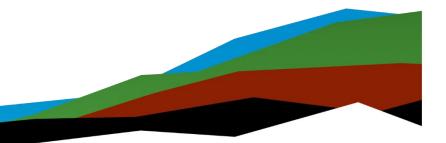
DOCKETED	
Docket Number:	23-OPT-02
Project Title:	Darden Clean Energy Project
TN #:	254677
Document Title:	Data Response Set 1 Appendix A - Geotechnical Report Utility Switchyard
Description:	Geotechnical report for the utility switchyard, provided in response to DR GEO-1 as part of Appendix A of Response Set 1.
Filer:	Evelyn Langsdale
Organization:	Rincon Consultants
Submitter Role:	Applicant Consultant
Submission Date:	2/23/2024 5:09:26 PM
Docketed Date:	2/26/2024

Data Response Set 1 - Appendix A

DR GEO-1 Geotechnical Engineering Report - Utility Switchyard


804650A 500 Kv Darden Interconnection

Geotechnical Engineering Report

October 12, 2023 | Terracon Project No. LA235112

Prepared for:

Dashiell Corporation 12301 Kurland Drive, Suite 400 Houston, Texas 77304

Nationwide Terracon.com

Facilities
Environmental
Geotechnical
Materials

145 W Walnut St. Gardena, CA 90248 P (949) 261-0051 **Terracon.com**

October 12, 2023

Dashiell Corporation 12301 Kurland Drive, Suite 400 Houston, Texas 77304

Attn: Mr. Blaise Trahan P: (281) 406-9538 E: James.Trahan@dashiell.com

Re: Geotechnical Engineering Report 804650A 500 Kv Darden Interconnection Mendota, Fresno County, CA Terracon Project No. LA235112

Dear Mr. Trahan:

We have completed the scope of Geotechnical Engineering services for the above referenced project in general accordance with Terracon Proposal No. PLA235112 dated August 2, 2023. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of access roads and foundations for the proposed substation facility.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely,

Terracon

-anna Valde

Janna Valdez, E.I.T.

Staff Engineer

C 86032 Joshua R. Morgar

Regional Geotechnical Manager

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Table of Contents

Introduction1
Project Description 1
Site Conditions 2
Geotechnical Characterization
Lab Results 4
Groundwater
Seismic Site Class
Faulting and Estimated Ground Motions6
Liquefaction
Corrosivity7
Electrical Resistivity Testing
Geotechnical Overview
Earthwork9
Site Preparation
Subgrade Preparation10
Excavation11
Fill Material Types11
Compaction Requirements12
Utility Trench Backfill12
Grading and Drainage13
Exterior Slab Design and Construction13
Earthwork Construction Considerations13
Construction Observation and Testing14
Foundations 15
Shallow Foundation Design Recommendations15
Shallow Foundation Design Considerations16
Drilled Shaft Design Recommendations17
Drilled Shaft Construction Considerations19
General Comments

Figures

GeoModel

Attachments

Exploration and Testing Procedures Site Location and Exploration Plans Exploration and Laboratory Results Supporting Information

i

Note: This report was originally delivered in a web-based format. **Blue Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the logo will bring you back to this page. For more interactive features, please view for the section at client.terracon.com.

Refer to each individual Attachment for a listing of contents.

Introduction

This report presents the results of our subsurface exploration and Geotechnical Engineering services performed for the proposed substation yard to be located at Mendota, Fresno County, CA. The purpose of these services was to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil (and rock) conditions
- Groundwater conditions
- Seismic site classification per CBC
- Site preparation and earthwork
- Foundation design and construction

The geotechnical engineering Scope of Services for this project included the advancement of test borings, laboratory testing, engineering analysis, and preparation of this report. The geotechnical engineering Scope of Services for our current scope of work included the following:

- Four (4) soil test borings to depths of approximately 50 feet below ground surface (bgs)
- Corrosion testing on soil samples obtained from one (1) location
- Field electrical resistivity at one (1) location

Drawings showing the site and boring and electrical resistivity locations are shown on the **Site Location** and **Exploration Plan**, respectively. The results of the laboratory testing performed on soil samples obtained from the site during our field exploration are included on the boring logs and/or as separate graphs in the **Exploration Results** section.

Project Description

Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Item	Description			
Information Provided	 The following documents were provided by Dashiell via email on July 19, 2023: Document No. 804650A-DE0-03000 Document No. 804650A-DC0-70099 Document No. 804650A-DC0-04310 Document No. 840650A-DE0-19401 			
Project Description	The project includes a new substation yard encompassing an approximate footprint of 50 acres.			
Proposed Structure	We anticipate the substation will be developed and supported by slab on grade and/or mat foundations one foot below final grade. Drilled piers will be used to support turning poles and other substation equipment.			
Maximum Loads	According to document No. 804650A-DC0-04310, two sets of bearing capacities are being requested: Less than one inch of settlement Two inches of settlement Pad mounted foundations are anticipated to have contact			
Grading/Slopes	Grading plans were not provided at this stage of the project. However, it is our assumption that proposed grades will follow existing levels with minimum earthwork at less than 2 feet cut/fill.			

Terracon should be notified if any of the above information is inconsistent with the planned construction, especially the grading limits, as modifications to our recommendations may be necessary.

Site Conditions

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Item	Description
Parcel Information	The project is located at Mendota, Fresno County, CA. The project site encompasses a total area of approximately 50 acres. The coordinates of the approximate center of the site are 36.4239°N, 120.4083°W. See Site Location
Existing Improvements	Based on our review of recent aerial photographs and our exploration, the site is being utilized as agricultural land. Multiple rows of Orchard trees are planted on the site. Additionally, riser towers with overhead powerlines are also located nearby the site.
Current Ground Cover	Exposed soil with Orchard trees
Existing Topography	The site location is relatively flat and have an approximate elevation ranging from 600 to 620 feet, according to Google Earth.

Geotechnical Characterization

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of the site. Conditions observed at each exploration point are indicated on the individual logs. The individual logs can be found in the **Exploration Results** and the GeoModel can be found in the **Figures** attachment of this report.

As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each boring location, refer to the GeoModel.

Stratum	Layer Name	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/ Density
1	Sandy Lean Clay	5 to 7.5	Clay with varying amount of silt, sand and gravel	Very stiff

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Stratum	Layer Name	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/ Density
2	Clayey/Silty Sand	20 to 30	Sand with varying amount of silt, clay and gravel	Loose to very dense
3	Sandy Lean Clay	30 to 35	Clay with varying amount of silt, sand and gravel	Stiff to hard
4	Poorly Graded Sand	I Sand 30 to 45 amounts of silt, clay and gravel		Medium dense to very dense
5	Lean Clay	Clay with Lean Clay 45 amount of and g		Very Stiff
6	Poorly Graded Sand with Gravel	51.5	Sand with varying amounts of silt, clay and gravel	Dense to very dense

Lab Results

Laboratory tests were conducted on selected soil samples and the test results are presented in the **Exploration Results** section and on the boring logs. Atterberg limit test results indicate that the on-site soils generally have a medium plasticity. A consolidation test indicates that the clayey soils encountered at an approximate depth of 2.5 feet bgs have a negligible collapse potential when saturated under normal footing loads of 2,000 psf, respectively. Direct shear testing on sandy soils encountered at 5 and 7.5 feet indicate soils have an effective friction angle of approximately 26 to 29 degrees with apparent cohesion value of 0 to 400 psf. Undrained shear strengths from unconfined compression testing on clayey soils are shown in the table below.

Boring ID	Layer Name	Undrained Shear Strength (ksf)
SB-1 at 25'	Poorly Graded Sand with Clay	1.79
SB-2 at 2.5'	Sandy Lean Clay	2.78
SB-2 at 20'	Sandy Lean Clay	7.98
SB-3 at 35'	Lean Clay	2.91

Groundwater

The borings were advanced using a hollow-stem-auger technique that allow short term groundwater observations to be made while drilling. Groundwater seepage was not encountered within the maximum allowed drilling depth at the time of our field exploration. Groundwater conditions may be different at the time of construction. According to data collected from the Water Data Library for the State of California from a nearby well, located 1.4 miles away from the site with approximate coordinates of 36.4224°N, 120.3811°W State Well Number 17S15E30G002M, historic groundwater levels between December 6, 2017, and November 7, 2019 is greater than 100 feet bgs.¹

Seismic Site Class

The 2022 California Building Code (CBC) Seismic Design Parameters have been generated using the SEAOC/OSHPD Seismic Design Maps Tool. This web-based software application calculates seismic design parameters in accordance with ASCE 7-16, and 2022 CBC. The 2022 CBC requires that a site-specific ground motion study be performed in accordance with Section 11.4.8 of ASCE 7-16 for Site Class D sites with a mapped S_s value greater than or equal 0.2.

However, Section 11.4.8 of ASCE 7-16 includes an exception from such analysis for specific structures on Site Class D sites. The commentary for Section 11 of ASCE 7-16 (Page 534 of Section C11 of ASCE 7-16) states that "In general, this exception effectively limits the requirements for site-specific hazard analysis to very tall and or flexible structures at Site Class D sites." Based on our understanding of the proposed structures, it is our assumption that the exception in Section 11.4.8 applies to the proposed structure. However, the structural engineer should verify the applicability of this exception.

Based on this exception, the spectral response accelerations presented below were determined using the site coefficients (Fa and Fv) from Tables 1613.2.3(1) and 1613.2.3(2) presented in Section 16.4.4 of the 2022 CBC.

Description	Value
2022 California Building Code Site Classification (CBC) ¹	D ²
Site Latitude (°N)	36.4239°

¹ California Department of Water Resources.

https://wdl.water.ca.gov/WaterDataLibrary/GroundWaterLevel.aspx?StateWellNumber=17S15E30G002M&SiteCode=364224N1203811W001

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Description	Value
Site Longitude (°W)	120.4083°
S _s Spectral Acceleration for a 0.2-Second Period	1.52
S ₁ Spectral Acceleration for a 1-Second Period	0.525
Fa Site Coefficient for a 0.2-Second Period	1
F _v Site Coefficient for a 1-Second Period	1.776

- 1. Seismic site classification in general accordance with the 2022 California Building Code.
- 2. The 2022 California Building Code (CBC) requires a site soil profile determination extending to a depth of 100 feet for seismic site classification. The current scope does not include the 100-foot soil profile determination. Borings were extended to a maximum depth of 51½ feet, and this seismic site class definition considers that similar or denser soils continue below the maximum depth of the subsurface exploration. Additional exploration to deeper depths would be required to confirm the conditions below the current depth of exploration.

Faulting and Estimated Ground Motions

The site is located in the southern California, which is a seismically active area. The type and magnitude of seismic hazards affecting the site are dependent on the distance to causative faults, the intensity, and the magnitude of the seismic event. As calculated using the USGS Unified Hazard Tool, the fault with approximate coordinates -120.408°N, 36.446°W, which is considered to have the most significant effect at the site from a design standpoint, has a maximum credible earthquake magnitude of 5.57 and is located approximately 5.67 kilometers from the site.

Based on the USGS Design Maps Summary Report, using the American Society of Civil Engineers (ASCE 7-16) standard, the peak ground acceleration (PGA_M) at the project site is expected to be 0.675 g. Based on the USGS Unified Hazard Tool, the project site has a mean magnitude of 6.41. Furthermore, the site is not located within an Alquist-Priolo Earthquake Fault Zone based on our review of the State Fault Hazard Maps.²

² California Geological Survey. https://maps.conservation.ca.gov/cgs/informationwarehouse.

Liquefaction

Liquefaction is a mode of ground failure that results from the generation of high pore water pressures during earthquake ground shaking, causing loss of shear strength. Liquefaction is typically a hazard where the condition of loose sandy soils exists below groundwater. The California Geological Survey (CGS) has designated certain areas as potential liquefaction hazard zones. However, CGS has not mapped the site for liquefaction hazard potential. Based on the anticipated depth to groundwater at the site, it is our opinion that the liquefaction hazard potential is low. Other geologic hazards related to liquefaction, such as lateral spreading, are therefore also considered low.

Corrosivity

The table below lists the results of laboratory soluble sulfate, soluble chloride, electrical resistivity, and pH testing. The values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

Boring	Sample Depth (feet)	Soil Description	Soluble Sulfate (%)	Soluble Chloride (mg/kg)	Electrical Resistivity (Ω-cm)	рН
SB-2	0.8-5	Sandy Lean Clay	<0.01	50	970	9.19

Corrosivity Test Results Summary

Results of soluble sulfate testing indicate samples of the on-site soils tested possess negligible sulfate concentrations when classified in accordance with Table 19.3.1.1 of the ACI Design Manual. Concrete should be designed in accordance with the exposure class S0 provisions of the ACI Design Manual, Section 318, Chapter 19.

Electrical Resistivity Testing

Terracon performed field measurements of soil electrical resistivity for the support of grounding design. Soil resistivity data was obtained from two perpendicular arrays at one (1) location in the proposed substation yard. The approximate location of the tests are shown in the **Exploration Plan**. The testing was performed in general accordance with Wenner Array (4-pin) method per ASTM G57. This method was performed in with IEEE Standard 81, IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Ground System. Each test in the proposed locations

included perpendicular arrays with "a" spacings 0.5,1,1.5, 2, 3, 5, 7, 10, 20, 30, 45, 70, 100, 150, 200 and 300. The "a" spacing is generally considered to be the depth of influence of the test. The electrical resistivity test results are presented in **Exploration Results**.

Geotechnical Overview

The site appears suitable for the proposed construction based upon geotechnical conditions encountered in the test borings, provided that the recommendations provided in this report are implemented in the design and construction phases of this project.

We anticipate that the proposed substation pads will be supported by a shallow foundation system bearing on engineered fill, or mat foundations and other appurtenant electrical equipment and turning poles will be supported on drilled shaft foundations.

The subsurface materials generally consisted of lean clay with varying amounts of sand and gravel, interbedded with sand with varying amounts of silt, clay and gravel to the maximum depth of the borings. Groundwater was not encountered within the maximum depths of exploration during or at the completion of drilling.

Expansive soils are present on this site. This report provides recommendations to help mitigate the effects of soil shrinkage and expansion; however, even if these procedures are followed, some movement and at least minor cracking in the structure should be anticipated. The severity of cracking and other cosmetic damage such as uneven floor slabs will probably increase if any modification of the site results in excessive wetting or drying of the expansive soils. Eliminating the risk of movement and cosmetic distress may not be feasible, but it may be possible to further reduce the risk of movement if significantly more expensive measures are used during construction. We would be pleased to discuss other construction alternatives with you upon request.

Based on the geotechnical engineering analyses, subsurface exploration, and laboratory test results, we recommend that the proposed substation may be supported on a spread footing foundation system. Due to the potential for expansion and anticipated depth of vegetation and tree removal, spread footings bearing on engineered fill are recommended for support of the proposed shallow foundations. Engineered fill should extend to a minimum depth of 3 feet below the bottom of foundations, or 5 feet below existing grades, whichever is greater. Grading for the proposed substation should incorporate the limits of the overexcavation plus a lateral distance of 2 feet beyond the outside edge of perimeter footings. Overexcavation and replacement is not required for support of drilled shaft foundations.

Estimated movements described in this report are based on effective drainage for the life of the structure and cannot be relied upon if effective drainage is not maintained. Exposed ground, extending at least 10 feet from the perimeter, should be sloped a

minimum of 5% away from the building to provide positive drainage away from the structure. Grades around the structure should be periodically inspected and adjusted as part of the structure's maintenance program.

Geotechnical engineering recommendations for foundation systems and other earth connected phases of the project are outlined below. The recommendations contained in this report are based upon the results of field and laboratory testing (presented in the **Exploration Results**), engineering analyses, and our current understanding of the proposed project. The **General Comments** section provides an understanding of the report limitations.

Earthwork

The following presents recommendations for site preparation, excavation, subgrade preparation, and placement of engineered fills on the project. The recommendations presented for the design and construction of foundations are contingent upon following the recommendations outlined in this section. All grading for substation structures, except for those supported on drilled piers, should incorporate the limits of the proposed structure plus a minimum lateral distance of 2 feet beyond the edges.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation of bearing soils, and other geotechnical conditions exposed during construction of the project.

Site Preparation

Prior to placing fill, existing vegetation, debris, topsoil, root mats, and other deleterious materials should be removed from proposed development areas. Complete stripping of the topsoil should be performed in the proposed substation areas. Exposed surfaces within these areas should be free of mounds and depressions which could prevent uniform compaction. The site should be initially graded to create a relatively level surface to receive fill and provide for a relatively uniform thickness of fill beneath proposed structures.

We recommend stripping topsoil to depths that expose soils with less than 3 percent organics and no roots having a diameter greater than 1/8 inch. While the depth of the unsuitable soils should be expected to vary, the thickness of the top soil layer may be estimated to range between 6 and 12 inches for construction budgeting purposes. The thickness of the top soil layer was not determined during our field exploration.

Therefore, the actual depth of stripping should be verified by engineering observations made during the grading operations at the project. Exposed surfaces should be free of mounds and depressions which could prevent uniform compaction.

Stripped materials consisting of vegetation and organic materials should be wasted from the site or used to revegetate landscaped areas or exposed slopes after completion of grading operations. If it is necessary to dispose of organic materials on site, they should be placed in non-structural areas, and in fill sections not exceeding 5 feet in height.

Although no evidence of fill or underground facilities (such as septic tanks, cesspools, basements, and utilities) was observed during the exploration and site reconnaissance, such features could be encountered during construction. If unexpected fills or underground facilities are encountered, such features should be removed, and the excavation thoroughly cleaned prior to backfill placement and/or construction.

Subgrade Preparation

The proposed substation may be supported by a shallow concrete foundation system bearing on engineered fill or drilled shafts.

Due to the potential for expansion and anticipated depth of vegetation and tree removal, spread footings bearing on engineered fill are recommended for support of the proposed shallow foundations. Engineered fill should extend to a minimum depth of 3 feet below the bottom of foundations, or 5 feet below existing grades, whichever is greater. Grading for the proposed substation should incorporate the limits of the overexcavation plus a lateral distance of 2 feet beyond the outside edge of perimeter footings.

Subsequent to the surface clearing and grubbing efforts, the exposed subgrade soils which will support engineered fill constructed at grade, should be prepared to a minimum depth of 10 inches. Subgrade preparation should generally include scarification, moisture conditioning, and compaction. The moisture content and compaction of subgrade soils should be maintained until construction.

All exposed areas which will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of 10 inches, moisture conditioned as necessary, and compacted per the compaction requirements in this report.

Structures supported on either drilled shafts may be constructed without the above recommended remedial grading.

Based upon the subsurface conditions determined from the geotechnical exploration, subgrade soils exposed during construction are anticipated to be relatively workable; however, the workability of the subgrade may be affected by precipitation, repetitive construction traffic or other factors. If unworkable conditions develop, workability may be improved by scarifying and drying.

Excavation

We anticipate that excavations for the proposed construction can be accomplished with conventional earthmoving equipment.

The bottom of excavations should be thoroughly cleaned of loose soils and disturbed materials prior to backfill placement and/or construction.

Individual contractors are responsible for designing and constructing stable, temporary excavations. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current OSHA excavation and trench safety standards.

Fill Material Types

All fill materials should be inorganic soils free of vegetation, debris, and fragments larger than six inches in size. Pea gravel or other similar non-cementatious, poorly-graded materials should not be used as fill or backfill without the prior approval of the geotechnical engineer.

Due to the on-site clayey soil's expansion potential, they are not recommended for use as engineered fill beneath foundations and lightly loaded slabs. Such soils may be used as fill materials for site grading only.

Imported soils for use as fill material within proposed structure areas should conform to low volume change materials as indicated in the following specifications:

<u>Gradation</u>	Percent Finer by Weight <u>(ASTM C 136)</u>
3″	
No. 4 Sieve	
No. 200 Sieve	
Liquid Limit	30 (max)
Plasticity Index	10 (max)
Maximum Expansion Index*	20 (max)
*ASTM D4829	

The contractor shall notify the Geotechnical Engineer of import sources sufficiently ahead of their use so that the sources can be observed and approved as to the physical characteristic of the import material. For all import material, the contractor shall also submit current verified reports from a recognized analytical laboratory indicating that the import has a "not applicable" (Class SO) potential for sulfate attack based upon current ACI criteria and is "mildly corrosive" to ferrous metal and copper. The reports shall be accompanied by a written statement from the contractor that the laboratory test results are representative of all import material that will be brought to the job.

Engineered fill should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Fill lifts should not exceed 10 inches loose thickness.

Compaction Requirements

Recommended compaction and moisture content criteria for engineered fill materials are as follows:

	Per the Modified Proctor Test (ASTM D 1557)			
Material Type and Location	Minimum Compaction	Range of Moisture Contents for Compaction Above Optimum		
	Requirement	Minimum	Maximum	
Approved imported fill soils:				
Beneath foundations:	90%	0%	+4%	
On-site native soils:				
Miscellaneous backfill:	90%	+2%	+5%	
Bottom of excavation receiving fill:	90%	+2%	+5%	

Utility Trench Backfill

We anticipate that the on-site soils will provide suitable support for underground utilities and piping that may be installed. Any soft and/or unsuitable material encountered at the bottom of excavations should be removed and be replaced with an adequate bedding material.

A non-expansive granular material with a sand equivalent greater than 30 should be used for bedding and shading of utilities, unless allowed or specified otherwise by the utility manufacturer.

On-site materials are considered suitable for backfill of utility and pipe trenches from 1 foot above the top of the pipe to the final ground surface, provided the material is free of organic matter and deleterious substances.

Trench backfill should be mechanically placed and compacted as discussed earlier in this report. Compaction of initial lifts should be accomplished with hand-operated tampers or other lightweight compactors. Where trenches are placed beneath footings, the backfill should satisfy the gradation and expansion index requirements of engineered fill discussed in this report. Flooding or jetting for placement and compaction of backfill is not recommended.

Geotechnical Engineering Report 804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Grading and Drainage

Positive drainage should be provided during construction and maintained throughout the life of the development. Infiltration of water into utility trenches or foundation excavations should be prevented during construction. Backfill against footings, exterior walls, and in utility and sprinkler line trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration.

Exterior Slab Design and Construction

Compacted subgrade composed of on-site clayey soils will expand with increasing moisture content; therefore, exterior concrete slabs may heave, resulting in cracking or vertical offsets. The potential for damage would be greatest where exterior slabs are constructed adjacent to the building or other structural elements. To reduce the potential for damage caused by movement, we recommend:

- exterior slabs should be supported directly on subgrade fill (not ABC) with no, or very low expansion potential;
- strict moisture-density control during placement of subgrade fills;
- maintain proper subgrade moisture until placement of slabs;
- placement of effective control joints on relatively close centers and isolation joints between slabs and other structural elements;
- provision for adequate drainage in areas adjoining the slabs;
- use of designs which allow vertical movement between the exterior slabs and adjoining structural elements.

Earthwork Construction Considerations

Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to construction. Construction traffic over the completed subgrades should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Water collecting over or adjacent to construction areas should be removed. If the subgrade desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and recompacted prior to construction.

On-site clay soils may pump and unstable subgrade conditions could develop during general construction operations, particularly if the soils are wetted and/or subjected to repetitive construction traffic. The use of light construction equipment would aid in reducing subgrade disturbance. The use of remotely operated equipment, such as a backhoe, would be beneficial to perform cuts and reduce subgrade disturbance.

Should unstable subgrade conditions develop stabilization measures will need to be employed. Stabilization measures may include placement of aggregate base and multiaxial geogrid. Use of lime, fly ash, kiln dust or cement could also be considered as a stabilization technique. Laboratory evaluation is recommended to determine the effect of chemical stabilization on subgrade soils prior to construction.

We recommend that the earthwork portion of this project be completed during extended periods of dry weather if possible. If earthwork is completed during the wet season (typically November through April) it may be necessary to take extra precautionary measures to protect subgrade soils. Wet season earthwork operations may require additional mitigative measures beyond that which would be expected during the drier summer and fall months. This could include diversion of surface runoff around exposed soils and draining of ponded water on the site. Once subgrades are established, it may be necessary to protect the exposed subgrade soils from construction traffic.

Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean Terracon is assuming responsibility for construction site safety, or the contractor's activities; such responsibility shall neither be implied nor inferred.

Construction Observation and Testing

The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation, proof-rolling, placement and compaction of controlled compacted fills, backfilling of excavations to the completed subgrade.

The exposed subgrade and each lift of compacted fill should be tested, evaluated, and reworked, as necessary, as recommended by the Geotechnical Engineer prior to placement of additional lifts. Each lift of fill should be tested for density and water content at a frequency of at least one test for every 2,500 square feet of compacted fill in the building areas and 5,000 square feet in pavement areas. Where not specified by local ordinance, one density and water content test should be performed for every 50 linear feet of compacted utility trench backfill. This testing frequency criteria may be adjusted during construction as specified by the geotechnical engineer of record.

In areas of foundation excavations, the bearing subgrade should be evaluated by the Geotechnical Engineer. If unanticipated conditions are observed, the Geotechnical Engineer should prescribe mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of the Geotechnical Engineer into the construction phase of the project

provides the continuity to maintain the Geotechnical Engineer's evaluation of subsurface conditions, including assessing variations and associated design changes.

Foundations

Substation equipment and self-contained structures may be supported on slab on grade and/or mat foundations bearing on engineered fill. Substation elements including turning poles, bus supports, and shield wire poles may be supported on drilled piers. Recommendations for foundations for the proposed structures and related structural elements are presented in the following paragraphs.

If the site has been prepared in accordance with the requirements noted in **Earthwork**, the following design parameters are applicable for shallow foundations.

Item	Description
Foundation System	Spread footings, mat foundation, grade beams
Maximum Net Allowable Bearing Pressure (for a total static settlement of 1 inch) ^{1, 2}	3,000 psf up to 7 feet wide 2,000 psf up to 11 feet wide 1,000 psf up to 20 feet wide
Maximum Net Allowable Bearing Pressure (for a total static settlement of 2 inch) ^{1, 2}	5,000 psf up to 7 feet wide 4,000 psf up to 11 feet wide 3,000 psf up to 20 feet wide
Required Bearing Stratum	Engineered fill extending to a minimum of 3 foot below the bottom of foundations, or 5 feet below existing grade, whichever is greater.
Minimum Embedment Below Finished Grade	12 inches
Minimum Dimensions	Square footings and mats: 24 inches Strip footings: 18 inches
Estimated Differential Settlement	About 1/2 of total settlement over a horizontal distance of 40 feet

Shallow Foundation Design Recommendations

 The maximum net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. An appropriate factor of safety has been applied. These bearing pressures can be increased by 1/3 for transient loads unless those loads have been factored to account for transient conditions.

2. Unsuitable or soft soils should be overexcavated and replaced per the recommendations presented in **Earthwork**.

Settlement calculations were performed utilizing Westergaard and Hough's methods³ to estimate the static settlement for various foundations widths with an allowable settlement of 1-inch and 2-inch as notes in the table above.

Since there are several factors that will control the design of mat foundations besides vertical load, Terracon should be consulted when the final foundation depth and width are determined to assist the structural designer in the evaluation of anticipated settlement.

For structural design of mat foundations, a modulus of subgrade reaction (Kv_1) of 200 pounds per cubic inch (pci) may be used. Other details including treatment of loose foundation soils, superstructure reinforcement and observation of foundation excavations as outlined in the Earthwork section of this report are applicable for the design and construction of a mat foundation at the site.

The subgrade modulus (K_v) for the mat is affected by the size of the mat foundation and would vary according the following equation:

 $K_v = K_{v1}/B$

Where: K_{ν} is the modulus for the size footing being analyzed \$B\$ is the width of the mat foundation.

Shallow Foundation Design Considerations

Finished grade is defined as the lowest adjacent grade within five feet of the foundation for perimeter (or exterior) footings.

The allowable foundation bearing pressure applies to dead loads plus design live load conditions. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions. The weight of the foundation concrete below grade may be neglected in dead load computations.

Foundations should be reinforced as necessary to reduce the potential for distress caused by differential foundation movement. The use of joints at openings or other discontinuities in masonry walls is recommended.

³ FHWA Geotechnical Engineering Circular No. 6 – Shallow Foundations, FHWA – SA-02-054

Foundation excavations should be observed by the geotechnical engineer. If the soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required.

Drilled Shaft Design Recommendations

The proposed substation towers, poles, and bus supports can be supported on drilled shafts. Total required embedment of the drilled shafts should be determined by the structural engineer based on structural loading and parameters provided in this report.

The allowable end bearing, and side friction components of resistance were evaluated and are presented in the tables and graphs provided in the **Supporting Documents** section of this report. The allowable axial compressive capacities are based on a minimum factor of safety of 2.5 for skin friction and 3.0 for end bearing. Uplift capacities should be based on two-thirds of the allowable skin friction of the shaft, however the weight of the foundation should be added to these values to obtain the actual allowable uplift capacities for drilled shafts. Depth-capacity graphs are provided in the attachments of this report.

Recommended geotechnical parameters for lateral load analyses of drilled shaft foundations have been developed for use in the L-PILE computer program. Based on our review of the subsurface conditions within the outline of the substation and the Standard Penetration Test (SPT) results, engineering properties have been estimated for the soils conditions as shown in the following table. Due to potential disturbance within the upper soils around the shaft, lateral and axial capacity of soils within the upper 2 feet should be neglected. In the event disturbance is expected in a deeper depth, such depth should be neglected. We recommend that Terracon review the final drilled shaft design to verify that sufficient embedment is achieved.

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Substation					
Top Depth Bottom Depth	Effective Unit Weight (pcf)	LPILE/ GROUP Soil Type	Internal Friction (degrees)∳	Cohesion (psf)	
2 5	100	Stiff Clay without Free Water		1,800	
5 20	100	Sand	31		
20 25	100	Stiff Clay without Free Water		1,800	
25 40	100	Sand	31		
40 50	100	Sand	41		

1. See Subsurface Profile in Geotechnical Characterization for more details on Stratigraphy.

- 2. Definition of Terms:
 - ϕ : Internal friction angle
 - γ' : Effective unit weight
- 3. Default K and E_{50} values may be utilized.

The depth below ground surface indicated in the table above is referenced from the existing site surface at the time of the field exploration. If fill is placed to raise the site grades, the depths shown in the charts and table above must be increased by the thickness of fill placed. The required depths of shaft embedment should also be determined for design lateral loads and overturning moments to determine the most critical design condition.

Lateral load design parameters are valid within the elastic range of the soil. The coefficient of subgrade reaction are ultimate values; therefore, appropriate factors of safety should be applied in the shaft design or deflection limits should be applied to the design.

It should be noted that the loaded capacities provided herein are based on the stresses induced in the supporting soils. The structural capacity of the shafts should be checked to assure that they can safely accommodate the combined stresses induced by axial and lateral forces. Furthermore, the response of the drilled shaft foundations to lateral loads is dependent upon the soil/structure interaction as well as the shaft's actual diameter, length, stiffness and "fixity" (fixed or freehead condition).

Drilled Shaft Construction Considerations

Drilling to design depths should be possible with conventional single flight power augers. Due to lean clay soils, temporary casing is not anticipated to be required during shaft excavation. We do not anticipate drilled shafts to extend below the depth of groundwater. However, if foundation concrete cannot be placed in dry conditions, a tremie should be used for concrete placement.

Drilled shaft foundation concrete should be placed immediately after completion of drilling and cleaning. If foundation concrete cannot be placed in dry conditions, a tremie should be used for concrete placement. Due to potential sloughing and raveling, foundation concrete quantities may exceed calculated geometric volumes.

In the event drilled hole walls slough during drilling, temporary steel casing may be required to properly drilled shafts prior to concrete placement. We recommend the use of slurry drilling methods with polymers method to keep the solids in suspension during the drilling. Drilled shaft foundation concrete should be placed within 6 inches of the shaft base of the slurry-filled excavation immediately after completion of drilling and cleaning. The tremie should remain inserted several feet into the fresh concrete as it displaces the slurry upward and until placement is complete. The slurry should have a sand content no greater than 1% at the time concrete placement commences. The maximum unit weight of the slurry should be established in consultation with Terracon.

If casing is used for drilled shaft construction, it should be withdrawn in a slow continuous manner maintaining a sufficient head of concrete to prevent infiltration of water or the creation of voids in shaft concrete. Shaft concrete should have a relatively high fluidity when placed in cased shaft holes or through a tremie. Shaft concrete with slump in the range of 6 to 8 inches is recommended.

Foundation concrete should be placed immediately after completion of drilling and cleaning. Closely spaced shafts should be drilled and filled alternatively, allowing the concrete to set at least eight hours before drilling the adjacent shaft. All excavations should be filled with concrete as soon after drilling as possible. In no event should shaft holes be left open overnight.

Formation of mushrooms or enlargements at the tops of shafts should be avoided during shaft drilling. If mushrooms develop at the tops of the shafts during drilling, sono-tubes should be placed at the shaft tops to help isolate the shafts.

Free-fall concrete placement in drilled shafts will only be acceptable if provisions are taken to avoid striking the concrete on the sides of the hole or reinforcing steel. The use of a bottom-dump hopper, or an elephant's trunk discharging near the bottom of the hole where concrete segregation will be minimized, is recommended.

We recommend that all drilled shaft installations be observed on a full-time basis by an experienced geotechnical engineer in order to evaluate that the soils encountered are consistent with the recommended design parameters. If the subsurface soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required.

General Comments

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

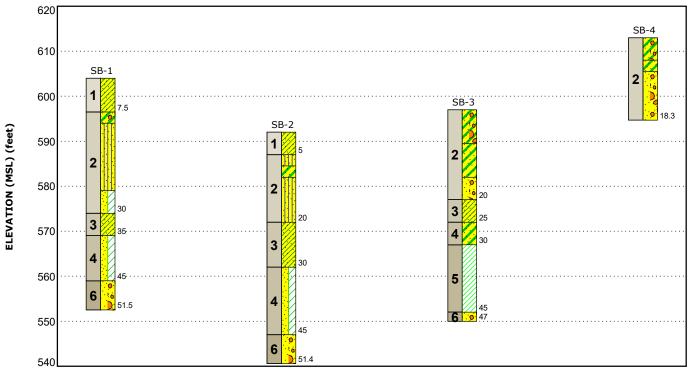
Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112


Figures

Contents:

GeoModel

GeoModel

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description	Legend
1	Sandy Lean Clay	Clay with varying amounts of silt, sand and gravel	Sandy Lean Clay Clayey Sand with Gravel
2	Clayey/Silty Sand	Sand with varying amounts of clay, silt and gravel	Silty Sand Poorly-graded Sand with Clay with Gravel Sand
3	Lean Clay	Clay with varying amount of sand, silt and gravel	Lean Clay
4	Poorly Graded Sand	Sand with varying amount of silt, clay and gravel	
5	Lean Clay	Clay with varying amount of sand, silt and gravel	
6	Poorly Graded Sand with Gravel	Sand with varying amount of silt, clay and gravel	

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project.

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Attachments

Exploration and Testing Procedures

Field Exploration

Number of Borings	Approximate Boring Depth (feet)	Location
4	51.5 or auger refusal	Proposed substation yard

Boring Layout and Elevations: Terracon personnel provided the boring layout using handheld GPS equipment (estimated horizontal accuracy of about ± 10 feet) and referencing existing site features. Approximate ground surface elevations were estimated using Google Earth. If elevations and a more precise boring layout are desired, we recommend borings be surveyed.

Subsurface Exploration Procedures: We advanced the borings with a truck-mounted drill rig using continuous hollow stem flight. Four samples were obtained in the upper 10 feet of each boring and at intervals of 5 feet thereafter. Test samples were collected during drilling in general accordance with the appropriate ASTM methods using Standard Penetration Testing (SPT) and sampling using either standard split-spoon or Modified California samplers. A sampling spoon was driven into the ground by a 140 pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18 inch penetration was recorded as the Standard Penetration Test (SPT) resistance value, also referred to as N-values. The N-values are indicated on the boring logs at the test depths. The samples were placed in appropriate containers, taken to our soil laboratory for testing, and classified by a geotechnical engineer.

For safety purposes, all borings were backfilled with auger cuttings and grout after their completion. We also observed the boreholes while drilling and at the completion of drilling for the presence of groundwater. Groundwater was not encountered during the course of our exploration.

The sampling depths, penetration distances, and other sampling information was recorded on the field boring logs. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a Geotechnical Engineer. Our exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials observed during drilling and our interpretation of the subsurface conditions between samples. Final boring logs were prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

Electrical Resistivity Testing: Soil electrical resistivity data was be obtained in accordance with ASTM G57 Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method. At each test location, two near perpendicular lines was tested. Electrode "a" spacings are summarized in the following table. Electrode spacing was adjusted to conform to site conditions.

No. of Test Locations	Electrode "a" Spacing (feet) ¹	Planned Location
2	0.5, 1, 1.5, 2, 3, 5, 7, 10, 20, 30, 45, 70, 100, 150, 200, and 300' feet	Proposed substation yard

Laboratory Testing

The project engineer reviewed the field data and assigned laboratory tests. The laboratory testing program included the following types of tests:

- Moisture Content
- Dry Unit Weight
- Atterberg Limits
- Swell Consolidation Test
- Unconfined compression
- Direct Shear
- Corrosivity

The laboratory testing program often included examination of soil samples by an engineer. Based on the results of our field and laboratory programs, we described and classified the soil samples in accordance with the Unified Soil Classification System.

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Site Location and Exploration Plans

Contents:

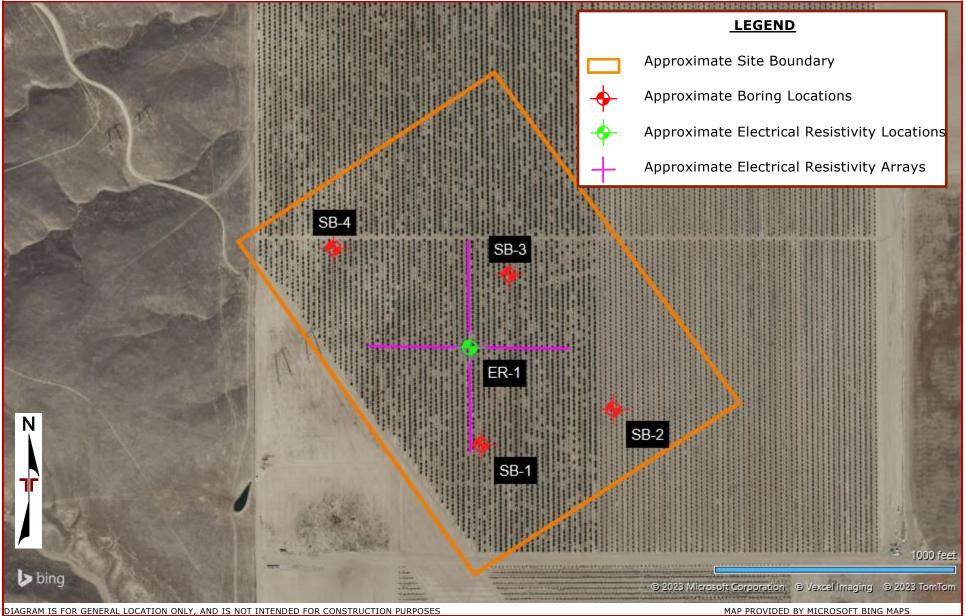
Site Location Plan Exploration Plan

Note: All attachments are one page unless noted above.

Geotechnical Engineering Report 804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA

October 12, 2023 | Terracon Project No. LA235112

Site Location


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

MAP PROVIDED BY MICROSOFT BING MAPS

Geotechnical Engineering Report 804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA

October 12, 2023 | Terracon Project No. LA235112

Exploration Plan

Exploration and Laboratory Results

Contents:

Boring Logs (SB-1 through SB-4) Atterberg Limits Swell Consolidation Test Graph Direct Shear Graphs (2 pages) Unconfined Compression Test Results (5 pages) Corrosion Results Electrical Resistivity Results

Note: All attachments are one page unless noted above.

L.	ŋ	Location: See Exploration Plan		_	_ v	e		()	Ð	Atterberg Limits	
Model Layer	Graphic Log	Latitude: 36.4226° Longitude: -120.4077°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
		Depth (Ft.) SANDY LEAN CLAY (CL), light brown or light brown									
		very stiff		-			7-10-13	8.0	87		52
1				_		Ą					
				5			7-12-15 N=27			47-18-29	55
		7.5		_							
	200	CLAYEY SAND WITH GRAVEL (SC), light brown, medium dense	9	_			8-16-21	8.7	87		
		10.0 SILTY SAND (SM), light brown, medium dense		10-		\bigvee	4-7-17				
				_		\triangle	N=24	-			
				_							
				_							
		light bluish gray to light brown		15-			3-12-23	6.2	97		
				_			5-12-25	0.2	97		
				_							
2				_							
		loose		20-		\setminus	4-2-4 N=6				37
				_							
				_							
		25.0		- 25-							
		POORLY GRADED SAND WITH CLAY (SP-SC), light brown, me dense	edium	- 25		X	10-10-12	10.0	105		
				_							
				_							
		30.0		30-							
See pro	e <mark>Explo</mark> cedure	pration and Testing Procedures for a description of field and laboratory as used and additional data (If any).	Water Le	evel Ob						Drill Rig Diedrich D-50	
		orting Information for explanation of symbols and abbreviations.								Hammer Typ Automatic	
Not	tes		Advance			1				Driller Terracon	
			Hollow St	em Aug	er					Logged by GM	
			Abandon Boring ba				· Cuttings and/or Be	ntonite		Boring Starte 09-06-2023	
					,		<u>j</u> 2			Boring Comp 09-06-2023	leted

yer	60-	Location: See Exploration Plan		e	ns /pe	st	(%	it ocf)	Atterberg Limits	L L
Model Layer	Graphic Log	Latitude: 36.4226° Longitude: -120.4077° Depth (Ft.)	Depth (Ft.)	Water Level	Observations Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
		SANDY LEAN CLAY (CL), brown, very stiff		_		6-8-12 N=20				
3		35.0	+ brown 35	-			_			
		POORLY GRADED SAND WITH CLAY (SP-SC) , trace gravel, light medium dense	t brown,	_		10-16-30	11.0	104		
4		brown, very dense	40	-		12-23-32 N=55	-			
	0	45.0 POORLY GRADED SAND WITH GRAVEL (SP), trace clay, light br very dense		- -		12-50/4"	11.4	103		
6			50	_ _ _			_			
	;o(51.5		_		12-26-32 N=58				
		Boring Terminated at 51.5 Feet								
pro	cedures	ation and resting rocedures for a description of neid and laboratory	Vater Level (Groundwater r						Drill Rig Diedrich D-50 Hammer Typ Automatic Driller	
No	tes	A H	Idvancement Iollow Stem A	: Meth uger	od				Terracon Logged by GM	d
		A Bi	bandonmen oring backfille	t Meti ed with	nod n Auge	er Cuttings and/or Be	entonite		Boring Starte 09-06-2023 Boring Comp 09-06-2023	

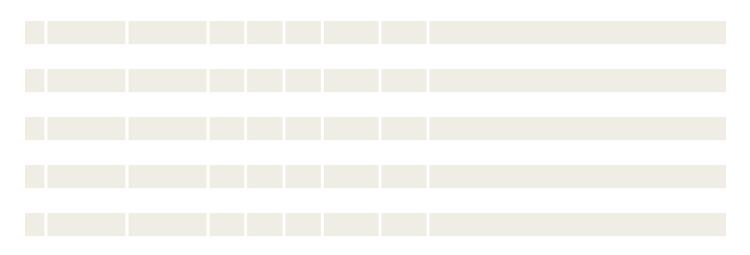
L.	Ď	Location: See Exploration Plan			e		()	(J	Atterberg Limits	
Model Layer	Graphic Log	Latitude: 36.4229° Longitude: -120.4055° Depth (Ft.)	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
		SANDY LEAN CLAY (CL), light brown								
1		very stiff		_		6-12-13	11.2	91	37-20-17	62
		5.0	5-							
		SILTY SAND (SM) , light brown, medium dense		_	X	3-9-15	15.1	80		
		CLAYEY SAND (SC) , trace gravel, light brown, medium dense		_	X	5-6-7 N=13	-		35-17-18	
		10.0 SILTY SAND (SM), light brown, medium dense	10	_	X	9-12-16	7.1	99		
2		brown or gray, dense 20.0	15	_	X	12-14-21 N=35	-			
		SANDY LEAN CLAY (CL), brown, very stiff	20	_		6-11-13	15.6	108		
3		hard	25	-	X	9-13-21 N=34	-		28-16-12	54
		30.0	30							
proc	edures	ation and Testing Procedures for a description of field and laboratory s used and additional data (If any). rting Information for explanation of symbols and abbreviations.	Water Level O Groundwater n	bserva			-		Drill Rig Diedrich D-50 Hammer Typ Automatic	
Not	es		Advancement Hollow Stem Au		d				Driller Terracon Logged by GM	
			Abandonment Boring backfille	Metho d with	d Auger	Cuttings and/or Be	entonite		Boring Start 09-06-2023 Boring Comp 09-06-2023	

Model Layer	Graphic Log	Location: See Exploration Plan Latitude: 36.4229° Longitude: -120.4055° Depth (Ft.)		Deptn (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	Atterberg Limits LL-PL-PI	Percent Fines
		POORLY GRADED SAND WITH CLAY (SP-SC), brown, medium		- - 5-			5-8-12 12-18-23 N=41	8.8	106		
4		medium dense	4	 			N=41 18-18-16	10.9	104		
		45.0 POORLY GRADED SAND WITH GRAVEL (SP) , trace silt, brown, dense	, very 4			X	18-18-50/5"				
6		51.4 Boring Terminated at 51.4 Feet	5	- - -0- -		X	36-10-50/5"	4.1			
See	Explora		Water Level Groundwater							Drill Rig Diedrich D-50	
	Suppor	rting Information for explanation of symbols and abbreviations.	Advanceme Hollow Stem Abandonme	nt Me Auge	ethoc r etho	1	Cuttings and/or Be	ntonite		Hammer Typ Automatic Driller Terracon Logged by GM Boring Starte 09-06-2023 Boring Comp 09-06-2023	e ed

		Location: See Exploration Plan							_	Atterberg	
Model Layer	Graphic Log		Et.)	evel	Observations	Sample Type	est Its	Water Content (%)	Dry Unit Weight (pcf)	Limits	s it
del L	phic	Latitude: 36.4244° Longitude: -120.4072°	Depth (Ft.)	ter Le	ervat	Jple	Field Test Results	Vate tent	ry U ght		Percent Fines
Mo	Gra		Der	Wai	Obs	San	Fie	Con	Vei Vei	LL-PL-PI	4
		Depth (Ft.) CLAYEY SAND WITH GRAVEL (SC), trace silt, brown			\rightarrow						
	//	CLATET SAND WITH GRAVEL (SC), trace sit, brown		_							
	12										
	/20	medium dense								43-22-21	43
	12			_			16-10-15	7.9	88		
	/90			-							
			5	_				_			
	0			_		ХΙ	8-8-9 N=17				
	10				ľ	í Ì					
		7.5 <u>CLAYEY SAND (SC)</u> , trace gravel, brown, medium dense									
						X	9-10-18	9.1	107		
				_	1						
2		very dense	10)			10-37-23				
				_		X	N=60				
				_	ĺ	Ì					
				_							
		15.0		_							
	0	POORLY GRADED SAND WITH GRAVEL (SP), trace silt, light to very dense	brown, 15)			12-23-35	5.4	108		
				-			12-23-35	5.4	108		
	0			_							
	20			_							
	0			_							
	, o D	20.0	20								
		SANDY LEAN CLAY (CL), light brown, stiff	2		ľ	X	4-6-10 N=16				
					ł	$^{\prime}$	N=10	_			
3											
				_							
				_							
		25.0 CLAYEY SAND (SC), light brown, medium dense	25	5-							
		CERTET OR OCT, light brown, mediam dense		_		X	8-12-17	12.2	106		
4											
		30.0									
			30								
See proo	Explorated	ation and Testing Procedures for a description of field and laboratory used and additional data (If any).	Water Level Groundwater							Drill Rig Diedrich D-50	
See	Suppor	rting Information for explanation of symbols and abbreviations.								Hammer Typ Automatic	e
										Driller	
Not	es		Advancemen Hollow Stem A		hod					Terracon	
			Honow Steril F	agei						Logged by GM	
			Abandanun	+ 14-2	her					Boring Starte 09-06-2023	ed
			Abandonmen Boring backfill				Cuttings and/or Be	entonite		Boring Comp	leted
										09-06-2023	

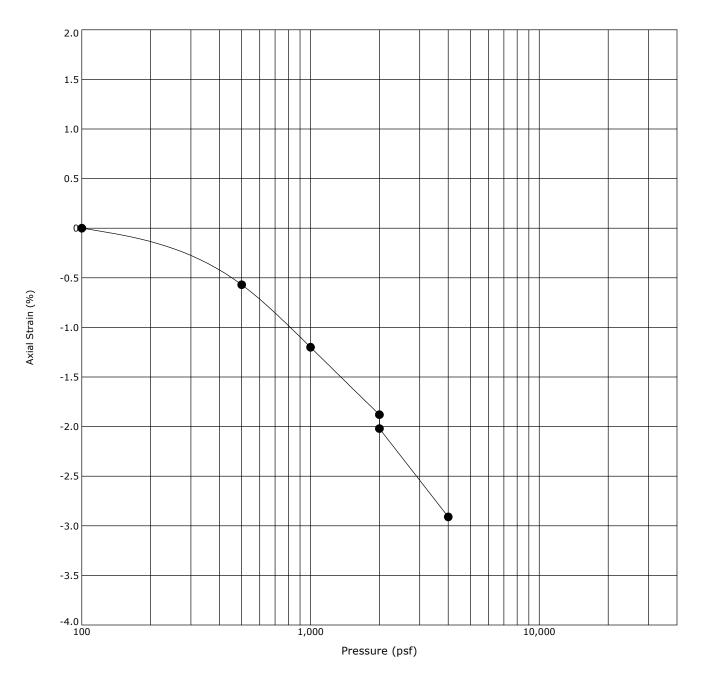
er	бc	Location: See Exploration Plan			- S	e	t	(0)	cf)	Atterberg Limits	
Model Layer	Graphic Log	Latitude: 36.4244° Longitude: -120.4072°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
Mode	Grapl			Depth	Water Dbser	Samp	Field Ree	Conte	Dry Veigł	LL-PL-PI	Per
		Depth (Ft.)			- 0				_		
		LEAN CLAY (CL), trace sand, brown, very stiff		_		Х	6-9-23 N=32			49-17-32	86
				_							
				_							
				_							
				35–							
				_		X	3-8-13	15.3	105		
				_							
5				_							
				_							
				40-							
				_		X	8-10-11	26.6	89		
				_							
				_							
				_							
	S.	45.0 POORLY GRADED SAND WITH GRAVEL (SP), tan, dense		45–			7-17-24				
6	000	47.0		_		М	N=41				
	<u></u>	Boring Refusal at 47 Feet		_							
See	Explor	ation and Testing Procedures for a description of field and laboratory	Water Le							Drill Rig Diedrich D-50	
		used and additional data (If any). rting Information for explanation of symbols and abbreviations.	Groundw	ater not	encou	unter	ed			Hammer Type	
										Automatic Driller	
Not	es		Advance Hollow St			ł				Terracon	
										Logged by GM	
			Abandon Boring ba	ckfilled	letho	d Muger	Cuttings and/or Be	ntonite		Boring Starte 09-06-2023	
			Soring ba	anneu		agei	sattings and/or be	tonite		Boring Comp 09-06-2023	leted

er	бc	Location: See Exploration Plan			<u> </u>	be	t	(%)	cf)	Atterberg Limits	
l Lay	Graphic Log	Latitude: 36.4247° Longitude: -120.4100°		Depth (Ft.)	r Lev€ vation	Sample Type	Field Test Results	ater ent (9	/ Unit ht (pc		Percent Fines
Model Layer	Grap			Deptl	Water Level Observations	Samp	Field Rei	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Per
	0	Depth (Ft.) CLAYEY SAND WITH GRAVEL (SC), trace silt, brown									
	3			_							
				_						34-20-14	39
	M	dense		_		Х	6-15-23 N=38			54 20 14	55
	30	5.0		_							
		CLAYEY SAND (SC), light brown, medium dense		5 —		V	10-15-16	7.8	96		
	0	7.5 POORLY GRADED SAND WITH GRAVEL (SP), trace silt, brown,	, dense				8-16-23				
2				_		\triangle	N=39				
-	'o (very dense		10-							
	0	very dense		_		X	20-32-50/5"	6.3			
) o (. 			_							
) o'			_							
				-							
) o'. D	tan		15–		\mathbf{N}	17-21-50/5"				
	0										
		18.3		_		\times	50/4"				
		Boring Refusal at 18.3 Feet									
proc	edures	used and additional data (If any).	Water Lev Groundwa							Drill Rig Diedrich D-50	
See	Suppo	rting Information for explanation of symbols and abbreviations.								Hammer Typ Automatic	e
Not	es		Advancen			i				Driller Terracon	
			Hollow Ste							Logged by GM	
			Abandoni							Boring Starte 09-06-2023	d
			Boring bac	kfilled	with A	uger	Cuttings and/or Be	ntonite		Boring Comp 09-06-2023	leted



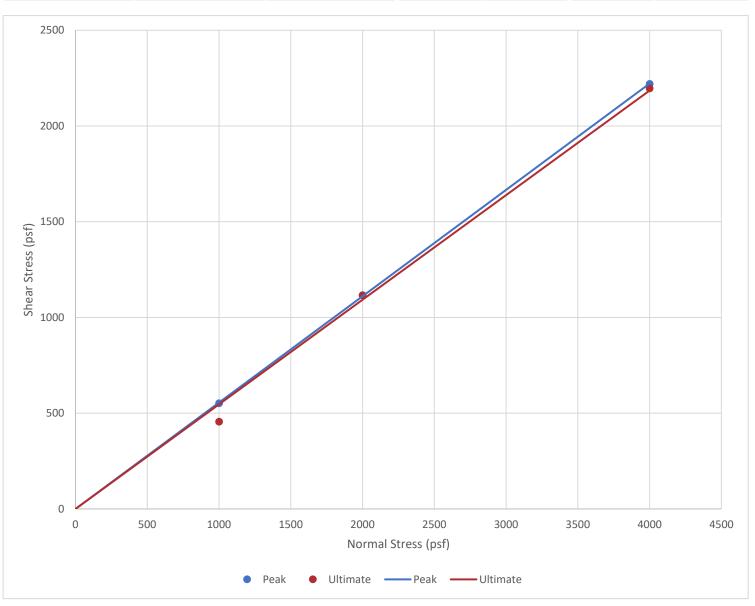
Atterberg Limit Results

ASTM D4318


	Boring ID	Depth (Ft)	ш	PL	PI	Fines	USCS	Description
٠	SB-1	5 - 6.5	47	18	29	55.1	CL	SANDY LEAN CLAY
	SB-2	0 - 5	37	20	17	62.5	CL	SANDY LEAN CLAY
	SB-2	7.5 - 9	35	17	18		SC	CLAYEY SAND
*	SB-2	25 - 26.5	28	16	12	53.7	CL	SANDY LEAN CLAY
۲	SB-3	0 - 5	43	22	21	43.1	SC	CLAYEY SAND WITH GRAVEL
•	SB-3	30 - 31.5	49	17	32	86.1	CL	LEAN CLAY TRACE SAND
0	SB-4	0 - 5	34	20	14	38.6	SC	CLAYEY SAND WITH GRAVEL

Swell Consolidation Test

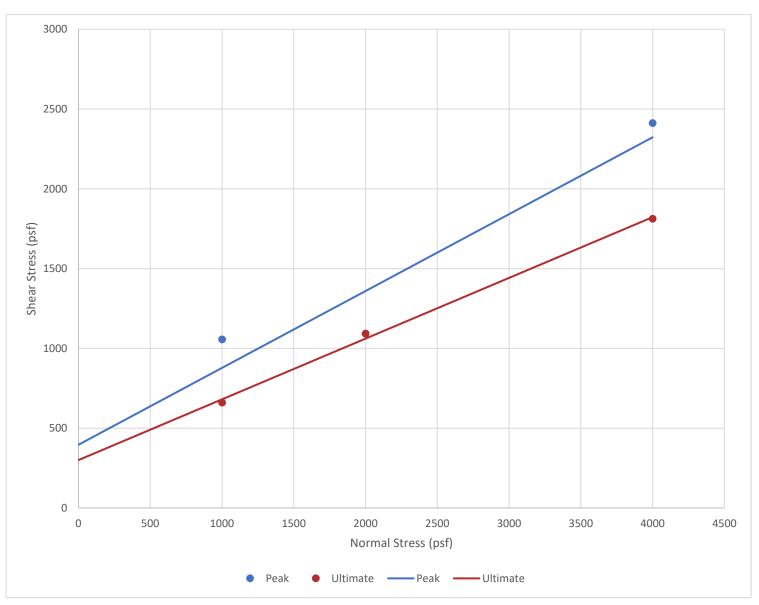
ASTM D2435


	Boring ID	Depth (Ft)	Description	USCS	$\gamma_{d}(pcf)$	WC (%)
•	SB-1	2.5 - 4	SANDY LEAN CLAY	CL	87	8.0
Not	es: Water added a	at 2,000psf				

804650A 500 Kv Darden Interconnection Mendota, CA Terracon Project No.: LA235112

Direct Shear Test ASTM D3080

Boring ID	Depth (ft)	Description	on	USCS	γ _d (pcf)	W(%)
SB-2	5	Silty San	d	SM	107	9.1
		Ultimate Shear	Ре	ak	Ulti	mate
Normal Stress (psf)	Peak Shear Stress (psf)	Stress (psf)	φ°	C (psf)	φ°	C (psf)
1000	552	456				
2000	1116	1116	29.0	0	30.0	0
4000	2220	2196				



804650A 500 Kv Darden Interconnection Mendota, CA Terracon Project No.: LA235112

Direct Shear Test ASTM D3080

Boring ID	Depth (ft)	Description	on	USCS	γ _d (pcf)	W(%)
SB-3	7.5	Clayey Sa	nd	SC	107	9.1
		Ultimate Shear	Pe	ak	Ulti	mate
Normal Stress (psf)	Peak Shear Stress (psf)	Stress (psf)	φ°	C (psf)	φ°	C (psf)
1000	1056	660				
2000	1092	1092	26.0	400	21.0	300
4000	2412	1812				

MOISTURE AND DENSITY TEST RESULTS

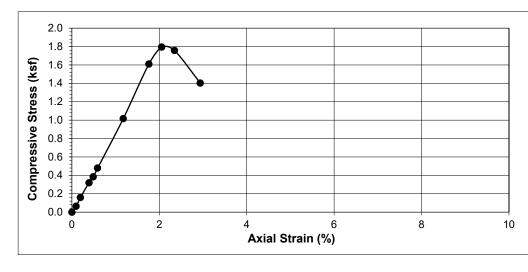
ASTM D2216 and ASTM D7263 (Method B)

Client: Terracon

AP Lab No.: 23-0950

Project Name: 804650A 500 Kv Darden Interconnection

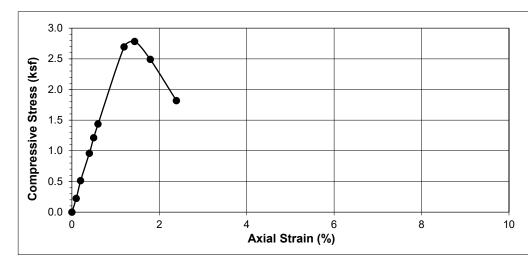
Project No.: LA235112


Test Date: 09/27/23

Boring No.	Sample No.	Sample Depth (ft.)	Moisture Content (%)	Dry Density (pcf)
SB-1	-	25	10.0	104.9
SB-2	-	2.5	11.2	90.9
SB-2	_	20	15.6	108.3
SB-3	_	35	15.3	104.6

AP Engineering and Testing, Inc. DBE | MBE | SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | <u>www.aplaboratory.com</u>

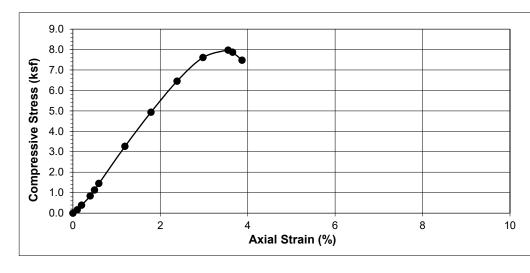
Project No.: L	04650A 500 Kv Darden Interconnection A235112 B-1	Sample Type: Soil Description Dry Density (pcf): Moisture Content (%) Test Date:	Mod Cal Clayey Sand 102.2 11.8 09/26/23
Sample Diameter	(inch): 2.389	Wt. Wet Soil+Container(gms)	835.5
Sample Height (in	ch): 5.110	Wt. Dry Soil+Container(gms)	763.31
Sample Weight (gr	ns): 686.99	Wt. Container (gms)	149.82



Load (Ibs)	Deformation (inch)	Area (sq.in)	Compressive Stress (ksf)	Axial Strain (%)
0	0.000	4.48	0.00	0.00
2	0.005	4.49	0.06	0.10
5	0.010	4.49	0.16	0.20
10	0.020	4.50	0.32	0.39
12	0.025	4.50	0.38	0.49
15	0.030	4.51	0.48	0.59
32	0.060	4.53	1.02	1.17
51	0.090	4.56	1.61	1.76
57	0.105	4.58	1.79	2.05
56	0.120	4.59	1.76	2.35
45	0.150	4.62	1.40	2.94
Uncon	fined Compressive	Strength (kef)	= 1.79	

AP Engineering and Testing, Inc. DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com

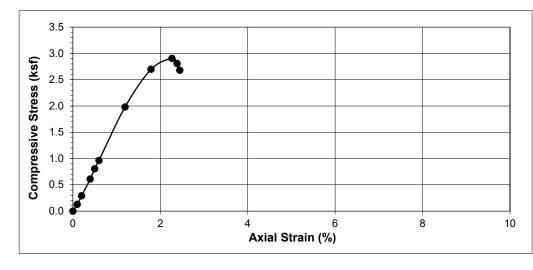
Project Name:	804650A 5	00 Kv Darden Interconnection	Sample Type:	Mod Cal
Project No.:	LA235112		Soil Description	Silt
Boring No.:	SB-2		Dry Density (pcf):	91.4
Sample No.:	-		Moisture Content (%)	13.3
Depth (feet):	2.5		Test Date:	09/26/23
Sample Diame	· · ·	2.390	Wt. Wet Soil+Container(gms)	792.4
Sample Height		5.018	Wt. Dry Soil+Container(gms)	720.42
Sample Weight	t (gms):	612.25	Wt. Container (gms)	180.94



Load (Ibs)	Deformation (inch)	Area (sq.in)	Compressive Stress (ksf)	Axial Strain (%)
0	0.000	4.49	0.00	0.00
7	0.005	4.49	0.22	0.10
16	0.010	4.50	0.51	0.20
30	0.020	4.50	0.96	0.40
38	0.025	4.51	1.21	0.50
45	0.030	4.51	1.44	0.60
85	0.060	4.54	2.70	1.20
88	0.072	4.55	2.78	1.43
79	0.090	4.57	2.49	1.79
58	0.120	4.60	1.82	2.39
	fined Compressive		= 2.78	

AP Engineering and Testing, Inc. DBE | MBE | SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | <u>www.aplaboratory.com</u>

Project Name:	804650A 50	00 Kv Darden Interconnection	Sample Type:	Mod Cal
Project No.:	LA235112		Soil Description	Clayey Sand
Boring No.:	SB-2		Dry Density (pcf):	110.4
Sample No.:	-		Moisture Content (%)	16.0
Depth (feet):	20		Test Date:	09/27/23
Sample Diame	()	2.378	Wt. Wet Soil+Container(gms)	898.87
Sample Height		5.038	Wt. Dry Soil+Container(gms)	795.39
Sample Weight	· · ·	752.05	Wt. Container (gms)	148.15



Load (Ibs)	Deformation (inch)	Area (sq.in)	Compressive Stress (ksf)	Axial Strain (%)
0	0.000	4.44	0.00	0.00
5	0.005	4.44	0.16	0.10
12	0.010	4.45	0.39	0.20
26	0.020	4.46	0.84	0.40
35	0.025	4.46	1.13	0.50
45	0.030	4.47	1.45	0.60
102	0.060	4.49	3.27	1.19
155	0.090	4.52	4.94	1.79
204	0.120	4.55	6.46	2.38
242	0.150	4.58	7.61	2.98
255	0.179	4.60	7.98	3.55
252	0.184	4.61	7.87	3.65
240	0.195	4.62	7.48	3.87
Uncor	fined Compressive	Strength (ksf)	= 7.98	

Project No.: L Boring No.: S Sample No.: -	04650A 500 Kv Darden Interconnection A235112 B-3 5	Sample Type: Soil Description Dry Density (pcf): Moisture Content (%) Test Date:	Mod Cal Clayey Sand 105.2 15.7 09/27/23
Sample Diameter		Wt. Wet Soil+Container(gms)	862.77
Sample Height (ir	ich): 5.031	Wt. Dry Soil+Container(gms)	765.85
Sample Weight (g	lms): 716.03	Wt. Container (gms)	148.19

Load (Ibs)	Deformation (inch)	Area (sq.in)	Compressive Stress (ksf)	Axial Strain (%)
0	0.000	4.45	0.00	0.00
4	0.005	4.46	0.13	0.10
9	0.010	4.46	0.29	0.20
19	0.020	4.47	0.61	0.40
25	0.025	4.48	0.80	0.50
30	0.030	4.48	0.96	0.60
62	0.060	4.51	1.98	1.19
85	0.090	4.53	2.70	1.79
92	0.114	4.56	2.91	2.27
89	0.120	4.56	2.81	2.39
85	0.123	4.57	2.68	2.44
Lincon	fined Compressive	Strongth (kaf)	= 2.91	

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Client **Dashiell Corporation**

Project

804650A 500Kv Darden Interconnection

Sample Submitted By: Terracon (LA)

Date Received: 9/21/2023

Lab No.: 23-0524

Result	s of Corrosio	n Ana
Sample Number		
Sample Location	SB-2	
Sample Depth (ft.)	0.0-5.0	
pH Analysis, ASTM G51	9.19	
Water Soluble Sulfate (SO4), ASTM C 1580 (Percent %)	<0.01	
Sulfides, AWWA 4500-S D, (mg/Kg)	Nil	
Chlorides, ASTM D512, (mg/kg)	50	
Red-Ox, ASTM G200, (mV)	+730	
Total Salts, AWWA 2520 B, (mg/Kg)	471	
Saturated Minimum Resistivity, ASTM G-57, (ohm-cm)	970	

alysis

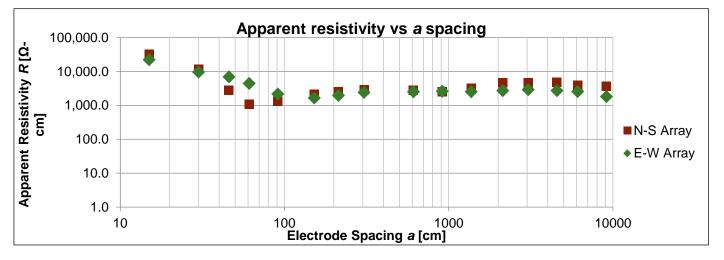
M. Cary Nathan Campo

Analyzed By

Engineering Technician III

The tests were performed in general accordance with applicable ASTM and AWWA test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Field Soil Electrical Resistivity Test Data

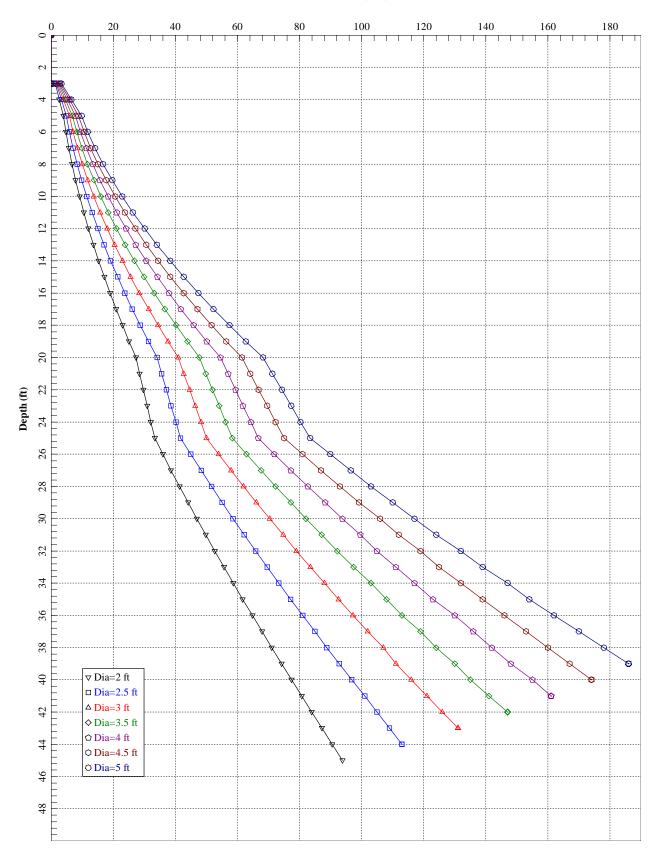


Array Loc.	E	ER-1 (36.423608°, -120.408223°)				
Instrument	CRI	Weather	Sunny 96°			
Serial #	#201	Ground Cond.	Clayey Sand			
Cal. Check		Tested By	Greg Mancini			
Test Date	September 8, 2023	Method	Wenner 4-pin (ASTM G57-06 (2012); IEEE 81-2012)			
Notes & Conflicts						

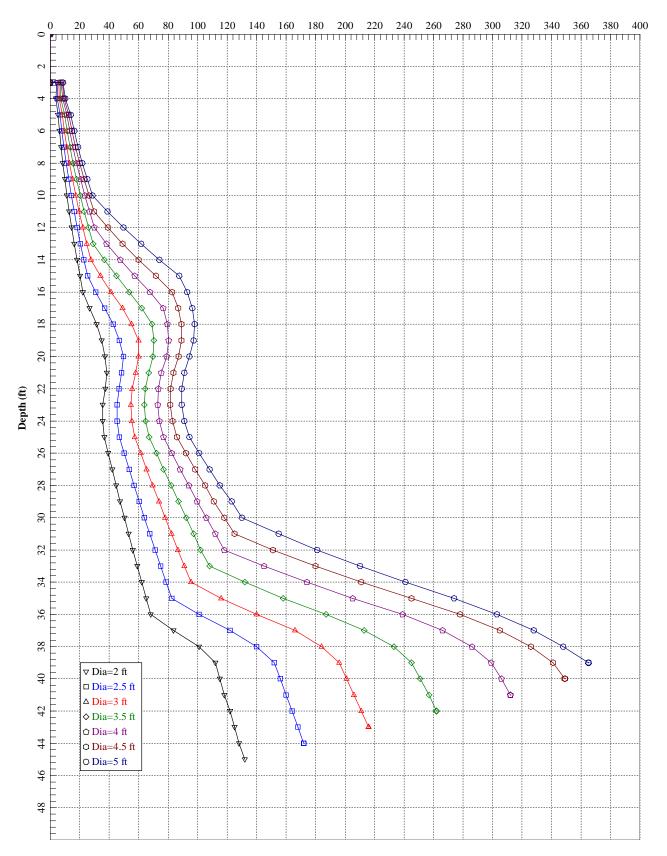
Apparent resistivity ρ is calculated as : $\rho =$

$$\frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$$

Electrode	Spacing a	Electro	le Depth b	N-S]	Fest	E-W Test	
[feet]	[centimeters]	[inches]	[centimeters]	Measured Resistance <i>R</i> Ω	Apparent Resistivity ρ [Ω-cm]	Measured Resistance <i>R</i> Ω	Apparent Resistivity <i>ρ</i> [Ω-cm]
0.5	15	0.3	1	345	32750	234	22230
1	30	0.6	2	61.7	11720	50.7	9630
1.5	46	1.2	3	9.5	2770	23.9	6960
2	61	3.0	8	2.77	1090	11.28	4450
3	91	6.0	15	2.20	1320	3.63	2170
5	152	9.0	23	2.15	2130	1.67	1660
7	213	12.0	30	1.81	2510	1.42	1970
10	305	12.0	30	1.46	2850	1.25	2440
20	610	12.0	30	0.74	2840	0.66	2530
30	914	12.0	30	0.43	2500	0.45	2610
45	1372	12.0	30	0.37	3230	0.30	2550
70	2134	12.0	30	0.35	4710	0.20	2740
100	3048	12.0	30	0.24	4640	0.15	2930
150	4572	12.0	30	0.17	4800	0.10	2730
200	6096	12.0	30	0.10	3980	0.07	2570
300	9144	12.0	30	0.07	3730	0.03	1840


Supporting Information

Contents:


Shaft Analyses (2 pages) General Notes Unified Soil Classification System

Note: All attachments are one page unless noted above.

Allowable Side Resistance Side Resistance/F.S. (tons)

Allowable Downward Capacity Total Resistance/F.S. (tons)

Geotechnical Engineering Report

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

General Notes

Sampling	Sampling Water Level		
Auger Cuttings Modified Dames & Moore Ring Sampler Standard Penetration Test	✓ Water Initially Encountered ✓ Water Level After a Specified Period of Time ✓ Water Level After a Specified Period of Time ✓ Cave In Encountered Water levels indicated on the soil boring logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level observations.	NStandard Penetration Test Resistance (Blows/Ft.)(HP)Hand Penetrometer(T)Torvane(DCP)Dynamic Cone PenetrometerUCUnconfined Compressive Strength(PID)Photo-Ionization Detector(OVA)Organic Vapor Analyzer	

Descriptive Soil Classification

Soil classification as noted on the soil boring logs is based Unified Soil Classification System. Where sufficient laboratory data exist to classify the soils consistent with ASTM D2487 "Classification of Soils for Engineering Purposes" this procedure is used. ASTM D2488 "Description and Identification of Soils (Visual-Manual Procedure)" is also used to classify the soils, particularly where insufficient laboratory data exist to classify the soils in accordance with ASTM D2487. In addition to USCS classification, coarse grained soils are classified on the basis of their in-place relative density, and fine-grained soils are classified on the basis of their consistency. See "Strength Terms" table below for details. The ASTM standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

Location And Elevation Notes

Exploration point locations as shown on the Exploration Plan and as noted on the soil boring logs in the form of Latitude and Longitude are approximate. See Exploration and Testing Procedures in the report for the methods used to locate the exploration points for this project. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

Strength Terms									
Relative Density of Coarse-Grained Soils (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance			Consistency of Fine-Grained Soils (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance						
Relative Density	Standard Penetration or N-Value (Blows/Ft.)	Ring Sampler (Blows/Ft.)	Consistency	Unconfined Compressive Strength Qu (tsf)	Standard Penetration or N-Value (Blows/Ft.)	Ring Sampler (Blows/Ft.)			
Very Loose	0 - 3	0 - 6	Very Soft	less than 0.25	0 - 1	< 3			
Loose	4 - 9	7 - 18	Soft	0.25 to 0.50	2 - 4	3 - 4			
Medium Dense	10 - 29	19 - 58	Medium Stiff	0.50 to 1.00	4 - 8	5 - 9			
Dense	30 - 50	59 - 98	Stiff	1.00 to 2.00	8 - 15	10 - 18			
Very Dense	> 50	> 99	Very Stiff	2.00 to 4.00	15 - 30	19 - 42			
			Hard	> 4.00	> 30	> 42			

Relevance of Exploration and Laboratory Test Results

Exploration/field results and/or laboratory test data contained within this document are intended for application to the project as described in this document. Use of such exploration/field results and/or laboratory test data should not be used independently of this document.

Geotechnical Engineering Report

804650A 500 Kv Darden Interconnection | Mendota, Fresno County, CA October 12, 2023 | Terracon Project No. LA235112

Unified Soil Classification System

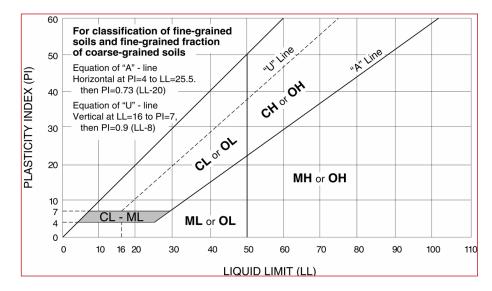
Criteria for As	Soil Classification				
	Group Symbol	Group Name ^B			
Coarse-Grained Soils: More than 50% retained on No. 200 sieve	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Clean Gravels:	Cu≥4 and 1≤Cc≤3 ^E	GW	Well-graded gravel ^F
		Less than 5% fines ^c	Cu<4 and/or [Cc<1 or Cc>3.0] E	GP	Poorly graded gravel F
		Gravels with Fines: More than 12% fines ^c	Fines classify as ML or MH	GM	Silty gravel ^{F, G, H}
			Fines classify as CL or CH	GC	Clayey gravel F, G, H
	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands:	Cu≥6 and 1≤Cc≤3 ^E	SW	Well-graded sand ^I
		Less than 5% fines ^D	Cu<6 and/or [Cc<1 or Cc>3.0] E	SP	Poorly graded sand ${}^{\rm I}$
		Sands with Fines: More than 12% fines ^D	Fines classify as ML or MH	SM	Silty sand ^{G, H, I}
			Fines classify as CL or CH	SC	Clayey sand ^{G, H, I}
Fine-Grained Soils: 50% or more passes the No. 200 sieve	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots above "A" line J	CL	Lean clay ^{K, L, M}
		Inorganic:	PI < 4 or plots below "A" line ³	ML	Silt ^{K, L, M}
		Organic:	LL oven dried LL not dried < 0.75	OL	Organic clay ^{K, L, M, N}
		Organic:	LL not dried < 0.75		Organic silt ^{K, L, M, O}
	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line	СН	Fat clay ^{K, L, M}
		inorganic.	PI plots below "A" line	MH	Elastic silt ^{K, L, M}
		Organic:	$\frac{LL \text{ oven dried}}{LL \text{ not dried}} < 0.75$	он	Organic clay ^{K, L, M, P}
		organic:	LL not dried < 0.75		Organic silt ^{K, L, M, Q}
Highly organic soils:	Primarily	organic matter, dark in c	PT	Peat	

^A Based on the material passing the 3-inch (75-mm) sieve. в If field sample contained cobbles or boulders, or both, add "with

cobbles or boulders, or both" to group name.

- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM wellgraded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM wellgraded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

^E Cu =
$$D_{60}/D_{10}$$
 Cc = $(D_{30})^2$


D₁₀ x D₆₀

- ^F If soil contains \geq 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- ^I If soil contains \geq 15% gravel, add "with gravel" to group name.
- If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or

"with gravel," whichever is predominant.

- ^L If soil contains \geq 30% plus No. 200 predominantly sand, add 'sandy" to group name.
- ^M If soil contains \ge 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- [▶] $PI \ge 4$ and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- PI plots below "A" line.

