/11/2023 34.4 0.0 NO 12.677 0.0														
44/2023 34.5 0.0 NO 39.575 0.0 NO 39.575 44/2023 35.0 0.0 NO 22.5 0 NO 38.5 416/2023 34.4 0.0 NO 25.50 0 NO 38.6 35.50 416/2023 34.4 0.0 NO 25.50 0 NO 38.6 27.77. 416/2023 34.4 0.0 NO 28.734 0.0 0 NO 28.734 41/12/2023 34.4 0.0 NO 22.758 0.0 NO 37.11 12.454 41/12/2023 34.6 0.0 NO 22.152 0.1 0 NO 37.11 12.454 41/12/2023 34.6 0.0 NO 22.152 0.1 0 NO 22.152 41/12/2023 34.6 0.0 NO 22.618 0.0 NO 22.618 14.14.84 41/12/2023 34.6 0.0 NO 12.870 0.0 NO 12.871 41/12/2023 34.6 0.0 <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>35,292</td>			0.0							35,292				
4/4/2023 35.0 0.0 NO 22,190 25.3 0 NO 338 22,523 4/6/2023 34.4 0.0 NO 35,50 0 NO 35,50 4/6/2023 34.4 0.0 NO 25,998 25,0 O NO 366 30,364 4/17/2023 34.4 0.0 NO 25,998 25,0 O NO 386 27,77 4/8/2023 34.4 0.0 NO 22,873 0.0 NO 22,873 4/11/2023 34.4 0.0 NO 22,752 0.1 0 NO 22,751 4/11/2023 34.4 0.0 NO 22,852 0.1 0 NO 22,814 4/11/2023 34.8 0.0 NO 22,816 0.0 NO 22,814 4/11/2023 34.4 0.0 NO 12,877 0.0 NO 22,814 4/11/2023 34.4 0.0 NO <th< td=""><td></td><td>34.3</td><td>0.0</td><td>NO</td><td></td><td>23.2</td><td>0</td><td>NO</td><td>370</td><td></td></th<>		34.3	0.0	NO		23.2	0	NO	370					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4/3/2023	34.5	0.0	NO	39,575	0.0	0	NO		39,575				
446/2023 34.7 0.0 NO 29.998 23.7 0 NO 366 30.36 417/2023 34.3 1.0 NO 27.389 25.0 0 NO 386 27.77 418/2023 34.4.8 0.0 NO 22.738 0.0 0 NO 22.734 41/10/2023 34.7. 0.0 NO 12.080 24.9 0 NO 37.1 12.45 41/12/2023 34.6 0.0 NO 12.080 24.9 0 NO 37.1 12.45 41/12/2023 34.8 0.0 NO 12.938 0.1 0 NO 22.938 41/16/2023 34.7 0.0 NO 17.452 0.0 NO 12.876 41/16/2023 34.5 0.0 NO - 0.0 NO - 47.970 100 NO - 47.97023 34.6 0.0 NO - - 0.0 NO -	4/4/2023	35.0	0.0	NO	22,190	25.3	0	NO	338	22,528				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4/5/2023	34.8	0.0	NO	35,501	0.0	0	NO		35,501				
448/2023 34.9 1.0 NO 9.996 0.0 2 NO 9.997 4/10/2023 34.5 0.0 NO 22.734 0.0 NO 22.873 4/10/2023 34.5 0.0 NO 22.738 0.0 NO 32.873 4/17/2023 34.6 0.0 NO 22.152 0.1 0 NO 37.1 12.48 4/13/2023 35.0 0.0 NO 12.185 0.1 0 NO 22.152 4/17/2023 34.8 0.0 NO 22.618 0.0 NO 22.938 4/16/2023 34.5 0.0 NO 17.452 25.9 0 NO 38.9 17.84 4/18/2023 5.0 0.0 NO - 0.0 NO - 0.0 NO 31.957 4/12/2023 34.6 0.0 NO 32.559 0.1 NO 32.558 1.1 NO 32.558 4/22/2	4/6/2023	34.7	0.0	NO	29,998	23.7	0	NO	366	30,364				
448/2023 34.9 1.0 NO 9.996 0.0 2 NO 9.997 4/10/2023 34.5 0.0 NO 22.734 0.0 NO 22.873 4/10/2023 34.5 0.0 NO 22.738 0.0 NO 32.873 4/17/2023 34.6 0.0 NO 22.152 0.1 0 NO 37.1 12.48 4/13/2023 35.0 0.0 NO 12.185 0.1 0 NO 22.152 4/17/2023 34.8 0.0 NO 22.618 0.0 NO 22.938 4/16/2023 34.5 0.0 NO 17.452 25.9 0 NO 38.9 17.84 4/18/2023 5.0 0.0 NO - 0.0 NO - 0.0 NO 31.957 4/12/2023 34.6 0.0 NO 32.559 0.1 NO 32.558 1.1 NO 32.558 4/22/2	4/7/2023	34.5	0.0	NO	27,389	25.0	0	NO	386	27,774				
4/9/2023 34.8 0.0 NO 28.734 0.0 0 28.734 4/10/2023 34.5 0.0 NO 20.798 0.0 0 NO 20.791 4/11/2023 34.7 0.0 NO 12.060 24.9 0 NO 371 11.245 4/12/2023 34.8 0.0 NO 14.107 24.7 0 NO 374 14.48 4/14/2023 34.8 0.0 NO 20.618 0.0 NO 29.855 0.1 0 NO 29.611 4/15/2023 34.8 0.0 NO 12.870 0.0 0 NO 12.871 4/17/2023 34.5 0.0 NO - 0.0 NO 12.874 4/18/2023 3.4.3 0.0 NO 45.640 24.4 0 NO 71.643.554 4/21/2023 34.4 0.0 NO 35.803 0.0 NO 35.803 4/22/2023	4/8/2023	34.9	1.0	NO		0.0	2	NO		9,996				
4/10/2023 34.5 0.0 NO 20.798 0.0 0 NO 20.797 4/11/2023 34.7 0.0 NO 12.080 24.9 0 NO 371 12.457 4/13/2023 35.0 0.0 NO 12.152 0.1 0 NO 371 12.457 4/13/2023 35.0 0.0 NO 12.152 0.1 0 NO 374 14.462 4/15/2023 34.8 0.0 NO 22.0618 0.0 0 NO 22.938 4/16/2023 34.5 0.0 NO 12.870 0.0 0 NO 12.871 4/17/2023 34.5 0.0 NO - 0.0 0 NO - 473 4/19/2023 34.5 0.0 NO 31.957 0.0 NO 31.957 472/2023 34.8 0.0 NO 32.351 472/2023 34.8 0.0 NO 32.351 472/2023 <	4/9/2023		0.0	NO		0.0		NO		28,734				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-		ł – – †					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-		371					
4/13/2023 35.0 0.0 NO 14/107 24.7 0 NO 374 14/48: 4/14/2023 34.8 0.0 NO 29,385 0.1 0 NO 29,385 4/15/2023 34.8 0.0 NO 12,870 0.0 0 NO 12,871 4/17/2023 34.5 0.0 NO 17,452 25.9 0 NO 389 17,844 4/19/2023 -0.5 0.0 NO - 0.0 0 NO - 41/17/2023 34.6 0.0 NO 45,640 24.4 0 NO 13,957 42/21/2023 34.8 0.0 NO 38,647 27.1 0 NO 38,647 42/21/2023 34.4 0.0 NO 32,358 0.1 0 NO 32,358 42/21/2023 34.4 0.0 NO 32,860 42/21/2023 34.4 0.0 NO 27,781 42/21/2023 34.4 0.0 NO 27,781 42/21/2023 34.4 0.0 NO 25,922 0.0 NO 32,92 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>0/1</td> <td></td>							-	-	0/1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-		-	-	-	37/					
4/15/2023 34.8 0.0 NO 20.618 0.0 NO 20.617 4/16/2023 34.7 0.0 NO 12.870 0.0 NO 12.871 4/17/2023 34.5 0.0 NO 17.452 25.9 0 NO 389 17.84' 4/18/2023 -0.5 0.0 NO - 0.0 NO - - 0.0 NO 34.8 0.0 NO 32.559 0.1 NO 359 38.40 0.0 NO 32.359 0.1 NO 392 27.783 4262023 34.4 0.0 NO 45.803 0.0 NO 42.902 42.902 42.902 44.90.0 NO 392				-			-		5/4					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-	-		╂────┼	,				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-		+					
4/18/2023 5.0 0.0 NO - 0.0 0 NO - 4/19/2023 -0.5 0.0 NO - 0.0 0 NO - 4/20/2023 34.6 0.0 NO 45,640 24.4 0 NO 715 46,351 4/20/2023 34.3 0.0 NO 38,047 27.1 0 NO 359 38,400 4/23/2023 34.6 0.0 NO 32,359 0.1 0 NO 323,351 4/26/2023 34.4 0.0 NO 37,351 26.0 0 NO 35,803 0.0 0 NO 35,803 4/26/2023 34.4 0.0 NO 47,912 26.0 0 NO 392 27,763 4/28/2023 34.4 0.0 NO 25,923 0.0 0 NO 25,927 0 NO 392 10,544 4/28/2023 34.4 0.0 NO 25,923 0.0 NO 27,946 44,302023 34,47 0.0 NO							-		000					
4/19/2023 -0.5 0.0 NO - 0.0 0 NO - 4/20/2023 34.6 0.0 NO 45,640 24.4 0 NO 715 46,356 4/21/2023 34.8 0.0 NO 38,047 27.1 0 NO 359 334,00 4/22/2023 34.8 0.0 NO 35,803 0.0 0 NO 35,803 4/24/2023 34.8 0.0 NO 27,783 26.0 0 NO 392 27,784 4/26/2023 34.4 0.0 NO 49,008 0.0 0 NO 49,000 4/27/2023 34.6 0.0 NO 25,923 0.0 0 NO 25,924 4/28/2023 34.4 0.0 NO 27,465 0.0 NO 27,465 4/29/2023 34.4 0.0 NO 49,009 0.0 NO 26,927 5/1/2023 34.4 0.0<				-	17,452		-	-	389	17,841				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-		-			-				
4/21/2023 34.3 0.0 NO 31,957 0.0 0 NO 31,957 4/22/2023 34.8 0.0 NO 38,047 27.1 0 NO 359 38,400 4/23/2023 34.6 0.0 NO 32,359 0.1 0 NO 323,55 4/24/2023 34.5 0.0 NO 35,803 0.0 0 NO 338,800 4/25/2023 34.4 0.0 NO 49,008 0.0 0 NO 392 10,541 4/26/2023 34.6 0.0 NO 11,155 25.9 0 NO 392 10,541 4/28/2023 34.6 0.0 NO 27,465 0.0 0 NO 27,646 4/29/2023 34.4 0.0 NO 49,009 0.0 NO 340 35,477 4/29/2023 34.4 0.0 NO 49,009 0.0 NO 340,035,477 5/1/2023					-		-			-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-		715					
4/23/2023 34.6 0.0 NO 32,359 0.1 0 NO 32,359 4/24/2023 34.8 0.0 NO 35,803 0.0 0 NO 35,803 4/25/2023 34.4 0.0 NO 49,008 0.0 0 NO 392 27,783 4/26/2023 34.4 0.0 NO 49,008 0.0 0 NO 49,000 4/27/2023 34.6 0.0 NO 25,923 0.0 0 NO 25,923 4/28/2023 34.6 0.0 NO 27,7465 0.0 0 NO 27,7465 4/29/2023 34.8 0.0 NO 25,992 0.0 NO 380 35,477 4/29/2023 34.8 0.0 NO 49,009 0.0 NO 380 35,477 4/29/2023 34.6 0.0 NO 42,030 27.1 0 NO 349,003 5/1/2023 34.6			0.0			0.0	0			31,957				
4/24/2023 34.8 0.0 NO 35,803 0.0 NO 35,803 4/25/2023 34.5 0.0 NO 27,7391 26.0 0 NO 392 27,783 4/26/2023 34.4 0.0 NO 49,008 0.0 0 NO 392 10,543 4/26/2023 34.6 0.0 NO 25,923 0.0 0 NO 25,923 4/29/2023 34.8 0.0 NO 25,923 0.0 0 NO 25,923 4/29/2023 34.8 0.0 NO 27,465 0.0 0 NO 25,923 4/30/2023 34.9 0.0 NO 35,096 26.2 0 NO 380 35,476 4/30/2023 34.6 0.0 NO 49,009 0.0 0 NO 380 35,476 5/1/2023 34.6 0.0 NO 42,030 27,1 0 NO 36,900 5/	4/22/2023	34.8	0.0	-		27.1	0	-	359	38,406				
4/25/2023 34.5 0.0 NO 27,391 26.0 0 NO 392 27,783 4/26/2023 34.4 0.0 NO 49,008 0.0 0 NO 49,001 4/27/2023 34.6 0.0 NO 10,155 25.9 0 NO 392 10,547 4/28/2023 34.6 0.0 NO 25,923 0.0 0 NO 25,927 4/29/2023 34.8 0.0 NO 27,465 0.0 0 NO 25,927 4/29/2023 34.9 0.0 NO 35,096 26.2 0 NO 380 35,476 4/30/2023 34.6 0.0 NO 42,030 27.1 0 NO 380 35,476 5/1/2023 34.6 0.0 NO 26,090 26.4 0 NO 373 26,465 5/3/2023 34.6 0.0 NO 26,80 0.0 NO - 56/2/2	4/23/2023	34.6	0.0	NO	32,359	0.1	0	NO		32,359				
4/26/2023 34.4 0.0 NO 49,008 0.0 0 NO 49,008 4/27/2023 34.6 0.0 NO 10,155 25.9 0 NO 392 10,54 4/28/2023 34.6 0.0 NO 25,923 0.0 NO 25,923 4/28/2023 34.8 0.0 NO 27,465 0.0 0 NO 27,645 4/30/2023 34.9 0.0 NO 35,096 26.2 0 NO 380 35,476 4/30/2023 34.3 0.0 NO 49,009 0.0 NO 380 35,476 5/1/2023 34.6 0.0 NO 42,030 27.1 0 NO 378 42,000 5/2/2023 34.6 0.0 NO 26,090 26.4 0 NO 373 26,463 5/3/2023 -0.6 0.0 NO 26,80 26.3 2 NO 378 5/8/20	4/24/2023	34.8	0.0	NO	35,803	0.0	0	NO		35,803				
4/27/2023 34.6 0.0 NO 10,155 25.9 0 NO 392 10,547 4/28/2023 34.6 0.0 NO 25,923 0.0 NO 25,927 4/29/2023 34.8 0.0 NO 27,465 0.0 0 NO 25,927 4/30/2023 34.9 0.0 NO 35,096 26.2 0 NO 380 35,477 Max Daily Flow (Limit: 51,120): Manthly Total: 49,009 0.0 NO 49,000 376 42,400 5/1/2023 34.6 0.0 NO 42,030 27.1 0 NO 376 42,400 5/3/2023 34.6 3.0 NO 8,651 0.0 3 NO - 5/3/2023 34.6 3.0 NO 26,090 26.4 0 NO 373 26,466 5/3/2023 -0.6 0.0 NO 26.8 0 NO - - 5/3/2023	4/25/2023	34.5	0.0	NO	27,391	26.0	0	NO	392	27,783				
4/28/2023 34.6 0.0 NO 25,923 0.0 0 NO 25,923 4/29/2023 34.8 0.0 NO 27,465 0.0 0 NO 27,465 4/30/2023 34.9 0.0 NO 35,096 26.2 0 NO 380 35,476 Max Daily Flow (Limit: 51,120): Monthly Total: 74,000 Max Daily Flow (Limit: 51,120): Monthly Total: 758,133 5/1/2023 34.6 0.0 NO 376 42,400 5/1/2023 34.6 3.0 NO 42,400 5/1/2023 34.6 3.0 NO 26,651 5/1/2023 34.6 0.0 NO 373 26,462 5/16/2023 -0.6 0.0 NO 373 26,463 5/16/2023 <th -<="" colspan="4" td=""><td>4/26/2023</td><td>34.4</td><td>0.0</td><td>NO</td><td>49,008</td><td>0.0</td><td>0</td><td>NO</td><td></td><td>49,008</td></th>	<td>4/26/2023</td> <td>34.4</td> <td>0.0</td> <td>NO</td> <td>49,008</td> <td>0.0</td> <td>0</td> <td>NO</td> <td></td> <td>49,008</td>				4/26/2023	34.4	0.0	NO	49,008	0.0	0	NO		49,008
4/28/2023 34.6 0.0 NO 25,923 0.0 0 NO 25,923 4/29/2023 34.8 0.0 NO 27,465 0.0 0 NO 27,465 4/30/2023 34.9 0.0 NO 35,096 26.2 0 NO 380 35,476 Max Daily Flow (Limit: 51,120): Monthly Total: 74,000 Max Daily Flow (Limit: 51,120): Monthly Total: 758,133 5/1/2023 34.6 0.0 NO 376 42,400 5/1/2023 34.6 3.0 NO 42,400 5/1/2023 34.6 3.0 NO 26,651 5/1/2023 34.6 0.0 NO 373 26,462 5/16/2023 -0.6 0.0 NO 373 26,463 5/16/2023 <th -<="" colspan="4" td=""><td>4/27/2023</td><td>34.6</td><td>0.0</td><td>NO</td><td>10,155</td><td>25.9</td><td>0</td><td>NO</td><td>392</td><td>10,547</td></th>	<td>4/27/2023</td> <td>34.6</td> <td>0.0</td> <td>NO</td> <td>10,155</td> <td>25.9</td> <td>0</td> <td>NO</td> <td>392</td> <td>10,547</td>				4/27/2023	34.6	0.0	NO	10,155	25.9	0	NO	392	10,547
4/29/2023 34.8 0.0 NO 27,465 0.0 NO 820 35,476 4/30/2023 34.9 0.0 NO 35,096 26.2 0 NO 380 35,477 Max Daily Flow (Limit: 51,120): Monthly Total: 49,003 Sign colspan="4">Max Daily Flow (Limit: 51,120): Monthly Total: 49,003 5/1/2023 34.6 0.0 NO 42,030 27.1 0 NO 376 42,400 5/2/2023 34.6 3.0 NO 8,651 0.0 3 NO 48,655 5/4/2023 34.4 0.0 NO 26,690 26.4 0 NO 373 26,465 5/5/2023 -0.6 0.0 NO 26,80 NO 378 374 5/7/2023 -0.6 0.0 NO 26,80 26.3 2 NO 379 6,655 5/8/2023 34.6 1.0 NO 6,280 26.3 2 NO 379 </td <td>4/28/2023</td> <td>34.6</td> <td>0.0</td> <td>NO</td> <td></td> <td>0.0</td> <td>0</td> <td>NO</td> <td></td> <td>25,923</td>	4/28/2023	34.6	0.0	NO		0.0	0	NO		25,923				
4/30/2023 34.9 0.0 NO 35,096 26.2 0 NO 380 35,476 Max Daily Flow (Limit: 51,120): Monthly Total: 49,000 5/1/2023 34.7 0.0 NO 49,009 0.0 NO 49,000 5/2/2023 34.6 0.0 NO 42,030 27.1 0 NO 376 42,400 5/3/2023 34.6 3.0 NO 8,651 0.0 3 NO 8,657 5/4/2023 34.4 0.0 NO 26,990 26.4 0 NO 373 26,466 5/5/2023 -0.6 0.0 NO 26.8 0 NO - - 5/6/2023 -0.6 0.0 NO 26.3 2 NO 379 6,658 5/9/2023 -0.5 0.0 NO 27.2 0 NO - 5/11/2023 -0.5 0.0 NO 2,573 0.0 NO - <	4/29/2023	34.8	0.0	NO	27,465	0.0	0	NO		27,465				
Max Daily Flow (Limit: 51,120): Monthly Total: 49,000 5/1/2023 34.7 0.0 NO 49,009 0.0 0 NO 49,000 5/2/2023 34.6 0.0 NO 42,030 27.1 0 NO 376 42,400 5/3/2023 34.6 3.0 NO 8,651 0.0 3 NO 8,655 5/4/2023 34.4 0.0 NO 26,090 26.4 0 NO 373 26,465 5/5/2023 -0.6 0.0 NO 26.8 0 NO 378 376 5/6/2023 -0.6 0.0 NO 0.0 0 NO - 5/8/2023 -0.6 0.0 NO 0.1 0 NO - 5/9/2023 -0.5 0.0 NO 27.2 0 NO - 5/11/2023 -0.5 0.0 NO 27.2 0 NO - 5/11/2023 -0.5 <td< td=""><td></td><td></td><td>0.0</td><td></td><td></td><td>26.2</td><td>0</td><td>NO</td><td>380</td><td>35,476</td></td<>			0.0			26.2	0	NO	380	35,476				
S/1/2023 34.7 0.0 NO 49,009 0.0 NO NO 49,009 5/2/2023 34.6 0.0 NO 42,030 27.1 0 NO 376 42,400 5/3/2023 34.6 3.0 NO 8,651 0.0 3 NO 8,657 5/4/2023 34.4 0.0 NO 26,46 0 NO 373 26,46 5/5/2023 -0.6 0.0 NO 26.8 0 NO 378 378 5/6/2023 -0.6 0.0 NO 26.8 0 NO -6 5/8/2023 -0.6 0.0 NO 26.8 0 NO -7 5/8/2023 -0.6 0.0 NO 26.8 0 NO -6 5/9/2023 -0.5 0.0 NO 27.2 0 NO -7 5/10/2023 -0.5 0.0 NO 27.2 0 NO -7					,		Max D							
5/1/2023 34.7 0.0 NO 49,009 0.0 0 NO 49,009 5/2/2023 34.6 0.0 NO 42,030 27.1 0 NO 376 42,406 5/3/2023 34.6 3.0 NO 8,651 0.0 3 NO 8,655 5/4/2023 34.4 0.0 NO 26,4 0 NO 373 26,463 5/5/2023 -0.6 0.0 NO 26,8 0 NO -5/6/2023 -0.6 0.0 NO -5/6/2023 -0.6 0.0 NO -6/26.8 0 NO -5/6/2023 -0.6 0.0 NO -6/26.8 0 NO -5/6/2023 -0.6 0.0 NO -6/26.8 0 NO -5/6/2023 -6/5 0.0 NO -6/26.8 0 NO -5/6/2023 -6/5 -5/20/2023 -0.5 0.0 NO 27.2 0 NO -5/21/2023 -0.5 0.0 NO							inax B							
5/2/2023 34.6 0.0 NO 42,030 27.1 0 NO 376 42,406 5/3/2023 34.6 3.0 NO 8,651 0.0 3 NO 8,657 5/4/2023 34.4 0.0 NO 26,090 26.4 0 NO 373 26,463 5/5/2023 -0.6 0.0 NO 26.8 0 NO 378 376 5/7/2023 -0.6 0.0 NO 26.8 0 NO - - 5/8/2023 -0.6 0.0 NO 6,280 26.3 2 NO 379 6,658 5/9/2023 -0.5 0.0 NO 27.2 0 NO - - 5/10/2023 -0.5 0.0 NO 27.2 0 NO - - 5/11/2023 -0.5 0.0 NO 26.8 0 NO 25.77 5/11/2023 -0.5 0.0 N	5/1/2023	34 7	0.0	NO	49 009	0.0	0							
5/3/2023 34.6 3.0 NO 8,651 0.0 3 NO 8,657 5/4/2023 34.4 0.0 NO 26,090 26.4 0 NO 373 26,463 5/5/2023 -0.6 0.0 NO 0.0 0 NO 378 378 5/6/2023 -0.6 0.0 NO 26.8 0 NO 378 378 5/7/2023 -0.6 0.0 NO 0.0 0 NO - - 5/8/2023 -0.6 0.0 NO 6,280 26.3 2 NO 379 6,653 5/9/2023 -0.5 0.0 NO 0.1 0 NO - 5/10/2023 -0.5 0.0 NO 27.2 0 NO - 5/11/2023 -0.5 0.0 NO 26.8 0 NO 2,573 5/12/2023 -0.5 0.0 NO 26.8 0 NO		-		-	,		-	-	376					
5/4/2023 34.4 0.0 NO 26,090 26.4 0 NO 373 26,463 5/5/2023 -0.6 0.0 NO 0.0 0 NO - 5/6/2023 -0.6 0.0 NO 26.8 0 NO 378 378 5/7/2023 -0.6 0.0 NO 0.0 0 NO - 5/8/2023 34.6 1.0 NO 6,280 26.3 2 NO 379 6,658 5/9/2023 -0.5 0.0 NO 0.1 0 NO - 5/10/2023 -0.5 0.0 NO 2,573 0.0 NO 2,575 5/11/2023 -0.5 0.0 NO 2,573 0.0 NO 2,575 5/12/2023 -0.5 0.0 NO 26.8 0 NO 2,575 5/14/2023 -0.5 0.0 NO 26.8 0 NO - 5/1	= / = / = = = =								0/0					
5/5/2023 -0.6 0.0 NO 0.0 NO - 5/6/2023 -0.6 0.0 NO 26.8 0 NO 378 378 5/7/2023 -0.6 0.0 NO 0.0 0 NO - - 5/8/2023 34.6 1.0 NO 6,280 26.3 2 NO 379 6,658 5/9/2023 -0.5 0.0 NO 0.1 0 NO - - 5/10/2023 -0.5 0.0 NO 27.2 0 NO - - 5/11/2023 -0.5 0.0 NO 2,573 0.0 NO 2,573 5/12/2023 -0.5 0.0 NO 26.8 0 NO 2,573 5/11/2023 -0.5 0.0 NO 26.8 0 NO - 5/14/2023 -0.5 0.0 NO 26.8 0 NO - 5/16/2023									272					
5/6/2023 -0.6 0.0 NO 26.8 0 NO 378 378 5/7/2023 -0.6 0.0 NO 0.0 0 NO - 5/8/2023 34.6 1.0 NO 6,280 26.3 2 NO 379 6,658 5/9/2023 -0.5 0.0 NO 0.1 0 NO - 5/10/2023 -0.5 0.0 NO 27.2 0 NO - - 5/11/2023 34.5 0.0 NO 2,573 0.0 0 NO 2,575 5/12/2023 -0.5 0.0 NO 2,573 0.0 NO 2,575 5/13/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/14/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/16/2023 -0.5 0.0 NO 25.9 0 NO 381					20,090				313	20,403				
5/7/2023 -0.6 0.0 NO 0.0 0.0 NO 5/8/2023 34.6 1.0 NO 6,280 26.3 2 NO 379 6,658 5/9/2023 -0.5 0.0 NO 0.1 0 NO 5/10/2023 -0.5 0.0 NO 27.2 0 NO 5/11/2023 34.5 0.0 NO 2,573 0.0 NO 2,573 5/12/2023 -0.5 0.0 NO 2,573 0.0 NO 379 379 5/13/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/14/2023 -0.5 0.0 NO 26.8 0 NO - 5/14/2023 -0.5 0.0 NO 26.8 0 NO - 5/16/2023 -0.5 0.0 NO 25.9 0 NO 381 387 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>270</td> <td>-</td>								-	270	-				
5/8/2023 34.6 1.0 NO 6,280 26.3 2 NO 379 6,658 5/9/2023 -0.5 0.0 NO 0.1 0 NO - 5/10/2023 -0.5 0.0 NO 27.2 0 NO - 5/11/2023 34.5 0.0 NO 2,573 0.0 0 NO 2,573 5/12/2023 -0.5 0.0 NO 2,573 0.0 NO 2,573 5/13/2023 -0.5 0.0 NO 26.8 0 NO 379 375 5/14/2023 -0.5 0.0 NO 26.8 0 NO - - 5/14/2023 -0.5 0.0 NO 26.8 0 NO 381 386 5/17/2023 -0.5 0.0 NO 25.9 0 NO 399 399 5/18/2023 -0.5 0.0 NO 25.6 0 NO 399 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3/0</td> <td>378</td>									3/0	378				
5/9/2023 -0.5 0.0 NO 0.1 0 NO - 5/10/2023 -0.5 0.0 NO 27.2 0 NO - 5/11/2023 34.5 0.0 NO 2,573 0.0 0 NO 2,573 5/12/2023 -0.5 0.0 NO 2,573 0.0 0 NO 2,573 5/13/2023 -0.5 0.0 NO 26.8 0 NO 379 375 5/14/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/14/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/15/2023 -0.5 0.0 NO 25.9 0 NO 381 387 5/17/2023 -0.6 0.0 NO 25.6 0 NO 399 399 5/18/2023 -0.5 0.0 NO 25.4 0* NO 395 </td <td></td> <td></td> <td></td> <td></td> <td>0.000</td> <td></td> <td></td> <td></td> <td>070</td> <td>-</td>					0.000				070	-				
5/10/2023 -0.5 0.0 NO 27.2 0 NO - 5/11/2023 34.5 0.0 NO 2,573 0.0 0 NO 2,573 5/12/2023 -0.5 0.0 NO 2,573 0.0 NO 379 375 5/13/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/13/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/14/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/15/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/15/2023 -0.5 0.0 NO 25.9 0 NO 381 387 5/17/2023 -0.6 0.0 NO 25.6 0 NO 399 399 5/18/2023 -0.5 0.0 NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 6,448 </td <td></td> <td></td> <td></td> <td></td> <td>6,280</td> <td></td> <td></td> <td></td> <td>3/9</td> <td>6,658</td>					6,280				3/9	6,658				
5/11/2023 34.5 0.0 NO 2,573 0.0 NO 2,573 5/12/2023 -0.5 0.0 NO 26.8 0 NO 379 375 5/13/2023 -0.5 0.0 NO 0.0 0 NO 379 375 5/13/2023 -0.5 0.0 NO 0.0 0 NO - - 5/14/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/15/2023 -0.5 0.0 NO 25.9 0 NO 381 387 5/16/2023 -0.6 0.0 NO 25.6 0 NO 399 399 5/18/2023 -0.6 0.0 NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 25.4 0* NO - - 5/21/2023 34.5 0.0 NO 6,448 0.0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>										-				
5/12/2023 -0.5 0.0 NO 26.8 0 NO 379 379 5/13/2023 -0.5 0.0 NO 0.0 0 NO - 5/14/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/15/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/15/2023 -0.5 0.0 NO 0.0 0 NO - 5/16/2023 -0.5 0.0 NO 25.9 0 NO 381 387 5/17/2023 -0.6 0.0 NO 25.6 0 NO 399 399 5/18/2023 -0.5 0.0 NO 0.0 0 NO - - 5/19/2023 -0.6 0* NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 0.0 0 NO - - 5/21/2023 34.5 0.0 NO 6,448 0.0 0										-				
5/13/2023 -0.5 0.0 NO 0.0 0 NO - 5/14/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/15/2023 -0.5 0.0 NO 0.0 0 NO - - 5/16/2023 -0.5 0.0 NO 25.9 0 NO 381 387 5/17/2023 -0.6 0.0 NO 25.6 0 NO 399 399 5/18/2023 -0.5 0.0 NO 0.0 0 NO - - 5/19/2023 -0.6 0.0 NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 25.4 0* NO 395 395 5/21/2023 -0.5 0.0 NO 0.0 0 NO - - 5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO 6,448					2,573									
5/14/2023 -0.5 0.0 NO 26.8 0 NO 360 360 5/15/2023 -0.5 0.0 NO 0.0 0 NO - 5/16/2023 -0.5 0.0 NO 25.9 0 NO 381 387 5/17/2023 -0.6 0.0 NO 25.6 0 NO 399 399 5/18/2023 -0.5 0.0 NO 0.0 0 NO - - 5/19/2023 -0.6 0* NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 0.0 0 NO - 5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO -									379	379				
5/15/2023 -0.5 0.0 NO 0.0 0 NO - 5/16/2023 -0.5 0.0 NO 25.9 0 NO 381 387 5/17/2023 -0.6 0.0 NO 25.6 0 NO 399 399 5/18/2023 -0.5 0.0 NO 0.0 0 NO - 5/19/2023 -0.6 0* NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 0.0 0 NO - - 5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO -														
5/16/2023 -0.5 0.0 NO 25.9 0 NO 381 387 5/17/2023 -0.6 0.0 NO 25.6 0 NO 399 399 5/18/2023 -0.5 0.0 NO 0.0 0 NO - 5/19/2023 -0.6 0* NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 0.0 0 NO - 5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO 6,448									360	360				
5/17/2023 -0.6 0.0 NO 25.6 0 NO 399 399 399 599				-				-		-				
5/18/2023 -0.5 0.0 NO 0.0 0 NO 5/19/2023 -0.6 0* NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 0.0 0 NO 5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO 6,448	5/16/2023					25.9	0		381	381				
5/18/2023 -0.5 0.0 NO 0.0 0 NO 5/19/2023 -0.6 0* NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 0.0 0 NO 5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO 6,448	5/17/2023	-0.6	0.0	NO		25.6	0	NO	399	399				
5/19/2023 -0.6 0* NO 25.4 0* NO 395 395 5/20/2023 -0.5 0.0 NO 0.0 0 NO - 5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO 6,448				NO				NO		-				
5/20/2023 -0.5 0.0 NO 0.0 0 NO - 5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO 6,448				1					395	395				
5/21/2023 34.5 0.0 NO 6,448 0.0 0 NO 6,448			-							-				
					6.448			-	┟───┼	6,448				
									380	13,319				

PG&E Gateway Generating Station

Discharge Flow Data

April 2023-June 2023

]	Industrial Flow								
	Did it ever			Time Meter Did it ever					
	Instantaneous	Time Over	go over	Daily Total	Instantaneous	went Bad	go over	Daily Total	Site Total
Date		35.5 GPM	35.5 GPM	-			35.5 GPM		
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
			mins?			(minutes)	mins?		
5/23/2023	-0.7	0.0	NO		26.0	0	NO	394	394
5/24/2023	32.6	0.0	NO	6,371	25.3	0	NO	381	6,752
5/25/2023		0*	NO	24,772	0.0	0*	NO		24,772
5/26/2023	34.4	0.0	NO	20,210	25.5	0	NO	372	20,581
5/27/2023	34.7	0.0	NO	36,127	0.0	0	NO		36,127
5/28/2023	34.8	0.0	NO	33,227	0.0	0	NO		33,227
5/29/2023	34.5	9.0	NO	22,378	26.9	9	NO	377	22,755
5/30/2023	34.7	0.0	NO	33,030	0.0	0	NO		33,030
5/31/2023	34.8	0*	NO	7,521	26.8	0*	NO	376	7,897
						Max D	aily Flow (Lir	nit: 51,120):	49,009
							М	onthly Total:	343,355
6/1/2023	34.7	0.0	NO	6,540	25.9	0	NO	393	6,933
6/2/2023	34.8	0.0	NO	12,349	0.1	0	NO		12,349
6/3/2023	34.7	0.0	NO	16,232	0.0	0	NO		16,232
6/4/2023	34.9	0.0	NO	7,282	0.0	0	NO		7,282
6/5/2023	34.9	0.0	NO	14,291	26.0	0	NO	372	14,663
6/6/2023	34.5	0.0	NO	44,917	0.0	0	NO		44,917
6/7/2023	34.5	0.0	NO	48,626	26.1	0	NO	366	48,992
6/8/2023	34.5	1.0	NO	37,467	0.0	2	NO		37,467
6/9/2023	34.9	0.0	NO	6,257	0.0	0	NO		6,257
6/10/2023	34.5	0.0	NO	6,610	26.2	0	NO		6,610
6/11/2023	34.5	0.0	NO	6,282	0.0	0	NO		6,282
6/12/2023	34.8	0.0	NO	19,681	0.0	0	NO		19,681
6/13/2023	34.7	0.0	NO	48,606	24.4	0	NO	379	48,985
6/14/2023	34.4	0.0	NO	49,031	0.0	0	NO		49,031
6/15/2023	34.5	0.0	NO	48,608	26.0	0	NO	388	48,996
6/16/2023	34.4	0.0	NO	22,855	0.0	0	NO		22,855
6/17/2023	-0.5	0.0	NO		0.0	0	NO		-
6/18/2023	34.3	0.0	NO	16,020	0.0	0	NO		16,020
6/19/2023	34.2	0.0	NO	11,265	26.7	0	NO	364	11,629
6/20/2023	29.5	0.0	NO	25,496	0.0	0	NO		25,496
6/21/2023	34.5	7.0	NO	38,446	0.0	0	NO		38,446
6/22/2023	34.8	0.0	NO	9,524	25.9	0	NO	654	10,178
6/23/2023	36.2	0.0	NO	23,915	0.0	0	NO		23,915
6/24/2023	35.0	0.0		11,628	0.0		NO		11,628
6/25/2023	34.8	0.0	NO	12,624	0.0		NO		12,624
6/26/2023	35.0	0.0	NO	17,016	26.3		NO	363	17,380
6/27/2023	34.9	0.0	NO	14,111	0.0	0	NO		14,111
6/28/2023	35.0	0.0	NO	17,780	26.5	0	NO	338	18,118
6/29/2023	34.7	0.0	NO	24,271	0.0		NO		24,271
6/30/2023	34.4	0.0	NO	22,825	0.0		NO	mit: [1 120]	22,825
						ινιαχ D		nit: 51,120):	49,031

Monthly Total: 644,171

Notes:

1. On 5/19/2023, 26 minutes of historian data were missing due to maintenance work on historian. No wastewater flow at this time per DCS.

2. On 5/25/2023, 373 minutes of historian data were missing due to unplanned plant power outage during plant power swap. Per power swap procedure, wastewater flow was isolated so no water was discharged.

3. On 5/31/2023, 30 minutes of historian data were missing due to maintenance work on historian. No wastewater flow at this time per DCS.

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name:	PG&E Gateway Generating Station					
Address:	3225 Wilbur Avenue, Antioch, CA 9	3225 Wilbur Avenue, Antioch, CA 94509				
City:	Antioch					
Contact Name:	Tim Wisdom					
Flow Meter:	Sewer Final Effluent	City Water Meter				
	(The data are based on flowmeter r	eadings as recorded by the plant's "Pi Historian" data				
	acquisition/handling system)					

Year:

2023

Month	Flow (gallons)	Due Date
January		
February		
March		
April	758,130	7/15/2023
May	343,355	7/15/2023
June	644,171	7/15/2023
July		
August		
September		
October		
November		
December		

Note:

1) Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

2) The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

Attachment 6 WSAC Operating Hours Report

WSAC Operating Hours Report April 2023 - June 2023

	WSAC Operation
Month	
January-23	
February-23	
March-23	
April-23	28.83 See note #1 below)
May-23	10.00 (See note #2 below)
June-23	90.09
July-23	
August-23	
September-23	
October-23	
November-23	
December-23	

Notes:

1. WSAC operation in April 2023 was offline (discharge) operation, no resultant blowdown to the Tiger Pit, and that the WSAC basin water was trucked offsite for proper disposal.

2. WSAC operation inMay 2023 was offline (discharge) operation, no resultant blowdown to the Tiger Pit. Loss of data has a potential run range from 10 hours to 89 hours. The additional hours are not during a time period, temperature, that the WSAC would be in service. Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report April 2023 - June 2023

	WSAC Operation
Month	Average Daily Blowdown Cycles
January-23	
February-23	
March-23	
April-23	See note #1 below)
May-23	2.47 (See note #2 below)
June-23	3.88
July-23	
August-23	
September-23	
October-23	
November-23	
December-23	

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Notes:

1. WSAC operation in April 2023 was offline (discharge) operation, no resultant blowdown to the Tiger Pit, and that the WSAC basin water was trucked offsite for proper disposal.

2. WSAC operation inMay 2023 was offline (discharge) operation, no resultant blowdown to the Tiger Pit. Loss of data has a potential run range from 10 hours to 89 hours. The additional hours are not during a time period, temperature, that the WSAC would be in service. Attachment 8 Laboratory Results Monitoring of Combined Site Stream (E-001) Attachment 8a Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2306F66

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Angel Espiritu
Q2 2023 Quarte

Q2 2023 Quarterly Monitoring

Project Received: 06/21/2023

Analytical Report reviewed & approved for release on 06/28/2023 by:

Jena Alfaro Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

McCampbell Analytical, Inc. "When Quality Counts"

> 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

Glossary of **Terms & Qualifier Definitions**

2306F66

Project: CPT %D RSD RRT RPD P RD 뭐 PDSD PDS NR B AN MSD SN ₹ MDL MB ဉ LCS ITEF ERS EDL DUP DLT DISS 무 95% Interval Glossary Abbreviation **Client:** SPKRef Val SPK Val MB % Rec DI WET Q2 2023 Quarterly Monitoring PG&E Gateway Generating Station Spike Reference Value Data Not Reported due to matrix interference or insufficient sample amount. Not detected at or above the indicated MDL or RL Matrix Spike Duplicate Matrix Spike Minimum Level of Quantitation Method Detection Limit ¹ **Dilution Factor** Consumer Product Testing not NELAP Accredited 95% Confident Interval Spike Value **Relative Standard Deviation Relative Retention Time Relative Percent Difference** Reporting limit ² **Relative Difference** Prep Factor Post Digestion Spike Duplicate Post Digestion Spike Not Applicable % Recovery of Surrogate in Method Blank, if applicable Method Blank International Toxicity Equivalence Factor Estimated Detection Limit Duplicate **Dilution Test (Serial Dilution)** Dissolved (direct analysis of 0.45 µm filtered and acidified water sample) (DISTLC) Waste Extraction Test using DI water Serial Dilution Percent Difference Lowest Quantitation Level Laboratory Control Sample External reference sample. Second source calibration verification. WorkOrder:

distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016 MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is SPLP ST TCLP

Sorbent Tube

Toxicity Characteristic Leachate Procedure

Synthetic Precipitation Leachate Procedure

than the MDL.) conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating

Glossary of Terms & Qualifier Definitions

Client:	PG&E Gateway Generating Station

WorkOrder: 2306F66

Project:	Q2 2023 Quarterly Monitoring	

- TEQ **Toxicity Equivalents**
- TimeZone Net Adjustment for sample collected outside of MAI's UTC. TZA
- WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J

Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/21/2023Project:Q2 2023 Quarterly Monitoring

 WorkOrder:
 2306F66

 Extraction Method:
 E1664A_SG

 Analytical Method:
 E1664A

 Unit:
 mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2306F66-001B	Water	06/20/202	3 09:20	O&G	272095
Analytes	Result	MDL	RL	DF	-	Date Analyzed
SGT-HEM	ND	1.5	5.2	1		06/22/2023 14:45

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2306F66-002B	Water	06/21/202	3 09:35	O&G	272095
Analytes	Result	MDL	RL	DF		Date Analyzed
SGT-HEM	ND	1.4	4.8	1		06/22/2023 14:50

Analyst(s): HN

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/22/2023Project:Q2 2023 Quarterly Monitoring

WorkOrder:	2306F66
Extraction Method:	E1664A
Analytical Method:	E1664A
Unit:	mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2306F66-001A	Water	06/20/202	3 09:20	O&G	272203
Analytes	Result	MDL	RL	DF	-	Date Analyzed
HEM	ND	0.93	5.1	1		06/22/2023 14:30

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2306F66-002A	Water	06/21/202	3 09:35	O&G	272203
Analytes	Result	MDL	RL	DF		Date Analyzed
HEM	ND	0.87	4.8	1		06/22/2023 14:35

Analyst(s): HN

Analytical Report	Analyt
http://www.mccampbell.com/E-mail: main@mccampbell.com	"When Quality Counts"
1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269	- 🔛 McCampbell Analytical, Inc.

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/21/2023Project:Q2 2023 Quarterly Monitoring

WorkOrder:2306F66Extraction Method:SM4500-NH3 BGAnalytical Method:SM4500-NH3 BGUnit:mg/L

		Ammonia as N	Z			
Client ID	Lab ID	Matrix	Date Collected	llected	Instrument	Batch ID
E-001 Grab	2306F66-002C Water	Water	06/21/2023 09:35	3 09:35	WC_SKALAR 230621A1_43 272113	272113
Analytes	Result	MDL	푀	DF	Date	Date Analyzed
Ammonia, total as N	ND	0.095	0.10	Ł	06/21	06/21/2023 14:02

Analyst(s): IGC

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.inccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/21/2023Project:Q2 2023 Quarterly Monitoring

WorkOrder:2306F66Extraction Method:SM5210BAnalytical Method:SM5210 BUnit:mg/L

	Biochemic	Biochemical Oxygen Demand (BOD)	emand (]	30D)		
Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 Comp	2306F66-003A Water	Water	06/21/2023 09:30	3 09:30	WetChem	272116
Analytes	Result	MDL	R	비		Date Analyzed
BOD	QN	2.0	2.0	1.02		06/26/2023 13:19

Analyst(s): JRA

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	Analytical Report
McCampbell Analytical, Inc.	

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/22/2023Project:Q2 2023 Quarterly Monitoring

WorkOrder:2306F66Extraction Method:SM4500-CN^ EAnalytical Method:SM4500-CN^ CEUnit:µg/L

		Cyamuc, 101al	-			
Client ID	Lab ID Matrix		Date Collected		Instrument	Batch ID
E-001 Grab	2306F66-002D Water	Water	06/21/2023 09:35	3 09:35	WC_Skalar3 230622A0_24 272205	272205
Analytes	Result	MDL	R	비	Date	Date Analyzed
Total Cyanide	1.0	0.59	1.0	٢	06/2	06/22/2023 10:57

Analyst(s): CC

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.inccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/23/2023Project:Q2 2023 Quarterly Monitoring

WorkOrder:2306F66Extraction Method:SM5220 DAnalytical Method:SM5220 D-1997Unit:mg/L

	Chemical Oxygen Demand (COD) as mg O2 /L	en Demand (COD) as	mg 02/	Ę	
Client ID	Lab ID Matrix	Matrix	Date Collected	lected	Instrument	Batch ID
E-001 Comp	2306F66-003B Water	Water	06/21/2023 09:30	09:30	SPECTROPHOTOMETER2	272247
Analytes	Result	MDL	R	비	Date	Date Analyzed
COD	12	8.2	10	-	06/2:	06/23/2023 10:38

Analyst(s): IGC

McCampbell Analytical, Inc. "When Ouality Counts"	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/21/2023Project:Q2 2023 Quarterly Monitoring

WorkOrder:2306F66Extraction Method:E245.2Analytical Method:E245.2Unit:μg/L

	Mercury by Cold Vapor Atomic Absorption	old Vapor A	tomic At	sorption		71
Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001 Comp	2306F66-003E Water	Water	06/21/2023 09:30	3 09:30	AA1 _19	272049
Analytes	Result	MDL	R	비		Date Analyzed
Mercury	ND	0.13	0.20	-		06/22/2023 16:55

Analyst(s): DMA

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/21/2023Project:Q2 2023 Quarterly Monitoring

WorkOrder:	2306F66
Extraction Method:	E200.8
Analytical Method:	E200.8
Unit:	μg/L

		Meta	ls				
Client ID	Lab ID	Matrix	_	Date Colle	cted	Instrument	Batch ID
E-001 Comp	2306F66-003F	Water		06/21/2023	09:30	ICP-MS4 247SMPL.d	272071
Analytes	Result	Qualifiers M	DL	<u>RL</u>	DF		Date Analyzed
Arsenic	0.67	0.	071	0.50	1		06/21/2023 22:59
Cadmium	ND	0.	050	0.50	1		06/21/2023 22:59
Chromium	ND	0.	26	0.50	1		06/21/2023 22:59
Copper	2.2	0.	63	1.5	1		06/21/2023 22:59
Iron	56	22	2	50	1		06/21/2023 22:59
Lead	ND	0.	19	0.50	1		06/21/2023 22:59
Molybdenum	23	0.	14	0.50	1		06/21/2023 22:59
Nickel	0.78	0.	33	0.50	1		06/21/2023 22:59
Selenium	0.24	J 0.	18	0.50	1		06/21/2023 22:59
Silver	ND	0.	051	0.50	1		06/21/2023 22:59
Zinc	240	11		20	1		06/21/2023 22:59
Surrogates	REC (%)			Limits			
Terbium	101			70-130			06/21/2023 22:59
Analyst(s): WV							

1534 V Toll Free J	http://www.
McCampbell Analytical, Inc.	"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:06/21/2023 10:45Date Prepared:06/23/2023Project:Q2 2023 Quarterly Monitoring

WorkOrder:2306F66Extraction Method:E420.4Analytical Method:E420.4Unit:μg/L

		Fnenolics				
Client ID	Lab ID	Matrix	Date Collected	llected	Instrument	Batch ID
E-001 Grab	2306F66-002C Water	Water	06/21/2023 09:35	3 09:35	WC_SKALAR 230623b1_24 272326	272326
Analytes	Result	MDL	푀	비	Date	Date Analyzed
Phenolics	ND	1.4	2.0	£	06/2:	06/23/2023 14:06

Analyst(s): CC

McCampbell Analytical, Inc. "When Ouality Counts" 1534 Wilow Pass Road, Pitrsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9269 Fax: (925) 252-9269 http://www.mccampbell.com/ E-mail: main@mccampbell.com	Analytical Report	PG&E Gateway Generating StationWorkOrder:2306F6606/21/2023 10:45Extraction Method:SM2540 C-199706/21/2023Analytical Method:SM2540 C06/21/2023Unit:mg/L	Total Dissolved Solids	Lab ID Matrix Date Collected Instrument Batch ID	2306F66-003C Water 06/21/2023 09:30 WetChem 272124	Result MDL RL DF Date Analyzed 138 10.0 10.0 1 06/22/2023 17:00
McCampb		Client:PG&E GateDate Received:06/21/2023Date Prepared:06/21/2023Project:Q2 2023 Qu		Client ID	E-001 Comp	Analytes Total Dissolved Solids Analyst(s): JME

	A	Analytical Report	Report		
Client: PG&E Gate Date Received: 06/21/2023 Date Prepared: 06/21/2023 Project: Q2 2023 Qu	PG&E Gateway Generating Station 06/21/2023 10:45 06/21/2023 06/21/2023 Q2 2023 Quarterly Monitoring	e	WorkOrder:2306F66Extraction Method:SM2540 D-1997Analytical Method:SM2540 DUnit:mg/L	2306F66 : SM2540 D-1997 : SM2540 D mg/L	
		Total Suspended Solids	ed Solids		
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
E-001 Comp	2306F66-003D	3D Water	06/21/2023 09:30	WetChem	272155
Analytes Total Suspended Solids	Result 2.80	2.00	= RL DF		Date Analyzed 06/21/2023 20:05
Analyst(s): JME					

n

č

111

Page 14 of 30

Date Prepared: Date Analyzed: Instrument: Matrix: Project:	Client: PG&E Gateway Generating Station Date Prepared: 06/21/2023 Date Analyzed: 06/21/2023 Instrument: 0&G Matrix: Water Project: Q2 2023 Quarterly Monitoring	Quality Control Report Station WorkOrder: BatchID: Extraction Me Analytical Mel Unit: Content for Factor	http://www.mccampbell.com/E-mail: main@mccampbell.com Ol Report 2306F66 BatchID: 272095 Extraction Method: E1664A_SG Analytical Method: E1664A_SG Analytical Method: E1664A_SG Unit: mg/L Sample ID: MB/LCS/LCSD-27	up://www.mccampbell.com/E-mail: main@mccampbell.com up://www.mccampbell.com l Report WorkOrder: 2306F66 BatchID: 272095 Extraction Method: E1664A_SG Analytical Method: E1664A Unit: mg/L Sample ID: MB/LCS/LCSD-2	ali: main@mccampbell.com 2306F66 272095 E1664A_SG E1664A mg/L MB/LCS/LCSD-272095	ي. م	
Analyte	MB Result	MDL	RL				
SGT-HEM	Q	1.5	5 ^{.0}				
Analyte	LCS LCSD Result Result	D SPK ult Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	8.4	10.42	81	84	64 122	101	06

	McCampbell Analytical, Inc.	Toll Free Telephone: http://www.mccampbe	1.034 Willow Fass Road, Pritsourg, CA 94:00-1 (01) Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	65-1701 5) 252-9269 campbell.com	
	Quality Co	Quality Control Report			
Client: PG&E Gate Date Prepared: 06/22/2023	PG&E Gateway Generating Station 06/22/2023	WorkOrder: BatchID:	2306F66 272203		
Date Analyzed: 06/22/2023	06/22/2023	Extraction M	Extraction Method: E1664A		
Instrument:	O&G	Analytical Mo	Analytical Method: E1664A		
Matrix:	Water	Unit:	mg/L		
Project:	Q2 2023 Quarterly Monitoring	Sample ID:	MB/LCS/	MB/LCS/LCSD-272203	
	QC Summary 1	QC Summary Report for E1664A			
Analyte	MB Result	MDL RL			
HER	QN	0.91 5.0			
Analyte	LCS LCSD Result Result	SPK Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
HEM	18 18	20.83	88 85	78-114 3.41	30

Page 16 of 30

	"When Quality Counts"	http://ww	1 011 Free Terephone: (0/1/) 222-9202/ Fax: (922) 222-9209 http://www.nccampbell.com / E-mail: main@mccampbell.com	ail: main@mccampbell	com	
	Quality Control Report	ontrol R	eport			
Client: PG&E Gate Date Prepared: 06/21/2023	PG&E Gateway Generating Station 06/21/2023	WorkOrc BatchID:	ler:	2306F66 272113		
Date Analyzed: 06/21/2023 Instrument: WC SKAL	06/21/2023 WC SKALAR	Extr Anal	Extraction Method: SM4500-NH3 BG Analytical Method: SM4500-NH3 BG	SM4500-NH3 E SM4500-NH3 B	ט ט	
Matrix:	– Water	Unit:		mg/L		
Project:	Q2 2023 Quarterly Monitoring	Samj	Sample ID:	MB/LCS/LCSD-272113	-272113	
Analyte	QC Summary Report for SM4500-NH3 MB MDL RL	Leport for SM MDL	4500-NH3 RL			
Ammonia, total as N		0.095	0.10			1
Analyte	LCS LCSD Result Result	D SPK ult Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD Limit
Ammonia, total as N	3.8 40	4	96	00 88-113	13 203	00

	"When Quality Counts."	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com/ E-mail: main@mccampbell.com	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 ttp://www.inccampbell.com / E-mail: main@mccampbell.com	
	Quality Co	Quality Control Report		
Client:	PG&E Gateway Generating Station	WorkOrder:	2306F66	
Date Prepared: 06/21/2023	• 06/21/2023	BatchID:	272116 SM4210B	
Date Analyzed: Instrument	. 00/20/20/20 WetChem	Extraction Method: SM5210B Analytical Method: SM5210 B	SM5710 B	
Matrix:	Water	Unit:	mg/L	
Project:	Q2 2023 Quarterly Monitoring	Sample ID:	MB/LCS/LCSD-272116	
Analyte	MB Result	MDL RL		
BOD	Q	2.0 2.0		
Analyte	LCS LCSD Result Result	i SPK LCS It Val %REC	LCSD LCS/LCSD RPD C %REC Limits	RPD Limit
000		100		1

	"When Quality Counts"			http://www.mccampbell.com/E-mail: main@mccampbell.com	1
n,	Quality C	Quality Control Report			
Client: PG&E Gate Date Prepared: 06/22/2023	PG&E Gateway Generating Station 06/22/2023	WorkOrder: BatchID:	2306F66 272205		
Date Analyzed: 06/22/2023 Instrument: WC_Skalar	00/22/20/23 WC_Skalar3	EXUTACUON M Analytical M	EXTRACTION INTERNOT: SM4500-CN E Analytical Method: SM4500-CN ⁻ CE	CN- CE	
Matrix:	Water	Unit:	μg/L		
Project:	Q2 2023 Quarterly Monitoring	Sample ID:	MB/LCS/	MB/LCS/LCSD-272205	
	QC Summary Rep	QC Summary Report for SM4500-CN ⁻ CE	- CE		
Analyte	MB Result	MDL RL			
Total Cyanide	Ð	0.59 1.0			
Analyte	LCS LCSD Result Result	D SPK lit Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
Total Cyanide	48 49	50	95 98	90-110 2.92	20

	"When Quality Counts"	ts ''		http://w	http://www.mccampbell.com / E-mail: mam@mccampbell.com	om / E-mail: n	ain@mccan	ipbell.com		
		Qualit	ty Cor	trol I	Quality Control Report					
Client:	PG&E Gateway Generating Station	g Station		Wo	WorkOrder:	230	2306F66			
Date Prepared:				Bat	BatchID:		272247			
Date Analyzed:		Ċ		Ext	Extraction Method:		SM5220 D			
Instrument:	SPECTROPHOTOMETER2	K 2		Ans	Analytical Method:		SM5220 D-1997	1.661		
Matrix:	Water			Unit:	t:	mg/L	Ĺ			
Project:	Q2 2023 Quarterly Monitoring	ring		San	Sample ID:	MB 230	/LCS/LC 6F66-00	MB/LCS/LCSD-272247 2306F66-003BMS/MSD	C 4	
		QC Su	QC Summary Report for COD	Report fo	r COD					
Analyte		MB Result		MDL	RL					
coD		Q		8.2	10				·	1
Analyte		LCS Result	LCSD Result	SPK Val		LCS L	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
COD		100	100	100				90-110	0	20
Analvte	S S	SM	dsm	SPK	SPKRef	S	USM MSD	USM/SM	Day	L L L L L L L L L L L L L L L L L L L
a final	PF	Result	Result	Val	Val	%REC	%REC	Limits	1	Limit
COD	-	110	110	100	12.00	86	96	80-120	1.83	20

Page 20 of 30

	Quality C	Quality Control Report	t		
Client: PG&E Gate Date Prepared: 06/21/2023	PG&E Gateway Generating Station : 06/21/2023	WorkOrder: BatchID:	2306F66 272049		
Date Analyzed: 06/22/2023	06/22/2023	Extraction N	Extraction Method: E245.2		
Instrument:	AA1	Analytical M	Analytical Method: E245.2		
Matrix:	Water	Unit:	µg/L		
Project:	Q2 2023 Quarterly Monitoring	Sample ID:	MB/LCS/	MB/LCS/LCSD-272049	
	QC Summary	QC Summary Report for Mercury	y		
Analyte	MB Result	MDL RL			
Mercury	Q	0.13 0.20			
Analyte	LCS LCSD Result Result	D SPK ult Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
Mercury	1.9 1.9	2	96 94	85-115 2.10	20

Page 21 of 30

Focke Gateway Generating Station WorkOrder: 23066 Trepurete: 6621/2003 BatchDI: 272071 Maniyract: 0621/2003 BatchDI: 272071 Maniyract: 0621/2003 Carlabolic 2008 Maniyract: Namiyract Maniyraction Method: 2008 Maniyract: Namiyraction Maniyraction 272071 Maniyract: Distribution Maniyraction 27001 Maniyraction None Distribution Maniyraction Maniyraction Distribution Maniyraction Maniyraction Marction Distribution		Quali	Quality Control Report	ntrol R	ceport				
Image: Imade: Image: Imade: Image: Imade: Imade: Imade: Imade: Imade: Imade:			•	i	•				
Multical Method: Extraction Method: E200.8 Multical Method: E200.8 Multical Method: E200.8 Multical Method: E200.8 Water Multical Method: E200.8 Mater Multical Method: E200.8 Mater Multical Method: E200.8 Mater Multical Method: Multical Method: Mater Multical Method: Multical Method: Multical Method: Mater Multical Method: Multical Method: Multical Method: Multical Method: Mater Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: Multical Method: <t< th=""><th></th><th>i&E Gateway Generating Station 21/2023</th><th></th><th>Wor Batc</th><th>kOrder: hID:</th><th>2306F6 272071</th><th>90</th><th></th><th></th></t<>		i&E Gateway Generating Station 21/2023		Wor Batc	kOrder: hID:	2306F6 272071	90		
xinc Unit Unit MBLCS/LCSD-27307 xinc yarr MBLCS/LCSD-27307 warr Name NB manual NB MBLCS/LCSD-27307 manual NB NB NB manual NB NB NB manual ND RL ND NB manual ND ND ND ND ND ND manual ND ND ND ND ND ND ND manual ND ND ND ND ND ND ND ND manual ND ND ND ND ND ND ND ND manual ND ND ND ND ND ND ND ND manual ND ND ND ND ND ND ND ND manual ND ND ND ND ND ND		'21/2023 - 06/22/2023 P-MS6		Extr Ana	action Method bytical Method				
(1) Q2 020 Quarterly Monitoring Sample ID: MB/LCS/LCSD-2700 To Commany Report for Medals (2)<		iter		Unit					
Matrix Matrix R. Specific Metals Matrix Matrix R. Specific Metals Matrix Specific Metals 0 Matrix Matrix Matrix Matrix Matrix Matrix Matrix 0 Matrix		2023 Quarterly Monitoring		Sam	ple ID:	MB/LO	cs/LcsD-272	71	
MB MD R Val SPV MB Val SPV SPV Val SPV Val SPV Val SPV			mmary R	eport for	Metals				
ND 0.071 0.50 5 - - MD ND 0.050 0.50 - - - MD ND 0.050 0.50 - - - - MD ND 0.05 0.50 0.50 - - - MD ND 0.13 0.65 1.5 - - - MD ND 0.14 0.50 0.50 - - - MD ND 0.14 0.50 - - - - MD ND ND ND ND ND ND ND ND MD ND ND ND	Analyte	MB Result		MDL	RL	SPK Val			MB SS Limits
m ND 0.050 0.50 - - - m ND 2.26 0.50 - - - ND ND 2.26 0.50 - - - ND ND 0.19 0.50 - - - ND ND 0.14 0.50 - - - m ND 1.1 2.0 1.0 1.0 - - m S3 S415 N N	rsenic	QN		0.071	0.50				
um ND 226 0.63 1.5 - - ND - 0.63 1.5 - - - ND - 0.19 0.50 - - - - ND - 0.19 0.50 - - - - - Imm ND - 0.13 0.50 -	admium	ND		0.050	0.50				
ND 0.03 1.5 ·<	thromium.	Ŋ		0.26	0.50				
ND 22 50 ·	copper	ND		0.63	1.5				
ND 0.0 0.19 0.50 - - Imm ND 0.14 0.50 - - - Imm ND 0.13 0.50 - - - - Imm ND 0.13 0.50 - - - - - Imm ND 0.11 20 50 - - - - - Imm ND 11 20 50 50 - - - - Imm S30 11 20 515 50 515 50 515 50 515 50 515 50 515 50 515 50 515 50 515 50 515 50 50 50		ON		52	50	•			
Induction ND U.14 0.30 1 0.30 1 0 Induction ND 0.18 0.50 1	ead			0.19	0.50	•			
Induction ND 0.00	lickel			0.33	0.50	•			
ND 0.051 0.50 ·	ielenium			0.18	0.50	•			
ND 11 20 - - ate Recovery 530 106 -	ilver	QN		0.051	0.50	ŀ	.	ľ	
Interface 50 50 106 Interface 50 50 50 106 Interface Interfa	inc	DN		11	20				
n 530 106 106 n LCS SPK LCS RSUL Val LCS LCS RSUL n LS Found Val Val LCS RSUL LCS	urrogate Recovery								
Image: Constant length LCS FICS PIC LCS PIC LCS PICS LCS LCS <thls< th=""> LCS <thls< th=""></thls<></thls<>	erbium	530				500	106		70-130
Result Result Val MEC MEC Imits 1 52 51 50 104 102 85-115 1 52 51 50 104 101 85-115 1 52 51 50 104 101 85-115 1 52 51 50 104 101 85-115 1 52 51 50 104 101 85-115 1 49 50 100 103 99 85-115 1 48 50 102 103 97 85-115 1 49 50 103 97 85-115 1 50 50 102 103 85-115 1 50 50 103 97 85-115 1 50 50 103 97 85-115 1 50 50 106 102 85-115 1 <td>Analyte</td> <td>rcs</td> <td>LCSD</td> <td>SPK</td> <td>TCS</td> <td></td> <td></td> <td></td> <td>RPD</td>	Analyte	rcs	LCSD	SPK	TCS				RPD
::::::::::::::::::::::::::::::::::::		Result	Result	Val	%RI				Limit
Im 52 51 50 104 101 85-115 Um 52 51 50 104 101 85-115 1 52 51 50 104 101 85-115 1 52 51 50 104 101 85-115 1 5100 5000 5000 103 99 85-115 1 49 50 101 99 85-115 1 48 50 101 99 85-115 1 48 50 101 99 85-115 1 50 50 102 100 85-115 1 50 50 102 99 85-115 1 50 50 106 102 85-115 1 50 50 106 102 85-115 1 50 50 106 102 85-115 1 50 50 106 103 85-115 1 50 50 106 102 85-115	rsenic	52	51	50	104	102	85-115	2.45	20
um 52 51 50 104 101 85-115 - 52 51 50 104 101 85-115 51 50 500 500 103 99 85-115 61 49 50 101 99 85-115 61 49 50 101 99 85-115 61 49 50 101 99 85-115 61 51 48 50 103 97 85-115 61 50 50 103 97 85-115 61 50 102 100 85-115 61 50 102 100 85-115 62 50 50 104 102 85-115 63 51 50 104 99 85-115 64 50 50 104 99 85-115 65 50 50 104 99 85-115 70 50 50 104 99 85-115 70 50 50 104 99 85-115	Cadmium	52	51	50	104	101	85-115	3.02	20
52 51 50 104 101 85-115 5100 5000 5000 103 99 85-115 51 49 50 101 99 85-115 51 49 50 101 99 85-115 51 51 48 50 101 99 85-115 51 51 50 50 102 100 85-115 7 53 51 50 102 100 85-115 7 52 50 50 104 99 85-115 7 52 50 50 104 99 85-115 televenty	Chromium	52	51	20	104	101	85-115	2.64	20
5100 5000 5000 103 99 85-115 61 49 50 101 99 85-115 enum 51 48 50 101 99 85-115 enum 51 48 50 103 97 85-115 in 53 51 50 102 100 85-115 in 53 51 50 102 100 85-115 in 52 50 50 106 102 85-115 fat Recovery 50 50 105 103 85-115	copper	52	51	50	104	101	85-115	2.09	20
51 49 50 101 99 85-115 enum 51 48 50 103 97 85-115 in 51 50 50 102 100 85-115 in 53 51 50 106 102 85-115 in 52 50 50 106 102 85-115 in 52 50 50 104 99 85-115 iate Recovery 50 50 105 103 85-115	uo.	5100	5000	5000	103	66	85-115	3.60	20
enum 51 48 50 103 97 85-115 in 51 50 50 102 100 85-115 in 53 51 50 106 102 85-115 in 52 50 50 104 99 85-115 in 52 50 50 104 99 85-115 iate Recovery 50 50 105 103 85-115	ead	51	49	50	101	66	85-115	2.50	20
51 50 50 102 100 85-115 11 53 51 50 106 102 85-115 52 50 50 104 99 85-115 50 50 105 103 85-115 Jate Recovery	lolybdenum	51	48	20	103	67	85-115	6.07	20
um 53 51 50 106 102 85-115 52 50 50 104 99 85-115 520 510 500 105 103 85-115 gate Recovery	lickel	51	50	50	102	100	85-115	2.28	20
gate Recovery	elenium Huor	53 E3	0.1 E.0	nc S	901	201	311-08	3.80	
ogate Recovery		520	20	200	101	103	85-115	0.20	20
	urrogate Recovery		2		3		2		
530 500 500 105 100 70-130	Terbium	530	500	500	105	100	70-130	5.41	20

Page 22 of 30

	"When Quality Counts"	Toll Free Telepho http://www.mccam	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	I Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 //www.mccampbell.com / E-mail: main@mccampbell.com	
	Quality C	Quality Control Report	rt		
Client: PG&E Gate Date Prepared: 06/23/2023	PG&E Gateway Generating Station 06/23/2023	WorkOrder: BatchID:	r: 2306F66 272326		
Date Analyzed: 06/23/2023 Instrument: WC SKAL	06/23/2023 WC SKALAR	Extraction Analytical	Extraction Method: E420.4 Analytical Method: E420.4		
Matrix:	_ Water	Unit:	µg/L		
Project:	Q2 2023 Quarterly Monitoring	Sample ID:		MB/LCS/LCSD-272326	
	QC Summar	QC Summary Report for E420.4	4.		
Analyte	MB Result	MDL RL			
Phenolics	QN	1.4 2.0			
		- 11			
Analyte	LCS LCSD Result Result	tD SPK ult Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
Phanolice	36 36	ć	00		

Page 23 of 30

	"When Quality Counts"			пцр://www.inccampoell.com/ Е-пац: паш@mccampoell.com	campbell.com	
	Quality	y Cont	Quality Control Report			
Client: PG&E Gate Date Prepared: 06/21/2023	PG&E Gateway Generating Station : 06/21/2023		WorkOrder: BatchID: Extraction Me	WorkOrder: 2306F66 BatchID: 272124 Extraction Mathod: SM7540 C-1997	2001	
Instrument:	WetChem		Analytical Me	Analytical Method: SM2540 C		
Matrix:	Water		Unit:	mg/L		
Project:	Q2 2023 Quarterly Monitoring		Sample ID:	MB/LCS/	MB/LCS/LCSD-272124	
	QC Summary Report for 10tal Dissolved Solids	eport tor	I otal Dissolved	Solids		Ν
Analyte	MB Result		MDL RL			14
Total Dissolved Solids	ND		10.0 10.0			
Analyte	LCS Result	LCSD Result	SPK Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
Total Dissolved Solids	blids 972	988	1000	66 26	80-120 1.63	10

	McCampbell Analytical, Inc. "When Ouality Counts"		Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	-9262 / Fax: (925 -mail: main@mcc) 252-9269 ampbell.com	1
	Quality (Quality Control Report	Report			
Client: PG&E Gate	PG&E Gateway Generating Station	Mo Pod	WorkOrder:	2306F66		
Date Analyzed: 06/21/2023	: 06/21/2023	Ext	Extraction Method: SM2540 D-1997	SM2540 D	0-1997	
Instrument:	WetChem	Ana	Analytical Method: SM2540 D	SM2540 D		
Matrix:	Water	Unit:	÷	mg/L		
Project:	Q2 2023 Quarterly Monitoring	San	Sample ID:	MB/LCS/I	MB/LCS/LCSD-272155	
Analyte	MB Result	MDL	RL			
Total Suspended Solids	Solids ND	1.00	1.00			6
Analyte	LCS LC Result Re	LCSD SPK Result Val	LCS %REC	LCSD C %REC	LCS/LCSD RPD Limits	RPD Limit
Total Suspended Solids	Solids 97.0 92.0	.0 100	26	92	80-120 5.29	10

McCampbell Analytico	II, Inc.		CHAIN-OF-CUS	STODY RECOR	Pag	e 1 of 1
Pittsburg, CA 94565-1701 (925) 252-9262			WorkOrder: 2306F66	ClientCode: PGEA		
(923) 232-9202	WaterTrax CL	IP D ^{EDF}	EQuIS Dry-Weight Detection Summary	Email HardCop	y ThirdParty	J-flag
Report to:			Bill to:	R	equested TATs:	1 day;
Angel Espiritu PG&E Gateway Generating Station	Email: abe4@p cc/3rd Party: T1WY@	ge.com oge.com; MSFG@pge.co	Angel Espiritu pm: PG&E Gateway	Generating Station		5 days;
3225 Wilbur Avenue	PO:	- g, 0 - g	3225 Wilbur Ave	· · ·	Date Received:	06/21/2023
Antioch, CA 94509 (925) 459-7212 FAX:	Project: Q2 2023	Quarterly Monitoring	Antioch, CA 945	509 <i>L</i>	Date Logged:	06/21/2023
			1	Requested Tests (See leger	nd below)	

Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2306F66-001	E-001 Grab	Water	6/20/2023 09:20	П	в	A	1	1	1	1		1	0	A	Ť I	1
2306F66-002	E-001 Grab	Water	6/21/2023 09:35	T	в	A	C	11000	0	-	1 11	D	C	A		(h
2306F66-003	E-001 Comp	Water	6/21/2023 09:30	Ē		1		A	0000	В	E	F		A	С	D

Test Legend:

1664A_SG_W	-
CN_SM4500CE_W	
PHENOLICS_W	
	CN_SM4500CE_W

2	1664A_W	
6	COD_W	_
10	PRDisposai Fee	-

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

4	BOD_W	- 7
8	METALSMS_TTLC_W	
12	TSS_W	- 2

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense. McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

		G&E GAT .ngel Espir		ENERATING ST	TATION	Project:	Q2 2023 Quar	terly N	Monito	oring				order: 230 Level: LE		
Conta	ct's Email: at	be4@pge.c	om			Comments	:						Date Lo	gged: 6/2	1/2023	i
			Water	rax CLIP		Exce	EQui	S	En	nail	HardCopy		dParty	9		
LabID	ClientSam	pID	Matrix	Test Name		Containers /Composites	Bottle & Preservative		Head Space	Dry- Weight	Collection Date & Time	ТАТ	Test Due Date	Sediment Content		Sub Out
001A	E-001 Grab		Water	E1664A (HEM; Oi Clean-Up)	1 & Grease w/o S.G.	1	1LA w/ HCl				6/20/2023 9:20	1 day	6/22/2023	Present		
001B	E-001 Grab		Water	E1664A (SGT- HE Material)	M; Non-polar	1	1LA w/ HCl				6/20/2023 9:20	1 day	6/22/2023	Present		
002A	E-001 Grab		Water	E1664A (HEM; Oi Clean-Up)	1 & Grease w/o S.G.	1	1LA w/ HCl			П	6/21/2023 9:35	1 day	6/22/2023	Present		
002B	E-001 Grab		Water	E1664A (SGT- HE Material)	M; Non-polar	1	1LA w/ HCl			П	6/21/2023 9:35	1 day	6/22/2023	Present		
002C	E-001 Grab		Water	E420.4 (Phenolics)		1	500mL aG w/ H2SO4			E	6/21/2023 9:35	1 day	6/22/2023	Present		
				SM4500-NH3 BG	(Ammonia Nitrogen)							1 day	6/22/2023	Present		
002D	E-001 Grab		Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH				6/21/2023 9:35	1 day	6/22/2023	Present		
003A	E-001 Comp		Water	SM5210B (BOD)		1	1L HDPE, unprsv	- [1]			6/21/2023 9:30	5 days	6/28/2023	None		
003B	E-001 Comp		Water	SM5220D (COD)		2	aVOA w/ H2SO4	Ū			6/21/2023 9:30	1 day	6/22/2023	None		
003C	E-001 Comp		Water	SM2540C (TDS)		1	500mL HDPE, unprsv.	Ц			6/21/2023 9:30	1 day	6/22/2023	None		
003D	E-001 Comp		Water	SM2540D (TSS)		1	1L HDPE, unprsv	· []]	Π		6/21/2023 9:30	1 day	6/22/2023	None		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

		bell Analyticc	al, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com											
			W	ORK ORI	DER SUM	MARY										
Client Name:PG&HClient Contact:Angel		ENERATING STATIO	ON	Project:	Q2 2023 Quar	terly Moni	toring				rder: 230 Level: LE					
Contact's Email: abe4@	⁹ pge.com			Comments	:					Date Lo	gged: 6/2	1/2023				
	Water	Trax CLIP	EDF	Exce	EQul	S 📑	imail	HardCopy	Third	Party	J					
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	U** Head Space	l Dry- e Weight	Collection Date & Time	ТАТ	Test Due Date	Sediment Content		Sub Out			
003E E-001 Comp	Water	E245.2 (Mercury)		1	250mL HDPE w/ HNO3		E	6/21/2023 9:30	1 day	6/22/2023	None	Ū				
003F E-001 Comp	Water	E200.8 (Metals) <arsenic Chromium, Copper, Iron, Molybdenum, Nickel, Sele Zinc></arsenic 	Lead,	1	250mL HDPE w/ HNO3			6/21/2023 9:30	1 day	6/22/2023	None					

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

_	-	I RI	JS	314																				2	_2	3	0	OFLELO
		Webs	ite: <u>w</u>		WILLOW ISBURG, C Iphell.com	V PAS: CA 945	S ROAD 565-1701 ail: main		amp	obeil	.con	1					TURN GeoTra		ND	TI	MI	E RU	USH 24] HR		48	П 8 НЕ	
				· · · · ·	2-9202							9				Ļ	Check if sample is effluent and "J" flag is required Analysis Request Remarks									d "J" flag is required		
	Report To	: Angel Es	piritu	1		8	Sill To: 1	PG&I	E Ga	atew	ay							Analysi	s Req	ue	st							Remarks
	Company	PG&E G	atewa	ay Genera	ting Stat	tion										$\left\{ \right.$	÷	Î.	_		6	,	лш,			Γ		
			BE4@pge.com, T1WY@pge.com, MSFG@pge.com 522-7838, (510) 861-1597 (Cell) Fax: ()									1	with lore 00 CI	eleniu mode	A) with	120.41	-SHN-1		chromi r, inc)									
		the second s					'ax: ()								-	e bef M 45	nd si tion	1664 I cle	V d d	Here a		silve and z			Į.		
	Project No	ame: Q2				ring										┨	etres ulfat by Si	nic a reac	SEPA lice o	SU		R	cadro ickel, iron,	Ê	â	Ę		a
	Sampler S					Sam	pling			C						1	(Pr thios ng)	Arse n by	ie (US		(245.	00.8 c cad, n num, i N 5214				Vecz 1 z co	2540	
		8	Composite b	SAMP				Ma	trix	ME	TH	od f	PRES	SER	VED		Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 CN- ABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (USEPA 1664A) with and with out silica vel clean up	Total Phenolics (USEPA 420.4)	The state of the second s	Mercury (245,2)	Metals (200.8 cadmium, chromium, copper, Yead, nickel, silver, Nolybdenum, iron, and zinc)	BOD (SM 5210B)	COD (SM 5220D)	TAL TAL	TES (SM 25401)	TSS (SM 2540D)
	SAMPLE ID	LOCATION / Field Point Name		Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H ₂ SO ₄	NaOH	HCL	HNOA	Uther												
-[E-001		G	6/20/23	09:20	2	IL Amb	Х			Х	Ť	T	х		T			Х	Γ	Γ					Γ	Γ	
-[E-001		Ġ	6/21/23		^	IL Amb	Х			Х			Х		Τ			Х							Γ		
4	E-001		G	6/21/23	1 1		500ml Amb	Х			Х	Х				Τ					¢ x					Ι	Γ	
-{	E-001		G	6/21/23			250-ml Poly	Х			X	2	Х			T	Х									Γ	Γ	
┥	E-001		C	6/21/23		1	1L Poly	Х		X	Х	Τ	Т		Т	T			ľ í	Γ	Γ			X		Г	Τ	
┨	E-001		С	6/21/23		2	43-ml VOA	Х			Х	X	Т	Т	Τ	T				Γ	Γ				X	Г	Г	
4	E-001			6/21/23			500-ml poly	Х		X	Х	T	Ť		T	T				Γ	Γ		· ·			Г	X	
_	E-001		0	6/21/23			1L poly	Х		Х	X		T			T				T						T	7	X
4	E-001			6/21/23			250-ml Poly	X	t	Н	X	╈	1		x	1				┢		x				T	T	
亻	E-001			6/21/23			250-ml poly	Х		Π	X	T	1	T	x	1		Х	Í	T	Γ		X	Γ		T	T	
[Τ					Ι					Γ					Ι	Τ	
		2						1	-			-				T	0	1.	-	6	1					Γ	Γ	
	Relinquished Relinquished Relinquished	i By:		Date: 6/21/77 Date: Date:	Time: / <u>0`.4</u> /5 Time: Time:	Rece	ived By:	L	1	24	1.	v?.	2	/			ICE/t [®] GOOD COI HEAD SPA DECHLOR APPROPRI PRESERVI	NDITION CE ABSE INATED IATE CON	NT IN LA	- ⁻ B_	;s			C	COM	IM	ENT	TS:
Į		· ~ ~ ~ ~		Date.	Angle.		area by:									l		ve	DAS	0&	۶G،	METALS	OTHER					Page 29 o

4

Sample	Rec	eipt (Checklist	
Client Name:PG&E Gateway Generating StationProject:Q2 2023 Quarterly Monitoring			Date and Time Received: Date Logged: Received by:	6/21/2023 10:45 6/21/2023 Agustina Venegas
/orkOrder №: 2306F66 Matrix: <u>Water</u> arrier: <u>Client Drop-In</u>			Logged by:	Adrianna Cardoza
Chain of	Custod	y (COC) li	nformation	
hain of custody present?	Yes	2	No 🔲	
hain of custody signed when relinquished and received?	Yes		No 🔲	
nain of custody agrees with sample labels?	Yes	2	No 🔲	
ample IDs noted by Client on COC?	Yes		No 🔲	
ate and Time of collection noted by Client on COC?	Yes		No 🔲	
ampler's name noted on COC?	Yes		No 🔲	
OC agrees with Quote?	Yes		No 🔲	NA 💽
Samı	ple Rec	eipt Infori	mation	
sustody seals intact on shipping container/cooler?	Yes		No 🔲	NA 💽
ustody seals intact on sample bottles?	Yes		No 🔲	
hipping container/cooler in good condition?	Yes		No 🔲	
amples in proper containers/bottles?	Yes	1	No 🔲	
ample containers intact?	Yes		No 🔲	
ufficient sample volume for indicated test?	Yes		No 🔲	
Sample Preservat	tion and	Hold Tin	ne (HT) Information	
Il samples received within holding time?	Yes		No 🔲	
Samples Received on Ice?	Yes		No 🔲	
(Ice Ty	pe: WE			
Sample/Temp Blank temperature		Temp:	2.1°C	
CHS conditional analyses: VOA meets zero headspace equirement (VOCs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA
Sample labels checked for correct preservation?	Yes		No 🔲	
oH acceptable upon receipt (Metal: <2; Nitrate 353.2/4500NO3: :2; 522: <4; 218.7: >8)?	Yes		No 🔲	
JCMR Samples:				
pH tested and acceptable upon receipt (200.7: ≤2; 533: 6 - 8; 537.1: 6 - 8)?	Yes		No	
Free Chlorine tested and acceptable upon receipt (<0.1mg/L) [not applicable to 200.7]?	Yes		No	

Comments:

E

Attachment 8b Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001) pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2306F77

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:	Sanjiv Gill
Project P.O.:	
Project:	pH Sampling (June 2023)

Project Received: 06/21/2023

Analytical Report reviewed & approved for release on 06/22/2023 by:

Susan Thompson Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.inccampbell.com/E-mail: main@inccampbell.com

Glossary of Terms & Qualifier Definitions

Project: CPT RSD RRT RPD 믿 RD 뭐 PDSD PDS R B ΝĂ MSD SM ≧ MDL MB ဉ SOT ITEF ERS Шр DUP PLT DISS 딖 95% Interval %D **Glossary Abbreviation Client:** SPKRef Val SPK Val MB % Rec DI WET pH Sampling (June 2023) PG&E Gateway Generating Station % Recovery of Surrogate in Method Blank, if applicable 95% Confident Interval Spike Reference Value Spike Value Relative Standard Deviation **Relative Retention Time** Relative Percent Difference Reporting limit ² **Relative Difference** Prep Factor Post Digestion Spike Duplicate Post Digestion Spike Data Not Reported due to matrix interference or insufficient sample amount. Not detected at or above the indicated MDL or RL Not Applicable Matrix Spike Duplicate Matrix Spike Minimum Level of Quantitation Method Detection Limit ¹ Method Blank Lowest Quantitation Level Laboratory Control Sample International Toxicity Equivalence Factor External reference sample. Second source calibration verification. Estimated Detection Limit Duplicate Dilution Test (Serial Dilution) Dissolved (direct analysis of 0.45 µm filtered and acidified water sample) (DISTLC) Waste Extraction Test using DI water Dilution Factor Consumer Product Testing not NELAP Accredited Serial Dilution Percent Difference WorkOrder: 2306F77

Part 136, Appendix B, EPA 821-R-16-006, December 2016 distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is SPLP ST

Sorbent Tube

Synthetic Precipitation Leachate Procedure

TCLP

Toxicity Characteristic Leachate Procedure

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.)

Glossary of Terms & Qualifier Definitions

Client:	PG&E Gateway	Generating Station
---------	--------------	--------------------

Project: pH Sampling (June 2023)

- TEQ Toxicity Equivalents
- TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.
- WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

H Sample was analyzed out of hold time

WorkOrder: 2306F77

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	06/21/2023 10:45
Date Prepared:	06/22/2023
Project:	pH Sampling (June 2023)

WorkOrder:	2306F77
Extraction Method:	SM4500H+B-2000
Analytical Method:	SM4500H+B
Unit:	pH units

pH					
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
E-001	2306F77-001A	Water	06/20/2023 09:25	WetChem	272239
Analytes	Result	Qualifiers	Accuracy DF		Date Analyzed
рН	8.94	Н	±0.05 1		06/22/2023 09:26

Analyst(s): JME

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:	PG&E Gateway Generating Station	WorkOrder:	2306F77
Date Prepared:	06/22/2023	BatchID:	272239
Date Analyzed:	06/22/2023	Extraction Method:	SM4500H+B-2000
Instrument:	WetChem	Analytical Method:	SM4500H+B
Matrix:	Water	Unit:	pH units
Project:	pH Sampling (June 2023)	Sample ID:	CCV-272239

QC Summary Report for pH

Analyte	CCV Result	CCV Limits
рН	7.00	6.9-7.1

McCampbell Analytica 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262	al, Inc.	CHAIN-OF-CUSTODY REC WorkOrder: 2306F77 ClientCode: P		e 1 of 1
(923) 232-9202	WaterTrax CLIP DEDF	EQuIS Dry-Weight Email Detection Summary Excel	HardCopy	J-flag
Report to:		Bill to:	Requested TAT:	1 day;
Sanjiv Gill	Email: sanjivgill@comcast.net	Angel Espiritu		
PG&E Gateway Generating Station 3225 Wilbur Avenue	cc/3rd Party: PO:	PG&E Gateway Generating Station 3225 Wilbur Avenue	Date Received:	06/21/2023
Antioch, CA 94509 (925) 459-7212 FAX:	Project: pH Sampling (June 2023)	Antioch, CA 94509	Date Logged:	06/21/2023
		Requested Tests (S	ee legend below)	
Lab ID ClientSa	mpID Matrix Collection Dat	e Hold 1 2 3 4 5 6	7 8 9 10	0 11 12
[2306F77-001] E-00 ⁷	1 Water 6/20/2023 09:2		1 1 1	्रोट गोट गो

Test Legend:

-
_

PRDisposal Fee	-
	_
	PRDisposal Fee

-	-	31
		71
-	ber 1	1
		1

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytico	Toll Free Telephone	ass Road, Pittsburg, CA 94565-1701 e: (877) 252-9262 / Fax: (925) 252-9269 bell.com / E-mail: main@mccampbell.com
18	WORK ORDER SUMMARY	
Client Name:PG&E GATEWAY GENERATING STATIOClient Contact:Sanjiv Gill	Project: pH Sampling (June 2023)	Work Order: 2306F77 QC Level: LEVEL 2
Contact's Email: sanjivgill@comcast.net	Comments:	Date Logged: 6/21/2023
WaterTrax CLIP	EDF Excel EQuIS Email	HardCopy ThirdParty
LabID ClientSampID Matrix Test Name	Containers Bottle & U** Head Dry- C /Composites Preservative Space Weight	Collection Date TAT Test Due Date Sediment Hold Sub & Time Content Out
001A E-001 Water SM4500H+B (Field pH)	0 <not received=""></not>	6/20/2023 9:25 1 day 6/22/2023

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

		B . A .	R		. 1																							. é	2	31	06F77
	McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PHTISBURG, CA 94565-1781								CHAIN OF CUSTODY RECORD TURN AROUND TIME X Q Q Q RUSH 24 HR 48 HR 72 HR 48 AY																						
Webelte: <u>www.accompleil.com</u> Enzit: main@mccampbell.com Telephone: (877) 252-9262 Faz: (925) 252-9269									G	Jeo'	Fra	ck	er 1	3D	F (PD Cb	F	Q.	35	ce	1 5	} 1	Wr	ite On (DW) 4 d "J" flag is required						
	Te: Senity				the second s	ill Te:	Mask	an I	v	x 10							-					yak.	Re	e.	t				_		Remarks
Compa	y: PG&E	Gete	Way Cer	maing S					-	-																					
					I	-Mailt	mit		i)co		sta	et																			
	6) 666-449)			-																			l		_
	Name: pl					202	<u> </u>			-	-										1										
	r Signature		Nust				m	ne	to		Sa.	l	4	Å		·	[I											•
		mposite	SAMP					trix	ME	TEC	id Pi	RESI				.										•					
SAMPLE ID	LOCATION /Field Point Name	kampie Type Co Acreb	Date	Time	# Containers	Type Containers	Waste Water	Server Water	None	ICR.	Nerth	RCI.		Zier Acetata	퍵																
E-001		G	6/2dz	09:25	NA	NA	x		R	T	T	T		Ħ	X	T	T			Ē	Γ								Ì	Π	Grab Time: 09:25 Austysis Time: 09:26
									Π	T	Γ	T	Γ	\square		Γ	Γ	T		Γ	Γ									Π	Temperature: 20.1 °C
									H	\top	T	T		\uparrow		\uparrow	T	\square			r									\square	
									\mathbf{H}	+	┢	+	\square	+	-			\uparrow												\square	
			i		1 1				T		T							Π													
				1											•																
		_								\bot						_					-										
							ļ		\square	╞	Ļ						ļ			ļ											
						ļ			\vdash	╋		+	-			╂		H		ļ	┡									Н	
									╞╡	\pm	┢	+	-	+		_	┝─	+			\vdash									$\left \cdot \right $	
	 					 	17	F	\mathbb{H}	+	⊬	╉━	┢─	+		┢─	+-	+			\vdash					\vdash				H	
Refinquistical By: Bellinquistical By: By: By: By: By: By: By: By:				- -	ICEN COMMENTS: GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB																										
Rollingvic	ked By:		Date:	Tinet	Rec	ived By:										ISSUE			ve		0	kG	ME		s (DTH	ER				

-

.

1

Logbook for Field pH Samples

Date/Time	Sample ID	Matrix	1 st Re	eading	2 nd R	eading	Ave	Standard	Comments	. Augluss
Date/ I ime	Sample ID	Matrix	pН	Temp.°c	pH	Temp.°c	pН	(lot #/exp. Date)	Comments	Analyst
6/20/23/08:57	Cal. pH # 7.00	L	7.00	19.8	7.00	19.8	7.00	kulk		
120/23/ 08:57	Cal pH # 4.00	L	4.01	19.8	4.00	19.8	4.00	bulk		*
120/23/08:57	Cal. pH # 10.00	L	10.00	19.8	10.00	19.8	10.00	bulk		
								' }		
								ŀ		
						Mcher	I A	yron L	Company	
							WHY	- Meteril		
						5	terial	# 622201	6	
							pH	on Cot 6	120/23	
			Lan					1-20	FI-P.	
					•		ß	begelt	etimo	- -
age 50 of 100								-00		

A DESCRIPTION OF

2306F77

Samj	ple Rec	eipt (Checklist	
Client Name: PG&E Gateway Generating Station Project: pH Sampling (June 2023) WorkOrder №: 2306F77 Matrix: Water Carrier: Client Drop-In			Date and Time Red Date Logged: Received by: Logged by:	ceived: 6/21/2023 10:45 6/21/2023 Agustina Venegas Valerie Alfaro
Cha	in of Custod	y (COC) Ir	nformation	
Chain of custody present?	Yes		Νο	
Chain of custody signed when relinquished and received?	Yes		No 🔲	
Chain of custody agrees with sample labels?	Yes		No 🔲	
Sample IDs noted by Client on COC?	Yes		No 🔲	
Date and Time of collection noted by Client on COC?	Yes		No 🔲	
Sampler's name noted on COC?	Yes		No 🔲	
COC agrees with Quote?	Yes		No 🔲	NA 🛃
	Sample Rec	eipt Inforr	nation	
Custody seals intact on shipping container/cooler?	Yes		No 🔲	NA 📄
Custody seals intact on sample bottles?	Yes		No 🔲	NA 🖃
Shipping container/cooler in good condition?	Yes	12	No 🔲	
Samples in proper containers/bottles?	Yes		No 🔲	
Sample containers intact?	Yes		No 🔲	
Sufficient sample volume for indicated test?	Yes		No 🔲	
Sample Pres	servation and	l Hold Tim	ne (HT) Information	
All samples received within holding time?	Yes	E	No 🔲	NA 🕞
Samples Received on Ice?	Yes		No 🖬	
		T		NA
Sample/Temp Blank temperature		Temp:	1.1	
ZHS conditional analyses: VOA meets zero headspace requirement (VOCs, TPHg/BTEX, RSK)?	Yes		No 🔲	
Sample labels checked for correct preservation?	Yes		No	
pH acceptable upon receipt (Metal: <2; Nitrate 353.2/4500N0 <2; 522: <4; 218.7: >8)?	O3: Yes	D.	No	NA
UCMR Samples:		200		
pH tested and acceptable upon receipt (200.7: ≤2; 533: 6 - 537.1: 6 - 8)?	·8; Yes		No 🔲	NA 💽
Free Chlorine tested and acceptable upon receipt (<0.1mg [not applicable to 200.7]?	ı/L) Yes		No	NA 🔛

Comments:

Attachment 9 Annual Flowmeter Calibration

Gateway Generating Station Annual Flowmeter Accuracy Test Name and Signature of Tester: Date of Test: (c/21/23)

Follow the testing procedure (per manufacturer's -YokogawaCorporation of America's recomemdation) below.

Flowmeter ID	Coil Resis	tance Check	Flow Tube Resistance Check					
	Reading (ohm/s)	Within +/- 10% (Y/N)?	Electrode A Reading (ohm/s)	Electrode A Reading (ohm/s)	Within 20% Difference (Y/N)?			
Industrial Wastewater Flowmeter Tag No. 8WWC-FM-X001 Model No. Yokogawa AXF-100C Coil Resistance Value: 113.4 ohms	110.91	yes	4.9 ml	6.10ml	Yes			
Sanitary Wastewater Flowmeter Tag No. 8WWB-FM-X001 Model No. Yokogawa AXF 650C Coil Resistance Value: 116.8 ohms	116.3-A	YLS	185 N.A	211 h.A	Yes			

Procedure for testing AXF integral flowtubes

1. Remove power from the flow meter. Remove the display side cover from the meter electronics housing.

2. Remove three retaining screws with a Phillips head screwdriver used to hold the amplifier assembly in place.

3. Remove the white plastic connector (CN5) attached to the left side of the amplifier assembly. The connector has 3 wires (red, white & blue). Remove the white plastic connector (CN3) attached to the right side of the amplifier assembly. The connector has 2 wires (purple & yellow).

12.2

4. Remove the amplifier assembly and store it in a safe place.

Checking the coil circuits

5. Locate 2 wire connector (CN3). Measure the excitation coil resistance between the yellow wire and purple wire of connector CN3. The measured resistance should correspond to the resistance value shown above in table 2 within +/- 10%.

6. Confirm that there is more than 20 MOHMS resistance between each wire to the meter electronics housing. If leakage is detected consult Yokogawa at 800-524-SERV.

Checking the flow tube when filled with conductive liquid

- 7. Make certain that the meter flow tube is full of liquid with greater than one micro-siemen conductivity.
- 8. Locate connector CN5 (3 wire connector). Measure the resistance between the red wire (A) and the blue wire (C) of CN5. Record the value.
- 9. Measure the resistance between the white wire (B) and the blue wire (C) of CN5. Record the value.

10. Compare resistance readings obtained in steps 8 and 9 above. If the readings are less than 20% apart the meter flow tube is not suspect. Proceed to the reassembly instructions (step 13). If readings are greater than 20% apart proceed to step 11.

Checking the flow tube when empty and dry

11. Drain the meter flow tube of all conductive liquid. Measure the resistance between each electrode in the meter flow tube to CN5 red (A) or white (B). The resistance will be less than 3 Ohms for general purpose meters or 150 K ohms for FM approved meters.

12. Repeat steps 8 and 9 above. The resistance should be infinite. Any leakage measured maybe due to buildup of conductive material between the electrode and the meter tube. Clean 13. Replace the amplifier assembly and meter electronics housing cover.

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509 (925)-522-7801

Ĩ.

October 10, 2023

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference: Pacific Gas and Electric Company - Gateway Generating Station DD Industrial Wastewater Discharge Permit Permit Number: 0208841-C

> Quarterly Self-Monitoring Report Diablo Industrial Wastewater Discharge Permit Number 0208841-C (For Period Ending September 30, 2023)

Dear Mr. Yun,

Subject:

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending September 30, 2023, as required under Delta Diablo Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, Monthly Flow, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 510-861-1597, or at <u>abe4@pge.com</u>. Thank you.

Sincerely,

TimWisdom

Tim Wisdom Senior Plant Manager

Attachment: a/s

OCT 11 2023

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report For the reporting period ending in September 30, 2023

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (Delta Diablo) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2027.

The report includes the following attachments:

Attachment 1:	Certification Statement
Attachment 2:	Industrial User Compliance Report
Attachment 3:	Industrial Monitoring Report Summary
Attachment 4:	Discharge Flow Data
Attachment 5:	Monthly Flow Data
Attachment 6:	WSAC Operating Hours Report
Attachment 7:	Cycles of Concentration
Attachment 8:	Laboratory Results
Attachment 9:	Annual Flowmeters Calibration

Attachment 1 Certification Statement

Certification Statement

Name of Business:	PG&E Gateway Generating Station
Address:	3225 Wilbur Avenue, Antioch, CA. 94509
Phone:	925-522-7805
Period Covered:	Period ending: September 30, 2023

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Date: Oct. 10, 2023 Tim Wisdom Signature:

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn:Jason YunPretreatmentFax # (925)756-1961Phone: (925)756-1929From:Tim WisdomCompany:Pacific Gas and Electric Company – Gateway Generating StationPeriod Covered:Period ending September 30, 2023

Industrial User Checklist for self –monitoring reports, as specified by the wastewater discharge permit issued by Delta Diablo:

Self-monitoring reports

- $\underline{\sqrt{}}$ Flow discharge summary (Discharge Permit Section E.1.h.) (See Attachment 4)
- Calibration of flow meters, as required. (Section E.1.g.)) (See Attachment 9)
- $\sqrt{}$ Monitoring results- <u>All</u> required tests completed, results reviewed, results included, QA/QC, chain of custody (section F.7.) (See Attachment 8)
- $\sqrt{}$ Certification statement included (See Attachment 1)

Violations (if applicable)

- _____ All wastewater discharge exceedance was reported during this reporting period
- ____ Delta Diablo was contacted. (See Additional Notes below)
- ____ A follow-up report on characterization re-sampling was submitted
- $\sqrt{}$ Corrective actions to resolve violation (See additional notes)
- Other violations i.e. Reporting, spills to sewer, or prohibited discharges

Additional Notes:

All corrective actions required under the Delta Diablo NOV letter dated 5/4/2023 was completed as of 7/21/2023. All relevant documentation was submitted to Delta Diablo in timely manner.

Significant changes

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station				ID #:	0208841-C				SIC:	4911
DDRESS:	3225 Wilbur Aven	ue		TYPE: Power Generation Plant						
ITY :	Antioch									
		DATE	9/11/2023	9/12/2023	9/12/2023	9/12/2023				
		TYPE	G	G	C24	C24				
		STATION	E-001	E-001	E-001	E-001				
		SMP.BY	Muskan	Muskan	Muskan	Muskan				
			Compliance	Compliance	Compliance	Compliance Semi-				
		PURPOSE	Quarterly (Q2)	Quarterly (Q3)	Quarterly (Q3)	annual (S-2)				
		Units:	mg/L							
ARAMETERS	, DAILY (gal)	LIMITS		1	1				1	
		51,120								
FLOW, I	MONTH (gal)	6.10	0.50			-				
	pH	6-10 s.u.	8.52							
	BOD				ND(<60.)					
	COD		()		34.0			_		
	TDS				342.0					
	TSS		<u></u>		22.8					
A	vrsenic	0.15			0.00055					
Ca	admium	0.1		P	ND(<0.00005)					
Ch	romium	0.5			0.00085					
с	Copper	0.5			0.0043					
	Iron				0.300	1				
	Lead	0.5			0.00025					
M	lercury	0.003			ND(<0.00013)					
Mol	ybdenum				0.019					
1	Nickel	0.5		· · · · · · · · · · · · · · · · · · ·	0.00160					
Se	elenium	0.25			0.00024					
	Silver	0.2	1		ND(<0.000051)					
	Zinc	1.00			0.160	10000				
C	yanide	0.2		0.004		2 m				
P	henol	1.00		ND(<0.0014)	· · · · · · · · · · · · · · · · · · ·	0				
Ar	nmonia	200		57						
O&G Petro/Mir	n (E1664A w/ Silica)	100	ND(<1.1)	ND(<1.1)	0					
O&G Anim	al/Vegetable Oil	300	ND(<2.5)	ND(<2.4)						
	EPA 608	1				ND (0.00001)				
TTO	EPA 624		1			0.0183				
TTO	EPA 625					0.0001906				
	TTO	2.00			10	0.0184906				
	Sulfide									
	Sulfate	1							1	

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

July 2023-September 2023

[Industria	l Flow		Sanitary Flow				
			Did it ever						
	Lasta 1	Time Over	go over			Time Meter	go over		c
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
2410	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(minutes)				(minutes)			
			mins?			-	mins?		
7/1/2023	34.5	0.0	NO	21,766	0.0	0	-		21,766
7/2/2023	34.7	0.0	NO	22,762	26.3	0	NO	382	23,144
7/3/2023	35.1	0.0	NO	22,176	0.0	0	NO		22,176
7/4/2023	34.5	0.0	NO	32,946	0.0	0	NO		32,946
7/5/2023	34.3	0.0	NO	11,851	25.9	0	NO	378	12,229
7/6/2023	34.8	0.0	NO	6,941	0.1	0	NO		6,941
7/7/2023	34.8	0.0	NO	21,607	0.0	0	NO		21,607
7/8/2023	34.8	1.0	NO	33,145	5.2	2	NO		33,145
7/9/2023	34.6	0.0	NO	21,941	0.0	0	NO		21,941
7/10/2023	34.9	0.0	NO	34,150	0.0	0	NO		34,150
7/11/2023	34.6	0.0	NO	35,881	25.8	0	NO	380	36,260
7/12/2023	34.9	0.0	NO	39,086	0.0	0	NO	000	39,086
7/13/2023	36.1	0.0	NO	48,629	26.5	0	NO	358	48,987
7/14/2023	34.5	0.0	NO	49,029	20.3	-	NO	550	49,018
7/14/2023	34.5	0.0	NO	27,060	0.0	0	NO	├	27,060
								070	
7/16/2023	35.0	0.0	NO	15,980	26.7	0	NO	378	16,358
7/17/2023	34.8	0.0	NO	37,438	0.0	0	NO		37,438
7/18/2023	34.5	0.0	NO	46,337	25.9	0	NO	367	46,704
7/19/2023	34.6	2.0	NO	38,671	0.0	2	NO		38,671
7/20/2023	34.5	0.0	NO	28,525	26.1	0	NO	370	28,895
7/21/2023	34.5	2.0	NO	39,168	0.0	2	NO		39,168
7/22/2023	34.6	9.0	NO	48,724	0.0	9	NO		48,724
7/23/2023	34.8	2.0	NO	35,762	0.0	2	NO		35,762
7/24/2023	34.8	1.0	NO	34,931	26.5	1	NO	387	35,317
7/25/2023	34.6	1.0	NO	26,508	26.9	1	NO	382	26,890
7/26/2023	34.6	26.0	NO	13,953	0.0	26	NO		13,953
7/27/2023	34.6	2.0	NO	22,592	25.9	2	NO	387	22,979
7/28/2023	34.6	22.0	NO	5,822	0.0	22	NO		5,822
7/29/2023	34.6	0.0	NO	14,494	0.0	0	NO		14,494
7/30/2023	34.9	2.0	NO	6,728	0.1	2	NO		6,728
7/31/2023	34.6	0.0	NO	28,208	26.1	0	NO	372	28,579
1/01/2020	01.0	0.0	110	20,200	20.1	-		nit: 51,120):	49,018
						NIUX D	•	onthly Total:	876,938
8/1/2023	24.5	0.0	NO	25 119	0.0	0	NO		
0/0/0000	34.5	0.0		25,118	07.0	0		-	25,118
8/2/2023	34.7	0.0	NO	22,037	27.0			393	22,430
8/3/2023	34.5	0.0	NO	22,804	24.7	0	NO	382	23,186
8/4/2023	34.7	0.0	NO	14,567	0.1	0	NO	-	14,567
8/5/2023	34.7	0.0	NO	31,066	25.5			403	31,469
8/6/2023	34.5	0.0	NO	35,320	0.1	-	NO	-	35,320
8/7/2023	34.5	0.0	NO	21,960	0.0			-	21,960
8/8/2023	-0.4	0.0	NO		24.6		NO	367	367
8/9/2023	34.6	0.0	NO	37,344	23.3		NO	371	37,715
8/10/2023	34.4	0.0	NO	37,828	0.0			-	37,828
8/11/2023	34.6	0.0	NO	38,947	26.2		NO	381	39,329
8/12/2023	34.7	0.0	NO	34,104	0.0	0	NO	-	34,104
8/13/2023	34.5	0.0	NO	41,808	0.0	0	NO	-	41,808
8/14/2023	34.8	0.0	NO	26,582	0.0		NO	-	26,582
8/15/2023	34.8	0.0	NO	25,669	26.2	0	NO	384	26,054
8/16/2023	34.7	0.0	NO	26,445	0.0		NO	_	26,445
8/17/2023	34.8	0.0	NO	24,527	26.8			364	24,891
8/18/2023	34.5	0.0	NO	19,985	0.0				19,985
8/19/2023	34.8	0.0	NO	16,780	26.6		NO	361	17,141
8/20/2023	34.0		NO	19,824	0.1		-		19,824
8/20/2023	34.9		NO	34,657	0.1				34,657
0/21/2023	34.8	0.0		34,007	Public 0.0	U 0		-	34,007

PG&E Gateway Generating Station

Discharge Flow Data

July 2023-September 2023

[Industria	l Flow						
			Did it ever				Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
8/22/2023	34.6	0.0	NO	24,155	26.5	0	NO	368	24,523
8/23/2023	34.8	0.0	NO	30,616	24.7	0	NO	363	30,979
8/24/2023	34.7	0.0	NO	28,743	0.0	0	NO	-	28,743
8/25/2023	34.6	0.0	NO	17,827	26.2	0	NO	414	18,241
8/26/2023	0.0	0.0	NO	35,700	0.0	0	NO	-	35,700
8/27/2023	34.4	0.0	NO	49,005	0.0	0	NO	-	49,005
8/28/2023	34.5	0.0	NO	48,379	24.5	0	NO	374	48,753
8/29/2023	34.5	0.0	NO	49,013	0.0	0	NO	-	49,013
8/30/2023	34.5	0.0	NO	48,602	26.1	0	NO	390	48,992
8/31/2023	34.6	0.0	NO	40,248	0.0	0	NO	-	40,248
						Max D	aily Flow (Lir	nit: 51,120):	49,013
								onthly Total:	934,977
9/1/2023	34.8	0.0	NO	28,681	26.5	0	NO	406	29,087
9/2/2023	34.8	0.0	NO	23,028	0.0	0	NO	-	23,028
9/3/2023	34.5	0.0	NO	49,031	0.0	0	NO	-	49,031
9/4/2023	34.5	0.0	NO	42,944	0.0	0	NO	-	42,944
9/5/2023	34.5	0.0	NO	48,603	25.0	0	NO	402	49,005
9/6/2023	34.5	0.0	NO	49,007	0.0	0	NO	-	49,007
9/7/2023	34.5	0.0	NO	25,523	26.5	0	NO	415	25,938
9/8/2023	34.7	0.0	NO	22,432	0.0	0	NO	-	22,432
9/9/2023	34.6	0.0	NO	23,088	0.0	0	NO	-	23,088
9/10/2023	34.8	0.0	NO	14,826	26.7	0	NO	400	15,226
9/11/2023	34.8	0.0	NO	37,629	0.0	0	NO	-	37,629
9/12/2023	34.5	0.0	NO	48,604	26.1	0	NO	408	49,012
9/13/2023	34.8	0.0	NO	34,894	0.0	0	NO	-	34,894
9/14/2023	34.6	0.0	NO	15,033	25.8	0	NO	399	15,432
9/15/2023	34.6	0.0	NO	27,539	0.0		NO	-	27,539
9/16/2023	34.8	0.0	NO	33,302	0.0	0	NO	-	33,302
9/17/2023	34.8	0.0	NO	35,980	0.0	0	NO	-	35,980
9/18/2023	34.5	0.0	NO	18,771	25.9	0	NO	400	19,171
9/19/2023	34.6	0.0	NO	13,090	0.0	0	NO	-	13,090
9/20/2023	34.4	0.0	NO	38,397	0.0	0	NO		38,397
9/21/2023	34.7	0.0	NO	29,691	25.9	0	NO	406	30,097
9/22/2023	34.5	0.0	NO	30,523	0.0	0	NO		30,523
9/23/2023	34.8	0.0	NO	16,896	0.0		NO		16,896
9/24/2023	34.8	0.0	NO	45,679	25.8		NO	400	46,079
9/25/2023	34.5	0.0	NO	37,204	0.0		NO		37,204
9/26/2023	34.6	0.0	NO	23,513	26.6		NO	394	23,907
9/27/2023	34.3	0.0	NO	11,503	0.0		NO	404	11,503
9/28/2023	34.6	0.0	NO	31,996	26.1	0	NO	404	32,400
9/29/2023	34.5	0.0	NO	41,838	0.0		NO		41,838
9/30/2023	34.9	0.0	NO	21,991	0.0		NO	nit: 51.120):	21,991 49,031

49,031 Max Daily Flow (Limit: 51,120): 925,670

Monthly Total:

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name:	PG&E Gateway Generating Station	
Address:	3225 Wilbur Avenue, Antioch, CA 94	1509
City:	Antioch	
Contact Name:	Tim Wisdom	
Flow Meter:	Sewer Final Effluent	City Water Meter
	(The data are based on flowmeter r	eadings as recorded by the plant's "Pi Historian" data
	acquisition/handling system)	

Year:

2023

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July	876,938	10/15/2023
August	934,977	10/15/2023
September	925,670	10/15/2023
October		
November		
December		

Note:

1) Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

2) The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

Attachment 6 WSAC Operating Hours Report

WSAC Operating Hours Report July 2023 - September 2023

	WSAC Operation
Month	
January-23	
February-23	
March-23	
April-23	
May-23	
June-23	
July-23	424.08
August-23	460.50
September-23	241.43
October-23	
November-23	
December-23	

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report July 2023 - September 2023

	WSAC Operation						
Month	Average Daily Blowdown Cycles						
January-23							
February-23							
March-23							
April-23							
May-23							
June-23							
July-23	5.21						
August-23	3.85						
September-23	3.48						
October-23							
November-23							
December-23							

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8 Laboratory Results Monitoring of Combined Site Stream (E-001) Attachment 8a Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2309634

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Project P.O.: Project:

Angel Espiritu

Quarterly Sampling (September 2023)

Project Received: 09/12/2023

Analytical Report reviewed & approved for release on 09/21/2023 by:

Christine Askari **Project Manager**

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

WorkOrder: 2309634

Project: Quarterly Sampling (September 2023)

Glossary Abb	reviation
%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
CPT	Consumer Product Testing not NELAP Accredited
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μ m filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LCS2	Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit ¹
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit ²
RPD	Relative Percent Difference
RRT	Relative Retention Time
RSD	Relative Standard Deviation
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

WorkOrder: 2309634

Project: Quarterly Sampling (September 2023)

TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
TNTC	"Too Numerous to Count;" greater than 250 colonies observed on the plate.
TZA	TimeZone Net Adjustment for sample collected outside of MAI's UTC.
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

 J
 Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

 i5
 The sample dilutions set up for the BOD analysis did not meet the oxygen depletion criterion of at least 2 mg/l, therefore the reported result is an estimated value only.

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	09/12/2023 13:45
Date Prepared:	09/18/2023
Project:	Quarterly Sampling (September 2023)

WorkOrder:	2309634
Extraction Method:	E1664A_SG
Analytical Method:	E1664A
Unit:	mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2309634-001B	Water	09/11/202	3 10:40	O&G	278210
Analytes	Result	MDL	RL	DF	-	Date Analyzed
SGT-HEM	ND	1.1	4.8	1		09/18/2023 10:10

Analyst(s): LAM

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2309634-002B	Water	09/12/202	3 11:35	O&G	278210
Analytes	Result	MDL	RL	DF		Date Analyzed
SGT-HEM	ND	1.1	4.8	1		09/18/2023 10:20

Analyst(s): LAM

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	09/12/2023 13:45
Date Prepared:	09/18/2023
Project:	Quarterly Sampling (September 2023)

WorkOrder:	2309634
Extraction Method:	E1664A
Analytical Method:	E1664A
Unit:	mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 Grab	2309634-001A	Water	09/11/202	3 10:40	O&G	278210
Analytes	Result	MDL	RL	DF	-	Date Analyzed
HEM	ND	2.5	5.0	1		09/18/2023 10:05

Analyst(s): LAM

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001 Grab	2309634-002A	Water	09/12/202	3 11:35	O&G	278210
Analytes	Result	MDL	RL	DF		Date Analyzed
HEM	ND	2.4	4.8	1		09/18/2023 10:15

Analyst(s): LAM

McCampbell Analytical, Inc. "When Ouality Counts" Analy	tical R	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 ttp://www.mccampbell.com / E-mail: main@mccampbell.com
---	---------	--

4 5

Client:	PG&E Gateway Generating Station
Date Received:	Date Received: 09/12/2023 13:45
Date Prepared: 09/14/2023	09/14/2023
Project:	Quarterly Sampling (September 2023)

WorkOrder:2309634Extraction Method:SM4500-NH3 BGAnalytical Method:SM4500-NH3 BG mg/L Unit:

		Ammonia as N	SN			1
Client ID	Lab ID	Matrix	Date Collected	llected	Instrument	Batch ID
E-001 Grab	2309634-002C Water	Water	09/12/2023 11:35	23 11:35	WC_SKALAR 230914E1_39 278059	278059
Analytes	Result	WDL	ᆈ	Ы	Date	Date Analyzed
Ammonia, total as N	57	1.9	2.0	20	09/1	09/14/2023 20:00

Analyst(s): IGC

McCampbel	pbell Analytical, Inc. ^{When Ouality Counts} " Analy	tical F	Toll Free Telep http://www.mcca	w Pass Road, Pit hone: (877) 252- ampbell.com / E-	1534 Willow Pass Road, Pitsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com Report	6 mi
Client:PG&E Gateway GDate Received:09/12/2023 13:45Date Prepared:09/13/2023Project:Quarterly Samplin	PG&E Gateway Generating Station 09/12/2023 13:45 09/13/2023 Quarterly Sampling (September 2023)		WorkOrder: Extraction M Analytical M Unit:	WorkOrder: 2309634 Extraction Method: SM5210B Analytical Method: SM5210 E Unit: mg/L	WorkOrder: 2309634 Extraction Method: SM5210B Analytical Method: SM5210 B Unit: mg/L	
	Biochemic	Biochemical Oxygen Demand (BOD)	emand (]	80D)		ľ
Client ID	Lab ID	Matrix	Date Collected	lected	Instrument	Batch ID
E-001 Comp	2309634-003A	Water	09/12/2023 11:15	3 11:15	WetChem	277887
Analytes BOD	Result ND	60 MDL	09 고	30 EF		Date Analyzed 09/18/2023 16:09
Analyst(s): MGO		٩	Analytical Comments: i5	mments: i5		

McCampbell Analytical, Inc. "When Ouality Counts" Analytical F		"When Ouality Counts" http://www.mccampbell.com/E-mail: main@mccampbell.com	Analytical Report
--	--	---	-------------------

Client:PG&E Gateway Generating StationDate Received:09/12/2023 13:45Date Prepared:09/14/2023Project:Quarterly Sampling (September 2023)

WorkOrder:2309634Extraction Method:SM4500-CN^ EAnalytical Method:SM4500-CN^ CEUnit:µg/L

		Cyanide, Total	otal			1
Client ID	Lab ID	Matrix	Date Collected	ollected	Instrument	Batch ID
E-001 Grab	2309634-002D Water	Water	09/12/2023 11:35	23 11:35	WC_Skalar3 230914A0_36	278005
<u>Analytes</u>	Result	MDL	ᆈ	비	Date	Date Analyzed
Total Cyanide	4.0	0.62	1.0	F	09/1	09/14/2023 12:08

Analyst(s): CC

McCampbell Analytical, Inc.	"When Ouality Counts"
	Ż

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:09/12/2023 13:45Date Prepared:09/15/2023Project:Quarterly Sampling (September 2023)

WorkOrder:2309634Extraction Method:SM5220 DAnalytical Method:SM5220 D-1997Unit:mg/L

	Chemical Oxygen Demand (COD) as mg O2 /L	en Demand (COD) as	mg 02 /	L	1
Client ID	Lab ID Matrix		Date Collected		Instrument	Batch ID
E-001 Comp	2309634-003B Water	Water	09/12/2023 11:15	3 11:15	SPECTROPHOTOMETER2	278167
Analytes	Result	WDL	R	비	Date	Date Analyzed
COD	34	8.2	10	+	09/1	09/15/2023 18:17

Analyst(s): IGC

McCampbell Analytical, Inc.	"When Quality Counts"
	Ì

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	Date Received: 09/12/2023 13:45
Date Prepared: 09/12/2023	09/12/2023
Project:	Quarterly Sampling (September 2023)

WorkOrder:2309634Extraction Method:E245.2Analytical Method:E245.2Unit:μg/L

	Mercury by Cold Vapor Atomic Absorption	old Vapor A	tomic Ab	sorption		
Client ID	Lab ID	Matrix	Date Collected	ected	Instrument	Batch ID
E-001 Comp	2309634-003E Water	Water	09/12/2023 11:15	11:15	AA1 _03	277735
Analytes	Result	MDL	R	비		Date Analyzed
Mercury	QN	0.13	0.20	-		09/18/2023 14:11

Analyst(s): DMA

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	09/12/2023 13:45
Date Prepared:	09/12/2023
Project:	Quarterly Sampling (September 2023)

WorkOrder:	2309634
Extraction Method:	E200.8
Analytical Method:	E200.8
Unit:	μg/L

		Me	etals				
Client ID	Lab ID	Matrix	_	Date Colle	ected	Instrument	Batch ID
E-001 Comp	2309634-003F	Water		09/12/2023	11:15	ICP-MS4 165SMPL.d	277731
Analytes	Result	Qualifiers	MDL	RL	DF		Date Analyzed
Arsenic	0.55		0.071	0.50	1		09/13/2023 14:26
Cadmium	ND		0.050	0.50	1		09/13/2023 14:26
Chromium	0.85		0.26	0.50	1		09/13/2023 14:26
Copper	4.3		0.63	1.5	1		09/13/2023 14:26
Iron	300		22	50	1		09/13/2023 14:26
Lead	0.25	J	0.19	0.50	1		09/13/2023 14:26
Molybdenum	19		0.14	0.50	1		09/13/2023 14:26
Nickel	1.6		0.33	0.50	1		09/13/2023 14:26
Selenium	0.24	J	0.18	0.50	1		09/13/2023 14:26
Silver	ND		0.051	0.50	1		09/13/2023 14:26
Zinc	160		11	20	1		09/13/2023 14:26
Surrogates	REC (%)			Limits			
Terbium	107			70-130			09/13/2023 14:26
Analyst(s): WV							

- McCampbell Analytical, Inc. "When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:09/12/2023 13:45Date Prepared:09/21/2023Project:Quarterly Sampling (September 2023)

WorkOrder:2309634Extraction Method:E420.4Analytical Method:E420.4Unit:μg/L

		Phenolics				1
Client ID	Lab ID	Matrix	Date Co	llected	Date Collected Instrument	Batch ID
E-001 Grab	2309634-002C Water	Water	09/12/2023 11:35	23 11:35	WC_SKALAR 230921B1_14 278499	278499
Analytes	Result	WDL	Ъ	비	Date	Date Analyzed
Phenolics	QN	1.4	2.0	-	09/21	09/21/2023 11:59

Analyst(s): CC

	"When Quality Counts"	uts''			:ampbell.com / E-r	нцр.//www.писсанроеп.сон / Б-нан. паль © посанроеп.сон	Ξ
		Ana	Analytical Report	Report	ц		
Client: PG&E Gate Date Received: 09/12/2023 Date Prepared: 09/15/2023	Client: PG&E Gateway Generating Station Date Received: 09/12/2023 13:45 Date Prepared: 09/15/2023	ig Station		WorkOrder: Extraction M Analytical M	WorkOrder:2309634Extraction Method:SM2540 C-Analytical Method:SM2540 CTratemonth	WorkOrder:2309634Extraction Method:SM2540 C-1997Analytical Method:SM2540 CTrait.month	
r ndect:	(coor routed to september 2022) T_0		Total Dissolved Solids	1 Solids		mg/L	1
Client ID	La	Lab ID	Matrix	Date Collected	llected	Instrument	Batch ID
E-001 Comp	23	2309634-003C	Water	09/12/2023 11:15	3 11:15	WetChem	278166
Analytes Total Dissolved Solids	<u>а</u>	sult 342	10.0	<u>RL</u> 10.0	비		<u>Date Analyzed</u> 09/19/2023 14:03
Analyst(s): JME							

r

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 552-9262/ Fax: (925) 252-9269 http://www.mccampbell.com/E-mail: main@mccampbell.com		:: 2309634 Method: SM2540 D-1997 Method: SM2540 D mg/L		cted Instrument Batch ID	1:15 WetChem 278212	DF Date Analyzed 1 09/18/2023 15:20	
1	Analytical Report	WorkOrder: Extraction Method: Analytical Method: Unit:	Total Suspended Solids	Matrix Date Collected	Water 09/12/2023 11:15	<u>MDL RL</u> 1.00 1.00	
McCampbell Analytical, Inc. "When Ouality Counts"	Anal	PG&E Gateway Generating Station 09/12/2023 13:45 09/18/2023 Quarterly Sampling (September 2023)	Total	Lab ID N	2309634-003D W	Result 22.8	
McCamp		Client:PG&E Gateway CDate Received:09/12/2023 13:45Date Prepared:09/18/2023Project:Quarterly Samplir		Client ID	E-001 Comp	Analytes Total Suspended Solids	Analyst(s): JRA

WC	McCampbell Analytical, Inc.	15 Toll Fi http://w	34 Willow Pass R ee Telephone: (8 ww.mccampbell.c	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	565-1701 25) 252-9269 ccampbell.com	
	Quality Control Report	Control F	Report			
Client:	PG&E Gateway Generating Station	Wo	WorkOrder:	2309634		
Date Prepared: 09/18/2023	09/18/2023	Bat	BatchID:	278210		
Date Analyzed: 09/18/2023	09/18/2023	Ext	raction Met	Extraction Method: E1664A_SG	SG	
Instrument:	O&G	Anŝ	lytical Met	Analytical Method: E1664A		
Matrix:	Water	Unit:	t:	mg/L		
Project:	Quarterly Sampling (September 2023)	San	Sample ID:	MB/LCS	MB/LCS/LCSD-278210	
	QC Summary Report for E1664A	y Report for	E1664A			
Analyte	MB Result	MDL	RL			
HEM	QN	2.5	5.0	.		
SGT-HEM	Q	1.1	5.0			
And the second sec						
Analyte	LCS LCSD Result Result	ult Val		REC %REC	LCS/LCSU RPU Limits	Limit

30 30

16.1 8.60

78-114 64-132

96 85

82 78

20.83 10.42

20 8.8

17

HEM SGT-HEM CA ELAP 1644 • NELAP 40330RELAP

	"When Quality Counts"	http://www.mccampbell.com/E-mail: main@mccampbell.com		nall: main@mcc	ampbell.com		
	Quality (Quality Control Report	eport				
Client:	PG&E Gateway Generating Station	Work	WorkOrder:	2309634			
Date Prepared: 09/14/2023	09/14/2023	BatchID:	D:	278059			
Date Analyzed: 09/14/2023	09/14/2023	Extra	Extraction Method: SM4500-NH3 BG	SM4500-N	(H3 BG		
Instrument:	WC_SKALAR	Analy	Analytical Method: SM4500-NH3 BG	SM4500-N	VH3 BG		
Matrix:	Water	Unit:		mg/L			
Project:	Quarterly Sampling (September 2023)	Samp	Sample ID:	MB/LCS/I	MB/LCS/LCSD-278059	-	
	CINT-00C-ING INI HODAY & DIMINING A		CTTVI-00C				
Analyte	MB Result	MDL	RL				
Ammonia, total as N	QN	0.095	0.10		ı		
Analyte	LCS LC Result Res	LCSD SPK Result Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD	RPD Limit
Ammonia, total as N	N 3.9 3.7	4	97	93	88-113 4	4.06	20

CA ELAP 1644 • NELAP 40330RELAP

Page 16 of 29

1534 Willow Pass Road, Pitsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	urt	WorkOrder:2309634BatchID:277887Extraction Method:SM5210BAnalytical Method:SM5210 B	mg/L MB/LCS/LCSD-277887	0			LCS LCSD LCS/LCSD RPD %REC %REC Limits Limit
1534 Willow Toll Free Telepho http://www.mccarr	ol Repo	WorkOrder: BatchID: Extraction M Analytical M	Unit: Sample ID:	ort for BOI	MDL RL	2.0 2.0	SPK Val
j.	Quality Control Report			QC Summary Report for BOD			LCSD SPI Result Val
McCampbell Analytical, Inc. "When Quality Counts"	Quality	PG&E Gateway Generating Station 09/13/2023 09/18/2023 WetChem	Water Quarterly Sampling (September 2023)	QC Sun	MB Result	Q	LCS Result
Mc		Client:PG&E GateDate Prepared:09/13/2023Date Analyzed:09/18/2023Instrument:WetChem			Analyte	BOD	Analyte

CA ELAP 1644 • NELAP 40330RELAP

Page 17 of 29

	"When Quality Counts"			x x x x	1
	Quality Co	Quality Control Report			
Client: PG&E Gate Date Prepared: 09/14/2023	PG&E Gateway Generating Station 09/14/2023	WorkOrder: BatchID:	2309634 278005		
Date Analyzed: 09/14/2023	09/14/2023	Extraction M		N' E	
Instrument:	WC_Skalar3	Analytical Method:		IN- CE	
Matrix:	Water	Unit:	µg/L		
Project:	Quarterly Sampling (September 2023)	Sample ID:	MB/LCS/	MB/LCS/LCSD-278005	
	QC Summary Report for SM4500-CN ⁻ CE	ort for SM4500-CN	- CE		
Analyte	MB Result	MDL RL			
Total Cyanide	QN	0.62 1.0			
Analyte	LCS LCSD Result Result	SPK SPK	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
Total Cyanide	50 49	50	100 97	90-110 2.41	20

CA ELAP 1644 • NELAP 40330RELAP

Cllent: Date Prenared [.]			rt	bitp://www.mccampbell.com/E-mail: main@mccampbell.com ol Report	
Date Analyzed: 09/15/2023	Cuent: POXE Gateway Generating Station Date Prepared: 09/15/2023 Date Analyzed: 09/15/2023	WORKUTGET: BatchID: Extraction M	WORKUTGET: 2309034 BatchID: 278167 Extraction Method: SM5220 D		
Instrument: Matrix:	SPECTROPHOTOMETER2 Water	Analytical I Unit:	Analytical Method: SM5220 D-1997 Unit: mg/L	-1997	
	QC Summar	QC Summary Report for COD			
Analyte	MB Result	MDL RL			
COD	Q	8.2 10		·	
Analyte	LCS LCSD Result Result	D SPK ult Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
000		000			

					1
	Quality Control Report	ontrol Kepor			
Client: PG&E Gate Date Prepared: 09/12/2023	PG&E Gateway Generating Station 09/12/2023	WorkOrder: BatchID:	2309634 277735		
Date Analyzed: 09/13/2023	09/13/2023	Extraction M	Extraction Method: E245.2		
Instrument:	AA1	Analytical Me	Analytical Method: E245.2		
Matrix:	Water	Unit:	µg/L		
Project:	Quarterly Sampling (September 2023)	Sample ID:	MB/LCS/	MB/LCS/LCSD-277735	
	QC Summary	QC Summary Report for Mercury			
Analyte	MB Result	MDL RL			
Mercury	Q	0.13 0.20			
Analyte	LCS LCSD Result Result	o SPK It Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD
Mercury	8.1	2	92 88	85-115 4 40	20

CA ELAP 1644 • NELAP 40330RELAP

Page 20 of 29

WC	McCampbell Analytical, Inc. "When Quality Counts"	1534 Willow Pass Roat Toll Free Telephone: (877) http://www.mccampbell.com	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com
	Quality C	Quality Control Report	
Client:	PG&E Gateway Generating Station	WorkOrder:	2309634
Date Prepared: 09/12/2023	09/12/2023	BatchID:	277731

Client:PG&E Gateway Generating StationDate Prepared:09/12/2023Date Analyzed:09/13/2023Instrument:ICP-MS6Matrix:WaterProject:Quarterly Sampling (September 2023)

WorkOrder:2309634BatchID:277731Extraction Method:E200.8Analytical Method:E200.8Unit:μg/LSample ID:MB/LCS/L0

нg/L MB/LCS/LCSD-277731

	nc JU	mmary K	QC Summary Report for Metals	Metals					
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC	Ľ	MB SS Limits
Arsenic	QN		0.071	0.50		.			Ľ.
Cadmium	QN		0.050	0.50				1	
Chromium	QN		0.26	0.50				1	
Copper	QN		0.63	1.5				1	
Iron	QN		22	50				1	
Lead	QN		0.19	0.50				1	
Molybdenum	QN		0.14	0.50					
Nickel	QN		0.33	0.50				1	
Selenium	QN		0.18	0.50					
Silver	QN		0.051	0.50					
Zinc	Ŋ		11	20					
Surrogate Recovery Terbium	510					500	103	UZ	70-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	52	52	50		104	104	85-115	0.391	20
Cadmium	52	51	50		103	103	85-115	0.573	20
Chromium	51	50	50		101	100	85-115	1.23	20
Copper	52	52	50		103	104	85-115	0.302	20
Iron	5100	4900	5000		102	66	85-115	3.01	20
Lead	50	51	50		101	102	85-115	0.929	20
Molybdenum	50	49	50		100	98	85-115	1.36	20
Nickel	52	51	50		103	103	85-115	0.652	20
Selenium	53	53	50		105	107	85-115	1.21	20
Silver	52	52	50		104	104	85-115	0.334	20
Zinc	520	530	500		105	105	85-115	0.370	20

20

1.51

70-130

103

104

500

510

520

Terbium

1	"When Quality Counts" Quality	As in the second	y Cor	http://www.mccampbell.com/E-mail: main@mccampbell.con itrol Report	http://www.mccampbell.com / E-mail: main@mccampbell.com ol Report	.com/E-mai	l: main@mcca	mpbell.com		
Client: P Date Prepared: 0 Date Analyzed: 0 Instrument: V Matrix: V Project: 0	PG&E Gateway Generating Station 09/21/2023 09/21/2023 WC_SKALAR Water Quarterly Sampling (September 2023)	g Station mber 2023)		Work Batch Extra Analy Unit: Samp	WorkOrder:230963BatchID:278499Extraction Method:E420.4Analytical Method:E420.4Unit:µg/LSample ID:230963	thod: thod:	2309634 278499 E420.4 E420.4 µg/L MB/LCS/L 2309634-0	2309634 278499 E420.4 E420.4 μg/L MB/LCS/LCSD-278499 2309634-002CMS/MSD	66 CI	
		QC Sun	QC Summary Report for E420.4	eport fo	r E420.4					
Analyte		MB Result		MDL	RL					111
Phenolics		Q		1.4	2.0					
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics		40	41	4		6	101	80-120	1.73	5
Analyte	MS	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Phenolics	-	4	40	40	QN	102	6 6	70-130	2.51	30

CA ELAP 1644 • NELAP 40330RELAP

Page 22 of 29

	"When Quality Counts"				1
	Quality C	Quality Control Report	ort		
Client:	PG&E Gateway Generating Station	WorkOrder:	ler: 2309634		
Date Analyzed: 09/19/2023	09/19/2023 09/19/2023	Extractio	Extraction Method: SM2540 C-1997	C-1997	
Instrument:	WetChem	Analytica	Analytical Method: SM2540 C	۲)	
Matrix:	Water	Unit:	mg/L		
Project:	Quarterly Sampling (September 2023)	Sample ID:		MB/LCS/LCSD-278166	
Analyte	MB	MDL RL			
Total Dissolved Solids	Result	10.0	100		1
			2		
Analyte	LCS LCSD Result Result	SD SPK sult Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
otal Dissolved So	lids 998 1020	0 1000	100 102	80-120 1.79	10
Total Dissolved Solids	800				102 80-120

CA ELAP 1644 • NELAP 40330RELAP

"When Ouality Counts"	"When Ouality Counts"			пцр://www.mccampoen.com/ ь-тан: татетсатроеп.com	1
Quality	Cont	rol Repor	÷		
PG&E Gateway Generating Station 09/18/2023		WorkOrder: BatchID:	2309634 278212		
Date Analyzed: 09/18/2023		Extraction M	lethod: SM2540	D-1997	
WetChem		Analytical M	ethod: SM2540	D	
Water		Unit:	mg/L		
Quarterly Sampling (September 2023)		Sample ID:	MB/LCS	/LCSD-278212	
QC Summary Rep	port for 1	otal Suspende	d Solids		
MB Result		MDL RL			
Total Suspended Solids		1.00 1.00			
LCS L Result F		SPK Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD
Total Suspended Solids 110 1		100	110 114	80-120 3.57	10
	&E Gateway C 18/2023 18/2023 tChem ter urterly Samplir	&E Gateway C 18/2023 18/2023 tChem ter urterly Samplir	Relation Quality Control & E Gateway Generating Station 18/2023 18/2023 18/2023 18/2023 18/2023 18/2023 18/2023 18/2023 18/2023 18/2023 10 18/2023 10 10 ND 10 ND 10 10 110 114 100 14	All	Amality Control Report & E Gateway Generating Station WorkOrder:: 2309634 18/2023 BatchID:: 2309634 18/2023 Extraction Method: SM2540 D 18/2023 Extraction Method: SM2540 D 18/2023 Unit: mg/L 18/2023 Sampling (September 2023) Sample ID: mg/L ter Unit: mg/L MB/LCS/L uterly Sampling (September 2023) Sample ID: MB/LCS/L ter Unit: mg/L MB/LCS/L ter NDL NDL MDL MB/LCS/L MB/LCS/L MDL RL R/L R/L MB/LCS/L MDL R/L R/L R/L MB/LCS/L MDL R/L R/L R/L MB/LCS/L MDL R/L R/L R/L MB/L ND 1.00 1.00 . . MB/L ND 1.00 1.00 . . .

CA ELAP 1644 • NELAP 40330RELAP

Page 24 of 29

l, Inc.			CHAIN	-OF-CUS	STODY	RECORD	Page	e 1 of 1
			WorkOrde	r: 2309634	Client	Code: PGEA		
WaterTrax			EQuIS Detectio	Dry-Weight n Summary	Email Excel	HardCopy		J-flag
			Bi	ll to:	E.	Rec	quested TATs:	5 days;
Email: a	abe4@pge.com			Angel Espiritu				7 days;
cc/3rd Party: t	iwy@pge.com; m	sfg@pge.com;		PG&E Gateway	Generating S	Station		
PO:				3225 Wilbur Ave	enue	Da	te Received:	09/12/2023
Project: (Quarterly Samplin	g (September 2	023)	Antioch, CA 945	09	Da	te Logged:	09/12/2023
			15		Requested	Tests (See legend	below)	
	Email: a cc/3rd Party: t PO:	WaterTrax CLIP Email: abe4@pge.com cc/3rd Party: tiwy@pge.com; m PO:	WaterTrax CLIP EDF Email: abe4@pge.com cc/3rd Party: tiwy@pge.com; msfg@pge.com; PO:	WaterTrax CLIP EDF EQuIS Detection Email: abe4@pge.com cc/3rd Party: tiwy@pge.com; msfg@pge.com; PO:	WaterTrax CLIP EDF EQuIS Dry-Weight Detection Summary Bill to: Email: abe4@pge.com; msfg@pge.com; PO: Angel Espiritu S225 Wilbur Ave	WaterTrax CLIP EDF EQUIS Dry-Weight Email Detection Summary Excel Bill to: C'3rd Party: tiwy@pge.com; msfg@pge.com; PO: Project: Quarterly Sampling (September 2023) Antioch, CA 94509	WaterTrax CLIP EDF EQuIS Dry-Weight Excel Bill to: Rec C'3rd Party: tiwy@pge.com; msfg@pge.com; PO: Quarterly Sampling (September 2023) Antioch, CA 94509 Date Compared to the sector of the sector	WaterTrax CLIP EDF EQuIS Dry-Weight Email HardCopy ThirdParty Detection Summary Excel Bill to: Requested TATs: Email: abe4@pge.com Angel Espiritu PG&E Gateway Generating Station Date Received: PO: Sum Avenue Date Received: Date Received: Date Received:

				4	-		-	-	-	-	-	-	(J)			40.0
2309634-001	E-001 Grab	Water	9/11/2023 10:40	П	в	A	1	1	1	1		-	0	A	Ť.	
2309634-002	E-001 Grab	Water	9/12/2023 11:35	T	В	A	С		D	-	-	1	C	A	-	(h
2309634-003	E-001 Comp	Water	9/12/2023 11:15	Ē	1	1		A	1000	В	E	F	· · · · · ·	A	C	D

Test Legend:

C1	1664A_SG_W	-
5	CN_SM4500CE_W	-
9	PHENOLICS_W	

1664A_W	_
COD_W	_
PRDisposai Fee	-
	COD_W

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

41	BOD_W
8	METALSMS_TTLC_W
12	TSS_W

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense. McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

		&E GATEWAY (el Espiritu	GENERATING STATION	Project:	Quarterly Sam	pling	(Septe	ember 2	023)			rder: 230 Level: LE		
Conta	act's Email: abe4	l@pge.com		Comments							Date Log	gged: 9/12	2/2023	
		Wate		Exce	I EQul	S	⊡ En	nail	HardCopy	Third	Party	J		
LabID	ClientSampI	D Matrix	Test Name	Containers /Composites	Bottle & Preservative		Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content		Sub Out
001A	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	2	1LA w/ HCl + 1- VOA w/HCL				9/11/2023 10:40	5 days	9/19/2023	Present		Π
001B	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	2	1LA w/ HCl + 1- VOA w/HCL				9/11/2023 10:40	5 days	9/19/2023	Present		
002A	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl + 1- aVOA w/HCL			П	9/12/2023 11:35	5 days	9/19/2023	Present		
002B	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl + 1- aVOA w/HCL	- 🗆		П	9/12/2023 11:35	5 days	9/19/2023	Present		П
002C	E-001 Grab	Water	E420.4 (Phenolics)	1	500mL aG w/ H2SO4			E	9/12/2023 11:35	5 days	9/19/2023	Present		
			SM4500-NH3 BG (Ammonia Nitrogen)							5 days	9/19/2023	Present		
002D	E-001 Grab	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH				9/12/2023 11:35	5 days	9/19/2023	Present		
003A	E-001 Comp	Water	SM5210B (BOD)	1	1L HDPE, unprsv.	· 🗆			9/12/2023 11:15	7 days	9/21/2023	Present		
003B	E-001 Comp	Water	SM5220D (COD)	2	aVOA w/ H2SO4				9/12/2023 11:15	5 days	9/19/2023	Present	E	
003C	E-001 Comp	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.	П			9/12/2023 11:15	5 days	9/19/2023	Present		
003D	E-001 Comp	Water	SM2540D (TSS)	1	1L HDPE, unprsv.	. 🗆			9/12/2023 11:15	5 days	9/19/2023	Present		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

M		bell Analytico hen Quality Counts''	al, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com											
			W	ORK ORI	DER SUM	MARY										
Client Name:PG&E G.Client Contact:Angel Esp		ENERATING STATI	ON	Project:	Quarterly Sam	pling (Sep	tember 2	2023)			rder: 230 Level: LEV					
Contact's Email: abe4@pg	e.com			Comments	:					Date Lo	gged: 9/12	2/2023				
	Water	Trax CLIP		Exce	el 🔲 EQul	S DE	mail	HardCopy	Third	Party	1					
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	U** Head Space	Dry- Weight	Collection Date & Time	ТАТ	Test Due Date	Sediment Content		Sub Out			
003E E-001 Comp	Water	E245.2 (Mercury)		1	250mL HDPE w/ HNO3		E	9/12/2023 11:15	5 days	9/19/2023	Present	D				
003F E-001 Comp	Water	E200.8 (Metals) <arsenic Chromium, Copper, Iron, Molybdenum, Nickel, Se Zinc></arsenic 	Lead,	1	250mL HDPE w/ HNO3			9/12/2023 11:15	5 days	9/19/2023	Present	Ц				

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

																									2	-2	09634
		Webs	ite: <u>w</u>		WILLOW SBURG, C	V PAS: CA 945	S ROAD 65-1701 ail: main		amp	bell.	соп				1	TURN GeoTra		ND '	TII	ME	RU RU PDF	□ □ SH 24 ` Excel] HR [48 W 1	□ HR rite	CORD 72 HR 5 DAY On (DW) "J" flag is required
	Report To	: Angel Es	piritu	1	<u> </u>	B	Sill To: 1	PG&	E Ga	tew	ay						Analysi	s Req	ues								Remarks
	Company	: PG&E G	atew	ay Genera	ting Stat	tion										4	Ê			75	4	ŧ.			Γ		
	Tel: (925 Project N	be4@pge.c) 522-7838, ame: Qua ocation: Co	(510) arterl) 861-1597 y Samplir	'(Cell) ng (S	F	G@pge.c `ax: (Cmbp)	23)	1						Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 CN- ABCE	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Grease (LISEPA 1664A) with and with out silica gel clean up	Total Phenolics (USEPA 420.4)	Ammonia as N (SM 4500-NH3-G	2)	Metals (200,8 cadmium, chromium copper, lead, nickel, silver, Molybdenum, iron, and zinc)	0.81	(O)	, C	(Q	
		Signature:	Musk			Sam	pling	X	Z	1						de (P. n thio ving)	s (Ars 1,8 um by	th out s	henoli	oja As	Mercury (245.2)	(200.8 , lead, i Jenum,	BOD (SM 5210B)	SM 522	M 254	(SM 2540D)	
			Composite h	SAMP	LING		2	Ma	trix	ME	тно	D PR	ESI	ERV	ED	Cyani sodiur preser ABCE	Metal by 200 Seleni	Oil/Gro and wit	Total F	Атто	Mercu	Metals copper Molybe	BOD (COD (SM 5220D)	TDS (SM 2540C)	TSS (S	
	SAMPLE ID	LOCATION / Field Point Name		Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE 11 CO	NaOH	ION	HNO	Other												
÷	E-001		G	9/11/23	10.40	4	1L Amb. 40-m1 VOA	X			Х)	ζ				Х									
•	E-001		G	9/12/23	11:35	4	IL Amb. 40-ml VOA	Х			Х)	<				Х									
•	E-001	L	G	9/12/2	11:35	1	500ml Amb	Х			XC	×							X	Х							
5	E-001		G	9/12/23	11:35	1	250-ml Poly	Х		Ц	Х	X				Х		L.									
٠	E-001		С	9/12/23	11:15	1	IL Poly	X		Х	Х												Х		L		
•	E-001		С	9/12/23		2	43-ml VOA	X			_	X	⊥	⊥										X	4		·
**	E-001	<u> </u>	C		11:15	1	500-ml poly	X		X	X	╞	╞											┝_	X		
	E-001	ļ		9/12/23		1	1L poly 250-ml	X		X	X	╞	╇								v			\vdash	┡	X	
*	E-001 E-001			9/12/23		[Poly 250-ml	X X			X X	╞	┢	X X			x		\vdash		Х	X			╞	┢─	
. ۱	12-001			9/12/23	TEIS	ł	poly	^		\square	1	╀	╀	\uparrow	`		^		\vdash			^	┝	\vdash	┢	┟──	
											+	┿	╋	╈					┢						┢	┢	·
	Relinquiste	₫ By: >	L	Date: 9/12/25	Time:] <u>]</u> :49	Reco	ived By:	Ŵ	, (~~	1	1			ICE/t ^e GOOD CO HEAD SPA		_	7	<u>ہ</u>	e¥	I	C	юм	IME	ENTS	I 5:
	Relinquishe	d By:		Date:	Time:		eived Ry:			*						DECILLOR APPROPRI PRESERVI	RINATED	IN LA TAIN	ERS								
	Relinquishe	d By:		Date:	Time:	Rece	ved By:													c I	METALS	OTHER					Page 28 of 2

	Sample	Rec	eipt (Checklist	
Client Name: Project:	PG&E Gateway Generating Station Quarterly Sampling (September 2023)			Date and Time Receive Date Logged: Received by:	ed: 9/12/2023 13:45 9/12/2023 Valerie Alfaro
WorkOrder №: Carrier:	2309634 Matrix: Water Client Drop-In			Logged by:	Adrianna Cardoza
	Chain of	Custod	y (COC) Ir	nformation	
Chain of custod	y present?	Yes	2	No 🔲	
Chain of custod	y signed when relinquished and received?	Yes		No 🔲	
Chain of custod	y agrees with sample labels?	Yes	2	No 🔲	
Sample IDs note	ed by Client on COC?	Yes		No 🔲	
Date and Time	of collection noted by Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees wit	h Quote?	Yes		No 🔲	NA 💽
	Sam	ole Rece	eipt Inforr	nation	
Custody seals ir	ntact on shipping container/cooler?	Yes		No 🔲	NA 💽
Custody seals ir	ntact on sample bottles?	Yes		No 🔲	
Shipping contair	ner/cooler in good condition?	Yes		No 🔲	
Samples in prop	per containers/bottles?	Yes		No 🔲	
Sample contain	ers intact?	Yes	2	No 🔲	
Sufficient sampl	e volume for indicated test?	Yes		No 🔲	
	Sample Preservat	ion and	Hold Tim	ne (HT) Information	
All samples rece	eived within holding time?	Yes		No 🔲	
Samples Receiv		Yes pe: WE		No 🔲	
Sample/Temp E	lank temperature		Temp:		
ZHS conditional	analyses: VOA meets zero headspace)Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA
Sample labels c	hecked for correct preservation?	Yes	R	No	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: 3.7: >8)?	Yes		No 🔲	
UCMR Samples	:				
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes	Ē	No 🔲	NA 🔄
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) e to 200.7]?	Yes		No 🔲	NA 🔄

Comments:

Attachment 8b Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001) pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2309659

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:	Sanjiv Gill
Project P.O.:	
Project:	pH Sampling (September 2023)

Project Received: 09/12/2023

Analytical Report reviewed & approved for release on 09/19/2023 by:

Jena Alfaro Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

McCampbell Analytical, Inc. "When Quality Counts"

> 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

CPT **Project:** %D S SPLP RSD RRT RPD P RD 뭐 PDS NR B NA MSD SW ₹ MDL MB þ LCS2 LCS ΗĒĒ ERS EDL DUP PLT DISS 무 95% Interval Glossary Abbreviation **Client:** SPKRef Val SPK Val MB % Rec DI WET pH Sampling (September 2023) PG&E Gateway Generating Station Spike Reference Value Data Not Reported due to matrix interference or insufficient sample amount. Not detected at or above the indicated MDL or RL Not Applicable Minimum Level of Quantitation Method Detection Limit ¹ **Dilution Factor** Consumer Product Testing not NELAP Accredited 95% Confident Interval Sorbent Tube Synthetic Precipitation Leachate Procedure Spike Value **Relative Standard Deviation Relative Retention Time Relative Percent Difference** Reporting Limit ² **Relative Difference** Prep Factor Post Digestion Spike Matrix Spike Duplicate Matrix Spike % Recovery of Surrogate in Method Blank, if applicable Method Blank Lowest Quantitation Level Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633 International Toxicity Equivalence Factor Estimated Detection Limit Duplicate **Dilution Test (Serial Dilution)** Dissolved (direct analysis of 0.45 µm filtered and acidified water sample) (DISTLC) Waste Extraction Test using DI water Serial Dilution Percent Difference Laboratory Control Sample External reference sample. Second source calibration verification. WorkOrder: 2309659

change. Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating than the MDL.) Values are based upon our default extraction volume/amount and are subject to change conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

WET (STLC)	TZA	TNTC	TEQ	TCLP	Client: Project:
C) Waste Extraction Test (Soluble Threshold Limit Concentration)	TimeZone Net Adjustment for sample collected outside of MAI's UTC.	"Too Numerous to Count;" greater than 250 colonies observed on the plate.	Toxicity Equivalents	Toxicity Characteristic Leachate Procedure	Client:PG&E Gateway Generating StationWorkOProject:pH Sampling (September 2023)

McCampbell Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269
"When Quality Counts"	http://www.mccampbell.com / E-mail: main@mccampbell.com
Analyt	Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	Date Received: 09/12/2023 13:45
Date Prepared: 09/11/2023	09/11/2023
Project:	pH Sampling (September 2023)

Extraction Method: 2309659 **Extraction Method:** SM4500H+B-2000 **Analytical Method:** SM4500H+B **Unit:**

		hq			
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
E-001	2309659-001A Water	Water	09/11/2023 10:35	WetChem	278283
Analytes	Result		Accuracy DF		Date Analyzed
Нд	8.52		±0.05 1		09/11/2023 10:35

Analyst(s): JME

	Quality Control Report	trol Report	
Client:	PG&E Gateway Generating Station	WorkOrder:	2309659
Date Prepared: 09/11/2023	09/11/2023	BatchID:	278283
Date Analyzed: 09/11/2023	09/11/2023	Extraction Method:	Extraction Method: SM4500H+B-2000
Instrument:	WetChem	Analytical Method: SM4500H+B	SM4500H+B
Matrix:	Water	Unit:	pH units
Project:	pH Sampling (September 2023)	Sample ID:	CCV-278283
	QC Summary Report for pH	Report for pH	
Analyte	CCV Result		CCV Limits
Hd	7.08		6.9-7.1

McCampbell Analytica 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262	I, Inc. □ WaterTrax		EDF		I-OF-CUS r: 2309659		RECOI		Pag ☐ThirdParty		of 1 J-flag	
			JTT	<u> </u>	n Summary	Excel	Él.			- 12		
Report to:				Bi	ill to:	-		Reque	ested TAT:	5 d	ays;	
Sanjiv Gill	Email: sa	njivgill@comcas	t.net		Angel Espiritu							
PG&E Gateway Generating Station	cc/3rd Party:				PG&E Gateway	Generating S	Station					
3225 Wilbur Avenue	PO:				3225 Wilbur Ave	enue		Date	Received:	09/	/12/202	23
Antioch, CA 94509 (925) 459-7212 FAX:	Project: pH	I Sampling (Sept	ember 2023)		Antioch, CA 945	09		Date .	Logged:	09/	/12/202	23
					1	Reque	ested Tests (S	iee lege	end below)			
Lab ID Clien	tSampID	м	atrix Colle	ection Date H	lold 1 2	3 4	5 6	7	8 9	10	11	12
2309659-001	-001	W	/ater 9/11/	2023 10:35		1		1	1	_	-	

Test Legend:

PH_W_SANJIV	
	PH_W_SANJIV

2	PRDisposal Fee	
6		
10		-
		_

3	
7	(
H	

4 1	
8	
12	

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Adrianna Cardoza

Mc	McCampbell Analytical, Inc. "When Quality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
		WORK ORI	DER SUMI	MARY								
Client Name:PG&E GAClient Contact:Sanjiv Gill	TEWAY GENERATING STATION	Project:	pH Sampling (September 2023)				rder: 230 .evel: LEV				
Contact's Email: sanjivgill@	omcast.net	Comments:					Date Log	gged: 9/12	2/2023			
	WaterTrax CLIP		EQui	S Email	HardCopy	ThirdF	Party					
LabID ClientSampID	Matrix Test Name	Containers /Composites	Bottle & Preservative	U** Head Dry- Space Weight	Collection Date & Time	ТАТ	Test Due Date	Sediment Content	Hold Sub Out			
001A E-001	Water SM4500H+B (Field pH)	1	<not received=""></not>		9/11/2023 10:35	5 days	9/19/2023					

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

		1																											 2	309659
McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: <u>www.mccampbell.com</u> Telephone: (877) 252-9262 Fax: (925) 252-9269								CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY GeoTracker EDF PDF Excel Write On (DW) Check if sample is effluent and "J" flag is required							HR 72 HR 5 DAY ite On (DW) 4															
The second se	To: Sanjiv					ill To:	Musk	an E	avi	onn	ent	al									na	ysis	Re	que	st		_	_		Remarks
Compa	<u>by: PG&E</u>	Gate	way Gene	rating S	itatio	<u> </u>								_																
					E	-Mail:	seniiv	voili <i>(</i>	200	nca	stne	ŧ										ŀ								
Tel: (4	08) 666-449	4 (Ce	<u>(الج</u>		_	ax: ()																							
	Name: pl						027	3)																		1				
	Location: I						-+	<u> </u>				H	A			1.										1				•
Sample	r Signature		<u>nskar</u>	LIN	TUY	me	a	-70	mq	m P.)	Y_				1							1							
		Bodu	SAMP	SAMPLING		Matrix METHOD PRESERVED					·										ľ									
SAMPLE ID	LOCATION / Field Point Name	Sample Type Com Acreb	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	H.SO.	NaOH	BCL	HNO	Zine Acetata	рН															
E-001		0	9/11/23	10:35	NA	NA	Х		X	T				T	X			T												Grab Time: 10: 35 Analysis Time: 10:36
																														Temperature: 21.7°C pH: 8,52
																				<u> </u>	Ŀ									
									\square	1	 							\bot		ļ		ļ		L						
											ļ			_			Ļ	4_		ļ		 	 							
	· .								┝╌┡	- <u> </u>	 			-			ļ			ļ	<u> </u>		ļ						 ┝╌┥	
					ļ				\vdash			\square					┡	+		ļ					ļ				┝╌┥	
									\vdash	+-		$\left - \right $		-			<u> </u>	+						·					 $\left - \right $	
	·								\vdash	+		$\left - \right $		\dashv		$\left - \right $		+											 $\left - \right $	
X	Relinquiched By: Date: Time: Received Bf: G/12/28 /3:45				ICEA ² COMMENTS: GOOD CONDITION HEAD SPACE ABSENT																									
Réinquis	• •		Date:	Time:		ived By:	\		V						DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB															
Relinquis	hed By:		Date:	Time:	Rece	ived By:									PRI	X 124	RVA	TIO		DAS	0.	¢G	ME		S	OTH	ER			

Date/Time	Sample ID	Matrix	1 st Re	eading	2 nd R	eading	Ave	Standard	Comments	Analyst
Bute, Time			pН	Temp.°c	pН	Temp.°c	pH	(lot # / exp. Date)	Comments	Analyse
9/11/23/10:10	Cal. pH #	L	7.08	18.9	7.08	19.0	7.08	bul)K	colibrated >	07.00
9/11/23/10/10	Cal pH #	L	4.00	18.9	4.00	18.9	4.00	bu)K		
9/11/23/10:10	Cal. pH #	L	1003	19.0	10.03	19.0	10.03	bulk	alibrate	to 10.00
						A	- A	1 .	h	
						Mete			l'empany_	
							11 U	T XITEM		
						بر		# 622206	1 ¥ _	
							pt .	<u>n CO(9</u>	/11/23	
		-					\square	2 pr	En Ato	
		<u> </u>							I F here	way
							`\()	hi Um	-	
							, •			
Page 51 of 100								V		

Logbook for Field pH Samples

Page **51** of **100**

٩

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Ge pH Sampling (Sep	-			Date and Time Received Date Logged: Received by:	9/12/2023 13:45 9/12/2023 Valerie Alfaro
WorkOrder №: Carrier:	2309659 Client Drop-In	Matrix: <u>Water</u>			Logged by:	Adrianna Cardoza
		Chain of	Custod	y (COC) Info	ormation	
Chain of custody	present?		Yes	2	No 🗔	
Chain of custody	signed when relinqu	ished and received?	Yes		No 🔲	
Chain of custody	agrees with sample	labels?	Yes		No 🔲	
Sample IDs note	d by Client on COC?		Yes		No 🔲	
Date and Time of	f collection noted by	Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?		Yes	D	No 🔲	
COC agrees with	n Quote?		Yes		No 🔲	NA 🖃
		Sam	ple Rece	eipt Informa	tion	
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🔲	NA 🛃
Custody seals int	tact on sample bottle	s?	Yes		No 🔲	NA 🛃
Shipping contain	er/cooler in good cor	ndition?	Yes		No 🔲	
Samples in prope	er containers/bottles	?	Yes	E.	No 🔲	
Sample containe	ers intact?		Yes		No 🔲	
Sufficient sample	e volume for indicate	d test?	Yes	2	No 🔲	
		Sample Preserva	tion and	Hold Time	(HT) Information	
All samples receipt	ived within holding ti	ne?	Yes		No 🗃	NA 🔲
Samples Receive	ed on Ice?		Yes		No 💽	
Sample/Temp Bl	ank temperature			Temp:		NA 💽
	analyses: VOA meet Cs, TPHg/BTEX, RS		Yes		No 🔲	NA 🗾
Sample labels ch	necked for correct pro	eservation?	Yes	n	No 🗖	
pH acceptable up <2; 522: <4; 218.		2; Nitrate 353.2/4500NO3:	Yes			NA 🖃
UCMR Samples:						
pH tested and 537.1: 6 - 8)?	acceptable upon rec	eipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🛃
Free Chlorine t [not applicable		e upon receipt (<0.1mg/L)	Yes		No	NA 🛃

Comments: Method SM4500H+B (Field pH) was received past its 0.25-day holding time.

Attachment 8c Laboratory Results Semi-annual Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

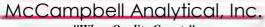
WorkOrder: 2309638

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:	Angel Espiritu
Project P.O.:	
Project:	Semi-Annual Sampling (September 2023)

Project Received: 09/12/2023


Analytical Report reviewed & approved for release on 09/22/2023 by:

Christine Askari Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

"When Quality Counts"

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2309638

Project: Semi-Annual Sampling (September 2023)

Glossary Abbreviation %D Serial Dilution Percent Difference 95% Interval 95% Confident Interval Consumer Product Testing not NELAP Accredited CPT DF **Dilution Factor** DI WET (DISTLC) Waste Extraction Test using DI water DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample) DLT Dilution Test (Serial Dilution) DUP Duplicate EDL **Estimated Detection Limit** ERS External reference sample. Second source calibration verification. ITEF International Toxicity Equivalence Factor LCS Laboratory Control Sample LCS2 Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633. LQL Lowest Quantitation Level MB Method Blank MB % Rec % Recovery of Surrogate in Method Blank, if applicable Method Detection Limit ¹ MDL Minimum Level of Quantitation ML Matrix Spike MS MSD Matrix Spike Duplicate NA Not Applicable ND Not detected at or above the indicated MDL or RL Data Not Reported due to matrix interference or insufficient sample amount. NR PDS Post Digestion Spike PF Prep Factor RD **Relative Difference** RL Reporting Limit² RPD Relative Percent Difference RRT **Relative Retention Time Relative Standard Deviation** RSD SPK Val Spike Value SPKRef Val Spike Reference Value SPLP Synthetic Precipitation Leachate Procedure Sorbent Tube ST

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

WorkOrder: 2309638

Glossary of Terms & Qualifier Definitions

Client:	PG&E Gateway Generating Station
----------------	---------------------------------

Project: Semi-Annual Sampling (September 2023)

TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
TNTC	"Too Numerous to Count;" greater than 250 colonies observed on the plate.
TZA	TimeZone Net Adjustment for sample collected outside of MAI's UTC.
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

J	Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.
S	Surrogate recovery outside accepted recovery limits.
a2	Sample diluted due to cluttered chromatogram.
c1	Surrogate recovery outside of the control limits due to the dilution of the sample.

Quality Control Qualifiers

F1	MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.
F3	The surrogate standard recovery and/or RPD is outside of acceptance limits.
F5	LCS/LCSD recovery is outside of acceptance limits; however, the data is acceptable based upon the TNI allowable marginal exceedances.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	09/12/2023 13:45
Date Prepared:	09/12/2023
Project:	Semi-Annual Sampling (September 2023)

WorkOrder:	2309638
Extraction Method:	E608.3/SW3620B
Analytical Method:	E608.3
Unit:	μg/L

Organochlorine Pesticides + PCBs w/ Florisil Clean-up

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
E-001	2309638-001D	Water	09/12/202	3 11:35	GC40 09182365.d	277764
Analytes	Result	MDL	RL	DF		Date Analyzed
Aldrin	ND	0.001	4 0.0050	5		09/19/2023 02:16
a-BHC	ND	0.00	6 0.0050	5		09/19/2023 02:16
b-BHC	ND	0.003	0.0050	5		09/19/2023 02:16
d-BHC	ND	0.000	0.0050	5		09/19/2023 02:16
g-BHC	ND	0.002	2 0.0050	5		09/19/2023 02:16
Chlordane (Technical)	ND	0.012	0.10	5		09/19/2023 02:16
p,p-DDD	ND	0.000	0.0050	5		09/19/2023 02:16
p,p-DDE	ND	0.000	0.0050	5		09/19/2023 02:16
p,p-DDT	ND	0.000	0.0050	5		09/19/2023 02:16
Dieldrin	ND	0.000	070 0.0050	5		09/19/2023 02:16
Endosulfan I	ND	0.000	0.0050	5		09/19/2023 02:16
Endosulfan II	ND	0.002	.0.0050	5		09/19/2023 02:16
Endosulfan sulfate	ND	0.00	6 0.010	5		09/19/2023 02:16
Endrin	ND	0.000	0.0050	5		09/19/2023 02:16
Endrin aldehyde	ND	0.002	0.0050	5		09/19/2023 02:16
Heptachlor	ND	0.002	.0.0050	5		09/19/2023 02:16
Heptachlor epoxide	ND	0.00	2 0.0050	5		09/19/2023 02:16
Toxaphene	ND	0.010	0.10	5		09/19/2023 02:16
Aroclor1016	ND	0.009	05 0.10	5		09/19/2023 02:16
Aroclor1221	ND	0.012	0.10	5		09/19/2023 02:16
Aroclor1232	ND	0.019	0.10	5		09/19/2023 02:16
Aroclor1242	ND	0.014	0.10	5		09/19/2023 02:16
Aroclor1248	ND	0.009	0 0.10	5		09/19/2023 02:16
Aroclor1254	ND	0.007	5 0.10	5		09/19/2023 02:16
Aroclor1260	ND	0.014	0.10	5		09/19/2023 02:16
PCBs, total	ND	NA	0.10	5		09/19/2023 02:16
Surrogates	REC (%)		Limits			
Decachlorobiphenyl	102		60-130)		09/19/2023 02:16
Analyst(s): SVE			Analytical Co	mments: a	2	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

PG&E Gateway Generating Station
09/12/2023 13:45
09/13/2023
Semi-Annual Sampling (September 2023)

WorkOrder:	2309638
Extraction Method:	E624.1
Analytical Method:	E624.1
Unit:	μg/L

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID	
E-001	2309638-001B	Water	09/12/2023 11:35		GC10 09122313.D	278023	
Analytes	Result	MD	<u>RL</u>	DF		Date Analyzed	
Acrolein (Propenal)	ND	3.7	5.0	1		09/13/2023 17:17	
Acrylonitrile	ND	0.27	2.0	1		09/13/2023 17:17	
2-Chloroethyl Vinyl Ether	ND	0.52	1.0	1		09/13/2023 17:17	
Surrogates	REC (%)		Limits				
Dibromofluoromethane	98		70-130			09/13/2023 17:17	
Analyst(s): ALU							

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	09/12/2023 13:45
Date Prepared:	09/21/2023
Project:	Semi-Annual Sampling (September 2023)

WorkOrder:	2309638
Extraction Method:	E624.1
Analytical Method:	E624.1
Unit:	μg/L

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001 Analytes	2309638-001A	Water	09/12/2023	11:35	GC38 09212315.D	278590
	Result	MDL	RL	DF		Date Analyzed
Benzene	ND	0.034	0.20	1		09/21/2023 17:34
Bromodichloromethane	2.5	0.022	0.050	1		09/21/2023 17:34
Bromoform	12	0.10	0.50	1		09/21/2023 17:34
Bromomethane	ND	0.26	0.50	1		09/21/2023 17:34
Carbon tetrachloride	ND	0.033	0.050	1		09/21/2023 17:34
Chlorobenzene	ND	0.092	0.50	1		09/21/2023 17:34
Chloroethane	ND	0.23	0.50	1		09/21/2023 17:34
Chloroform	2.5	0.015	0.10	1		09/21/2023 17:34
Chloromethane	ND	0.18	0.50	1		09/21/2023 17:34
Dibromochloromethane	1.3	0.069	0.15	1		09/21/2023 17:34
1,2-Dichlorobenzene	ND	0.11	0.50	1		09/21/2023 17:34
1,3-Dichlorobenzene	ND	0.12	0.50	1		09/21/2023 17:34
1,4-Dichlorobenzene	ND	0.11	0.50	1		09/21/2023 17:34
1,1-Dichloroethane	ND	0.14	0.50	1		09/21/2023 17:34
1,2-Dichloroethane (1,2-DCA)	ND	0.011	0.020	1		09/21/2023 17:34
1,1-Dichloroethene	ND	0.0036	0.010	1		09/21/2023 17:34
trans-1,2-Dichloroethene	ND	0.12	0.50	1		09/21/2023 17:34
1,2-Dichloropropane	ND	0.029	0.20	1		09/21/2023 17:34
cis-1,3-Dichloropropene	ND	0.13	0.50	1		09/21/2023 17:34
trans-1,3-Dichloropropene	ND	0.20	0.50	1		09/21/2023 17:34
Ethylbenzene	ND	0.14	0.50	1		09/21/2023 17:34
Methylene chloride	ND	0.75	2.0	1		09/21/2023 17:34
1,1,2,2-Tetrachloroethane	ND	0.018	0.020	1		09/21/2023 17:34
Tetrachloroethene	ND	0.028	0.20	1		09/21/2023 17:34
Toluene	ND	0.096	0.50	1		09/21/2023 17:34
1,1,1-Trichloroethane	ND	0.14	0.50	1		09/21/2023 17:34
1,1,2-Trichloroethane	ND	0.026	0.20	1		09/21/2023 17:34
Trichloroethene	ND	0.030	0.50	1		09/21/2023 17:34
Trichlorofluoromethane	ND	0.13	0.50	1		09/21/2023 17:34
Vinyi chloride	ND	0.0027	0.0050	1		09/21/2023 17:34
Surrogates	REC (%)		Limits			
Dibromofluoromethane	101		70-130			09/21/2023 17:34
Toluene-d8	102		70-130			09/21/2023 17:34
4-BFB	95		70-130			09/21/2023 17:34

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	09/12/2023 13:45
Date Prepared:	09/13/2023
Project:	Semi-Annual Sampling (September 2023)

WorkOrder:	2309638
Extraction Method:	E625.1
Analytical Method:	E625.1
Unit:	μg/L

Semi-Volatile Organics

Client ID	Lab ID	Matrix		Date Colle	ected	Instrument	Batch ID
E-001 Analytes	2309638-001C		Water		11:35	GC48 09142307.D	277889
	Result	Qualifiers	MDL	<u>RL</u>	DF		Date Analyzed
Acenaphthene	ND		0.0027	0.0047	1		09/14/2023 10:51
Acenaphthylene	ND		0.0017	0.0047	1		09/14/2023 10:5
Anthracene	0.0026	J	0.0019	0.0047	1		09/14/2023 10:5
Benzidine	ND		2.5	4.7	1		09/14/2023 10:5
Benzo (a) anthracene	ND		0.019	0.047	1		09/14/2023 10:5
Benzo (a) pyrene	ND		0.0047	0.0047	1		09/14/2023 10:51
Benzo (b) fluoranthene	ND		0.0050	0.0094	1		09/14/2023 10:51
Benzo (g,h,i) perylene	0.0046	J	0.0037	0.0094	1		09/14/2023 10:51
Benzo (k) fluoranthene	ND		0.0047	0.0094	1		09/14/2023 10:51
Bis (2-chloroethoxy) Methane	ND		0.48	0.94	1		09/14/2023 10:51
Bis (2-chloroethyl) Ether	ND		0.0047	0.0047	1		09/14/2023 10:51
Bis (2-chloroisopropyl) Ether	ND		0.0046	0.0094	1		09/14/2023 10:51
Bis (2-ethylhexyl) Phthalate	0.13	J	0.12	0.24	1		09/14/2023 10:51
4-Bromophenyl Phenyl Ether	ND		0.27	0.94	1		09/14/2023 10:51
Butylbenzyl Phthalate	ND		0.076	0.24	1		09/14/2023 10:51
4-Chloro-3-methylphenol	ND		0.56	0.94	1		09/14/2023 10:51
2-Chloronaphthalene	ND		0.53	0.94	1		09/14/2023 10:51
2-Chlorophenol	ND		0.034	0.047	1		09/14/2023 10:51
4-Chlorophenyl Phenyl Ether	ND		0.46	0.94	1		09/14/2023 10:51
Chrysene	ND		0.0025	0.0047	1		09/14/2023 10:51
Dibenzo (a,h) anthracene	ND		0.0049	0.0094	1		09/14/2023 10:51
1,2-Dichlorobenzene	ND		0.50	0.94	1		09/14/2023 10:5
1,3-Dichlorobenzene	ND		0.56	0.94	1		09/14/2023 10:51
1,4-Dichlorobenzene	ND		0.41	0.94	1		09/14/2023 10:51
3,3-Dichlorobenzidine	ND		0.0058	0.0094	1		09/14/2023 10:51
2,4-Dichlorophenol	ND		0.0053	0.0094	1		09/14/2023 10:51
Diethyl Phthalate	0.040	J	0.020	0.047	1		09/14/2023 10:51
2,4-Dimethylphenol	ND		0.50	0.94	1		09/14/2023 10:51
4,6-Dinitro-2-methylphenol	ND		3.5	4.7	1		09/14/2023 10:51
2,4-Dinitrotoluene	ND		0.025	0.047	1		09/14/2023 10:51
2,6-Dinitrotoluene	ND		0.028	0.047	1		09/14/2023 10:51
Di-n-octyl Phthalate	ND		1.1	2.4	1		09/14/2023 10:51
1,2-Diphenylhydrazine	ND		0.40	0.94	1		09/14/2023 10:5
Fluoranthene	0.0075	J	0.0036	0.0094	1		09/14/2023 10:51
Fluorene	0.0025	j	0.0017	0.0094	1		09/14/2023 10:51
Hexachlorobenzene	ND		0.0016	0.0047	1		09/14/2023 10:51
Hexachlorobutadiene	ND		0.0010		_1		09/14/2023 10:51

(Cont.)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	09/12/2023 13:45
Date Prepared:	09/13/2023
Project:	Semi-Annual Sampling (September 2023)

WorkOrder:	2309638
Extraction Method:	E625.1
Analytical Method:	E625.1
Unit:	µg/L

Semi-Volatile Organics

Client ID	Lab ID	Matrix	latrix Date Col		cted	Instrument	Batch ID
E-001	2309638-001C	Water		09/12/2023 1	11:35	GC48 09142307.D	277889
Analytes	Result	Qualifiers	MDL	RL	DF		Date Analyzed
Hexachlorocyclopentadiene	ND		2.2	4.7	1		09/14/2023 10:51
Hexachloroethane	ND		0.0032	0.0094	1		09/14/2023 10:51
Indeno (1,2,3-cd) pyrene	ND		0.0066	0.0094	1		09/14/2023 10:51
Isophorone	ND		0.42	0.94	1		09/14/2023 10:51
Naphthalene	ND		0.0059	0.0094	1		09/14/2023 10:51
Nitrobenzene	ND		0.57	0.94	1		09/14/2023 10:51
2-Nitrophenol	ND		2.8	4.7	1		09/14/2023 10:51
4-Nitrophenol	ND		3.4	4.7	1		09/14/2023 10:51
N-Nitrosodimethylamine	ND		3.4	4.7	1		09/14/2023 10:51
N-Nitrosodiphenylamine	ND		0.34	0.94	1		09/14/2023 10:51
N-Nitrosodi-n-propylamine	ND		0.56	0.94	1		09/14/2023 10:51
Pentachlorophenol	ND		0.15	0.24	1		09/14/2023 10:51
Phenol	ND		0.018	0.038	1		09/14/2023 10:51
Pyrene	0.0034	J	0.0026	0.0047	1		09/14/2023 10:51
1,2,4-Trichlorobenzene	ND		0.49	0.94	1		09/14/2023 10:51
2,4,6-Trichlorophenol	ND		0.0050	0.0094	1		09/14/2023 10:51
Surrogates	REC (%)	Qualifiers		Limits			
2-Fluorophenol	32	_		20-103			09/14/2023 10:51
Phenol-d5	21			20-120			09/14/2023 10:51
Nitrobenzene-d5	44	s		61-130			09/14/2023 10:51
2-Fluorobiphenyl	46	S		63-115			09/14/2023 10:51
2,4,6-Tribromophenol	67			48-149			09/14/2023 10:51
4-Terphenyl-d14	77	_		32-113			09/14/2023 10:51
Analyst(s): MV			Ar	alytical Comr	nents: c1		

	Quality Control Report	ontrol K	eport			
Client:	PG&E Gateway Generating Station	Work	WorkOrder:	2309638		
Date Prepared:		BatchID:	D:	277764		
Date Analyzed:	09/14/2023 - 09/15/2023	Extra	Extraction Method:	E608.3/SW3620B	W3620B	
Instrument:	GC40	Analy	Analytical Method:			
Matrix:	Water	Unit:		µg/L		
Project:	Semi-Annual Sampling (September 2023)	Sample ID:	le ID:	MB/LCS,	MB/LCS/LCSD-277764	
	QC Summary Report for E608.3 w/ Florisil Clean-up	r E608.3 w/ F	florisil Clea	dn-u		
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Aldrin	ÛN	0.00028	0.0010	.		
a-BHC	DN	0.00031	0.0010			
b-BHC	QN	0.00069	0.0010			
d-BHC	DN	0.00014	0.0010			
g-BHC	ND	0.00045	0.0010			
Chlordane (Technical)		0.0023	0.020			
a-Chlordane	ND	0.00085	0.0010			
g-Chlordane	ND	0.00015	0.0010			
p,p-DDD	Q	0.00011	0.0010			
p,p-DDE	QN	0.00018	0.0010			
p,p-UUI	ON .	0.00017	0.0010			
Dieldrin	ND	0.00014	0.0010			
Endosulfan I	ND	0.00011	0.0010			
Endosultan II		0.00046	0.0010			
Endosultan sultate		0.00033	0.0020			
Endrin	ON CON	0.00018	0.0010			
Endrin aldenyde		0.0003	0.0010			
Endrin ketone		0.00026	0.0010			
Heptachlor		0.00041	0.0010			
Heptachlor epoxide		0.00025	0.0010			
Methoxychlor	UN ::	0.00012	0.0010			
Toxaphene	QN	0.0020	0.020			
Aroclor1016	ND	0.0019	0.020		•	
Aroclor1221	QN	0.0024	0.020			
Aroclor1232	DN	0.0038	0.020			
Aroclor1242	DN	0.0028	0.020			
Aroclor1248	П	0.0018	0.020			
Aroclor1254	DN	0.0015	0.020			
Aroclor1260	DN	0.0028	0.020			
Surrogate Recovery	ary					
Decachlorobiphenyl	и 0.035			0.05	70	60-130

AcCampbell Analytical, Inc. "When Quatity Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:PG&E Gateway Generating StationDate Prepared:09/12/2023Date Analyzed:09/14/2023Date Analyzed:09/14/2023Matrix:GC40Matrix:WaterProject:Semi-Annual Sampling (September 2023)

 WorkOrder:
 2309638

 BatchID:
 277764

 Extraction Method:
 E608.3/SW3620B

 Analytical Method:
 E608.3/SW3620B

 Unit:
 μg/L

 Sample ID:
 MB/LCS/LCSD-277764

Q	QC Summary Report for E608.3 w/ Florisil Clean-up	port for I	E608.3 w/ Flo	risil Clean-	dn			
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.038	0.037	0.050	76	73	54-130	4.44	20
a-BHC	0.038	0.036	0.050	76	72	70-130	4.93	20
b-BHC	0.042	0.040	0.050	83	79	70-130	4.97	20
d-BHC	0.041	0.039	0.050	81	77	70-130	5.03	20
g-BHC	0.040	0.038	0.050	80	76	60-130	4.73	20
a-Chlordane	0.040	0.039	0.050	80	77	55-130	3.91	20
g-Chlordane	0.041	0.039	0.050	81	78	55-130	4.21	20
p,p-DDD	0.046	0.044	0.050	91	89	70-130	3.23	20
p,p-DDE	0.040	0.038	0.050	80	17	70-130	4.39	20
p,p-DDT	0.048	0.044	0.050	95	89	70-130	6.75	20
Dieldrin	0.045	0.043	0.050	06	86	70-130	4.56	20
Endosulfan I	0.045	0.043	0.050	06	86	70-130	4.70	20
Endosulfan II	0.043	0.040	0.050	85	80	70-130	5.74	20
Endosulfan sulfate	0.044	0.042	0.050	87	84	70-130	3.82	20
Endrin	0.054	0.051	0.050	108	103	70-130	4.59	20
Endrin aldehyde	0.036	0.035	0.050	73	70	60-130	3.21	20
Endrin ketone	0.040	0.038	0.050	80	77	60-130	3.98	20
Heptachlor	0.046	0.044	0.050	92	88	43-130	4.85	20
Heptachlor epoxide	0.042	0.040	0.050	84	80	70-130	4.89	20
Methoxychlor	0.053	0.050	0.050	105	100	70-130	4.74	20
Aroclor1016	0.14	0.15	0.15	93	66	70-130	5.78	20
Aroclor1260	0.13	0.14	0.15	88	95	70-130	7.55	20
Surrogate Recovery								
Decachlorobiphenyl	0.033	0.032	0.050	65	63	60-130	3.58	20

	0	Quality		Itrol	Control Report	<u> </u>				
Client:PG&E Gateway Generating StationDate Prepared:09/13/2023Date Analyzed:09/13/2023Instrument:GC10	ating ?	Station		W Ba An	WorkOrder: BatchID: Extraction Method: Analytical Method:		2309638 278023 E624.1 E624.1			
Matrix: Water Project: Semi-Annual Sampling (September 2023)	g (Sept	ember 2(23)	Un Sa	Unit: Sample ID:		μg/L MB/LCS/I 2309638-C	µg/L MB/LCS/LCSD-278023 2309638-001BMS/MSD	D 33	
		QC Sur	QC Summary Report for E624.1	eport fo	r E624.1					11
Analyte		MB Result		MDL	RL		SPK Val	MB SS %REC	Ξ	MB SS Limits
Acrolein (Propenal)		QN		3.7	5.0				·	
Acrylonitrile		DN		0.27	2.0				•	
2-Chloroethyl Vinyl Ether		g		0.52	1.0				•	
Surrogate Recovery										
Dibromofluoromethane		26					25	105	22	70-130
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acrolein (Propenal)		21	18	20		106	88	71-140	18.6	20
Acrylonitrile		22	18	20		112	92	67-145	19.2	20
2-Chloroethyl Vinyl Ether		24	22	8		121	112	70-124	8.15	20
Surrogate Recovery Dibromofluoromethane		26	24	25		106	86	70-130	7.89	20
Analyte	S N N	MS 41000	MSD	SPK SPK	SPKRef Vol	MS MBEC	WSD WSD	MS/MSD	RPD	RPD imit
Acrolein (Pronenal)		15	7.2	2		73			67 7 F1	20
Acrylonitrile		19	16	2 2	ON N	96	81	50-151	17.6	50
2-Chloroethyl Vinyl Ether	1	24	21	20	ND	122	107	66-140	12.9	20
Surrogate Recovery Dibromofluoromethane	-	27	24	25		106	95	70-130	10.7	20

CA ELAP 1644 • NELAP 40330RELAP

Page 11 of 27

McCampbell Analytical, Inc. "When Quality Counts"

Client.	PG&F Gateway Generating Station		WorkOrder
	•		
Date Prepared: 09/21/2023	09/21/2023	Ba	BatchID:
Date Analyzed: 09/21/2023	09/21/2023	Ex	Extraction Method: E624.1
Instrument:	GC38	Ar	Analytical Method: E624.1
Matrix:	Water	U	Unit:
Project:	Semi-Annual Campling (Sentember 2022)		Comple ID:

Mayne MB MDL RL SPM MDL VI VI MPR C Beanealeile ND ND 0.024 0.024 0.026 0.060 1 1 Beanealeile ND 0.024 0.024 0.060 1 1 1 Beanealeile ND 0.027 0.600 1 1 1 Chloroethrane ND 0.021 0.50 1 1 1 Chloroethrane ND 0.11 0.20 1 1 1 Chloroethrane ND 0.11 0.20 1 1 1 Chloroethrane ND 0.12 0.50 1 1 1 Lablchloroethrane <t< th=""><th></th><th>QC Summar</th><th>QC Summary Report for E624.1</th><th>E624.1</th><th></th><th></th><th></th></t<>		QC Summar	QC Summary Report for E624.1	E624.1			
Result Val Val Idenomethane ND 0.022 0.660 1.000 Indiana ND 0.022 0.660 1.000 0.022 0.660 1.000 Indiana ND 0.022 0.660 1.000 0.022 0.660 1.000 Indiana ND 0.022 0.660 1.000 0.022 0.660 1.000 Indiana ND 0.014 0.016 0.002 0.660 1.000 Indiana ND 0.014 0.016 0.016 1.000 Indiana ND 0.11 0.50 1.000 Indiana ND 0.11 0.50 1.0000 Indiana ND 0.111 0.50 1.0000 Indiana ND 0.014 0.50 1.0000 Indiana ND 0.020 0.50 1.0000 Indiana ND 0.014 0.50 1.0000 <th>Analvte</th> <th>MB</th> <th>MDL</th> <th></th> <th>SPK</th> <th>MB SS</th> <th>MB SS</th>	Analvte	MB	MDL		SPK	MB SS	MB SS
No ND 0.02 0.02 0.060 sidheomethane ND 0.02 0.060 1 mathane ND 0.02 0.60 1 mathane ND 0.02 0.60 1 mathane ND 0.12 0.50 1 horobenzene ND 0.11 0.50 1 horobenzene ND 0.11 0.50 1 horobenzene ND 0.11 0.50 1 horobenzene ND 0.12 0.50 1 horobenzene ND 0.12 0.50 1 horobenzene ND 0.13 0.50		Result			Val	%REC	Limits
Sichloromethane ND 0.922 0.60 4 Gram ND 0.422 0.60 4 MD 0.42 0.60 4.60 4.60 4.60 MD 0.02 0.60 6.60 4.60	Senzene	ND	0.034	0.20			
Germ ND 0.40 0.50 - mathane ND 0.32 0.50 - servaene ND 0.32 0.50 - servaene ND 0.32 0.50 - servaene ND 0.022 0.50 - servaene ND 0.023 0.50 - contoromethane ND 0.12 0.50 - contoromethane ND 0.11 0.50 - contoromethane ND 0.11 0.50 - - hiorobenzene ND 0.11 0.50 - - hiorobenzene ND 0.11 0.50 - - hiorobenzene ND 0.12 0.50 - - hiorobenzene ND 0.12 0.50 - - hiorobenzene ND 0.12 0.50 - - 2.Dichloropthane ND 0.12 0.50 </td <td>Bromodichloromethane</td> <td>ND</td> <td>0.022</td> <td>0.050</td> <td></td> <td></td> <td></td>	Bromodichloromethane	ND	0.022	0.050			
mailtane ND 6.26 0.50 - sensene ND 0.033 0.66 - sensene ND 0.032 0.60 - sensene ND 0.032 0.60 - sensene ND 0.033 0.60 - sensene ND 0.032 0.50 - sensene ND 0.015 0.10 - sensene ND 0.12 0.50 - - sensenethane ND 0.11 0.50 - - hiorobenzene ND 0.11 0.50 - - hiorobenzene ND 0.11 0.50 - - hiorobenzene ND 0.12 0.50 - - hiorobenzene ND 0.12 0.50 - - pichiorobenzene ND 0.12 0.50 - - 2.5hiorobene ND 0.12	3romoform	ND	0.10	0.50			
Intersectionide ND 0.033 0.050 - persena ND 0.021 0.042 0.50 - intrana ND 0.071, J 0.012 0.050 - iorm ND 0.022 0.50 - - intrana ND 0.042 0.50 - - intrana ND 0.14 0.50 - - introbenzane ND 0.12 0.50 - - introbenzane ND 0.12 0.50 - - introbenzane ND 0.13 0.50 - - 2.Dichlorophopene ND 0.16 2.0	3romomethane	ND	0.26	0.50			
serzene ND 0.092 0.50 - athane ND 0.071,1 0.015 0.60 - methane ND 0.071,1 0.015 0.60 - methane ND 0.015 0.10 - - methane ND 0.016 0.10 - - hiorobenzene ND 0.11 0.50 - - hiorobenzene ND 0.011 0.50 - - hiorobenzene ND 0.021 0.50 - - 2Dichioropropene ND 0.026 0.50 - - 2Dichioropropene ND 0.14 0.50<	Carbon tetrachloride	ND	0.033	0.050			
aitane ND 0.23 0.50 . form 0.071,J 0.015 0.10 . ucchoromethane ND 0.18 0.50 . horobenzene ND 0.18 0.50 . horobenzene ND 0.11 0.50 . horobenzene ND 0.014 0.50 . horobenzene ND 0.012 0.50 . horobenzene ND 0.029 0.20 . horobenzene ND 0.012 0.50 . .2Dichloropropane ND 0.12 0.50 . .2Dichloropropane ND 0.13 0.50 . .2Dichloropropane ND	Shlorobenzene	ND	0.092	0.50			
Genn 0.071,J 0.015 0.10 . methane ND 0.08 0.50 - horobernzene ND 0.11 0.50 - horobernzene ND 0.14 0.50 - horobernzene ND 0.14 0.50 - horobernzene ND 0.14 0.50 - horobernzene ND 0.12 0.50 - horobernzene ND 0.12 0.50 - - ND 0.12 0.50 - - - ND 0.12 0.50 - - - ND 0.13 0.50 - - - ND 0.16 2.0 - - - <td< td=""><td>Chloroethane</td><td>ND</td><td>0.23</td><td>0.50</td><td></td><td></td><td></td></td<>	Chloroethane	ND	0.23	0.50			
methane ND 0.18 0.50 - ochloromethane ND 0.069 0.15 - hlorobenzene ND 0.069 0.15 - hlorobenzene ND 0.12 0.50 - hlorobenzene ND 0.14 0.50 - hlorobenzene ND 0.14 0.50 - hlorobenzene ND 0.014 0.50 - hlorobenzene ND 0.014 0.50 - hlorobenzene ND 0.014 0.50 - hlorobenzene ND 0.12 0.50 - hlorobenzene ND 0.12 0.50 - hlorobenzene ND 0.12 0.50 - solichloropropene ND 0.13 0.50 - solichloropropene ND 0.14 0.50 - orichloroethane ND 0.14 0.50 - orichloroethane	Chloroform	0.071,J	0.015	0.10			
ND 0.069 0.15 . hlorobenzene ND 0.11 0.50 . hlorobenzene ND 0.14 0.50 . hlorobenzene ND 0.014 0.50 . hlorobenzene ND 0.014 0.20 . hlorobenzene ND 0.012 0.50 . 2.Dichloroptene ND 0.12 0.50 . .3.Dichloroptene ND 0.20 0.20 . .3.Dichloroptene ND 0.16 2.0 . .3.Dichloroptene ND 0.16 2.0 . .3.Dichloroptene ND 0.16 2.0 . .1.torothene ND 0.028 0.20 . .1.torothene ND 0	Chloromethane	ND	0.18	0.50			
Intorobenzene ND 0.11 0.50 - Intorobenzene ND 0.12 0.50 - Intorobenzene ND 0.12 0.50 - Intorobenzene ND 0.11 0.50 - Intorobenzene ND 0.11 0.50 - Intorobenzene ND 0.011 0.020 - Intorobenzene ND 0.023 0.20 - 2.Dichtoroptopene ND 0.12 0.50 - 3.Dichtoroptopene ND 0.14 0.50 - 3.Dichtoroptopene ND 0.16 2.0 - <td< td=""><td>Dibromochloromethane</td><td>ND</td><td>0.069</td><td>0.15</td><td></td><td>1</td><td>1</td></td<>	Dibromochloromethane	ND	0.069	0.15		1	1
IntrodenzeneND0.120.50-hloroethaneND0.110.50-hloroethaneND0.0110.00360.0110.002.DichloroethaneND0.0120.00360.010-2.DichloroppaneND0.120.503.DichloroppaneND0.120.503.DichloroppaneND0.120.503.DichloroppaneND0.140.503.DichloroppaneND0.140.503.DichloroppaneND0.140.503.DichloroppaneND0.140.503.DichloroppaneND0.140.503.DichloroppaneND0.162.03.DichloroppaneND0.162.03.DichloroppaneND0.162.03.DichloroppaneND0.0260.203.DichloroppaneND0.0260.203.DichlorophaneND0.0260.201.etrschloroethaneND0.0260.201.etrschloroethaneND0.0260.201.etrschloroethaneND0.0260.201.etrschloroethaneND0.0260.201.etrschloroethaneND0.026 <td>,2-Dichlorobenzene</td> <td>ND</td> <td>0.11</td> <td>0.50</td> <td></td> <td></td> <td></td>	,2-Dichlorobenzene	ND	0.11	0.50			
IntrodenzeneND0.110.50-htoroethaneND0.140.50-htoroethaneND0.0140.020-,2-DichloroetheneND0.0290.020-,2-DichloroetheneND0.0290.20-,2-DichloroppeneND0.120.50-,3-DichloroppeneND0.120.50-,3-DichloroppeneND0.140.50-,3-DichloroppeneND0.140.50-,3-DichloroppeneND0.162.0-,3-DichloroppeneND0.162.0-,3-DichloroppeneND0.162.0-,3-DichloroppeneND0.162.0-,3-DichlorophaneND0.162.0-,3-DichlorophaneND0.162.0-,3-DichlorophaneND0.0280.20-,3-DichlorophaneND0.0260.50-,3-DichlorophaneND0.0260.50-,3-DichlorophaneND0.0260.50-,3-DichlorophaneND0.0260.50-,3-DichlorophaneND0.0260.50-,3-DichlorophaneND0.0260.50-,3-DichlorophaneND0.0270.050-,3-DichlorophaneND0.0270.050-,3-Dichlorophane232525,3-Dichlorophane <td>,3-Dichlorobenzene</td> <td>ND</td> <td>0.12</td> <td>0.50</td> <td></td> <td></td> <td></td>	,3-Dichlorobenzene	ND	0.12	0.50			
IntrodethaneND0.140.50-hitoroethaneND0.0110.020- 2 -DichloroethaneND0.0360.010- 2 -DichloropthaneND0.0290.50- 3 -DichloropthaneND0.0290.50- 3 -DichloropthaneND0.120.50- 3 -DichloropthaneND0.140.50- 3 -DichloropthaneND0.140.50- 3 -DichloropthaneND0.162.0- 3 -DichloropthaneND0.162.0- 3 -DichloropthaneND0.162.0- 3 -DichloropthaneND0.162.0- 3 -DichloropthaneND0.162.0- 3 -DichloropthaneND0.0260.20- 3 -DichloropthaneND0.0260.50- 4 -DicothaneND0.0260.50- 1 -DichloropthaneND0.0260.50- 1 -DichloropthaneND0.0270.0050- 1 -DichloropthaneND0.00270.0050- 1 -DichloropthaneND0.00272.5- 1 -DichloropthaneND0.00272.52.5 1 -Dichloropthane23252.52.5 2 -Dichloropthane232.52.52.5 2 -Dichloropthane232.52.52.5 3 -Dichloropthane232	4-Dichlorobenzene	ND	0.11	0.50			
Intracethane (1,2-DCA)ND 0.011 0.020 $-$ ND 0.036 0.010 0.029 0.20 $-$ 2-DichloroetheneND 0.029 0.20 $-$ IntracetheneND 0.12 0.50 $-$ S-DichloropropeneND 0.13 0.50 $-$ IntracetheneND 0.14 0.50 $-$ IntracetheneND 0.14 0.50 $-$ IntracetheneND 0.14 0.50 $-$ IntracetheneND 0.028 0.20 $-$ IntracetheneND 0.028 0.20 $-$ IntracetheneND 0.028 0.20 $-$ IntracetheneND 0.028 0.20 $-$ IntracetheneND 0.026 0.50 $-$ IntracetheneND 0.026 0.50 $-$ IntracetheneND 0.026 0.50 $-$ IntracetheneND 0.0027 0.0050 $-$ IntracetheneND 0.0027 0.0050 $-$ IntracetheneND 0.0027 0.0050 $-$ IntracetheneND 0.0027 0.0050 $-$ Intracethene 23 24 25 Intracethene 23 24 25 Intracethene 24 25 25 Intracethene 23 24 25	,1-Dichloroethane	ND	0.14	0.50			
IntracetheneND 0.0036 0.010 $-$ 2-DichloroetheneND 0.12 0.50 $-$ hloropropaneND 0.029 0.20 $-$ 2-DichloropropeneND 0.13 0.50 $-$ 3-DichloropropeneND 0.14 0.50 $-$ arzeneND 0.028 0.20 $-$ arzeneND 0.026 0.50 $-$ arzeneND 0.028 0.20 $-$ arzeneND 0.028 0.20 $-$ arzeneND 0.026 0.50 $-$ arzeneND 0.026 0.50 $-$ arzeneND 0.0027 0.0050 $-$ arzeneND 0.0027 0.0050 $-$ arcenthaneND 0.0027 0.0050 $-$ <t< td=""><td>,2-Dichloroethane (1,2-DCA)</td><td>ND</td><td>0.011</td><td>0.020</td><td></td><td></td><td></td></t<>	,2-Dichloroethane (1,2-DCA)	ND	0.011	0.020			
ND 0.12 0.50 $-$ hlioropropane ND 0.022 0.20 $-$ Dichloropropene ND 0.12 0.50 $-$ Dichloropropene ND 0.12 0.50 $-$ Dichloropropene ND 0.13 0.50 $-$ anzene ND 0.14 0.50 $-$ anzene ND 0.028 0.20 $-$ Interselleme ND 0.026 0.50 $-$ interselleme ND 0.026 0.50 $-$ interselleme ND 0.026 0.50 $-$ interselleme ND 0.027 0.0050 $ -$ <td>,1-Dichloroethene</td> <td>ND</td> <td>0.0036</td> <td>0.010</td> <td></td> <td></td> <td></td>	,1-Dichloroethene	ND	0.0036	0.010			
IntropropaneND0.0290.20-DichloropropeneND0.130.50- $3-$ DichloropropeneND0.200.50-anzeneND0.140.50-anzeneND0.152.0-anzeneND0.162.0-anzeneND0.162.0-anzeneND0.162.0-anzeneND0.0280.20-anzeneND0.0140.020-anzeneND0.0280.20-anzeneND0.0260.20-anzeneND0.0260.20-anzeneND0.0260.20-anzeneND0.0270.0050-anzeneND0.0270.0050-anzeneND0.0272.52.5anzene232.425anzene2.42.52.5	rans-1,2-Dichloroethene	ND	0.12	0.50			
Dichloropropene ND 0.13 0.50 - $3-Dichloropropene$ ND 0.20 0.50 - $3-Dichloropropene$ ND 0.14 0.50 - $3-Dichloropropene$ ND 0.75 2.0 - $3-Dichloropropene$ ND 0.14 0.50 - $3-Dichloropropene$ ND 0.028 0.020 - $3-Dichloropropene ND 0.028 0.20 - 3-Dichloropropene ND 0.030 0.50 - - 3-Dichloropropene ND 0.030 0.50 - - 3-Dichloropropene ND 0.030 0.50 - - 3-Dichloropropene ND 0.027 0.0050 - - 3-D$,2-Dichloropropane	ND	0.029	0.20		1	1
x3-DichloropropeneND0.200.50-anzeneND0.140.50-anzeneND0.752.0-ane chlorideND0.762.0-ane chlorideND0.162.0-ane chlorideND0.162.0-ane chlorideND0.0280.20-ane chloroethaneND0.0960.50-ane chloroethaneND0.140.50-ane chloroethaneND0.0260.20-ane chloroethaneND0.0260.20-ane chloroethaneND0.0300.50-ane chloroethaneND0.0270.0050-ane chloroethaneND0.00270.0050-ane chloroethaneND0.0272.0050-ane chloroethaneND0.0272.0050-ane chloroethaneND232524ane chloroethane232.42.5	is-1,3-Dichloropropene	ND	0.13	0.50		1	1
nzeneND0.140.50-ene chlorideND0.752.0-are chlorideND0.162.0-are chlorideND0.162.0-are chlorideND0.0180.020-are chlorideND0.0280.20-are chlorideND0.0260.50-iloroethaneND0.0260.20-richloroethaneND0.0260.20-roetheneND0.0300.50-rofluoromethaneND0.00270.0050-norideND0.00270.0050-ate Recovery23252525e-d8252.42.52.5	ans-1,3-Dichloropropene	ND	0.20	0.50		1	1
ene chloride ND 0.75 2.0 - ND ND 0.16 2.0 - a ND 0.16 2.0 - - Intrachluroethane ND 0.16 2.0 - - ND ND 0.028 0.20 - - Intrachluroethane ND 0.096 0.50 - - e ND 0.096 0.50 - - richloroethane ND 0.026 0.20 - - roethene ND 0.030 0.50 - - rofluoromethane ND 0.13 0.50 - - noride ND 0.0027 0.0050 - - sedward 23 25 25 25 25 25 e-d8 2.4 2.5 2.5 2.5 2.5	thylbenzene	ND	0.14	0.50		ı	
3ND0.162.0-IncreathaneND0.0180.020- a ND0.0280.20- a ND0.0260.20- a ND0.0260.50- a ND0.0260.20- a ND0.0260.20- a ND0.0260.20- a ND0.0260.20- a ND0.0270.0050- a ND0.00270.0050- a 23252525 2.4 2.52.5	1ethylene chloride	ND	0.75	2.0			
Tetrachloroethane ND 0.018 0.028 0.020 - Idroethene ND 0.028 0.20 - e ND 0.028 0.20 - richloroethane ND 0.14 0.50 - richloroethane ND 0.14 0.50 - richloroethane ND 0.026 0.20 - roethene ND 0.030 0.50 - rofluoromethane ND 0.13 0.50 - noride ND 0.0027 0.0050 - nofluoromethane 23 - - 25 e-d8 25 2.4 - 25	tyrene	ND	0.16	2.0			ı
Inforcethene ND 0.028 0.20 - e ND 0.096 0.096 0.50 - richloroethane ND 0.14 0.50 - - richloroethane ND 0.026 0.20 - - richloroethane ND 0.026 0.20 - - roethene ND 0.030 0.50 - - rofluoromethane ND 0.13 0.50 - - noride ND 0.0027 0.0050 - - - jate Recovery Z3 Z3 Z5 25<	1 2 2-Tetrachloroethane	כא	0.018	0 020			
e ND 0.096 0.50 - richloroethane ND 0.14 0.50 - richloroethane ND 0.026 0.20 - roethene ND 0.030 0.50 - roethene ND 0.030 0.50 - rofluoromethane ND 0.13 0.50 - norde ND 0.0027 0.0050 - norde ND 0.0027 0.0050 - sed8 23 25 25 25 25 2.4 2.5 2.5 2.5 2.5 2.5	etrachloroethene	ND	0.028	0.20		,	
richloroethane ND 0.14 0.50 - richloroethane ND 0.026 0.20 - roethene ND 0.030 0.50 - rofluoromethane ND 0.13 0.50 - nloride ND 0.0027 0.0050 - nloride ND 0.0027 0.0050 - iofluoromethane 23 25 25 25 e-d8 2.4 2.5 2.5	oluene	ND	0.096	0.50			
richloroethane ND 0.026 0.20 - roethene ND 0.030 0.50 - rofluoromethane ND 0.13 0.50 - nloride ND 0.0027 0.0050 - nloride ND 0.0027 0.0050 - influoromethane 23 25 25 25 e-d8 2.4 2.5 2.5	,1,1-Trichloroethane	ND	0.14	0.50			
ND 0.030 0.50 - rofluoromethane ND 0.13 0.50 - nloride ND 0.13 0.50 - nloride ND 0.0027 0.0050 - jate Recovery 23 25 25 25 e-d8 25 25 25 25 25 2.4 2.5 2.5 2.5 2.5 2.5	,1,2-Trichloroethane	ND	0.026	0.20			
rofluoromethane ND 0.13 0.50 - nloride ND 0.0027 0.0050 - jate Recovery 23 25 25 ofluoromethane 25 25 25 e-d8 2.4 2.5 2.5	richloroethene	ND	0.030	0.50			·
nloride ND 0.0027 0.0050 - jate Recovery - - - - ofluoromethane 23 25 25 25 e-d8 25 25 25 25 2.4 2.5 2.5 2.5	richlorofluoromethane	ND	0.13	0.50			·
Jate Recovery2325ofluoromethane2325e-d825252.42.5	'inyl chloride	ND	0.0027	0.0050			·
ofluoromethane 23 25 e-d8 25 25 2.4 2.5 2.5	urrogate Recovery						
e-d8 25 25 25 2.4 2.5	biromofluoromethane	23			25	93	70-130
2.4 2.5	oluene-d8	25			25	101	70-130
	-BFB	2.4			2.5	94	70-130

Page 12 of 27

A.

(Cont.)

CA ELAP 1644 • NELAP 4033ORELAP

McCampbell Analytical, Inc. "When Quality Counts"

Client: Date Prepared: 09/21/2023 Date Analyzed: 09/21/2023 Matrix: Instrument: Water GC38 PG&E Gateway Generating Station **Quality Control Report** Unit: **BatchID**: WorkOrder: Analytical Method: E624.1 **Extraction Method:** E624.1 µg/L 2309638 278590

Project: Semi-Annual Sampling (September 2023)	ing (September 2)	023)	Sample ID:	5	MB/LCS/LC	_CSD-278590	¥0	
	QC Su	mmary R	QC Summary Report for E624.1					
Analyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
	Result	Result	Val	%REC	%REC	Limits		Limit
Benzene	3.6	3.8	4	89	96	65-130	7.96	20
Bromodichloromethane	3.2	3.4 3.4	4	79	86	60-130	8.57	20
Bromoform	3.4	3.2	4	85	<u>\$</u>	70-130	4.50	20
Bromomethane	4.6	4.7	4	114	117	50-130	2.67	20
Carbon tetrachloride	3,5	3.8	4	80	94	70-130	6.17	20
Chlorobenzene	3.7	3.6	4	93	90	65-130	2.89	20
Chloroethane	4.0	4.4	4	100	110	60-140	9.33	20
Chloroform	3.4	3.7	4	85	92	70-130	8.08	20
Chloromethane	4.2	4.3	4	105	108	50-130	3.07	20
Dibromochloromethane	3.2	31	4	79	78	70-130	2.25	20
1,2-Dichlorobenzene	3.6	3.5	4	90	88 88	65-130	2.21	20
1,3-Dichlorobenzene	3.8	3.7	4	96	93	70-130	2.65	20
1,4-Dichlorobenzene	3.7	3.6	4	92	89	65-130	3.34	20
1,1-Dichloroethane	3.5	3.7	4	87	94	70-130	7.34	20
1,2-Dichloroethane (1,2-DCA)	3.5	3.8	4	87	94	70-130	7.54	20
1,1-Dichloroethene	3 3	3.5	4	82	88	60-130	7.05	20
trans-1,2-Dichloroethene	3.5	3.8	4	87	95	70-130	8.76	20
1,2-Dichloropropane	3.5	3.8	4	87	95	60-130	8.35	20
cis-1,3-Dichloropropene	3.5	3.4	4	88	85	60-130	3.47	20
trans-1,3-Dichloropropene	3.5	3.4	4	88	85	60-130	3.57	20
Ethylbenzene	3.4	3.3 3	4	85	83	60-130	1.95	20
Methylene chloride	3.4	3.7	4	85	93	60-130	9.22	20
1,1,2,2-Tetrachloroethane	3.3	3.2	4	82	81	60-130	1.92	20
Tetrachloroethene	37	د م	4	03	90	70-130	2 03	20
Toluene	3.7	3.6	4	91	89	70-130	2.58	20
1.1.1-Trichloroethane	3.4	3.7	4	86	93	70-130	7.67	20
1,1,2-Trichloroethane	3.6	3.5	4	06	87	70-130	2.51	20
Trichloroethene	3.5	3.8	4	87	94	65-130	7.78	20
Trichlorofluoromethane	3.5	3.7	4	86	93	60-130	7.10	20
Vinyl chloride	2.1	2.3	2	106	114	60-130	7.91	20
Surrogate Recovery								
Dibromofluoromethane	23	25	25	91	101	70-130	9.72	20
Toluene-d8	26	25	25	103	101	70-130	1.15	20
4-BFB	2.4	2	כ ת	20	1	70 100	2 1 2	00
		۲.4 ۲	P.0	96	96	10-130	N.04	5

R.

CA ELAP 1644 • NELAP 4033ORELAP

Η

		Quality Control Report	ontrol R	eport			
Client: Date Prepared: Date Analyzed: Instrument: Matrix: Project:		PG&E Gateway Generating Station 09/13/2023 09/13/2023 GC17 Water Semi-Annual Sampling (September 2023)	WorkOrc BatchID: Extractio Analytica Unit: Sample II	WorkOrder: BatchID: Extraction Method: Analytical Method: Unit: Sample ID:		2309638 277889 E625.1 E625.1 μg/L MB/LCS/LCSD-277889	
		QC Summary	Report for E625.1	3625.1			
Analyte		MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Acenaphthene		QN	0.0029	0.0050			
Acenaphthylene		QN	0.0018	0.0050			
Anthracene		ND	0.0020	0.0050			
Benzidine		QN	2.7	5.0			
Benzo (a) anthracene	ene	ND	0.020	0.050			
Benzo (a) pyrene		ON 1	0.0050	0.0050			
Benzo (c h i) nonantnene	lerie		50000	0.010			
Benzo (b, filioranthene	arie		0.0050	0.010			
Benzvl Alcohol		GN CN	0.0000	5.0
Bis (2-chloroethoxv) Methane	v) Methane	e qu	0.51	1.0	.		
Bis (2-chloroethyl) Ether	Ether	- QN	0.0050	0.0050			
Bis (2-chloroisopropyl) Ether	pyl) Ether	N	0.0049	0.010			
Bis (2-ethylhexyl) Adipate	Adipate	DN	0.79	1.0			
Bis (2-ethylhexyl) Phthalate	Phthalate	ND	0.13	0.25			
4-Bromophenyl Phenyl Ether	enyl Ether	ND	0.29	1.0			
Butylbenzyl Phthalate	ate	ND	0.081	0.25			
4-Chloroaniline		DN	0.0020	0.0050			
4-Chloro-3-methylphenol	ohenol	ND	0.59	1.0		ı	
2-Chloronaphthalene	ne	DN	0.56	1.0			
2-Chlorophenol		QN	0.036	0.050			
4-Chlorophenyl Phenyl Ether	enyl Ether	ND	0.49	1.0			
Carbazole		ND	0.42	1.0			
Chrysene		ND	0.0027	0.0050			
Dibenzo (a,h) anthracene	racene	ND	0.0052	0.010	ı	1	
n-Decane		ND	0.69	1.0			
Dibenzofuran		DN	0.0014	0.0050			
Di-n-butyl Phthalate	e	0.093,J	0.078	0.25			
1,2-Dichlorobenzene	ne	DN	0.53	1.0			
1,3-Dichlorobenzene	Je	ΠN	0.59	1.0			
1,4-Dichlorobenzene	Je	ΠN	0.44	1.0			
3,3-Dichlorobenzidine	ine	DN	0.0062	0.010			
2,4-Dichloropheno		ДN	9900.0	0.010			
Dietnyi Phthalate		ND	120.0	0:050			
2,4-Dimethylpheno	10	ΟN	0.53	1.0			
Dimethyl Phthalate		DN	0.0059	0.010			
4,6-Dinitro-2-methylphenol	/lphenol	ND	3.7	5.0			

CA ELAP 1644 • NELAP 40330RELAP (Cont.)

Page 14 of 27

	"When Quality Counts"	Counts"	www.urdnit	нцр.// w w лиссанроси.сон / Б-нин. наш © песанроси.сон	-IIIall. IIIalle III	запроеп.сош	
		Quality Control Report	ntrol R	eport			
Client:	PG&E Gateway Generating Station	erating Station	Work	WorkOrder:	2309638		
Date Prepared:	09/13/2023)	BatchID:	ID:	277889		
Date Analyzed:	09/13/2023		Extra	Extraction Method:	E625.1		
Instrument:	GC17		Analy	Analytical Method:			
Matrix:	Water		Unit:		µg/L		
Project:	Semi-Annual Sampling (September 2023)	ng (September 2023)	Samp	Sample ID:	MB/LCS/	MB/LCS/LCSD-277889	
		QC Summary]	Report for E625.1	E625.1			
Analyte		MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
2.4-Dinitrotoluene		QN	0.027	0.050		.	
2,6-Dinitrotoluene		- Q	0.030	0.050	.		.
Di-n-octyl Phthalate		DN	1.2	2.5			
1,2-Diphenylhydrazine	ine	ND	0.42	1.0			
Fluoranthene		DN	0.0038	0.010			
Fluorene		Ŋ	0.0018	0.010			
Hexachlorobenzene		ON D	0.0017	0.0050			
Hexachiorobutatiene Hexachlorocyclonomiono	le atodiono		0.001	0.000			
Hexachloroethane	Iraurerie		0.004	0.00			
Indeno (1,2,3-cd) pyrene	vrene		0.0070	0.010			
1-Methylnaphthalene	e	QN	0.0021	0.0050			
Isophorone		DN	0.45	1.0			
2-Methylnaphthalene	e	ND	0.0022	0.0050			
2-Methylphenol (o-Cresol)	Cresol)	ND	0.63	1.0			
3 & 4-Methylphenol (m,p-Cresol)	(m,p-Cresol)	DN	0.70	1.0			
Naphthalene		ON 1	0.0063	0.010			
2-Nitroaniline		ON ON	3.0	0.0 F 0			
3-INITIOANIINE 4-Nitroaniline			0.0	0.0	.		
Nitrohenzene			2:4 0.61	0.0	. .		
2-Nitronhanol			0.0	0	
4-Nitrophenol		2 ON	3.6	5.0			
N-Nitrosodimethylamine	mine	QN	3.6	5.0			
N-Nitrosodiphenylamine	mine	ND	0.36	1.0			
N-Nitrosodi-n-propylamine	lamine	QN	0.60	1.0			
n-Octadecane		QN	0.54	1.0			
Pentachlorophenol		DN	0.16	0.25			
Phenanthrene		DN	0.0036	0.0050			
Phenol		DN	0.019	0.040			
Pyrene		DN	0.0028	0.0050			
Pyridine		DN	0.89	1.0			
1,2,4-1 richlorobenzene	ene	DN	0.52	0.1			
2,4,5-1 richiorophenol	0	ŪN	0.0064	0.010			
7 4 6- Trichlorohanol	DI I	DN	0.0053	0.010			

McCampbell Analytical, Inc. "When وسمانته Counts"

PG&E Gateway Generating Station

Client:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

8896087

Quality Control Report

WorkOrder:

	11	1	1111			
	1.11					
32-113	26	9			6.4.9	terphenyl-d14
48-146 63-112	67 52,F3	ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ			3.3 3.3	2-Fluorobiphenyl 2,4,6-Tribromophenol
021-130 20-130	28'E3	9			۲.۲ 3.0	Phenol-d5 Nitrobenzene-d5
50-103	45	9			۲.۲	S-Fluorophenol
						Surrogate Recovery
SS 8M Stimits	288% ЖВ 32	I ^B V SPK	18	שנר	BM Result	ətylsnA
			E625.1	Report for	QC Summary	
	C2D-511886	WB\FC3\I h≋∖ך	 Pie ID:	inU ns2	ing (September 2023)	Matrix: Water Project: Semi-Annual Sampl
			lytical Metho			Tick GC17
		od: E625.1	dt9M noit9s:	цхд		Date Analyzed: 09/13/2023
		688 <i>LL</i> Z	ंतापः	pts.a.		Date Prepared: 09/13/2023

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.inccampbell.com/ E-mail: main@mccampbell.com

Quality Control Report

Client:	PG&E Gateway Generating Station
Date Prepared: 09/13/2023	09/13/2023
Date Analyzed: 09/13/2023	09/13/2023
Instrument:	GC17
Matrix:	Water
Project:	Semi-Annual Sampling (September 2023)

2309638	277889	hod: E625.1	hod: E625.1	μg/L	MB/LCS/LCSD-277889
WorkOrder:	BatchID:	Extraction Method: E625.1	Analytical Method: E625.1	Unit:	Sample ID:

			CONTRACT TO LOOK A LOUIS AND A LOOK AND A LO					1
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Acenaphthene	0.20	0.20	0.25	79	80	60-132	1.06	25
Acenaphthylene	0.19	0.20	0.25	76	79	54-126	3.62	25
Anthracene	0.22	0.24	0.25	86	96	60-130	10.7	25
Benzidine	12	14	25	48	56	20-130	14.8	25
Benzo (a) anthracene	0.24	0.27	0.25	95	107	60-130	11.9	25
Benzo (a) pyrene	0.23	0.26	0.25	91	104	60-130	13.4	25
Benzo (b) fluoranthene	0.22	0.26	0.25	68	103	60-130	14.5	25
Benzo (g,h,i) perylene	0.21	0.25	0.25	84	98	50-130	16.1	25
Benzo (k) fluoranthene	0.28	0.31	0.25	112	126	60-130	11.5	25
Benzyl Alcohol	14	14	25	58,F5	57,F5	60-130	1.19	25
Bis (2-chloroethoxy) Methane	3.7	3.7	5	74	74	65-130	0.117	25
Bis (2-chloroethyl) Ether	0.18	0.17	0.25	70	67	60-130	4.41	25
Bis (2-chloroisopropyl) Ether	0.17	0.17	0.25	70	67	63-139	3.56	25
Bis (2-ethylhexyl) Adipate	4.9	5.4	5	97	108	60-130	10.6	25
Bis (2-ethylhexyl) Phthalate	0.34	0.39	0.25	136,F5	156,F5	60-130	13.1	25
4-Bromophenyl Phenyl Ether	4.2	4.5	5	84	06	65-120	7.25	25
Butylbenzyl Phthalate	0.29	0.33	0.25	116	133	60-140	14.2	25
4-Chloroaniline	0.18	0.19	0.25	73	75	60-130	3.45	25
4-Chloro-3-methylphenol	4.1	4.5	5	82	89	65-130	8.21	25
2-Chloronaphthalene	3.7	3.7	ъ	73	74	65-120	0.695	25
2-Chlorophenol	0.16	0.16	0.25	99	64	60-130	2.57	25
4-Chlorophenyl Phenyl Ether	4.2	4.5	5	84	06	65-130	6.92	25
Carbazole	4.8	5.5	5	97	109	70-130	12.4	25
Chrysene	0.23	0.25	0.25	92	102	70-130	10.0	25
Dibenzo (a,h) anthracene	0.20	0.23	0.25	5	91	50-130	14.4	25
n-Decane	2.4	2.3	5	49	46	30-130	5.85	25
Dibenzofuran	0.20	0.21	0.25	80	84	65-130	4.33	25
Di-n-butyl Phthalate	0.30	0.34	0.25	121	136,F5	60-130	11.6	25
1,2-Dichlorobenzene	3.3	3.1	5	65	63	60-130	3.48	25
1,3-Dichlorobenzene	3.2	3.1	5	64	61	60-130	4.64	25
1,4-Dichlorobenzene	3.2	3.0	5	63	60	60-130	5.28	25
3,3-Dichlorobenzidine	0.20	0.24	0.25	81	94	60-130	14.6	25
2,4-Dichlorophenol	0.18	0.18	62.0	۲1	71	53-122	1.87	G Z
Diethyl Phthalate	0.23	62.0	62.0	93	66	65-130	6.32	G Z
2,4-Dimethylphenol	3.3	3.7	5	67	15	60-130	11.5	25
Dimethyl Phthalate	0.21	0.21	0.25	83	84	60-130	1.50	25
4,6-Dinitro-2-methylphenol	19	23	25	78	91	60-130	15.5	25

(Cont.) CA ELAP 1644 • NELAP 4033ORELAP

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/ E-mail: main@mccampbell.com

Quality Control Report

Client: PG&E Gate Date Prepared: 09/13/2023 Date Analyzed: 09/13/2023 Instrument: GC17 Matrix: Water	PG&E Gateway Generating Station 09/13/2023 09/13/2023 GC17 Water
rrojecu:	Semi-Annual Sampung (September 2023)

2309638	277889	l: E625.1	: E625.1	μg/L	MB/LCS/LCSD-277889
WorkOrder:	BatchID:	Extraction Method: E625.1	Analytical Method: E625.1	Unit:	Sample ID:

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
2,4-Dinitrotoluene	0.22	0.25	0.25	87	66	70-130	12.5	25
2,6-Dinitrotoluene	0.21	0.23	0.25	84	06	68-137	7.39	25
Di-n-octyl Phthalate	5.2	5.8	ъ	104	116	70-130	10.8	25
1,2-Diphenylhydrazine	3.9	4.1	ъ	77	82	65-130	6.38	25
Fluoranthene	0.26	0.30	0.25	103	119	65-130	14.9	25
Fluorene	0.22	0.24	0.25	89	96	70-120	7.98	25
Hexachlorobenzene	0.20	0.22	0.25	81	87	60-130	7.02	25
Hexachlorobutadiene	0.18	0.17	0.25	71	68	68-130	4.99	25
Hexachlorocyclopentadiene	13	13	25	52	51	50-130	1.67	25
Hexachloroethane	0.16	0.16	0.25	64	62	55-120	2.62	25
Indeno (1,2,3-cd) pyrene	0.20	0.24	0.25	82	97	50-130	16.8	25
1-Methylnaphthalene	0.19	0.20	0.25	77	80	65-130	2.79	25
Isophorone	3.8	3.8	5	75	75	52-130	0.0453	25
2-Methylnaphthalene	0.20	0.20	0.25	78	80	60-130	2.59	25
2-Methylphenol (o-Cresol)	3.6	3.5	5	71	69	60-130	2.65	25
3 & 4-Methylphenol (m,p-Cresol)	3.0	3.2	5	60	64	60-130	7.25	25
Naphthalene	0.17	0.20	0.25	69,F5	82	70-130	17.0	25
2-Nitroaniline	20	22	25	80	88	65-130	9.75	25
3-Nitroaniline	25	29	25	66	117	70-140	16.0	25
4-Nitroaniline	24	28	25	97	113	70-130	15.7	25
Nitrobenzene	3.7	3.6	5	74	73	60-130	1.94	25
2-Nitrophenol	19	20	25	78	78	70-130	1.13	25
4-Nitrophenol	9.3	11	25	37	45	30-130	19.5	25
N-Nitrosodimethylamine	6.6	9.6	25	40	38	30-130	2.65	25
N-Nitrosodiphenylamine	4.3	4.6	5	85	92	65-130	7.91	25
N-Nitrosodi-n-propylamine	3.4	3.3	5	67	66	59-130	2.44	25
n-Octadecane	4.1	4.2	5	81	83	60-130	2.24	25
Pentachlorophenol	0.89	1.0	1.25	71	82	60-130	14.9	25
Phenanthrene	0.21	0.23	0.25	85	92	65-120	8.53	25
Phenol	0.32	0.33	-	32,F5	33,F5	48-120	1.67	25
Pyrene	0.25	0.28	0.25	101	110	70-120	9.28	25
Pyridine	1.4	1.2	5	29,F5	24,F5	30-130	20.0	25
1,2,4-1 richlorobenzene	3.4	3.3	ç	89	<u>ç</u> 9	57-130	4.33	9 7
2,4,5-1 richlorophenol	0.20	12.0	CZ:0	/8	68	05-130	8.34	9Z
2.4.6.1 richlorophonol		, o .	0.25	60				

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

	ОС Зиттагу Керог	for E625.1		
Project:	Semi-Annual Sampling (September 2023)	Sample ID:	MB/LCS/ICSD-277889	
:xirtsM	Water	Unit: :tinU	រ្ ភ្រូង	
:1nstrument:	CIJ	:bodisM IssüylsnA	Е625.1	
:bəzylanA ətaU	60/13/2023	Extraction Method:	Е955.1	
Date Prepared:	60/13/2023	BatchID:	688 <i>L</i> LZ	
:tnsil)	PG&E Gateway Generating Station	WorkOrder:	8596052	

Analyte CSD CSD SPARE CSD SPARE CSD CSD CSD RPD RPD St-florophbenol 1.9 2.9 5.9 5.9 5.9 5.9 5.7 5.13 5.713 6.713 6.70 2.55 2.57					V			
Analyte LCS LCSD SPM SPM RPD RP								
Analyte LCS LCSD SPM RFC LCSD SPM RPD R	52	29.9 641-84	78	62	S	4.2	3.9	2,4,6-Tribromophenol
Analyte LCS LCSD SPK MREC MREC <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Analyte CCS LCSD SPK LCS LCSD RPD RPD LCS LCSD RPD RPD SPC Limits Limit		79.2 20-120	50	58				
Analyte LCS LCSD SPK LCS LCSD LCSD RPD RPD RPD RPD RPD RPD RPD RPD RPD RP	52	3.38	40	68	9	2.0	6.1	
Analyte LCS LCSD SPK LCS LCSD LCS/LCSD RPD RPD								Surrogate Recovery
CC 2000001 Reportion Pors.1	999 Aimi1	Limits LCS/ICSD RPD	жес гсгр	rcs	ЯЧС	гсер	SOT	əזyısnA

McCampbell Analytico	al, Inc.				N-OF-CUS er: 2309638		RECORD	Pag	e 1 of 1
(925) 252-9262	U WaterTrax		EDF	EQuIS Detecti	Dry-Weight	Email Excel	[HardCopy	ThirdParty	J-flag
Report to:					Bill to:	-	Requ	lested TAT:	5 days;
Angel Espiritu		abe4@pge.com			Angel Espiritu				
PG&E Gateway Generating Station 3225 Wilbur Avenue	cc/3rd Party: t PO:	iwy@pge.com; n	nsfg@pge.co	om;	PG&E Gateway 3225 Wilbur Ave	0		e Received:	09/12/2023
Antioch, CA 94509 (925) 459-7212 FAX:	Project:	Semi-Annual San	npling (Sept	ember 2023)	Antioch, CA 945	609	Date	e Logged:	09/12/2023
-					1	Reques	ted Tests (See leg	gend below)	
Lab ID Clie	entSampID	· · · · · ·	Matrix (Collection Date	Hold 1 2	3 4	5 6 7	89	10 11 12
2309638-001	E-001		Water 10	9/12/2023 11:35		BICI	Δ []	1 7 7	1-1-1-

Test Legend:

1	608_W
5	PRDisposal Fee
9	
9	

2	624_W	-
6		
40		_
10		

624ACR+2CEVE_W

4	625_SCSM_W	
8		-
12		-

Prepared by: A	drianna Cardoza
----------------	-----------------

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

M		bell Analytical, Inc. Then Quality Counts''			Toll I	Free Telep	w Pass Road, Pittsburg, 0 hone: (877) 252-9262 / H ampbell.com / E-mail: ma	Fax: (925) 2:	52-9269		
		W	ORK ORI	DER SUM	MARY						
Client Name: PG&E G. Client Contact: Angel Esp		ENERATING STATION	Project:	Semi-Annual	Sampling (S	eptemb	ber 2023)			order: 230 Level: LE	
Contact's Email: abe4@pg			Comments	:					•	gged: 9/11	
	U Water		Exce	el EQu	IS En	nail	HardCopy	Third	dParty 🕞 J-flag	9	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head Space	Dry- Weight	Collection Date t & Time	ТАТ	Test Due Date	Sediment Content	Hold Sub Out
001A E-001	Water	E624.1 (VOCs) <1,1,1-Trichloroethane, 1,1,2,2-Tetrachloroethane, 1,1,2- Trichloroethane, 1,1-Dichloroethane, 1,1 Dichloroethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane (1,2-DCA), 1,2- Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Bromoform, Bromomethane, Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform, Chloromethane, cis-1,3- Dichloropropene, Dibromochloromethane, Ethylbenzene, Methylene chloride, Tetrachloroethene, Toluene, trans-1,2-Dichloroethene, trans 1,3-Dichloropropene, Trichloroethene, Trichlorofluoromethane, Vinyl chloridez		VOA w/ HCl			9/12/2023 11:35	5 days	9/19/2023	Present	
001B E-001	Water	E624.1 (ACRO, ACRY, & 2-CEVE) <2 Chloroethyl Vinyl Ether, Acrolein (Propenal), Acrylonitrile>	- 2	VOA, Unpres	00		9/12/2023 11:35	5 days	9/19/2023	Present	

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Ma		bell Analytical, Inc. Then Quality Counts'		-	Toll Free	Willow Pass Road, Pittsburg, Telephone: (877) 252-9262 / .mccampbell.com / E-mail: m	Fax: (925) 2	52-9269		
1.4.5		W	ORK OR	DER SUM	MARY					
Client Contact: Angel Esp	iritu	SENERATING STATION	Project:		Sampling (Sept	ember 2023)		QC	Order: 230 Level: LE	VEL 2
Contact's Email: abe4@pge	e.com	Trax CLIP DED	Comment		IS Email	HardCopy			gged: 9/1	2/2023
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head D Space We		TAT	Test Due Date	Sediment Content	Hold Sub Out
001C E-001	Water	E625.1 (SVOCs) <1,2,4- Trichlorobenzene, 1,2-Dichlorobenzen 1,2-Diphenylhydrazine, 1,3- Dichlorobenzene, 1,4-Dichlorobenzene 2,4,6-Trichlorophenol, 2,4- Dichlorophenol, 2,4-Dimethylphenol, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 2- Chloronaphthalene, 2-Chlorophenol, 2 Nitrophenol, 3,3-Dichlorobenzidine, 4 Dinitro-2-methylphenol, 4-Bromophen Phenyl Ether, 4-Chloro-3-methylphenol 4-Chlorophenyl Phenyl Ether, 4- Nitrophenol, Acenaphthene, Acenaphthylene, Anthracene, Benzidir Benzo (a) anthracene, Benzo (a) pyren Benzo (b) fluoranthene, Benzo (g,h,i) perylene, Benzo (k) fluoranthene, Bis (c chloroethoxy) Methane, Bis (2- chloroisopropyl) Ether, Bis (2- ethylhexyl) Phthalate, Butylbenzyl Phthalate, Chrysene, Dibenzo (a,h)	-, -, -, -, -, -, -, -, -, -, -, -, -, -	ILA Narrow Mout Unpres	h, 🔲 🔲 [9/12/2023 11:35	5 days	9/19/2023	Present	

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Mc	Campbell Ar ''When Quality	alytical, Inc. Counts''	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com									
		WC	ORK ORI	DER SUM	MARY							
Client Name: PG&E GAT Client Contact: Angel Espir	TEWAY GENERATIN	NG STATION	Project:	Semi-Annual S	Sampling (Septemb	per 2023)			rder: 23096 Level: LEVE			
Contact's Email: abe4@pge.c	com		Comments	:				Date Lo	gged: 9/12/2	023		
	WaterTrax		Exce	el EQui	S Email	HardCopy		J-flag	1			
LabID ClientSampID	Phthalate, D octyl Phthal Hexachlorol Hexachlorol Hexachlorol Hexachlorol pyrene, Isop Nitrobenzer N-Nitrosodi Nitrosodiph	Diethyl Phthalate, Dimethyl Di-n-butyl Phthalate, Di-n- ate, Fluoranthene, Fluorene, benzene, butadiene, cyclopentadiene, ethane, Indeno (1,2,3-cd) ohorone, Naphthalene, he, N-Nitrosodimethylamine, -n-propylamine, N- enylamine, phenol, Phenanthrene,	Containers /Composites	Bottle & Preservative	U** Head Dry- Space Weigh	Collection Date t & Time	TAT Tes	t Due Date	Sediment Ho Content	old Sul Ou		

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Mo		bell Analytic	al, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com										
			W	ORK OR	DER SUM	MARY								
Client Name: PG&E GA Client Contact: Angel Esp		ENERATING STAT	ION	Project:	Semi-Annual	Sampling (Se	eptembe	er 2023)			order: 230 Level: LE			
Contact's Email: abe4@pge	.com			Comment	s:					Date Lo	gged: 9/1	2/2023		
	Uater Water	Trax CLIP		Exc	el EQu	IS Err	nail	EHardCopy	Third	Party	9	-		
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative		Dry- Weight	Collection Date & Time	ТАТ	Test Due Date	Sediment Content	Hold Sul Ou		
001D E-001	Water	E608.3 (OC Pesticides- Clean-up) <a-bhc_1, a<br="">Aldrin_1, Aroclor1016 Aroclor1221_1, Aroclo Aroclor1242_1, Aroclo BHC_1, Chlordane (Te BHC_1, Dieldrin_1, Er Endosulfan II_1, Endos Endrin aldehyde_1, End BHC_1, Heptachlor ep Heptachlor_1, p,p-DDI p,p-DDT_1, PCBs, tota Toxaphene_1></a-bhc_1,>	-Chlordane_1, 1, 1232_1, 1248_1, 1260_1, b- chnical)_1, d- dosulfan I_1, ulfan sulfate_1, lrin_1, g- oxide_1, 0_1, p,p-DDE_1,	1	ILA Narrow Mout Unpres	h, 🔲 🔲		9/12/2023 11:35	5 days	9/19/2023	Present			

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

																								22	30) (1638	
		Web	site: y		WILLO TSBURG, npbell.com	W PAS CA 94	SS ROAD 1565-1701 1ail: mai)	cam	pbell.	.com						N ARO Fracker	UND 7	FIM	E PD	ם Ri F ם,	USH 2 Excessample] 24 hr e i	ן 	⊐ 48 H Vrit	R te (
	Report To	: Angel Es	piritu	1		B	lill To: I	PG&I	E Ga	tewa	y						Analys	is Reque			Τ					ma		
	Company	: PG&E G	atewa	ay Genera	ting Sta	tion										ic		е	Π	Τ					Π	Τ		
	Tel: (925) Project N Project Lo	be4@pge.co) 522-7838, ame: Sem ocation: Co	(510) ti-An mbin) 861-1597 nual Sam ied Site Fl	(Cell) pling (ow	F Sept	ax: ()	123)						2A 624-Volatile Organic s)	TTO (USEPA 625- Semi Valatile Organic Compounds)	PA 608 - Organochlorine nd PCBs)										
	Sampler S	Signature: 1	Composite IV	SAMP		San		Mat	trix	ME	ETHO	DD PI	RES	ERV	ED	TTO (USEPA Compounds)	TTO (USE) Organic Co	TTO (USEPA 6 Pesticides and P										
	SAMPLE ID	LOCATION / Field Point Name	Sample Type Com /Grah	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	H ₅ SO,	NaOH	HCL	HNO3	Other													
۰.	E-001		0	9/12/23	11:35	_	43 ml VOA	X			X		Х			Х												
*	E-001		G	9/12/23	11:35	2	43 ml VOA	Х			X	<u> </u>				х			\square				\rightarrow	╞	\square	\downarrow		
•	E-001 E-001		G	9/12/23		1	1L Amb 1L	X X		X X	X	Ŀ		\square			Х	x	Н	_				╞	\square	+		
·	E-001		G	9/12/23	<u>11:35</u>		Amb	^			1	<u> </u>		\vdash				^		╉			\rightarrow	┢	┝┼	+		
											┢	╞──		\square			<u> </u>		╞┤	+			-	┢		+		
														\Box	_				П						П			
																			┝					╞	⊢⊦	+		
							_			\vdash	╋		-						$\left \cdot \right $	╋				╀	┝╌╟	+		
																			\square									
	-																											
	Relinquishe Relinquishe	d By:		Date: 9/12/23 Date:	Time:	Rece	ived By	ur		Ŷ) /~	7				HEAD DECHI APPRC	CONDITIC SPACE AB LORINATE OPRIATE C RVED IN I	SENT ED IN LAE CONTAIN	ERS_		Y			TT Ap	O (E) O (E)	PA 6 PA 6 lix A	08), TTO (EPA 6 25) see ATTACH and analyze only	IED
	Relinquishe	a By:		Date:	Time:	Reco	eived By:											VOAS ()&G	ME	TALS	OTHE	R					

APPENDIX A

District Local Discharge Limits include a parameter called Total Toxic Organics (TTO). The required analytical methods for TTO analysis are listed in 40 CFR Part 136 and include the following EPA methods: 624,625, 608, and 1613, respectively. Unless specifically required, EPA method 1613 for dioxins is not mandatory for routine TTO analysis. The constituents with concentrations greater than the minimum limit/reporting limit must be added together to determine compliance with the District's Local Discharge Limit for TTO of 2.0 mg/L. The following is a list of the constituents of TTO:

EPA Method 624 Compounds

Acrolein Acrylonitrile Benzene Bronnodichloromethane (Dichlorobromomethane) Bromform Brommomethane (Methyl Bromide) Carbon tetrachloride (Tetrachloromethane) Chlorobenzene Chloroethane (Ethyl Chloride) 2-Chloroethyl vinyl ether Chloromethane (Methyl Chloride) Dibromochloromethane) Chloromethane (Methyl Chloride) Dibromochloromethane (Chlorodibromomethane) 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 4-Dichlorobenzene 1, 1-Dichloroethane 1, 1-Dichloroethane 1, 1-Dichloroethane 1, 2-Dichloropropane cis-1, 3-Dichloropropene trans-1, 2-Dichloropropene trans-1, 3-Dichloropropene Ethylbenzene Methylene Chloride (Dichloromethane) 1, 1, 2, 2, -Tetrachloroethane Tetrachloroethene (PCE) Toluene 1, 1, 1-Trichloreothane 1, 1, 2-Trichloroethane Trichloroethene (TCE) Trichlorofluoromethane Vinyl chloride (Chloroethylene)

EPA Method 625 Compounds

Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) anthracene Benzo (b) Iluoranthene Benzo (c, h, i) perylene Benzo (c, h, i) perylene Benzyl butyl phthalate bis (2-Chloroethoxy) methane bis (2-Chloroethoxy) methane bis (2-Chloroethyl) ether bis (2-Chloroethyl) ether bis (2-Chloroethyl) ether bis (2-Chloroethyl) phthalate 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 2-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether Chlorophenyl phenyl ether Chrysene Dibenzo (a, h) anthracene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 3, 3'-Dichlorobenzidine 2. 4-Dichlorophenol Diethyl phthalate 2.4-Dimethylphenol Dimethylphthalate Di-n-butylphthalate 2. 4-Dimitrophenol 2. 4-Dimitrophenol 2. 6-Dimitrophenol 6-Dinitrotoluene Di-n-octylphthalate 1.2-Diphenylhydrazine/Azo Fluoranthene Fluorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene Isophorone 2-Methyl-4, 6-dinitrophenol Naphthalene Nifrobenzene 2-Nitrophenol 4-Nitrophenol N-Nitrosodimethylamine N-Nitrosodin-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene 1, 2, 4-Trichlorobenzene 2, 4, 6-Trichlorophenol

EPA Method 608 Compounds

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4, 4'-DDD 4, 4'-DDE 4,4'DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor Heptachlor epoxide PCB 1016 PCB 1221 PCB 1232 PCB 1232 PCB 1242 PCB 1242 PCB 1248 PCB 1254 PCB 1254 **PCB 1260** Toxaphene

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Semi-Annual Sampling (September 2023)			Date and Time Received: Date Logged:	9/12/2023 13:45 9/12/2023
				Received by:	Valerie Alfaro
WorkOrder №: Carrier:	2309638 Matrix: <u>Water</u> <u>Client Drop-In</u>			Logged by:	Adrianna Cardoza
	Chain o	f Custod	v (COC) In	formation	
Chain of custody		Yes		No 🗔	
		Yes			
	r signed when relinquished and received?			Same -	
	agrees with sample labels?	Yes		No 🔲	
	d by Client on COC?	Yes		No 🔲	
	f collection noted by Client on COC?	Yes			
Sampler's name	noted on COC?	Yes	M	No 🔲	
COC agrees with	n Quote?	Yes		No 🗌	NA 🛃
	San	nple Rece	eipt Inform	nation	
Custody seals in	tact on shipping container/cooler?	Yes		No 🔲	NA 🖃
Custody seals in	tact on sample bottles?	Yes		No 🔲	NA 🔲
Shipping contain	er/cooler in good condition?	Yes		No 🔲	
Samples in prop	er containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes	2	No 🔲	
	Sample Preserve	ation and	Hold Tim	e (HT) Information	
All samples rece	ived within holding time?	Yes		No 🔲	
Samples Receive	ed on Ice?	Yes		No 🔲	
	(Ice T	ype: WE	TICE)		
Sample/Temp Bl	ank temperature		Temp:	2.7°C	
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	
Sample labels ch	necked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No	NA 💽
UCMR Samples:					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🛃
Free Chlorine t [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🔲	NA 🖬

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509 (925) 522-7801

January 11, 2024

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference: Pacific Gas and Electric Company - Gateway Generating Station DD Industrial Wastewater Discharge Permit Permit Number: 0208841-C

Subject: Quarterly Self-Monitoring Report (For Period Ending December 31, 2023)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending December 31, 2023, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are: Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7&38, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Tim Wisdom Senior Plant Manager

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report For the reporting period ending in December 31, 2023

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2027.

The report includes the following attachments:

Attachment 1:	Certification Statement
Attachment 2:	Industrial User Compliance Report
Attachment 3:	Industrial Monitoring Report Summary
Attachment 4:	Discharge Flow Data
Attachment 5:	Monthly Flow Data
Attachment 6:	WSAC Operating Hours Report
Attachment 7:	Cycles of Concentration
Attachment 8:	Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business:	PG&E Gateway Generating Station
Address:	3225 Wilbur Avenue, Antioch, CA. 94509
Phone:	<u>925-522-7805</u>
Period Covered:	Period ending: December 31, 2023

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: (The original copy submitted to DDSD was signed by Tim)

Date:

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn:Jason YunPretreatmentFax # (925)756-1961Phone: (925)756-1929From:Tim WisdomCompany:Pacific Gas and Electric Company – Gateway Generating StationPeriod Covered:Period ending December 31, 2023

Industrial User Checklist for self –monitoring reports, as specified by the wastewater discharge permit issued by Delta Diablo Sanitation District:

Self-monitoring reports

- $\underline{\sqrt{}}$ Flow discharge summary (Discharge Permit Section E.1.h.) (See Attachment 4)
- ____Calibration of flow meters, as required. (Section E.1.g.) (See Attachment 9)
- <u>√</u> Monitoring results- <u>All</u> required tests completed, results reviewed, results included, QA/QC, chain of custody (section F.7.) (See Attachment 8)
- $\underline{\sqrt{}}$ Certification statement included (See Attachment 1)

Violations (if applicable)

- _____All wastewater discharge exceedance are reported during this reporting period
- _ Delta Diablo was contacted. (See Additional Notes below)
- A follow-up report on characterization re-sampling was submitted on
- Corrective actions to resolve violation:
- Other violations i.e. Reporting, spills to sewer, or prohibited discharges

Additional Notes:

None

Significant changes

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

U NAME :	PG&E Gateway Ge			ID #:	0208841-C				SIC:	<u>4911</u>
DDRESS:	3225 Wilbur Aven	ue		TYPE:	Power Generation Pl	ant				
ITY :	Antioch									
		DATE	12/4/2023	12/5/2023	12/5/2023					
		TYPE	G	G	C24					
		STATION	E-001	E-001	E-001					
		SMP.BY	Muskan	Muskan	Muskan					
		PURPOSE	Compliance	Compliance	Compliance					
			Quarterly (Q4)	Quarterly (Q4)	Quarterly (Q4)					
		Units:	mg/L							
ARAMETERS		LIMITS		-			-	-		
	V, DAILY (gal)	51,120								
FLOW	, MONTH (gal)									
	рН	6-10 s.u.	8.95							
	BOD				ND(<2.0)					
	COD				36.0					
	TDS				244.0					
	TSS				1.6					
	Arsenic	0.15			0.00034					
(Cadmium	0.1	1		ND(<0.00005)					
C	hromium	0.5			0.00029					
	Copper	0.5			0.0050					
	Iron				0.130					
	Lead	0.5			ND(<0.00019)					
	Mercury	0.003			ND(<0.00013)					
Mo	olybdenum		1		0.023					
	Nickel	0.5	1		0.00120					
9	Selenium	0.25			ND(<0.00018)					
	Silver	0.2	i i	-	ND(<0.000051)					
	Zinc	1.00			0.030					
	Cyanide	0.2		0.024						
	Phenol	1.00		ND(<0.0015)						
A	Ammonia	200		96						
	1in (E1664A w/ Silica)	100	ND(<1.0)	ND(<1.1)						
O&G Anir	mal/Vegetable Oil	300	ND(<2.4)	ND(<2.4)						
	O EPA 608									
	O EPA 624									
	O EPA 625				1 1					
	TTO	2.00		1	1 1		1			
	Sulfide			1	1 1					
	Sulfate			1	+ +					
	-Detect, NSD = No Structures	Detected, MFL = Millio	ons of Fibers per Liter					1		

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

October 2023-December 2023

Γ		Industria	l Flow			Sanitary	Flow		
			Did it ever			Time Meter	Did it ever		
	Instantaneous	Time Over	go over	Daily Total	Instantaneous	went Bad	go over	Daily Total	Site Total
Date	Flow (GPM)	35.5 GPM	35.5 GPM	(Gallons)	Flow (GPM)	Quality	35.5 GPM	(Gallons)	(Gallons)
	FIOW (GPIVI)	(minutes)	for 15	(Galions)	FIOW (GPIVI)	-	for 15	(Galions)	(Galions)
			mins?			(minutes)	mins?		
10/1/2023	34.5	0.0	NO	39,646	0.0	0	NO		39,646
10/2/2023	34.5	0.0	NO	13,933	26.3	0	NO	378	14,311
10/3/2023	34.6	0.0	NO	14,419	0.1	0	NO		14,419
10/4/2023	34.8	0.0	NO	17,060	26.5	0	NO	379	17,439
10/5/2023	35.1	0.0	NO	19,854	0.0	0	NO		19,854
10/6/2023	34.6	0.0	NO	23,598	0.0	0	NO		23,598
10/7/2023	34.9	0.0	NO	21,467	0.0	0	NO		21,467
10/8/2023	34.8	0.0	NO	18,454	0.0	2	NO		18,454
10/9/2023	34.7	0.0	NO	26,271	26.7	0	NO	394	26,665
10/10/2023	34.8	0.0	NO	29,828	0.0	0	NO	394	30,223
10/11/2023	34.5	0.0	NO	7,280	26.1	0	NO	382	7,662
10/12/2023	34.9	0.0	NO	21,021	0.0	0	NO		21,021
10/13/2023	34.7	0.0	NO	24,412	26.6	0	NO	390	24,802
10/14/2023	34.5	0.0	NO	36,408	0.0	0	NO		36,408
10/15/2023	34.6	0.0	NO	14,973	0.0	0	NO		14,973
10/16/2023	34.7	0.0	NO	22,367	0.0	0	NO		22,367
10/17/2023	35.0	0.0	NO	10,511	26.3	0	NO	382	10,893
10/18/2023	34.6	0.0	NO	26,956	26.0	0	NO	386	27,342
10/19/2023	34.7	0.0	NO	15,110	0.1	0	NO	005	15,110
10/20/2023	34.7	0.0	NO	24,059	25.5	0	NO	385	24,443
10/21/2023	34.7	0.0	NO	22,404	0.0	0	NO		22,404
10/22/2023	34.7	0.0	NO	22,115	0.0	0	NO	200	22,115
10/23/2023	34.6	0.0	NO	14,433	25.4	0	NO	369	14,802
10/24/2023 10/25/2023	34.9 34.6	0.0 0.0	NO NO	31,312 28,783	0.0 25.2	0	NO NO	384	31,312
10/25/2023	34.0	0.0	NO	13,868	25.2	0	NO	304	29,167 13,868
10/20/2023	34.7	0.0	NO	32,301	27.0	0		416	32,717
10/28/2023	34.8	0.0	NO	24,737	0.0	0	NO	410	24,737
10/29/2023	34.9	0.0	NO	26,100	0.0	0	NO		26,100
10/30/2023	34.8			11,665	26.8			393	12,058
10/31/2023	34.7	0.0	NO	36,802	0.1	0	NO	000	36,802
10/01/2020	01.1	0.0	110	00,002	0.1	•	aily Flow (Lir	nit: 51 120):	39,646
						IVIUX D		onthly Total:	697,180
11/1/2023	34.8	0.0	NO	17,610	26.5	0		405	18,015
11/2/2023	34.9	0.0	NO	14,331	0.1	0	NO		14,331
11/3/2023	34.8	0.0	NO	6,753	25.5	0		408	7,160
11/4/2023	34.9	0.0	NO	21,172	0.0	0			21,172
11/5/2023	34.9	0.0	NO	19,283	0.0	0			19,283
11/6/2023	34.8	0.0	NO	19,727	25.6	0	NO	396	20,123
11/7/2023	34.6	0.0	NO	29,611	26.0	0	NO	373	29,985
11/8/2023	34.5	0.0	NO	6,487	0.1	0	NO		6,487
11/9/2023	34.8	0.0	NO	31,087	26.5	0	NO	400	31,487
11/10/2023	34.5	0.0	NO	49,010	0.0	0	NO	400	49,410
11/11/2023	34.6	0.0	NO	18,101	0.0	0	NO		18,101
11/12/2023	34.7	0.0	NO	26,147	26.7	0	NO	409	26,556
11/13/2023	34.3	0.0	NO	8,628	0.0	0	NO		8,628
11/14/2023	34.9	0.0	NO	26,348	26.8	0		390	26,738
11/15/2023	34.5	0.0	NO	23,855	0.0	0			23,855
11/16/2023	34.7	0.0	NO	14,174	26.4	0		385	14,559
11/17/2023	34.6	0.0	NO	33,992	0.0	0			33,992
11/18/2023	04 5	0.0	NO	36,512	0.0	0	NO		36,512
	34.5	0.0							
11/19/2023 11/20/2023	34.5 34.4 34.4	0.0	NO NO	30,669 22,361	27.1 0.0	0	NO	388	31,057 22,361

PG&E Gateway Generating Station

Discharge Flow Data

October 2023-December 2023

	Industrial Flow			Sanitary Flow					
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
11/21/2023	34.9	0.0	NO	17,800	0.0	0			17,800
11/22/2023	34.8	0.0	NO	27,219	26.7	0	-	407	27,627
11/23/2023	34.5	0.0	NO	25,719	0.0	0			25,719
11/24/2023	34.8	0.0	NO	23,284	0.0	0	-		23,284
11/25/2023	34.7	0.0	NO	6,763	27.1	0		378	7,141
11/26/2023	34.8	0.0	NO	38,158	0.1	0			38,158
11/27/2023	34.9	0.0	NO	18,188	0.0	0			18,188
11/28/2023	34.7	0.0	NO	10,302	26.3	0		379	10,682
11/29/2023	34.7	0.0	NO	20,591	0.1	0			20,591
11/30/2023	34.5	0.0	NO	18,319	26.4	0	-	383	18,702
						Max D		mit: 51,120): onthly Total:	49,410 667,704
12/1/2023	34.5	0.0	NO	8,887	0.1	0	NO		8,887
12/2/2023	15.4	0.0	NO	12,228	25.5	0	NO	363	12,591
12/3/2023	30.4	0.0	NO	20,246	0.0	0	NO		20,246
12/4/2023	34.3	0.0	NO	29,504	0.0	0	NO		29,504
12/5/2023	34.5	0.0	NO	37,039	23.8	0		369	37,408
12/6/2023	34.7	0.0	NO	19,495	0.0	0			19,495
12/7/2023	34.8	0.0	NO	14,385	26.2	0		379	14,764
12/8/2023	35.8	1.0	NO	17,907	0.0	0			17,907
12/9/2023	34.8	0.0	NO	25,190	0.0	0			25,190
12/10/2023	34.8	0.0	NO	22,654	26.4	0			22,654
12/11/2023	34.7	0.0	NO	16,204	0.1	0			16,204
12/12/2023	34.6	0.0	NO	27,664	26.2	0		381	28,045
12/13/2023	34.8	0.0	NO	10,656	0.0	0			10,656
12/14/2023	34.5	0.0	NO	7,642	0.1	0	NO		7,642
12/15/2023	34.7	0.0	NO	11,799	26.0	0		358	12,157
12/16/2023	34.8	0.0	NO	8,076	0.0	0			8,076
12/17/2023	34.6	0.0	NO	6,661	0.0	0			6,661
12/18/2023		0.0	NO	6,714	0.0			070	6,714
12/19/2023		0.0	NO	39,164	26.2	0		370	39,534
12/20/2023	34.4	0.0	NO	17,826	0.0	0			17,826
12/21/2023	34.5	0.0	NO	27,669	0.0	0		204	27,669
12/22/2023	34.5	0.0	NO NO	31,901	26.5 0.0	0		384	32,285
12/23/2023 12/24/2023	34.7 37.4		NO	16,761	0.0	0			16,761
12/24/2023	37.4	0.0	NO	22,715 27,346	0.0	0			22,715 27,346
12/25/2023	34.5	0.0	NO	17,440	26.2	0		383	17,823
12/20/2023	34.5	0.0	NO	14,424	0.0	0		303	14,424
12/28/2023	34.4	0.0	NO	6,741	25.9	0		368	7,109
12/20/2023	34.5	0.0	NO	20,642	0.0	0		500	20,642
12/30/2023	34.3	0.0	NO	20,042	0.0	0			20,042
12/31/2023	34.6	0.0	NO	37,380	26.2	0		353	37,733
12,01/2020	07.0	0.0		01,000	20.2	•		mit [.] 51 120) [.]	39 534

Max Daily Flow (Limit: 51,120): 39,534

Monthly Total: 608,803

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name:	PG&E Gateway Generating Station	
Address:	3225 Wilbur Avenue, Antioch, CA 94	509
City:	Antioch	
Contact Name:	Tim Wisdom	
Flow Meter:	Sewer Final Effluent	City Water Meter
	(The data are based on flowmeter re	eadings as recorded by the plant's "Pi Historian" data
	acquisition/handling system)	

Year:

2023

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July		
August		
September		
October	697,180	1/15/2024
November	667,704	1/15/2024
December	608,803	1/15/2024

Note:

1) Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

2) The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

Attachment 6 WSAC Operating Hours Report

WSAC Operating Hours Report October 2023 to December 2023

WSAC Operation				
Month	Hours of Operation			
January-23				
February-23				
March-23				
April-23				
May-23				
June-23				
January-23				
August-23				
September-23				
October-23	202.67			
November-23	24.43			
December-23	0.00			

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report October 2023 to December 2023

WSAC Operation				
Month	Average Daily Blowdown Cycles			
January-23				
February-23				
March-23				
April-23				
May-23				
June-23				
July-23				
August-23				
September-23				
October-23	3.41			
November-23	3.68			
December-23	No Operation			

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8 Laboratory Results Monitoring of Combined Site Stream (E-001) Attachment 8a Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2312208

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:	Angel Espiritu
Project P.O.:	
Project:	Quarterly Sampling (December 2023)

Project Received: 12/05/2023

Analytical Report reviewed & approved for release on 12/12/2023 by:

Christine Askari Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2312208

Quarterly Sampling (December 2023) **Project:**

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
CCV	Continuing Calibration Verification.
CCV REC (%)	% recovery of Continuing Calibration Verification.
CPT	Consumer Product Testing not NELAP Accredited
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μ m filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LCS2	Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit ¹
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit ²
RPD	Relative Percent Difference
RRT	Relative Retention Time
RSD	Relative Standard Deviation
SNR	Surrogate is diluted out of the calibration range
SPK Val	Spike Value

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

Glossary of Terms & Qualifier Definitions

Client:	PG&E Gateway Generating Station
---------	---------------------------------

WorkOrder: 2312208

Project: Quarterly Sampling (December 2023)				
SPKRef Val	Spike Reference Value			
SPLP	Synthetic Precipitation Leachate Procedure			
ST	Sorbent Tube			
TCLP	Toxicity Characteristic Leachate Procedure			
TEQ	Toxicity Equivalents			
TNTC	"Too Numerous to Count;" greater than 250 colonies observed on the plate.			
TZA	TimeZone Net Adjustment for sample collected outside of MAI's UTC.			
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)			

Analytical Qualifiers

J

Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

l Report	Analytical Report
Toll Free Telephone: (877) 252-9262/ Fax: (925) 252-9269 http://www.mccampbell.com/E-mail: main@mccampbell.com	MCC ampbell Analytical, Inc. "When Quality Counts." Analytica

12/05/2023 13:19 12/08/2023 Date Received: Date Prepared: **Project:**

Quarterly Sampling (December 2023) a

Extraction Method: E1664A Analytical Method: E1664A Unit: mg/L

n-Up	Batch ID	283667	Date Analyzed
ilica Gel Clea	Date Collected Instrument	O&G	
without S	llected	23 10:15	끰
rease)	Date Co	12/04/2023 10:15	MDL RL
Oil & G	x		TOM
HEM;	Matrix	Water	
Jexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up	Lab ID	2312208-001A Water	Result
ш	Client ID	E-001 Grab	Analytes

12/08/2023 11:45

~

4.8

2.4

QN

HEM

Analyst(s): LAM

E-001 Grab 2312208-002A Water 12/05/2023 11:35 0&G Analytes Result MDL RL DF Date HEM ND 2.4 4.8 1 12/05	Client ID	Lab ID	Matrix	Date Collected	llected	Instrument	Batch ID
Result MDL RL DF D ND 2.4 4.8 1	E-001 Grab	2312208-002A	Water	12/05/202	23 11:35	O&G	283667
2.4 4.8 1 1	Analytes	Result	MDL	10	비		Date Analyzed
	HEM	QN	2.4		-		12/08/2023 11:55

Analyst(s): LAM

MCC	McCampbell Analytical, Inc. "When Quality Counts"	_	1534 Willow Pass Road. Toll Free Telephone: (877) 2 http://www.mccampbell.com.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/ E-mail: main@mccampbell.com	
	Ana	Analytical Report	Report		
Client: Date Received: Date Prepared:	PG&E Gateway Generating Station 12/05/2023 13:19 12/11/2023		WorkOrder: Extraction Method: Analytical Method:	WorkOrder: 2312208 Extraction Method: SM4500-NH3 BG Analytical Method: SM4500-NH3 BG	
Project:	Quarterly Sampling (December 2023)		Unit:		
		Ammonia as N	N SI		
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
E-001 Grab	2312208-002C	Water	12/05/2023 11:35	WC_SKALAR 231212A1_30	283762
Analytes	Result	TOM	RL DF	Date	Date Analyzed
Ammonia, total as N	96	1.9	2.0 20	12/12	12/12/2023 14:24
Analyst(s): IGC					

McC	McCampbell Analytical, Inc. "When Quality Counts"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	tsburg, CA 94565-1701 9262/ Fax: (925) 252-9269 mail: main@mccampbell.co	E
	Ana	Analytical Report	Report		
Client: Date Received: Date Prepared:	PG&E Gateway Generating Station 12/05/2023 13:19 12/07/2023		WorkOrder: Extraction Method: Analytical Method:	2312208 SM5210B SM5210 B	
Project:	Quarterly Sampling (December 2023)		Unit:	mg/L	
	Biochemic	al Oxygen D	Biochemical Oxygen Demand (BOD)		
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
E-001 Composite	2312208-003A	Water	12/05/2023 11:25	WetChem	283555
Analytes	Result	TOW	RL DF		Date Analyzed
BOD	QN	2.0	2.0 1.02		12/12/2023 13:09
Analyst(s): JRA					

McC	McCampbell Analytical, Inc. "When Quality Counts."		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/E-mail: main@mccampbell.com	ttsburg, CA 94565-1701 :-9262 / Fax: (925) 252-9269 -mail: main@mccampbell.com	
	Analy	Analytical Report	keport		
Client: Date Received:	PG&E Gateway Generating Station 12/05/2023 13:19		WorkOrder: 2312208 Extraction Method: SM4500-CN ⁻ E	2312208 : SM4500-CN ⁻ E : SM4500-CN ⁻ E	
Date Frepared: Project:	12/01/2023 Quarterly Sampling (December 2023)		Analyucal Method: Unit:		
	C	Cyanide, Total	tal		ľ
Client ID	Lab ID M	Matrix	Date Collected	Instrument	Batch ID
E-001 Grab	2312208-002D W	Water	12/05/2023 11:35	WC_Skalar3 231207a0_35	283582
Analytes	Result	TOM	RL DF	Date A	Date Analyzed
Total Cyanide	24	0.58	1.0 1	12/07/	12/07/2023 14:24
Analyst(s): CC					

McC	McCampbell Analytical, Inc. "When Quality Counts"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.con	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	
	Ana	Analytical Report	Report		
Client: Date Received: Date Prepared:	PG&E Gateway Generating Station 12/05/2023 13:19 12/06/2023		WorkOrder:2312208Extraction Method:SM5220 DAnalytical Method:SM5220 D-1997	2312208 :: SM5220 D :: SM5220 D-1997	
Project:	Quarterly Sampling (December 2023)		Unit:	mg/L	
	Chemical Oxyge	n Demand	Chemical Oxygen Demand (COD) as mg O2/L	L	
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
E-001 Composite	2312208-003B	Water	12/05/2023 11:25	SPECTROPHOTOMETER2	283470
Analytes	Result	MDL	RLDE	Date	Date Analyzed
COD	õ	8.2	10	12/0	12/06/2023 17:51
Analyst(s): IGC					

MC	McCampbell Analytical, Inc. "When Quality Counts"	1534 Willow Pass Road Toll Free Telephone: (877) http://www.mccampbell.com	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262/ Fax: (925) 252-9269 ttp://www.nccampbell.com / E-mail: main@mccampbell.com	1.11
	Analytic	Analytical Report		
Client:	PG&E Gateway Generating Station	WorkOrder:	2312208	
Date Received:	Date Received: 12/05/2023 13:19	Extraction Method: E245.2	d: E245.2	

Analytical Method: E245.2 Unit: µg/L

Quarterly Sampling (December 2023)

12/05/2023

Date Prepared:

Project:

	Mercury by Cold Vapor Atomic Absorption	Cold Vapor A	tomic Ab	sorption		
Client ID	Lab ID	Matrix	Date Collected	lected	Instrument	Batch ID
E-001 Composite	2312208-003E Water	Water	12/05/2023 11:25	3 11:25	AA1 _23	283435
Analytes	Result	TOM	ਕ	E		Date Analyzed
Mercury	QN	0.13	0.20	4		12/06/2023 15:06

Analyst(s): DMA

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

PG&E Gateway Generating Station 12/05/2023 13:19 12/05/2023 Date Prepared: Date Received: Project: Client:

Quarterly Sampling (December 2023)

2312208 **Extraction Method:** E200.8 Analytical Method: E200.8 μg/L WorkOrder: Unit:

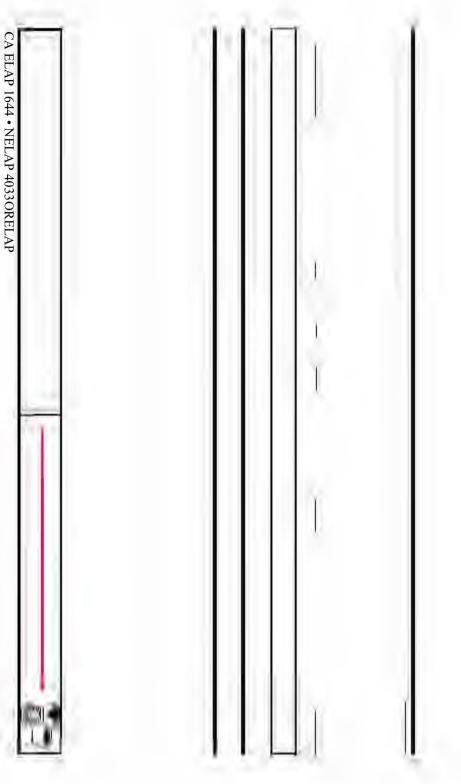
		Metals			1
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
E-001 Composite	2312208-003F	Water	12/05/2023 11:25	ICP-MS5 113SMPL.d	283407
Analytes	Result	Qualifiers MDL	RL		Date Analyzed
Arsenic	0.34	J 0.071	0.50 1		12/06/2023 14:18
Cadmium	QN	0.050	0.50 1		12/06/2023 14:18
Chromium	0.29	J 0.26	0.50 1		12/06/2023 14:18
Copper	5.0	0.63	1.5 1		12/06/2023 14:18
Iron	130	22	50 1		12/06/2023 14:18
Lead	QN	0.19	0.50 1		12/06/2023 14:18
Molybdenum	33	0.14	0.50 1		12/06/2023 14:18
Nickel	1.2	0.33	0.50 1		12/06/2023 14:18
Selenium	QN	0.18	0.50 1		12/06/2023 14:18
Silver	QN	0.051	0.50 1		12/06/2023 14:18
Zinc	30	11	20 1		12/06/2023 14:18
Surrogates	REC (%)		Limits		
Terbium	101		70-130		12/06/2023 14:18
Analyst(s): MIG					

cCampbell Analytical, Inc.	"When Ouality Counts"
McCan	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:PG&E Gateway Generating StationDate Received:12/05/2023 13:19Date Prepared:12/11/2023Project:Quarterly Sampling (December 2023)


WorkOrder:2312208Extraction Method:E420.4Analytical Method:E420.4Unit:μg/L

Client ID	Lab ID Matrix	Matrix	Date Co	llected	Date Collected Instrument	Batch ID
-001 Grab	2312208-002C Water	Water	12/05/2023 11:35	23 11:35	WC_SKALAR 231211A1_28 283756	283756
nalytes	Result	TOM	MDL RL	DE	Date	Date Analyzed
henolics	QN	1.5	2.0	£	12/1	12/11/2023 11:12

Analyst(s): CC

Page	
13	
of	
29	

	I
ELAP	
1644 •	
NELAP	
4033C	
RELAP	

McCampbell Analytical, Inc. "When Quality Counts" **Analytical Report**

Client:	PG&E Gateway Generating Station	WorkOrder:	2312208
Date Received:	Date Received: 12/05/2023 13:19	Extraction Method: SM2540 (SM2540 C-
Date Prepared: 12/11/2023	12/11/2023	Analytical Method: SM2540 C	SM2540 C
Project:	Quarterly Sampling (December 2023)	Unit:	mg/L
	Total Dissolved Solids	ed Solids	

SOHOS

Total Dissolved Solids 244 10.0 10.0 1 12	Analytes Result MDL RL DF D:	E-001 Composite 2312208-003C Water 12/05/2023 11:25 WetChem	Client ID Lab ID Matrix Date Collected Instrument
12/12/2023 15:00	Date Analyzed	283810	ent Batch ID

Analyst(s): JME

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

				Batch ID	283516	Date Analyzed 12/07/2023 16:15	
burg, CA 94565-1701 262 / Fax: (925) 252-9269 ail: main@mccampbell.com		2312208 SM2540 D SM2540 D mg/L		Instrument	WetChem		
1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	eport	WorkOrder:2312208Extraction Method:SM2540 DAnalytical Method:SM2540 DUnit:mg/L	Solids	Date Collected	12/05/2023 11:25	RL DE 1.00 1	
	Analytical Report		Total Suspended Solids	Matrix	Water	MDL 1.00	
nalytical, In ^{v Counts} "	Ans	PG&E Gateway Generating Station 12/05/2023 13:19 12/06/2023 Quarterly Sampling (December 2023)	Tot	Lab ID	2312208-003D	Result 1.60	
McCampbell Analytical, Inc. "When Quality Counts"		PG&E Gateway G 12/05/2023 13:19 12/06/2023 Quarterly Samplin				spi	
McC		Client: Date Received: Date Prepared: Project:		Client ID	E-001 Composite	Analytes Total Suspended Solids	Analyst(s): JRA

	"When Ouality Counts"		o://www.mccampbell.	com/E-mail: ma	http://www.mccampbell.com/E-mail: main@mccampbell.com	
	Quality Control Report	Contro	Report			
Client: PG&E Gate Date Prepared: 12/08/2023	PG&E Gateway Generating Station 12/08/2023		WorkOrder: BatchID:	2312208 283667	208 67	
Date Analyzed: 12/08/2023 Instrument: 0&G	18/2023 G		Extraction Method: E1664A_SG Analytical Method: E1664A	thod: E166 thod: E166	64A_SG	
	er		Unit:	mg/L		
	QC Summary Report for E1664A	ry Report i	for E1664A	À		
Analyte	MB Result	MDL	R			
	QN	2.5	5.0	1		
SGT-HEM	Q	5	5.0			
Analyte	LCS LCSD Result Result	LCSD SPK Result Val		LCS LO	LCSD LCS/LCSD RPD %REC Limits	D RPD Limit

30 30

7.01 4.51

78-114 64-132

86 73

92 76

20.83 10.42

18 7.6

19 7.9

HEM SGT-HEM Page 15 of 29

	"When Quality Counts"		http://www.mccampbell.com/ E-mail: main@mccampbell.com	tp://www.mccampbell.com/E-mail: main@mccampbell.co	campbell.com		
	Quality	y Con	Quality Control Report				
Client: PG&E Gate Date Prenared: 12/12/2023	PG&E Gateway Generating Station		WorkOrder: BatchID-	2312208 283762			
Date Analyzed: 12/12/2023	: 12/12/2023		Extraction Method: SM4500-NH3 BG	od: SM4500-	NH3 BG		
Instrument:	WC_SKALAR		Analytical Method: SM4500-NH3 BG	d: SM4500-	NH3 BG		
Matrix:	Water		Unit:	mg/L			
Project:	Quarterly Sampling (December 2023)		Sample ID:	LCS/LCS	LCS/LCSD-283762		
	QC Summa	ry Repo	QC Summary Report for SM4500-NH3				
Analyte	LCS Result	LCSD Result	SPK Val %	LCS LCSD %REC %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	5 N	4.0	4 99	66 6	90-110	0.394	10

PG&E Gateway Generatin; epared: 12/07/2023 alyzed: 12/12/2023 ent: WetChem Water Quarterly Sampling (Decer		шер.// w ww.шесапросп.сон / тэ-шан «песапросп.сон	
PG&E Gateway Generating S epared: 12/07/2023 alyzed: 12/12/2023 ent: WetChem Water Quarterly Sampling (Decemb	Quality Control Report		
alyzed: 12/12/2023 ent: WetChem Water Quarterly Sampling (Decemb	WorkOrder: BatchID:	2312208 283555	
ampling (Decemb	Extraction Method: SM5210B	d: SM5210B	
Water Quarterly Sampling (Decemb	Analytical Method: SM5210 B	d: SM5210 B	
Quarterly Sampling (Decemb	Unit:	mg/L	
et i i i i i i i i i i i i i i i i i i i	Sample ID:	MB/LCS/LCSD-283555	
lyte	QC Summary Report for BOD		
lyte	MDL RL		
	2.0 2.0		1
Kesuit	LCSD SPK L(Result Val %	LCS LCSD LCS/LCSD RPD %REC %REC Limits	RPD Limit

16

9.02

80-120

96

105

198

190

210

BOD

CA ELAP 1644 • NELAP 40330RELAP

Page 17 of 29

MC	McCampbell Analytical, Inc.	1534 Willow F Toll Free Telepho http://www.nccamp	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	65-1701 5) 252-9269 campbell.com	
h	Quality C	Quality Control Report	rt		
Client: PG&E Gate Date Prepared: 12/07/2023	PG&E Gateway Generating Station 12/07/2023	WorkOrder: BatchID:	:: 2312208 283582		
Date Analyzed: 12/07/2023	12/07/2023	Extraction	Extraction Method: SM4500-CN ⁻ E	CN- E	
Instrument:	WC_Skalar3	Analytical	Analytical Method: SM4500-CN ⁻ CE	CN- CE	
Matrix:	Water	Unit:	µg/L		
Project:	Quarterly Sampling (December 2023)	Sample ID:	MB/LCS/	MB/LCS/LCSD-283582	
	QC Summary Report for SM4500-CN ⁻ CE	ort for SM4500-C	N ⁻ CE		
Analyte	MB Result	MDL RL			
Total Cyanide	Q	0.58 1.0		•	
					1
Analyte	LCS LCSD Result Result	o SPK It Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
Total Cyanide	47 45	50	94 91	90-110 4.03	20

CA ELAP 1644 • NELAP 40330RELAP

Page 18 of 29

	;	Ouslity Control Renort	4		
	Quality (
Client: PG&E Gate Date Prenared: 12/06/2023	PG&E Gateway Generating Station 12/06/2023	WorkOrder: BatchID:	2312208 283470		
Date Analyzed: 12/06/2023	12/06/2023	Extraction N	Extraction Method: SM5220 D	0	
Instrument:	SPECTROPHOTOMETER2	Analytical N	Analytical Method: SM5220 D-1997	7-1997	
Matrix:	Water	Unit:	mg/L		
Project:	Quarterly Sampling (December 2023)	Sample ID:	MB/LCS/	MB/LCS/LCSD-283470	
)			l
Analyte	MB Result	MDL RL			
COD	Q	8.2 10			1
Analyte	LCS LCSD Result Result	LCSD SPK Result Val	LCS LCSD %REC %REC	LCS/LCSD RPD Limits	RPD Limit
COD	94 94	100	94 94	90-110 0	20

CA ELAP 1644 • NELAP 40330RELAP

		Quali	ty Cor	ntrol 1	Quality Control Report					
Client:		g Station		M	WorkOrder:	23	2312208			
Date Prepared:				Bat	BatchID:		283435			
Date Analyzed:	12/06/2023			Ext	Extraction Method:		E245.2			
Instrument:	AA1			An	Analytical Method:		E245.2			
Matrix:	Water			Unit:	it:	вц	µg/L			
Project:	Quarterly Sampling (December 2023)	nber 2023)		Sar	Sample ID:	23 M	B/LCS/L 12208-00	MB/LCS/LCSD-283435 2312208-003EMS/MSD	35 SD	
		QC Sum	mary Re	port for	QC Summary Report for Mercury					
Analyte		MB Result		MDL	RL					
Mercury		QN		0.13	0.20					1
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury		1.8	6. 0	N		6	96	85-115	6.86	20
Analyte	MS	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Mercury	~	2.0	1.8	7	Ð	98	92	80-120	6.37	20
Analyte		DLT Result			DLTRef Val				П%	%D Limit
Mercury		Q			Q					

CA ELAP 1644 • NELAP 40330RELAP

Page 20 of 29

MC	McCampbell Analytical, Inc. "When Quality Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/ E-mail: main@mccampbell.com	tsburg, CA 94565-1701 9262 / Fax: (925) 252-9269 mail: main@mccampbell.com
	Quality Co	Quality Control Report	
Client:	PG&E Gateway Generating Station	WorkOrder:	2312208
Date Prepared: 12/05/2023	12/05/2023	BatchID:	283407
Date Analyzed:	Date Analyzed: 12/05/2023 - 12/06/2023	Extraction Method: E200.8	E200.8
Instrument:	ICP-MS4, ICP-MS5	Analytical Method: E200.8	E200.8
Matrix:	Water	Unit:	µg/L

MB/LCS/LCSD-283407

Sample ID:

Quarterly Sampling (December 2023)

Project: Matrix:

	QC Su	mmary R	QC Summary Report for Metals	Metals					1
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC	Ľ	MB SS Limits
Arsenic	QN		0.071	0.50		.		·	
Cadmium	QN		0.050	0.50				•	
Chromium	QN		0.26	0.50				•	
Copper	QN		0.63	1.5					
Iron	QN		22	50				•	
Lead	QN		0.19	0.50				•	
Molybdenum	QN		0.14	0.50				•	
Nickel	QN		0.33	0.50				•	
Selenium	QN		0.18	0.50				•	
Silver	QN		0.051	0.50					
Zinc	ND		11	20				1	
Surrogate Recovery									
Terbium	510					500	102	20	70-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	54	55	50		109	109	85-115	0.292	20
Cadmium	54	53	50		107	106	85-115	0.963	20
Chromium	54	54	50		108	107	85-115	0.570	20
Copper	55	56	50		110	112	85-115	1.41	20
Iron	5200	5100	5000		103	103	85-115	0.578	20
Lead	52	53	50		105	106	85-115	1.35	20
Molybdenum	50	51	50		100	102	85-115	1.45	20
Nickel	55	55	50		109	110	85-115	1.03	20
Selenium	55	55	50		111	111	85-115	0.125	20
Silver	53	53	50		105	106	85-115	0.954	20
Zinc	550	550	500		109	110	85-115	0.951	20

CA ELAP 1644 • NELAP 40330RELAP

20

0.141

70-130

105

105

500

530

530

Surrogate Recovery

Terbium

Mc(McCampbell Analytical, Inc.	1534 Willow Pass Toll Free Telephone: http://www.nccampbe	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/E-mail: main@mccampbell.com	
	Quality Co	Quality Control Report	-	
Client: PG&E Gate Date Prepared: 12/11/2023	PG&E Gateway Generating Station 12/11/2023	WorkOrder: BatchID:	2312208 283756	
Date Analyzed: 12/11/2023	12/11/2023	Extraction M	Extraction Method: E420.4	
Instrument:	WC_SKALAR	Analytical M	Analytical Method: E420.4	
Matrix:	Water	Unit:	μg/L	
Project:	Quarterly Sampling (December 2023)	Sample ID:	MB/LCS/LCSD-283756	
	QC Summary	QC Summary Report for E420.4		
Analyte	MB Result	MDL RL		
Phenolics	Q	1.5 2.0		
		н		
Analyte	LCS LCSD Result Result	SPK Val	LCS LCSD LCS/LCSD RPD %REC %REC Limits	RPD Limit

20

1.96

80-120

100

86

40

40

39

Phenolics

Page 22 of 29

MC	McCampbell Analytical, Inc.	Toll Free Telephone: (877) http://www.mccampbell.com	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262/ Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	
	Quality Co	Quality Control Report		
Client: PG&E Gate Date Prepared: 12/11/2023	PG&E Gateway Generating Station 12/11/2023	WorkOrder: BatchID:	2312208 283810	
Date Analyzed: 12/12/2023	12/12/2023	Extraction Method: SM2540 C-	od: SM2540 C-	
Instrument:	WetChem	Analytical Method: SM2540 C	d : SM2540 C	
Matrix:	Water	Unit:	mg/L	
Project:	Quarterly Sampling (December 2023)	Sample ID:	MB/LCS/LCSD-283810	
	QC Summary Report	QC Summary Report for Total Dissolved Solids	olids	
Analyte	MB Result	MDL RL		
Total Dissolved Solids	Ids ND	10.0 10.0		
Analyte	LCS LCSD Result Result	SPK Val	LCS LCSD LCS/LCSD RPD %REC %REC Limits	RPD Limit

10

3.94

80-120

95

98

1000

946

984

Total Dissolved Solids

CA ELAP 1644 • NELAP 40330RELAP

Page 23 of 29

	"When Ouality Counts"					iil: main@mcc	http://www.mccampbell.com/E-mail: main@mccampbell.com	
		Quality	, Con	Quality Control Report	rt			
Client: PG&E Gate Date Prepared: 12/06/2023	PG&E Gateway Generating Station 12/06/2023	Station		WorkOrder: BatchID:		2312208 283516		
Date Analyzed:	12/07/2023			Extraction Method: SM2540 D	Method: S	SM2540 D	0	
Instrument:	WetChem			Analytical Method: SM2540 D	Method: S	3M2540 D	0	
Matrix:	Water			Unit:	ц	mg/L		
Project:	Quarterly Sampling (December 2023) OC Summary R	ber 2023) mary Re	port for	ng (December 2023) Sample ID: M OC Summary Report for Total Suspended Solids	N led Solid	AB/LCS/I	MB/LCS/LCSD-283516	
Analyte		MB Result		MDL RL				
Total Suspended Solids	iolids	Q		1.00 1.00				1
Analyte		LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD Limit
Total Suspended Solids	solids	102	103	100	102	103	80-120 0.976	10

McCampbell Analyti 1534 Willow Pass Rd Pittsburg, CA 94565-1701	cal, Inc.		CHAIP WorkOrde					REC Code: P	-)	Pag	e 1	of 1	
(925) 252-9262	WaterTrax				Dry-Weig nmary	-	Email Excel	E	HardCopy		hirdParty		∂ -flag	
Report to: Angel Espiritu PG&E Gateway Generating Statio 3225 Wilbur Avenue	on cc/3rd Party: TIWY PO:	@pge.com ′@pge.com; MSFG@p	ge.com;	PG& 3225	5 Wilbur	/ay Gene Avenue	erating S	Station	Da	quested	eived:		ays; 05/20	-
Antioch, CA 94509 (925) 522-7818 FAX:	Project: Quart	terly Sampling (Decem	ber 2023)	Antio	och, CA	94509	Reque	ested Te	Da sts (See	ite Log		12/	05/20	23
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1 2	3	4	5	6 7	8	9	10	11	12
2312208-001	E-001 Grab	Water	12/4/2023 10:15		BA	1	1		1	-	1	A		1
2312208-002	E-001 Grab	Water	12/5/2023 11:35		BA	C		D	1		C	А		

12/5/2023 11:25

Test Legend:

2312208-003

11	1664A_SG_W	-
5	CN_SM4500N_W	
9	PHENOLICS_W	-
1		-

2	1664A_W
6	COD_W
10	PRDisposal Fee

Water

E-001 Composite

3	AMMONIA-SM4500BG_W
71	HG_W
11	TDS_W

BOD_W
METALSMS_TTLC_W [J]
TSS_W

Prepared by: Yvette Cisneros

В

E

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Clien	t Name: t Contact: act's Email:	Angel Esp	iritu	ENERATING STAT	ION	Project: Comments	Quarterly Sam	pling	(Dece	mber 2	023)		QCI	rder: 231 Level: LEV gged: 12/3	VEL 2	
			U Water	Trax CLIP		Exce	el 🔲 EQul	S	Em	nail	HardCopy					
LabII) ClientSa	ampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative		Head Space	Dry- Weight	Collection Date	ТАТ	Test Due Date	Sediment Content		Sub Out
001A	E-001 Grab		Water	E1664A (HEM; Oil & C Clean-Up)	Grease w/o S.G.	2	1LA w/ HCl + 1- aVOA w/HCL			П	12/4/2023 10:15	5 days	12/12/2023	None	П	
001B	E-001 Grab		Water	E1664A (SGT- HEM; N Material)	lon-polar	2	1LA w/ HCl + 1- aVOA w/HCL	Π			12/4/2023 10:15	5 days	12/12/2023	None	П	Ū
002A	E-001 Grab		Water	E1664A (HEM; Oil & O Clean-Up)	Grease w/o S.G.	2	1LA w/ HCl + 1- aVOA w/HCL	Π		Π	12/5/2023 11:35	5 days	12/12/2023	None	П	П
002B	E-001 Grab		Water	E1664A (SGT- HEM; N Material)	lon-polar	2	1LA w/ HCl + 1- aVOA w/HCL				12/5/2023 11:35	5 days	12/12/2023	None		
002C	E-001 Grab		Water	E420.4 (Phenolics)		1	500mL aG w/ H2SO4				12/5/2023 11:35	5 days	12/12/2023	None		
				SM4500-NH3 BG (Am	monia Nitrogen)							5 days	12/12/2023	None	I	
002D	E-001 Grab		Water	SM4500-CN ⁻ N (Cyanic	le, Total)	1	250mL aHDPE w/ NaOH				12/5/2023 11:35	5 days	12/12/2023	Trace		
003A	E-001 Compo	osite	Water	SM5210B (BOD)		1	500mL HDPE, unprsv.				12/5/2023 11:25	7 days	12/14/2023	None	П	
003B	E-001 Compo	site	Water	SM5220D (COD)		2	aVOA w/ H2SO4				12/5/2023 11:25	5 days	12/12/2023	None		Π

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

1 -

1

McCc	ampb	ell	Ar	nal	ytical, Inc.	
		~				

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client	Name:PG&E GAContact:Angel Espict's Email:abe4@pge	iritu	ENERATING STATION	Project: Comments	Quarterly Sam	pling	(Dece	mber 2	023)		QCI	rder: 231 Level: LEV gged: 12/5	/EL 2
		U Water		Exce	el 🔤 EQul	S	En	nail	HardCopy		Party	1	
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative		Head Space	Dry- Weight	Collection Date & Time	ТАТ	Test Due Date	Sediment Content	Hold Sub Out
003C	E-001 Composite	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.			П	12/5/2023 11:25	5 days	12/12/2023	None	
003D	E-001 Composite	Water	SM2540D (TSS)	1	1L HDPE, unprsv.	- [1]			12/5/2023 11:25	5 days	12/12/2023	None	
003E	E-001 Composite	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3			D	12/5/2023 11:25	5 days	12/12/2023	None	ыn
003F	E-001 Composite	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3			Ū	12/5/2023 11:25	5 days	12/12/2023	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

.

	Websi	ite: <u>w</u>	PITT ww.mccam	WILLOW SBURG, C	V PAS	S ROAD 565-1701 ail: main	@mc	camp	bell	l.com					TURN		ND 1	FI	ME	rt RL	JSH 24) HR	Y	48		
Telephone: (877) 252-9262Fax: (925) 252 -9269Report To: Angel EspirituBill To: PG&E Gateway								GeoTracker EDF PDF Excel Write On (DW) Check if sample is offluent and """ flag is requi									"" flag is required									
		_				SHI 10:	rGæ	e Ga	atev	vay	_	-				Analysi	s Req	ues	1						1	Kenkurks
Company	: PG&E G	atew	ay Genera	ting Stat	tion				_					_	-1	6					É					
Tel: (925	be4@pge.co) 522-7838,	(510) 861-1597	(Cell)	F	Fax: ()	_	_						(Pretreated with viosultate before g) by SM 4500 CN-	Metalk (Arsenic and selenium) by 200.5 Selenium by reaction made	OurGrease (USEPA 1664A) with and with out silica get elean op	Total Phenolics (USEPA-420-4)	Ammönia as N (SNI 4500=NHJ=C		រកា, chřotitum អំពុកក, (ការី Xint)					
	ame: Qua				ece	mber	- 20	23)		-	-	_	_	etrea ulfate by SN	nic al	RPA Non gu	IS.U.	INS)	Ŧ	admiı ickel, irön, 2	1	a	10		÷.
and the second se	Signature: I	-			Sam	pling	-7	9-	>	5			-	-	(Pri-	Arse a by	e (US	milica	AS N	(245.2	00.8 c ad, ni ram, i	1 521	5220	0120	147.56	
		Composite	SAMP				Ma	trix	М	етно	D P	RES	ERV	'ED	Cyanide (Prefreated with sodium thiosulfate before preserving) by SM 4500 ABCE	Metala (by 200.6 Selenium	OurGrease (USEPA and with out shick g	and ture.	Ammonia	Mõrcury (245.2)	Atetats (200.8 દ્વવીમાંઘમા, ૯ ૨૭૫૧૭૨૬, ૧૯૧૫, તાંદેદદી, સંશેરદ Alolyધાલમભા, iron, ૩૧૫ ત્રાં	BOD (SAL\$210B	COD (SM \$2200)	0.00F\$2 IV\$) SH1.	WHERE AND SOL	
SAMPLE ID	LOCATION / Field Point Name	Sample Type Co	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICF.	Hoston	NaOH	HCL	Other												
E-001		G	12/4/23	10.15	4	IL Amb. 40-ml VOA	X			Х	T	1	x	t			X							T	T	
E-001		G	12/5/23		4	11 Amb, 40-ml VOA	X			Х	T		X				X	П						Γ	Γ	
E-001		G	12/5/23	1 6 6	1	500ml Amb	X			X	X	1	t	T				X	X						T	
E-001		G	12/5/23		1	250-ml Poly	X			Х	7	<	1		X									h	T	
E-001		С	12/5/23		1	500 ml Poly	X		X	Х	t	T										X		Г	t	1
E-001		С	12/5/23		2	43-ml VOA	X			X	x	T	t										.Ж	h	F	1
E-001		С	12/5/23		1	500-ml poly	X		X	Х	t	T	T	t								T		>		1
E-001		С	12/5/23	94		1L poly	X		X	Х	T	T	T											T	X	1
E-001		С	12/5/22			250-ml Poly	X			Х	t	T)	X						Ж				T	h	
E-001		С	12/5/23			250-ml poly	X			х	T	T)	X		x					X					
	1				-		-	-		\vdash	+	+	+	+										H	╞	
Relinquishe Relinquishe Relinquishe	LHS:		Date: 1215/23 Date: Date:	Time: / ?'/Q Time: Time:	Rece	eived By:	al	-6	1	~	~				ICE/I [®] GOOD CO HEAD SPA DECHLOR APPROPR PRESERV	CE ABSE UNATED I IATE COM	NT IN LAT	<u>}</u>	-	JE 7		(OM	i Mile	INT	N: Page 28 of

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station Quarterly Sampling (December 2023)			Date and Time Received: Date Logged: Received by:	12/5/2023 13:19 12/5/2023 Valerie Alfaro
WorkOrder №: Carrier:	2312208 Matrix: Water Client Drop-In			Logged by:	Yvette Cisneros
	Chain c	f Custod	y (COC) li	nformation	
Chain of custody	present?	Yes		No 🗔	
Chain of custody	signed when relinquished and received?	Yes		No 🔲	
Chain of custody	agrees with sample labels?	Yes	•	No 🗔	
Sample IDs note	d by Client on COC?	Yes	•	No 🔲	
Date and Time o	f collection noted by Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	Quote?	Yes		No 🔲	NA 🔛
	Sar	nple Rece	eipt Infori	mation	
Custody seals in	tact on shipping container/cooler?	Yes		No 🔲	NA 🗾
Custody seals in	tact on sample bottles?	Yes		No 🔲	NA 🗾
Shipping contain	er/cooler in good condition?	Yes		No 🔲	
Samples in prope	er containers/bottles?	Yes	5	No 🔲	
Sample containe	rs intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes		No 🔲	
	Sample Preserv	ation and	Hold Tin	ne (HT) Information	
All samples recei	ived within holding time?	Yes		No 🔲	NA 🔲
Samples Receive	ed on Ice?	Yes		No 🔲	
	(Ice T	ype: WE			
Sample/Temp BI	ank temperature		Temp:	0.5°C	NA 🔲
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🗾
Sample labels ch	necked for correct preservation?	Yes		No 🔲	
pH acceptable up <2; 522: <4; 218.	oon receipt (Metal: <2; Nitrate 353.2/4500NO3: 7: >8)?	Yes		No 🔲	
UCMR Samples:					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 📰
Free Chlorine t [not applicable	ested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🔲	NA 📊

Attachment 8b Laboratory Results Quarterly Monitoring of Combined Site Stream (E-001) pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2312217

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:	Sanjiv Gill
Project P.O.:	
Project:	pH Sampling (December 2023)

Project Received: 12/05/2023

Analytical Report reviewed & approved for release on 12/12/2023 by:

Jennifer Lagerbom Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

McCampbell Analytical, Inc. "When Quality Counts"
230 - 1 - M

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

PG&E Gateway Generating Station Client:

pH Sampling (December 2023)

2312217 WorkOrder:

GIOSSARY ADDREVIATION	eviation
%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
CCV	Continuing Calibration Verification.
CCV REC (%)	% recovery of Continuing Calibration Verification.
СРТ	Consumer Product Testing not NELAP Accredited
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LCS2	Second LCS for the batch. Spike level is lower than that for the first LCS; applicable to method 1633.
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit ¹
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit ²
RPD	Relative Percent Difference
RRT	Relative Retention Time
RSD	Relative Standard Deviation
SNR	Surrogate is diluted out of the calibration range
	0

distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, ¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

McCampbell Analytical, Inc. "When Quality Counts"

> 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

2312217

Project: Client: TZA TNTC TCLP SPLP WET (STLC) TEQ S SPKRef Val pH Sampling (December 2023) PG&E Gateway Generating Station Synthetic Precipitation Leachate Procedure Spike Reference Value Waste Extraction Test (Soluble Threshold Limit Concentration) TimeZone Net Adjustment for sample collected outside of MAI's UTC. "Too Numerous to Count;" greater than 250 colonies observed on the plate. **Toxicity Equivalents Toxicity Characteristic Leachate Procedure** Sorbent Tube WorkOrder:

MC	"When Quality Counts"	http://www.mccampbell.com/1	Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com	e m
	Analytical Report	Report		
Client: Date Received: Date Prepared:	PG&E Gateway Generating Station 12/05/2023 13:19 12/04/2023	WorkOrder: Extraction Method: Analytical Method:	2312217 1: SM4500H+B 1: SM4500H+B	
Project:	pH Sampling (December 2023)	Unit:		
	Hq			
Client ID	Lab ID Matrix	Date Collected	Instrument	Batch ID
E-001	2312217-001A Water	12/04/2023 10:05	WetChem	283892
Analytes	Result	Accuracy DF		Date Analyzed
Hd	8.95	±0.05 1		12/04/2023 10:06
Analyst(s): IME				

McCampbell Analytica 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262	I, Inc. □ WaterTrax □CLI	P I]EDF	CHAIN- WorkOrder:		ClientCod		Page I⊂ThirdParty	e 1 of 1	
	<u>ц</u>	14	Detection S		Excel	E1		(BEL)	
Report to:			Bill to	:	-	Requ	ested TAT:	5 days;	
Sanjiv Gill	Email: sanjivgill@	comcast.net	Sa	anjiv Gil					
PG&E Gateway Generating Station	cc/3rd Party:		Μ	uskan Environi	mental Services				
3225 Wilbur Avenue	PO:		18	328 Nelda Ct.		Date	e Received:	12/05/202	23
Antioch, CA 94509 (925) 522-7818 FAX:	Project: pH Sampl	ing (December 2023)	Υι	uba City, CA 9	5993	Date	e Logged:	12/05/202	23
				1	Requeste	ed Tests (See leg	gend below)		
Lab ID Clier	tSampID	Matrix Colle	ection Date Hold	1 2	3 4 5	6 7	8 9	10 11	12
2312217-001	-001	Water 12/4,	2023 10:05		11	1 1 2			-

Test Legend:

1	PH_W_SANJIV	
5		
9		
		_

PRDisposal Fee	
	-
	_
	PRDisposal Fee

3	
7	
[11]	

4 1	
8	
12	

Prepared by: Y	vette Cisneros
----------------	----------------

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, "When Quality Counts"	Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com										
	WORK ORI	DER SUM	MARY									
Client Name: PG&E GATEWAY GENERATING STATION Client Contact: Sanjiv Gill	Project:	pH Sampling ((December 20	023)				rder: 231 Level: LEV				
Contact's Email: sanjivgill@comcast.net	Comments	:					Date Log	gged: 12/5	5/2023			
WaterTrax CLIP		EQul	S Em	ail	HardCopy		Party	1				
LabID ClientSampID Matrix Test Name	Containers /Composites	Bottle & Preservative	U** Head Space V	•	Collection Date & Time	ТАТ	Test Due Date	Sediment Content	Hold Sub Out			
001A E-001 Water SM4500H+B (Field pH)	1	<not received=""></not>		11	12/4/2023 10:05	5 days	12/12/2023					

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- ISM prep requires 5 to 10 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 6 to 11 days from sample submission). Due date listed on WO summary will not accurately reflect the time needed for sample preparation.

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

																													(2	312217
	M M	cCA		LL A WILLO	W PA	SS ROAL		L, 1	N	С.					I	UR	N.	AR						FC	E]	1	C)			CORD
	Wob Tele	site: y phon	<u>vww.mecar</u> e: (877) 2:	npbell.co	m Er	sail: mai	n@m 8x: (9	ccam (25) 2	pbel 252	ll.cop -926	1 9				G	eo]	[rs	ck	er]	ED					□ ₽	E	xce		7	Wr	HR 72 HR 5 DÄY rite On (DW) 5 nd "J" flag is required
Report '	To: Sanjiv	Gill			I	till To:]	Musk	an E	avi	roni	nen	tal								1	Ans	lysi	s Re								Remarks
Compa	ny: PG&E	Gate	way Gene	rating S	tatio	D												Τ			Τ					Τ	Τ		Τ	Τ	
			······································		**							- 4	_									ŀ									
Tal: (Af	08) 666-449	AICO	JI)			-Mail: : Fax: (sanju)	vgul(e)cu	mca	SL.A	et																			
	Name: pl			5000	the second s	and the second	12 ?	`																							
	Location: I															1															
Sample	r Signature	: (Muska	~ Fr	vir	onne	he l	5	10.00	oli)					·								1							
		Composite	SAMP	LING		r	Ma	trìx	MI	ETHO	D Pl	RESE	R	/ED																	
SAMPLE ID	LOCATION / Field Point Name		Date	Time	# Containers	lype Containers	Waste Water	Setter Water	None	CE	NaOu	HCL.		Zine Acetata	Hq																
E-001		S G	12/4/23	10.05	NA		x	62	X						x						+		+					+	+	+	Grab Time: 10:05 Analysis Time: 10:06
											\Box									<u> </u>											Temperature: 20.8% pH: 8.95
									Π	T	Τ		Γ	Π			Γ	Τ			T	Τ	Τ	Γ	Τ	T	1	Τ	Τ		
												1	Γ				Γ	T			ŀ	Τ		Τ			T	T	1-	T	
									\top		\square	\top		\square		1					Γ	1			\square		1	T	T		
									H					\square				T		\uparrow	Г		1		1	\uparrow	1	1			
									\vdash			+		\square				\top			\top	1	1		1	\uparrow	1	1	\top		
											1	+					\square			T	\top	\uparrow	\top	\top	1		1	1	+	1	
									h	1	\uparrow	+		\uparrow		1	\top	\uparrow		1	\top	\top	\top	1	Γ	\uparrow		\top	\uparrow	\uparrow	
									H		1	+		+				1			+	1-	+	1		\mathbf{T}	1	\top	\top	1	
									H	1	\top	1-		$\uparrow \uparrow$		1				\uparrow	\top	\top	+	1	1	\top	\uparrow	1	\top	\top	1
Relinquis	\sum		Date: RS23	Time: /3]Q		ived By	Va	<u>بل</u>	\angle	Lic	مہر	~	L		GC	E/C	PA	CE A	BSI	INT			- 	-4		4	- L		CO	MM	ENTS:
Relinquis	. •		Date:	Time:		ived By:	1		1						AP	CHI PRO ESEI	PRI	ATE	CO	NTA											
Relinquis	hed By:		Date:	Time:	Rece	ived By:			Ð				_			ESE			v		0	&G	M	etai	LS	OTI	IER				

2312217

...

,

Logbook for Field pH Samples

Sample ID	Matrix	1 st Re	eading	2 nd R	eading	Ave	Standard	Comments	Analyst
Sample ID _s	Mauin	рН	Temp.°c	pН	Temp.°c	pH	(lot # / exp. Date)	Comments	Anaryst
Cal. pH #	L	7.00	19.3	7.00	19.3	7.00	5m)K		
Cal pH #	L	4.00	19.3	4.00	19.3	4.00			
Cal. pH #	L	10:00	19.3		19.3	10.07	bul K		
							-		
· · · · · · · · · · · · · · · · · · ·									
							1 		
						Mete	r : Myrdr	1 Comp	2m ¥
· · · · · · · · · · · · · · · · · · ·								r II	-
						ser	al # 622	2061	
						DH	on COC	12/4/23	
							Ar		
۱							P P	AF Gut	enay
							Taki Qr	Mai	
	Cal pH # Cal. pH #	Cal. pH # L Cal pH # L Cal. pH # L	Sample ID Matrix pH Cal. pH # L 7.00 Cal. pH # L 9.00 Cal. pH # L 10:00 Cal. pH # L 10:00 Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH # Image: Cal. pH #	Sample ID Matrix pH Temp.°c Cal. pH # L 7.00 19.3 Cal pH # L 9.00 19.3 Cal. pH # L 10:00 19.3 Cal. pH # L 10:00 19.3 Cal. pH # L 10:00 19.3 Image: Cal. pH # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. pH # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. pH # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. pH # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. pH # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. pH # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. pH # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. pH # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph # Image: Cal. ph	Sample ID Matrix pH Temp.°c pH Cal. pH # L 7.00 19.3 7.00 Cal pH # L 9.00 19.3 9.00 Cal. pH # L 9.00 19.3 9.00 Cal. pH # L 10.00 19.3 10.00 Cal. pH # L 10.00 19.3 10.00 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	Sample ID Matrix pH Temp.°c pH Temp.°c Cal. pH # L 7.00 19.3 7.00 19.3 Cal pH # L 9.00 19.3 9.00 19.3 Cal. pH # L 9.00 19.3 9.00 19.3 Cal. pH # L 9.00 19.3 9.00 19.3 Cal. pH # L 10:00 19.3 10.00 19.3 I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sample IDMatrixPHTemp.°cpHTemp.°cpHCal. pH #L7.0019.37.0019.37.00Cal pH #L9.0019.39.0519.39.05Cal. pH #L9.0019.310.0519.310.05Cal. pH #L10.0019.310.0519.310.05Cal. pH #L10.0019.310.0519.410.05Cal. pH #L10.0519.310.0519.410.05Cal. pH #L10.0519.310.0519.410.05Cal. pH #L10.0519.310.0519.410.05Cal. pH #L10.0519.419.419.419.4Cal. pH #L10.0519.419.419.4Cal. pH #L10.0519.419	Sample IDMatrixPHTemp.°cpHTemp.°cpHTemp.°cpH(lot #/exp. Date)Cal. pH #L7.0019.37.0019.37.005m) kCal. pH #L9.0019.39.0519.39.0010.1 kCal. pH #L19.0019.310.0 s19.310.0 kCal. pH #L10.0019.310.0 s19.310.0 kCal. pH #L10.0 s19.310.0 s19.3 k10.0 kCal. pH #L10.0 s19.3 k10.0 k19.3 k10.0 kCal. pH #L10.0 k19.0 k10.0 k19.0 k10.0 kCal. pH	Sample ID ,Matrix I remp.°c pH Temp.°c pH Temp.°c pH $(lot \#/exp. Date)$ CommentsCal. pH #L7.0019.37.0019.37.00 bw k K Cal pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw k K Cal. pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw k K Cal. pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw kCal. pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw kCal. pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw kCal. pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw kCal. pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw kCal. pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw kCal. pH #L y_{00} 19.3 y_{00} y_{13} y_{00} bw kCal. pH #L y_{00} y_{00} y_{00} y_{00} y_{00} y_{00} Cal. pH #L y_{00} y_{00} y_{00} y_{00} y_{00} y_{00} Cal. pH #L y_{00} y_{00} y_{00} y_{00} y_{00} y_{00} Cal. pH #L y_{00} y_{00} y_{00} $y_{$

Page 52 of 100

d pH Data WorkOrder Ne: 2312217	pH one @ pro of family and the AM
Client Supplied pH Data PG&E Gateway Generating Station pH Sampling (December 2023)	ClientSampID
Client Name: Project:	SampID

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station pH Sampling (December 2023)			Date and Time Received: Date Logged:	12/5/2023 13:19 12/5/2023
				Received by:	Valerie Alfaro
WorkOrder №: Carrier:	2312217 Matrix: Water Client Drop-In			Logged by:	Yvette Cisneros
	Chair	of Custody	/ (COC)	nformation	
Chain of custody		Yes		No 🔲	
Chain of custody signed when relinquished and received?					
Chain of custody agrees with sample labels?					
Sample IDs noted by Client on COC?					
Date and Time of collection noted by Client on COC?					
Sampler's name noted on COC?			1921 (FT)	No 🛄	
COC agrees with Quote?				No 🛄	NA 🛃
	S	ample Rece	eipt Infor	mation	
Custody seals intact on shipping container/cooler?				No 🔲	NA 🛃
Custody seals intact on sample bottles?				No 🔲	NA 🗾
Shipping container/cooler in good condition?				No 🔲	
Samples in proper containers/bottles?				No 🔲	
Sample containers intact?				No 🔲	
Sufficient sample volume for indicated test?				No 🔲	
	Sample Prese	rvation and	Hold Tir	me (HT) Information	
All samples received within holding time?		Yes		No 🔲	
Samples Received on Ice?				No 🔄	
			÷.		
Sample/Temp Blank temperature			Temp:		NA 📰
ZHS conditional analyses: VOA meets zero headspace requirement (VOCs, TPHg/BTEX, RSK)?		Yes		No 🔲	NA 🛃
Sample labels checked for correct preservation?		Yes		No 🔲	
pH acceptable upon receipt (Metal: <2; Nitrate 353.2/4500NO3: <2; 522: <4; 218.7: >8)?		3: Yes		No 🔲	NA 🛃
UCMR Samples:					
pH tested and acceptable upon receipt (200.7: ≤2; 533: 6 - 8; 537.1: 6 - 8)?		s; Yes		No 🔲	NA 🖬
Free Chlorine tested and acceptable upon receipt (<0.1mg/L) [not applicable to 200.7]?		.) Yes		No 🔲	NA 🔛

Comments:

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 15

Exhibit 4b Notice of Violation/Corrective Action (Condition of Certification SOIL&WATER-4)

Attached are notifications, Notice of Violation, and corrective action compliance documents regarding the permit limit exceedance event of March 2023.

From:	Yun, Jason
To:	Espiritu, Angel
Cc:	Environmental Compliance Staff
Subject:	RE: Notification of Limit Exceedance: Metal Zinc (Permit # 0208841-C) - Q1 2023
Date:	Wednesday, April 26, 2023 2:39:30 PM
Attachments:	image001.jpg

Classification: Public

CAUTION: EXTERNAL SENDER!

This email was sent from an EXTERNAL source. Do you know this person? Are you expecting this email? Are you expecting any links or attachments? If suspicious, do not click links, open attachments, or provide credentials. Don't delete it. **Report it by using the "Report Phish" button.**

Hi Angel,

Thank you for providing the follow up results. That is great to see the number is well within the limit. Best Regards,

Jason

Jason Yun

Environmental Compliance Specialist II | Delta Diablo 2500 Pittsburg-Antioch Hwy, Antioch, CA 94509 p 925.756.1913 f 925.756.1961 www.deltadiablo.org | jasony@deltadiablo.org

TRANSFORMING WASTEWATER TO RESOURCES.

From: Espiritu, Angel <abe4@pge.com>

Sent: Monday, April 24, 2023 4:05 PM

To: Yun, Jason <jasony@deltadiablo.org>

Cc: Environmental Compliance Staff <ECStaff@deltadiablo.org>; Espiritu, Angel <ABE4@pge.com> **Subject:** RE: Notification of Limit Exceedance: Metal Zinc (Permit # 0208841-C) - Q1 2023

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Classification: Public

Hi Jason,

In compliance with the resampling requirement, attached is the resampling result for zinc: 0.049 mg/L (Permit Limit: 1.0 mg/L). The sample was collected on 4/21/2023. The wet-signed copy of this report will follow. Please let me know if you have question. Thank you.

Angel B. Espiritu Pacific Gas & Electric – Gateway Generating Station Sr. Environmental Consultant-Environmental Compliance Manager 3225 Wilbur Avenue, Antioch, CA 94509 925-522-7838, 510-861-1597 (Cell) ABE4@pge.com

From: Yun, Jason <jasony@deltadiablo.org> Sent: Thursday, March 30, 2023 3:04 PM

Subject: RE: Notification of Limit Exceedance: Metal Zinc (Permit # 0208841-C) - Q1 2023 C: Environmental Compliance Staff@deltadiablo.org> <mossient: Angel <abre display="block"><mossient: Angel <abre display="block">abed @pge.com

Classification: Public

CAUTION: EXTERNAL SENDER!

delete it. Report it by using the "Report Phish" button. suspicious, do not click links, open attachments, or provide credentials. Don't you expecting this email? Are you expecting any links or attachments? If This email was sent from an EXTERNAL source. Do you know this person? Are

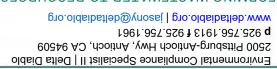
,l**9**gnA iH

Program Annual Report that is submitted to the state each year. significant noncompliance. The District is also required to include the status in its Pretreatment provides meaningful public notice" in the Antioch, Pittsburg, Bay Point area that PG&E GGS is in This status requires Delta Diablo (District) to "publish in a newspaper(s) of general circulation that greater than or equal to 33% Technical Review Criteria (TRC) violations. (The definition of significant noncompliance (SNC) for the October 2022 through March 2023 monitoring period for having Thank you for taking my call. As we discussed, the exceedance places PG&E GGS into significant

Please see the table below for details on how SNC was determined:

	TRC limit = 1.0 me/L zinc local limit x 1.2 = 2.2 me/L		
		802 = 1imil JAT beexee stluser 4/2	
	λes	2.8	3/51/5053
	oN	029.0	£202/\$/T
	zəY	5.0	2202/8/21
	oN	180.0	۲۵/۵۲ کارل
-	FRC* Violation?	- אפרווד (של/ך)	-Date

30 days of becoming aware of the violation (results due April 30, 2023). zinc. Please remember that the results of the zinc re-sample must be submitted to the District within As already mentioned in your email and over the phone, PG&E GGS will resample the wastewater tor


PG&E GGS will also receive an enforcement notice shortly.

return to compliance. please keep me informed of any developments or actions PG&E GGS plans on taking to attempt to If you have any questions, please feel free to reach me by email or the phone number below. Also,

Best Regards,

nosel

nuy nosel

ZRANSFORMING WASTEWATER TO RESOURCES

<g>oldeibetleb@ynose[> nosel , nuY :oT Sent: Thursday, March 30, 2023 12:27 PM <mos.9gq@438A> l9gnA ,ujiiqs3 :mo1

Cc: Espiritu, Angel <<u>ABE4@pge.com</u>>

Subject: FW: Notification of Limit Exceedance: Metal Zinc (Permit # 0208841-C) - Q1 2023 **Importance:** High

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Classification: Public

Hi Jason,

In compliance with the Discharge Permit requirement, the PG&E Gateway Generating Station (GGS) is submitting to you a notification of limit exceedance on Q1 2023 self-monitoring for metal zinc parameter of 2.8 ppm (limit= 1.0 ppm). Please refer to the attached copy of laboratory report dated 03/29/2023 (received at 7:23 PM). The sample was collected on 03/21/2023. We plan to resample the wastewater to ensure that the result was true and accurate. Please let me know if you have

question. Thank you.

Angel B. Espiritu Pacific Gas & Electric – Gateway Generating Station Sr. Environmental Consultant-Environmental Compliance Manager 3225 Wilbur Avenue, Antioch, CA 94509 925-522-7838, 510-861-1597 (Cell) <u>ABE4@pge.com</u>

You can read about PG&E's data privacy practices here or at PGE.com/privacy.

From:	Yun, Jason	
То:	Espiritu, Angel	
Cc:	Wisdom, Tim; Environmental Compliance Staff	
Subject:	PG&E GGS NOV w/ Compliance Schedule	
Date:	Wednesday, May 3, 2023 3:05:27 PM	
Attachments:	image001.jpg	
	23 0503 PG&E Zinc Exceedance NOV w CS.pdf	
Importance:	High	

CAUTION: EXTERNAL SENDER!

This email was sent from an EXTERNAL source. Do you know this person? Are you expecting this email? Are you expecting any links or attachments? If suspicious, do not click links, open attachments, or provide credentials. Don't delete it. **Report it by using the "Report Phish" button.**

Hi Angel,

Please find the Notice of Violation with Compliance Schedule for the March 21, 2023 zinc violation at Pacific Gas & Electric Gateway Generating Station attached to this email. Note that there are multiple required actions that are part of this notice.

The hard copy of the notice will be mailed out shortly via USPS certified mail.

If you have any questions, please feel free to reach me by email or the phone number below. Best Regards,

Jason

Jason Yun

Environmental Compliance Specialist II | Delta Diablo 2500 Pittsburg-Antioch Hwy, Antioch, CA 94509 **p** 925.756.1913 **f** 925.756.1961 www.deltadiablo.org | jasony@deltadiablo.org

TRANSFORMING WASTEWATER TO RESOURCES

May 4, 2023

SPECIAL DISTRICT CERTIFIED MAIL NUMBER 7014 0150 0000 1544 6325

Mr. Tim Wisdom, Senior Plant Manager Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509

SUBJECT: NOTICE OF VIOLATION WITH COMPLIANCE SCHEDULE – PG&E GATEWAY GENERATING STATION WASTEWATER DISCHARGE PERMIT #0208841-C ZINC VIOLATION AND SIGNIFICANT NONCOMPLIANCE STATUS

Dear Mr. Wisdom:

On March 30, 2023, Delta Diablo (District) received notice from Pacific Gas & Electric Gateway Generating Station (PG&E), Industrial Wastewater Discharge Permit #0208841-C, that a violation had occurred. This notice was received within 24 hours of PG&E becoming aware of said violation, as required by permit.

The District is issuing a **NOTICE OF VIOLATION (NOV) WITH COMPLIANCE SCHEDULE** to PG&E for the following violation occurring from the sample event on March 21, 2023, which classifies PG&E as in significant noncompliance (SNC).

1. The zinc result of 2.8 mg/L violates the permitted limit of 1.0 mg/L.

The violation brings PG&E into SNC based on having greater than or equal to 33% Technical Review Criteria (TRC) numeric limit violations. The EPA definitions of SNC and TRC can be found in Attachment A.

A review of PG&E's zinc data over the October 2022 to March 2023 six-month monitoring period indicates a TRC numeric limit violation occurred in two out of the four sample results as outlined in Table 1 below.

Date	Result (mg/L)	Permit Limit	TRC Limit	Violation of
		(mg/L)	(1.0 x 1.2)	TRC Limit
10/24/2022	0.081	1.0	1.2	No
12/8/2022	2.0	1.0	1.2	Yes
1/5/2023	0.670	1.0	1.2	No
3/21/2023	2.8	1.0	1.2	Yes
TRC determin	ation: Samples exc	eeding TRC limit	= 50%	

Table 1 – PG&E Zinc Results, October 2022 – March 2023

2500 Pittsburg-Antioch Hwy · Antioch, CA 94509 · p 925.756.1900 · f 925.756.1961 · www.deltadiablo.org

As discussed in a conference call with PG&E staff and District Environmental Compliance staff on April 4, 2023, PG&E believes the Wet Surface Air Cooler to be the source of zinc in the waste-stream. PG&E must complete the following self-prescribed and District required compliance schedule actions to return to consistent compliance with permit discharge limits. PG&E must report the status of each corrective action to the District within 14 days after the respective due date.

Date Due	Action
March 31, 2023	Take the Wet Surface Air Cooler (WSAC) process off-line. COMPLETED
April 4, 2023	Complete process control sampling of the WSAC basins to investigate the source of the excess zinc concentrations. COMPLETED
April 6, 2023	Confirm the zinc concentration of the water in the WSAC basins and share the results with Delta Diablo. COMPLETED
April 13, 2023	Haul off the water from the WSAC basins for proper off-site disposal. COMPLETED
April 17, 2023	Take the Wastewater Storage Tank off-line. Clean the inside wall of the Wastewater Storage Tank and haul off the cleaning water for proper off-site disposal. Bring the Wastewater Storage Tank back into service. COMPLETED
April 21, 2023	Resample the facility's wastewater discharge for zinc at the PG&E monitoring manhole compliance point and have it analyzed by an ELAP accredited laboratory. COMPLETED
April 30, 2023	Submit the result of the resampling to Delta Diablo by April 30. COMPLETED
May 26, 2023	Have the WSAC basins and internal wetted surfaces coated or re- skinned by a licensed contractor to prevent further leaching of zinc into the waste-stream.
May 27, 2023	Bring the WSAC back into service by May 27.
June 27, 2023	Collect a wastewater sample at the compliance monitoring point and have it analyzed for zinc by an ELAP accredited laboratory. Report results to the District within 5 days of receipt of results, or within 24 hours in the case a violation occurs.
July 27, 2023	Collect a wastewater sample at the compliance monitoring point and have it analyzed for zinc by an ELAP accredited laboratory. Report results to the District within 5 days of receipt of results, or within 24 hours in the case a violation occurs.

CORRECTIVE ACTIONS REQUIRED:

Failure to complete the corrective actions may result in escalating enforcement activity.

2500 Pittsburg-Antioch Hwy · Antioch, CA 94509 · p 925.756.1900 · f 925.756.1961 · www.deltadiablo.org

If you have any questions regarding this notice, please contact Jason Yun, Environmental Compliance Specialist II at (925) 756-1913 or me at (925) 756-1915.

Sincerely,

Sclee Can R

Darrell Cain Laboratory Management Professional – Retired Annuitant

DC/JY

Enclosure

CC: Miracle Odurukwe, Environmental Compliance Specialist I, Delta Diablo Jason Yun, Environmental Compliance Specialist II, Delta Diablo

Attachment A SNC and TRC Regulation

An IU is in SNC if its violation meets one or more of the following criteria (40 CFR 403.8(f)(2)(viii)):

Comply with the public participation requirements of 40 CFR part 25 in the enforcement of National Pretreatment Standards. These procedures shall include provision for at least annual public notification in a newspaper(s) of general circulation that provides meaningful public notice within the jurisdiction(s) served by the POTW of Industrial Users which, at any time during the previous 12 months, were in significant noncompliance with applicable Pretreatment requirements. For the purposes of this provision, a Significant Industrial User (or any Industrial User which violates paragraphs (f)(2)(viii)(C), (D), or (H) of this section) is in <u>significant noncompliance</u> if its violation meets one or more of the following criteria:

(A) Chronic violations of wastewater Discharge limits, defined here as those in which 66 percent or more of all of the measurements taken for the same pollutant parameter during a 6-month period exceed (by any magnitude) a numeric Pretreatment Standard or Requirement, including instantaneous limits, as defined by 40 CFR 403.3(l);

(B) <u>Technical Review Criteria (TRC) violations</u>, defined here as those in which 33 percent or more of all of the measurements taken for the same pollutant parameter during a 6-month period equal or exceed the product of the numeric Pretreatment Standard or Requirement including instantaneous limits, as defined by 40 CFR 403.3(l) multiplied by the applicable TRC (TRC = 1.4 for BOD, TSS, fats, oil, and grease, and 1.2 for all other pollutants except pH);

(C) Any other violation of a Pretreatment Standard or Requirement as defined by 40 CFR 403.3(l) (daily maximum, long-term average, instantaneous limit, or narrative Standard) that the POTW determines has caused, alone or in combination with other Discharges, Interference or Pass Through (including endangering the health of POTW personnel or the general public);

(D) Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or to the environment or has resulted in the POTW's exercise of its emergency authority under paragraph (f)(1)(vi)(B) of this section to halt or prevent such a discharge;

(E) Failure to meet, within 90 days after the schedule date, a compliance schedule milestone contained in a local control mechanism or enforcement order for starting construction, completing construction, or attaining final compliance;

(F) Failure to provide, within 45 days after the due date, required reports such as baseline monitoring reports, 90-day compliance reports, periodic self-monitoring reports, and reports on compliance with compliance schedules;

(G) Failure to accurately report noncompliance;

(H) Any other violation or group of violations, which may include a violation of Best Management Practices, which the POTW determines will adversely affect the operation or implementation of the local Pretreatment program.

Yun, Jason
Espiritu, Angel
Wisdom, Tim
RE: PG&E-GGS (Permit# 0208841-C) WSAC on Process Control Operation
Tuesday, April 25, 2023 1:58:34 PM
image001.jpg

CAUTION: EXTERNAL SENDER!

This email was sent from an EXTERNAL source. Do you know this person? Are you expecting this email? Are you expecting any links or attachments? If suspicious, do not click links, open attachments, or provide credentials. Don't delete it. **Report it by using the "Report Phish" button.**

Hi Angel,

Thank you providing this information.

Best Regards,

Jason

Jason Yun

Environmental Compliance Specialist II | Delta Diablo 2500 Pittsburg-Antioch Hwy, Antioch, CA 94509 p 925.756.1913 f 925.756.1961 www.deltadiablo.org | jasony@deltadiablo.org

TRANSFORMING WASTEWATER TO RESOURCES

From: Espiritu, Angel <ABE4@pge.com>
Sent: Tuesday, April 25, 2023 1:56 PM
To: Yun, Jason <jasony@deltadiablo.org>
Cc: Wisdom, Tim <T1WY@pge.com>
Subject: PG&E-GGS (Permit# 0208841-C) WSAC on Process Control Operation
Importance: High

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Classification: Public

Hi Jason,

This refers to our phone conversation with you earlier today on the subject. As indicated during the call, the PG&E-GGS will put the Wet Surface Air Cooler (WSAC) equipment back to service under a "Process Control" operating condition, i.e.(1) The WSAC will be taken off from the normal facility waste stream. (2) There will be no blowdown discharge coming from the WSAC. And (3). The water collected in the WSAC during this "Process Control" operating condition will be trucked offsite for proper disposal. We plan to run the WSAC as early as today, April 25, 2023 through Sunday, April 30, 2023. Please note that the PG&E-GGS will perform an annual operation and maintenance outage starting May 1, 2023 through May 30, 2023. Please let us know if you have questions. Thank you. Angel B. Espiritu

ABE4@pge.com

You can read about PG&E's data privacy practices <u>here</u> or at <u>PGE.com/privacy</u>.

From: To: Subject: Date: Attachments: Yun, Jason Espiritu, Angel RE: WSAC Coating Complete Wednesday, May 31, 2023 7:46:02 AM image002.jpg Image003.png

CAUTION: EXTERNAL SENDER!

This email was sent from an EXTERNAL source. Do you know this person? Are you expecting this email? Are you expecting any links or attachments? If suspicious, do not click links, open attachments, or provide credentials. Don't delete it. **Report it by using the "Report Phish" button.**

Hi Angel,

Thank you for providing this information. We look forward to hearing additional updates when the WSAC is back in service and samples are collected in June and July.

Best Regards,

Jason

Jason Yun

Environmental Compliance Specialist II | Delta Diablo 2500 Pittsburg-Antioch Hwy, Antioch, CA 94509 p 925.756.1913 f 925.756.1961 www.deltadiablo.org | jasony@deltadiablo.org

TRANSFORMING WASTEWATER TO RESOURCES-

From: Espiritu, Angel <ABE4@pge.com>
Sent: Saturday, May 27, 2023 2:11 PM
To: Yun, Jason <jasony@deltadiablo.org>
Cc: Espiritu, Angel <ABE4@pge.com>
Subject: FW: WSAC Coating Complete

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Classification: Internal

Hi Jason,

Please note Tim's email below. The coating work on thew WSAC was completed and the WSAC is back and ready for service effective today, 5/27/2023. The facility, however, is on outage. We will send you update when the facility returns to normal operation. Thank you.

Angel B. Espiritu Pacific Gas & Electric – Gateway Generating Station Sr. Environmental Consultant-Environmental Compliance Manager 3225 Wilbur Avenue, Antioch, CA 94509 925-522-7838, 510-861-1597 (Cell) ABE4@pge.com

From: Wisdom, Tim <T1WY@pge.com>

Sent: Saturday, May 27, 2023 12:57 PM

To: Espiritu, Angel <ABE4@pge.com>

Cc: Fiedler, Matt <MSFG@pge.com>; Singh, Prakash <APSD@pge.com>; Garcia, Sam

<<u>SRGJ@pge.com</u>>; Royall, Steve <<u>SGR8@pge.com</u>>

Subject: WSAC Coating Complete

Hi Angel,

This is to inform you that the Gateway WSAC coating project is complete and the WSAC is back and ready for service effective May 27, 2023. The plant is still in a planned outage and I will let you know when we have declared the outage over. Please note this meets the DDSD NOV requirement to return the system to service effective May 27, 2023 as detailed in their letter of May, 4, 2023. Thanks,

Tim

Senior Manager, Gateway Generating Station & Renewables Gateway: (925) 522-7812 Cell: (925) 200-4811 Email: <u>T1WY@pge.com</u>

You can read about PG&E's data privacy practices here or at PGE.com/privacy.

From:	Yun, Jason
То:	Espiritu, Angel
Subject:	Re: Request Approval to clean-up the GGS wastewater sampling vault.
Date:	Monday, April 24, 2023 9:33:43 AM
Attachments:	Outlook-3balx1uh

CAUTION: EXTERNAL SENDER!

This email was sent from an EXTERNAL source. Do you know this person? Are you expecting this email? Are you expecting any links or attachments? If suspicious, do not click links, open attachments, or provide credentials. Don't delete it. **Report it by using the "Report Phish" button.**

Hi Angel,

The District has reviewed your request letter and approves the cleanup following the planned steps noted in the letter.

Best Regards, Jason

[if</th <th>Jason Yun</th>	Jason Yun
!vml]>	Environmental Compliance Specialist II Delta Diablo 2500 Pittsburg-Antioch Hwy, Antioch, CA 94509 p 925.756.1913 f 925.756.1961 www.deltadiablo.org jasony@deltadiablo.org
2	
</td <td></td>	
[endif]	

>

TRANSFORMING WASTEWATER TO RESOURCES

From: Espiritu, Angel <ABE4@pge.com>

Sent: Wednesday, April 19, 2023 9:46 AM

To: Yun, Jason <jasony@deltadiablo.org>

Subject: Request Approval to clean-up the GGS wastewater sampling vault.

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Classification: Public

HI Jason,

Further to our phone conversation with you yesterday on the subject, attached is the request letter

for your consideration, please. Thank you.

Angel B. Espiritu Pacific Gas & Electric – Gateway Generating Station Sr. Environmental Consultant-Environmental Compliance Manager 3225 Wilbur Avenue, Antioch, CA 94509 925-522-7838, 510-861-1597 (Cell) <u>ABE4@pge.com</u> You can read about PG&E's data privacy practices <u>here</u> or at <u>PGE.com/privacy</u>.

From:	Yun, Jason
To:	Espiritu, Angel
Cc:	Wisdom, Timothy; Environmental Compliance Staff; Struhs, James
Subject:	RE: Result of Final Resampling for Zinc
Date:	Thursday, July 27, 2023 7:37:54 AM
Attachments:	image001.ipg

CAUTION: EXTERNAL SENDER!

This email was sent from an EXTERNAL source. Do you know this person? Are you expecting this email? Are you expecting any links or attachments? If suspicious, do not click links, open attachments, or provide credentials. Don't delete it. **Report it by using the "Report Phish" button.**

Hi Angel,

Thank you for sending in the electronic copy of the final resample and for letting us know the hard copy will be delivered today.

Glad to see the final zinc re-sample is in compliance with permit limits. Delta Diablo agrees that all corrective action tasks are now completed.

Best Regards,

Jason

Jason Yun

Environmental Compliance Specialist II | Delta Diablo 2500 Pittsburg-Antioch Hwy, Antioch, CA 94509 p 925.756.1913 f 925.756.1961 www.deltadiablo.org | jasony@deltadiablo.org

TRANSFORMING WASTEWATER TO RESOURCES

From: Espiritu, Angel <ABE4@pge.com>

Sent: Wednesday, July 26, 2023 5:04 PM

To: Yun, Jason <jasony@deltadiablo.org>

Cc: Wisdom, Timothy <T1WY@pge.com>; Environmental Compliance Staff

<ECStaff@deltadiablo.org>; Struhs, James <JPSx@pge.com>

Subject: Result of Final Resampling for Zinc

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Classification: Public

Hi Jason,

Attached is the advance electronic copy of the result of resampling for zinc: 0.22 mg/L. The sample was collected on July 21, 2023. The laboratory result was received on June 24, 2023. I will deliver the hard copy of the same to you tomorrow, July 27, 2023. This is the final resampling for zinc . All corrective action tasks are now completed. Please let me know if you have questions. Thank you.

Angel B. Espiritu Pacific Gas & Electric – Gateway Generating Station Sr. Environmental Consultant-Environmental Compliance Manager 3225 Wilbur Avenue, Antioch, CA 94509 925-522-7838, 510-861-1597 (Cell) ABE4@pge.com You can read about PG&E's data privacy practices here or at PGE.com/privacy.

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509 (925) 522-7801

13

July 26, 2023

Mr. Jason Yun Delta Diablo 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference: Pacific Gas and Electric Company - Gateway Generating Station (PG&E-GGS) Delta Diablo Industrial Wastewater Discharge Permit # 0208841-C (Permit)

Subject:

Result of Resampling for Zinc 07/21/2023

Dear Mr. Yun,

In compliance with the resampling requirements contained in the Notice of Violation with Compliance Schedule issued by Delta Diablo on May 4, 2023, PG&E-GGS collected a second follow-up sample for zinc on July 21, 2023. Attached is the laboratory report (dated July 24, 2023) conveying the analytical result of the resampling for zinc. Please note that the 0.22 mg/L detected concentration of zinc is below the Permit's maximum allowable concentration (1.0 mg/L). Also attached is the document certification statement.

Please let me or Angel Espiritu (abe4@pge.com, 510-861-1597) know if you have questions or clarifications. Thank you.

Sincerely,

Tim Wisdom

Tim Wisdom Senior Plant Manager

Attachment: a/s

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2307E57

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:
Project P.O.:
Project:

Angel Espiritu

Nov Corrective Action-Resample for Zinc

Project Received: 07/21/2023

Analytical Report reviewed & approved for release on 07/24/2023 by:

Jacao

Yen Cao Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station

WorkOrder: 2307E57

Project: Nov Corrective Action-Resample for Zinc

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
CPT	Consumer Product Testing not NELAP Accredited
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit ¹
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit ²
RPD	Relative Percent Difference
RRT	Relative Retention Time
RSD	Relative Standard Deviation
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure

¹ MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006, December 2016. Values are based upon our default extraction volume/amount and are subject to change.

² RL is the lowest level that can be reliably determined within specified limits of precision and accuracy during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard used in the initial calibration of the instrument and must be greater than the MDL.) Values are based upon our default extraction volume/amount and are subject to change.

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WorkOrder: 2307E57

Glossary of Terms & Qualifier Definitions

- Client: PG&E Gateway Generating Station
- **Project:** Nov Corrective Action-Resample for Zinc
- TEQ Toxicity Equivalents
- TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.
- WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:	PG&E Gateway Generating Station
Date Received:	07/21/2023 12:42
Date Prepared:	07/21/2023
Project:	Nov Corrective Action-Resample for Zinc

WorkOrder:	2307E57
Extraction Method:	E200.8
Analytical Method:	E200.8
Unit:	µg/L

Client ID	Lab ID	Matrix		Date Col	llected	Instrument	Batch ID
E-001	2307E57-001A	Water		07/21/2023 11:10		ICP-MS4 112SMPL.d	274248
Analytes	Result		MDL	RL	DE		Date Analyzed
Zinc	220	_	11	20	1		07/24/2023 11:19
Surrogates	<u>REC (%)</u>			Limits			
Terbium	114			70-130)		07/24/2023 11:19

Inc.	
alytical	Counts "
bell An	"When Quality Coun
Camp	M.,
MC	
	McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

I

Client:	PG&E Gateway Generating Station
Date Prepared: 07/21/2023	07/21/2023
Date Analyzed: 07/24/2023	07/24/2023
Instrument:	ICP-MS4
Matrix:	Water
Project:	Nov Corrective Action-Resample for Zinc

2307E57	274248	Extraction Method: E200.8	Analytical Method: E200.8	µg/L	MB/LCS/LCSD-274248
WorkOrder:	BatchID:	traction Met	alytical Met	Unit:	Sample ID:

	QC Sur	nmary R	QC Summary Report for Metals	Metals					
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC	MB	MB SS Limits
Zinc	QN		11	20					
Surrogate Recovery Terbium	530					500	107	-02	70-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCSD LCS/LCSD RPD %REC Limits	RPD	RPD Limit
Zinc	550	530	500		109	107	85-115	2.48	20
Surrogate Recovery Terbium	550	550	500		109	109	70-130	0.0435	20

McCampbell Analytical 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262	, Inc.	CLIP	ED			2 57 Weight		ientCode: ail		4 4	⊡Th	Pag irdParty		of 1 U-flag	
Report to: Angel Espiritu PG&E Gateway Generating Station 3225 Wilbur Avenue Antioch, CA 94509 925 550-9105 FAX:	cc/3rd Party: PO:	abe4@pge.com T1WY@pge.com; Nov Corrective Ac			iill to: Angel Es PG&E G 3225 Wi Antioch,	ateway Ibur Ave	enue	ting Statio	n	Date	e Recei	ived:		iy; 21/20 21/20	
Lab ID Clien	tSampID	Μ	atrix	Collection Date	Hold 1	2	3	Requested 4 5	Tests (6	See leg 7	gend be 8	elow) 9	10	11	12
2307E57-001 E	-001	N N	Vater	7/21/2023 11:10		A	1				1 1	1. 1			

Test Legend:

1]	METALSMS_TTLC_W
5	
9]	

2	PRDisposal Fee
6	
10]	

3	
7	
11	

4	
8]	
12	

Prepared by: Yvette Cisneros

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell A "When Quality	lity Counts"	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
	WORK ORI	DER SUMMARY						
Client Name:PG&E GATEWAY GENERATClient Contact:Angel Espiritu	TING STATION Project:	Nov Corrective Action-Re	esample for Zinc		x Order: 2307E 5 7 C Level: LEVEL 2			
Contact's Email: abe4@pge.com	Comments:			Date	Logged: 7/21/2023			
U WaterTrax		EQuIS En	nail HardCopy	ThirdParty	flag			
LabID ClientSampID Matrix Test Na	ame Containers /Composites	Bottle &U** HeadPreservativeSpace	Dry- Collection Date Weight & Time	TAT Test Due Da	ate Sediment Hold Sub Content Out			
001A E-001 Water E200.8 ((Metals) <zinc> 1</zinc>	250mL HDPE w/	7/21/2023 11:10	1 day 7/24/2023	None			

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U^{**} = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

General	COC
	~ ~ ~

MAJ Work Order # 2307E57

General COC			I	FB /			and a			М	AI Wo	ork Or	der #	12	30	21	50			
McCAMPBEL	L ANA	LYTI	CAL	INC.	0 T	JFI	1		СН	AIN ()F CI	JSTO	DDY	REC	COR	D		···		
1534 Willow P			,		Tum	Around Tim	e I Day	Rush	2	Day Rus	h	3 Day	Rush		STD		Quot	e #		
Telephone: (87	/) 252-9262 / F	ax: (925) 2	52-9269	Ċ		/ MDL	ESL			eanup Aj				Veight		Bottle	e Orde			
www.mccampbell.com			umpbell.co		Delive	ery Format:	PDF			icker ED		EDD		Wr	ite On			Detect Su	т	
Report To: Aneel Espiritu	Bill To	: PG \$1	F Creste	u. ie.d						A	nalys	is Rec	quest	ed						
	meratin	y Sto	tion						T				_						T	
Email: abey Apge. com. T1	n I NZ	mm	SFGRO	ge.cum																
Alt Email:	Tele:	: 510-8	361-150	37	· · ·								1							
Project Name: NOV Cocreetive Ac	+ i Project#	Resam	ple for	Zinc	0															
Project Location: Combined Site /	210W PO#	#	*] જ															
Sampler Signature: Mus Kan Epvir	onnata	1 Sam	plin	4	l d														1	
SAMPLE ID S	ampling	iners	. 0	-	c C															
Location / Field Point Date	Time	Containers	Matrix P	reservative	N.															
			este .								-								∔—	
E-001 7/21	23 11:10		aste 1	$1NO_3$	X														_	
										_										
																			+	
		+																	+	
		++					┢──┨				+									
		 																		ļi
											<u> </u>								<u> </u>	\square
MA1 clients MUST disclose any dangerous chemicals known to	be present in their	submitted sar	mples in conce	ntrations the	it may c	ause immedia	te harm	or serio	us future	health end	langerme	nt as a r	esult o	f brief,	gloved,	open ai	r, sample	handling	by MAI	stafT.
Non-disclosure incurs an immediate \$250 surcharge and the cli-										s to work s	safely.					G				
* if metals are requested for water samples and the water Please provide an adequate volume of sample. If the volu										enort							nments	/ Instruct	ions	
Relinquished By / Company Name		Date	Time		r be pre	Received B				срон.	Da	ate	Ti	me	1-1	nalj	a Ze	: Zi 01	ne	
		7/2/2	3 12:4	_	/		-7	-	_		7/2/			42		-		0	nly	,
	<u> </u>			-		and the	a	1	,		FICA	03	10	10						
											1	-1								
Matrix Code: DW=Drinking Water, GW=Gro							=Slud	lge, A	=Air,	WP=W	ipe, O=	=Othe	r							
Preservative Code: 1=4°C 2=HCl 3=H ₂ SC	$4 = HNO_3$	5≕NaOH	6=ZnO/	Ac/NaOF	H 7=	None							Т	`emp	3	. Zu	12	Initials		10
																				a land

Page 8 of 9

	cCampbell Analytical, Inc "When Quality Counts"	-		1534 Willow Pass Road, Pitts foll Free Telephone: (877) 252-9 p://www.mccampbell.com / E-n	262 / Fax: (925) 252-9269	_
	Sample	Rec	eipt (Checklist		
Client Name: Project:	PG&E Gateway Generating Station Nov Corrective Action-Resample for Zinc			Date and Time Date Logged: Received by:	Received: 7/21/2023 12:42 7/21/2023 Lilly Ortiz	
VorkOrder №: Carrier:	2307E57 Matrix: Water Client Drop-In			Logged by:	Yvette Cisneros	
	Chain of	Custod	y (COC) I	nformation		
hain of custody	present?	Yes		No 🗆		
hain of custody	signed when relinquished and received?	Yes		No 🖾		
hain of custody	agrees with sample labels?	Yes		No 🗆		
ample IDs note	d by Client on COC?	Yes		No 🖾		
ate and Time o	f collection noted by Client on COC?	Yes		No 🗖		
ampler's name	noted on COC?	Yes		No 🗔		
OC agrees with	n Quote?	Yes		No 🗔	NA 🗾	
	Sam	ple Reco	eipt Infor	mation		
ustody seals in	tact on shipping container/cooler?	Yes		No 🔲	NA 🖃	
ustody seals in	tact on sample bottles?	Yes		No 🔲	NA 🖃	
nipping contain	er/cooler in good condition?	Yes		No 🔲		
amples in prope	er containers/bottles?	Yes		No 🔲		
ample containe	ers intact?	Yes		No 🔲		
ufficient sample	e volume for indicated test?	Yes		No 🔲		
	Sample Preserva	tion and	Hold Tir	ne (HT) Information		
l samples rece	ived within holding time?	Yes	2	No 🔲	NA 🔲	
amples Receive	ed on Ice?	Yes		No 🔲		
	(Ісе Ту	rpe: WE			-	
ample/Temp Bl	lank temperature		Temp:	3.7°C		
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🞑	
ample labels ch	necked for correct preservation?	Yes		No 🔲		
H acceptable u 2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🔲		
CMR Samples:						
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 💭	
Free Chlorine t [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🔲	NA ⋥	

Comments:

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 15

Exhibit 5 HAZ-1 Appendix C: Table 8.12-4 (Condition of Certification HAZ-1), and Hazardous Materials Inventory as submitted to CUPA through CERS

				Z-1 Appendix C							
		Hazardous Materia		Table 8.12-4 way Generating Station Du	Iring the Opera	tional Pha	se				
Material	CAS Number	Purpose	Location	Container	Hazardous Characteristics	Maximum Quantity	Unit	Reg	ulatory Th	resholds (bs.)
						On-Site		Cal-ARP	Federal RQ	Federal TPQ	Federal TQ
Aqueous Ammonia (29%)	7664-41-7	SCR	Ammonia Storage Facility	Storage Tank (20,000 gal)	Corrosive	285,000	lbs.	500	100	500	20,000
Trisodium Phosphate (or Pre-blended Phosphate/Caustic)	7601-54-9 1310-73-2	pH/Corrosion Control	Northeast Corner of Admin Building	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	1,000	lbs.				
Carbohydrazide	487-18-7	Oxygen Scavenger (Oxygen removal/metal passiavtion)	Between ST and ACC	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Aqueous Ammonia (19.4%) (or ammonia monoethanolamine blend) *	7664-41-7 141-43-5	Boiler Feed pH adjustment/corrosion control	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	330	gals.	500			
Sodium Bisulfite	7631-90-5	Water treatment feedwater dechlorinization	Fire Water Pump Enclosure	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Stabilized Bromine/Sodium Hydroxide	1310-73-2	Bacteria control for feedwater tank/WSAC cooling water biocide	Fire Water Pump Enclosure	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	400	gals.				
Sulfuric Acid *	7664-93-9	WSAC water pH adjustment	Between ACC and WSAC and Warehouse (Storage)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	50	gals.	1,000			
Corrosion/Scale Inhibitor/Sodium Hydroxide	1310-73-2	Scale and corrosion inhibitor for closed loop cooling	Fire Water Pump Enclosure	Drum	Toxic	55	gals.				
Scale Inhibitor/Sulfuric Acid	7664-93-9	Scale and corrosion inhibitor evaporative cooling system (WSAC)	Between ACC and WSAC	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Sodium Hypochlorite	7681-52-9	Evaporative Cooling (WSAC) biocide	Between ACC and WSAC	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	500	gals.				
Hydrogen Gas	1333-74-0	Heat transfer medium for generators	Storage (South of ACC), In Process (CT1, CT2, ST)	Bulk Returnable Container (Tube Trailer) & In Process	Flammable	1,029	lbs.				10,000
Propylene Glycol	00057-55-6	Heat transfer fluid (Anti- freeze)	Power Block	Bulk Returnable Container (Tube Trailer) & In Process	Flammable (HMIS Flam-1)	3,326	gals.				
Monoethanolamine (30%- 60%) *	141-43-5	Corrosion Inhibitor	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (SS Metal Tote) with Hose Connections	Corrosive/Toxic/ Combustable	400	gals.				
Ammonium Hydroxide (15%) & Monoethanolamine (8%)	1336-21-6 141-43-5	Corrosion Inhibitor	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (SS Metal Tote) with Hose Connections	Corrosive, Toxic	400	gals.				
Aluminum chloride hydroxide sulfate (10-30%)	39290-78-3	Flocculant	Storm Water Treatment System and Warehouse (Storage)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	550	gals.				
Sodium Hydroxide (10-50%)	1310-73-2	Precipitate Transition (for Iron)	Storm Water Treatment System	Bulk Returnable Container with Hose Connections	Corrosive	80	gals.				

* The aqueous ammonia (or ammonia monoethanolamine blend) and sulfuric acid are stored in catchments sized to meet all applicable codes.

Updated 3/21/2018

			Hazardo	ous Materials	And Waste	s Inventory	/ Matrix	Report				
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	1001	3894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Air Coole	d Condense	r Gear Bo	oxes	Facility II	07-00	0-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submi	tted on 8/2	3/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard	I		Component xture only)	is .
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name		% Wt	EHS CAS No.
		Lubricating Oil		Storage Container	12	432 Pressue	Waste Cod	e	1-DECENE, HOMOPOL HYDROGENATED	LYMER,	95%	68037-01-4
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C3	Liquid <u>Type</u> Mixture	Other Days on Site: 365		Ambient Temperature > Ambient						

			Hazardo	ous Materials	And Waste	s Inventory	v Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Alternate	Feed Trans	former		Facility I	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8/2	23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard		Hazardous Componen (For mixture only)	ts
DOT Code/Fire Haz. C	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil	Gallons	s 656	656	656	8		Dielectric Oil (Highly	Refined Petro 100%	
		CAS No	State Liquid	Storage Container Other	-1	Pressue Ambient	Waste Cod	e	Oil)		
Combustible Liquid	i, Class III-B	Map: Figure 2 Grid: D6	Type Mixture	Days on Site: 365		Temperature > Ambient					

		Hazardo	ous Materials /	And Waste	s Inventory	y Matrix	Report			
ERS Business/Org. acility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Chemical Loca	ation and Scaver	nger Feed	Skid	CERS ID Facility I Status	10018894 07-000-773723 Submitted on 8/2	
OT Code/Fire Haz. (lass Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
Corrosive	NALCO 5711 <u>CAS No</u> Map: Figure 2 Grid: C4	Gallons <u>State</u> Liquid <u>Type</u> Mixture	s 400 Storage Container Plastic/Non-metali Days on Site: 365	400 c Drum	400 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	AMMONIA MEA	15% 8%	

ERS Business/Org. PG&E				Chemical Loca	ition			CERS	D 10018894	
,	TEWAY GENERATING STATION Ir Ave, Antioch 94509			Aqueous	Ammonia St	orage Ta	nk	Facili Statu	y ID 07-000-77372	2 3 23/2023 7:15 PM
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Componer (For mixture only) % Wt	-
DOT: 8 - Corrosives (Liquids and iolids) Corrosive	Aqua Ammonia (29%) <u>CAS No</u> 1336-21-6 Map: Figure 2 Grid: A6	Gallons State Liquid <u>Type</u> Mixture	,	18020	18020 Pressue Ambient Temperature Ambient		- Health Acute Toxicity - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity - Health Hazard Not Otherwise Classified	Ammonia	30%	7664-41-7

				And Wastes			-			
,	ATEWAY GENERATING STATION ur Ave, Antioch 94509			Chemical Loca Behind (Ea		t Service I	Building and Sh	CERS I TOP Annex Facility Status	 10018894 07-000-773723 Submitted on 8/2 	-
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.1 - Flammable Gases	Acetylene, Compressed CAS No 74-86-2 Map: Figure 2 Grid: B4	Cu. Feet State S Gas C Type	,	145	1740 Pressue > Ambient Temperature Ambient	Waste Code	- Physical	Acetylene	100%	74-86-2
DOT: 2.1 - Flammable Gases Flammable Gas	Propane, Compressed CAS No 74-98-6 Map: Figure 2 Grid: B4	Liquid C Type	111 Storage Container Cylinder Days on Site: 365	9.6	74 Pressue > Ambient Temperature Ambient		- Physical Flammable - Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Propane	100%	74-98-6
Combustible Liquid, Class III-B	Shell Turbo Oil DR46 CAS No Map: Figure 2 Grid: C4	Liquid S Type	110 Storage Container Steel Drum Days on Site: 365	55	110 Pressue Ambient Temperature Ambient	Waste Code		Highly Refined Petr Proprietary Additive		

		Hazardo	ous Materials	And Waste	s Inventor	y Matrix	Report			
,	TEWAY GENERATING STATION Ir Ave, Antioch 94509			Chemical Loca Carbon D	ation ioxide Bulk	Storage		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 8/23/2	023 7:15 PM
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt E	HS CAS No.
DOT: 2.2 - Nonflammable Gase	 Carbon Dioxide, Liquid CAS No 124-38-9 Map: Figure 2 Grid: D2 	Liquid Type	,	2326	2326	Waste Code	 Physical Gas Under Pressure Health Simple Asphyxiant Health Hazard Not Otherwise Classified 	Carbon Dioxide	100%	124-38-9

		Hazardo	ous Materials	And Waste	s Inventor	y Matrix	Report			
	ATEWAY GENERATING STATION			Chemical Loca Combusti	ation ion Turbine-	Α		CERS ID Facility I Status	10018894 07-000-773723 Submitted on 8/23/	2023 7:15 PM
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	HS CAS No.
DOT: 2.2 - Nonflammable Ga:	es Carbon Dioxide, Liquid <u>CAS No</u> 124-38-9 Map: Figure 2 Grid: B5	Liquid Type	,	2326	2326	Waste Code	 Physical Gas Under Pressure Health Simple Asphyxiant Health Hazard Not Otherwise Classified 	Carbon Dioxide	100%	124-38-9

			Hazardo	ous Materials	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Combusti	on Turbine-	A Lube O	il Reservoir	Facility ID	07-000-7737	23
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8	23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard		zardous Compon (For mixture only	
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% W	t EHS CAS No.
Combustible Liquid	, Class III-B	Shell Turbo Oil T 32	Gallons State Liquid Type	s 6000 Storage Container Other	6000	6000 Pressue Ambient Temperature	Waste Cod	e	Highly Refined Petroleur Proprietary Additives	ım Oil 99% 5%	
				Days on Site: 365		> Ambient					

		Hazardo	ous Materials	And Waste	s Inventor	y Matrix	Report			
	GATEWAY GENERATING STATION bur Ave, Antioch 94509			Chemical Loca Combusti	ation ion Turbine-	В		CERS ID Facility I Status	10018894 07-000-773723 Submitted on 8/23/	2023 7:15 PM
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Ga:	Carbon Dioxide, Liquid CAS No 124-38-9 Map: Figure 2 Grid: B5	Liquid Type	,	2326	2326	Waste Code	 Physical Gas Under Pressure Health Simple Asphyxiant Health Hazard Not Otherwise Classified 	Carbon Dioxide	100%	124-38-9

			Hazardo	ous Materials	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Combusti	on Turbine-	B Lube O	il Reservoir	Facility ID	07-000-7737	23
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8,	/23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard		azardous Compone (For mixture only)	
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% W1	EHS CAS No.
Combustible Liquid	, Class III-B	Shell Turbo Oil T 32	Gallons State Liquid	Storage Container Other	6000	6000 Pressue Ambient	Waste Cod	e	Highly Refined Petroleur Proprietary Additives	ım Oil 99% 5%	
		Map: Figure 2 Grid: C5	Type Mixture	Days on Site: 365		Temperature > Ambient					

			Hazardo	ous Materials	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Construct	tion Power 1	Status Submitted on 8/23/2023 7:15 PM				
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8	8/23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard	ŀ		
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Facility ID O7-000-773723 Status Submitted on 8/23/ Quantities Annual Hazardous Components Quantities Avg. Daily Amount Categories Component Name % Wt Do 390 390 390 Dielectric Oil (highly refined 100% petroleum oil) Pressue Maste Code Maste Code Maste Code Maste Code Temperature Maste Code Maste Code Maste Code Maste Code	t EHS CAS No.					
		Mineral Oil	Gallons	s 390	390	390				efined 100	%
	Mineral Oil <u>CAS No</u>		State Liquid	Storage Container Other	-1		Waste Cod	le	petroleum oll)		
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: B6	Type Mixture	Days on Site: 365							

			Hazardo	ous Materials	And Waste	s Inventory	v Matrix	Report					
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894			
Facility Name	PG&E GA	TEWAY GENERATING STATION			Construct	ion Trailer 1	ransform	ner	Facility IE	Facility ID 07-000-773723 Status Submitted on 8/23/2023 7:15 PM Hazardous Components			
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8,	/23/2023 7:15 PM		
					Quantities		Annual Waste	Federal Hazard					
DOT Code/Fire Haz. 0	lass	Common Name	Unit	Max. Daily	Construction Trailer Transformer Facility ID 07-000-773723 Status Submitted on 8/23/ Quantities Hazardous Components Quantities Annual Waste Federal Hazard Component Name % Wt IO2 402 402 402 Dielectric Oil (highly refined 100% Pressue Maste Code Temperature Waste Code Dielectric Oil (highly refined 100%	EHS CAS No.							
		Mineral Oil	Gallons	s 402	402	402			(0)	efined 100%	%		
	Mineral Oil <u>CAS No</u>		State Liquid	Storage Container Other			Waste Cod	le	petroleum oil)				
Combustible Liquic	I, Class III-B	Map: Figure 2 Grid: C8	Type Mixture	Days on Site: 365									

	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca	tion C and CT B	- PEEC		Status	10018894 07-000-773723 Submitted on 8/23	8/2023 7:15 PM
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	F Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 8 - Corrosives (Liquids and olids) corrosive, Water Reactive, Class	AlphaCell OPzS Stationary Flooded Tubular Lead Acid	Gallons State Liquid Type	,	3	357 Pressue Ambient Temperature Ambient	Waste Code	- Physical Explosive	Lead, Lead Compound Sulfuric Acid		7439-92-1 ✓ 7664-93-9

			Hazardo	ous Materials	And Waste	s Inventory	Matrix	Report					
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894			
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-A Aux	iliary Transfo	ormer		Facility II	Facility ID 07-000-773723 Status Submitted on 8/23/2023 7:15 PM Hazardous Components (For mixture only)			
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on a	3/23/2023 7:15 PM		
	/Fire Haz. Class Common Name				Quantities		Annual Waste	Federal Hazard					
DOT Code/Fire Haz. C	PG&E GATEWAY GENERATING STATION CT-A Auxilia 3225 Wilbur Ave, Antioch 94509 Quantities Code/Fire Haz. Class Common Name Unit Max. Daily Largest Cont. Mineral Oil Gallons 6155 6155 CAS No State Storage Container I Inbustible Liquid, Class III-B Map: Figure 2 Grid: C6 Type	Avg. Daily	Amount	Categories	Component Name	% V	/t EHS CAS No.						
		Mineral Oil				6155			(0)	efined 100	9%		
	6	CAS No				Pressue Ambient	Waste Cod	e	petroleum oil)				
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C6		Days on Site: 365		Temperature > Ambient							

			Hazardo	ous Materials	And Waste	s Inventory	Matrix	Report				
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894		
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-A Excit	tation Trans	former		Facility II	Facility ID 07-000-773723 Status Submitted on 8/23/2023 7:15 PM Hazardous Components (For mixture only) omponent Name % Wt EHS CAS No. Dielectric Oil (highly refined 100%		
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8	3/23/2023 7:15 PM	
					Quantities		Annual Waste	Federal Hazard				
DOT Code/Fire Haz. C	PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509 Annual Quantities Annual Waste Federal	Categories	Component Name	% W	/t EHS CAS No.							
		Mineral Oil	Gallons	414	414	414			(0)	refined 100	%	
		CAS No					Waste Cod	e	petroleum oil)			
Combustible Liquid	I, Class III-B	Map: Figure 2 Grid: C6		Days on Site: 365								

			Hazardo	ous Materials	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name	PG&E GAT	EWAY GENERATING STATION			CT-A Isola	tion Transfo	ormer		Facility II	07-000-77372	23
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8/	23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard		Hazardous Componer (For mixture only)	nts
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Facility ID 07-000-77372 Status Submitted on 8/2 Hazardous Componen (For mixture only)	EHS CAS No.	
		Mineral Oil	Gallons State		1413	1413 Brossue				refined 100%	
		CAS No	Liquid	Storage Container Other		Pressue Ambient	Waste Code	e			
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C6	Type Mixture	Days on Site: 365		Temperature > Ambient					

			Hazardo	ous Materials	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name PG&E GATEWAY GENERATING STATION CT-A Main Step-Up Transformer 3225 Wilbur Ave, Antioch 94509 Annual							er	Facility ID	07-000-7737	23	
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8	/23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard	ŀ		
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	CT-A Main Step-Up Transformer Facility ID 07-000-773723 Status Quantities Annual Waste Hazardous Components (For mixture only) . Daily Largest Cont. Avg. Daily Arg. Daily Arg. Daily Amount Categories Component Name % Wt B000 12800 12800 Ontainer Pressue Ambient Temperature Waste Code Temperature	EHS CAS No.					
		Mineral Oil	Gallons	12800	12800	12800				efined 100	%
	Mineral Oil <u>CAS No</u>		State Liquid	Storage Container Other	-1		Waste Cod	e	petroleum oll)		
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C6	Type Mixture	Days on Site: 365							

			Hazardo	us Materials	And Waste	s Inventory	Matrix	Report					
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894			
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-B Auxi	iliary Transfo	ormer		Facility II	Facility ID 07-000-773723 Status Submitted on 8/23/2023 7:15 PM Hazardous Components (For mixture only) mponent Name % Wt EHS CAS No. electric Oil (highly refined 100% EHS CAS No.			
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8	8/23/2023 7:15 PM		
				<u></u>	Quantities		Annual Waste	Federal Hazard					
DOT Code/Fire Haz. 0	PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509 CT-B Auxiliary Transformer az. Class Common Name Unit Quantities Annual Waste Federal Hazard Categories Comport Mineral Oil Gallons 6155 6155 6155 Dielect	Component Name	% W	t EHS CAS No.									
		Mineral Oil	Gallons	6155	6155	6155				efined 100	%		
		CAS No					Waste Code	e	petroleum oil)				
Combustible Liquic	, Class III-B	Map: Figure 2 Grid: C5		Days on Site: 365									

			Hazardo	ous Materials	And Waste	s Inventory	Matrix	Report				
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894		
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-B Excit	tation Trans	former		CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 8/23/2023 7:15 PM Hazardous Components (For mixture only) Component Name % Wt EHS CAS No.			
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8	8/23/2023 7:15 PM	
					Quantities		Annual Waste	Federal Hazard				
DOT Code/Fire Haz. 0	Pame PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509 CT-B Excitation Tra e/Fire Haz. Class Common Name Unit Max. Daily Largest Cont. Avg. Daily e/Fire Haz. Class Common Name Unit Max. Daily Largest Cont. Avg. Daily e/Fire Haz. Class Common Name Unit Max. Daily Largest Cont. Avg. Daily titble Liquid, Class III-B Map: Figure 2 Grid: C5 Type Temperate	Avg. Daily	Amount	Categories	Component Name	% W	t EHS CAS No.					
		Mineral Oil	Gallons	s 414	414	414			Dielectric Oil (highly r	efined 100	%	
	(CAS No					Waste Cod	e	petroleum oil)			
Combustible Liquic	l, Class III-B	Map: Figure 2 Grid: C5		Days on Site: 365		Temperature > Ambient						

			Hazardo	ous Materials	And Waste	s Inventory	/ Matrix	Report				
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894		
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-B Isola	ation Transfo	ormer		CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 8/23/2023 7:15 PM Hazardous Components (For mixture only) Component Name % Wt EHS_CAS No.			
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on a	3/23/2023 7:15 PM	
					Quantities		Annual Waste	Federal Hazard				
DOT Code/Fire Haz. (Business/Org. PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509 Code/Fire Haz. Class Common Name Unit Mineral Oil Gallons CAS No CAS No Dustible Liquid, Class III-B Map: Figure 2 Grid: C5 Type	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% V	/t EHS CAS No.			
		Mineral Oil	Gallons	i 1413	1413	1413			Dielectric Oil (highly r	efined 100)%	
	(CAS No		Storage Container Other		Pressue Ambient	Waste Cod	e	petroleum oil)			
Combustible Liquic	, Class III-B	Map: Figure 2 Grid: C5		Days on Site: 365		Temperature > Ambient						

			Hazardo	ous Materials <i>i</i>			/ Matrix	Report			_
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			CT-B Mair	n Step-Up Ti	ransform	er	Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8/2	23/2023 7:15 PM
	3225 Wilbur Ave, Antioch 94509 e/Fire Haz. Class Common Name				Quantities		Annual Waste	Federal Hazard		azardous Componen (For mixture only)	ts
DOT Code/Fire Haz. C	ass	Common Name	CT-B Main Step-Up Transformer Facility ID 07-000-77372 Status Submitted on 8/2 Annual Hazardous Componen	EHS CAS No.							
		Mineral Oil	Gallons	12800	12800	12800				fined 100%	
	6	CAS No			-1		Waste Cod	e	petroleum oil)		
Combustible Liquid	Class III-B	Map: Figure 2 Grid: C5		Days on Site: 365							

		Hazardo	us Materials	And Waste	s Inventory	/ Matrix I	Report			
,	GATEWAY GENERATING STATION Ibur Ave, Antioch 94509			Chemical Loca Gas Cond	ation itioning Stat	tion		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 8/23/	2023 7:15 PM
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Ga	Asses Helium, Compressed CAS No 7440-59-7 Map: Figure 2 Grid: D4	Gas Type	,	292	1168	Waste Code	 Physical Gas Under Pressure Health Simple Asphyxiant Health Hazard Not Otherwise Classified 	Helium	100%	7440-59-7

		I	Hazardo	ous Materials	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			C	ERS ID	10018894
Facility Name	PG&E GA	TEWAY GENERATING STATION			Hazardou	s Mat/Wast	e Storage	e (M9)-Wareho	ouse F	acility II	07-000-773723
	3225 Wilbur	Ave, Antioch 94509							S	tatus	Submitted on 8/23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard			Hazardous Components (For mixture only)
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Nam	ne	% Wt EHS CAS No.
DOT: 4.1 - Flammal	ole Solids	Waste Flamable Solids, Organic	Pounds	s 100	500	66	220	- Physical	Flamable Solid	, Orgar	nic 100%
Flammable Solid		CAS No	State Solid	Storage Container Steel Drum		Pressue Ambient	Waste Code 352	Flammable			
		Grid: B8, C3	Type Waste	Days on Site: 365		Temperature Ambient					

		Hazardo	ous Materials	And Waste	s Inventory	Matrix	Report			
acility Name	PG&E PG&E GATEWAY GENERATING ST 3225 Wilbur Ave, Antioch 94509	ATION		Chemical Loca Hazardou	ation Is Mat/Wast	e Storage	e Area	CERS ID Facility I Status	10018894 D 07-000-773723 Submitted on 8/2	
OOT Code/Fire Haz. Cl	Class Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	ts EHS CAS No.
	Non-RCRA Mixed Oil CAS No Map: Figure 2 Grid: B8, C3		,	55	26 Pressue Ambient Temperature Ambient	800 Waste Code 221		Oil		
	Non-RCRA Solids (Oily CAS No Map: Figure 2 Grid: B8, C3	<u>State</u> Solid	s 2000 Storage Container Steel Drum Days on Site: 90	500	1056 Pressue Ambient Temperature Ambient	3000 Waste Code 223	2			
	RCRA Liquid Lab Bencl CAS No Map: Figure 2 Grid: B8, C3	State Liquid	s 30 Storage Container Plastic/Non-metal Days on Site: 90	30 lic Drum	25 Pressue Ambient Temperature Ambient	136 Waste Code 791	- Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	Sulfuric Acid		

			Hazardo	ous Materials A	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Locat	tion			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			Hazardou	s Waste Stor	rage Area	4	Facility I'	D 07-000-773723	.3
	3225 Wilbur /	Ave, Antioch 94509							Status	Submitted on 8/2	23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 8 - Corrosives Solids)		Waste Sodium Hydroxide Contaminated Debris CAS No Map: Figure 2 Grid: B8, C3	Solid Type	s 5 <u>Storage Container</u> Can Days on Site: 90	10	5 Pressue Ambient Temperature Ambient	Waste Code				

S Business/Org.	PG&E				Chemical Loc	ation			CERS I	0 10018894	
lity Name		EWAY GENERATING STATION					v Steam (Generators) - A		D 07-000-773723	
		Ave, Antioch 94509			111303 (11		y oteann (Status	Submitted on 8/23/2	2023 7:15 PM
		-,					Annual		514145	Hazardous Components	
					Quantities		Waste	Federal Hazard		(For mixture only)	
T Code/Fire Haz.		Common Name	Unit		Largest Cont.	Avg. Daily	Amount	Categories	Component Name		HS CAS No.
)T: 2.2 - Nonflan	imable Gases	Argon, Compressed Gas	Cu. Fee		336	1344		- Physical Gas Under Pressure	Argon	100%	
		CAS No	State	Storage Container Cylinder		Pressue	Waste Code	- Health Simple			
		Map: Figure 2 Grid: B5	Gas	Cymlder		> Ambient Temperature		Asphyxiant			
		Map. Figure 2 Grid. 65	Type Pure	Days on Site: 365		Ambient		- Health Hazard			
								Not Otherwise			
T: 2.2 - Nonflan	mable Gases	EDA Drotocol Cos (Carbon	Cu. Fee	t 1440	144	1440		Classified - Physical Gas	Nitrogen	88%	7727-37-9
1. 2.2 Norman		EPA Protocol Gas (Carbon	State	Storage Container	144	Pressue	Waste Code	I I I I I I I I I I I I I I I I I I I	Carbon Monoxide	13%	630-08-0
		Monoxide/Nitrogen Mixture)	Gas	Cylinder		> Ambient		- Health Simple			
		CAS No	Туре	,		Temperature		Asphyxiant			
		Map: Figure 2 Grid: B5	Mixture	Days on Site: 365		Ambient					
)T: 2.2 - Nonflan	nmable Gases	EPA Protocol Gas Carbon	Cu. Fee	t 864	144	864		- Physical Gas	Nitrogen	99%	7727-37-9
		Monoxide 11/Nitric/Nitrogen	State	Storage Container		Pressue	Waste Code		Nitric Oxide	1%	10102-43-9
		Mixture	Gas	Cylinder		> Ambient		- Health Simple	Carbon Monoxide	10%	630-08-0
		CAS No	Туре			Temperature		Asphyxiant			
			Mixture	Days on Site: 365		Ambient					
		Map: Figure 2 Grid: B5									
)T: 2.2 - Nonflan	imable Gases	EPA Protocol Gas Carbon	Cu. Fee		144	864		- Physical Gas Under Pressure	Nitrogen Nitric Oxide	99% 1%	7727-37-9 10102-43-9
		Monoxide 660/Nitric/Nitrogen	State	Storage Container Cylinder		Pressue	Waste Code	- Health Simple	Carbon Monoxide	20%	630-08-0
		Mixture	Gas Type	Cymluel		> Ambient Temperature		Asphyxiant			
		CAS No		Days on Site: 365		Ambient					
		Many Figure 2 Cride DE		.,							
)T: 2.2 - Nonflan	mable Gases	Map: Figure 2 Grid: B5 EPA Protocol Gas Nitric/Nitroger		t 576	144	576		- Physical Gas	Nitrogen	99%	7727-37-9
		Mixture	State	Storage Container	144	Pressue	Waste Code	Under Pressure	Nitric Oxide	2%	10102-43-9
			Gas	Cylinder		> Ambient		- Health Simple			
		CAS No	Туре			Temperature		Asphyxiant			
		Map: Figure 2 Grid: B5	Mixture	Days on Site: 365		Ambient					
)T: 2.2 - Nonflan	nmable Gases	EPA Protocol Gas	Cu. Fee	t 1152	144	1152		- Physical Gas	Nitrogen	99%	7727-37-9
		Nitrogen/Oxygen Mixture	State	Storage Container		Pressue	Waste Code		Oxygen	20%	7782-44-7
		CAS No	Gas	Cylinder		> Ambient		 Health Simple Asphyxiant 			
			Type	Davis on Sites 265		Temperature Ambient		, opinymane			
T 2 2 N 0		Map: Figure 2 Grid: B5		Days on Site: 365				Dh. staal Caa	11-P	4000/	7440 50 7
)T: 2.2 - Nonflan	imable Gases	Helium, Compressed	Cu. Fee		336	1344		- Physical Gas Under Pressure	Helium	100%	7440-59-7
		CAS No		Storage Container		Pressue	Waste Code	- Health Simple			
		7440-59-7	Gas	Cylinder		> Ambient		Asphyxiant			
		Map: Figure 2 Grid: B5	Type Pure	Days on Site: 365		Temperature Ambient		- Health Hazard			
				24,5 01 510. 505				Not Otherwise			
								Classified			

	Hazardo	ous Materials	And Waste	s Inventor	y Matrix	Report					
EWAY GENERATING STATION Ave, Antioch 94509					y Steam (Generators) - A	and B	CERS ID Facility II Status	07-000-7	73723	2023 7:15 PM
Common Namo	Unit	Max Daily	Quantities	Avg Daily	Annual Waste	Federal Hazard	Component N			e only)	EHS CAS No.
Oxygen, Compressed CAS No	Cu. Fee State Gas Type	t 1124	281	1124 Pressue > Ambient	Waste Code	- Physical Gas Under Pressure	Oxygen			100%	7782-44-7
4	Common Name Oxygen, Compressed CAS No 7782-44-7	EWAY GENERATING STATION Ave, Antioch 94509 Common Name Unit Oxygen, Compressed Cu. Fee CAS No State 7782-44-7 Gas Map: Figure 2 Grid: B3, B5 Type	EWAY GENERATING STATION Ave, Antioch 94509 Common Name Unit Max. Daily Oxygen, Compressed Cu. Feet 1124 CAS No State Storage Container 7782-44-7 Gas Cylinder Map: Figure 2 Grid: B3, B5 Type	Chemical Loca EWAY GENERATING STATION HRSGs (H Ave, Antioch 94509 Quantities Max. Daily Largest Cont. Oxygen, Compressed Cu. Feet 1124 281 CAS No State Storage Container Gas Cylinder Map: Figure 2 Grid: B3, B5 Type Type	Chemical Location EWAY GENERATING STATION Ave, Antioch 94509 RSGs (Heat Recover Common Name Unit Max. Daily Largest Cont. Avg. Daily Oxygen, Compressed Cu. Feet 1124 281 1124 CAS No State Storage Container Pressue > Ambient TMap: Figure 2 Grid: B3, B5 Type Temperature	Chemical Location EWAY GENERATING STATION Ave, Antioch 94509 HRSGs (Heat Recovery Steam of Annual Waste Common Name Unit Max. Daily Largest Cont. Avg. Daily Annual Waste Oxygen, Compressed Cu. Feet 1124 281 1124 CAS No State Storage Container Pressue Waste Code 7782-44-7 Gas Storage Container Pressue Waste Code Map: Figure 2 Grid: B3, B5 Type Temperature	EWAY GENERATING STATION HRSGs (Heat Recovery Steam Generators) - A Ave, Antioch 94509 Annual Quantities Annual Waste Federal Hazard Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Federal Hazard Oxygen, Compressed Cu. Feet 1124 281 1124 - Physical Gas Under Pressure CAS No State Storage Container Pressue Waste Code Under Pressure - Physical Oxidize Map: Figure 2 Grid: B3, B5 Type Temperature - Health Hazard	Chemical Location EWAY GENERATING STATION Ave, Antioch 94509 HRSGs (Heat Recovery Steam Generators) - A and B Common Name Unit Quantities Waste Federal Hazard Component N Oxygen, Compressed Cu. Feet 1124 281 1124 - Physical Gas Oxygen CAS No State Storage Container Pressue Waste Code Under Pressure Map: Figure 2 Grid: B3, B5 Type Temperature - Health Hazard	Common Name Unit Quantities Annual Waste Federal Hazard Component Name Oxygen, Compressed Cu. Feet 1124 281 1124 - Physical Gas Oxygen CAS No 7782-44-7 Gas Cylinder Pressue Waste Code Under Pressure Oxygen Map: Figure 2 Grid: B3, B5 Type Temperature - Health Hazard - Health Hazard	Chemical Location CERS ID 1001889 EWAY GENERATING STATION HRSGs (Heat Recovery Steam Generators) - A and B Facility ID 07-000-7 Ave, Antioch 94509 Unit Quantities Waste Federal Hazard Hazardous Correction (For mixture) Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories Component Name Oxygen, Compressed Cu. Feet 1124 281 1124 - Physical Gas Oxygen CAS No State Storage Container Pressue Waste Code Under Pressure Oxygen Map: Figure 2 Grid: B3, B5 Type Temperature - Health Hazard - Health Hazard	Common Name Unit Max. Daily Largest Cont. Avg. Daily Arg. Daily Arg. Daily Amount Categories Component Name Kate State Submitted on 8/23/ Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories Component Name % Wt Oxygen, Compressed Cu. Feet 1124 281 1124 - Physical Gas Oxygen 100% CAS No State Storage Container Pressue Waste Code Under Pressure Oxygen 100% Map: Figure 2 Grid: B3, B5 Type Temperature - Health Hazard - Health Hazard

		Hazardo	ous Materials	And Waste	s Inventory	/ Matrix	Report				
,	TEWAY GENERATING STATION Ave, Antioch 94509			•		•	Generators) - A	and B,	CERS ID Facility I Status	10018894 07-000-773723 Submitted on 8/23/20	023 7:15 PM
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Na		Hazardous Components (For mixture only) % Wt EH	IS CAS No.
DOT: 2.2 - Nonflammable Gases	Nitrogen, Compressed CAS No 7727-37-9 Map: Figure 2 Grid: B5,C4,C5,C6	Gas Type	t 3263 <u>Storage Container</u> Cylinder Days on Site: 365		3263 Pressue > Ambient Temperature Ambient	Waste Cod	 Physical Gas Under Pressure Health Simple Asphyxiant Health Hazard Not Otherwise Classified 	Nitrogen		100%	7727-37-9

		Hazardou	s Materials	And Waste	s Inventor	y Matrix	Report			
,	GATEWAY GENERATING STATION Vilbur Ave, Antioch 94509			Chemical Loca Hydrogen	ation Bulk Stora	ge		CERS ID Facility I Status	10018894 07-000-773723 Submitted on 8/23	
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	s EHS CAS No.
DOT: 2.1 - Flammable Gase: Flammable Gas		Cu. FeetStateStGasOType	134000 torage Container ther ays on Site: 365	134000	134000 Pressue > Ambient Temperature Ambient	Waste Code	- Physical	Hydrogen	100%	1333-74-0

		Hazardo	us Materials	And Waste	s Inventory	Matrix I	Report			
,	TEWAY GENERATING STATION Ir Ave, Antioch 94509			Chemical Loca Nitrogen	ation Bulk Storage	9		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 8/23/	2023 7:15 PM
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gase	 Nitrogen, Compressed CAS No 7727-37-9 Map: Figure 2 Grid: D2 	Gas Type	,	304	10944	Waste Code	 Physical Gas Under Pressure Health Simple Asphyxiant Health Hazard Not Otherwise Classified 	Nitrogen	100%	7727-37-9

		Hazardo	us Materials A	And Waste	s Inventory	Matrix	Report			
CERS Business/Org. Facility Name	PG&E PG&E GATEWAY GENERATING STATION			Chemical Locat	ation e Feed Skid			CERS ID Facility II	10018894 D 07-000-773723	3
	3225 Wilbur Ave, Antioch 94509			Quantities		Annual Waste	Federal Hazard	Status	Submitted on 8/23 Hazardous Components (For mixture only)	•
DOT Code/Fire Haz. C	Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount		Component Name	% Wt	EHS CAS No.
	NALCO BT-3400 CAS No Map: Figure 2 Grid: B4	Liquid T Type	400 Storage Container Tote Bin Days on Site: 365	400	400 Pressue Ambient Temperature Ambient		- Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	Sodium Hydroxide Proprietary	5% 99%	1310-73-2

	TEWAY GENERATING STATION r Ave, Antioch 94509			Chemical Loca Plant Serv	ition vices Buildir	Ig		CERS ID Facility Status	D 07-000-773723 Submitted on 8/23	3/2023 7:15 PM
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	EHS CAS No.
)Τ: 8 - Corrosives (Liquids and lids) rrosive, Water Reactive, Class	Battery	Liquid (Type	834 Storage Container Other Days on Site: 365	14	834 Pressue Ambient Temperature Ambient	Waste Code	 Physical Explosive Physical Corrosive To Metal Health Carcinogenicity Health Acute Toxicity Health Reproductive Toxicity Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation Health Specific Target Organ Toxicity 	Lead Sulfuric Acid Lead Dioxide	52% 44% 21%	7439-92-1 7664-93-9 1309-60-0

CERS Business/Org. Facility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Chemical Loca	Treatment			CERS ID Facility II Status	10018894 07-000-773723 Submitted on 8/23	
OT Code/Fire Haz.	Class Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	s EHS CAS No.
OT Code/Fire Haz. Class	Sodium Bisulfite <u>CAS No</u> Map: Figure 2 Grid: C2	Gallons <u>State</u> Liquid <u>Type</u> Mixture	50 <u>Storage Container</u> Tank Inside Buildin Days on Site: 365	50	50 Pressue Ambient Temperature Ambient	Waste Code	- Health Skin	Sodium Bisulfite	20%	763-90-5
Corrosive	Sodium Hydroxide CAS No Map: Figure 2 Grid: C2	Gallons State Liquid Type Pure	5 75 Storage Container Aboveground Tank Days on Site: 365	75	75 Pressue Ambient Temperature Ambient	Waste Code	- Physical	SODIUM HYDROXIDE	100%	1310-73-2

		Hazardo	us Materials	And Waste	s Inventory	Matrix	Report			
,	TEWAY GENERATING STATION r Ave, Antioch 94509			Chemical Loca Sodium H		(Elect Eq	uipment) Breal	CERS ID kers Facility I Status	10018894 07-000-773723 Submitted on 8/23/	2023 7:15 PM
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Components (For mixture only) % Wt	HS CAS No.
DOT: 2.2 - Nonflammable Gases	 SF6 <u>CAS No</u> 2551-62-4 Map: Figure 2 Grid: C5,C6,D4,D5,D6 	Gas Type	2043 Storage Container Other Days on Site: 365	639	2043 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Sulfur Hexafluoride	100%	2551-62-4

			Hazardo	ous Materials	And Waste	s Inventor	/ Matrix	Report				
ERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	Ļ	_
Facility Name	PG&E GA	TEWAY GENERATING STATION			ST Electro	-Hydraulic	Control S	ystem	Facility ID	07-000-77	73723	
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted of	on 8/23/2023 7	:15 PM
					Quantities		Annual Waste	Federal Hazard	Ha	azardous Com (For mixture		
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name		% Wt EHS CA	S No.
		Hydraulic Oil	Gallons		130	130			Highly refined mineral (C50)	oil (C15 -	99%	
		CAS No	State Liquid	Storage Container Other	-	Pressue Ambient	Waste Cod	e	(50)			
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C4	Type Mixture	Days on Site: 365		Temperature > Ambient						

			Hazardo	ous Materials	And Waste	s Inventory	v Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			ST Excitat	tion Transfo	mer		Facility II	D 07-000-7737	23
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8	3/23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard		Hazardous Compon (For mixture only	
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% W	/t EHS CAS No.
		Mineral Oil	Gallons	414	414	414			Dielectric Oil (highly r	refined 100	1%
	6	CAS No		Storage Container Other		Pressue Ambient	Waste Cod	e	petroleum oil)		
Combustible Liquid	l, Class III-B	Map: Figure 2 Grid: C4	Type Mixture	Days on Site: 365		Temperature > Ambient					

			Hazardo	ous Materials A	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name	PG&E GAT	TEWAY GENERATING STATION			ST Main S	tep-Up Trar	sformer		Facility II	07-000-773	723
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on	8/23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard		Hazardous Compo (For mixture or	
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	%	Wt EHS CAS No.
		Mineral Oil	Gallons	-	14143	14143			Dielectric Oil (highly r	efined 10	0%
		CAS No		Storage Container Other		Pressue Ambient	Waste Code	e	petroleum oil)		
Combustible Liquid	, Class III-B	Map: Figure 2 Grid: C4	Type Mixture	Days on Site: 365		Temperature > Ambient					

			Hazardo	ous Materials	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Steam Tu	rbine Lube (Dil Reserv	<i>v</i> oir	Facility ID	07-000-7737	23
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8	/23/2023 7:15 PM
					Quantities		Annual Waste	Federal Hazard		azardous Compone (For mixture only	
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% W	EHS CAS No.
		Refined Petroleum Oil	Gallons	4800	4800	4800			Highly Refined Petroleur		
Combustible Liquic	l, Class III-B	CAS No	State Liquid	Storage Container Other	-	Pressue Ambient	Waste Code	2	Proprietary Additives	5%	
		Map: Figure 2 Grid: C4	Type Mixture	Days on Site: 365		Temperature > Ambient					

		Hazardo	us Materials	And Waste	s Inventory	Matrix	Report			
CERS Business/Org.	PG&E			Chemical Loca	ition			CERS ID	10018894	
Facility Name	PG&E GATEWAY GENERATING STATION			Stormwat	er Treatmei	nt System	ı	Facility II	07-000-773723	3
	3225 Wilbur Ave, Antioch 94509							Status	Submitted on 8/2	3/2023 7:15 PM
				Quantities		Annual Waste	Federal Hazard	I	Hazardous Component (For mixture only)	S
DOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Corrosive	Tidal Clear Hybrid (TCH) <u>CAS No</u> Map: Figure 2 Grid: C9		275 Storage Container Tote Bin	275	275 <u>Pressue</u> Ambient Temperature	Waste Code	- Physical Corrosive To _ Metal - Health Serious	Dialuminum Chloride Penthahydroxide	30%	12042-91-0
			Days on Site: 365		Ambient		Eye Damage Eye Irritation			

,	TEWAY GENERATING STATION r Ave, Antioch 94509			Chemical Loca Switchya				CERS ID Facility Status	D 07-000-773723 Submitted on 8/23	3/2023 7:15 PM
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
OT: 8 - Corrosives (Liquids and olids) orrosive, Water Reactive, Clas	KCR-7 Lead Calcium Batteries	Gallons State Liquid Type	1	1.5	90 Pressue Ambient Temperature Ambient	Waste Code	- Physical Explosive	Lead Calcium Sulfuric Acid Lead Dioxide	52%	7439-92-1 ✓ 7664-93-9 1309-60-0

DC Ducinoss/Org	PG&E			Chamical Loy	- tion			CERS ID 1	0019904	
				Chemical Loca						
acility Name	PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Warehous	se				07-000-773723	
	3225 Wibur Ave, Antioch 54505					Annual			ubmitted on 8/23/ ardous Components	
				Quantities		Annual Waste	Federal Hazard		(For mixture only)	
OOT Code/Fire Haz. C	Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name		EHS CAS No.
	Gas Turbine Compressor Cleanir	ng Gallons	s 264	264	264			Cleaning Fluid		
	Fluid		Storage Container	÷.	Pressue	Waste Code	2			
	CAS No	-1	Tote Bin		Ambient					
		Type Mixture	Days on Site: 365		Temperature Ambient	-				
	Map: Figure 2 Grid: B8-9		-					Colline Undrovido		1210 72 2
	NALCO BT-3400	Gallons		55	55	in to Cod	 Health Skin Corrosion 	Sodium Hydroxide Proprietary	5% 99%	1310-73-2
	CAS No		Storage Container Plastic/Non-metalic	- In Drum	Pressue Ambient	Waste Loge	Irritation	Proprietary	5570	
	Map: Figure 2 Grid: B8-9	-1	Plastic/ Non-metand	C Drum	Ambient		- Health Serious			
	Map: rigure 2 Oriu. Do-5	Type Mixture	Days on Site: 365		Temperature Ambient	5	Eye Damage Eye			
							Irritation	- 11 - 11 - 14 - 14 -		
	NALCO Trac107	Gallons		55	55	· · · · • • • •	 Health Skin Corrosion 	Sodium Hydroxide Inorganic Salt	1% 5%	1310-73-2
	CAS No		Storage Container Plastic/Non-metalic	- Drum	Pressue Ambient	Waste Code	Irritation	Proprietary	5% 99%	
	Man Figure 2 Cride B& O		Plastic/ Non-metany	2 Drum	Ambient		- Health Serious	1.00.000.0		
	Map: Figure 2 Grid: B8-9	Type Mixture	Days on Site: 365		Temperature Ambient	20	Eye Damage Eye			
							Irritation	Complex Understand N	100%	C 4742 E2 (
	Petroleum Distillate	Gallons		55	55			Severely Hydrotreated Na Petroleum Oil	aphthenic 100%	64742-53-6
	CAS No		Storage Container Steel Drum	-	Pressue Ambient	- Waste Code	e	BHT	0%	128-37-0
Combustible Liquid	d, Class III-B Map: Figure 2 Grid: B8-9	Type	Steer Dram		Temperature	-0	-			
	Mup. HBure 2 Crat 20 C		Days on Site: 365		Ambient	-				
	Polypropylene glycol bis	Gallons	s 66.5	1.85	66.5		- Health Acute	Polyoxyalkyleneamine	60%	9046-10-0
			S DD.5 Storage Container	1.05	Pressue	Waste Code		Nonyl Phenol	40%	84852-15-3
Corrosive	(aminopropyl) ether		Other	-	Ambient	-	- Health Skin			
	CAS No 20046-10-0	Туре			Temperature		Corrosion			
	9046-10-0 Map: Figure 2 Grid: B8		Days on Site: 365		Ambient		Irritation			
	Map. Figure 2 Oria. Bo						- Health Serious Eye Damage Eye			
							Irritation			
							- Health Hazard			
							Not Otherwise			
							Classified			1240 72 2
	Sodium Hydroxide (10-50%)	Gallons		55	55		- Physical	SODIUM HYDROXIDE	50%	1310-73-2
Corrosive	CAS No	(marging (ma	Storage Container Plastic/Non-metalic	- Drum	Pressue	Waste Code	e Corrosive To Metal			
JULIUSIVE	1310-73-2		Plastic/ Non-metanc	C Drum	Ambient		- Health Skin			
	Map: Figure 2 Grid: B8-9	Type Mixture	Days on Site: 365		Temperature Ambient	20	Corrosion			
		1111110	Days on Site. Site		A		Irritation			
							- Health Serious Eye Damage Eye			

		Hazardo	us Materials	And Waste	s Inventory	Matrix	Report			
CERS Business/Org. PG&E Facility Name PG&E	GATEWAY GENERATING STATION			Chemical Loca Warehou				CERS ID Facility II	10018894 07-000-77372	3
3225 W	libur Ave, Antioch 94509							Status	Submitted on 8/2	3/2023 7:15 PM
			_	Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	S
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Corrosive	Tidal Clear Hybrid (TCH) CAS No Map: Figure 2 Grid: B8-9	Liquid Type	275 Storage Container Tote Bin Days on Site: 365	275	275 Pressue Ambient Temperature Ambient	Waste Code	 Physical Corrosive To Metal Health Serious Eye Damage Eye 	Dialuminum Chloride Penthahydroxide	30%	12042-91-0

			Hazard	ous Materials	And Waste	es Inventory	Matrix	Report		
ERS Business/Org.	PG&E				Chemical Loc	ation			CERS ID 10018	894
acility Name	PG&E GAT	EWAY GENERATING STATION			Warehou	ise - Hazardo	us Mat/V	Vaste Storage	Facility ID 07-000)-773723
	3225 Wilbur	Ave, Antioch 94509							Status Submitt	ed on 8/23/2023 7:15 PM
							Annual			Components ture only)
OT Code/Fire Haz. Cl	lass	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Waste	Federal Hazard Categories	Component Name	% Wt EHS CAS No.
OOT: 8 - Corrosives					500	137	274		LIQUIDS SOLUTION (SODIUM	5%
Solids)		LIQUIDS SOLUTION (SODIUM	State	Storage Container		Pressue			HYDROXIDE)	
		HYDROXIDE)	Liquid	Other		Ambient	Waste Code 135	-		
		CAS No	Type Waste	Dave on Site: 00		Temperature Ambient	135			
			waste	Days on Site: 90		Amplem				
		Map: Figure 2 Grid: B8, C3	Danual	- 45	500	10	165		Empty Drums	100%
		NON-RCRA Hazardous Solids	Pound State	s 15 Storage Container	500	10 Pressue	Waste Code			100%
		(Empty Drums)	Solid	Steel Drum	-	Tressue	512	-		
		CAS No	Туре			Temperature				
		Grid: B8, C3	Waste	Days on Site: 365						
		NON-RCRA Hazardous Waste	Gallon	s 96	55	63	113		Oil, Water	100%
		Liquid (Oil, Water)	State	Storage Container	-	Pressue	Waste Code	-		
		CAS No	Liquid	Steel Drum		Ambient Temperature	223			
		Grid: B8, C3	Type Waste	Days on Site: 365		Ambient				
		NON-RCRA Hazardous Waste	Gallon	s 36	1600	18	36		Oil, Water, Sludge	100%
		Liquid (Oil, Water, Sludge)	State	Storage Container	1000	Pressue	Waste Code			
		CAS No	Liquid	Tank Wagon		Ambient	222			
			Type			Temperature				
		Grid: B8, C3	Waste	Days on Site: 365		Ambient			Masta Daint Linuida	
		RCRA Waste Paint, Liquids	Gallon		55	27	44 Waste Code		Waste Paint, Liquids	
		CAS No	State Liquid	Storage Container Steel Drum	1	Pressue Ambient	352			
		Map: Figure 2 Grid: B8, C3	Туре			Temperature				
			Waste	Days on Site: 90		Ambient				
		Shell Tellus Oil 32	Gallon		275	275			Highly refined mineral oils and additives	
		CAS No	State Liquid	Storage Container Tote Bin	3	Pressue Ambient	Waste Code		additives	
Combustible Liquid,	, Class III-B	Map: Figure 2 Grid: B8	Туре			Temperature		7		
				Days on Site: 365		Ambient				
		Shell Turbo Oil DR46	Gallon	s 275	55	110			Highly Refined Petroleum Oil	99%
		CAS No	State	Storage Container		Pressue	Waste Code		Proprietary Additives	1%
Combustible Liquid,	, Class III-B		Liquid	Steel Drum		Ambient				
		Map: Figure 2 Grid: B8	Type Mixture	Davis on Sites 205		Temperature Ambient				
		Universal Waste - eWaste	Pound	Days on Site: 365	500	330	1070			
			State	S 500 Storage Container	500	Pressue	Waste Code			
		CAS No	Solid	Steel Drum	5	Ambient	181			
		Map: Figure 2 Grid: B8, C3	Туре			Temperature				
			Waste	Days on Site: 90		Ambient				

		Hazardo	ous Materials	And Waste	s Inventory	Matrix	Report			
acility Name PC	G&E G&E GATEWAY GENERATING STATION 25 Wilbur Ave, Antioch 94509				se, Behind (lant Service B et, Hazardous	uilding and Facility ID 07	0018894 7-000-773723 bmitted on 8/23	3 3/2023 7:15 PM
			_	Quantities		Annual Waste	Federal Hazard		rdous Component or mixture only)	S
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquid, Cla	ass III-B CAS No	Gallons State Liquid	s 150 Storage Container Plastic Bottle or Ju	5	67 Pressue Ambient	Waste Code	-	HIGHLY REFINED BASE OIL	S 99%	64742-54-7
	Map: Figure 2 Grid: C4, B8-9	Type Mixture	Days on Site: 365		Temperature Ambient	5				
	Shell Turbo	Gallons	s 150	5	67			HIGHLY REFINED BASE OIL	.S 99%	64742-54-7
Combustible Liquid, Cla	ass III-B CAS No	State Liquid	Storage Container Plastic Bottle or Ju	- g	Pressue Ambient	Waste Code	-			
	Map: Figure 2 Grid: C4, B8-9	<u>Type</u> Mixture	Days on Site: 365		Temperature Ambient					

		Hazardo	ous Materials	And Waste	s Inventor	/ Matrix	Report			
CERS Business/Org.	PG&E			Chemical Loca	ition			CERS ID 1	10018894	
Facility Name	PG&E GATEWAY GENERATING STATION			Warehous	se, Behind F	lant Serv	vices Building	Facility ID	07-000-77372	3
	3225 Wilbur Ave, Antioch 94509							Status S	Submitted on 8/2	3/2023 7:15 PM
				Quantities		Annual Waste	Federal Hazard		zardous Component (For mixture only)	S
DOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
1	Gear Lubricant (Shell Omala S4	Gallons State	5 170 Storage Container	5	170 Pressue	Waste Code	2	Highly Refined Petroleum Proprietary Additives	m Oil 99% 1%	
	GX 320) CAS No Map: Figure 2 Grid: B8-9, C4	Liquid Type	Plastic/Non-metal Days on Site: 365	lic Drum	Ambient Temperature Ambient		<u>.</u>	. ,		

			Hazardo	us Materials	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org. PG&E Facility Name PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509		Chemical Location Warehouse, Stormwater Treatment System						CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 8/23/2023 7:15 PM			
OOT Code/Fire Haz. Cl	lass	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	H Component Name	azardous Components (For mixture only) % Wt	EHS CAS No.
Corrosive		Sodium Hydroxide (10-50%) CAS No Map: Figure 2 Grid: C9, B8-9	Gallons State Liquid Type	30 Storage Container Plastic Bottle or J Days on Site: 365	30	15 Pressue Ambient Temperature Ambient	Waste Code	- Physical	SODIUM HYDROXIDE	50%	1310-73-2

		Hazardo	ous Materials	And Waste	s Inventor	y Matrix F	Report				
RS Business/Org. PG&E cility Name PG&E G	GATEWAY GENERATING STATION			Chemical Loca Water Tre		ilding / Fire	e Water Pump	House	CERS ID Facility I	10018894 □ 07-000-773723	
3225 Will	bur Ave, Antioch 94509								Status	Submitted on 8/23	
				Quantities		Annual Waste	Federal Hazard			Hazardous Components (For mixture only)	
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component N	ame		EHS CAS No.
ombustible Liquid, Class II	Diesel Fuel <u>CAS No</u> 68476-34-6 Map: Figure 2 Grid: C1	Gallon: State Liquid Type Mixture	s 500 <u>Storage Container</u> Tank Inside Buildin Days on Site: 365	500	500 Pressue Ambient Temperature Ambient		- Physical Flammable - Health Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Specific Target Organ Toxicity - Health	Diesel Fuel		100%	
							Aspiration Hazar	t			
00T: 8 - Corrosives (Liquids a olids) corrosive, Water Reactive, Cla	Battery	State Liquid Type	s 9 <u>Storage Container</u> Other Days on Site: 365	4.5	9 <u>Pressue</u> Ambient <u>Temperature</u> Ambient	Waste Code	 Physical Explosive Physical Corrosive To Metal Health Carcinogenicity Health Acute Toxicity Health Reproductive Toxicity Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation Health Specific Target Organ 	Sulfuric Acio		35%	7439-92-1

ERS Business/Org.	PG&E			Chemical Loca				CERS ID	10018894	
acility Name	PG&E GATEWAY GENERATING STATION			Water Tre	eatment Ch	emical Sto	rage	Facility I	07-000-773723	
3	3225 Wilbur Ave, Antioch 94509							Status	Submitted on 8/23	3/2023 7:15 PM
			-	Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	
OT Code/Fire Haz. Cla	iss Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	NALCO 7408	Gallons	65	65	65		- Health Skin	Sodium Bisulfite	60%	7631-90-5
	CAS No		Storage Container Plastic/Non-metali	c Drum	Pressue Ambient	Waste Code	Corrosion Irritation - Health	Proprietary	70%	
	Map: Figure 2 Grid: C2	<u>Type</u> Mixture	Days on Site: 365		Temperature Ambient		Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation			
	NALCO Stabrex ST20	Gallons	65	65	65		- Physical	Sodium Hydroxide	5%	1310-73-2
Corrosive	CAS No		Storage Container Plastic/Non-metali	c Drum	Pressue Ambient	Waste Code	Metal	Proprietary	99%	
	Map: Figure 2 Grid: C2	<u>Type</u> Mixture	Days on Site: 365		Temperature Ambient		 Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye Irritation 			

0			Hazardo	ous Materials	And Waste	s inventor	y watrix	Report			
ERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID	10018894	
Facility Name PG&E GATEWAY GENERATING STATION		WSAC Chem Feed Skid					Facility ID 07-000-773723				
_	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 8/2	3/2023 7:15 PM
				-	Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	S
OOT Code/Fire Haz.	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 8 - Corrosive Solids)	s (Liquids and	NALCO 3D TRASAR 3DT447	Gallon: State	s 110 Storage Container	110	110 Pressue	-	- Health Skin Corrosion	Phosphoric Acid	5%	7664-38-2
		CAS No	Liquid	Plastic/Non-meta	lic Drum	Ambient	Waste Coo	le_Irritation	Sulfuric Acid	5%	✔ 7664-93-9
Corrosive		Map: Figure 2 Grid: C3	Туре	Days on Site: 365		Temperature Ambient	2		Tolyltriazole	5%	29385-43-1

CERS Business/Org.	PG&E			Chemical Loca	ation			CERS ID	10018894	
acility Name	PG&E GATEWAY GENERATING STATION				emical Feed	Skid		Facility I	D 07-000-77372	
	3225 Wilbur Ave, Antioch 94509		-	Quantities		Annual Waste	Federal Hazard	Status	Submitted on 8/2 Hazardous Component (For mixture only)	
OOT Code/Fire Haz. Cl	lass Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	CAS No Map: Figure 2 Grid: C3	Gallon <u>State</u> Liquid <u>Type</u> Mixture	s 110 Storage Container Plastic/Non-metal Days on Site: 365	110 lic Drum	110 Pressue Ambient Temperature Ambient	Waste Cod	 Physical Corrosive To Metal Health Acute Toxicity Health Skin Corrosion Irritation Health Respiratory Skin Sensitization Health Serious Eye Damage Eye 	Sodium Hydroxide Proprietary	5% 99%	1310-73-2

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 15

Exhibit 6 Copy of Notice of Intent (NOI) and Revised SWPPP (October 2018) to comply with the requirements of Industrial General Permit (SOIL & WATER-3) No changes relative to submitted Exhibit 6 in ACR #14

ter Boards	GENERAL PERMIT TO ASSOCIATED WITH INDUSTRIAL	E OF INTENT D DISCHARGE STORM WATE ACTIVITY (WQ ORDER No. 2 construction Activities)	SECRETARY FOR
WDID: 5S07102	1950	Sta	tus: Active
Operator Inform	nation	Ту	/pe: Private Business
Name:	Pacific Gas Electric Company	Contact Name:	Tim Wisdom
Address:	PO Box 770000	Title:	Plant Manager
Address 2:		Phone Number:	925-522-7812
City/State/Zip:	San Francisco CA 94177	Email Address:	T1WY@pge.com
ederal Tax ID:			
Facility Informa	ition	Le	vel:
Contact Name:	Diana Furman	Title:	Environmental Compliance Manager
Site Name: Gat	teway Generating Station		
Address: 322	25 Wilbur Ave		
City/State/Zip:	Antioch CA 94509	Site Phone #:	925-522-7838
	Contra Costa	Email Address:	dmwr@PGE.com
Latitude: 38	3.01228 Longitude: -121.75859	Site Size:	32.5 Acres
_		sed to Storm Water:	
	Percent of Site Impervious (
SIC Code Infor	mation		
	mation	Electric Services	
1	mation	Electric Services	
1. <u>4911</u> 2	mation	Electric Services	
1. <u>4911</u> 2 3		Electric Services	
1. <u>4911</u> 2		Electric Services	
1. <u>4911</u> 2 3	mation		Flow: Indirectly
1. <u>4911</u> 2 3 Additional Infor	mation ater:		Flow: Indirectly
1. <u>4911</u> 2. <u></u> 3. <u></u> Additional Infor Receiving Wa	rmation ater:San Joaqu tem:		Flow: Indirectly
1. <u>4911</u> 2. <u></u> 3. <u></u> Additional Infor Receiving Wa Storm Drain Syst	rmation ater:San Joaqu tem:		Flow: Indirectly
1. <u>4911</u> 2. <u></u> 3. <u></u> Additional Infor Receiving Wa Storm Drain Syst	rmation ater:San Joaqu tem:		Flow: Indirectly
1. <u>4911</u> 2. <u></u> 3. <u></u> Additional Infor Receiving Wa Storm Drain Syst Compliance Gro	rmation ater:San Joaqu tem:		Flow: Indirectly
1. <u>4911</u> 2. <u></u> 3. <u></u> Additional Infor Receiving Wa Storm Drain Syst Compliance Gro	rmation ater: San Joaqu tem: oup: tion: Region 5S - Sacramento	in River	
1. <u>4911</u> 2. <u></u> 3. <u></u> Additional Infor Receiving Wa Storm Drain Syst Compliance Gro	rmation ater:San Joaqu tem:		Flow: Indirectly
1. <u>4911</u> 2. <u></u> 3. <u></u> Additional Infor Receiving Wa Storm Drain Syst Compliance Gro	rmation ater: San Joaqu tem: oup: tion: Region 5S - Sacramento	in River	

Stormwater Pollution Prevention Plan

Gateway Generating Station

WDID#: 5S07I021950

Facility Address: 3225 Wilbur Avenue, Antioch, CA 94509

Facility Contact: Angel B. Espiritu, Environmental Compliance Manager Pacific Gas & Electric Company (925) 522-7838

Prepared for

Storm Water Quality Group 3401 Crow Canyon Road, San Ramon, CA Jeremy Laurin, Storm Water Work Supervisor (925) 719-4466

Initial Preparation Date: December 2014 Revision Date: October 2018 This storm water pollution prevention plan (SWPPP) was prepared in accordance with the requirements of the California State Water Resources Control Board (SWRCB) Industrial Storm Water Permit for Discharges Associated with Industrial Activity (Order No. 2014-0057-DWQ) which was adopted on April 1, 2014. This permit replaces Order No. 97-03-DWQ which had been in effect from August 1, 1997 through June 30, 2015.

This SWPPP identifies and evaluates all sources of pollutants that may affect the quality of industrial storm water discharges and authorized non-storm water discharges, identifies and describes the minimum best management practices (BMPs) and any advanced BMPs implemented to reduce or prevent pollutants in industrial storm water discharges and authorized non-storm water discharges.

Pacific Gas and Electric Company shall fully implement this SWPPP by July 1, 2015. The SWPPP will be revised whenever necessary and will be certified and submitted electronically to the SWRCB via the Storm Water Multi-Application and Report Tracking System (SMARTS).

TABLE OF CONTENTS

LIST	CUTIV F OF TA F OF FIG		i iv iv
1.	INTI	RODUCTION	1
	1.1	Background and Requirements	1
	1.2	SWPPP Performance Standards	2
	1.3	SWPPP Implementation and Revisions	2
	1.4 1.5	General Facility Information Pollution Prevention Team	2 2 2 3
2.			
		LAYOUT AND EXISTING FACILITY PLANS (PERMIT SECTION X.E)	5
3.	LIST	OF INDUSTRIAL MATERIALS (PERMIT SECTION X.F)	7
	3.1	List of Industrial Materials Handled at the Facility	7
4.		CRIPTION OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.)	
	AND	G)	12
	4.1	Industrial Processes	12
	4.2	Material Receiving, Shipping, and Handling	13
	4.3	Dust and Particle Generating Activities	14
	4.4	Significant Spills and Leaks	14
	4.5 4.6	Non-Storm Water Discharges Erodible Surfaces	14 15
5.	ASSI	ESSMENT OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.C	G.2)16
	5.1	Narrative Assessment of Likely Pollutants Present in Storm Water Discharges	16
	5.2	Identification of Additional BMPs	16
	5.3	Identification of Drainage Areas with No Exposure	16
	5.4	Identification of Additional Parameters	16
6.	STO	RM WATER BEST MANAGEMENT PRACTICES (PERMIT SECTION X.H)	17
	6.1	Minimum BMPs (PERMIT SECTION X.H.1)	17
		6.1.1 Good Housekeeping	17
		6.1.2 Spill and Leak Spill and Leak Prevention	18
		6.1.3 Spill and Leak Response	18
		6.1.4 Material Handling and Waste Management	19
		6.1.5 Erosion and Sediment Controls	19
		6.1.6 Employee Training Program	19
	6.2	6.1.7 Quality Assurance and Record-Keeping	20 20
	0.2	Advanced BMPs (Permit Section X.H.2) 6.2.1 Exposure Minimization BMPs	20 20
		6.2.2 Storm Water Containment and Discharge Reduction BMPs	20
		6.2.3 Treatment Control BMPs	20
			20

Page

TABLE OF CONTENTS

Page

	6.2.4 Other Advanced BMPs	21
7.	TEMPORARY SUSPENSION OF ACTIVITIES (PERMIT SECTION X.H.3)	22
8.	BMP SUMMARY (PERMIT SECTIONS X.H.4 AND 5)	23
9.	MONITORING IMPLEMENTATION PLAN (PERMIT SECTION X.I)	25
10.	ANNUAL REPORTING (PERMIT SECTIONS XV AND XVI)	29
REFEI	RENCES	30

TABLES

FIGURES

- APPENDIX A General Permit for Storm Water Discharges Associated with Industrial Activities (Order No. 2014-0057-DWQ)
- **APPENDIX B Permit Registration Documents**
- **APPENDIX C SWPPP Amendment Form**
- **APPENDIX D Training Log**
- **APPENDIX E Industrial Storm Water Facility Inspection and Visual Observation Form**
 - Annual Evaluation Form
 - Sampling Log
- APPENDIX F General Permit Attachment H "Sample Collection and Handling Instructions" and Example Chain of Custody Form
- **APPENDIX G Annual Reports**
- **APPENDIX H ERA Evaluation(s) and Report(s)**
- APPENDIX I Advanced Treatment System (Chemical & Filtration) Operating Manual, including the Gateway Generation Station Quick Operations Guide and Operating Log

LIST OF TABLES

Title
Pollution Prevention Team
Industrial Materials Handled at the Facility
BMP Summary
NAL Values

LIST OF FIGURES

Figure No.	Title
1	Site Location Map
2	Facility Details
3	Storm Water Flow and BMP Map

ACRONYMS AND ABBREVIATIONS

AST	Aboveground Storage Tank
BMP	Best Management Practice
CFR	Code of Federal Regulations
COC	Chain of Custody
CWA	Clean Water Act
DDT	Dichlorodiphenyltrichloroethane
ECM	Environmental Compliance Manager
ELAP	Environmental Laboratory Accreditation Program
ELG	Effluent Limitation Guideline
ERA	Exceedance Response Action
General Permit	Industrial Storm Water Permit for Discharges Associated with Industrial Activity
HMBP	Hazardous Materials Business Plan
LRP	Legally Responsible Person
mg/L	Milligrams per liter
NAL	Numeric Action Level
NEC	No Exposure Certification
NOI	Notice of Intent
NOT	Notice of Termination
NPDES	National Pollutant Discharge Elimination System
NSWD	Non-Storm Water Discharge
OSHA	Occupational Health and Safety Administration
PG&E	Pacific Gas and Electric Company
PPT	Pollution Prevention Team
PRDs	Permit Registration Documents
QISP	Qualified Industrial Storm Water Practitioner
QSE	Qualifying Storm Event
RWQCB	Regional Water Quality Control Board
SIC	Standard Industrial Classification
SMARTS	Storm Water Multi-Application and Report Tracking System
SPCC	Spill Prevention Control and Countermeasure
SWPPP	Storm Water Pollution Prevention Plan
SWRCB	State Water Resources Control Board
WDID	Waste Discharge Identification

STORM WATER POLLUTION PREVENTION PLAN SIGNATURE AND CERTIFICATION

I am duly authorized to sign reports required by the California State Water Resources Control Board Industrial Storm Water Permit for Discharges Associated with Industrial Activity. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for snbmitting false information, including the possibility of fine and imprisonment for knowing violations.

Tim Wisdom, Sr. Plant Manager

Feb-10, 2017

1. INTRODUCTION

This industrial storm water pollution prevention plan (SWPPP) for Pacific Gas and Electric Company's (PG&E) Gateway Generating Station (facility) was prepared in accordance with the requirements of the California State Water Resources Control Board Industrial Storm Water Permit for Discharges Associated with Industrial Activity ("General Permit," Order NPDES No. CAS000001). A copy of the General Permit (Order No. 2014-0057-DWQ) dated April 1, 2014, is attached as Appendix A.

This SWPPP will be modified whenever there is a change in operation, maintenance or construction which may affect the discharge of pollutants to surface water. It will also be amended if it is found ineffective in achieving the stated objectives listed in the General Permit.

1.1 Background and Requirements

The Federal Clean Water Act (CWA) prohibits discharges from point sources to waters of the United States, unless the discharges are in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. In 1987, the CWA was amended to establish a framework for regulating municipal storm water discharges and discharges associated with industrial activity under the NDPES program. Industrial storm water discharges are regulated pursuant to CWA section 402(p)(3)(A). This provision requires NPDES permits for industrial storm water discharges to comply with technology-based effluent limitations and water quality-based limitations, as well as implement best management practices (BMPs).

On April 17, 1997, the California State Water Resources Control Board (SWRCB) issued NPDES General Permit for Industrial Storm Water Discharges, Excluding Construction Activities, Water Quality Order 97-03-DWQ (previous permit). The current General Permit, Order 2014-0057-DWQ, rescinds the previous permit and serves as the statewide general permit for industrial storm water discharges. The General Permit requires dischargers to:

- Eliminate unauthorized non-storm water discharges (NSWDs);
- Develop and implement SWPPPs that include BMPs;
- Implement minimum BMPs, and advanced BMPs as necessary, to achieve compliance with the effluent and receiving water limitations of this General Permit;
- Conduct monitoring, including visual observations and analytical storm water monitoring for indicator parameters;
- Compare monitoring results for monitored parameters to applicable numeric action levels (NALs) derived from the U.S. EPA 2008 Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (2008 MSGP) and other industrial storm water discharge monitoring data collected in California;
- Perform the appropriate Exceedance Response Actions (ERAs) when there are exceedances of the NALs; and
- Certify and submit all permit-related compliance documents via the Storm Water Multiple Application and Report Tracking System (SMARTS). Dischargers shall certify and submit these documents which include, but are not limited to, Permit Registration Documents (PRDs) including Notices of Intent (NOIs), No Exposure Certifications (NECs), and SWPPPs, as well as Annual Reports, Notices of Termination (NOTs), Level 1 ERA Reports, and Level 2 ERA Technical Reports.

Copies of all PRDs are included in Appendix B.

1.2 SWPPP Performance Standards

This SWPPP identifies and evaluates all sources of pollutants from the facility that may affect the quality of industrial storm water discharges and authorized NSWDs. Additionally, this SWPPP identifies and describes the minimum BMPs and any advanced BMPs implemented to reduce or prevent pollutants in industrial storm water discharges and authorized NSWDs. BMPs will be selected to achieve compliance with this General Permit and will identify and describe conditions or circumstances which may require future revisions to be made to the SWPPP. A copy of the SWPPP shall be maintained at the facility.

1.3 SWPPP Implementation and Revisions

PG&E shall fully implement this SWPPP by July 1, 2015. The SWPPP shall be revised whenever necessary and will be certified and submitted electronically to the SWRCB via SMARTS within 30 days whenever the SWPPP contains significant revisions. Minor revisions are not required to be entered into SMARTS more than once every three months within a given reporting year. A log of all SWPPP revisions is included in Appendix C.

1.4 General Facility Information

Facility Name: <u>Gateway Generating Station</u>

Facility Address: <u>3225 Wilbur Avenue</u>, Antioch CA 94509

Telephone Number: (925) 522-7838

Standard Industrial Classification (SIC) Code: <u>4911 (Electric Power Generating Facility)</u>

Waste Discharge Identification (WDID) Number: 5S07I021950

Scheduled Facility Operating Hours: 24 hours/7 days (2 shifts)

Size of Facility: Approximately 32.5 acres

The facility is located in unincorporated Contra Costa County (within the City of Antioch's Sphere of Influence), on Wilbur Avenue, 1 mile northeast of Antioch, on the southern shore of the San Joaquin River (Figure 1). The operating portion of the site area is approximately 22 acres. The facility is a natural gas-fired, combined cycle, combustion turbine power plant with a nominal generation capacity of 530 megawatts. The facility includes the following building structures and areas:

- Two Combustion Turbine Electrical Generators;
- Steam Powered Electrical Generator;
- Wet Surface Air Cooler (Wet SAC);
- Fin Fan (Close-loop Cooling System);
- Air Cooled Condenser;
- Plant Services Building;
- Laydown Area for Equipment/Parts Staging;
- Warehouse;

- Hazardous Materials Storage Shed;
- Hazardous Waste Accumulation Storage Shed; AND
- Water Treatment Building.

Percent Impervious: ~28%

Facility Contact: Name: Angel Espiritu Title: Environmental Compliance Manager Company: Pacific Gas and Electric Company Phone: (925)522-7838 Email: ABE4@pge.com Street Address: 3225 Wilbur Ave City: Antioch State: California Zip Code: 94509

1.5 Pollution Prevention Team

PG&E has identified a Pollution Prevention Team responsible for assisting with the implementation of this SWPPP and for conducting all monitoring required under the General Permit. The specific individuals (and job title) that are responsible for developing, implementing, and revising this SWPPP and conducting monitoring are identified in the Table1.

Name of Person	Title/Position	Responsibilities, Duties, and Activities
Jeremy Laurin	Water Quality Subject Matter Expert	Supervise SWPPP development and implementation; provide support and training to the ECM and Plant Manager; review of any documents uploaded to SMARTS; interface with the Regional and/or State Water Quality Control Boards when necessary.
Angel Espiritu	Environmental Compliance Manager (ECM)	Facility lead for storm water permit compliance, monitoring, and reporting; conduct employee training; supervise and/or conduct inspections and sampling, record and report maintenance; record and report spills and leaks; file documents in SMARTS; BMP Implementation, emergency response coordinator, spill cleanup coordination.
Name of Person	Title/Position	Responsibilities, Duties, and Activities
Steve Royall	Director, Fossil Generation	Legally Responsible Party (LRP); responsible for certification of Notice of Intent (NOI) within SMARTS.
Tim Wisdom	Sr. Plant Manager	Duly Authorized Representative (DAR); responsible for certification of documents within SMARTS.
Aman Singh	Maintenance Supervisor	BMP Implementation and maintenance.
David J. Hammond	Operations Supervisor	BMP Implementation and maintenance.

Table I Pollution Prevention Team

David Thurston	Plant Engineer	Engineering guidance, supervision and review of BMPs.
Doug Welch or available on-shift Power Plant Technician	Plant Chemist or available on shift power plant technician	Storm water inspections and sampling.

In the event that the Environmental Compliance Manager or other positions responsible for SWPPP implementation are temporarily unavailable to conduct storm water activities due to vacation, illness, out of town business or other absences, backup personnel will implement the SWPPP and conduct required monitoring. PG&E will train all backup personnel so they are familiar with storm water requirements.

The Environmental Compliance Manager, through the Operations or Maintenance Supervisor, will notify the backup PPT member of any expected absences. If the backup PPT member is unavailable, a tertiary individual will be selected and trained to perform the tasks necessary during the primary and secondary PPT member's absence. The backup PPT member has been trained to complete Environment Compliance Manager's tasks when the ECM is unexpectedly absent.

PG&E will ensure that this SWPPP is implemented and revised as necessary to be consistent with applicable municipal, state, and federal requirements that pertain to the requirements in the General Permit.

2. SITE LAYOUT AND EXISTING FACILITY PLANS (PERMIT SECTION X.E)

PG&E has prepared three figures illustrating the information required by the General Permit. These include Figure 1 Site Location Map, Figure 2 Facility Details Map, and the Figure 3 Storm Water Flow and BMP Map. The maps present the following information where applicable:

- Site location;
- North arrow;
- Facility boundary;
- Drainage areas;
- Portions of any drainage area impacted by discharges from surrounding areas;
- Direction of flow within each drainage area;
- On-facility surface water bodies;
- Areas of soil erosion;
- Nearby water bodies (e.g., rivers, lakes, wetlands);
- Municipal storm drain inlets;
- Location of storm water collection and conveyance systems;
- Points of discharge;
- Sampling locations;
- Structural control measures;
- Impervious areas;
- Locations of directly exposed materials;
- Locations of significant spills and leaks;
- Areas of industrial activity;
- Industrial storage areas/storage tanks;
- Shipping and receiving areas;
- Fueling areas;
- Vehicle and equipment storage/maintenance areas;
- Material handling/processing areas;
- Waste treatment and disposal areas;
- Dust or particulate generating areas;
- Cleaning and material reuse areas; and
- Other areas of industrial activity.

Storm water in Drainage Area A is generally conveyed from the south to the north. Surface run-off travels to drain inlets and/or rock-lined ditches which connect to a covered drainage conveyance into a concrete structure with flow valves. The valves on the outlet structure are typically left open to allow the discharge of stormwater in the wet season. The valves are typically left closed in the dry season to

provide an additional measure to capture potential pollutants if a spill occurred. Stormwater in Drainage Area B is contained in a depression centrally located in the drainage area and does not discharge. Additionally, there is no industrial activity in Drainage Area B. The facility details are shown on Figure 2.

3. LIST OF INDUSTRIAL MATERIALS (PERMIT SECTION X.F)

3.1 List of Industrial Materials Handled at the Facility

The following table lists the industrial materials stored or handled at the facility (as detailed in the Hazardous Materials Business Plan):

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Aqueous Ammonia (29%)	Aboveground Storage Tank (AST)	Weekly	Aqueous Ammonia Storage Area	18,000 gallons
Pre-blended Phosphate/Caustic (Soap)	Tote	Daily	Plant Services Building	460 gallons
Sodium Bisulfite	Tote	Monthly	Water Treatment Building	50 gallons
Stabilized Bromine/Sodium Hydroxide	Tote	Monthly	Water Treatment Building and Wet SAC	110 gallons
Sulfuric Acid	Tote	Semi-annual	Wet SAC	35 gallons
Corrosion/Scale Inhibitor/Sodium Hydroxide	Tote	Semi-annual	Wet SAC	110 gallons
Chlorine Scavenger	Tote	Monthly	Water Treatment Building	65 gallons
Mineral Oil	Transformers	As needed	Transformers (throughout the site) and the inlet chiller	58,000 gallons
Diesel Fuel No. 2	AST	Weekly	Water Treatment Building	500 gallons
Turbine Oil	Within Turbines / Drums	As needed	Combustion Turbines, Steam Turbine, Hazardous Materials / Waste Storage Shed	17,000 gallon

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Mixed Oil	Drum	As needed	Hazardous Materials / Waste Storage Shed	55 gallon
Hydraulic Oil	Steam Turbine	As needed	Steam Turbine	130 gallons
Liquid Carbon Dioxide	Cylinder	As needed	Combustion Generators and CO2 Bulk Storage	36,000 gallons
Argon	Cylinder	As needed	Combustion Turbines	1,344 cubic feet
EPA Protocol Gases (Carbon Monoxide / Nitrogen / Oxygen / Nitric Oxide)	Cylinder	As needed	Combustion Turbines	4,896 cubic feet
Helium	Cylinder	As needed	Combustion Turbines and Gas Conditioning Station	2,200 cubic feet
Oxygen	Cylinder	As needed	Combustion Turbines	1,124 cubic feet
Hydrogen	Cylinder	As needed	Tube Trailer and Gas Conditioning Station	134,200 cubic feet
Nitrogen	Cylinder	As needed	Combustion Turbines, Steam Turbine, Inlet Chiller	8,735 cubic feet
Propane	Cylinder	As needed	Combustion Turbines and Plant Services Building	60 pounds
Acetylene	Cylinder	As needed	Plant Services Building	1,700 cubic feet
Petroleum Distillates	Within Transformer	As needed	Spare GSU Transformer	14,000 gallon
Refined Petroleum Oil	Drum	As needed	Spare GSU Transformer	55 gallons

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Dielectric Fluid	Transformer housing	As needed	Plant Services Building Transformers, Water Treatment Building, Combustion Turbines, Main Electrical Control Enclosure and Inlet Chiller	4,800 gallons
Gear Lubricant	Gear Boxes (36) and Drums	As needed	Air Cooled Condenser Gear Boxes (36), Warehouse and Hazardous Materials / Waste Storage Shed	540 gallons
Lead Acid Batteries	Within Electrical Equipment	As needed	Combustion Turbines	48,000 pounds
Lead Calcium Batteries	Within Electrical Equipment	As needed	Switchyard	90 gallons
Sulfur Hexafluoride	Internally within breakers	As needed	Sulfur Hexafluoride Breakers	774 pounds
Carbon Dioxide, Gas	Cylinders	As needed	Stormwater Treatment System	6,620 cubic feet
HaloKlear BHR-50	Plastic Tote	As needed	Stormwater Treatment System	275 gallons
Yardney 3660 Media Filter (glass media beads)	Within Equipment	As needed	Stormwater Treatment System	6,300 pounds
Sodium Hydroxide	Plastic Container	As needed	Stormwater Treatment System	30 gallons
Non-hazardous trash	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Metal scraps for recycling	Roll-off bin with tarp cover	Weekly	Laydown area	20 yards

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Wood Pallets	Outside	Daily	Laydown	50 to 100 total
Plastics	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Recyclables	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Cardboard	In enclosed cardboard compactor	Daily	Laydown in roofed area	3 yards
RCRA Waste (i.e., waste absorbent)	In secondary- contained drums within covered waste storage area	As needed	Hazardous Materials / Waste Storage Sheds	55 gallons
Non-RCRA Waste (i.e. oily debris)	In secondary- contained drums within covered waste storage area	As needed	Hazardous Materials / Waste Storage Sheds	55 gallons
Universal Waste (i.e., batteries and fluorescent light bulbs)	Bins	As needed	Hazardous Materials / Waste Storage Sheds	5 pounds
Monoethanolamine (30%-60%)	Tote	As needed	Northeast corner of Air Cooled Condenser (ACC)	400 gallons
Cooling Water Inhibitor (3DTRASAR)	Tote	As needed	Water Treatment Building	110 gallons
Antiscalant (Avista Vitec)	Drum	As needed	Water Treatment Building	60 gallons
Antifungal/bacteria/slime (Stabrex)	Tote	As needed	Water Treatment Building	110 gallons
Simple Green	2.5 gallon Containers	As needed	East of the Plant Services Building	10 gallons
Reclaimed water	Tanks	Daily	East of the Water Treatment Building	140,000 gallons
Wastewater	Tank	Daily	East of the Water Treatment Building	40,000 gallons

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Turbine Cleaning Fluid	Tote	As needed	Parts and Miscellaneous Storage Building	250 gallons
Various solvents, degreasers, paints, adhesives, etc.	Fire Cabinet	As needed	East of the Plant Service Building	Typically less than 1 gallon each

4. DESCRIPTION OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.F AND G)

4.1 Industrial Processes

Gateway Generating Station facility manufactures electricity through the use of two natural gas fired combustion turbines and a steam powered generator. The industrial materials utilized throughout the facility are detailed in Table II. All industrial processes associated with manufacturing occur at locations denoted on Figure 2.

Industrial materials imported to the site are imported directly into the warehouse, directly to aqueous ammonia storage tank, the water treatment plant and the wet surface air cooler. Handling, shipping and receiving of hazardous materials including waste occurs at the frequencies denoted in Table II above. Storage areas identified in Table II are also denoted in Figure 2. These areas are further described as follows.

The aqueous ammonia is stored in an area that houses two 20,000 gallon capacity tanks. These tanks sit above grade within a secondary containment unit and a sump. This area has sufficient storage capacity to meet the facility's Risk Management Plan requirements. Storm water that collects in this sump is discharged to the sanitary sewer per a separate permit. This storage area has its own loading ramp that drains to the secondary containment sump below the tanks.

The hazardous materials storage shed, hazardous waste storage shed and hazardous materials accumulation shed are all covered sheds with secondary containment that meets the facilities hazardous materials business plan (HMBP) and SPCC plan requirements. The various oils the facility uses are stored within these sheds in 55 gallon drums. In addition to those drums universal waste and used absorbent is also stored within these sheds. Materials and wastes are moved using services vehicles.

All hazardous materials associated with the water treatment plant including the diesel fuel used for the emergency fire water system are housed in a roofed water treatment building. Secondary containment for these materials is provided. All of the ASTs within this area are filled by bulk delivery.

There are various transformers throughout the facility. These transformers are filled with dielectric oil and are housed in secondary containment that meets the facility's SPCC plan requirements.

Various hazardous materials are stored adjacent to the wet surface air cooler. These materials are all stored in sealed tanks within secondary containment. These tanks are filled by bulk delivery.

Trash, recyclable materials, and cardboard are accumulated in three separate dumpsters. The dumpsters have lids which are closed when the dumpsters are not actively used. To further isolate the dumpsters from exposure to storm water, they are housed under a roof.

Metals for recycling are accumulated in a roll off bin or bins and are covered when not actively in-use.

Various pressurized gases are stored throughout the facility for various uses. These pressurized gases are stored according to all applicable HMBP requirements.

Various batteries are stored throughout the facility for various uses. These batteries are stored in roofed buildings and according to all applicable HMBP requirements.

4.2 Material Receiving, Shipping, and Handling

Receiving

The facility receives regular deliveries of the materials listed in Table II. The materials stored in larger tanks are delivered by service trucks and are directly loaded into the respective vessels. Receiving and loading of materials (e.g., fuels, fuel additives, oils, and ammonia) is performed at the respective material storage areas. Other sources include smaller quantities of oils used in transformers, sulfuric acid used in batteries, and oils used in miscellaneous equipment and machines which are delivered to their various storage locations throughout the facility, including but not limited to the warehouse, plant services building, parts and miscellaneous storage building, and the water treatment building.

Material Handling

The primary function of the power plant facility is to generate electricity through a combined-cycle process utilizing natural gas as fuel. The potential pollutants at the facility are used in ancillary functions such as lubricants, aqueous ammonia for emissions control, and other various maintenance fluids. Most materials and wastes are transported via on-site pipe networks. For example, potable water is piped to the facility from a municipal water purveyor to the water treatment area and then transferred from the treatment plant to the boilers and other heat exchange equipment. Used water is conveyed to the sanitary sewer. Small quantities of other materials and wastes, typically for maintenance activities, are moved using services vehicles. There is a seldom used parts cleaning machine that is located outdoors, immediately east of the plant services building.

Waste

General trash is accumulated in dumpsters located north of the inlet chiller. The waste dumpster area is equipped with a storm resistant shelter. Trash is transferred to a collection facility by a service vendor.

Metals for recycling are accumulated in two dumpsters that are equipped with lids. One metal disposal dumpster is located near the trash dumpsters and the other is located east of the parts and miscellaneous storage building. Occasionally, roll-off dumpsters are placed near the warehouse during maintenance and repair operations.

Hazardous waste is temporarily stored onsite in storage sheds located east of the plant service building and the south-east corner of the warehouse. The majority of hazardous waste produced at the facility is waste oil sludge and used lubricating oil. Hazardous waste is picked up by a waste disposal vendor as necessary, though typically picked up more frequently; the hazardous waste vendor is on 90-day maximum schedule. An industrial service vendor visits the site weekly to perform a required weekly inspection and schedule waste pick-up.

The water-side effluent from the oil/water separator is conveyed to the sanitary sewer along with other waste water generated from plant operation. The oily sludge effluent is transported offsite for proper disposal.

Portable toilets are commonly placed onsite in various locations for construction and maintenance projects and are serviced regularly by a service vendor.

Shipping

The industrial product produced at the facility is electricity and therefore shipping of industrial products does not occur at this facility. The electricity generated at the facility is transmitted through the substation located west of the facility.

4.3 **Dust and Particle Generating Activities**

PG&E does not conduct any activities that generate dust and/or particles. The vents located on the combustion turbines are designed only for heat dissipation. The active areas of the site are paved or covered in gravel to prevent dusting.

4.4 Significant Spills and Leaks

Significant spills and leaks include any toxic chemicals identified in 40 Code of Federal Regulations (CFR) Section 302 that are discharged into the facilities' storm water conveyance system as reported on U.S. EPA Form R, as well as spills or leaks of oil and hazardous substances in excess of reportable quantities (40 CFR §§ 110, 117, and 302). PG&E contracts with a service vendor to respond to any significant spills of fuels, oil or other materials. During the routine monthly inspections, PG&E will evaluate the facility in areas where spills and leaks could potentially occur during material delivery, unloading, loading, transport, storage/containment, or use. There have not been any significant spills or leaks of industrial materials at this facility in the last five years that had potential to be discharged from the facility.

In accordance with the facility SPCC Plan and the General Permit, in the event that significant spills or leaks occur in the future, for each potential discharge PG&E will record and document the following information: the location, characteristics, and approximate quantity of the materials spilled or leaked; approximate quantity of the materials discharged from the facility's storm water conveyance system; the cleanup or remedial actions that have occurred or are planned; the approximate remaining quantity of materials that have the potential to be discharged; and the preventive measures taken to ensure spills or leaks of the material do not reoccur.

4.5 Non-Storm Water Discharges

A NSWD is any water discharged at the Facility which is not the direct result of a rain event. Examples include process water, cooling water, wash water, and sanitary wastewater. Certain limited categories of NSWDs are considered to be authorized by the General Permit (as long as they are not in violation of any Basin Plan, municipal agency ordinance, or other statewide water quality control plans or policy requirements), including: fire hydrant flushing; potable water sources; drinking fountain water; refrigeration, air conditioning, and compressor condensate; irrigation drainage and landscape watering; uncontaminated natural springs, groundwater, and foundation/footing drainage; seawater infiltration; and incidental windblown mist from cooling towers.

Authorized NSWDs at the Gateway Generating Station facility are expected to be prevented or minimized and would occur at an unknown frequency if they arise with the exception of the fire system flushing. The fire system is flushed annually and the quantity of water would be equal to the amount in the system or necessary to flush the system. Expected authorized NSWDs include:

- Fire system flushing water;
- Irrigation water;
- Eye wash system flushing and testing water; and
- Air conditioning or compressor condensate.

The NSWDs listed above are authorized by the General Permit if all of the following conditions are met:

- The NSWDs are in compliance with Regional Water Quality Control Board (RWQCB) requirements;
- The NSWDs are in compliance with local agency ordinances and/or requirements;
- BMPs are specifically included in the SWPPP to (1) prevent or reduce the contact of NSWDs with significant materials or equipment and (2) minimize, to the extent practicable, the flow or volume of NSWDs;
- The NSWDs do not contain significant quantities of pollutants;
- The monitoring program includes quarterly visual observations of each NSWD and its sources to ensure that BMPs are being implemented and are effective; and
- The NSWDs are reported and described annually as part of the Annual Report.

As part of the routine monthly site inspections, PG&E will conduct an evaluation of the facility to identify any NSWDs, sources, and drainage areas. The inspection will include an evaluation of all storm drain inlets to identify connections to the storm water conveyance system; and a description of any NSWDs and how any which have occurred and have been eliminated. In the event that NSWDs are discovered, they will be described on the inspection form located in Appendix E of the SWPPP. This description will include the source, quantity, frequency, and characteristics of the NSWDs, associated drainage area, and whether it is an authorized or unauthorized NSWD.

Potential unauthorized NSWDs at the Gateway Generating Station Facility include:

- Secondary containment failure;
- Pipeline leak, rupture, or failure;
- Contaminated water in sumps;
- Leaks or spills from portable restrooms; and
- Leaks or spills from service vehicles or portable equipment.

Unauthorized NSWDs have been eliminated or prevented through the use of sumps, secondary containment structures, an oil/water separator, drains that convey waste to the oil/water separator, controlled site access, and the placement and maintenance of numerous spill clean-up kits throughout the facility.

4.6 Erodible Surfaces

There are three vegetated areas (Figure 3) that may be considered erodible surfaces at the facility. The only unpaved areas within the active facility exposed to storm water are flat gravel-capped surfaces between structures and adjacent to roadways, and three vegetated surfaces on the northeastern edge of the property.

The southern portion of the facility is inactive and self-contained, with a berm which surrounds the entire perimeter. This area has also been graded into a depression and decompacted to help increase infiltration of any storm water that lands within the area.

5. ASSESSMENT OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.G.2)

5.1 Narrative Assessment of Likely Pollutants Present in Storm Water Discharges

PG&E conducts frequent preventive maintenance to ensure that plant machinery, equipment and storage vessels are in good working order. The most likely potential pollutants in storm water discharges are the materials listed in Table II. Approximately 28 storm water catch basins drain the site and are located throughout the facility and in proximity to material storage areas. PG&E has implemented BMPs to control the offsite migration of potential pollutants by following good housekeeping, requiring immediate cleanup of spills, and by installing filter screens (Dandy Pops®) in storm water catch basins on the site, as appropriate. The filter screens are cleaned and/or replaced as needed.

5.2 Identification of Additional BMPs

In the event that conditions change or monitoring results indicate a need, PG&E will consider identifying additional BMPs to address the changed conditions or constituents of concern.

5.3 Identification of Drainage Areas with No Exposure

There is one drainage area at the facility with no exposure, as indicated on Figure 2. The southern area meets the requirements for no exposure, as there are no industrial activities occurring within it.

5.4 Identification of Additional Parameters

In addition to the standard parameters required for all industrial facilities (pH, oil & grease, and total suspended solids), PG&E will continue to analyze for total iron, as per the SIC code 4911 requirements of Table 1 and Attachment A of the General Permit.

The facility drains to the Delta Waterways (western portion) which is in the HUC 10 watershed of the site. The 303(d) listed impairments for the Delta include: Chlordane; Chlorpyrifos; Dichlorodiphenyltirchloroethane (DDT); Diazinon; Dieldrin; Dioxin; Dioxin compounds (including 2,3,7,8-TCDD); Disulfoton; Electrical Conductivity; Escherichia coli (E. coli); Furan Compounds; Group A Pesticides; Invasive Species; Mercury; Organic Enrichment/Low Dissolved Oxygen; Oxygen, Dissolved; Low Dissolved Oxygen; Pathogens; PCBs (Polychlorinated biphenyls) (dioxin-like); PCBs (Polychlorinated biphenyls); Selenium; and Unknown Toxicity. The sources of the impairments listed are primarily caused by agricultural sources or mineral resource extraction and the Gateway Generating Station does not have the potential to discharge most of the pollutants; however, electrical conductivity may be an exception.

Electrical Conductivity is a measure of the ability of water to pass an electrical current. Conductivity in water is affected by the presence of inorganic dissolved solids such as chloride, nitrate, sulfate, and phosphate anions (ions that carry a negative charge) or sodium, magnesium, calcium, iron, an aluminum cations (ions that that carry a positive charge). Though the General Permit does not have a Numeric Action Level for electrical conductivity, the facility has the potential to discharge inorganic dissolved solids and analytical results may be beneficial as an indicator of other pollutant concerns; therefore, the facility will also collect and analyze samples for electrical conductance.

6. STORM WATER BEST MANAGEMENT PRACTICES (PERMIT SECTION X.H)

This section describes the BMPs implemented and maintained as a result of the activities assessment in Section 4. The current BMPs, when properly maintained, are effective for the operations at the facility. BMPs are divided into minimum and advanced measures.

6.1 Minimum BMPs (PERMIT SECTION X.H.1)

6.1.1 Good Housekeeping

- Monthly Visual Inspections. Once per calendar month, PG&E inspects all outdoor areas associated with industrial activity, including storm water discharge locations, drainage areas, conveyance systems, waste handling/disposal areas, and perimeter areas impacted by off-facility materials or storm water run-on to determine housekeeping needs. Any identified debris, waste, spills, tracked materials, or leaked materials identified during the inspections are cleaned and disposed of properly.
- **Tracking Control.** Although there is low potential for tracking of sediment at the facility, paved surfaces are swept on a monthly basis. Additionally sweeping will occur as needed.
- Dust Control. PG&E's power generation process does not generate dust, and the surface of the site is either paved, has a gravel cap, or is vegetated. Therefore, there is no need to implement dust control at this facility.
- Cleaning Areas Impacted by Rinse/Wash Waters. No washing or rinsing of equipment is performed at the facility. Parts are washed within an enclosed parts washer, within the roofed Plant Services building.
- **Industrial Materials Storage Control.** The facility stores all materials and performs all activities that involve hazardous materials under roofed areas (buildings or storage containers), within secondary containment, or during dry weather, if possible.
- Control of Non-Solid Industrial Materials/Wastes. The facility contains all stored non-solid industrial materials or wastes (e.g., fuel, waste oil) that can be transported or dispersed by wind or contact with storm water. Spill kits are maintained appropriately and allow for immediate response to spills. In addition, all materials are stored within secondary containment to prevent any spilled or leaked material from being transported by storm water. Numerous secondary containment structures have been designed and constructed throughout the facility to contain spills, leaks, or ruptures from various tanks and oil filled equipment. The secondary containment structures have been designed per SPCC requirements to contain the capacity of either 100 percent of the largest tank or 10 percent of all tanks or containers stored within the containment. Additional material and waste control information is included in the facility's Spill Prevention Control and Countermeasure (SPCC) Plan.
- **Control of Rinse/Wash Water Disposal.** No washing or rinsing is performed at the facility. The facility prevents the disposal of any industrial materials into the storm water conveyance system by maintaining spill kits appropriately and immediately responding to spills.
- Minimize Storm Water Discharges from Non-Industrial Areas. A non-industrial area exists within the facility, as denoted on Figure 2. This area is self-contained, with a berm surrounding the entire perimeter of this portion. This area has also been graded into a

depression and decompacted to help increase infiltration of any storm water that lands within the area, as described in Section 4.5.

• **Minimize Authorized NSWDs from Non-Industrial Areas.** A non-industrial area exists within the facility and no authorized NSWDs occur from it.

6.1.2 Spill and Leak Spill and Leak Prevention

The facility implements the following preventative maintenance measures:

- PG&E has identified the following outdoor equipment at the Facility which may spill or leak pollutants, as follows:
 - Containment areas, tanks and containers storing hazardous materials or wastes
 - Oil-filled electrical equipment and oil-filled operating equipment in the Radiator Area, and Transformer Yard
 - Service vehicles (when transporting materials such as drums of waste oil)
- Monthly observations of containment areas, tanks, equipment and systems are conducted to detect leaks, or identify conditions that may result in the development of leaks.
- The facility maintains a schedule for conducting routine maintenance of identified equipment and systems. There is a daily inspection of all equipment at the facility, monthly preventative maintenance and periodic servicing. Daily inspections are informal visual inspections by operators, and are not documented. Service vehicles are not washed on site.
- The facility has defined procedures for prompt maintenance and repair of equipment, and maintenance of systems when conditions exist that may result in the development of spills or leaks.
- The facility utilizes forklifts and golf carts that are loaned to the facility from PG&E Fleet. Fleet vehicles are repaired and maintained by the Fleet group.
- The manufacturer of the power generation equipment requires maintenance of equipment after a specified number of operating hours and therefore the facility conducts two shutdowns per year to maintain the facility's power generation equipment.

6.1.3 Spill and Leak Response

PG&E has established the following protocols to respond to spills and leaks:

- The facility has developed procedures to minimize spills and leaks. The facility has a SPCC Plan that addresses storage of materials and wastes.
- The facility has established spill and leak response procedures to prevent industrial materials from discharging through the storm water conveyance system. Spilled or leaked industrial materials are cleaned up promptly and disposed of properly.
- The facility has identified and described all necessary and appropriate spill and leak response equipment, locations of spill and leak response equipment, and spill/leak response equipment maintenance procedures, in the facility's HMBP and SPCC plans. Spill kits are maintained throughout the facility and denoted in maps located in the facility's HMBP.

- The facility has designated and trained appropriate spill and leak response personnel, identified as the PPT in Table 1 above. Spill and leak response personnel are trained annually, at a minimum. Plant operations personnel are responsible for spill cleanup; an outside vendor is used to respond to significant spills. Spill response personnel receive OSHA hazard communication training and spill training consistent with the hazardous materials business plan and SPCC plan.
- Powered industrial truck maintenance shall be performed on tarps or other impervious materials to capture spills.

6.1.4 Material Handling and Waste Management

PG&E has a robust program for addressing material handling and waste management, as follows:

- The facility minimizes the handling of industrial materials or wastes that can be readily mobilized by contact with storm water during storm events through the use of awnings at loading docks.
- The facility appropriately contains stored non-solid industrial materials or wastes (e.g., lubricant oil) that can be transported or dispersed by the wind or contact with storm water by storing these materials in secondary containment with water tight lids.
- Industrial waste disposal containers (dumpsters and metal waste recycling bins) and industrial material storage containers that contain industrial materials are covered with lids or plastic tarps when not in use.
- Site run-on and storm water generated from within the facility is diverted away from material storage areas.
- Spills of industrial materials or wastes that occur during handling are cleaned up in accordance with the spill response procedures.
- Outdoor material or waste handling equipment or containers that can be contaminated by contact with industrial materials or wastes are inspected and cleaned, as appropriate.

6.1.5 Erosion and Sediment Controls

Erosion is not a significant issue at the site because approximately 28 percent is paved and the remainder is covered with a gravel cap or is vegetated (Figure 3). Therefore, erosion is not a problem at the site, and the facility does not implement erosion and sediment controls.

6.1.6 Employee Training Program

PG&E employees responsible for implementing the storm water program at the Facility will receive annual storm water training. The facility has identified which personnel require training (per Section 1.5), their responsibilities, and the type of training they will receive, and will prepare or acquire appropriate training materials and establish a schedule for providing the training. All participants will sign a Training Log that will be kept in Appendix D. This documentation will be maintained with the SWPPP. Annual training is required once every calendar year. At a minimum, training will cover the following topics:

- BMP implementation;
- BMP effectiveness evaluations;
- Visual observations; and

Monitoring activities.

In the event the Facility enters Level 1 status (see Section 9), appropriate team members will be trained by a Qualified Industrial SWPPP Practitioner (QISP). A QISP must complete a SWRCB-approved training course and assist in the preparation of ERAs for Level 1 and 2 status designations which are described in further detail in Section 9 of this SWPPP.

6.1.7 Quality Assurance and Record-Keeping

PG&E has done [and will continue to perform] the following to retain proper quality assurance and record-keeping:

- The facility has developed and implemented management procedures to ensure that appropriate staff implements all elements of the SWPPP, including the Monitoring Implementation Plan;
- The facility has developed a method of tracking and recording the implementation of BMPs identified in the SWPPP, through the monthly inspection process; and
- The facility will maintain the BMP implementation records, training records and records related to any spills and clean-up related response activities for a minimum of five years.

6.2 Advanced BMPs (Permit Section X.H.2)

In addition to the minimum BMPs described above in Section 6.1 and in Section X.H.1 of the General Permit, the facility will, to the extent feasible, implement and maintain any advanced BMPs necessary to reduce or prevent discharges of pollutants in its storm water discharge in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.

6.2.1 Exposure Minimization BMPs

The facility has installed permanent storm resistant shelters to prevent contact of storm water with certain kinds of materials. These areas include the hazardous materials/waste storage sheds, and the Laydown area (e.g., for waste and recycling dumpsters).

6.2.2 Storm Water Containment and Discharge Reduction BMPs

These BMPs include structures that divert, infiltrate, reuse, contain, retain, or reduce the volume of storm water runoff. As described in Section 4.5, the facility includes gravel caps to areas that haven't been paved or are not roofed which may increase infiltration at the site and prevent erosion. Additional BMPs will be explored and implemented as needed.

6.2.3 Treatment Control BMPs

• **Oil/Water Separator.** The site is equipped with an oil/water separator; however, since the effluent from the oil/water separator is conveyed to the municipal sanitary sewer (which is permitted through the publicly owned treatment works), this water is not considered storm water discharge. The oil (if any) is separated and sent offsite for proper disposal. The coalescer packs are inspected regularly and cleaned if indicated by inspection.

- **Parts Cleaner.** The site is equipped with a parts cleaner that is located outdoors on the east side of the maintenance shop. The manufacturer inspects the washer and replaces the solvent as necessary.
- **Drain Inlet Filters.** Filter screens (Dandy Pops®) are installed in storm water catch basins on the site, as appropriate, to capture sediment. The filter screens are cleaned and/or replaced as needed.
- Stormwater Chemical Treatment/Filtration System. The site is equipped with a standard chemical treatment and filtration system for the stormwater prior to discharge. The treatment system is located immediately adjacent to the existing outfall, E-006, to allow treatment of all of Gateway Generating Station's stormwater prior to discharge into the river. The system is expected to reduce the total iron content of the storm water effluent to less than or equal to 1 ppm.

Design of the system was precluded by volume-based calculations to meet the provisions of the IGP (see memo dated October 12, 2016 found in Appendix H). The volume of runoff produced from an 85th percentile 24-hour storm event and 85th Percentile Hourly Rainfall Intensity per the IGP, as determined from local, historical rainfall records produces a maximum of 229,562 gallons. The design volume processing rate of the treatment system is 468,895 gallons, both meeting and exceeding the volume-based calculations of the IGP.

Treatment steps for the treatment system are as follows:

- 1. The storm water is pH adjusted to allow the iron to precipitate out of the stormwater,
- 2. A chemical flocculating agent is added to clump the iron particles together,
- 3. The stormwater is settled and pumped over a series of small weirs to capture the solids,
- 4. Stormwater is then passed through the media filters for finer particulate removal,
- 5. The water is monitored real-time to assure it meets discharge criteria, if it does not meet pH or turbidity criteria, it is recirculated, and,
- 6. The treated stormwater is discharged into the San Joaquin River.

6.2.4 Other Advanced BMPs

At this time, the Facility does not implement other advanced BMPs. In the event that conditions change or monitoring results indicate a need, PG&E will consider additional advanced BMPs to address the changed conditions or constituents of concern.

7. TEMPORARY SUSPENSION OF ACTIVITIES (PERMIT SECTION X.H.3)

PG&E's Gateway Generating Station operates two shifts, seven days a week. The facility does not have any plans to suspend industrial activities for ten or more consecutive calendar days in any given year. Therefore, this section of the General Permit is not applicable.

8. BMP SUMMARY (PERMIT SECTIONS X.H.4 AND 5)

The following table summarizes each identified area of industrial activity, the associated industrial pollutant sources, the industrial pollutants, and the BMPs implemented. The approximate boundaries of Drainage Areas A and B are shown on Figure 2. The PPT identified in Section 1.5 is responsible for implementing all BMPs at the site. Some of the BMPs described below require the use of mechanical equipment, such as forklifts, in order to perform maintenance activities on the BMPs. PPT members are authorized to use the required equipment or to obtain the help of other facility staff to maintain the BMPs onsite. The facility mechanics are responsible for maintaining the mechanical equipment throughout the facility.

To retain effectiveness during and after significant weather conditions, certain BMPs need to be inspected more frequently than monthly. These BMPs will be informally inspected by PPT members during large rain events or following rain events.

Drainage Area	BMPs Implemented	Associated Industrial Pollutant Sources	Potential Industrial Pollutants	Frequency of BMP Implementation
	Spill kit	Oil Filled Equipment (Transformers)	Petroleum hydrocarbons, heavy metals	As needed
Combustion turbines	Secondary containment	Aqueous Ammonia for exhaust system	Aqueous Ammonia	As needed
	Check dams	All facility pollutants	Suspended Sediment	As needed
	Spill kits	Truck access	Petroleum hydrocarbons, heavy metals	As needed
Oil and Universal Waste Storage Used Oil /	Parts Cleaner	Part Cleaning	Solvents, lubricants, metals	As needed
Hazardous Waste Storage	Spill kits and secondary containment	Spills during shipping and receiving	Petroleum hydrocarbons, heavy metals	As needed
	Covered forklift parking	Forklift Vehicle related pollutants		Daily
Water Treatment	Spill kit	Truck access	Petroleum hydrocarbons, heavy metals	As needed
Plant	Spill kits and secondary containment	Spills during shipping and receiving	Diesel, various chemicals	As needed
	Fueling Sump	Fuel	Petroleum	Permanent
Trash and Scrap Metal Dumpsters	Dumpsters have lids, roll offs are tarped	Spills during shipping and receiving	Metals and non- petroleum waste	Cover daily when not in use
	Storm resistant shelter	Waste	Metals, oils, suspended solids	Permanent

Table III BMP Summary

Warehouse	Run-on diversions	Run-on from neighboring facilities	Iron	Permanent
Discharge Location	Valves and Concrete Containment	All facility pollutants	All potential	Permanent
Location	Treatment and filtration	ponutants	pollutants	As needed
	Drain inlet filters	All pollutant sources	All potential pollutants	Permanent
	Rock-lined ditches	All pollutant sources Suspended solids		Permanent
	Site has access control and security 24 hours a day, 7 days a week	All pollutant sources	All potential pollutants	As needed
All Drainage	Oil/Water Separator	All pollutants	Oils and Grease	Daily
Areas	Oil absorbent socks around various drain inlets	All pollutant sources	Oils and Grease	Daily
	Powder coated drain inlet grates	Rusting grates	Iron	Permanent
	"No Dumping, Drains to Delta Signs"	Illicit dumping	All potential pollutants	Permanent

9. MONITORING IMPLEMENTATION PLAN (PERMIT SECTION X.I)

As described above in Section 1.5, PG&E has assembled a PPT that includes members assigned to conduct storm water monitoring. The facility has one industrial discharge location which is also the sampling location. The discharge location (Sample Location E-006) is located at the northern perimeter of the facility. Analytical monitoring and visual observations will be conducted at the sampling location shown on Figure 2.

Procedures for Monthly Visual Observations

PG&E will conduct visual observations within the drainage area at the facility at least once per calendar month, which will include an evaluation of:

- Presence or indications of prior, current, or potential unauthorized NSWDs and their sources;
- Authorized NSWDs, sources, and associated BMPs; and
- Outdoor industrial equipment and storage areas, outdoor industrial activities areas, BMPs, and all other potential source of industrial pollutants.

Monthly visual observations will be conducted during daylight hours of scheduled facility operating hours and on days without precipitation. Visual observations will be recorded on the form provided in Appendix E. Information to be recorded will include the date, approximate time, locations observed, presence and probable source of any observed pollutants, name of person(s) that conducted the observations, and any response actions and/or additional SWPPP revisions necessary in response to the visual observations. To ensure adequate documentation of response action completion, a PPT member will initial and date the documented response action when the action is complete. If a monthly visual observation is not conducted, PG&E will provide an explanation in the Annual Report.

Procedures for Sampling Event Visual Observations

PG&E will conduct visual observations at the same time sampling occurs at a discharge location. At each discharge location where a sample is obtained, PG&E will observe the discharge of storm water associated with industrial activity and record these observations on the form provided in Appendix E. The same types of information will be recorded as for the monthly inspections. The following items will be observed and recorded:

- The appearance of storm water discharged from containment sources (e.g., secondary containment or sumps) at the time that the discharge is sampled;
- The presence or absence of floating and suspended materials, oil and grease, discolorations, turbidity, odors, trash/debris, and source(s) of any discharged pollutants.

In the event that a discharge location is not visually observed during a sampling event, PG&E will record which discharge locations were not observed during sampling or that there was no discharge from the discharge location and will provide an explanation in the Annual Report for uncompleted sampling event visual observations. PG&E will revise BMPs as necessary if the visual observations indicate pollutant sources have not been adequately addressed in the SWPPP. If any response actions are noted during Sampling Event Visual Observations, a PPT member will initial and date the documented response action when the action is complete.

Sampling and Analysis

Samples will be collected during Qualifying Storm Events (QSE). A QSE is defined as a precipitation event that produces a discharge for at least one drainage area and is preceded by 48 hours with no discharge from any Facility drainage area. PG&E will collect and analyze storm water samples from two QSEs within the first half of each reporting year (July 1 to December 31), and two QSEs within the second half of each reporting year (January 1 to June 30). Samples will be collected within four hours of the start of discharge at the E006 discharge/sampling location shown on Figure 2. The sampling point at E006 is upstream from the actual discharge into the San Joaquin River (Outfall), due to the comingling of our discharge with the neighboring industrial facility just after E006 and prior to Outfall.

Sampling will be performed in accordance with requirements of the General Permit. Use caution when collecting samples at night and do not collect samples without sufficient lighting. Samples will be collected and analyzed for pH, oil and grease, total suspended solids, and total iron (based on the facility's SIC code listed in Table 1 of the General Permit for additional analytical parameters). Sampling results will be compared to two types of NAL values based on the specific parameter to determine whether either type of NAL has been exceeded for each applicable parameter. Annual NAL exceedances are based on analytical results for the entire facility for the reporting year, while Instantaneous NAL exceedances are based on analytical results from each distinct sample. The table below describes test methods, reporting units, and NAL values:

Parameter	Test Method	Reporting Units	Annual NAL	Instantaneous Maximum NAL
pH	Portable instrument*	pH units	N/A	<6.0 or >9.0
Oil and Grease	EPA 1664A	mg/L	15	25
Total Suspended Solids	SM 2540-D	mg/L	100	400
Total Iron	EPA 200.7	mg/L	1.0	
Electrical Conductivity			N/A	N/A

Table IV NAL Values

*The pH screen will be performed as soon as practicable, but no later than 15 minutes after the sample is collected and will be analyzed using a calibrated portable instrument for pH.

All instruments used for pH measurement will be properly calibrated in accordance with the manufacturer's instructions and recommended frequency, and copies of the calibration records will be maintained onsite. Samples for total iron, total suspended solids, oil and grease, and electrical conductivity will be analyzed by an analytical laboratory that is Environmental Laboratory Accreditation Program (ELAP)-certified. All samples will be collected in accordance with Attachment H of the General Permit ("Sample Collection and Handling Instructions") and handled under proper Chain-of-Custody (COC) protocols. General Permit Attachment H and an example COC are included in Appendix F.

Though there are Effluent Limitation Guidelines (ELGs) for Electric Power Generation facilities, which require copper and chlorine analysis, the regulation only applies to runoff from coal storage piles and therefore the ELGs for Electric Power Generation do not apply to this facility because coal is not stored or used at the facility.

Exceedance Response Actions

ERAs are required when an NAL exceedance occurs for any parameter. At the beginning of NOI coverage, PG&E will enter as a Baseline status for all parameters designated in Table IV above. If sampling results indicate an NAL exceedance [either annual or instantaneous] for any parameter listed in Table IV, the status will move up to Level 1 for that parameter on July 1st following the reporting year during which the exceedance occurred (i.e., if there was an instantaneous exceedance on September 30, 2015, Level 1 would begin on July 1, 2016). Moving to Level 1 status triggers two actions: a Level 1 ERA Report, both prepared with assistance of a QISP.

- A Level 1 ERA Evaluation, due by October 1 following commencement of Level 1 status, consists of completing an evaluation of the industrial pollutant sources at the facility that may be related to the NAL exceedance and evaluate all BMPs to determine if revisions are necessary to prevent future NAL exceedances.
- A Level 1 ERA Report, due by January 1 following commencement of Level 1 status, is prepared after the Level 1 ERA Evaluation and consists of revising the SWPPP as necessary to implement any additional BMPs identified in the Evaluation and submitting via SMARTS the Level 1 ERA Report with details regarding SWPPP revisions and the results of the Evaluation.

A Level 1 status for any exceeded parameter will return to Baseline status once the Level 1 ERA Report has been completed, additional BMPs have been implemented, and results from four consecutive QSEs indicate no additional NAL exceedances for that parameter.

The status for any exceeded parameter will change to Level 2 if sampling results indicate an NAL exceedance for that same parameter while in Level 1 (i.e., if Level 1 was implemented on July 1, 2015 and an exceedance occurred on December 1, 2015, Level 2 would be triggered on July 1, 2016). Moving to Level 2 status triggers two actions: a Level 2 ERA Action Plan and a Level 2 ERA Technical Report, both prepared with assistance of a QISP.

- A Level 2 ERA Action Plan, due by January 1 following the reporting year during which the NAL exceedance occurred, consists of a schedule and description of implementing a particular demonstration, as described in the Level 2 Technical Report, in response to the NAL exceedance.
- A Level 2 ERA Technical Report, due by January 1 of the reporting year following the submittal of the Level 2 ERA Action Plan, describes one or more of the demonstrations in response to the NAL exceedance: Industrial Activity BMPs Demonstration, Non-Industrial Pollutant Source Demonstration, and/or Natural Background Pollutant Source Demonstration (as described in the General Permit Section XII.D.2).
- A Level 2 ERA Technical Report may be prepared and submitted at any time, whether or not the Facility is required to submit such a report.

A new Level 2 NAL exceedance is any Level 2 NAL exceedance for 1) a new parameter in any drainage area, or 2) the same parameter that is being addressed in an existing Level 2 ERA Action Plan in a different drainage area.

NAL exceedances, in and of themselves, are not violations of the General Permit. Failure to comply with the Level 1 status and/or Level 2 status ERA requirements is in violation of the General Permit.

1 Gue Gueway Generation Black Status									
Reporting	ERA Level	Parameter	Level 1 ERA	Level 1 ERA	Level 2 ERA	Level 2 ERA			
Year	Status		Evaluation	Report	Action Plan	Technical			
			Completion	Submittal	Submittal	Report			
			Date	Date	Date	Submittal			
						Date			

PG&E Gateway Generation Station ERA Status

2015-	Baseline	N/A	N/A	N/A	N/A	N/A
2016 2016-	Level 1	Iron, Total	09/27/2016	12/30/2016	N/A	N/A
2010-2017		iioii, iotai	09/2//2010	12/30/2010	1N/A	1N/PX

See Appendix H for the ERA Evaluation(s) and Report(s)

Reporting

PG&E will submit all sampling and analytical results via SMARTS within 30 days of obtaining all results for each sampling event. In the event a sample's analytical result is reported by the laboratory as non-detect or less than the method detection limit, the method detection limit will be provided. A value of zero will not be reported.

PG&E will provide the sample analytical results reported by the laboratory as below the minimum level (often referred to as the reporting limit) but above the method detection limit. Reported analytical results from multiple discharge points will be averaged automatically by SMARTS. For any calculations required by this General Permit, SMARTS will assign a value of zero for all results less than the minimum level as reported by the laboratory.

10. ANNUAL REPORTING (PERMIT SECTIONS XV AND XVI)

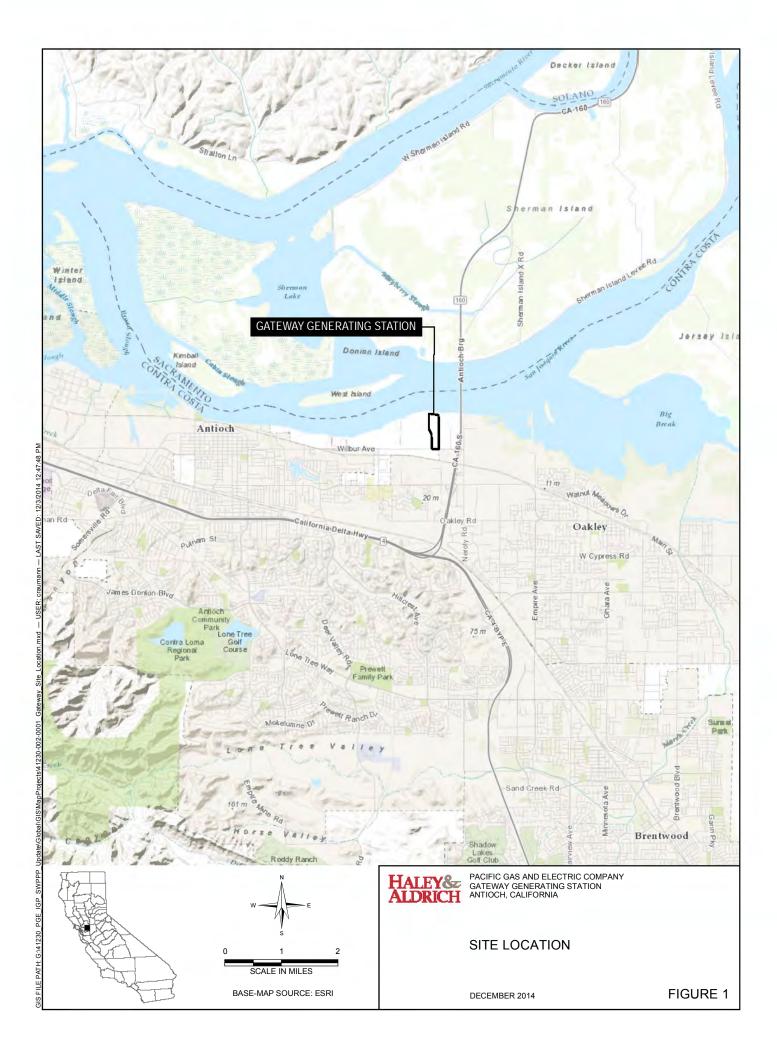
PG&E will conduct an Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation) each reporting year (July 1 to June 30). If the Annual Evaluation is conducted fewer than eight months, or more than sixteen months, after the previous Annual Evaluation, the facility will document the justification for doing so. Within 90 days of the Annual Evaluation, PG&E will revise the SWPPP, as appropriate, and implement the revisions. At a minimum, the Annual Evaluation will cover the following:

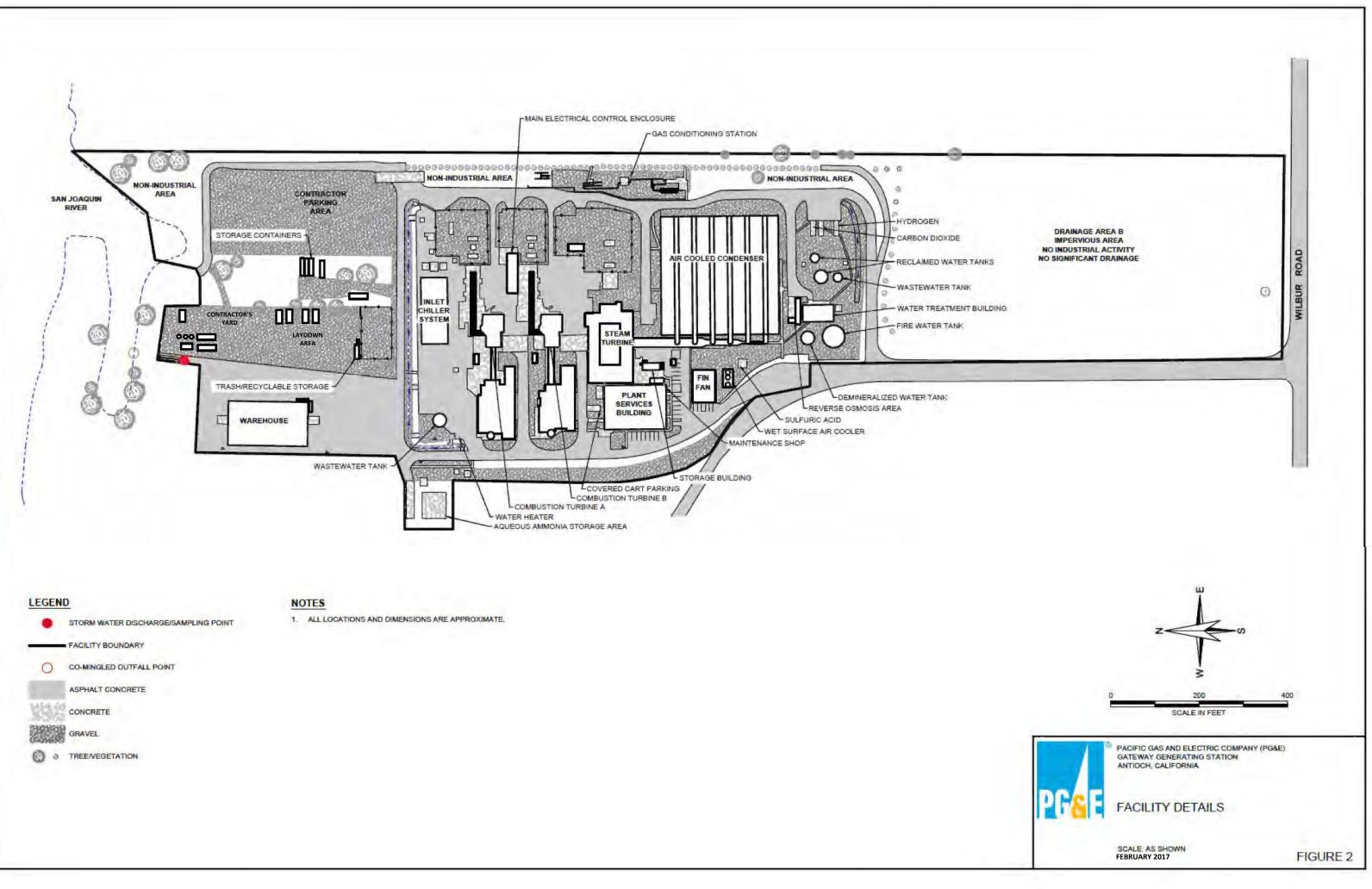
- Review of all sampling, visual observation, and inspection records conducted during the previous reporting year;
- Inspection of all areas of industrial activity and associated potential pollutant sources for evidence of, or the potential for, pollutants entering the storm water conveyance system;
- Inspection of all drainage areas previously identified as having no exposure to industrial activities and materials in accordance with the definitions in Section XVII;
- Inspection of equipment needed to implement the BMPs;
- Inspection of all site BMPs;
- Review and effectiveness assessment of all BMPs for each area of industrial activity and associated potential pollutant sources to determine if the BMPs are properly designed, implemented, and are effective in reducing and preventing pollutants in industrial storm water discharges and authorized NSWDs; and
- Assessment of any other factors needed to comply with the requirements in Section XVI.B.

Information gathered during the Annual Evaluation will be recorded on the form provided in Appendix E.

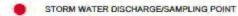
Annual Report

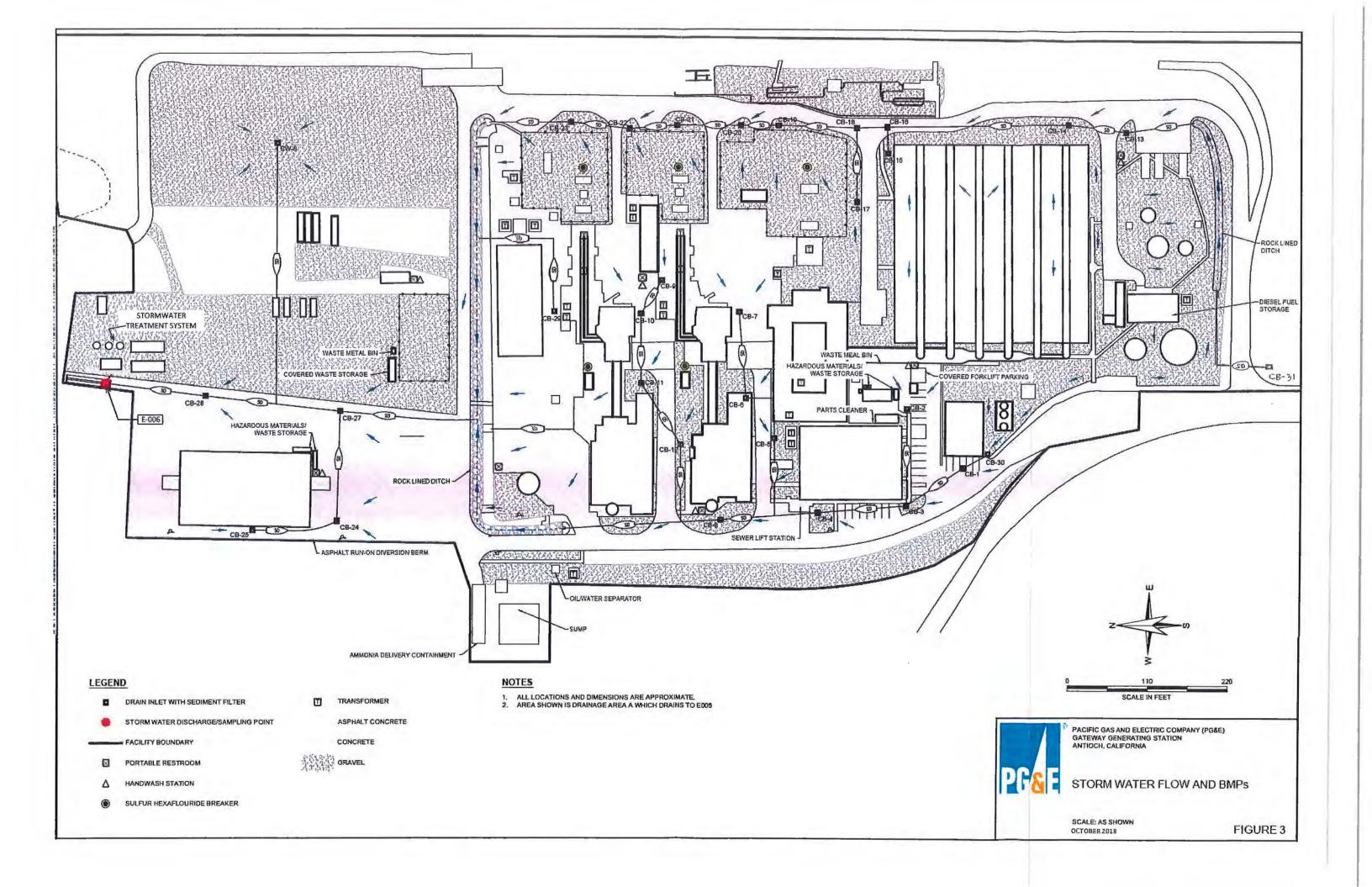
PG&E will certify and submit via SMARTS an Annual Report no later than July 15th following each year. The Annual Report will be created by the Environmental Compliance Manager, reviewed by the Subject Matter Expert, and certified by the Legally Responsible Party. The Annual Report will include the following:


- A Compliance Checklist that indicates compliance with all applicable requirements of the General Permit;
- An explanation for any non-compliance of requirements within the reporting year;
- Identification of all revisions made to the SWPPP within the reporting year; and
- The date of the Annual Evaluation.


Copies of the Annual Report are included in Appendix G.

REFERENCES


- 1. California State Water Resources Control Board. Industrial Storm Water Permit for Discharges Associated with Industrial Activity (Order No. 2014-0057-DWQ). 2014.
- 2. Excerpts from Gateway Generating Facility Hazardous Materials Business Plan.
- 3. Spill Prevention, Control, and Countermeasures Plan for Gateway Generating Station, initially prepared by CH2MHill January 12, 2009 and revised August 2, 2013.


FIGURES

APPENDIX A

General Permit for Storm Water Discharges Associated with Industrial Activities (State Water Resources Control Board Order 2014-0057-DWQ)

APPENDIX B

Permit Registration Documents

ater Boards	NOTICE GENERAL PERMIT TO ASSOCIATED WITH INDUSTRIAL	OF INTENT DISCHARGE STORM WATE ACTIVITY (WQ ORDER No. 2 Instruction Activities)	SECRETARY FOR
WDID: 5S071021950		Sta	tus: Active
Operator Information		Ту	ype: Private Business
Name: Pacific	Gas Electric Company	Contact Name:	Tim Wisdom
Address:	PO Box 770000	Title:	Plant Manager
Address 2:		Phone Number:	925-522-7812
City/State/Zip: San		Email Address:	T1WY@pge.com
ederal Tax ID:			
Facility Information		Le	evel:
Contact Name:	Angel Espiritu	Title:	Environmental Compliance Manager
Site Name: Gateway Ger			
Address: 3225 Wilbur A	Ave		
City/State/Zip:	Antioch CA 94509	Site Phone #:	925-522-7838
County:	Contra Costa	Email Address:	abe4@PGE.com
Latitude: 38.01228	Longitude: -121.75859	Site Size:	32.5 Acres
	Industrial Area Expos	ed to Storm Water:	22 Acres
Pe	ercent of Site Impervious (I	ncluding Rooftops):	28 %
SIC Code Information			
1. 4911		Electric Services	
2.			
3.			
Additional Information			
Receiving Water:	San Joaquir	River	Flow: Indirectly
Storm Drain System:			
Compliance Group:			
RWOCB Jurisdiction: Peo	ion 5S - Sacramento		
RWQCB Jurisdiction: Reg		Emoil:	r5c. ctormwator@watorboards.co.gov
RWQCB Jurisdiction: Reg	yion 5S - Sacramento 916-464-3291	Email: _	r5s_stormwater@waterboards.ca.gov
		Email:	r5s_stormwater@waterboards.ca.gov
Phone:	916-464-3291		r5s_stormwater@waterboards.ca.gov

C

State Water Resources Control Board NOTICE OF INTENT GENERAL PERMIT TO DISCHARGE STORM WATER ASSOCIATED WITH INDUSTRIAL ACTIVITIES (WQ ORDER No. 2014-0057-DWQ) (Excluding Construction Activities)

WDID:	5S07l021950			Status:	Active
Operator Info	ormation			Туре:	Private Business
Name:	Pacific Gas Electric Com	pany		Contact Name:	Benjamin Stanley
Address:	PO Box 770000			Title:	Senior Plant Manager
Address 2:				Phone #:	925-522-7812
City/State/Zip:	San Francisco CA 94177			Email:	BESN@pge.com
Federal Tax ID:	94-0742640				
Facility Inform	mation			Level:	
Site Name:	Gateway Generating Stati	ion		Contact Name:	Angel Espiritu
Address:	3225 Wilbur Ave			Title:	Environmental Compliance Manag
City/State/Zip:	Antioch CA 94509			Site Phone #:	925-522-7838
County:	Contra Costa			Email:	ABE4@PGE.com
Latitude:	38.01228 Lon	igitude:	-121.75859	Emergency:	
Total Site Size:	32.5 Acres		Percent of Site	e Impervious (including r	ooftops): 28 %
Industrial Area	exposed to Storm Water:	22 Acres	3		
SIC Code(s)					
Primary SIC	: 4911 Electric S	Services			
Secondary SIC	:				
Tertiary SIC:					
Additional Info	rmation				
Receiving W	ater: San Joaquin River				Water Flow: Indirectly
Storm drain sys	tem:				
Compliance Gr	oup:				
RWQCB Jurisdic	tion: Region 5S - Sacrament	to			
Ph	one: 916-464-3291			Email: r5s_s	tormwater@waterboards.ca.gov
Certification					
Name	Benjamin Stanley			Date: June 03	3, 2015
Title	Senior Plant Manager				

Attachments Meta Data Information:

Attachment ID	File Name	File Description	File Hash	File Size	Date Attached	Attachment Type
			e4101d3683ba9ccd e463ee75ce71789 3ca19ad7dfa27b69 cde4b24692d959		2015-05-04 07:10:34.0	Other

APPENDIX C

SWPPP Amendment Form

SUMMARY OF SWPPP AMENDMENTS OR REVISIONS

Section and Page	Summary of Revision	Date	Name/Title
Entire Document	Preparation of the SWPPP under the 2014 IGP	Dec-14	Nancy E. Gardiner, CPESC, QSD/QSP Haley & Aldrich, Inc.
Various	Subsequent to performing a stormwater compliance assessment for the vacility, revisions, additions, and updates were made to the SWPPP and site maps.	3/14/2016	Alicia Brenner, CPESC, CESSWI, QSD/P, QISP BTConsulting, Inc.
Cover page, Section 1.4 (pg 3), Section 1.5 (pg 3), Appendix B NOI	Update contact information: Facility Contact, Plant Manager & Operations Supervisor	6/23/2016	Diana Furman, ECM
Section 3.1, Table II (pg. 7), Section 4.1 (pg. 11)	Removed anhydrous ammonia, this is no longer used or stored at the facility	6/23/2016	Diana Furman, ECM
Section 5.4 (pg. 15)	impairments listed on SMARTS.	7/1/2016	Diana Furman, ECM
\$ 6.1.6pg18	Include clanfication for annual training	11/14/16	DIANA FURMAN, EC
AppendixE	Revised from visual observation form template	12/8/2016	DIANA FURMAN ECM
SIS Table 1 pg	3 Updated contact info for plant manager	- 12/30/2016	DIANA FURMAN ECM
Sects 1.4 (p.7)	Facility contact info & follution Accountion Jean were updated	5/31/2017	Angel ESPIRITU, ECM
P:3 Eig. 3	- updated Revision date - updated Table 1 - updated map	10/3/2016	Angel Espirita ECM

APPENDIX D

Training Log, including training material

SWPPP Training Log

ate of Training:

- □ Monitoring Activities
- □ SMARTS Reporting

Name	Title	Company	Signature

APPENDIX E

Industrial Storm Water Facility Inspection and Visual Observation Form Annual Evaluation Form Sampling Log

Industrial Storm Water Facility Inspection and Visual Observation Form

General Information										
Facility N	Jame	Gateway	Generating Stati	on						
WDID N	0.	5S07I021	950							
Date of I	nspection			Start/End Time						
Inspector	's Name(s)									
Inspector	Inspector's Title(s)									
Inspector	Inspector's Contact Information									
Inspector	Inspector's Qualifications									
	's Signature									
Type of I	nspection ^{1,2}	Mon	nthly Visual Obs	ervation	mpling Event Visual	Observation				
			Weather Inf	ormation						
Clear Other:	Weather at time of this inspection? Clear Cloudy Rain Sleet Fog Snow High Winds Other: Temperature: If this is a sampling event visual observation, fill in storm event information:									
	Time Storm Began:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rain Gauge		Rain Gauge II) :				
Date and	Time Discharge Began:		Previous Dis	charge Ended Greater	Than 48 Hours: D Y	es 🗆 No				
			Visual Obse							
If yes, de	e any spills/leaks observe scribe: 7 previously unidentified				inspaction? UVes					
If yes, de	scribe:	-	-							
If yes, no	e any discharges occurring te the presence of any of g Materials Sheen S all checked above:	the followir	ng:		h/Debris 🗖 Other:					
			Outfall Obs							
Outfall No.	Observations	Is NSWD Present?	Potential Source(s) of NSWD	Corrective Action	Person Contacted	Date Corrective Action Completed				
E-006		□Yes □No								
		□Yes □No								
		□Yes □No								

 ¹ Monthly visual observations will be conducted during daylight hours of normally scheduled facility operation and on days without precipitation. Sampling event visual observations will be recorded at the same time sampling occurs at a discharge location.
 ² For monthly visual observations, pages 1-5 need to be completed. For sampling event visual observations, pages 1-2 need to be completed.

BMP Control Measures

- Number the structural storm water control measures identified in your SWPPP below (add as many control measures as are implemented on-site).
- Describe corrective actions initiated, date completed, and note the person that completed the work.

	Structural Control Measure	Control Measure is Operating Effectively?	If No, In Need of Maintenance, Repair, or Replacement?	Corrective Action Needed and Notes (identify needed maintenance and repairs, or any failed control measures that need replacement)	Date Corrective Action Completed	Initials of Person Responsible for the Correction Action
1	Drain Inlets	□Yes □No	 Maintenance Repair Replacement 			
2	Secondary Containment: Transformers	□Yes □No	 Maintenance Repair Replacement 			
3	Secondary Containment: Turbines/Oil-filled Equipment	□Yes □No	MaintenanceRepairReplacement			
4	Secondary Containment: Firewater Pump Bldg	□Yes □No	MaintenanceRepairReplacement			
5	Secondary Containment: Hazardous Material/Waste Sheds	□Yes □No	 Maintenance Repair Replacement 			
6	Trash/Scrap Dumpsters	□Yes □No	 Maintenance Repair Replacement 			
7	Oil/Used Oil Storage	□Yes □No	 Maintenance Repair Replacement 			
8	Ditches/Outfall	□Yes □No	 Maintenance Repair Replacement 			
9	Iron Treatment System	□Yes □No	 Maintenance Repair Replacement 			
10		□Yes □No	MaintenanceRepairReplacement			

Areas of Industrial Materials or Activities exposed to storm water

Below is a list of areas that should be assessed during routine inspections. Customize this list as needed for the specific types of industrial materials or activities at your facility.

	Area/Activity	Inspected?	Controls Adequate (appropriate, effective, and operating)?	Corrective Action Needed and Notes	Date Corrective Action Completed	Initials of Person Responsible for the Correction Action
1	Material loading/unloading and storage areas	□Yes □No □ N/A	□Yes □No			
2	Equipment operations and maintenance areas	□Yes □No □N/A	□Yes □No			
3	Fueling areas	□Yes □No □ N/A	□Yes □No			
4	Outdoor vehicle and equipment washing areas	□Yes □No □N/A	□Yes □No			
5	Waste handling and disposal areas	□Yes □No □ N/A	□Yes □No			
6	Erodible areas/construction	□Yes □No □ N/A	□Yes □No			
7	Non-storm water/ illicit connections*	□Yes □No □ N/A	□Yes □No			
8	Dust generation and vehicle tracking	□Yes □No □ N/A	□Yes □No			
9	General Housekeeping	□Yes □No □N/A	□Yes □No			
10		□Yes □No □ N/A	□Yes □No			

*Include a description of the source, quantity, frequency, and characteristics of the non-storm water discharges, associated drainage area, and whether it is an authorized or unauthorized non-storm water discharge.

BMP Implementation Tracking and Recording

Describe all BMP implementation and/or maintenance that occurred since the last inspection here.

Non-Compliance

Describe any incidents of non-compliance observed and not described above:

Additional Control Measures**

Describe any additional control measures needed to comply with the permit requirements:

******Additional Control Measures include the following categories as described in the General Permit:

Minimum BMPs: Good Housekeeping; Preventative Maintenance; Spill and Leak Protection; Material Handling and Waste Management; Erosion and Sediment Controls; Employee Training; and Quality Assurance and Record Keeping

Advanced BMPs: *Exposure Minimization; Storm Water Containment and Discharge Reduction; and Treatment Control*

Notes

Use this space for any additional notes or observations from the inspection:

Annual Compliance Evaluation Form

		General Info	ormation					
Facility Name:			Evaluation Date:					
Facility Location:			WDID#:					
Is the SWPPP Onsite?	Yes Г No Г		Is the NOI Onsite?					
		Document Review	w Information					
Have all sampling r	ecords from the pre	evious reporting year bee	en reviewed?	Yes 🔽 No 🗖	NA			
			nformation about sampling red					
Have all visual obso reviewed?	ervation and inspec	tion records from the pre	evious reporting year been	Yes Г No Г				
D	ocument any trends	s, concerns, or notable in	formation about inspection re	cords here.				
			ant sources been inspected n water conveyance system?	Yes Г No Г	NA 🗆			
Document any trends, concerns, or notable information about industrial areas and pollutants here.								
Have all drainage a and materials been		ntified as having no expo	osure to industrial activities	Yes 🗖 No 🗖	№ Г			
Do	ocument any trends	, concerns, or notable in	formation about no exposure	areas here.				
Has all equipment r	needed to impleme	nt BMPs been inspected	2	Yes Г No Г	NA 🗆			
	•							
Docume	ni any trends, conco	erns, or notable informat	ion about BMP implementatio	n equipment nere.				

Annual Compliance Evaluation Form

Have all BMPs been inspected?		Yes 🔽 No 🗖	
Document any trends, concerns, or notable	e information about BMPs h	ere.	
Has a review and effectiveness assessment of all BMPs been con industrial activity and associated pollutant potential sources to dete properly designed, implemented, and are effective in reducing and industrial storm water discharges and authorized non-stormwater	ermine if the BMPs are preventing pollutants in discharges?	Yes 🗖 No Г	№Г
Document any trends, concerns, or notable inforr	nation about BMP effective	ness here.	
Has the SWPPP been reviewed to ensure the information within is operations and personnel?	accurate for current	Yes 🔽 No 🗖	
Document any trends, concerns, or notable infor	mation about SWPPP revis	ions here.	
Have any other factors needed to comply with the requirements of assessed?	the General Permit been	Yes 🗖 No 🗖	NA
Document any other trends, concerns,	or notable information here		
Inspector Infor	mation		
Evaluator Name:	Evaluator Title:		
Signature:		Report Date:	

	Genera	I Information	
Facility Name:			
Date:		Event Start Time:	
Sampler:		Rainfall Amount:	Today Storm
Sampling Event Type:	Storm Water	Non-storm water	Storm Water & NSWD
	pH Sampl	ing Information	
Method:	Litmus Paper Test Kit Portable Instrument	Portable Instrument Calibration Date/Time:	
	Field pH and Tu	rbidity Measurements	
Were field dupliates taken?	Yes	🗌 No	
Discharge Location	% Total Daily Flow	рН	Time
Sum % Flow (Must = 100)	0		
рН	Calculated Average:	#NUM!	
	Other Paramete	ers (check those collected)	
Oil and Grease	Oth	ner:	
Total Suspended Solids (TSS)	Oth	ner:	
Other:	Oth	ner:	
Other:	Oth	ner:	
Was a chain of custody complet	ed? Yes	No	
Additio	nal Sampling No	tes/Exception Docume	entation
Estimated Event End:			

APPENDIX F

General Permit Attachment H "Sample Collection and Handling Instructions" and Example Chain of Custody Form

ATTACHMENT H

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) GENERAL PERMIT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES (GENERAL PERMIT)

For more detailed guidance, Dischargers should refer to the U.S. EPA's "Industrial Stormwater Monitoring and Sampling Guide," dated March 2009, available at: <u>http://www.epa.gov/npdes/pubs/msgp_monitoring_guide.pdf</u> and the "NPDES Storm Water Sampling Guidance Document," dated July 1992, available at: <u>http://www.epa.gov/npdes/pubs/owm0093.pdf</u>.

- Identify the sampling parameters required to be tested and the number of storm water discharge points that will be sampled. Request the analytical testing laboratory to provide the appropriate number and type of sample containers, sample container labels, blank chain of custody forms, and sample preservation instructions.
- 2. Determine how samples will be transported to the laboratory. The testing laboratory should receive samples within 48 hours of the physical sampling (unless otherwise required by the laboratory). The Discharger may either deliver the samples to the laboratory, arrange for the laboratory to pick up the samples, or overnight ship the samples to the laboratory. All sample analysis shall be done in accordance with 40 Code of Federal Regulations part 136. Samples for pH have a holding time of 15 minutes.¹
- 3. Qualified Combined Samples shall be combined by the laboratory and not by the Discharger. Sample bottles must be appropriately labeled to instruct the laboratory on which samples to combine.
- 4. Unless the Discharger can provide flow weighted information, all combined samples shall be volume weighted.
- 5. For grab samples, use only the sample containers provided by the laboratory to collect and store samples. Use of any other type of containers may contaminate samples.
- 6. For automatic samplers that are not compatible with bottles provided by the laboratory, the Discharger is required to send the sample container included with the automatic sampler to the laboratory for analysis.

¹ 40 C.F.R. section 136.3, Table II - Required Containers, Preservation Techniques, and Holding Times.

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

- 7. The Discharger can only use automatic sampling device to sample parameters that the device is designed to. For pH, Dischargers can only use automatic sampling devices with the ability to read pH within 15 minutes of sample collection.
- 8. The Discharger is prohibited from using an automatic sampling device for Oil and Grease, unless the automatic sampling device is specifically designed to sample for Oil and Grease.
- 9. To prevent contamination, do not touch inside of sample container or cap or put anything into the sample containers before collecting storm water samples.
- 10. Do not overfill sample containers. Overfilling can change the analytical results.
- 11. Tightly screw on the cap of each sample container without stripping the threads of the cap.
- 12. Complete and attach a label for each sample container. The label shall identify the date and time of sample collection, the person taking the sample, and the sample collection location or discharge point. The label should also identify any sample containers that have been preserved.
- 13. Carefully pack sample containers into an ice chest or refrigerator to prevent breakage and maintain temperature during shipment. Remember to place frozen ice packs into shipping containers. Samples should be kept as close to 4 degrees Celsius (39 degrees Fahrenheit) as possible until arriving to the laboratory. Do not freeze samples.
- 14. Complete a Chain of Custody form for each set of samples. The Chain of Custody form shall include the Discharger's name, address, and phone number, identification of each sample container and sample collection point, person collecting the samples, the date and time each sample container was filled, and the analysis that is required for each sample container.
- 15. Upon shipping/delivering the sample containers, obtain both the signatures of the persons relinquishing and receiving the sample containers.
- 16. Dischargers shall designate and train personnel to collect, maintain, and ship samples in accordance with the sample protocols and laboratory practices.
- 17. Refer to Table 1 in the General Permit for test methods, detection limits, and reporting units.
- 18. All sampling and sample preservation shall be in accordance with 40 Code of Federal Regulations part 136 and the current edition of "Standard Methods for

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

the Examination of Water and Wastewater" (American Public Health Association). All monitoring instruments and equipment (including Discharger field instruments for measuring pH or specific conductance if identified as an additional sampling parameter) shall be calibrated and maintained in accordance with manufacturers' specifications to ensure accurate measurements. All laboratory analyses shall be conducted according to approved test procedures under 40 Code of Federal Regulations part 136, unless other test procedures have been specified by the Regional Water Quality Control Board. All metals shall be reported as total metals. Dischargers may conduct their own field analysis of pH (or specific conductance if identified as an additional sampling parameter) if the Discharger has sufficient capability (gualified and trained employees, properly calibrated and maintained field instruments, etc.) to adequately perform the field analysis. With the exception of field analysis conducted by Dischargers for pH (or specific conductance if identified as an additional sampling parameter), all analyses shall be sent to and conducted at a laboratory certified for such analyses by the California Department of Public Health. Dischargers are required to report to the Water Board any sampling data collected more frequently than required in this General Permit (Section XXI.J.2)

GGS Stormwater Treatment System Operations Recordkeeping Log

Discharge	Date/Time		charge Volur ter Readings		al) or mg/L)				Discharge pri Probe (S.O.)		Discharge pri Probe (S.O.) Turbidity Probe (NTO)				Operator	Comments
Start	End	Initial	Final	Total	Date/Time	Bench Kit Reading	Date/Time	Handheld Reading	Probe Reading	Date/Time	Handheld Reading	Probe Reading	Initials	comments		

Flow Meter Readings to be taken prior to beginning of discharge and after discharge ends.

Discharge if iron level is less than 1 ppm.

Perform accuracy checks on pH and turbidity probes at least twice per discharge event. Do not perform accuracy checks during backwash; meters are inaccurate during this time.

Accuracy for pH ±0.5 s.u.

Accuracy for turbidity ±15-20 NTU

Allowable pH discharge range: 6.0-9.0 s.u.

Normal pH range at pretreatment probe (i.e. weir tank): 8.8-9.3 s.u.

CHAIN OF CUSTODY FORM

Client Name:				Project:				ANALYSIS REQUIRED														
Laboratory:																				Field readings: (Include units) Time of readings		
Laboratory Contact:																						pH pH unit
Sampler:					Contact:			Total Suspended Solids	Oil & Grease	Total Iron												Field readings QC: Checked by: Date
Sample Description	Sample Matrix	Container Type	# of Cont.	Sample I.D.	Sampling Date/Time	Preservative	Bottle #	Tota	Oil &	Tota												Comments
Outfall 001	w																					
Outfall 002	W																					
Outfall 003	W																					
Duplicate	W																					
				Received By Date/Time:							Turn-around time: (Check) 24 Hour: 72 Hour: 10 Day: 48 Hour: 5 Day: Normal:											
Relinquished By Date/Time:					Received By Date/Time:								Sample Integrity: (Check) Intact:On Ice:									
Relinquished By Date/Time:					Received E																	

APPENDIX G

Annual Reports

APPENDIX H

ERA Evaluations and Reports

APPENDIX I

Advanced Treatment System (Chemical & Filtration) Operating Manual, including the Gateway Generation Station Quick Operations Guide and Operating Log Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 15

Exhibit 7 Biological Record Summaries (BIO-2)

Gateway Generating Station California Energy Commission 2023 Annual Biological Compliance Report Draft

Date:	February 7, 2024
Project Name:	Gateway Generating Station 2023 Biological Resources Support Project
Project No:	D31321DY
Attention:	Angel Espiritu/PG&E Gateway Generating Station Compliance Manager
Company:	Pacific Gas and Electric Company
Prepared By:	Gateway Generating Station Designated Biologist Scott Lindemann/Jacobs
Copies To:	Jerry Salamy/Jacobs Project Manager Amy Krisch Co-Designated Biologist/PG&E

1. Introduction

The California Energy Commission's (CEC) Condition of Certification (COC) for the Gateway Generating Station (GGS) 2023 Environmental On-call Support Project (the Project) requires Pacific Gas and Electric Company (PG&E) to designate a biologist to supervise compliance with mitigation measures outlined in the CEC-approved Biological Resources Mitigation, Implementation, and Monitoring Plan (BRMIMP) and submit compliance reports during GGS's operations phase. This Gateway Generating Station (GGS) Annual 2023 Biological Resources Compliance Report fulfills COC BIO-2. This report covers the reporting period from January 1, 2023, to December 31, 2023 (the 2023 Reporting Period). GGS complied with all biological resource COCs, and the measures specified in the BRMIMP during the Reporting Period.

1.1 **Project Location**

The GGS site is located at 3225 Wilbur Avenue in the city of Antioch, Contra Costa County, California. The facility is on the southern side of the San Joaquin River, approximately 0.4 miles west of Highway 160, and in Section 16, Township 02 north, Range 02 east (Mt. Diablo Meridian) on the Antioch North U.S. Geological Survey (USGS) topographic quadrangle. GPS coordinates for the approximate site center are: 38.016757°, -121.758799° (WGS 84).

1.2 Background

On December 19, 2006, Pacific Gas and Electric Company (PG&E) filed a petition (TN 38720) with the CEC requesting to amend the CEC Decision to eliminate the use of San Joaquin River water as the cooling source for the GGS Project (formerly known as the Contra Costa Power Plant Unit 8 Project). The petition also proposed ten associated project design changes at the project site. The 530-megawatt project was originally certified by the CEC on May 30, 2001, and a BRMIMP was prepared for the Project (URS Corporation 2001). Construction of the facility started late in 2001 and was suspended in February of 2002 due to financial difficulties, with approximately seven percent of construction completed. On July 19, 2006, the CEC approved the addition of

PG&E as co-owner of the project with Mirant Delta, LLC (CEC 2006). On December 4, 2006, PG&E filed a petition to remove Mirant as a co-owner and change the name of the facility to the Gateway Generating Station. Construction was restarted in January 2007 with PG&E as the project proponent. GGS construction, including restoration activities, was completed in June 2009.

After PG&E became the project owner/operator, the project was re-designed to avoid biological resource impacts to the extent feasible through development of mitigation and protection measures for the new design. These mitigation and protection measures reduced biological resource impacts so that no agency permits were required. These changes resulted in BRMIMP Conditions BIO-7, 10 and 11 being eliminated; also, additional minor changes were made to Conditions 5, 6 and 9 (CEC 2007).

The GGS was designed to avoid biological resources to the greatest extent through the development of mitigation and protection measures in consultation with the U.S. Fish and Wildlife Service (USFWS), U.S. Army Corps of Engineers (USACE), California Department of Fish and Wildlife (CDFW), Central Valley Regional Water Quality Control Board (CVRWQCB), and the CEC. Applicable COCs were complied with during construction and continue to be implemented during GGS operations, including routine maintenance and outage events.

2. Results

PG&E complied with the biological resource COCs during the Reporting Period. The CEC-approved Designated Biologist (DB) or Biological Monitor (BM) performed predisturbance surveys, established no-disturbance buffers to protect nesting birds within the facility when necessary, and coordinated with GGS staff to avoid or minimize impacts to the environment. GGS also complied with all measures specified in the BRMIMP during the Reporting Period.

All new GGS employees and contract workers received the CEC-approved Worker Environmental Awareness Training (WEAP) via video and daily tailgate training with the DB or the PG&E GGS Compliance Manager (CM) Angel Espiritu. The DB remained on call throughout the Reporting Period.

The monitoring and compliance activities for the 2023 calendar year are documented in chronological order below and within **Appendix A**, Site Photos.

- April 18: DB Rick Crowe was contacted to schedule a bird nesting bird survey at GGS to clear the area for Hamilton Landscaping to mow and apply herbicide on April 19th, 2023. PG&E senior biologist Amy Krisch performed the nesting bird survey from 9:45 am to 10:30 am. No bird nests were found during the survey. Ms. Krisch did also notice tree swallows (*Tachycineta bicolor*) foraging over the field of grasses to the south of the plant; the property west of GGS was inundated with water and may serve as a nesting location for tree swallows. Mowing activities were not expected to impact bird nesting activities.
- May 4: Ms. Krisch was contacted concerning the observation of a bird nest containing 2 eggs near a walkway barricade (Appendix A Photo 1). The parent bird was not present at the nest nor was it in the area during the discovery. Ms. Krisch determined the species either to be a rock pigeon or a mourning dove (Zenaida macroura) based on the nest structure, location, and eggs present and recommended a 10-foot buffer until the species could be positively identified. No

work was planned to occur at or near the 10-foot buffer. On May 10th, Ms. Krisch was informed that the eggs were gone from the nest (**Appendix A Photo 2**). No work occurred within the 10-foot buffer when the nest was first discovered and Ms. Krisch believed the nest was predated based on the state of the nest.

3. References

- California Energy Commission (CEC). 2006. Order Approving Addition of Pacific Gas and Electric Company as Co-Owner and Operator with Mirant Delta, LLC on Contra Costa Power Plant Unit 8 Project; Extension of Construction Milestones; and Four Modifications to the Facility. Docket No. 00-AFC-1C, Order No. [Not Given]. July 19.
- California Energy Commission (CEC). 2007. Order Amending the Energy Commission Decision to Eliminate the Use of San Joaquin River Water as the Cooling Water Source and Complete Ten Associated Project Design Changes. Docket No. 00-AFC-1C, Order No. 07.0801-2. August 1.
- URS Corporation. 2001. Biological Resources Mitigation, Implementation, and Monitoring Plan for Contra Costa Power Plant Unit 8 Project. Prepared for Mirant Delta LLC. Revised Version, August.

Appendix A Site Photo

Photo 1: Nest with 2 eggs observed inside the facility near a walkway barrier on May 4th, 2023.

Memorandum

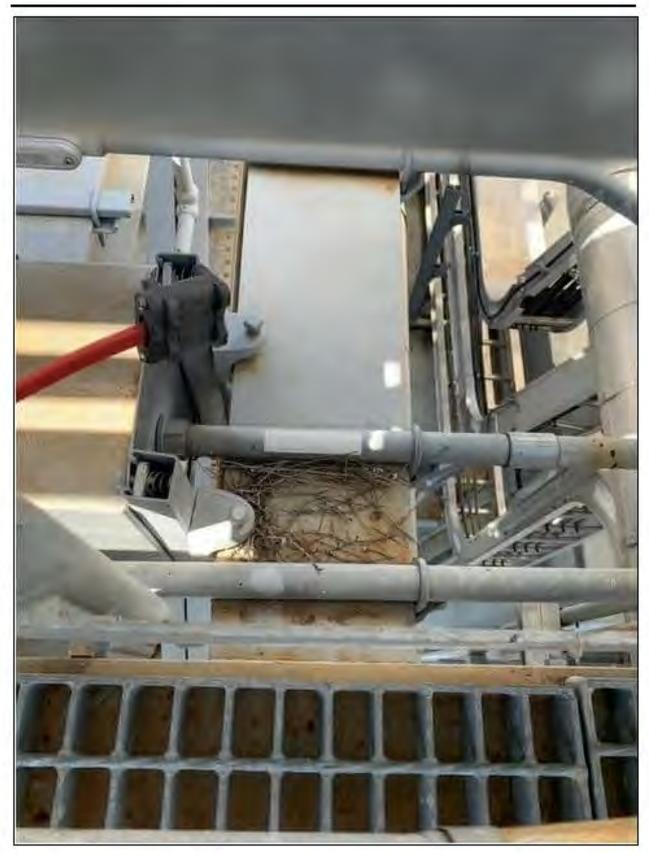


Photo 2: Empty nest that was likely predated from observed May 10th, 2023.