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Outline

« The SWITCH model: http://rael.berkeley.edu/switch

- Energy operation and planning decisions to 2030 and 2050



Motivation

« It is difficult to project what the economy and the electricity system should
look like under stringent decarbonization constraints

A “model result deserving special attention is the expanded role of electricity,
which increases from 15% to 55% of end-use energy, essentially switching
places with petroleum products” (Williams et al., 2012).

“Without zero-emissions load balancing (ZELB), a 100% renewable portfolio
will have more emissions than any other electricity portfolio, about 30%
more than a nuclear power portfolio. Without ZELB, natural gas or even
coal plus CCS has fewer emissions than renewables” (California’s Energy
Future, 2011).

High-level research questions
- How to keep costs low?

- What role should intermittent renewable sources play relative to other low-
carbon technologies?

« How much of a constraint is intermittency in the 2050 timeframe?
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SWITCH Modeling Objectives to Support
California Energy Planning

« SWITCH is a CEC-supported modeling program
* Guido Franco & Joe O’'Hagan — CEC Program Officers

« High-spatial and temporal resolution modeling of CA
and WECC energy supply, T&D and end-use
opportunities to meet cost, reliability and environmental
objectives

* Next objectives include:
« High-solar energy scenarios (pending detailed natural gas
supply curves, added complexity of storage options)
* Environmental impacts of energy siting and operation
« Scenarios under carbon quantity and cost constraints
* Inter-model comparisons and validation studies

Nelson, J. et al., Energy Policy, 43 (2012) 436447 | http://rael.berkeley.edu/switch
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The SWITCH-WECC Model (Energy Policy, 2012
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New Generation & Storage Options in SWITCH

‘—-K‘ ,'A";'n 1‘\\.\‘v ;

apture anii Sequestratior ‘




B
The SWITCH-WECC Model (Energy Policy, 2012)
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The SWITCH-WECC Model (Energy Policy, 2012)
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Projects

= 2030: Aggressive renewable cost scenarios

= 2050: The role of hydropower in renewables integration

= 2050: The role of load response in renewables integration
= 2050: The need for storage
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The Role of Hydropower in Integrating Intermittent Renewables

Research Question

= What are the benefits and limitations of extensive net-load balancing
with hydropower in the WECC?

More Research Questions

- How does taking into account the interannual variability in hydrological
conditions affect the optimal power mix (including storage deployment)
and the cost of power?

- What are the constraints on hydro operation and how does that affect
the ability of hydro to balance intermittent renewable generation?

« How will climate change affect hydropower and its utility for the electric
power system?



Aggressive Solar Scenarios

Research Question

= How would the availability of low-cost solar PV affect the optimal power
system by 20307

Exploratory Results Assumptions
= S1/W for central-station solar PV by 2020 and flat thereafter

= (Default central-station PV costs reach ~$2.5/W by 2020 and ~$2.1/W by
2026, the last investment period)
= RPS standards enforced

= WECC-wide carbon cap (20% below 1990 emissions by 2030)



Energy Mix in the US West:
Aggressive Solar Scenarios Exploratory Results: Energy Mix by 2030
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= About 58 GW of utility-scale PV and 6 GW of distributed commercial PV are

installed by 2030

= Power costs about 5% less in the Sunshot case




Aggressive Solar Scenarios: System Dispatch by 2030
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Aggressive Solar Scenarios: System Dispatch by 2030
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Aggressive Solar Scenarios

More Research Questions

= How does the price of natural gas affect the deployment of low-cost solar
PV in the 2030 timeframe?

= How does the availability/cost of transmission affect the deployment of
low-cost solar PV?

= How does the availability/cost of storage affect the deployment of low-cost
solar PV?

= Can solar PV be deployed at this scale within this timeframe?



Load Response

Research Question

= How much can flexible demand reduce system cost and aid in load
balancing?



