DOCKETED	
Docket Number:	07-AFC-09C
Project Title:	Canyon Power Plant - Compliance
TN #:	254235
Document Title:	Canyon Power Plant Annual Compliance Report 2023
Description:	Compliance Annual Report
Filer:	Bertha A Hernandez
Organization:	City of Anaheim
Submitter Role:	Public Agency
Submission Date:	1/31/2024 7:46:49 AM
Docketed Date:	1/31/2024

Annual Compliance Report

City of Anaheim Canyon Power Plant

Anaheim, California

SCAQMD Facility ID: 153992

CEC Permit Number: 800-2010-001-CMF

Docket Number: 07-AFC-9C

2023

Period Range January 1, 2023, through December 31, 2023

Review and Certification

I have reviewed both technically and editorially all details, calculations, results conclusions and other appropriate written material contained herein and hereby certify that to the best of my knowledge the material presented is true, accurate and complete.

I certify that the information contained in this report is true, accurate, and complete.

Ronald Hoffard Name

1880

Generation Plant Manager Title

Signature

1/30/2024 Date

Canyon Power Plant Annual Compliance Report Table of Contents

Acronyms and Abbreviations

Facility Description

List of Attachments

Compliance Matrix	Attachment	1
Facility Operational Status	. Attachment	2
CEC Approved Post Certification Changes	. Attachment	3
Missed Submittal Deadlines	. Attachment	4
Permit Filings and Permits Issued 2016 Year	. Attachment	5
Projected Compliance Testing in 2017 Year	. Attachment	6
Additions to On-Site Compliance File	Attachment	7
Evaluation of the "Un-Planned" Facility Closure Plan	. Attachment	8
NOV's Issued 2016 Year	. Attachment	9
Condition HAZ-1	. Attachment	10
Condition HAZ-8	Attachment	11
Soil & Water Use Report-7	Attachment	12
Soil & Water Use Report-8	Attachment	13
Surface Treatment of Project Structures & Buildings (VIS-4)	Attachment	14
Landscape Screening (VIS-5)	Attachment	15
AQ-9 NH3 Slip Testing AQ-9	Attachment	16
AQ-14 & AQ-24 RTC Inventory	Attachment	17
AQ-17 NH3 Flow Meter Accuracy Reports	Attachment	18
AQ-18 SCR Inlet Temperature Sensor Calibration Reports	Attachment	19

AQ-19 SCR Differential Pressure Sensor Calibration Report	Attachment	20
WASTE-10 Cooling Tower Sludge Testing	Attachment	21

Acronyms and Abbreviations

BHP	Break horse power
Btu	British thermal unit
BACT	Best available control technology
CARB	California Air Resources Board
CFR	Code of Federal Regulations
CO	Carbon Monoxide
CO_2	Carbon Dioxide
COA	City of Anaheim
CFR	Code of Federal Regulations
CPP	Canyon Power Plant
CT	Combustion turbine
DAHS	Data acquisition and handling
TDS	Total dissolved solids
DPF	Diesel particulate filter
EPA	Environmental Protection Agency
F.	Fahrenheit
ICE	Internal combustion engine
lbs/hr	pounds per hour
lb/lb-mol	pound per pound mol
MW	mega watts
MMBtu	million British thermal units
mmcf	million cubic feet
NH ₃	ammonia
NO	Nitrogen Oxide
NO _x	Oxides of Nitrogen
NO_2	Nitrogen Dioxide
O ₂	Oxygen
ppm	parts per million
ppmc	parts per million corrected to 15% O ₂
RATA	relative accuracy test audit
ROG	Reactive Organic Compounds
RTU	remote terminal unit
scf	standard cubic feet (standard temperature = 68 degrees F)
SCR	selective catalytic reactor
SCAQMD	South Coast Air Quality Management District
unit	The term unit refers to the boiler/steam turbine
VOC	Volatile Organic Compounds

1.0 Facility Description:

The City of Anaheim's (COA) Canyon Power Plant (CPP) facility is located at 3071 Miraloma Avenue in Anaheim California.

The facility consists of four natural gas fired General Electric, Model LM6000PC Sprint, simple cycle combustion turbine with water injection. The gas turbine was designed with a maximum heat input of 479 MMBtu per hour with a 46 degree Fahrenheit (F.) inlet air temperature. The units are equipped with an inlet air chiller designed to maintain the gas turbine inlet temperature at 46 degrees F. at full load.

Each unit is capable of generating 50.95 megawatts.

Carbon Monoxide (CO) emission from the gas turbine are controlled by utilizing a CO oxidation catalyst located between the gas turbine and the selective catalytic reactor (SCR). The CO oxidation catalyst controls the unit's CO and volatile organic compounds (VOC) emissions. The catalyst is guaranteed to reduce the unit's CO emission rate to a maximum of 4 ppm corrected to $15\% O_2$ (ppmc) and the VOC to 2 ppmc, both emission rates are based on a one (1) hour averages, dry basis at $15\% O_2$. The CO catalyst system was designed and supplied by Englehard/BASF.

The NO_x emissions from the gas turbine are controlled by the utilizing two (2) independent systems or techniques in series. The first system utilized on this unit is the water injection system.

Water is injected into the combustor suppressing the flame temperature and reducing the 1-hour average NO_x concentration to approximately 25 ppmc at 15% oxygen prior to entry into the SCR.

The second NO_x control system utilized by the unit is the NH_3/SCR system. After passing through the CO catalyst, the exhaust gases pass through an ammonia injection grid on its way to the SCR. The ammonia (NH_3) used at this facility is in the form a 19% by weight solution of ammonium hydroxide.

The SCR catalyst utilized by the unit for NO_x control was provided by Cormetech. The reaction between the NH_3 and the SCR catalyst reduces the existing NO_x to elemental nitrogen and water, resulting in NO_x concentrations in the exhaust gas at no greater than 2.5 ppmv at 15% O2 on a 1hour average. The ammonia slip must be maintained below 5 ppm at 15% O2. Each SCR is vented through a dedicated stack, which is 11.8 ft. diameter and 86 ft. high.

The facility is also equipped with an 1141 BHP diesel emergency internal combustion engine (ICE) (black start engine) will be used to start up the plant in the event of a loss of grid power.

The ICE, is a Caterpillar, Model C-27, rated at 1141 BHP and fired on ultra low sulfur diesel fuel. The ICE, will serve to provide power to the plant during blackout conditions. The engine is certified by the SCAQMD as an EPA Tier 2 engine on 12/31/2010. The engine is required to be permitted, rather than registered, because CPP is a RECLAIM/Title V facility.

The black start engine will be used only in emergency situations where grid power from the COA's 69 kV system is unavailable to start the CTs. The black start engine will provide power to the turbine starter motors and various other necessary pieces of support equipment to get one of the gas turbines started. Once one of the turbines has been started and providing power to the

grid, the black start engine will be shut down.

The SCAQMD's rules limit operation of an emergency ICE to 50 hours per year.

The black start engine incorporates a diesel particulate filter (DPF), which is required by LAER. The Caterpillar DPF is designed to control the particulate emissions from diesel engines. The DPF consists of 2 filters, each 15-inches diameter by 15-inches long. The DPF system has been verified by CARB under Executive Order DE-14-006-01 to reduce emissions of diesel particulate matter consistent with a Level 3 device (greater than or equal to 85 percent reduction), when used with ultra low sulfur diesel with 15 ppm or lower sulfur content. As the DPF is CARB verified, a source test is not required. With the DPF, the particulate matter emissions from the engine is reduced from 0.15 g/bhp-hr to 0.0225 g/bhp-hr.

The DPF consists of a catalyzed cordierite ceramic honeycomb with hundreds of parallel channels, is designed to reduce emissions of particulate, carbon monoxide and hydrocarbons. The catalyst on the ceramic walls oxidizes carbon monoxide into carbon dioxide, and hydrocarbons into water and carbon dioxide. The arrangement of the channels is such that the exhaust gases carrying the carbon particles are forced through the fine pores of the walls, which filter out the particles. As the carbon particles are collected on the ceramic walls, the backpressure on the engine will increase. When the temperature of the exhaust is equal to or greater than 300 °C (572 °F) for at least 30% of the duty cycle, the catalyst interacts with the collected particulates to burn the particulates into carbon dioxide and water vapor, which will pass through the DPF.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 1

COMPLIANCE MATRIX

CY 2023 SCAQMD COMPLIANCE

<table-container>CMC Global CongradiumCMA Congradium<</table-container>	AQMD Requirement	Limit	Limit	Period	Unit 1 Done	Unit 1 Due	Unit 2 Done	Unit 2 Due	Unit 3 Done	Unit 3 Due	Unit 4 Done	Unit 4 Due	Canyon Site Done	Canyon Site Due
Single serviceSingle set is an analysis of the set	CEMS Calibration Stack and Turbine	each 24 hours	Daily prior to fires lit	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily		
Displand Product and Product Standing and Product Sta	NOx pounds			Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	1	
Bit Day Day and the starting part Link (11 binding part Link (12	NOx pounds monthly Electronic			15 days at the end of the month		/	,						1/7/24	2/15/24
Open and manual press frame (FMPT)	NOx pounds guarterly Electronic		RECLAIM RTC Holdings per AQMD records 60	30 days at the end of the Quarter									1/7/24	4/30/24
<table-container>Non-partnerImage: Answer and pressure in the stands and and pressure inter and pressure into a stand press</table-container>	QCER	1	days after the end of each quarter	30 days at the end of the first 3 calendar Quarters									10/17/23	3/1/24
kath. Statu Refer a control for d CMs equipment Party a momber or annaby function and p. Party 200 Par	NOx pounds Annual Permit Emissions Program report (APEP)			60 days after the end of the calendar year									2/1/23	3/1/24
BATA Open and and a final and and a final and and a final final and a fina	RATA - RECLAIM/Acid Rain			Every Six months or annually if incentive is met	8/22/22	9/30/23	7/27/23	9/30/24	10/25/23	12/31/24	10/26/23	12/31/24		
Among ign Internal super lengthEvery quarter is your the namually Network large yang82/222 Not Not Not Not Not Not Not Not Not Not	RATA - CO Spiking 218		Relative accuracy test of CEMS equipment	Annually	8/22/22	9/30/23	7/27/23	9/30/24	10/25/23	12/31/24	10/26/23	12/31/24		
Theomaker Isok Voc Mall Interpret Vol Mark Interpret Vol Mark Vol	Ammonia slip		5 PPM	Every guarter 1st year then annually	8/22/22	9/30/23	7/27/23	9/30/24	10/25/23	12/31/24	10/26/23	12/31/24		
particular Migre from the 3-gar grade on 2071 of 3 served 2071 of 300 served 2071 of 300 served 2071 of 300 served 2071 of 300 of 3	Triennial Source Test (SOx, VOC, PM)		1.67 lb/hr; 2.0 ppm; .06 lb/MMbtu per unit	Every 3 years	7/21-22/20	9/30/23	7/26-27/23	9/30/26	10/24-25/23	12/31/26	10/26-27/2023	12/31/26		
Part of New Meter Opsic of all 2% accuracy Annualy 2/27/2 </td <td>Particulate PM (per Permit met the 3-year cycle on 2017)</td> <td></td> <td>1.67 lb/hr</td> <td>Every 18 months in a 3 year period</td> <td>2/8/16</td> <td>not required</td> <td>2/9/16</td> <td>not required</td> <td>11/4/15</td> <td>not required</td> <td>5/31/22</td> <td>12/31/23</td> <td></td> <td></td>	Particulate PM (per Permit met the 3-year cycle on 2017)		1.67 lb/hr	Every 18 months in a 3 year period	2/8/16	not required	2/9/16	not required	11/4/15	not required	5/31/22	12/31/23		
Inst Teng Arrogs (Tr. 332A0). Organ Arrows (Tr. 332A0). <t< td=""><td>Fuel Flow Meter</td><td>pass or fail</td><td>2% accuracy</td><td>Annually</td><td>2/27/23</td><td>2/27/24</td><td>2/27/23</td><td>2/27/24</td><td>2/27/23</td><td>2/27/24</td><td>2/27/23</td><td>2/27/24</td><td></td><td></td></t<>	Fuel Flow Meter	pass or fail	2% accuracy	Annually	2/27/23	2/27/24	2/27/23	2/27/24	2/27/23	2/27/24	2/27/23	2/27/24		
Sch Bietsmagnature gode calabraion [14-03Aoh]Indicat Pasa or failPasa or fa	Fuel Temp & Press (TE-6332A/B) - (PT-6227)	pass or fail	2% accuracy	Annually	4/19/23	4/19/24	4/19/23	4/19/24	4/19/23	4/19/24	4/19/23	4/19/24		
Sch differnitäl pressure allination (PDT 403) 1/18/24 <td< td=""><td>SCR Inlet temperature probe calibration (TE-403A-D)</td><td></td><td></td><td>Annually</td><td>1/23/23</td><td>1/23/24</td><td>1/23/23</td><td>1/23/24</td><td>1/23/23</td><td>1/23/24</td><td>1/23/23</td><td>1/23/24</td><td></td><td></td></td<>	SCR Inlet temperature probe calibration (TE-403A-D)			Annually	1/23/23	1/23/24	1/23/23	1/23/24	1/23/23	1/23/24	1/23/23	1/23/24		
Ammanita intermined (EMS)OpenOpenMinor 	SCR differential pressure calibration (PDIT 403)	pass or fail	2% accuracy	Annually	1/18/23	1/18/24	1/18/23	1/18/24	1/18/23	1/18/24	1/18/23	1/18/24		
CIMM sendicure temperature element calibration opsing Daily Dai	Ammonia flow meter (X-Mitter)	pass or fail	2% accuracy	Annually	4/6/23	4/6/24	4/12/23	4/12/24	4/18/23	4/18/24	4/24/23	4/24/24		
Segmenta Disel Particular Ellier Int/123 24 start Devel NAX pounds quarterly electronic RECLAM MTC Holdings 15 days after the and the quarter 11/123 43 days Devel NAX pounds Quirty Electronic Image: Constraint of the start of the sta	CEMS enclosure Temperature element calibration	pass or fail	2% accuracy	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily		
Dees Nor pounds quartery dectronic RECLAM RTC Holdings. 15 days after the end of the quarter 17/74 4/30/24 Power Waher NOR Pounds Quirty Electronic 10/71/24 4/30/24 10/71/24 4/30/24 Power Waher NOR Pounds Quirty Electronic 10/71/24 4/30/24 10/71/24 4/30/24 Natural Gas Sample analysis Manufactures specifications 0.25 grains H25/100 scf Monthly 12/71/3 1/31/24 4/30/24 Star Gas Cample analysis Manufactures specifications 0.25 grains H25/100 scf Monthly 12/71/3 1/31/24 4/30/24 Star Gas Cample analysis Manufactures specifications 0.25 grains H25/100 scf Monthly 12/71/3 1/31/24 3/31/24 Title V Star Campliance Report Compliance Report Annualy 1/71/24 3/31/24 Annual Title V Star Campliance Report Compliance Report Annualy 1/71/24 3/31/24 Annual Title V Star Cample Intervekdown Upon Discovery Verbal report to AQMD within 24 hour of discovery 1/71/24 3/31/24 Star V NOR Limit 5 parts per million 2.5 parts per million 6 minute avera	Regenerate Diesel Particulate Filter		Every 24 Cold sta	arts or Back Pressure (Yellow light) greater then 36 INCH/H2O			,						11/7/23	24 starts
Power Washer NOX Pounds Othry Electronic Introde Introde <thintrode< th=""> Introde Introde</thintrode<>	Diesel NOx pounds quarterly electronic		RECLAIM RTC Holdings	15 days after the end of the guarter									1/7/24	4/30/24
Metal Coating Log Rule 1107 (VCC) Log coatings used on site Annually 12/31/23 12/3	Power Washer NOx Pounds Otrly Electronic												1/7/24	4/30/24
Natural Gas Sample analysis Manufactures specifications 0.25 grains H25/100 scf Monthly 12//23 1/30/24 218 report (non-RECLAIM elements) PPM & Emission Rates Semi-annual 7/26/31 1/30/24 218 report (non-RECLAIM elements) Compliance Report Every 5 years, Apply 180 days prior to expiration; 7/26/32 1/30/24 Title V Pormit Renewal Compliance Report Semi-annual 7/26/33 2/28/28 Title V S00 ACC Report Compliance Report Semi-annual 7/26/33 2/28/28 Annual Emission Report (AER) Compliance Report 7/3 days at the end of calendar year 4/2/21 3/1/24 RECLAIM equipment breakdown Upon Discovery Upon Discovery Verbal report to AQMD within 1 hour of discovery 3/1/24 Non-RECLAM equipment breakdown Upon Discovery Upon Discovery Verbal report to AQMD within 2 hour of discovery 3/1/24 Start-up NOX Limit 5 parts per million 2.5 PPM 60 minute average 3/1/24 Start-up NOX Limit 4.07 pounds 4.07 ibs per 60 min 60 minute average 3/1/24 Start-up NOX Limit 4.0.9 part	Metal Coating Log - Rule 1107 (VOC)		Log coatings used on site	Annually									12/31/23	12/31/24
218 report (non-RECLAIM elements) PPM & Emission Rates Semi-annual 7/26/23 1/26/23	Natural Gas Sample analysis	Manufactures specifications	0.25 grains H2S/100 scf	Monthly									12/7/23	1/30/24
Compliance Report Every 5 years; Apply 180 days prior to expiration; 8/20/2 8/30/2	218 report (pop-BECI AIM elements)		PPM & Emission Bates	Semi-annual									7/26/23	1/30/24
Interview One of the Marker Part of the Marker Pa	Title V Permit Renewal		Compliance Report	Every 5 years: Apply 180 days prior to expiration:									8/20/21	8/18/26
Intervent Compliance Report C	Title V 500 SAM Report		Compliance Report	Semi-annual									7/26/23	2/28/24
Interview One Manual Environment Preskdown Upon Discovery Verbal report to AQMD within 1 hour of calendar year Variation (Variation (Variation) (Variation) (Variation (Variation) (Variation (Variation (Vari	Title V 500 ACC Report		Compliance Report	Appually									2/21/23	3/1/24
RECLAIM equipment breakdown Upon Discovery Upon Discovery Verbal report to AQMD within 1 Aur of discovery Non-RECLAIM equipment breakdown Upon Discovery Upon Discovery Verbal report to AQMD within 1 Aur of discovery Stack NOX Limit 2.5 parts per million 2.5 PPM 60 minute average Ammonia Silp Limit 5 parts per million 5 PPM 60 minute average Start-up NOX Limit 14.27 pounds 14.27 lbs per 60 min 60 minute average Shut-down NOX Limit 4.07 pounds 4.07 lbs per 60 min 10 minute average CO Limit 4.07 pounds 4.07 lbs per 60 min 10 minute average Shut-down NOX Limit 4.00 pounds 4.01 lbs in any hour 60 minute average CO Limit 4.0 pounds 4.15 lbs per 60 min 60 minute average Shut-down CO Limit 4.15 pounds 11.6 lbs per 60 min 60 minute average Shut-down CO Limit 4.15 pounds 11.6 lbs per 60 min 10 minute average	Annual Emissions Report (AFR)		Compliance Report	75 days at the end of calendar year									4/24/23	3/19/24
Interview Open Mathem Open Mathem Open Mathem Mon-RECLAM equipment breakdown Upon Discovery Upon Discovery Verbal report to AQMD within 2 hours of discovery Start-Up NOX Limit 2.5 parts per million S PPM 60 minute average Ammonia Slip Limit 5 parts per million S PPM 60 minute average Start-Up NOX Limit 14.27 pounds 14.27 lbs per 60 min 60 minute average Shut-down NOX Limit 4.07 pounds 4.07 lbs per 60 min 10 minutes average **Maintenance Operations NOX Limit 4.09 pounds 4.0.0 lbs in any hour 60 minute average CO Limit 4.0 pounds 11.6 lbs per 60 min 60 minute average Start-up CO Limit 4.0 pounds 4.0.0 lbs in any hour 60 minute average	BECLAIM equipment breakdown	Upon Discovery	Upon Discovery	Verbal report to AOMD within 1 hour of discovery									.,,	-,,
Stack NQL limit 2.5 parts per million 2.5 pPM 60 minute average Ammonia Silp Limit 5 parts per million 5 PPM 60 minute average Start-Up NQX Limit 14.27 pounds 14.27 lbs per 60 min 60 minute average Shut-down NQX Limit 4.07 pounds 4.07 lbs per 60 min 10 minute average <td>Non-BECI AIM equipment breakdown</td> <td>Upon Discovery</td> <td>Upon Discovery</td> <td>Verbal report to AOMD within 24 hours of discovery</td> <td></td>	Non-BECI AIM equipment breakdown	Upon Discovery	Upon Discovery	Verbal report to AOMD within 24 hours of discovery										
Ammonia Slip Limit 5 parts per million 5 PPM 60 minute average Start-up NOx Limit 14.27 pounds 14.27 lbs per 60 min 60 minute average Shut-down NOx Limit 4.07 pounds 4.07 lbs per 60 min 10 minutes average Shut-down NOx Limit 4.07 pounds 4.07 lbs per 60 min 10 minutes average CO Limit 4.00 pounds 4.01 lbs in any hour 60 minute average Image: Constraint of the cons	Stack NOx Limit	2.5 parts per million	2.5 PPM	60 minute average										
Start-up NOx Limit 14.27 lpounds 14.27 lps per 60 min 60 minute average Shut-down NOx Limit 4.07 lpounds 4.07 lbs per 60 min 10 minutes average **Maintenance Operations NOx Limit 44.0 pounds 44.0 lbs in any hour 60 minute average CO Limit 4.0 pounds 44.0 lbs in any hour 60 minute average Start-up CO Limit 4.0 pounds 11.6 lbs per 60 min 60 minute average Shut-down CO Limit 11.6 pounds 11.6 lbs per 60 min 60 minute average Shut-down CO Limit 11.6 lbs per 60 min 60 minute average	Ammonia Slip Limit	5 parts per million	5 PPM	60 minute average										
Shut-down NOX Limit 4.07 pounds 4.07 lbs per 60 min 10 minutes average **Maintenance Operations NOX Limit 44.0 pounds 44.0 lbs in any hour 60 minute average Image: Comparison of the second	Start-up NOx Limit	14.27 pounds	14.27 lbs per 60 min	60 minute average										
**Maintenance Operations NOx Limit 44.0 pounds 44.0 lbs in any hour 60 minute average Image: Constraint of the second of	Shut-down NOx Limit	4.07 pounds	4.07 lbs per 60 min	10 minutes average										
CO Limit 4.0 parts per million 4 PPM 60 minute average Start-up CO Limit 11.6 pounds 11.6 lbs per 60 min 60 minute average Shut-down CO Limit 4.15 pounds 4.15 lbs per 60 min 10 minute average Shut-down CO Limit 19.5 pounds 19.4 lbs in any hour 60 minute average Image: Comparison of the com	**Maintenance Operations NOx Limit	44.0 pounds	44.0 lbs in any hour	60 minute average										
Start-up CO Limit 11.6 pounds 11.6 lbs per 60 min 60 minute average Image: Control of the contr	CO Limit	4.0 parts per million	4 PPM	60 minute average										•
Shut-down C0 Limit 4.15 pounds 4.15 lbs per 60 min 10 minute average Image: Comparison of the compari	Start-up CO Limit	11.6 pounds	11.6 lbs per 60 min	60 minute average										
**Maintenance Operations CO Limit 19.5 pounds 19.4 lbs in any hour 60 minute average <t< td=""><td>Shut-down CO Limit</td><td>4.15 pounds</td><td>4.15 lbs per 60 min</td><td>10 minute average</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Shut-down CO Limit	4.15 pounds	4.15 lbs per 60 min	10 minute average										
ROG Limit 2.0 parts per million 2 PPM 60 minute average	**Maintenance Operations CO Limit	19.5 pounds	19.4 lbs in any hour	60 minute average										
Start-up ROG Limit 1.29 pounds 1.29 lbs per 60 min 60 minute average Image: Control of the start and the st	ROG Limit	2.0 parts per million	2 PPM	60 minute average										
Shut-down ROG Limit 1.27 pounds 1.27 lbs per 60 min 10 minutes average 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Start-up ROG Limit	1.29 pounds	1.29 lbs per 60 min	60 minute average										
	Shut-down ROG Limit	1.27 pounds	1.27 lbs per 60 min	10 minutes average										
VOC Limit 412 pounds 412 lb/mo per unit Monthly	VOC Limit	412 pounds	412 lb/mo per unit	Monthly										
PM-10 Limit 540 pounds 540 lb/mo per unit Monthly	PM-10 Limit	540 pounds	540 lb/mo per unit	Monthly										
SOX Limit 108 pounds 108 lb/mo per unit Monthly	SOX Limit	108 pounds	108 lb/mo per unit	Monthly										
VOC Limit 3608 pounds 3608 lbs/yr per unit Annual	VOC Limit	3608 pounds	3608 lbs/yr per unit	Annual										
PM-10 Limit 4822 pounds 4822 lbs/yer per unit Annual D D D D D D D D D D	PM-10 Limit	4822 pounds	4822 lbs/yer per unit	Annual										
SOX Limit 971 pounds 971 lbs/year per unit Annual	SOX Limit	971 pounds	971 lbs/year per unit	Annual										
Start-ups Limit 240 pounds 540 starts per unit Year	Start-ups Limit	240 pounds	540 starts per unit	Year										

* Met Incentive

**Maintenance- optimizing and re-balancing fo the NH3 grid or catalyst modules, and the retuning and testing of the turbine control system.

CY 2023 SCAQMD 500-N REPORTS

No.	Unit No.	Description	AQMD Permit Limit	Actual Emissions	Duration	Date of Episode	Reported to AQMD	500N sent to AQMD	Inspector Site Visit	Notice of Violation	Responsible	Resolution/Comments
<u>66</u>	U4	NOx lbs Startup exceedance	NOx lbs > 14.27 lbs	31.20 lbs/hr	20 min	2/3/23	2/3/23	2/8/23	No	No	Hoffard/Hernandez	Water valve relay replaced and tested
<u>67</u>	U1	NOx lbs shutdown exceedance	NOx lbs > 4.07 lbs	5.25 lbs/hr	1 hr	3/17/23	3/17/23	3/23/23	No	Yes	Hoffard/Hernandez	Supervisor discussed/trained techs
<u>68</u>	U1	Startup and Shutdown in the same hour - no exceedance	None	None	None	3/17/23	3/17/23	3/23/23	No	No	Hoffard/Hernandez	Hydraulic Starter Clutch replaced and tested

CY 2023 ENFORCEMENT ACTION NOTICES

*NOV <u>P760</u>	On 5/7/22 U1 CO exceedance during shutdown, on 5/13/22 U2 CO exceedance during maintenance, on 9/6/22 ICE D25 operation exceedance, and on 3/17/23 U1 NOx exceedance during shutdown.	5/12/23	5/7/22; 5/13/22; 9/6/22	5/18/22; 5/25/22; 10/7/22	Hoffard/Hernandez	
------------------	---	---------	----------------------------	------------------------------	-------------------	--

CY 2023 CEC REPORTING

CEC Boguiromont	Poriod	Last	Next	Posponsibility	Commonts
CEC Requirement	Penda	Done	Due	Responsibility	comments
CEC 1304	varies one to two months after the quarter	1/17/24	4/30/24	Hoffard/Hernandez	
CEC 1304b	Semi-Annual	1/24/24	7/31/24	Sun/Hoffard	
CEC Annual Report	30 days at end of calender year	1/30/23	1/31/24	Hoffard/Hernandez	
CEC Quarterly Operations Report	30 days at end of each quarter	10/30/23	1/31/24	Hoffard/Hernandez	
Building and structure inspection	Semi-annually	01/24/24	6/30/24	Hernandez	
Legionella/TDS - PM10 calculation	Quarterly	12/11/23	3/30/24	Hoffard/Truesdail	

CY 2023 CAISO REPORTING

CAISO Requirement	Period	Canyon Site Done	Canyon Site Due	Canyon Site Done	Canyon Site Due	Responsibility	Comments
		Spr	ring	Fa	all		
Planned Outage Schedule	Annual Spring & Fall Outages	5/1/23	5/10/23	12/1/23	12/20/23	Vo	
CAISO MOD 027 / 026 / 027	5 Years			12/31/20	12/31/25	Hoffard	Replaces WECC testing

CY 2023 CAL ARP

California Accidental Release Prevention Program	Period	Last Done	Next Due	Responsibility
Hazard Review - 19% Aqua Ammonia System	Every 5 years	03/15/20	3/14/25	Hoffard/AFD
Compliance Audit	Every three years	4/18/23	4/30/26	Ralph McCaffrey
Ammonia Sensor Testing	Semi Annual	7/11/23	1/1/24	Hoffard/McCaffrey
Ammonia Emergency Stop (E-Stop) Test	Annual	12/14/23	12/31/24	Hoffard

CY 2023 CAL RMP REPORTING

Cal. Refrigerant Management Program (RMP) Requirements (> 2000 lbs.)	Cal. Refrigerant Management Program (RMP) Requirements (> 2000 lbs.)		Last Done	Next Due	Responsible
Annual Report and Fee Payment	Not Applicable	Due Annually (March 1 Each Year)	2/13/23	3/1/24	Hernandez/Hoffard
Leak Detection System Audit and Cals.	Not Applicable	Due Annually	9/1/23	9/30/24	Hernandez/Hoffard

California Air Resources Board
Stationary Equipment Refrigerant Management Program (RMP)
Canyon Power Plant (CPP) Compliance Guidance
Compliance Year: 2023

Facility Size Classification:	Large	(at least 1 unit w/≥ 2000 lbs high GWP-refrigerant capacity)
Annual Fee:	\$370.00	(Fees must be paid annually by the reporting deadline)

No. of Refrigeration Systems: 2 (CH-100, CH-200)

Location(s): Both chillers are located in the Northeast portion of facility footprint, just South of two water storage tanks.

Refrigeration System Specifications

CH-100: Centrifugal Chiller w/5200 lbs R-123 (full charge), Trane, Model No. CDHF3000, Serial No. L10B00350; > ALDS ID: 301-IRF A: Vulcain/Honeywell, Model No. 301-EM, Concentration Monitor (Direct System), 2 Infared Sensors

			Done	_	
Last System Audit:	Next audit target:	6/30/2024	9/1/23	Deadline:	12/31/2023
Last Calibration:	Next calibration target:	6/30/2024	9/1/23	Deadline:	12/31/2023

CH-200: Centrifugal Chiller w/5200 lbs R-123 (full charge), Trane, Model No. CDHF3000, Serial No. L10A00882; >ALDS ID: **301-IRF B**: Vulcain/Honeywell, Model No. 301-EM, Concentration Monitor (Direct System), 2 Infared Sensors

Last System Audit:	Next audit target:	6/30/2024	9/1/23	Deadline:	12/31/2023	
Last Calibration:	Next calibration target:	6/30/2024	9/1/23	Deadline:	12/31/2023	
CARB Reporting (due by 3/1 each year)						

Last CARB Report: 2/13/2023 for 2022 Next reporting deadline: 3/1/2024 for 2023 (Fee payment due on or before this date)

Automatic Leak Detection System Requirements

•Each system must be audited and calibrated using manufacturer's recommended procedures to ensure that the system:

1.) accurately detects a concentration level of 10 parts per million of vapor of the specific refrigerant used in the system; and 2.) alerts the operator when a refrigerant concentration of 100 parts per million of vapor of the specific refrigerant is reached.

•The audit and calibration must be completed on each leak detection system at least once per calendar year.

If an automatic leak detection system alerts plant operators, a leak inspection must be conducted within 24 hours after the system alert.
This leak inspection must be completed using a calibrated refrigerant leak detection device or a bubble test to aonfirm a refrigerant leak and to determine the leak location(s).

•If during a required leak inspection or at any time oil residue is observed indicating a refrigerant leak, a leak inspection must be conducted using a calibrated refrigerant leak detection device or a bubble test to confrim the leak.

•A leak inspection must be conducted using a calibrated refrigerant leak detection device, a bubble test, or observation of oil residue, each time an additional refrigerant charge equal to or greater than 5 pounds, or one percent of the refrigeration system full charge (whichever is greater), is added to the system.

Leak Repairs and Subsequent Leak Inspection Requirements

• A refrigerant leak must be repaired by an EPA-certified technician holding a current and active C38 - Refrigerantion Contractor's license, or by an employee of a contractor with these qualifications.

> A contractor's license is not required if:

1.) a City employee services or repairs the system and wages are sole compensation; or

2.) the City performs the service or repair through one undertaking, or by one or more contracts, and the aggregate

contract price for labor, materials, and all other items is less than \$500; or

3.) the service or repair is performed pursuant to a contract entered into before 1/1/2011, by the City.

•Leaks must be repaired within 14 days of detection, unless a longer time period is allowed (*)

*45-day allowance if ANY of the following criteria is met:

1.) A certified technician is not available to complete the repair or replace the component(s). This must be documented in writing per recordkeeping requirements;

2.) The parts necessary to repair a refrigerant leak are unavailable, and the operator obtains a written statement from the

refrigeration system or component manufacturer or distributor stating that the parts are unavailable. This must be documented in writing per recordkeeping requirements; or

3.) The re refrigerant leak repair requires an inductrial process shutdown that results in a process temporarily ceasing to manufacture the intermediate or final product that is produced when the industrial process refrigeration appliance is in operation.

*120-day allowance if ALL of the following criteria is met:

- 1.) The facility is an entity subject to Mandetory Greenhouse Gas Emissions Reporting requirements;
- 2.) The refrigeration system is an inductrial process refrigeration applicance;
- 3.) The refrigerant leak repair requires an industrial process shutdown that results in a process temporarily ceasing to manufacture
- the intermediate or final product that is produced when the industrial process refrigeration appliance is in operation; and
- 4.) Written records are maintained to document that all of the conditions are met.
- •An initial verification test must be performed upon completion of refrigerant leak repairs.

•A follow-up verification test must be conducted on the complete refrigeration system after the initial verification test.

- > If the system was evacuated during the refrigerant leak repair, then this test should be conducted when the system is operating at normal operating characteristics and conditions.
- > If the system was not evacuated during the refrigerant leak repair, then the follow-up verification test requirement is satisfied once the required changes are made to return the refrigeration system to normal operating characteristics and conditions.

• If either the initial or follow-up verification tests indicate that a refrigerant leak is still occuring, the leak must be repaired within 14 days (unless a longer time period is allowed*).

> A retrofit or retirement plan may also be prepared in lieu of this repair.

• If a follow-up verification test indicates that a refrigerant leak has not been successfully repaired within the 14 days allowed, and no exemption has been received, then:

- > successfully repair the leak within 45 days of the initial leak detection; or
- > prepare a retrofit or retirement plan within 60 days of the initial leak detection.

•If a follow-up verification test indicates that a refrigerant leak has not been successfully repaired within the 45 days allowed (*), and no exemption has been received, then:

> prepare a retrofit or retirement plan within 60 days of the initial leak detection.

• If a follow-up verification test indicates that a refrigerant leak has not been successfully repaired within the 120 days allowed (*), and no exemption has been received, then:

> prepare a retrofit or retirement plan within 135 days of the initial leak detection.

Retrofit or Retirement Plan Requirements

• If required to prepare a retirement or retrofit plan, the plan must establish a schedule to retrofit or retire the leaking system no later than six months after the intial leak detection, and all work must be completed during the 6-month period.

•The plan must be kept on-site where the leaking system is located.

•If a refrigeration system is to be retired and replaced, the plan must include information specific to the new refrigeration system to be

constructed or installed. (**)

• If a refrigeration system is to be retrofitted, the plan must include information specific to the refrigeration system after the retrofit has been completed. (**)

** A retrofit or retirement plan must include the following information:

- 1.) The system identification number of the refrigeration system being retired or retrofitted;
- 2.) equipment type;
- 3.) equipment manufacturer;
- 4.) equipment model or description;
- 5.) intended physical location of the refrigeration system through schematic or floor plan with locations clearly noted;
- 6.) temperature classification (i.e., low, medium, other);
- full charge of refrigeration system;
- 8.) type of refrigerant used;
- 9.) if the refrigeration system is to be retired and replaced, a plan to dispose of the retired system;
- 10.) a timetable which includes, at a minimum:
 - > the date installation, construction, or retrofit of the refrigeration system is expected to begin, and
 - > the expected completion date of the installation, construction, or retrofit of the refrigeration system; and
- 11.) A signature by a representative of the facility, including the date.

If the system is being mothballed, these requirements do not apply until the day that the refrigeration system resumes operation at a facility.
 If an exemption has been received, then the preparation and implementation of a retrofit or retirement plan is not required during the exemption time period. If an exemption request has been submitted, then the plan preparation or implementation is not required until a final exemption determination is made.

Recordkeeping Requirements

•Maintain the following records for a minimum of 5 years:

- 1.) All registration information required by the rule;
- 2.) documentation of all leak detection systems, leak inspections, and automatic leak detection system annual audit and calibrations;
- 3.) records of refrigeration system service and refrigerant leak repairs, and any documentation of conditions allowing repair to be

conducted more than 14 days after leak detection;

- 4.) retrofit or retirement plans;
- 5.) all CARB reports;
- 6.) any application for exemption, and any notification of an exemption approved, denied, revoked, or modified;
- 7.) invoices for all refrigerant purchases;
- 8.) records of all shipments of refrigerants for reclamation or destruction, to include:
 - > Name and address of the person the refrigerant was shipped to;
 - > Weight in pounds of refrigerant shipped;
 - > type of refrigerant shipped;
 - > date of shipment;
 - > purpose of shipment (i.e., reclamation, destruction, etc.);

9.) records of all refrigeration systems component data, measurements, calculations and assumptions used to determine the full charge.

CY 2023 CITY REPORTING

Anaheim Requirement	Period	Last Done	Next Due	Responsibility
Certified (Facility) Fire Protection Systems				
Inspection	Semi-Annual	1/10/23	5/31/23	Hoffard
Electric protection relays	5-years	11/14/18	11/13/28	Hoffard
8-Hour refresher HAZWOPER	Annual	7/5/22	7/5/23	Hoffard/Ralph McCaffrey
Oil Spill Prevention, Control and				
Countermeasure Plan	5-years	12/21/21	12/21/26	McCaffrey/Hoffard
Hazardous Materials Business Plans (CERS)	Annual	1/31/22	1/30/23	McCaffrey/Hernandez

CY 2023 EIA REPORTING

EIA Requirement	Period	Last Done	Next Due	Responsibility	Comments
EIA 860-A	Annual	1/11/24	3/1/24	Hernandez/Hoffard	
EIA-923-M	Monthly	1/11/24	2/30/2024	Hernandez/Hoffard	

CANYON POWER PLANT COMPLIANCE MATRIX CY 2023 OSHA REPORTING

OSHA Requirement	Period	Unit 1 Done	Unit 1 Due	Unit 2 Done	Unit 2 Due	Unit 3 Done	Unit 3 Due	Unit 4 Done	Unit 4 Due	Canyon Site Done	Canyon Site Due	Responsible
LM6000 Overhead Crane inspection	Annually	11/29/23	12/9/24	11/29/23	12/9/24	11/29/23	12/9/23	11/29/23	12/9/24			Vo/Hoffard
Warehouse Crane inspection	Annually									12/29/23	12/9/24	Vo/Hoffard
LM6000 Overhead Crane load test	Every 4 years	12/9/20	12/9/24	12/11/20	12/11/24	5/10/21	5/9/25	12/12/21	12/12/25			Vo/Hoffard
Warehouse Crane load test	Every 4 years									12/16/20	12/16/24	Vo/Hoffard
Fuel Gas system safeties - CTG	Tri-Annual									5/16/22	5/16/25	Vo/Hoffard
Fuel Gas system safeties - Gas Yard	Tri-Annual									5/16/22	5/16/25	Vo/Hoffard
Instrument Air system safeties	Every 5 years									10/30/21	10/30/26	Vo/Hoffard
Ammonia tank system safeties	Updated Every 4 years									6/21/21	6/20/25	Vo/Hoffard
Air Pressure tank inspection / permit renewal	Every 5 years									11/1/21	11/1/26	Hoffard/HSB insurance

CANYON POWER PLANT COMPLIANCE MATRIX CY 2023 EPA REPORTING

EPA Requirement	Period	Unit 1 Done	Unit 1 Due	Unit 2 Done	Unit 2 Due	Unit 3 Done	Unit 3 Due	Unit 4 Done	Unit 4 Due	Responsible
Linearity Test	anytime within the quarter	11/27/23	3/31/24	10/10/23	3/31/24	10/11/23	3/31/24	10/6/23	3/31/24	Hernandez/Hoffard
Electronic Data Report (EDR) EPA	30 days at the end of the Quarter	1/18/24	4/30/24	1/18/24	4/30/24	1/18/24	4/30/24	1/18/24	3/31/24	Hernandez/Hoffard
Greenhouse gas monitoring report	Annually	3/22/23	3/31/24	3/22/23	3/31/24	3/22/23	3/31/24	3/22/23	3/31/24	Hernandez/Hoffard
EPA Form 500 ACC	Annually	2/21/23	3/1/24	2/21/23	3/1/24	2/21/23	3/1/24	2/21/23	3/1/24	Hernandez/Hoffard

Spill Prevention, Control and Countermeasures Plan	Period	Last Done	Next Due	Responsibility	Comments
SPCC Facility Inspection	Monthly	12/5/23	1/31/24	Hernandez	

CY 2023 FIRE CODE REPORTING

Fire Code Requirement	Period	Last Done	Next Due	Responsibility
Fire detection system certification	Annual	5/10/23	5/10/24	Vo/Hoffard/Fire Protection Systems
Fire detection system inspection	Semi-annual	12/15/23	5/10/24	Vo/Hoffard/Fire Protection Systems
CO 2 cylinder (weight)	Annual	5/10/23	5/10/24	Vo/Hoffard/Fire Protection Systems

CY 2023 OCSD REPORTING

OCSD Requirement	Period	Last Done	Next Due	Responsibility
Permit # 1-600296				
Effluent Meter reading Report	Monthly	12/1/22	1/20/23	Operator/Hoffard/Hernandez
Effluent Sample collection (BOD/TSS)	semi-annual	10/24/22	4/30/23	Sanks/Hernandez/Hoffard
Effluent Meter Certification/Cal	Annual	1/9/23	1/10/24	Sanks/Hernandez/Hoffard
Class I Permit Renewal	every 2 years	3/31/21	3/31/23	Sanks/Hernandez/Hoffard
Backflow Inspection	Annual	2/1/22	2/28/23	Hernandez/Hoffard
Reclaim Water Testing (City of Anaheim)	Every 3 years	12/16/20	12/30/23	Hoffard/Hernandez

CY 2023 WQMP REPORTING

Storm Drain Systems	Period	Last Done	Next Due	Responsibility
Catch Basins (25) inspection	Semi-Annual (in-house)	3/17/22	6/30/23	Hernandez/Hoffard
Infiltration Vault	Annual Inspection	3/17/22	6/30/23	Hernandez/Hoffard
Contech Storm Filters	Annual Inspection	3/17/22	6/30/23	Hernandez/Hoffard

ANNUAL COMPLIANCE REPORT

ATTACHMENT 2

FACILITY OPERATIONAL STATUS REPORT

Overall Project Status

Canyon Power Plant construction was completed in August 2011. Units 3 and 4 were ready for commercial operation on July 27, 2011. Units 1 and 2 were ready for commercial operation on September 15, 2011.

All four gas turbines were in commercial operation for the entire compliance year 2023.

No changes to the operational status of the facility implemented or planned in CY 2023.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 3

CEC APPROVED POST CERTIFICATION CHANGES

No California Energy Commission (CEC) approved post certification changes

On August 19, 2021 South Coast AQMD issued the final Title V Facility Permit Renewal and no revisions or changes in CY 2023.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 4

MISSED SUBMITTAL DEADLINES

Canyon Power Plant submitted all required compliance reports on the due dates and no missed submittal deadlines for CY 2023.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 5

PERMIT FILINGS AND PERMITS ISSUED

DURING THE PERIOD

Canyon Power Plant submitted a Title V Renewal application and SCAQMD issue the final Title V Facility Permit to Canyon Power Plant on August 19, 2021 and expires August 18, 2026.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 6

PROJECTED COMPLIANCE TESTING

FOR CY 2024

Projected Environmental Compliance Testing schedule in CY 2024:

Compliance Test	Frequency	Scheduled Quarter
NH3 Slip Test	Annual	3Q; 4Q
RATA Test	Annual or Semi-Annual	3Q; 4Q
Cooling Tower TDS/PM10	Quarterly	All four Quarters
Cooling Tower Legionella	Quarterly	All four Quarters
Fuel H ₂ S Test	Monthly	January through December
Fuel Flow Accuracy	Annual	2Q
SCR Differential Pressure	Annual	2Q
SCR Inlet Temperature	Annual	2Q
NH3 Flow Meter Calibration	Annual	2Q
Linearity/CGA Test	Quarterly	All four Quarters
PM10/SO ₂ /VOC	Triennial	3Q; 4Q
PM10	Every 18 months for 3 years	4Q

VARIOUS COMPLIANCE REPORTS

ATTACHMENT 7

ADDITIONS TO ON-SITE COMPLIANCE FILE

PLANT COMPLIANCE REPORTS

California Energy Commission (CEC)

- Quarterly reports
- Quarterly 1304 Report
- Annual report
- Potable water used records
- Cooling Tower Legionella test report
- Cooling Tower TDS test reports
- Monthly Natural gas burn records
- Monthly Reclaim water used reports
- Monthly Potable water used reports

California Independent System Operator (CAISO)

• Certificate of Compliance

California Air Resource Board (CARB)

- Greenhouse gas records
- Annual refrigerant report
- Annual SF6 use report
- Refrigerant monitor calibration report

Diesel Engine

- Maintenance Reports
- Fuel purchase records
- Engine run-time records
- Hi-Back calibration report
- Engine tune up report

U.S. Energy Information Administration (EIA)

- Annual/Monthly EIA 923 report
- Annual EIA 860 report

Environmental Protection Agency (EPA)

- Part 98 Greenhouse Gas reports
- Certificate of Representation forms
- Quarterly Acid Rain report
- Quarterly Acid Rain report & feedback report
- Annual Form 500-ACC

Regional Clean Air Market (RECLAIM)

- Daily submittals
- Monthly submittals
- Quarterly submittals
- SCAQMD QCER Forms
- SCAQMD 500-N Forms
- SCAQMD 500-SAM Forms
- SCAQMD 500-ACC Form
- SCAQMD APEP Form
- SCAQMD AER Report
- SCAQMD Rule 218 Semi-annual reports
- RECLAIM RTC holdings records

South Coast Air Quality Management District (SCAQMD)

- NOV & NTCs issued by the SCAQMD
- SCAQMD responses to 500-N forms
- Monthly Natural H₂S gas test reports

Orange County Sanitation District (OCSAN)

- Monthly Effluent Water reports
- Semi-annual

Calibration Records

- Fuel flow meter calibration report
- Water flow meter calibration report
- NH3 flow meter calibration report
- SCR DP transducer calibration report
- SCR inlet temperature transducer Cal report
- SCR outlet temperature transducer Cal report

Calibration gas logs

- Linearity test reports
- Part 75 RATA test reports
- RECLAIM RATA test reports
- Rule 218 (CO) RATA test reports
- NH3 slip test reports

Triennial compliance testing

• VOC, PM10 and ROG emissions

ANNUAL COMPLIANCE REPORT

ATTACHMENT 8

UN-PLANNED FACILITY CLOSURE PLAN REVIEW

An "Un-Planned Facility Closure Plan" was drafted and submitted to the California Energy Commission (CEC) in the First Quarter of 2014. Currently, no revisions or changes are required.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 9

Notice of Violation Notice to Comply Issued in CY 2023

One (1) Notice of Violation Issued by a Regulatory Agency in the CY 2023

No Notices to Comply Issued by a Regulatory Agency in the CY 2023

South Coast Air Quality Management District 21865 COPLEY DRIVE, DIAMOND BAR, CA 91765-4178

NOTICE OF VIOLATION

AQMD	ITON	05 0	27	2022
Facility Name:	Fac	ility ID#:		Sector:
CANTON POWER PLANT	11	53992	-	OE
Location Address: City:			Zip:	
3071 E MIRALOMA AVE A	NAHEIM		928	306
Mailing Address: City:			Zip:	
3071 E MIFALOMA AVE A	NAHEIM	16 PS	928	306

YOU ARE HEREBY NOTIFIED THAT YOU HAVE BEEN CITED FOR ONE OR MORE VIOLATIONS OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT (SCAQMD) RULES, STATE LAW OR FEDERAL LAW. IF PROVEN, SUCH VIOLATION(S) MAY RESULT IN THE IMPOSITION OF CIVIL OR CRIMINAL PENALTIES.

EACH DAY A VIOLATION OCCURS MAY BE HANDLED AS A SEPARATE OFFENSE REGARDLESS OF WHETHER OR NOT ADDITIONAL NOTICES OF VIOLATION ARE ISSUED.

DE	SCRIPTION	CRIPTION OF VIOLATIONS										
#	Authority*	Code Section or Rule No.	SCAQMD Permit to Operate or CARB Registration No.	Condition No. (If Applicable)		Descrip	otion of Violation					
1	SCAQMD CH&SC CCR CFR	2004 (f)(1)		A99.1 A99.2 C1.1	EAU COM Ago	UPE OF FACILITY 1PLY WITH PEPM 7.2, AND C1.1	Y FERMIT H 11T CONDITIC	ONDER TO TO A99.1,				
2	SCAQMD	3002 (c)(1)		A <u>99.1</u> A <u>99.2</u> C <u>1.1</u>	FAIL COP A99	UPE OF FACILITY INY WITH PERMIT -2, AND CI.1.	r permit ho r canditions	LDER TO 5 A99.1,				
3	CH&SC											
4	□ SCAQMD □ CH&SC □ CCR □ CFR						•					
5	CH&SC											
Serv	red to: ZON HOF	FARD	Ph 7	14.765.	4536	Served By: CHRISTER BALL	NOT	Date Notice Served: 05/12/202-3				
Title	ENERATIO	N PLANT	Email: PHDFF/	APDCANAH	IEIM . NET	Phone No: 909-396-3054 310-233-	Email: CBALUYO	उत्त @ aqmd.gov				
*Ke	y to Authority Abbre	viations:					Method of Service:	1				
		SCAQMD - So CCR - Californ	uth Coast Air Quality Man ia Code of Regulations	agement District	CH&SC - Ca CFR - Code	lifornia Health and Safety Code of Federal Regulations	In Person					

SCAQMD FORM 500-N Title V – Deviations, Emergencies & Breakdowns Submitted by Canyon Power Plant

Č	Title V -	0-N Deviations, Emergen	cies & Breakdowns		Diamond Bar	SC/ P.O. Box CA 91765	
AQN	calling AQMD a	at 1-800-288-7664 (1-800-CUT-SMOG)	or AQMD enforcement personnel.	reports may be made by	Te	l: (909) 396 www.aqm	
Sectio	on I - Operator I	nformation				-	
1. Faci	lity Name (Business N	Name of Operator That Appears On Per	mit): 2. Vali	d AQMD Facility ID (Availab	le On Permit Or Inv	voice Issue	
CA	ANYON POWE	R PLANT Unit 4 (D19)	AQI	MD):	153992		
3 Add	ress.	3071 E. MIRALOMA AVE					
(whe	ere incident occurred)		Street Address				
		ANAHEIM		CA	92806		
			City	State	Zip	1	
4. Maili (if dif	ing Address: fferent from Item 3)		Street Address				
			Cíty	State	Zin		
5. Prov	ride the name, title, a	nd phone number of the person to co	intact for further information:	5(8)6	Ζip		
	Ro	nald Hoffard	Generation Plant Manage	er (714	765-4536		
-	.710	Name	Tite		Phone #		
Sectio	on II - Reporting	of Breakdowns, Deviations, a	nd Emergencies				
1. This	written notification i	s to report a(n):		and the second			
Тур	e of Incident		Verbal Report Due*	Written Report Due			
a. [Emergency under	Rute 3002(g)	Within 1 hour of discovery	Within 2 working days free exceeded.	rom when the emis	sion limit v	
b. 🛛	Breakdown under:	n-RECLAIM) ECLAIM)	For Rules 430 & 2004 - Within 1 hour of discovery.	For Rules 430 & 2004 - breakdown is corrected, start of the breakdown, oranted.	Within 7 calendar but no later than 3 unless a written ex	days after 30 days fro tension is	
	Rule 218 (Nor See Rule 218	n-RECLAIM) ((f)(3)]	For Rule 218 – Within 24 hours or next busines day for failure/shutdown exceeding 24 hours	s For Rule 218 - With req	uired semi-annual I	reports.	
c. [Deviation with exc [See Title V Permit	ess emissions t, Section K, Condition No. 22B]	Within 72 hours of discovery of the deviation or shorter reporting period if required by an applicable State or Federal Regulation.	Within 14 days of discov	Within 14 days of discovery of the deviation.		
d. [Other Deviation [See Title V Permit	, Section K, Condition Nos. 22D & 23]	None	With required semi-annu	ual monitoring repo	orts.	
		TED NOUVEN		00/00/0000	07.45	~	
2. Thei	ncident was first dis	covered by: TED INGUTEN	Name	Date	17.45 Time	C PM	
3 That	noident was first ros	orted by: OPERATOR #8		02/03/2023	08:58	6.4	
o, mer	noucin was instrep	Name o	f AQMD Staff Person	Date	Time	O PM	
a. (•	Via Phone						
b. C	In Person		Notification Number	# (Required): 732458			
4. When	n did the incident acl	ually occur? 02/03/2023 Date	05:30 © AM Time C PM				
	Received By:		Assigned By:	Inspector:			
	Date/Time Received:		Date/Time Assigned:	Date/Time Rece	ived Assignment:		
AQMD	Date Delivered To Te	am:	Date Reviewed Inspector Report:	Date Inspected F	Facility:		
USE	Team:	Sector:	Breakdown/Deviation Notification No.	Date Completed	Report:		
	Recommended Action	n: Cancel Notification Gran	t Relief Issue NOV No	Other.			

© South Coast Air Quality Management District, Form 500-N (2014.07)

5. Has the incident stopped? a. • Yes, on:	02/03/2023	05:50	@ AM	b. C. No	
	Date	Time	O PM		
6. What was the total duration of the incident?	Dave	20 min			
7. For equipment with an operating cycle, as define	d in Rule 430 (b)(3)(A),	Hours			0
when was the end of the operating cycle during v	which the incident occurred?	Date		Time	O PM
 Describe the incident and identify each piece of a equipment and attach additional pages as necess See attached report 	equipment (by permit, application, c sary.	or device number) affected. Attac	h photos (w	hen available) of the affe	cted
9. The incident may have resulted in a: a. X Violation of Permit Condition(s):	9.1 NOx lbs/hr > 14.27 lb	os Start-up			
 b. Violation of AQMD Rule(s): 10. What was the probable cause of the incident? A See attached report 	ttach additional pages as necessary	γ.			
11. Did the incident result in excess emissions?	No Yes (Complete the follo	wing and attach calculations.)			
VOClbs	NOx 31.520 lbs	SOx	lbs	H2S	lbs
CO Ibs D	PM lbs	Other:	lbs		pollutant
See attached report 14. Was the facility operating properly prior to the in- a. Yes b. No, because: 15. Did the incident result from operator error, negler a. Yes b. No, because: Wate 16. Has the facility returned to compliance? a. No, because:	cident? cl or improper operation or mainten er valve relay failure	nance procedures?			
b. Yes (Attach evidence such as emissions calc	culations, contemporaneous operating	logs or other credible evidence.)			
Section III - Certification Statement				-	
I certify under penalty of law that based on informatio and other materials are true, accurate, and complete. For Title V Facilities ONLY: I I los certify under	n and belief formed after reasonabl penalty of iaw that that I am the res	e inquiry, the statements and info	ormation in t	his document and in all a	attachments
1. Signature of Responsible Official:	2.	Title of Responsible Official:			
E Holfel		GENERATIO	ON PLAN	NT MANAGER	
3. Print Name: RONALD HOFFA	4. RD	Date: O	2/08/202	3	
5. Phone #. (714) 765-4536	6.	Fax #:			
7. Address of Responsible Official:					
3071 E. MIRALOMA	AVE	Anaheim	CA	92806	1.1
Street #	City		State	Zip	

© South Coast Air Quality Management District, Form 500-N (2014.07)

AQMD 500N Episode Date: 2/3/2023 Identify issue: Water Injection Valve failed to open Canyon Power Plant: Unit 4/ID# 153992 Notification: 732458

Question 8 - Describe the incident and identify each piece of equipment:

All four Units were remote started on 02/03/2023 at 0525 hours. The Canyon Plant Operators arrived at 0537 hours to take over operation of the generating units and noted all units operating within compliance except for Unit 4. Unit 4 NOx ppm was high and Unit 4 control system displayed zero NOx water injection flow. Shut down on Unit 4 was immediately initiated at 0540 hours. The data showed that the unit's NOx water injection valve failed to open after start initiated. Unfortunately, the unit's NOx startup limit had been exceeded (see attachment #1).

Question 10 – What was the probable cause of the incident?

The cause of high NOx ppm startup limit exceedance was due to failure of NOx water injection flow caused by failure of the relay that opens the NOx water injection valve (See attachment #3).

Question 13 – Describe the steps taken to correct the problem:

Technician troubleshooting revealed that the NOX water injection valve was functional. The electric control for actuating the NOx water injection valve failed to actuate the valve. Further troubleshooting revealed a failed electric relay in the control system. The relay was replaced by a spare from the plants spare parts inventory.

Question 16 – Facility returned to compliance?

Unit 4 returned to compliance February 3, 2023 at 0754 hours at the end of the test run (See attachment #2).

ID 193992 AMACAMENT#1

Date /Time	A Coefford	A NOV COPP	A NHO Flow	A HOO FLOW	A NOV LOUD	A NOVIN SU	A NOVIN SD	A CO CORR	Breakdown
Date/Time	4_GasFlow kscfh	4_NUA_CONN	#/hr	k#/hr	#/hr	#/hr	#/hr	ppm	Presidenti
02/03/2023 05:24	0.3	0		0	0	0	0	0	
02/03/2023 05:25	70.8	0	0	0	0	0	0	536.24	Startup minute
02/03/2023 05:26	105.3	8.36	0	0	3.43	3.43	3.43	283.53	
02/03/2023 05:27	112.9	39.08	0	0	17.06	17.06	17.06	15.41	H2O flow falled to open
02/03/2023 05:28	136.3	42 21	0	n	27.18	22.18	22.18	3.16	
02/03/2023 05:29	215 1	48 39	0	0	40.21	40.21	40.21	2.2	
02/03/2023 05:20	278 5	86 48	0	0	93.31	93.31	93.31	1.42	
02/03/2023 03.30	231 6	117.96	11 78	0	151.47	151 47	151.47	0.86	NH3 flow first minute
02/03/2023 03.31	331.0	164.24	75.75	0	211 27	211 27	211 27	0.73	
02/03/2023 05:32	332.0	152.03	70.20	0	106 40	195.49	195.49	0.78	
02/03/2023 05:33	332.4	132.05	79.30	0	100 69	190.68	190.68	0.79	
02/03/2023 05:34	332	148.55	79.33	0	197 57	197 57	187.57	0.72	
02/03/2023 05:35	551.4	146.42	79.29	0	107.37	197.10	107.10	0.63	
02/03/2023 05:36	330.8	146.34	79.35	0	187.19	107.13	107.13	0.54	
02/03/2023 05:37	330,5	146.97	79.51	0	187.73	187.73	187.73	0.54	
02/03/2023 05:38	330.1	147.25	79.49	0	187.86	187.85	187.86	0.47	
02/03/2023 05:39	330.2	147.18	79.36	0	187.91	187.91	187,91	0.42	
02/03/2023 05:40	329.8	147.39	79.47	0	188.04	188.04	188.04	0.37	
02/03/2023 05:41	329.7	147.45	79.33	0	187.99	187.99	187.99	0.34	
02/03/2023 05:42	308.6	149.05	77.15	0	177.88	177.88	177.88	0.33	
02/03/2023 05:43	243.4	141.25	67.49	0	132.91	132.91	132.91	0.35	
02/03/2023 05:44	168.4	122.56	60.06	0	79.91	79.91	79.91	0.37	
02/03/2023 05:45	101.9	85.88	42.09	0	33.81	33.81	33.81	0.42	5 M
02/03/2023 05:46	98.6	54.41	40.74	0	20.7	20.7	20.7	0.63	
02/03/2023 05:47	96.1	47.75	40.03	0	17.76	17.76	17.75	0.92	
02/03/2023 05:48	100.1	46.57	40.99	0	18.08	18.08	18.08	1.2	
02/03/2023 05:49	98.2	45.8	40.71	0	17.42	17.42	17.42	1.25	6. State 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997
02/03/2023 05:50	49.1	44.33	20.15	0	8.41	8.41	8.41	1.32	Shutdown
02/03/2023 05:51	0.3	0	0	0	0	0	0	C	
02/03/2023 05:52	0.3	0	0	0	0	0	0	0	•
02/03/2023 05:53	0.3	0	0	0	0	O	0	0	•
02/03/2023 05:54	0.2	0	. 0	0	0	0	0	0	6
02/03/2023 05:55	03	0	0	D	0	0	0		1
02/03/2023 05:55	03	0	0	0	0	o	0		1
02/03/2023 05:57	0.2	0	0	0	0	0	0	0	P
02/03/2023 03.57	0.2	0	0	0	0	0	0		
02/03/2023 03.30	0.3	0	0	0	o o	0	n		
02/03/2023 05:55	0.3	0	0	0	0	o.	Ő		1 C C C C C C C C C C C C C C C C C C C
02/03/2023 00.00	0.3	0		0	0	0	0		
02/03/2023 06:01	0.3	0	0	0	0	0	0		
02/03/2023 06:02	0.3	0		0	0		ő		
02/03/2023 06:03	0.3	U	u	0	0		0		
02/03/2023 06:04	0,3	0	U	U O	0	0	0		
02/03/2023 06:05	0.3	0	0	0	0	0	0		
02/03/2023 06:06	0.3	0	0	0	0	0	0		
02/03/2023 06:07	0.3	0	0	0	0	0	0		
02/03/2023 06:08	0.3	0	0	0	0	0	0		
02/03/2023 06:09	0.3	0	0	0	0	0	0		
02/03/2023 06:10	0.3	0	0	D	0	0	0		
02/03/2023 06:11	0.3	0	0	0	0	0	0		
02/03/2023 06:12	0.3	0	0	0	0	0	0		,
02/03/2023 06:13	0.3	0	0	0	0	0	0	C)
02/03/2023 06:14	0,3	0	0	0	0	0	0	c	1
02/03/2023 06:15	0.3	0	0	0	0	0	0	c	1
02/03/2023 06:16	0.3	0	0	0	0	0	0	0	
02/03/2023 06:17	0.3	0	0	0	0	0	0	0	
02/03/2023 06:18	0,2	0	0	0	0	D	0		
02/03/2023 06:19	0.3	0	0	0	0	O	0	0)
02/03/2023 06:20	0.3	0	0	0	0	0	0	0	1
02/03/2023 06:21	0.3	0	0	0	0	o	D	0	1
02/03/2023 06:22	0.3	0	0	0	0	D	D		
02/03/2023 06:23	03	0	0	0	0	0	0)
02/03/2023 06:24	03	0	0	0	D	0	0	0	
and and more proved	5.5	-			0 Min Aver	45.79	bs		
					tartup Limit	14.27 1	bs		

Unit & Enicodo

Exceedance

31.52 lbs

ID 153992 ATTATCHMENT样Z

				Unit 4 Teste	d for Compliance	e			
Date/Time	4_GasFlow kscfh	4_NOX_CORR	4_NH3_Flow #/hr	4_H2O_FLOW k#/hr	4_NOX_LBHR #/hr	4_NOxIb_SU #/br	4_NOxIb_SD #/hr	4_CO_CORR ppm	Unit 4 Issue resolved
02/03/2023 06:57	0.3	a	0	0	0	0	0		5
02/03/2023 06:58	89.8	0.4	0	a	0.09	0.09	0.09	588.79	Stortup minute
02/03/2023 06:59	113	21.96	0	0	9.61	9.61	9.61	150.55	1
02/03/2023 07:00	107.7	58.95	0	0.1	24.54	24.54	24.54	6.86	5 H2O flow first minute
02/03/2023 07:01	152,4	76.38	0	3.2	44.96	44,96	44.96	2.44	1
02/03/2023 07:02	236.5	50.02	0	6.1	45.69	45.69	45.69	1.98	3
02/03/2023 07:03	303.6	32.95	0	11.6	38.57	38.57	38.57	1.69	1
02/03/2023 07:04	344.3	27,49	0	15.1	36.51	36.51	36.51	1.49)
02/03/2023 07:05	347.6	24.56	38.23	15.5	32.85	32.85	32,85	1.64	NH3 flow first minute
02/03/2023 07:06	358.5	21.85	81.84	16.3	30.49	30.49	30.49	1.9	1
02/03/2023 07:07	358.1	7.58	83.15	16.3	10.53	10.53	10.53	1.99	1
02/03/2023 07:08	357.7	2.51	83.01	16,3	3.38	3.38	3.38	1.95	5
02/03/2023 07:09	358.3	1.61	83.1G	16.3	2.26	2.26	2.26	1.89	i l
02/03/2023 07:10	357.7	1.44	82.95	16.4	1.88	1.88	1.88	1.81	D
02/03/2023 07:11	357.6	D	83.16	15.4	۵	0	α	0	1
02/03/2023 07:12	357.6	0	83.25	16.3	0	0	0	C	1
02/03/2023 07:13	357,2	0	83.36	16.3	0	0	0	0	7
02/03/2023 07:14	357.7	0	83.42	16.3	0	0	α	0	1
02/03/2023 07:15	357.6	0	83,59	16.4	0	0	0	0	0
02/03/2023 07:16	357.2	0	83.71	16.3	0	0	0	C	1
02/03/2023 07:17	357.5	0	83.7	16.3	0	0	D	0	1
02/03/2023 07:18	358	0	83,71	16.3	0	0	0	c)
02/03/2023 07:19	357.4	0	83.83	16.4	D	O	D	c	Online Cal andormad
02/03/2023 07:20	357.3	0	83.92	16.3	0	0	D	0)
02/03/2023 07:21	357.6	0	83.83	16.3	0	0	0	0	1
02/03/2023 07:22	357.3	0	83.93	16.3	0	0	D	0	1
02/03/2023 07:23	357.6	0	83,99	16.3	0	0	0	0	1
02/03/2023 07:24	357.4	0	83.88	16.3	0	0	0	0	r
02/03/2023 07:25	357.5	0	83,99	16.3	0	0	0	0	() () () () () () () () () ()
02/03/2023 07:26	357.1	0	84.14	16.3	0	0	0	0	12 C
02/03/2023 07:27	357.5	0	84.06	16.3	0	0	Q	0	
02/03/2023 07:28	357.4	0	84.14	16.3	Q	۵	0	0	£
02/03/2023 07:29	357.6	1.43	84.02	16.4	1.88	1.88	1.88	1.58	D III
02/03/2023 07:30	357.6	1.3	83.45	16.3	1,88	1.88	1.88	1.58	Ð II.
02/03/2023 07:31	357.5	1.19	82.3	16.3	1.5	1.5	1.5	1.61	
02/03/2023 07:32	356.9	1.12	81.02	16.3	1.5	1.5	1.5	1.61	b I I
02/03/2023 07:33	357	1.09	79.62	16.3	1.5	1.5	1.5	L61	
02/03/2023 07:34	357.4	1.05	78.1	16.3	1.5	1.5	1.5	1.6	R =
02/03/2023 07:35	357.1	1.04	76,58	16.3	1.5	1.5	1.5	1.6	6
02/03/2023 07:36	357.2	1.05	74.9	16,3	1.5	1.5	1.5	1,58	É II
02/03/2023 07:37	357.2	1.06	73.62	16.3	1.5	1.5	1.5	1.55	5. L
02/03/2023 07:38	357,2	1.07	71.85	16.3	1.5	1.5	1.5	1.55	6.) () ()
02/03/2023 07:39	357.4	1.11	70.48	16.4	1.5	1.5	1.5	1.57	5
02/03/2023 07:40	357.3	1.16	68.82	16,4	1.5	1,5	1.5	1.57	
02/03/2023 07:41	357.2	1.2	68.03	16.3	1.5	1,5	1.5	1,57	
02/03/2023 07:42	357	1.27	66.58	16.4	1.87	1.87	1.87	1.57	5. F
02/03/2023 07:43	357.4	1.36	65.43	16,3	1.88	1.88	1.88	1.58	
02/03/2023 07:44	344.4	1.45	61.45	14.8	1.81	1.81	1.81	1.58	
02/03/2023 07:45	280.9	1.68	52.15	9	1.77	1.77	1.77	1.66	
02/03/2023 07:46	203.5	3.38	46.68	4.3	2.56	2.56	2.56	1.54	
02/03/2023 07:47	118.1	6.16	34.53	1.8	2.85	2.85	2.85	1.31	
02/03/2023 07:48	98	8.83	32.45	3.1	3.4	3.4	3.4	1.38	
02/03/2023 07:49	100.1	16.58	45.96	1.1	6,41	6.41	6.41	2.14	
02/03/2023 07:50	101.3	15.52	61.78	1.1	5.06	6.06	6.06	3.07	s
02/03/2023 07:51	102	9.08	76.23	1.1	3.53	3.53	3.53	3.65	
02/03/2023 07:52	103.3	5.12	87.36	0.9	2.06	2,06	2.05	3.8	Shutdown
02/03/2023 07:53	0.3	0	Q	0	D	0	0	0	
02/03/2023 07:54	0.3	0	0	0	0	0	0	0	
02/03/2023 02-55	03	0	0	0	0	0	0	0	

ID 153992 ATTATCHEMENT#3

Unit 4 Water valve relay

South Coast A Form 50 Title V -	ir Quality Management District 10-N Deviations, Emergen aport is in addition to requirements to the	cies & Breakdowns	hal reporte may h	e made ku	Diamond Bar, C	Mail SCAQ P.O. Box 4 CA 91765-0	
AQMD calling AQMD	at 1-800-288-7664 (1-800-CUT-SMOG)	or AQMD enforcement personnel.	an reports may o	e made by	Tel:	(909) 396-3 www.aqmd.	
Section I - Operator	nformation						
. Facility Name (Business	Name of Operator That Appears On Per	mit): 2. V	alid AQMD FacIII	ty ID (Availab	le On Permit Or Invoi	ice Issued E	
CANYON POWE	R PLANT Unit 1 (D1)	A	QMD):	1.1	153992	-	
. Address:	3071 E. MIRALOMA AVE						
(where incident occurred)		Street Address					
	ANAHEIM			CA	92806		
		City		State	Zip		
. Mailing Address: (if different from Item 3)		Street Address		_			
		City		State	Zin	_	
. Provide the name, title, a	and phone number of the person to co	ontact for further information:		Sidle	Zip		
Berth	a A Hernandez	Environmental Srvcs Sr	bec	(714) 765-7481		
	Name	Title		1	Phone #		
ection II - Reporting	of Breakdowns, Deviations, a	and Emergencies					
. This written notification	is to report a(n):						
Type of Incident		Verbal Report Due*	Written Re	port Due			
a, 🔲 Emergency under	Rule 3002(g)	Within 1 hour of discovery	Within 2 w exceeded	vorking days f	from when the emissi	on limit wa	
b. Breakdown under Rule 430 (No Rule 2004 (R Rule 218 (No [See Rule 21	: m-RECLAIM) RECLAIM) m-RECLAIM) 8(f)(3)]	For Rules 430 & 2004 - Within 1 hour of discovery. For Rule 218 – Within 24 hours or next busir day for failure/shutdown exceeding 24 hours	For Rules breakdow start of th granted. For Rule	For Rules 430 & 2004 - Within 7 calendar days after breakdown is corrected, but no later than 30 days fro start of the breakdown, unless a written extension is granted. For Rule 218 - With required semi-annual reports.			
c. X Deviation with exe [See Title V Perm	cess emissions it, Section K, Condition No. 22B]	Within 72 hours of discovery of the deviation shorter reporting period if required by an applicable State or Federal Regulation.	or Within 14	Within 14 days of discovery of the deviation.			
d. D Other Deviation [See Title V Perm	it, Section K, Condition Nos. 22D & 23]	None	With requ	Vith required semi-annual monitoring reports.			
	IFFEDEV IIA O	100	00/47/		05.50		
. The incident was first di	scovered by: JEFFREY HACI	Nomeon	03/1//2 Date	2023	05:58 Time	O AM	
	Malazara II la R at D		02/47/	0000	00.40	(e) FM	
. The incident was first re	ported by: VOICEMAIL IEIT AT 8	of AOMD Staff Person	03/17/2 Date	2023	00;18	O AM	
a. 💿 Via Phone	Humo		Dut		Timo	(0, 1 m	
b. O In Person		Notification Nur	mber (Required):	738304		_	
. When did the incident ad	ctually occur?03/17/202 Date	3 02:05 O AM Time © PM					
Received By:		Assigned By:	li	spector:			
Date/Time Received	i:	Date/Time Assigned:	D	ate/Time Rec	eived Assignment:	-	
Date Delivered To T	eam:	Date Reviewed Inspector Report:	D	ate Inspected	Facility:		
USE Team:	Sector:	Breakdown/Deviation Notification No.	Date Completed Report:				
Recommended Activ	on: Cancel Notification Gra	nt Relief Issue NOV No		Other:			
	Const Notification Con	at Poliof Josua NOV No		Other			

C South Coast Air Quality Management District, Form 500-N (2014.07)

5. Ha	as the incident stopped? a. (•) Y	es, on:	03/17/2023		03:04	• AM	b. O No	
			Date		Time	O PM		
6. W	hat was the total duration of the Inc	ident?	Davs		01 Hours	-		
7. Fo wt	or equipment with an operating cycl hen was the end of the operating cy	e, as defined in Ru cle during which t	lle 430 (b)(3)(A), he incident occurred?		Bette			O AM
8. De eq S	escribe the incident and identify ead upment and attach additional page see Attachment A	ch piece of equipm as as necessary.	ent (by permit, application	on, or device n	Date umber) affected. Af	tach photos (w	lime hen available) of the	affected
9. Th a.	e incident may have resulted in a: X Violation of Permit Condition(s):	A99.1 N	Ox lbs/hr > 4.07	bs shutdov	vn			
b. 10. WI S	Violation of AQMD Rule(s): hat was the probable cause of the in See Attachment A	ncident? Attach a	dditional pages as neces	ssary.				_
11. Di	d the incident result in excess emis	sions? 🔿 No	Yes (Complete the	following and a	ttach calculations.)	1		
E	VOCIbs	NOx	1.180 _b	s 🗆 So	Dx	lbs	H2S	lbs
E	CO lbs	D PM	lb	s 🗆 o	iher:	lbs		pollutant
S 14. Wa a. 15. Dia a. 16. Ha a.	See Attachment A as the facility operating properly pr • Yes b. O No, because the incident result from operator • Yes b. No, because the facility returned to compliance O No, because:	lor to the incident? se: error, neglect or in se: e?	? nproper operation or ma	intenance proc	redures?			
b.	• Yes (Attach evidence such as er	nissions calculation	s, contemporaneous open	ating logs or oth	er credible evidence.)		-
Sectio	on III - Certification Stateme	ent						
I certify and oth	y under penalty of law that based on her materials are true, accurate, and le V Facilities ONLY: XI also c	n information and d complete, ertify under penal	belief formed after reaso ty of law that that I am th	onable inquiry, le responsible	the statements and official for this facil	Information in t	this document and in	n all attachments XXX.
1. Sign	ature of Responsible Official:			2. Title of Re	sponsible Official:		Charles Contaction of the	95.F
3			C	E	NVIRONMEN	TAL SERV	ICES SPECIA	ALIST
3. Print	BERTHA A	HERNANDE	z	4. Date:	03/2	3/2	023	
5. Pho	ne#: (714) 7	65-7481		6. Fax #:		1		
7. Add	ress of Responsible Official:							
	3071 E. MIR/	ALOMA AVE		ρ	Anaheim	CA	928	806
Street #			C	ity		State	Zip	

© South Coast Air Quality Management District, Form 500-N (2014.07)

AQMD 500N Episode Date: 03/17/2023 Identify issue: Shutdown NOx lbs > 4.07 Canyon Power Plant: Unit 1/ID# 153992 Notification: 738304

Question 8 - Describe the incident and identify each piece of equipment:

After the Hydraulic Starter Clutch was replaced Unit 1 operated at 1405 hours for testing purposes. There were no issues during the testing period and the unit operated in compliance. Prior to shutting down the unit, the operator reviewed and logged all information to ensure compliance during the shutdown hour. As such, the operator initiated a shutdown at 1458 hours and did not realized that a potential shutdown exceedance would occur (see Attachment B).

At 1745 hours the operator returned to the control room and observed an episode on the DAHS. The operator immediately contacted staff to review the episode and then proceeded to report the incident to SCAQMD.

Question 10 - What was the probable cause of the incident?

In preparation of a Unit shutting down an operator reviews and logs the shutdown lbs and ppm average values 30 minutes prior to shutdown. If the shutdown lbs and ppm average values are at or below the shutdown limits the unit can begin the shutdown process and shutdown in compliance. If the shutdown lbs and ppm average values exceed the shutdown limits the operator will extend the operation time to avoid an episode. However, the operator reviewed and logged the shutdown lbs and ppm average values but failed to recognize the shutdown limitations and proceeded to shutdown the unit which resulted in a shutdown NOx lbs emissions exceedance (see Attachment C).

Question 13 - Describe the steps taken to correct the problem:

During the shutdown period the operator did not recognize the shutdown limitations and proceeded to shutdown the unit which resulted in a NOx lbs shutdown exceedance episode.

Plant supervisor discussed and reviewed the Canyon Power Plant Emission Compliance Log (see Attachment C) with staff. Staff was directed to monitor the DAHS during operations and to accurately record all compliance data necessary to evaluate permit limitations and take the necessary action to avoid an exceedance.

Question 16 - Facility returned to compliance?

On Friday, March 17, 2023, U1 was in compliance.

ATTACHMENT B

Date/Time	1_NOXPPM	1_NOX_CORR	1_NOX_LBHR	1_NOxlb_SU	1_NOxlbSUH	1_NOxlb_SD	1_NOxIbSDH	1_GasFlow	1_Shutdown
	ppm	ppm	#/hr status	#/hr	pounds	#/hr	pounds	kscfh	1=0N
03/17/2023 14:00	0	0	0 P	0	-99.99	0	0	0.4	0
03/17/2023 14:01	0	0	0 P	0	-99.99	0	0	0.3	0
03/17/2023 14:02	0	0	0 P	0	-99.99	0	0	0.3	0
03/17/2023 14:03	-0.01	0	0 P	0	-99.99	0	0	0.3	0
03/17/2023 14:04	0	0	0	0	0	0	0	35.6	0
03/17/2023 14:05	0.87	2.58	0.99	0.99	0.02	0	0	94.5	0 Start-up period
03/17/2023 14:06	10.86	26.81	9.88	9.88	0.18	0	0	95	0
03/17/2023 14:07	15.48	36.1	16.27	.16.27	0.45	0	0	116.5	0
03/17/2023 14:08	14.39	27.3	19.23	19.23	0.77	19.23	0	181.3	0
03/17/2023 14:09	10.99	15.81	15.53	15.53	1.03	15.53	5.25	255	Ö
03/17/2023 14:10	11.56	14.09	17.87	17.87	1.33	17.87	5.25	327.2	0
03/17/2023 14:11	19.64	21.42	34.14	34.14	1.9	34.14	5.25	411.6	0
03/17/2023 14:12	24.49	23.88	42.29	42.29	2.6	42.29	5.25	457.7	0
03/17/2023 14:13	8.07	7.56	13.71	13.71	2.83	13.71	5.25	466.5	0
03/17/2023 14:14	3.06	2.83	4.91	4.91	2.91	4.91	5.25	467.1	0
03/17/2023 14:15	2.4	2.22	3.93	3.93	2.98	3.93	5.25	467.9	0
03/17/2023 14:16	2.37	2.18	3.93	3.93	3.04	3.93	5.25	467.4	0
03/17/2023 14:17	2.48	2.29	3.93	3.93	3.11	3.93	5.25	467.8	O
03/17/2023 14:18	2.77	2.55	4.43	4.43	3.18	4.43	5.25	468.6	0
03/17/2023 14:19	2.94	2.71	4.93	4.93	3.27	4.93	5.25	469.9	0
03/17/2023 14:20	2.88	2.64	4.95	4.95	3.35	4.95	5.25	471.4	0
03/17/2023 14:21	2.6	2.38	4.46	4.46	3.42	4.46	5.25	471.7	0
03/17/2023 14:22	2.25	2.06	3.96	3.96	3.49	3.96	5.25	471.8	0
03/17/2023 14:23	2.07	1.89	3.47	3.47	3.55	3.47	5.25	472.3	0
03/17/2023 14:24	2	1.83	3.47	3.47	3.6	3.47	5.25	471.8	0
03/17/2023 14:25	2.01	1.84	3.47	3.47	3.66	3.47	5.25	472.3	0
03/17/2023 14:26	2.06	1.89	3.47	3.47	3.72	3.47	5.25	472.4	0
03/17/2023 14:27	2.09	1.91	3.47	3.47	3.78	3.47	5.25	472	O
03/17/2023 14:28	2.1	1.92	3.47	3.47	3.84	3.47	5.25	472.2	0
03/17/2023 14:29	2.09	1.91	3.47	3.47	3.89	3.47	5.25	472.8	0
03/17/2023 14:30	2.09	1.91	3.48	3.48	3.95	3.48	5.25	473.3	0
03/17/2023 14:31	2.07	1.89	3.48	3.48	4.01	3.48	5.25	473.2	0
03/17/2023 14:32	2.06	1.88	3.48	3.48	4.07	3.48	5.25	473.1	0
03/17/2023 14:33	2.06	1.88	3.48	3.48	4.13	3.48	5.25	472.9	0
03/17/2023 14:34	2.08	1.9	3.47	3.47	4.18	3.47	5.25	472.8	0

Date/Time	1_NOXPPM	1_NOX_CORR	1_NOX_LBHR	1_NOxlb_SU	1_NOxIbSUH	1_NOxlb_SD	1_NOxIbSDH	1_GasFlow	1_Shutdown	
	ppm	ppm	#/hr status	#/hr	pounds	#/hr	pounds	kscfh	1=ON	
03/17/2023 14:00	0	0	0 P	0	-99.99	0	0	0.4	0	
03/17/2023 14:35	2.09	1.91	3.47	3.47	4.24	3.47	5.25	472.6	0	
03/17/2023 14:36	2.08	1.9	3.48	3.48	4.3	3.48	5.25	473.3	0	
03/17/2023 14:37	2.06	1.88	3.48	3.48	4.36	3.48	5.25	473.3	0	
03/17/2023 14:38	2.06	1.88	3.48	3.48	4.42	3.48	5.25	473.1	0	
03/17/2023 14:39	2.06	1.88	3.48	3.48	4.47	3.48	5.25	473.1	0	
03/17/2023 14:40	2.07	1.89	3.48	3,48	4.53	3.48	5.25	473.2	0	
03/17/2023 14:41	2.06	1.88	3.48	3.48	4.59	3.48	5.25	473.1	0	
03/17/2023 14:42	2.03	1.85	3.48	3.48	4.65	3.48	5.25	473.4	0	
03/17/2023 14:43	2.01	1.84	3.48	3.48	4.71	3.48	5.25	473.2	0	
03/17/2023 14:44	2.01	1.83	3.48	3.48	4.76	3.48	5.25	473	0	
03/17/2023 14:45	2.01	1.83	3.48	3.48	4.82	3.48	5,25	473	0	
03/17/2023 14:46	2.01	1.83	3.48	3.48	4.88	3.48	5.25	473.1	0	
03/17/2023 14:47	2	1.82	3.48	3.48	4.94	3.48	5.25	472.9	0	
03/17/2023 14:48	1.99	1.81	3.48	3.48	5	3.48	5.25	472.9	0	
03/17/2023 14:49	1.96	1.79	3.48	3.48	5.05	3.48	5.25	473.4	0	
03/17/2023 14:50	1.94	1.77	3.48	3.48	5.11	3.48	5.25	473.1	0	
03/17/2023 14:51	1.93	1.76	2.98	2.98	5.16	2.98	5.25	473.5	0	
03/17/2023 14:52	1.95	1.78	3.48	3.48	5.22	3.48	5.25	473.3	0	
03/17/2023 14:53	1.96	1.79	3.48	3.48	5.28	3.48	5.25	473.1	0	
03/17/2023 14:54	1.99	1.81	3.48	3.48	5.34	3.48	5.25	473.3	0	
03/17/2023 14:55	2	1.82	3.48	3.48	5.39	3.48	5.25	473.5	0	
03/17/2023 14:56	2	1.82	3.48	3.48	5.45	3.48	5.25	473.7	0	
03/17/2023 14:57	2.01	1.83	3.48	3.48	5.51	3.48	5.25	473.5	0	
03/17/2023 14:58	2.02	1.84	3.34	3.34	5.51	3.34	5.25	454.9	1	
03/17/2023 14:59	1.97	1.97	2.8	2.8	5.51	2.8	5.25	381	1	
03/17/2023 15:00	1.62	1.75	1.93	1.93	5.51	1.93	5.25	306.2	1	
03/17/2023 15:01	0.86	1.03	0.93	0.93	5.51	0.93	5.25	222.5	1	
03/17/2023 15:02	0.68	1.01	0.62	0.62	5.51	0.62	5.25	148.6	1	
03/17/2023 15:03	0.64	1.23	0.51	0	5.51	0.51	5.25	96.5	1	
03/17/2023 15:04	0.59	1.32	0.47	0	5.51	0.47	5.25	90.4	1	
03/17/2023 15:05	0.56	1,25	0.47	0	5.49	0.47	5.25	90.3	1	
03/17/2023 15:06	0.54	1.2	0.38	0	5.33	0.38	5.25	90.3	1	
03/17/2023 15:07	0.53	1.18	0.38 5.25	0	5.06	0.38	5.25	90.2	1 Shutdown per	od
03/17/2023 15:08	0.53	0	0 P	0	4.74	0	0	30.4	1	

-ATTATCHMENT B

Date/Time	1_NOXPPM	1_NOX_CORR	1_NOX_LBHF	11 - A	1_NOxlb_SU	1_NOxlbSUH	1_NOxlb_SD	1_NOxIbSDH	1_GasFlow	1_Shutdown
	ppm	ppm	#/hr	status	#/hr	pounds	#/hr	pounds	kscfh	1=0N
03/17/2023 14:00	0	0	(P	0	-99.99	0	0	0.4	0
03/17/2023 15:09	0.54	0	(P	0	4.48	0	0	0.3	0
03/17/2023 15:10	0.42	0	(P	0	4.18	0	0	0.4	0
03/17/2023 15:11	0.17	0		P	0	3.61	0	0	0.4	0
03/17/2023 15:12	0.04	0		P	0	2.91	0	0	0.3	0
03/17/2023 15:13	0.03	0	(P	0	2.68	0	0	0.3	0
03/17/2023 15:14	0.01	0	(P	0	2.6	0	0	0.3	0
03/17/2023 15:15	0.01	0		P	0	2.53	0	0	0.3	0
03/17/2023 15:16	0	0		P	0	2.46	0	0	0.3	0
03/17/2023 15:17	0	0	(P	0	2.4	0	0	0.4	0
03/17/2023 15:18	0	0		P	0	2.33	0	0	0.4	0
03/17/2023 15:19	0	0		P	0	2.24	0	0	0.3	0
03/17/2023 15:20	0	0) P	0	2.16	0	0	0.5	0
03/17/2023 15:21	0	0		P	0	2.09	0	0	0.4	0
03/17/2023 15:22	0	0		P	0	2.02	0	0	0.4	0
03/17/2023 15:23	0	0	1	P	0	1.96	0	0	0.3	0
03/17/2023 15:24	0	0) P	0	1.9	0	0	0.4	0
03/17/2023 15:25	0	0		P	0	1.85	0	0	0.4	0
03/17/2023 15:26	0	0		P	0	1.79	0	0	0.4	0
03/17/2023 15:27	0	0		P	0	1.73	0	0	0.5	0
03/17/2023 15:28	0	0		P	0	1.67	0	0	0.3	0
03/17/2023 15:29	0	0		P	0	1.62	0	0	0.4	0
03/17/2023 15:30	0	0		P (0	1.56	0	0	0.4	0
NOx lbs/hr			5.2	5 fbs	Shutdown Emiss	ions				
Startup limit 14.27 lb	S		4.0	7 lbs	Shutdown Limit	Condition A99.1				

ATTATCHMENT B

Shutdown limit 4.07 lbs

1.18 lbs Excess Emissions over the limit

ATTATCH MENT C

Canyon Power Plant Emission Compliance Log

:

Date: 3-17-23

	A DECEMBER OF	271 See 12			11 June 1 14			1.394.00	March 1976 Law
ALL HRS OF OPERATION ACCORDING T	TO DAHS CLOCK	UN	47 L	Un	Ht 2	UN	173	Un	it 4
	o bring cooch	1st Start	2nd Start	1st Start	2nd Start	1st Start	2nd Start	1st Start	2nd Start
OPERATOR	INITHALS	T.N.	IH	tw	1.000	Tu		TW	JH
Flame On	DAHS TIME	00359	1404	luter	1.76.24	8 Guer	112-1	0365	1700
NOx LBS SUH during first 5 min. Startup	LBS If < 7 then OK to Proceed	.37	,22	. 62		3.52		1.38	1.60
CO LBS SUH during first 5 min. Startup	LBS If < 7 then OK to Proceed	3.05	2.63	3.21		-		2.36	2.19
	DAHS TIME	ount	1415	L. LEVE	1000	04:37		ousy	1410
NOX Corr after Compliance (< 2.5 PPM	PPM	215	222		1.01.00	1.82		221	1.28
co com effer Compliance /< 4.0 BBM	DAHS TIME	duo	1411		a set	0433		0359	1703
Co con after compliance (< + o PPW)	PPM	373	3.41	and the	-124-	309	L. Tink	2.82	1.72
		On	line Calibrat	lion	14. N.	Sec. 1			12.413
	DAHS TIME	12.24	/	1 Stant	ale a	A-LOID		Sauce :	1
NOxC_1hr [Prior to Calibration < 2.5 PP	PM] PPM	/	S			/		/	
COC_1hr [Prior to Calibration < 4.0 PP	M] PPM	PR-JA	a cal		自己的财	1	L. Bally	1	A. E.
and the second second	Mary and	SHI	UTDOWN H	OUR	Sec. 1				
	DAHS TIME	OULUS	145/205	0600	1.1.1	0650		0500	2034
NoxC_1hr [PRIOR TO SHUTDOWN < 2.5	PPM] PPM	1.07	1.84/1.1	181	100	172		1-81	1.18
COC_1hr [PRIOR TO SHUTDOWN < 4.0 P	PPM] PPM	2.84	2.54/2	1 2.1.14	-	2.24	1.3.2-1	200	,64
Noxib60m [PRIOR TO SHUTDOWN < 4.07	LBS] LBS	2.ul	6.59/2	\$ 3.00		3.11	In Este	3.49	1.79
COIb60m [PRIOR TO SHUTDOWN < 4.15	LBS] LBS	Tur	6.16/23	\$ 2,70	10000	2.51	1	30'	1.0.9
Flame Off	DAHS TIME	aur	1508/2001	5721	1.12.0	en	Nº SIDE	om	108
OPERATOR	INITIALS	TN	JH	TN	1-51-7	TW	10000	TN	Jot

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 10

CONDITION HAZ-1

List of Hazardous Materials contained at the facility:

- Aqua Ammonia 19%
- Acetylene
- Argon
- Oxygen
- Batteries
- Bromine
- Calibration gases for the CEMS
- CO₂
- Diesel Fuel
- Fire suppression chemicals
- Florescent light bulbs
- Freon for the chiller systems R-123
- Gas Turbine oil
- Gas compressor oil
- Reagents for the water treatment system
- SF6 in switch gear
- Anti-scalent RL 9007
- ChemTreat BL124
- Microbiocide ChemTreat CL2156
- ChemTreat CL6855
- 12.5% Sodium Hypochlorite Solution
- Simple Green
- ChemTreat CL41
- ChemTreat CL6855
- Powerback Concentrate with Anti-Foam Agent
- Unleaded gasoline
- Propane

	Location Information	Chemica	I Identification		Fire Code Hazard	Class Information		
1a*	201	205	207*	209	210a	210b	212	215
CERSID	ChemicalLocation	ChemicalName	CommonName	CASNumber	PFCodeHazardClass	SFCodeHazardClass	RadioActive	LargestContainer
10445230	RO WATER TREATMENT & DRUM STORAGE AREA		ANTISCALENT RL 900)7			N	350
10445230	AMMONIA STORAGE TANK		AQUA AMMONIA (1	9%)	5	31	N	10000
10445230	BENEATH BACK-UP GENERATOR		DIESEL FUEL		2		N	500
10445230	IN TURBINE ENGINES and DRUM STORAGE AREA		MOBIL JET OIL II		3		N	150
10445230	ELECTRIC GENERATORS AND DRUM STORAGE AREA		MOBIL DTE LIGHT OI	L	4		N	500
10445230	HYDRAULIC STARTERS AND DRUM STORAGE AREA		MOBIL DTE 25 OIL		4		N	55
10445230	NATURAL GAS COMPRESSORS AND DRUM STORAGE AREA		MOBIL PEGASUS 805	5 OIL	4		N	55
10445230	IN TRANSFORMERS		MINERAL OIL		4		N	5680
10445230	NEAR COOLING TOWER AND IN DRUM STORAGE AREA		BIOCIDE (CHEMTREA	T CL41)			N	330
10445230	NEAR COOLING TOWER AND IN DRUM STORAGE AREA		SODIUM HYPOCHLO	RITE SOLUTION	5		N	330
10445230	WAREHOUSE, NEAR EXHAUST TOWERS, & MEE BLDG		CALIBRATION GAS				N	150
10445230	SHOP-WAREHOUSE	PROPANE	PROPANE	74-98-6	8		N	290
10445230	SUBSTATION BUILDING	SULFUR HEXAFLUORIDE	SF6	2551-62-4			N	2400
10445230	IN FIRE FIGHTING EQUIPMENT - VARIOUS AREAS	CARBON DIOXIDE	CO2	124-38-9			N	437
10445230	Chiller Enclosure	Freon R-123	Freon	306-83-2			N	920
10445230	WATER TREATMENT		MICROBIOCIDE CL20	6 CHEMTREAT			N	120
10445230	WATER TREATMENT		ChemTreat BL 124		5		N	320
10445230	WATER TREATMENT		ChemTreat CL 2156		5		N	320
10445230	WATER TREATMENT		ChemTreat CL6855		5		N	320
10445230	DRUM STORAGE AREA		Simple Green				N	55
10445230	DRUM STORAGE AREA		POWERBACK CONCE	NTRATE WITH AN	TIFOAM AGENT		N	55
10445230	DRUM STORAGE AREA	Oil	WASTE OIL	8012-95-1	4		N	55
10445230	SHOP-WAREHOUSE	Acetylene	Acetylene	74-86-2	33	8	N	225
10445230	SHOP-WAREHOUSE	Oxygen	Oxygen Gas	7782-44-7	18		N	250
10445230	GAS COMPRESSOR YARD	Natural Gas	Natural Gas	8006-14-2	8		N	16700
10445230	12 kV Substation, Electrical Building (BPO EEE Room)		Lead Acid Batteries		5		N	4.8

File Report Company F Company Contact Pe Person Nan Phone : Email : Mailing Add	t for "C Profile Name erson E me :	Canyon I : Details	Power Pla	nt" Year City of Anah Mr. Ronald H Contact: 714 rhoffard@an 3071 East Mi Anaheim, 92	eim loffard (Gene 17654536 aheim.net	22 Federal tax II pration Manager)	D :	***	Sut	pmitted	Date: 02/13	3/2023	
Company F Company I Contact Pe Person Nan Phone : Email : Mailing Add	Profile Name erson E me : Idress I	: Details	tion	Year City of Anah Mr. Ronald H Contact: 714 rhoffard@an 3071 East Mi Anaheim, 92	r of Filing: 202 eim łoffard (Gene ł7654536 naheim.net	22 Federal tax II eration Manager)	D :	***	Sut	omitted	Date: 02/13	3/2023	
Company F Company Contact Pe Person Nan Phone : Email : Mailing Add	Profile Name erson E me : Idress I	: Details	tion	City of Anah Mr. Ronald H Contact: 714 rhoffard@an 3071 East Mi Anaheim, 92	eim Ioffard (Gene 17654536 naheim.net	Federal tax II eration Manager)	D :	***	***970				
Company Contact Pe Person Nan Phone : Email : Mailing Add	Name erson E me : Idress I	: Details Informal	tion	City of Anah Mr. Ronald H Contact: 714 rhoffard@an 3071 East Mi Anaheim, 92	eim Ioffard (Gene 17654536 naheim.net	Federal tax II eration Manager)	D :	***	***970				
Contact Pe Person Nan Phone : Email : Mailing Add	erson E me : Idress I dress Ir	Details	tion	Mr. Ronald H Contact: 714 rhoffard@an 3071 East Mi Anaheim, 92	loffard (Gene 17654536 naheim.net	eration Manager)							
Person Nan Phone : Email : Mailing Ad o	me : Idress I dress Ir	Informat	tion	Mr. Ronald H Contact: 714 rhoffard@an 3071 East M Anaheim, 92	Hoffard (Gene 17654536 naheim.net	eration Manager)							
Phone : Email : Mailing Add	ldress dress r	Informat	tion	Contact: 714 rhoffard@an 3071 East Mi Anaheim, 92	17654536 naheim.net								
Email : Mailing Add	ldress l dress Ir	Informat	tion	rhoffard@an 3071 East Mi Anaheim, 92	iraloma Ave								
Mailing Ad	ldress dress r	Informat	tion	3071 East M Anaheim, 92	iraloma Ave								
	dress Ir			3071 East M Anaheim, 92	iraloma ∆ve								
	dress Ir			CA	806								
Billing Add		nformati	on										
				3071 East M Anaheim, 92 Anaheim	iraloma Ave. 806								
Facility Prc	ofile												
Facility Nam	ne :			Canyon Pow	ver Plant	Federal tax II	D :	***	***970				
Contact Pe	erson D	Details											
Person Nan	me :			Mr. Ronald H	loffard (Gene	eration Manager)							
Phone :				Contact: 714	7654536								
Email :				rhoffard@an	aheim.net								
Mailing Ad	dress	Informat	tion										
				3071 East M Anaheim, 92 CA	iraloma Ave. 806								
Billing Add	dress Ir	nformati	on										
				3071 East M Anaheim, 92 Anaheim	iraloma Ave. 806								
Refrigeratio	on Sys	stem Lis	ting										
Number Sy	ystem ID	Full Charge (lbs)	Refrigera Type	nt Installation Date	Temperature Class	Equipment Type	Manufacture	r Operational Status	Model	Model Year	Serial Number	Location	Floor Plan (Y/N)
1 Cł	H-100	5200.00	R-123	05/12/2011	Medium	Chiller (Refrigeration/Industrial Process Cooling)	Trane	Normal Operation	CDHF3000	2011	L10A00350	North side of facility, in dedicated chiller	Y
2 Cł	H-200	5200.00	R-123	05/12/2011	Medium	Chiller (Refrigeration/Industrial Process Cooling)	Trane	Normal Operation	CDHF3000	2011	L10B00882	North side of facility in dedicated chiller enclosure.	Y

Nu	ımber	ALD ID	Refrigeration	Installation	ALD Type	Detection	Alarm	Concentration	Manufacturer	Number	Sensor	Sensor	Location of
			System ID	Date		Limit	Set	Monitor Type		of	Туре	Manufacturer	Sensors/Inlets
			-				Point			Sensors			

Refrigera	ation Syster	n Inspec	tion and Se	rvicing											
Number	Service Date	System ID	Leaks Detected?	Date Leak Detected	Date Leak Repaired	Number of Days	Refrigerant Added (Ibs)	Cause of Leak	Service Provided	Date of Initial VT	Date of Follow- up VT	Purpose Added Refrigera	of Technician Name nt	Certificate #	Certificate Type
1	02/03/2022	CH-100	No			0	0.00								
2	02/05/2022	CH-200	No			0	0.00								
3	02/07/2022	CH-100	No			0	0.00								
4	02/08/2022	CH-200	No			0	0.00								
5	02/09/2022	CH-200	No			0	0.00								
6	02/10/2022	CH-200	No			0	0.00								
7	02/16/2022	CH-200	No			0	0.00								
8	02/17/2022	CH-200	No			0	0.00								
9	02/15/2022	CH-100	No			0	0.00								
10	02/09/2022	CH-200	No			0	0.00								
11	05/25/2022	CH-200	No			0	0.00								
12	08/03/2022	CH-200	No			0	0.00								
13	10/31/2022	CH-100	No			0	0.00								
14	11/01/2022	CH-200	No			0	0.00								
15	12/21/2022	CH-100	No			0	0.00								
Leak Det	ection Syst	em Inspe	ection and \$	Servicing											
Number	•	Servic	e Date			ALD ID			S	ervice	Туре		Descrip	tion of Ser	vice
1	08/03/202	2		30	1-IRF A			Call	ibration			F r a c	Performed calil nonitor and ca t different leve peration on bo	pration test of librated both its of detection oth expansion	on ref i sensors on. Verified on modules.

Refriger	ant Purchase Information				
Туре	Total Purchased (lbs.)	Total Charged (lbs.)	Total Recovered (lbs.)	Total Stored (lbs.)	Total Shipped (lbs.)
R-123	0.00	0.00	0.00	0.00	0.00
Do you o	claim any of this information i	s confidential under Californi	a law? No		
Comme	nt				

Submitted By: Ronald Hoffard

CALIFORNIA AIR RESOURCES BOARD Phone: (916) 324-2517 Email: <u>rmp@arb.ca.gov</u> URL: <u>www.arb.ca.gov/rmp/rmp.htm</u>

Invoice Detail

Invoice No: 124638

Invoice For Year: 2022

ARB REFERENCE CODE: RMP

Dated: 02/13/2023

Ci	ty of Anaheim			
#	Facility Name	Amount Due(\$)	Exemption	Total (\$)
1	Canyon Power Plant (CIT003-001)	370.00	0	370.00
т	DTAL CHARGES			370.00

Please return a copy on the invoice with your payment to the address below.

"Checks should be made payable to the California Air Resources Board. If required for your company records, the CARB Federal Tax ID is 68-0288069. A \$10 service fee may apply for returned checks."

Air Resources Board

Attn: Accounting

P.O. Box 1436

1001 I St., Floor 20

Sacramento, CA 95812-1436

Online Payment Receipt

Invoice No:	124638	Dated:	2023-02-13
Invoice For Year:	2022		
Payment Amount:	\$370.00		
ARB Reference Code:	RMP		
Transaction Time:	02/13/2023 10:20:21 AM		
Payment Transaction Id:	130223C1B-BBEC2E5E-D5D2-49AA-8D72-C6864	E8037A4	
Payment Result:	APPROVAL		
Payment Approval Code:	013367		

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 11

CONDITION HAZ-8

In the annual compliance report, the project owner shall include the following statements:

"All current project employee and appropriate contractor background investigations have been performed and that updated certification statements have been appended to the operations security plan".

All current project employee and appropriate contractor background investigations have been performed and that updated certification statements have been appended to the operations security plan.

"The operations security plan includes all current hazardous materials transport vendor certifications for security plans and employee background investigations".

The operations security plan includes all current hazardous materials transport vendor certifications for security plans and employee background investigations.

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 12

SOIL & WATER USE REPORT-7

Monthly Water Reading Reports Recycle and Potable water usage & Wastewater Flow Meter Calibration Report

Company:	City of Anaheim/Canyon Power Plant	Period Start:	1/1/2023
Plant Location:	3071 E. Miraloma Ave.	Period End:	12/31/2023
City/State/Zip:	Anaheim, CA 92806		
	Pocyclo Water Usago		

Recycle Water Usage

Annual	Annual	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Average	
Total	Total	Average	Average	Minimum	Minimum	Maximum	Maximum	Gallons	
Gallons	Acre Feet	Gallons	Acre Feet	Gallons	Acre Feet	Gallons	Acre Feet	Per Day	
197,459,018	605.98	16,454,918	50.50	436,861	1.34	20,287,864	62.26	542,843	

Company:	City of Anaheim/Canyon Power Plant	Period Start:	1/1/2023
Plant Location:	3071 E. Miraloma Ave.	Period End:	12/31/2023
City/State/Zip:	Anaheim, CA 92806		

Potable Water Usage

Annual	Annual	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Average
Total	Total	Average	Average	Minimum	Minimum	Maximum	Maximum	Gallons
Gallons	Acre Feet	Per Day						
284,319	0.87	11,847	0.04	0.00	0.00	169,059	0.52	385

		Annı	ual Data		
-	Recycle	Water	Portable	Water	
	Annual	Annual	Annual	Annual	
	Total	Total	Total	Total	
	Acre Feet	Gallons	Acre Feet	Gallons	
2018	73.09	23,817,912	6.99	2,277,132	
2019	60.04	19,563,004	0.33	106,201	
2020	605.98	197,459,018	0.87	284,319	
Average	246.37	80,279,978	2.73	889,217	
Min	60.04	19,563,004	0.33	106,201	
Max	605.98	197,459,018	6.99	2,277,132	

Company:City of AnaheimPlant Location:3071 E. Miraloma Ave.City/State/Zip:Anaheim, CA 92806

Recycled Water Usage

	Start	End	Total	Month	Daily	Month
Date	Cubic-ft	Cubic-ft	Cubic-ft	gal	gal	Acre-ft
1/1/2023	27,429,800	27,488,200	58,400	436,861.20	14,092.30	1.34
2/1/2023	24,872,600	27,584,700	2,712,100	20,287,864.05	724,566.57	62.26
3/1/2023	25,033,100	27,733,600	2,700,500	20,201,090.25	651,648.07	61.99
4/1/2023	25,303,600	27,870,400	2,566,800	19,200,947.40	640,031.58	58.93
5/1/2023	25,494,400	28,006,700	2,512,300	18,793,260.15	606,234.20	57.67
6/1/2023	25,641,200	28,118,500	2,477,300	18,531,442.65	617,714.76	56.87
7/1/2023	25,872,700	28,526,900	2,654,200	19,854,743.10	640,475.58	60.93
8/1/2023	26,152,900	28,779,900	2,627,000	19,651,273.50	633,912.05	60.31
9/1/2023	26,614,800	28,897,000	2,282,200	17,071,997.10	569,066.57	52.39
10/1/2023	27,017,200	29,033,600	2,016,400	15,083,680.20	486,570.33	46.29
11/1/2023	27,177,600	29,095,400	1,917,800	14,346,102.90	478,203.43	44.03
12/1/2023	27,328,600	29,200,100	1,871,500	13,999,755.75	451,605.02	42.96
		Annual Total:	26,396,500	197,459,018.25		605.98
		Average:	2,199,708	16,454,918.19	542,843.37	50.50
	Мо	nthly Minimum:	58,400	436,861.20		1.34
Monthly Maximum:		2,712,100	20,287,864.05		62.26	

Potable Water Usage

HCF-1

	Start	End	Total	Month	Daily	Month
Date	Cubic-ft	Cubic-ft	Cubic-ft	gal	gal	Acre-ft
1/1/2023	1,127,300	1,127,500	200.00	1,496.10	48.26	0.00
2/1/2023	1,127,500	1,127,500	0.00	0.00	0.00	0.00
3/1/2023	1,127,500	1,127,500	0.00	0.00	0.00	0.00
4/1/2023	1,127,500	1,127,500	0.00	0.00	0.00	0.00
5/1/2023	1,127,500	1,127,500	0.00	0.00	0.00	0.00
6/1/2023	1,127,500	1,127,700	200.00	1,496.10	49.87	0.00
7/1/2023	1,127,700	1,127,700	0.00	0.00	0.00	0.00
8/1/2023	1,127,700	1,150,300	22,600.00	169,059.30	5,453.53	0.52
9/1/2023	1,150,300	1,150,300	0.00	0.00	0.00	0.00
10/1/2023	1,150,300	1,150,300	0.00	0.00	0.00	0.00
11/1/2023	1,150,300	1,150,500	200.00	1,496.10	49.87	0.00
12/1/2023	1,150,500	1,150,500	0.00	0.00	0.00	0.00
	•	Annual Total:	23,200.00	173,547.60		0.53
		Average:	1,933.33	14,462.30	466.79	0.04
		Monthly Minimum:	0.00	0.00		0.00
		Monthly Maximum:	22,600.00	169,059.30		0.52

HCF-2

	Start	End	Total	Month	Daily	Month
 Date	Cubic-ft	Cubic-ft	Cubic-ft	gal	gal	Acre-ft
1/1/2023	283,013	283,797	784	5,864.71	189.18	0.02
2/1/2023	283,797	284,955	1,158	8,662.42	309.37	0.03
3/1/2023	284,955	285,593	638	4,772.56	153.95	0.01
4/1/2023	285,593	286,595	1,002	7,495.46	249.85	0.02
5/1/2023	286,595	288,294	1,699	12,709.37	409.98	0.04
6/1/2023	288,294	289,591	1,297	9,702.21	323.41	0.03
7/1/2023	289,591	290,706	1,115	8,340.76	269.06	0.03
8/1/2023	290,706	292,887	2,181	16,314.97	526.29	0.05
9/1/2023	292,887	294,066	1,179	8,819.51	293.98	0.03
10/1/2023	294,066	295,242	1,176	8,797.07	283.78	0.03
11/1/2023	295,242	296,431	1,189	8,894.31	296.48	0.03
12/1/2023	296,431	297,821	1,390	10,397.90	335.42	0.03
	-	Annual Total:	14,808.00	110,771.24		0.34
		Average:	1,234.00	9,230.94	303.40	0.03
		Monthly Minimum:	638.00	4,772.56		0.01
		Monthly Maximum:	2,181.00	16,314.97		0.05

Summary for both meters				
Annual Total:	38,008.00	284,318.84		0.87
Average:	1,583.67	11,846.62	385.09	0.04
Monthly Minimum:	0.00	0.00		0.00
Monthly Maximum:	22,600.00	169,059.30		0.52

5875 Rickenbacker Road Commerce, CA 90040 323-867-9044 fax: 323-867-9045

January 17, 2024

Mr. Kevin Nugent Source Control Program Orange County Sanitation Districts 10844 Ellis Avenue Fountain Valley, CA 92708

Subject: Effluent Flow Meter Hydraulic Calibration Report

Facility: City of Anaheim Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806 I.W. Permit No. 1-600296

Dear Mr. Nugent,

Enclosed is our report on the effluent flow meter hydraulic calibration completed at the subject facility on January 17, 2024. The calibration was conducted in accordance with requirements of the Orange County Sanitation District, and the meter was determined to be operating within \pm 5% accuracy limits for the entire range tested.

If you have any questions regarding this calibration report, please contact me directly, or Bertha A. Hernandez, Environmental Services Specialist.

Sincerely,

Marco A. Gomez, P.E. Project Engineer

Enclosures

cc: Bertha A. Hernandez, Environmental Services Specialist

WASTEWATER FLOW METER HYDRAULIC CALIBRATION

PREPARED BY

FOR

City of Anaheim Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806

I.W. Permit No. 1-600296

January 17, 2024

The Conservtech Group / Flowtrace Division | 5875 Rickenbacker Road | Commerce | California | 90040 phone: 323-867-9044 | fax: 323-867-9045

EFFLUENT FLOW METER CALIBRATION REPORT

Company Name: City of Anaheim		Permit No.:	1-600296
Discharge Address: 3071 E. Miralom	na Ave. Anaheim, CA 928	306	
Mailing Address: 201 S. Anaheim H	3lvd. Suite 1101 Anaheim	, CA 92805	
Meter Location [Use Meter]	Location Form (page 3) to	o identify locat	ion]
a b c d XO	ther: (Attach sketch)		
Effluent Meter Description			
Open Channel			
A. Flume:	B. Weir.		C. Other
Parshall Flume	V-notch		Description:
Palmer-Bowlus Flume	Rectangular		
Trapezoidal	Trapezoidal		
Other, Specify:	Other, Speci	fy:	
X Magnetic Propeller Ultrasonic Other, Specify: Effluent Meter Description			
Primary Element	Secondary El	ement	
Size: 4"	Manufacture	:: N/A	
Manufacturer: Badger	Recorder's 10)0% span =	N/A GPM
Meter Series 2000	Totalizer Uni	ts: =	1 Gallons per Count
Sampling Signal Contact Closure Freque	ency: 1 closure per N	I/A gallons	discharged.
Current Facility Wastewater Disc	harge Rate to Sewer Det	termined by C	alibration Engineer
Average 200 GPM			

Peak 300 GPM

EFFLUENT FLOW METER CALIBRATION REPORT

5. Calibration Results

Type of Calibration: X Hydraulic Instrument

Calibration System			Existing	Error (%)			
Flow Rate GPM	Total Discharge Gallons	Primary Element's Head	Flow Ra Indicator	te, GPM Recorder	Total Discharge Gallons	Recorder	Totalizer
280	988		276	-	984	-	-0.4
200	706		198		700	-	-0.8
151	533		149	-	527	-	-1.1
102	360		99.2	-	350	-	-2.8
			_				

A copy of all data collected and of any calculations performed must be attached to this form.

6. Method of Calibration Results (attach additional sheets if necessary)

Hydraulic: (For in line flow meters describe calibration/simulator system)

Various flow rates were achieved using 125' of 2.5" fire hose from a local hydrant to the test meter. A 2" Halliburton turbine was used to measure the water flow. At each rate tested, the meter totalizer was timed using an electronic stopwatch for a number of counts. The accumulated volume was then compared to the actual volume to determine the totalizer accuracy.

Instrument:

7. Corrective Measures (describe condition of flow meter prior to calibration and state if any adjustments were made):

No corrective measures were required.

EFFLUENT FLOW METER LOCATION FORM

Please provide a schematic of the location of the effluent flow meter

Attachment:

Effluent Flow Meter Location

EFFLUENT FLOW METER MAINTENANCE RECORDS

Company Name: City of Anaheim		Permit No.: 1-600296					
Discharge Address: 3071 E. Miraloma Ave., An	aheim, CA 92806						
Mailing Address: 201 S. Anaheim Blvd., Suite	e 1101, Anaheim, CA	A 92805					
Name of Responsible Person : Bertha A. Hernar	ndez	Telephone No.	714-765-4243				
Recorder's 100% span = N/A GPM	Totalizer:	1 Gallons pe	r Count				
Type of Flow Meter: 4" Badger Meter Series 20	000						
Recorder Chart Change Frequency: Daily	Weekly	Monthly (not ap	plicable)				
REGULAR	CLEANING MAINTEN	IANCE					
Primary Element Level Measuring	Other						

Cleaned	Equipment Cleaned	(describe)	Date	Ву
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/11/15	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/11/16	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/09/17	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/10/18	Yip / Vitug
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/10/19	Paz / Gomez
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/10/20	Yip / Gomez
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/20/21	Yip / Gomez
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/20/22	Yip / Gomez
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/09/23	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/17/24	Yip / Gomez

CERTIFICATION OF CALIBRATION CHECK

(Certification of Test Results by a California Registered Professional Engineer)

I hereby certify that I am knowledgeable in the field of wastewater flow measurement and that I have supervised the calibration of the flow monitoring system as described on the previous page, and also have reviewed and approved all details of the method of calibration. I consider the calibration method and procedures used to be technically sound, and assume professional responsibility for the validity and accuracy of the results reported.

(Signature)

Marco A. Gomez, P.E. (Full Name - Please Print or Type)

M40596 Expires 12/31/25 (California Professional Engineering Certification No.)

Mechanical (Engineering Discipline)

1/17/24

CERTIFICATION OF TEST RESULTS BY AN ADMINISTRATIVE OFFICIAL OF THE COMPANY

City of Anaheim (Company Name)

1-600296 (Permit No.)

I hereby certify that the flow monitoring system certified as properly calibrated above is so arranged and operated, so as to accurately measure and record the industrial wastewater flow to the sewer system.

(Signature)

(Full Name - Please Print or Type)

GENERATION PLANT MANAGER (Administrative Position in Company)

1/30/24 (Date)

Appendix:

Field Calibration Data Calibration Certificate

Recorde	r:				Totalize	r:									-
MAX =	100		GPM		Finish: <u>116690563</u> Start: <u>116686053</u>				Client: City of Anaheim - Canyon Power Plant						
AVG = PK =	200	>							Date: 1/171/24 IW#: 1-600296						
Sampler			-		MULT:		1	š		Instrument:	4" Bad	aer Meter	M2000		-
Contact Closure = N/A gallons/pulse			Total:	4	1510	gallons		Recorder :	2				3.		
			Calibra	ated Flow	s and Data	a			M	eter		Recorde	er .	Tota	alizer
Tur	bine		Mano	ometer -	inches		Duration	Total	W.C.	Flow	Re	ading	Error	Total	Error
cycles	gpm	+	-	Δ	w.c.	gpm	min	gal	in.	gpm	%	gpm	%	gal	%
	280						3.53	988	-	270	-			984	-0,4
	200						3.53	706		198	1		1	700	-0.8
	151		A		-		3.53	533		149		-	100	527	-1.1
	102						3.53	360		99.2				350	-2.8
	-	-		-		-					-	-		-	-
											-				
Calibrati	on Type - -	X	Instrume	ntation ;			Not	es: 871 86	184 184 184	3:32		0,	8914 8844 70	1 1 0 3	:32
Hydraulic Meter Used:							(3) _ 89940 _ 89413 @ 3:32 527 @ 3:32 527 @ 3:32 						3:32		
							-								

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 13

SOIL & WATER REPORTS-8

OCSD Wastewater Quality Semi-Annual Monitoring Reports

TX Result Report

CITY OF ANAHEIM PULIC UTILITIES DEPARTMENT Environmental Services Letter of Transmittal

Ms. Kiranpreet Kaur Orange County Sanitation District	Date:	04/24/2023
Resource Protection Division 10844 Ellis Avenue Fountain Valley, CA 92708-7018	Project	Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806
	Subject:	Semi-Annual Self-Monitoring

Copy of Original	Description
1	Completed Semi-Annual Form OCSD Self-Monitoring Form for City of Anaheim Canyon Power Plant (Permit No. 1-600296).

1	As requested	For your action	For your files
	For approval	For your review	For your information
Via:	US Mail X FA) (71	(#8 of pgs. 4) 593-7799	Hand Delivery
Remarks:	Please contact me a any questions regar	it (714) 765-7481 or <u>bhernande:</u> ding this submittal.	z@anaheim.net if you have
	h	1 (Nu)	

By: Bertha A Hernandez, Environmental Services Specialist

City of Anaheim Public Utilities Department Environmental Services Division 200 S. Anaheim Boulevard, Suite 1101 Anaheim, CA 92807

April 04, 2023

Ronald Hoffard, Generation Plant Manager City of Anaheim, Public Utilities Department 3071 E. Miraloma Ave. Anaheim, CA 92806

Subject: REMINDER TO CONDUCT SELF-MONITORING Permit No. 1-600296

Please be reminded that Self-Monitoring must be conducted between April 01, 2023 -- April 16, 2023 in accordance with your company's permit requirements. Self-Monitoring must be conducted during a production day in accordance with the guidelines detailed in your company's permit.

It is your responsibility to comply with the requirements set forth in your company's permit. Failure to comply with all the directives, conditions, and requirements of the permit may result in enforcement action against your company.

If your company's permit shows a self-monitoring requirement for total toxic organics (TTOs) and your company has received a waiver from this self-monitoring, you are now required to submit a signed TTOs SMR form to us to comply with the TTO waiver requirements of the U.S. Environmental Protection Agency. Please indicate in the "Sample Comments" that you have received a TTOs self-monitoring waiver from us.

For permittees that have monthly as well as quarterly and/or semi-annual self-monitoring requirements, the forms may list more than the SMR constituents required for the monthly self-monitoring. We ask that you adhere to your permit's self-monitoring requirements and <u>sample only for the constituent(s) required on a monthly basis</u>, except when the guarterly and semi-annual self-monitoring are also required in the same month, in which case all constituents listed on the form must be analyzed for as specified in your permit.

Finally, for those who are required to submit meter readings, a list of the meter readings submitted within the last year is attached to the SMR form for your reference and comparison to current readings.

Thank you for your patience and cooperation. If you have any questions, please contact Kiranpreet Kaur at 714-593-7213.

Kiranpreet Kaur Senior Engineer

SMR No.: S-190686

SMR Type: Standard City of Anaheim, Public Utilities Department

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

Sampling Dates:	04/01/2023 to 04/16/2023 04/10/2023	Submit By Date:	04/30/2023
Sample Start Time:	0830 AM	Sample End Time:	0830 AM
Sampling Point Loca	tion: Sampling Structure located	in the center of the site	
Contact Person:	RONALD HOFFA	Contact Phone:	714-765-4536
		Contact Email:	RHOFFARD CANAHEIM.NE

Water Meter Readings: (If this is a batch discharge, enter volume only)

Location	Meter Type	Meter ID	Stop Reading	Start Reading	Volume	Units	Digits	Int
Center of site adjacent to the final clarifier/vault	Effluent Flow Meter	EM_1_60029 6	112345479	112324360	21119	G	9	

Composite

Sample Results: (If constituent is not detected or is less than detection limit, enter as reported in the lab results.)

Constituent			EPA		
Constituent	Result Un		Method		
BODT	ND	mg/L	SM 52	OB	
TSS	ND	mg/L	SM 254	10 D	

Sample Comments:

Please note that OC San's fax number has changed. Please use the new fax number (714) 378-1277 effective immediately if submitting completed form by fax.

To Submit Data - Fax: (714) 378-1277 or **Mail:** Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue, Fountain Valley, CA, 92708-7018

Questions: Contact Kiranpreet Kaur at 714-593-7213

T SMR No.: S-190686 SMR Type: Standard City of Anaheim, Public Utilities Department

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

This form must be completely filled out and Laboratory Analysis Report and Chain of Custody must be attached.

Please check if composite sample was obtained using an automatic sampling device: X) Yes () No

In accordance with 40 CFR 403.12, the results presented herein must be verified and signed under penalty of perjury by: (i) a responsible corporate officer; (ii) general partner or proprietor; or (iii) a representative who has responsibility for the overall operation of the permitted facility, who has been authorized by the corporate officer, general partner or proprietor to sign such reports, and such authorization has been made in writing and submitted to the District.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.[40 C.F.R. § 403.6(a)(2)(ii) (2005)]

Signature (Ronald Hoffard)

Title (Generation Plant Manager)

4/24/22 Date

Print Name

To Submit Data - Fax: (714) 378-1277 or **Mail:** Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue, Fountain Valley, CA, 92708-7018

Questions: Contact Kiranpreet Kaur at 714-593-7213

SMR No.: S-190686 SMR Type: Standard

City of Anaheim, Public Utilities Department

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

Sample Locatio	n: Compliance						
	Equipment			Re	ading		
Meter Type	Name	Event ID	Start - End Date	End	Start	Vol	
EFFLUENT	EM_1_600296	167684	10/10/2022 - 10/11/2022	109621916 Gallon	109591195 Gallon	30721	GPD
EFFLUENT	EM_1_600296	167683	4/11/2022 - 4/12/2022	104550876 Gallon	104525833 Gallon	25043	GPD

To Submit Data - Fax: (714) 378-1277 or **Mail:** Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue, Fountain Valley, CA, 92708-7018

Questions: Contact Kiranpreet Kaur at 714-593-7213

ALS Group USA, Corp. 3337 Michelson Drive, Suite CN750 Irvine, CA 92612 I +1 714 730 6239

23D0105

04/20/2023

Work Order No .:

Printed:

Report

Client: Canyon Power Plant 3071 E Miraloma Ave Anaheim, CA 92806 Attention: Bertha Hernandez Project Name: Canyon Power Plant Semi-Annually Wastewater Project Number: Canyon Power Plant P.O. Number: MA-106-491110 (exp 8/31/18)

CASE NARRATIVE

Date & Time Sample Start:	4/10/2023 8:30 AM
Date & Time Sample Stop:	4/11/2023 8:30 AM
Date & Time Meter Read Start:	4/10/2023 8:30 AM
Date & Time Meter Read Stop:	4/11/2023 11:15 AM

Flow Start Number: 112324360 GAL Flow Stop Number: 112345479 GAL Total Flow, GPD: 21119

SAMPLE RECEIPT SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
52-2-758 Composite	23D0105-01	Wastewater	Composite	04/11/2023 08:30	04/11/2023 00:00

DEFINITIONS

Symbol	Definition
SC	Seed Control oxygen depletions were outside the method acceptance limit.
BD	Blank unseeded oxygen depletion was greater than the method acceptance limit.
DF	Dilution Factor
MDL	Method Detection Limit
ND	Not Detected
RL	Reporting Limit

Respectfully yours,

Zondria L. Tuggles For Shelly Brady Customer Service Manager

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS Group, USA, Corp., and must be reproduced in its entirety.

Client: Canyon Power Plant		Projec	t Name:		Canyon Po	ower Plant Sem	I-Annually	wastewater	tewater	
		Projec	t Numbe	er:	Canyon Po	ower Plant		Printed: 04/20	/2023	
		52-2-7	58 Com	posite						
		23D0105	-01 (Was	stewa	ter)					
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes	
		ALS Gro	oup USA	, Corp						
Wet Chemistry					_		_	_	_	
Total Suspended Solids	ND	2.50	mg/L	1	2304271	04/14/2023 09	9:00 KDE	SM 2540 D		
General Chemistry										
Biochemical Oxygen Demand	ND	2.00	mg/L	1	2304291	04/17/2023 16	5:44 AEG	SM 5210B - 5 Day	BD,	

Burtank Manual

Consider Disses Direct Const Accountly Westernation

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS Group, USA, Corp., and must be reproduced in its entirety.

ALS GROUP USA - IRVINE

3337 Michelson Drive, Suite CN750, Irvine, CA 92612

ALS) (714) 730-6239 - FAX (714) 730-6462

METHODS COMMENTS COMPANY City of Anaheim, Canyon Power Plant NUMBER OF CONTAINERS CONTACT Victor Carnaggio/Ronald Hoffard FAX (714) 666-2410 (714) 765-4260/4536 PO# Ronald Hoffard PHONE 3071 E. Miraloma Ave. ADDRESS Semi-Annually Anaheim, CA 92806 Bill/Ship To: Southern California Public Power Authority SAMPLES (SIGNATURE) BOD TDS TSS DATE SAMPLE I.D. TIME DESCRIPTION 0830 X 3 4-11-23 х х 52-2-758 COMP 2 - 21.6 LABORATORY SAMPLE LOG-IN TOTAL NUMBER OF **Chain of Custody Signature Record** (Enter following line items on invoice): CONTAINERS SAMPLE CONDITIONS: 4-11-2 325 RECEIVED Relinguished Signature Company/ Agenc Date/Time 23 15: 2 Cool War **Received Signature** Company/ Agenc Date/Time 3. Relinguished Signature Company/ Agenc' Date/ Time 4 **Received Signature** Company/ Agenc' Date/Time Yes No 5 **Relinguished Signature** Company/ Agenc Date/ Time SPECIAL REQUIREMENTS: 6. Company/ Agenc Received Signature Date/ Time

2300105

CHAIN OF CUSTODY

X

DATE: 4/10 - 4/11/23

TURNAROUND TIME Normal TAT

PAGE: 1 OF 1

0220	Addressee	Start TH	e Time	Prints	Result	Note		
Note	TMR:Timer TX DPG:Page Sep FWD:Forward, FCODE:F-Code IPADR:IP Add	, POL:POlling aration TX, F PC:PC-FAX, E , RTX:Re-TX, ress Fax, I-F	A DRG:Origin IIX:Mixed Or ND:DOUBIE-S RLY:Relay, AX:Internet	hal Size Sa iginal TX: ided Bindin HBX:Confid Fax	ok CALLIMan ng Direct ential, B	ME:Frame Erase TX, Ual TX, CSRC:CSRC, Ion, SP:Special Original, UL:Bulletin, SIP:SIP Fax,		
Result	DK: Communic TEL: RX from Refuse: Recei POUR Receive DSN:DSN Resp DEL:Compulsor	ation OK, S-C TEL, NG: Oth ipt Refused, ng page Over, onse Error, F ry Nemory Doc	K: Stop Com er Error, Co Busy: Busy, FIL:File Er RINT:Compuls ument Delete	nunication Dot: Conti M-Full:Me ror, DC:D Sory Memor Sory Memor S, SEND:Con	, PW-OFF: nue, No An mory Full scode Erry y Document mpulsory)	Power Switch OFF. ns: No Answering length Over. or. MDN:MERCEIVIng length Over. or. MDN:MDN Response Error. 6 Print Memory Document Send.		
			CI PULI I	ITY OF C UTILITI Environmen Letter of T	ANAHI ES DEPAI Ital Service Transmitta	EIM RTMENT es al		
		Ms. Kiranpreet Orange County	Kaur Sanitation Distric	t De	ite: 10/3	30/2023		
To:	Resource Protect 10844 Ellis Aven Fountain Valley,	ction Division nue , CA 92708-7018	Pro	oject Car 307 Ana	nyon Power Plant 1 E. Miraloma Ave. aheim, CA 92806			
				Su	bject: Sen	ni-Annual Self-Monitoring		
	We	are sending you:						
	c	opy of Original	A second second	Description				
		1	Completed Semi-Annual Form OCSD Self-Monitoring Form for City of Anahaim Canyon Power Plant (Permit No. 1-600296)					
	The: Vis: Rem	e are transmitted As reque For appr US Mail Please c any que	sted oval X FAX # 8 c (714) 593 ontiact me at (714 stions regarding th	For your act For your rev of pgs. -7799) 765-7481 or his submittal.	bion riew Ha bhernandez@	For your files For your information and Delivery Danaheim.net if you have		

City of Anaheim Public Utilities Department Environmental Services Division 200 S. Anaheim Boulevard, Suite 1101 Anaheim, CA 92807

CITY OF ANAHEIM PULIC UTILITIES DEPARTMENT Environmental Services Letter of Transmittal

 To:
 Ms. Kiranpreet Kaur
Orange County Sanitation District
Resource Protection Division
10844 Ellis Avenue
Fountain Valley, CA 92708-7018
 Date:
 10/30/2023

 Project
 Canyon Power Plant
3071 E. Miraloma Ave.
Anaheim, CA 92806
 Subject:
 Semi-Annual Self-Monitoring

Copy of Original	Description
1	Completed Semi-Annual Form OCSD Self-Monitoring Form for City of Anaheim Canyon Power Plant (Permit No. 1-600296).

These are	transmitted:		
1	As requested	For your action	For your files
	For approval	For your review	For your information
Via:	US Mail X FAX	K # 8 of pgs. 4) 593-7799	Hand Delivery
Remarks:	Please contact me a any questions regar	at (714) 765-7481 or <u>bhernandez</u> ding this submittal.	@anaheim.net if you have
	L	BANA	

By: Bertha A Hernandez, Environmental Services Specialist

City of Anaheim Public Utilities Department Environmental Services Division 200 S. Anaheim Boulevard, Suite 1101 Anaheim, CA 92807 KK

KN

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

October 24, 2023

Ronald Hoffard, Generation Plant Manager City of Anaheim, Public Utilities Department 201 S. Anaheim Blvd., #802 Anaheim, CA 92805

Subject: REMINDER TO CONDUCT SELF-MONITORING Permit No. 1-600296

Please be reminded that Self-Monitoring must be conducted between October 01, 2023 -- October 16, 2023 in accordance with your company's permit requirements. Self-Monitoring must be conducted during a production day in accordance with the guidelines detailed in your company's permit.

It is your responsibility to comply with the requirements set forth in your company's permit. Failure to comply with all the directives, conditions, and requirements of the permit may result in enforcement action against your company.

If your company's permit shows a self-monitoring requirement for total toxic organics (TTOs) and your company has received a waiver from this self-monitoring, you are now required to submit a signed TTOs SMR form to us to comply with the TTO waiver requirements of the U.S. Environmental Protection Agency. Please indicate in the "Sample Comments" that you have received a TTOs self-monitoring waiver from us.

For permittees that have monthly as well as quarterly and/or semi-annual self-monitoring requirements, the forms may list more than the SMR constituents required for the monthly self-monitoring. We ask that you adhere to your permit's self-monitoring requirements and <u>sample only for the constituent(s) required on a monthly basis</u> except when the quarterly and semi-annual self-monitoring are also required in the same month, in which case all constituents listed on the form must be analyzed for as specified in your permit.

Finally, for those who are required to submit meter readings, a list of the meter readings submitted within the last year is attached to the SMR form for your reference and comparison to current readings.

Thank you for your patience and cooperation. If you have any questions, please contact Kiranpreet Kaur at 714-593-7213.

Kiranpreet Kaur Senior Engineer

KK

KN

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

SMR No.: S-190687 SMR Type: Standard

City of Anaheim, Public Utilities Department

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

Sample Start Date: //	0/11/2023	Sample End Date:	10/12/2023
Sample Start Time:	10:30 AM	Sample End Time:	10;30 Am
Sampling Point Location:	Sampling Structure located in	the center of the site	

Contact Person:

Contact Phone: Contact Email:

No Discharge

Water Meter Readings: (If this is a batch discharge, enter volume only)

ONALD

Location	Meter Type	Meter ID	Stop Reading	Start Reading	Volume	Units	Digits	Int
Center of site adjacent to the final clarifier/vault	Effluent Flow Meter	EM_1_60029 6	115602738	115585420	17318	G	9	

Composite

Sample Results: (If constituent is not detected or is less than detection limit, enter as reported in the lab results.)

1 OFFARD

Constituent			EPA
Constituent	Result	Units	Method
BOD T	2,78	mg/L	SM 5210B
TSS	ND	mg/L	SM2540D

Sample Comments:

Please note that OC San's fax number has changed. Please use the new fax number (714) 378-1277 effective immediately if submitting completed form by fax.

To Submit Data - Fax: (714) 378-1277 or **Mail:** Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue, Fountain Valley, CA, 92708-7018

Questions: Contact Kiranpreet Kaur at 714-593-7213

SMR No.: S-190687 SMR Type: Standard City of Anaheim, Public Utilities Department

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

This form must be completely filled out and Laboratory Analysis Report and Chain of Custody must be attached.

Please check if composite sample was obtained using an automatic sampling device: (VYes () No

DPPAR

In accordance with 40 CFR 403.12, the results presented herein must be verified and signed under penalty of perjury by: (i) a responsible corporate officer; (ii) general partner or proprietor; or (iii) a representative who has responsibility for the overall operation of the permitted facility, who has been authorized by the corporate officer, general partner or proprietor to sign such reports, and such authorization has been made in writing and submitted to the District.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprint or knowing violations.[40 C.F.R. § 403.6(a)(2)(ii) (2005)]

Signature (Ronald Hoffard)

Title (Generation Plant Manager)

Print Name

To Submit Data - Fax: (714) 378-1277 or **Mail:** Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue, Fountain Valley, CA, 92708-7018

Questions: Contact Kiranpreet Kaur at 714-593-7213

SMR No.: S-190687 SMR Type: Standard

City of Anaheim, Public Utilities Department General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

Sample Location:	Compliance						
	Equipment			Re	ading		
Meter Type	Name	Event ID	Start - End Date	End	Start	Vol	
EFFLUENT	EM_1_600296	190686	4/10/2023 - 4/11/2023	112345479 Gallon	112324360 Gallon	21119	GPD
EFFLUENT	EM_1_600296	167684	10/10/2022 - 10/11/2022	109621916 Gallon	109591195 Gallon	30721	GPD

To Submit Data - Fax: (714) 378-1277 or Mail: Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue, Fountain Valley, CA, 92708-7018

Questions: Contact Kiranpreet Kaur at 714-593-7213

ALS Group USA, Corp. 3337 Michelson Drive, Suite CN750 irvine, CA 92612 T +1 714 730 6239

> Work Order No.: Printed:

23/0210

10/23/2023

Report

Client:	Canyon Power Plant 3071 E Miraloma Ave Anaheim, CA 92806
Attention:	Bertha Hernandez
Project Name:	Canyon Power Plant Semi-Annually Wastewater
roject Number:	Canyon Power Plant
P.O. Number:	MA-106-491110 (exp 8/31/18)

CASE NARRATIVE

P

Date & Time Installed:	10/11/2023 10:30 AM
Date & Time Removed:	10/12/2023 10:30 AM

Flow Start Number:	115585420 GAL
Flow Stop Number:	115602738 GAL
Total Flow, GPD:	17318

SAMPLE RECEIPT SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
1-600296 Composite	23J0210-01	Wastewater	Composite	10/12/2023 10:30	10/12/2023 13:50

DEFINITIONS

Symbol	Definition
SC	Seed Control oxygen depletions were outside the method acceptance limit.
BD	Blank unseeded oxygen depletion was greater than the method acceptance limit.
DF	Dilution Factor
MDL	Method Detection Limit
ND	Not Detected
RL	Reporting Limit

Respectfully yours,

Zondria L. Tuggles For Shelly Brady Customer Service Manager

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS Group, USA, Corp., and must be reproduced in its entirety.

Client: Canyon Power Plant		Project Name:			Canyon Po	ower Plant Sem	i-Annually	Wastewate	r'	
		Projec	ect Number:		Canyon Power Plant			Printed: 10/23/2023		
		1-6002	96 Comp	osite	e					
		23J0210	01 (Wast	ewat	ter)			_		_
Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	g d	lotes
		ALS Gro	oup USA,	Corp) .					
Wet Chemistry										
Total Dissolved Solids	110	50.0	mg/L	1	2310308	10/18/2023 1	5:52 SMC	SM 25	40 C	
Total Suspended Solids	ND	2.50	mg/L	1	2310367	10/20/2023 04	8:10 LxH	SM 254	40 D	
General Chemistry										-
Biochemical Oxygen Demand	2.78	2.00	mg/L	1	2310328	10/18/2023 1	5:41 AEG	SM 5210B	- 5 Day	BD, SC

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS Group, USA, Corp., and must be reproduced in its entirety.

CHAIN OF CUSTODY

ALS GROUP USA - IRVINE

23J0210

X TURNAROUND TIME Normal TAT

DATE: 10/11 - 10/12/23 PAGE: 1 OF 1

3337 Michelson Drive, Suite CN750, Irvine, CA 92612 (714) 730-6239 - FAX (714) 730-6462

 Community of the literation 	1.16
METHO	DS

COMPANY CONTACT PHONE ADDRESS SAMPLES (SIG	City of Victor ((714) 7 3071 E Anahei Bill/Shi	Anaheim, Ca Carnaggio/Ro 265-4260/45 Miraloma A m, CA 92800 p To: Souther	nyon Power onald Hoffar 36 FA ve. 5 m California	Plant d (714) 666-2410 Public Power Authorit	N N	s	0								NUMBER OF CONTAINERS	COMMENTS PO# Ronald Hoffard Semi-Annually
SAMPL	E I.D.	DATE	TIME	DESCRIPTION	P	4 TS	80		\vdash	-	$\left \right $	_	-	++-	-	
1 2 3 4 6	Ch Reli Reli Reli	nain of Cu nhuished Signatur ecceved Signature nquished Signatur	stody S	ignature Reco	rd 23 Date/ Date/ Date/ Date/ Date/	Time 13 Time Time Time	50	LABORA (Enter fol	TORY S	SAMPLE line ite	LOG-I	IN invo	ice):		SAI	TOTAL NUMBER OF CONTAINERS MPLE CONDITIONS: RECEIVED Cool

OC Sanitation District

No Violations or Corrective Actions To report for CY 2023

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 14

VIS-4

SURFACE TREATMENT OF PROJECT STRUCTURES AND BUILDINGS

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 14

VIS-4

SURFACE TREATMENT OF PROJECT STRUCTURES AND BUILDINGS

VIS-4: Surface Treatment of Project Structures and Buildings

Condition of Certification VIS-4 requires a status report of the surface treatment maintenance for the structures and buildings in the Annual Compliance Report. The report shall specify the following:

1. The condition of surfaces of all structures and buildings at the end of the reporting year 2023:

- a. Butler Building (Administrative and Warehouse)
- b. Main Electrical Enclosure (MEE)
- c. Balance of Plan (BOPEE)
- d. Substation Building
- e. Chiller
- f. RO Skid (open wall with roof sheet metal covering)
 - i. The exterior building material is fabricated sheet metal. The colors and finishes do not create excessive glare and consistent with local policies and ordinances. All structure and buildings visual inspection showed no trouble items and all are in good working order.
- g. Gas Turbines (4 identical units)

2. Maintenance activities that occurred in CY 2023:

- a. May Planned Outage
 - i. Semi-annual maintenance performed
- b. December Planned Outage moved to January 2023
 - i. Semi-annual maintenance performed

3. Schedule maintenance activities for CY 2024:

- a. May 2023 Planned Outage
 - i. Semi-annual maintenance
- b. January 2024 Planned Outage
 - i. Semi-annual maintenance

Status report regarding condition of Structures and Buildings

The photographs below shows the surface treatment of project structures and buildings. All buildings comply with condition VIS-4.

Warehouse Building (1/24/24)

Main Electrical Enclosure Building (1/24/24)

Chiller Building (1/24/24)

Balance of Plant Building (1/24/24)

Administrative Building (1/24/24)

Substation Building (1/24/24)

RO Skid Structure (1/24/24)

LM 6000 Turbines (1/24/24)

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 15

LANDSCAPE SCREENING

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 15

LANDSCAPE SCREENING

VIS-5: Landscape Screening

Condition of Certification VIS-5 requires a status report in the Annual Compliance Report regarding landscape maintenance activities. At the Canyon Power Plant the landscape maintenance activities were performed according to the contract and consistent with policies and requirements of the City of Anaheim plan and zoning ordinance.

The contracted company performed the following landscape maintenance activities:

Contracted Landscape Services – Landscape West Mgmt. Service, Inc. (Period: Jan 1, through December 31, 2023).

Activity Type	Frequency		
Weed Control	2x/wk.		
Landscape areas			
Hardscape areas			
Gravel areas	1x/Mo		
Fertilization	2x/year		
Shrubs	-		
Ground cover			
Trees			
Pest Control	As needed		
Rodents			
Irrigation Maintenance	As needed		
Inspect all Sprinklers/Systems			
Trees	As needed		
Canopy Trees			
Maintenance/Clean-Up	2x/wk.		
Ground Cover and Shrubs			
Trash & Litter at Landscape area			
Trash & Litter at enclosed gravel areas			
Monthly Inspection			

The photographs below taken by staff on 1/24/2024 of the landscape maintenance demonstrating compliance pursuant VIS-5 condition:

Landscaping - Exterior Plants

Miraloma Avenue, south wall (1/24/24)

Miraloma Avenue, south wall (1/24/24)

East wall ivy (1/24/24)

Administration Building Planter (1/24/24)

Admin and Warehouse Building Planter (1/24/24)

Warehouse Planter (1/24/24)

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 16

AQ-9 NH3 SLIP TESTING

TEST REPORT FOR THIRD QUARTER 2023 AMMONIA SLIP TEST AT CANYON POWER PLANT – UNIT 2 FACILITY ID: 153992, DEVICE ID: D7

Prepared For:

Canyon Power Plant 3071 E. Mira Loma Avenue Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Rik Dupont

Test Date:July 27, 2023Production Date:September 25, 2023Report Number:W002AS-029212-RT-5107

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	Thit the	Date:	9/25/2023
Name:	Rik Dupont	Title:	Field Project Manager

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

Signature:	Sun	Date:	9/25/2023	
Name:	Surya Adhikari	Title:	Senior Reporting QC Specialist	

TABLE OF CONTENTS

<u>SEC</u>		<u>N</u> <u>P</u>	AGE
1.0	INTF	RODUCTION AND SUMMARY	5
2.0	UNIT	AND CEMS DESCRIPTION	6
	2.1	UNIT DESCRIPTION	6
	2.2	CEMS DESCRIPTION	7
	2.3	TEST CONDITIONS	7
	2.4	SAMPLE LOCATION	7
3.0	TES	T DESCRIPTION	8
4.0	TES	T RESULTS AND OVERVIEW	9
	4.1	TEST RESULTS	9
	4.2	TEST OVERVIEW	9
LIS	TOF	APPENDICES	
А	TES	T DATA	10
	A.1	SCAQMD Method 1.1 Data	11
	A.2	Sample Data Sheets	13
	A.3	Laboratory Data	17
	A.4	QA/QC Data	23
В	FAC	ILITY CEMS DATA	27
С	CAL	CULATIONS	32
	C.1	General Emissions Calculations	33
	C.2	Spreadsheet Summaries	37
D	QUA	LITY ASSURANCE	41
	D.1	Quality Assurance Program Summary	42
	D.2	SCAQMD and STAC Certifications	48
	D.3	Individual QI Certificate	51
_	D.4	Statement of No Conflict of Interest.	54
F	APP	LICABLE PERMIT SECTIONS	56
LIS	t of	TABLES	
1-1	AMI	MONIA SLIP TEST RESULTS SUMMARY	5
4-1	AMI	MONIA SLIP TEST RESULTS	9
LIS	T OF	FIGURES	
2-1	SIMF	PLIFIED PROCESS BLOCK DIAGRAM	6
3-1	SCA	QMD METHOD 207.1 SAMPLING EQUIPMENT	8

1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted by the Canyon Power Plant to perform an ammonia slip test at Unit 2 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on July 27, 2023. The test was performed by Rik Dupont, Ray Madrigal, Danny Avila, and Nestor Gonzalez of MAQS. Rik Dupont was the on-site Qualified Individual for MAQS. MAQS qualifies as an independent testing laboratory under SCAQMD Rule 304 (no conflict of interest) and is certified by the SCAQMD to conduct testing for criteria pollutants according to District Methods. Bertha Hernandez coordinated the test for Canyon Power Plant.

The test consisted of duplicate ammonia tests performed at 48 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to 15% O₂.

TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMARY CANYON POWER PLANT UNIT 2 JULY 27, 2023

Parameter/Units	Result ⁽¹⁾	Limit
NH₃ ppm ppm at 15%O₂	1.8 1.7	 5

(1) Maximum of duplicate runs, as required by SCAQMD Method 207.1.

Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.

2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46°F, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for CO and NO_x control respectively. A simplified process block diagram of the unit is presented as Figure 2-1.

Stack Inside Diameter: Distance from Upstream Disturbance: Distance from Stack Exit: 11 feet, 8 inches 23 feet, 4 inches (2.0 Diameters) 16 feet, 6 inches (1.4 Diameters)

2.2 CEMS DESCRIPTION

NO_x and CO emissions from the unit are monitored by a dry, extractive Continuous Emission Monitoring System (CEMS). Stack flow rate is determined from fuel flow rate, O₂ concentration, standard F-Factor, and fuel higher heating value using EPA Method 19.

2.3 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 48 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.4 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit. A diagram of the stack sample location and traverse points is presented in Appendix A.1.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a titanium probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis. A diagram of the sampling equipment is presented as Figure 3-1.

Stack O_2 and NO_x concentrations, and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 and to report the mass emission rates.

FIGURE 3-1 SCAQMD METHOD 207.1 SAMPLING EQUIPMENT

4.0 TEST RESULTS AND OVERVIEW

4.1 TEST RESULTS

The results of the test are summarized in Table 4-1. The results show that the ammonia slip was 1.7 ppm @ $15\% O_2$ which is less than the permitted limit of 5 ppm @ $15\% O_2$.

TABLE 4-1 AMMONIA SLIP TEST RESULTS CANYON POWER PLANT UNIT 2 JULY 27, 2023

Parameter/Units	1-NH ₃	2-NH ₃	Average	Maximum ⁽¹⁾	Limit
Start/Stop Time	1830/1936	2002/2108			
Stack Flow, dscfm @ T _{ref} ⁽²⁾	230,652	231,636	231,144		
O ₂ , % ⁽²⁾	14.45	14.47	14.46		
NO _x , ppmc ⁽²⁾	2.3	2.1	2.2		2.5
NH₃ ppmc Ib/hr Ib/MMBtu Ib/MMSCF	1.8 1.7 1.1 0.002 2.4	0.9 0.9 0.6 0.001 1.2	1.4 1.3 0.9 0.002 1.8	1.8 1.7 1.1 0.002 2.4	 5

(1) Maximum of duplicate test runs, as required by SCAQMD Method 207.1.

(2) From facility CEMS.

4.2 TEST OVERVIEW

The test program was successful in meeting the program objectives. The sample train was leak checked before and after the test and all QA/QC requirements of SCAQMD Method 207.1 were satisfied.

APPENDIX A TEST DATA

Appendix A.1 SCAQMD Method 1.1 Data

METHOD 1 DATA SHEET SAMPLE LOCATION

Appendix A.2 Sample Data Sheets

MONTROSE

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

V002AS-029212-RT-5107	CLIENT:_ LOCATIO DATE: RUN NO: OPERATO METER B METER A METER Y STACK A TRAVERS AH= Probe Co Silica Gel Filter Con Check We	N: i - W OR: V OR: V H@: /· H@: /· COX NO: H@: /· COX NO: H@: /· COX NO: H@: /· COX NO: H@: /· COX NO: H@: V COX NO: H@: V COX NO: H@: V COX NO: H@: V COX NO: H@: V COX NO: H@: V COX NO: COX NO: H@: V COX NO: COX NO	() A 27-23 H3-U2 AUI IA 7-07-3 589 .9866 .986 .986 .986 .986	24pm	AMBIEN BAROME ASSUME PITOT T PROBE I PROBE I NOZZLE FILTER I PRE-TES POST-TE PITOT LI CHAIN C	T TEMPERATU ETRIC PRESSU ED MOISTURE: UBE COEFF, C ID NO/MATERI/ LENGTH: DIAMETER: NO/TYPE: ST LEAK RATE EST LEAK RATE EST LEAK RATE EAK CHECK - F DF CUSTODY:	RE: 81~ JRE: 2-9 - 	5 С <u>1/2 %</u> / ТІТ M@/ <u>7</u> , ії M@/ <u>7</u> , ії М@/ <u>7</u> , ії П. 17 П. 17 І П. 17 П.	n. Hg. n. Hg.	Imp. 1 2 3 4 Ln Total	# Contents -IN H2 -IN H2	Post-Test -	Pre-Test = <u>743,9</u> <u>774.0</u> <u>8591.9</u> <u>2925,0</u> <u>0ML</u>	
ſ			Metér	ΔP	ΔH	Stack	Probe	Filter	Imp. Out	Meter	Temp, °F	Vacuum	O2	Pstatic
ļ	Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	In	Out	in. Hg.	%	in. H ₂ O
	3	1830	27.846	NIA	1.0	NIN	NIN	NIG	54	85	84	3 "	-	
4	2	1835	31.031						54	84	82			
오.		1840	34.653						54	85	86			
ດ	- 6	1845	31.452							0.17	0.0			
\sim	3	1841	51.454						57	87	87-			
ŀ	2	1852	40.615						55	61	180			
		1851	43. 118						55	80	17			
ł		IGAL	41 001			-				0.0	20	-		
	3	1009	76.95/						57	30	1-72			
ł	le	1910	22 214						24	44	51			
	E	1919	12.252						01	11	10			
	3	1921	51.252						50	20	710			
1	7	1476	59.491						5.5	78	75			
	1	1931	62-557		1				55	79	75-			1
I	E	1936	65-654					1						
							-			-	-			
					2									
										1				
	1													
					-		-			-				
					-					-	-			
	Augrant				-				-	-	-			
Į	Average:									-				

Comments:

MONTROSE

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

CLIENT: LOCATIO DATE: RUN NO OPERAT METER I METER I METER I STACK A TRAVER AHE Probe Co Silica Ge Filter Con Check W	SC) DN: OR: DOR:	292 07-27-7 07-27-7 04-3-42 04-3-42 04-3-42 05-42 05-42 05-42 05-42 05-42 05-42 05-42 05-42 05-27-7 05-27	5/12	AMBIEN BAROMI ASSUME PITOT T PROBE PROBE NOZZLE FILTER PRE-TES POST-TI PITOT L CHAIN C	T TEMPERATU ETRIC PRESSL ED MOISTURE: UBE COEFF, C ID NO/MATERI LENGTH: DIAMETER: NO/TYPE: ST LEAK RATE EST LEAK RATE EAK CHECK - F DF CUSTODY:	RE: 75 JRE: 29 JRE: 29 AL: 29 RIAL: 20 RIAL: 20 RI	M@_10" i M@_12" i POST: - JSTODIAN JSTODIAN	n. Hg. n. Hg. M	Imp. ; 1 2 3 4 4 Total:	*Contents ·IN H2 ·IN H Empi S6 DI12	Post-Test <u>soy 933 2xoy 751-</u> <u>6.55.</u> <u>907.5 </u>	Pre-Test -1 736, Z -7 49, Z -7 654. 	= Difference
		Meter	ΔΡ	ΔH	Stack	Probe	Filter .	Imp. Out	Meter 7	emp, °F	Vacuum	O2	Pstatic
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, "F	Temp, *F	Temp, "F	Temp, °F	In	Out	in. Hg.	%	in. H ₂ O
3	2000	20 190	NIX	1.0	NIN	NIN	NID	53	14	13	5"		-
	2001	72 045						55	17	170			
2	2011	76.999					-	00	10	10			
2	2019	76,900						54	74	71			
2	2.072	80-215						5-4	12	71			
1	2029	83-364						54	73	70			1
E	2034	86.511			1 1 1			1	1	1			1
3	2036	86.511						54	:73	71		1.1.1.1.1.1.1	
2	2041	89-629						54	73	70			1
1	2046	92-831						54	72	70			
E.	2051	95-884									10 M		2
3	2053	95-884						54	72	70			1
2	2058	98.955						54	71	76			1
<u> </u>	2103	102.008	+	+	1	1	1	54	71	70	1		1
e	2108	105-163					-		-				
												_	-
				-					-				
										-			
				-	-			-					-
													-
1	-				1.1								1
					M			1					
Average:					1				1.000				

Comments:

DS834048 Master Document Storage\Forms\Datasheets\Field Datasheets

W002AS-029212-RT-5107

MONTROSE

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

CLIENT: LOCATIO DATE: RUN NO OPERAT METER METER STACK A TRAVER $\Delta H= _N$	SC DN: 07-2 Field OR: DOR	Cany 1 - 23 1 - 23 1 - 23 1 - 23 2 - 23 2 - 20 1 - 584 0 - 984 0 - 984 2 - 106 106 106 106 106 106 106 106	20 20 27	AMBIENT BAROME ASSUME PITOT TU PROBE II PROBE L NOZZLE NOZZLE FILTER N PRE-TES POST-TE	TEMPERATU TRIC PRESSU D MOISTURE: JBE COEFF, C D NO/MATERI ENGTH: ID NO/ MATER DIAMETER: NO/TYPE: T LEAK RATE	IRE: 8 JRE: 29 Ip: N/10 AL: N/10 S N/10 RIAL: N/10 N/10 N/10 N/10 N/10 S CFI E:: CFI	0 1240 A TIT M@ M@	in. Hg. in. Hg.	Imp. # 1_ 2_ 3_ 4_ 1/2_	* Contents 0.1 N 14 0.1 N H e. ope F Su- DI Hz	Post-Test 2504 745.2 2004 775.1 5500 775.1 5500 933.0 0 10	- Pre-Test = 	Difference
Silica Ge	Expende	d, Y/N:	(~	CHAIN O	F CUSTODY:	SAMPLE CL	JSTODIAN 1	M	Total:				
Filter Cor Check W	ndition after eight:	er Test:	9/500.0			SAMPLER SAMPLE CL	DA ISTODIAN K	m					
Point	Timo	Meter Volume ff3	ΔP in H ₂ O		Stack	Probe	Filter	Imp. Out	Meter T	emp, °F	Vacuum in Ho	O2 %	Pstatic
							-					-	
-													
	5	1	\sim	, /	/	p/a	12 2	-					
	1.1.1.1	(/	10	ta	h	pull	A						
	-	Ť	1 -		/			-				2	
1	1			/									
			/					-					
1		/						-		-			
	/		-					-					
								-					
-		-		_				-				1	-
Average												1	

Comments:

W002AS-029212-RT-5107

Appendix A.3 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION DATA

District Method: SCAQMD 207.1

Project Number:	PROJ-029212		
Client/Location:	SCCPA-Canyon Power Plant/U2	Calibration Curve Slope:	-57.3599
Sample Location:	Stack	Y-intercept:	122.5849
Sample Date:	7/27/2023	R ² :	0.9999
Analysis Date:	8/7/2023	Thermometer #:	1
Analyst's Initials:	AE	ISE Electrode #:	22

Sample	Total Volume (mL)	Sample Temperature (°C)	Electrode Potential (mV)	Conc. µg NH3 /mi as N	C _{avg} as N	C_{avg} as NH_3	µg NH ₃ / sample	
Standard Check:	NA	22.6	37.4	30.556	20 212	36 947	NA	
$28 \ \mu g \ NH_3 \ / \ ml \ as \ N$	NA.	22.6	37.8	30.069	30.313	50.047	NA.	
1-11-112	E71 1	22.1	106.1	1.938	1 010 2 222	2 222	1222 120	
1-1113-02	5/1.1	22.1	106.6	1.900	1.919	2.333	1552.150	
2-NH112	504 7	22.0	124.0	0.945	0 040	1 153	685 727	
2-1113-02	394.7	22.0	123.8	0.952	0,545	1,155	003.727	
Spike	NA	22.1	44.2	23.257	22 710	27 605	NA	
1-NH3-U2	0/4	22.1	45.4	22.163	22.710	27.005	No	
Standard Check:	NA	22.5	37.9	29.949	30 375	36.923	NA	
$28 \ \mu g \ NH_3 \ / \ ml \ as \ N$	194	22.5	37.2	30.802	30,373		MA	
Reagent Blank	NA	23.2	214.0	0.025	0.000	0.026 0.021	0.021	NIA
0.1N H2SO4	NA.	23.2	213.2	0.026	0,020	0.031	NA	
DT H O Black	NA	21.8	202.2	0.041	0.041	0.040	NA	
DI H2O DIdlik	NA	21.8	202.6	0.040	0.041	0.049	NA	
Field Blank	705 4	22.5	209.9	0.030	0.020	0.036	12 001	
Field Blank	305.4	22.5	210.2	0.030	0.030	0.030	15.991	
Standard Check:	NA	22.5	37.9	29.949	900.00	30.009 36.478	NA	
28 μ g NH ₃ / ml as N	NA	22.5	37.8	30.069	30.009		NA	

Notes:

- Measured Concentration of Ammonia (C) in ug NH 3 / ml as N.

- C=10^{(P-B)/M}, P = electrode potential (mV), M=slope and B=intercept.

Average Measured Ammonia Concentration (C avg) = (C₁ + C₂)/2 where C₁, C₂ are results from duplicate analyses (ug NH 3 /ml as N).

 $- C_{avg} (ug NH_3/ml as NH_3) = C_{avg} (ug NH_3/ml as N) * 17.03/14.01.$

ug NH₃ / sample = C_{avg} (ug NH₃/ml as NH₃) * TV.

- Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate, analyzed in duplicate.

- Sample pH and temperatures can be found on the laboratory datasheet.

- Maximum number of samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate,

- All samples are collected in 0.1N H 2SO4 and allowed to equilibrate to room temperature.

- All calibration verification standard (C.V.) are prepared in 0.04N H 2SO4 and allowed to equilibrate to room temperature.

- Sample solutions, blanks and C.V. Standard temperature must be within ± 2°C.

- Spike: 100 ml sample + 2 ml 1000ppm NH 3 as N.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

District Method: SCAQMD 207.1

MONTRUSE

Project Number:	PROJ-029212	
Client/ Location:	SCCPA-Canyon	Power Plant/U2
Sample Location:	Stack	
Sample Date:	7/27/2023	
Analysis Date:	8/7/2023	
Analyst's Initials:	AE	

Sample	Recovery (%)	RPD (%)	RPA (%)
Standard Check: 28 µg NH ₃ / ml as N	NA	1.61	8.259
1-NH3-U2	NA	2.01	NA
2-NH3-U2	NA	-0.80	NA
Spike 1-NH3-U2	108.30	4.82	NA
Standard Check: 28 μ g NH ₃ / ml as N	NA	-2.81	8.484
Reagent Blank 0.1N H ₂ SO ₄	NA	-3.21	NA
DI H ₂ O Blank	NA	1.61	NA
Field Blank	NA	1.20	NA
Standard Check: 28 µg NH ₃ / ml as N	NA	-0.40	7.175

Notes:

- Spike: 100 ml sample + 2 ml 1000ppm NH 3 as N.

- Matrix Spike Percent Recovery (%R).

- %R = (C_{spike}*0.104 C_{sample}*0.102)/2 *100.
- Cspike = average result of matrix spike (ug NH 3/ ml as N).
- Relative Percent Difference (RPD) = (C $_1$ -C $_2$)/ C $_{avg}$ *100 (must be 5% or less).
- Relative Percent Accuracy (RPA) (must be 10% or less).
- RPA = (C_{avg}-theoretical value of standard)/ theoretical value of standard * 100.

33E

ĸı

AMMONIA ELECTRODE CALIBRATION CURVE DATA

District Method:	SCAQMD 207.1	
Date:	August 7, 2023	
Project Number:	PROJ-029212	
Client/Location:	SCCPA-Canyon Power	Plant/U2

NH ₃ concentration (µg NH3 / ml as N)	Log NH ₃ concentration	Electrode Potential (mV)	Sample Temperature (°C)	Room Temperature (°C)
1	0.000	122.9	22.1	22.3
5	0.699	82.2	22.1	22.3
20	1.301	47.6	22.1	22.3
100	2.000	8.2	22.1	22.3

Slope	Y-Intercept	R ²
-57.3599	122.5849	0.9999

NH ₃ concentration (µg NH3 / ml as N)	Value LR line	Difference	% Difference
1	0.9874	-0.0126	-1.2569
5	5.0590	0.0590	1.1793
20	20.2895	0.2895	1.4473
100	98.6645	-1.3355	-1.3355

Notes:

- Regression Line: P=M*log(ug of NH₃/ ml as N)+B.

- Measured Concentration of Ammonia (C) in ug / ml NH₃ as N: $C=10^{(P-B)/M}$ where P = electrode potential, M= slope and B= intercept.

- All standards are prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.
- Slope of calibration curve must be between -54 and -60.
- R² must be 0.997 or greater.
- Calibration solution temperature must be within ± 2°C.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS DATA

District Method: SCAQMD 207.1

VA MONTROSE

Project Number:	PROJ-029212
Client/Location:	SLCP4-Langon Fower Plant/ UZ
Sample Location:	stack
Sample Date:	7/27/23
Analysis Date:	8/7/23

Calibration Curve:	457.3599+ +122.5849
R ² :	0.9944
Thermometer #:	1
ISE Electrode #:	22
Analyst's Initials:	AF

NH3 concentration (µg NH3 / ml as N)	Electrode Potential (mV)	Sample Temperature (°C)	Room Temperature (°C)
1	122.9	22-1	22.3
5	82.2	22.1	22.3
20	47.6	22.1	22.3
100	8.2	22.1	22.3

Sample	Total Volume (mL)	Sample Temperature (°C)	Electrode Potential (mV)	Blue after ISA (Y/N)	pН
Standard Check:	NA	22.6	37.4	Y Y	NA
20 µg 1113 / 111 as 11		26.6	>+8	U	
1-NH3-V2	571.1	7.2	06.	- T	62
ou H11 0	59117	220	124.0	4	67
L-NH3-UL	019.1	22.0	1238	Y	- 4
Spike: 1-NH3-V2	NA	22.1	442	4	NA
opiner	1043	22.1	45.4	4	1.1.1
Standard Check:	NA	22.5	37.9	Y	NA
20 µg mig/ mids n		00.3	0 11	1	
0.1N H ₂ SO ₄	NA	13.7	213.2	Y	NA
	1.4	210	102.2	Ý	
DI H ₂ O Blank	NA	21.8	202.1	Y	NA
Field Blank	2954	22.5	1.69.9	Y	22
FICIU DIALIK	202.1	22.5	210.2		
Standard Check:	NA	22.5	37.4	4	NA
28 µg NH ₃ / ml as N	INA	22.5	37.8	4	NA

Notes:

- Used 100 ml of samples or standards with 2 ml ISA and constant stirring rate.

- Spike: 100 ml sample + 2 ml 1000ppm NH₃ as N.

- All calibration solution and calibration verification standard (C.V.) are prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

- All samples are collected in 0.1N H₂SO₄ and allowed to equilibrate to room temperature.

- All solutions turned blue and remained blue with ISA unless otherwise indicated.

- Maximum number of samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

- All samples must have a pH of less than 2.

- Sample solutions, calibration solution and C.V. standard temperature must be within ± 2°C of one another.

- Slope of calibration curve must be between -54 and -60.

- R² must be 0.997 or greater.

CHAIN OF CUSTODY

CLIEN	T: SCPPA - Canyon P	ower Plant	PROJECT #: PROJ-029212	TEST DATE(S):	7/27/2023	
LOCATIO	N: <u>U2</u>			SAMPLER(S):	DA, RM, NG	
SAMPLE LOCATIO	N: Stack			PROJECT MANAGER:	RD	
TEST METHOD(S	S): SCAQMD 207.1			DATE DUE:	8/3/2023	
UTSIDE LAB REQUIRED	?: No			COMPLIANCE TEST?:	Yes	
DATE TIME	TEST #	SAMPLE DESCRIPTION	CONTAINERS	SAMPLER	COMMENTS	
7/27/2023 1830/19	36 1-NH3-U2	Probe, Line, Impingers	1	DA, RM, NG		
7/27/2023 2002/21	08 2-NH3-U2	Probe, Line, Impingers	1	DA, RM, NG		
7/27/2023	Reagent Blank	0.1 N H ₂ SO ₄	1	RD		
7/27/2023	Reagent Blank	DI H2O	1	RD		
7/27/2023	FB-NH3-U2	Probe, Line, Impingers	1	DA, RM, NG		
DELEASE		DATE/TIME			DATECTIME	
1 IL	ומט	DATE/TIME	RECEN		DATE/TIME	

RELEASED BY	DATE/TIME	RECEIVED BY	DATE/TIME		
ily my	7/28/23 123	o Advian Enwright	68/7/23 0900		

MONTROSE Date of Last Revision 9/1/2017

Chain of Custody - DS834001 - Excel Master Document Storage\Forms\Datasheets\Lab Forms

W002AS-029212-RT-5107

Appendix A.4 QA/QC Data

Orifice Method - Triplicate Runs/Four Calibration Points Model #: E.S. C-5000 Source Sampler English Meter Box Units, English K' Factor ID #: 7-WCS Filename: W:\SW\Santa Ana\Equipment\Test Equipment\Calibrations\Dry Gas Meters\7-WCS\2023\7WCS Semi Annual Cal 07-07-2023 Date: 7/7/2023 File Modified From: APEX 522 Series Meter box Calibration Bar. Pressure: 29.80 4/8/2005 Performed By: JMS Revised:

(in. Hg) Reviewed By: Surva Adhikari

				DRY GAS METER READINGS						AL ORIFICE RE	ADINGS	1		
		Volume	Volume	Volume	Initial	Temps.	Fina	Temps.	Orifice	K' Orifice	Actual		Ambient Tempe	rature
dH (in H2O)	Time (min)	Initial (cu ft)	Final (cu ft)	Total (cu fl)	(deg F)	Outlet (deg F)	(deg F)	Outlet (deg F)	Serial# (number)	(see above)	Vacuum (in Hg)	(deg F)	Final (deg F)	Average (deg F)
0.11	26.00	952.000	957.510	5,510	76.0	74.0	77,0	75.0	AA-33	0.1582	19.0	70.0	71.0	70.5
0.11	26.00	957,510	963.010	5.500	77.0	75.0	78.0	77.0	AA-33	0.1582	19.0	71.0	73.0	72.0
0.11	26.00	963.010	968.490	5.480	78.0	77.0	80.0	78.0	AA-33	0.1582	19.0	73.0	73.0	73.0
0.56	12.00	934.000	939,560	5.560	78.0	74.0	78.0	75.0	QI-48	0.3459	17.0	70.0	70.0	70.0
0.56	12.00	939.560	945.140	5.580	78,0	75.0	79.0	75.0	QI-48	0.3459	17.0	70.0	70.0	70.0
0.56	12.00	945.140	950.720	5.580	79.0	7.5.0	80.0	76.0	CI-48	0.3459	17.0	70.0	70.0	70.0
1.80	7.00	915.000	920,570	5.570	77.0	71.0	78.0	71.0	QI-63	0.6022	16.0	69.0	69.0	69.0
1.80	7.00	920.570	926.200	5.630	78.0	71.0	79.0	72.0	QI-63	0.6022	16.0	69.0	69.0	69.0
1.80	7.00	926.200	931.820	5.620	79.0	72.0	81.0	73.0	QI-63	0.6022	16.0	69.0	69.0	69.0
3.40	5.00	897.000	902.350	5.350	70.0	68.0	72.0	69.0	AA-73	0.8167	15.0	68.0	68.0	68.0
3.40	5.00	902.350	907.750	5.400	72.0	69.0	75.0	69.0	AA-73	0.8167	15.0	68.0	69.0	68.5
3.40	5.00	907.750	.913.150	5.400	75.0	69.0	77.0	71.0	AA-73	0.8167	15.0	69.0	69.0	69.0

DRY GA	S METER		ORIFICE		DRY	GAS METER	ORIFICE		- 64 A - 7	1414	2.4
VOLUME	VOLUME	VOLUME	VOLUME	VOLUME	CALIBR	ATION FACTOR	CALIBRATION FACTOR	Individual Run	Individual Orifice	Orifice Average	Orifice Average
Vm(rtd)	Valad	Vorletd	Vor(eld)	Vor		Value	Value	0.05 × V	Venau Venin	DOR - VNA	AUG AUG AU
(cuff)	(liters)	(citfl)	(liters)	(cuff)		(number)	(in H2O)	< 1.052	< 0.0102	< 1 022	< 0.155?
5.410	153.2	5.322	150.7	5.371	-	0.984	1.453	Pass	40.0101	11021	40.1001
5.388	152.6	5.314	150.5	5.378		0.986	1.453	Pass			
5,353	151.6	5.309	150.4	5.383		0.992	1.452	Pass			
					Average	0.987	1.453		Pass	Pass	Pass
5.458	154.6	5.373	152.2	5.417		0.984	1.546	Pass			_
5,472	155.0	5.373	152.2	5.417		0.982	1.544	Pass			
5.465	154.8	5.373	152.2	5.417		0.983	1.543	Pass			
					Average	0.983	1.544		Pass	Pass	Pass
5.505	155.9	5.462	154.7	5.496		0.992	1.647	Pass			
5.556	157.4	5.462	154.7	5.496		0.983	1.646	Pass			
5.534	156.7	5.462	154.7	5,496		0.987	1,642	Pass			
					Average	0.987	1.645		Pass	Pass	Pass
5.353	151.6	5.296	150.0	5.319		0.989	1.696	Pass			
5.388	152.6	5.293	149.9	5.322		0.982	1.696	Pass			
5.370	152.1	5.291	149.8	5.324		0.985	1.695	Pass			
					Average	0.986	1.696		Pass	Pass	Pass
					Average Yd:	0.986	dH@: 1.564				

SIGNED: Signature on File Date:

Q @ dH = 1: 0.596

7/7/2023

7WCS Semi Annual Cal 07-07-2023 WCS 8/25/2023 10:10 AM

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 7-WCS Readout Description: Control Box Date: 7/5/2023 Performed By: L. Olivares

Calibrated Thermocouple ID: TC-Cal T1 Reference Thermometer ID: 313010 T2 Reference Thermometer ID: 805002770 T3 Reference Thermometer ID: 805002803

T/C I.D.	Readout		T/C - F	Readout PF			Reference 7	Diffe	1			
TC-Cal	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (~ 370 F)	7-WCS	379	379	379	379	375	375	375	375	4.0	0.5%	Pas
T2 (~212 F)	7-WCS	213	213	213	213	210	210	210	210	3.0	0.4%	Pas
T1 (- 32 F)	7-WCS	30	30	30	30	32	32	32	32	2.0	0.4%	Pas

1) Difference % (°R) = Difference (°F) / (Average Tref + 460)

2) Pass if all Differences are less than 1.5% (°R)

Thermocouple Source Readings

	T/C Source		T/C - F	Readout °F		1	T/C S	iource F		Diffe	erence	
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	129462	648	648	648	648	650	650	650	650	2.0	0.2%	Pas
T3 (-370 F)	129462	367	367	367	367	370	370	370	370	3.0	0.4%	Pas
T2 (~212 F)	129462	210	210	210	210	212	212	212	212	2.0	0.3%	Pas
T1 (~32 F)	129462	29	29	29	29	32	32	32	32	3.0	0.6%	Pas

1) Difference % (°R) = Difference (°F) / (Average Tref + 460) 2) Pass if all Differences are less than 1.5% (°R)

Ba	rometric Pressure D	etermination
Date:	07/27/23	
Data By:	Rik Dupont	
Reference:	https://	forecast.weather.gov/MapClick.php?lon=_ 962867946365⪫=33.863355545614255
Reference Barometer ID		FW0063 Fullerton CSU (F0063)
Reference Barometer Location		Lat: 33.8805°NLon: 117.88417°WElev: 247ft.
Reference Barometer Other Info.		27 Jul 04:23 PM PDT
Reference Barometer Indication, corrected to sea	a level	29,90
Reference Barometer Reference Elevation		247
Reference Barometer Actual Pressure		29.65
Test Barometer Location/Site		Canyon Power Plant
Location/Site Elevation		279
Location/Site Barometric Pressure		29.62
Sampling Location Height (above/below site elev-	ation)	60
Sampling Location Barometric Pressure		29.56

APPENDIX B FACILITY CEMS DATA

Version 48.0

Average Values Report Generated: 7/27/2023 21:49 1-NH3

W002A	Company: City Of Anahe Plant: 3071 Miraloma A City/St: Anaheim, CA, Source: 2	tim We., 92806								Perio Pe	od Start: 7/2 iod End: 7/2 Validation T Averaging P Typ	7/2023 18:31 7/2023 19:36 ype: 1/1 min eriod: 1 min e: Block Avg
S-0292	Period Start:	Average 2_02 %	Average 2_NOXPPM ppm	Average 2_NOX_CORR ppm	Average 2_NOX_LBHR #/br	Average 2_NOX_LBMM #/MBTU	Average 2_GasFlow kscfh	Average 2_LOAD MW	Average 2_STACKFLW kscfm	Average 2 COPPM ppm	Average 2_CO_CORR	Average 2_CO_LBHR #/hr
12	07/27/2023 18:31	14.46	2.55	2.34	4.47	0.009	473.4	48.20	234.2	3.64	3.33	3.73
Ņ	07/27/2023 18:32	14.45	2.55	2.34	4.47	0.009	473.3	48.19	234.1	3.63	3.33	3.73
넔	07/27/2023 18:33	14.46	2.56	2.35	4.48	0.009	473.6	48.22	234.3	3.65	3.34	3.73
Ĥ	07/27/2023 18:34	14.46	2.56	2.35	4.47	0.009	473.3	48.22	234.1	3.66	3.35	3.73
ப்	07/27/2023 18:35	14.46	2.58	2.36	4.49	0.009	474.8	48.33	234.9	3.66	3,35	3.74
-	07/27/2023 18:36	14.44	2.59	2.37	4.49	0.009	474.7	48.32	234.1	3.65	3.93	3.74
2	07/27/2023 18:37	14.45	2.61	2.39	4.48	0.009	474.6	48,33	234.4	3.62	3.31	3.69
7	07/27/2023 18:38	14.44	2.64	2.41	4.49	0.009	475.5	48.43	234.5	3.61	3.30	3.69
	07/27/2023 18:39	14.43	2.66	2.43	4.49	0.009	475.1	48.39	233.9	3.58	3.26	3.64
	07/27/2023 18:40	14.44	2.67	2.44	4.50	0.009	475.7	48.40	234.6	3.56	3.25	3.65
	07/27/2023 18:41	14.43	2.67	2.43	4.48	0.009	473.8	48.22	233.3	3.55	3.24	3.63
	07/27/2023 18:42	14.47	2.67	2.45	4.47	0.009	473.1	48.19	234.4	3,57	3.28	3.63
	07/27/2023 18:43	14.47	2.64	2.42	4.48	0.009	473.6	48.21	234.7	3.60	3.30	3.68
	07/27/2023 18:44	14.46	2.61	2.39	4.48	0.009	474.1	48.26	234.5	3.61	3,31	3.68
	07/27/2023 18:45	14.46	2.60	2.38	4.47	0.009	473.1	48.21	234.1	3.63	3.33	3.73
	07/27/2023 18:45	14.47	2.62	2.40	4.47	0.009	472.9	48.19	234.3	3.62	3,32	3.72
	07/27/2023 18:47	14.46	2.60	2.38	4.48	0.009	474.0	48.25	234.5	3.62	3,32	3.68
N	07/27/2023 18:48	14.47	2.58	2.37	4.47	0.009	472.6	48.14	234.1	3.62	3.32	3.72
∞	07/27/2023 18:49	14.48	2.60	2,39	4.48	0.009	473.6	48.24	235.0	3.63	3.34	3.73
약	07/27/2023 18:50	14.45	2.60	2.38	4.48	0.009	474.4	48.33	234.3	3.62	3.91	3.69
ရ	07/27/2023 18:51	14.46	2.58	2.36	4.47	0.009	472.7	48,15	233.8	3.62	3.32	3.67
Ň	07/27/2023 18:52	14.48	2.59	2.38	4.47	0.009	472.6	48.17	234.5	3.62	3.33	3.72
	07/27/2023 18:53	14.48	2.57	2.36	4.47	0.009	472.9	48.14	234.6	3.65	3.35	3.72
	07/27/2023 18:54	14.47	2.54	2.33	4.47	0.009	473.0	48.19	234.4	3.66	3.35	3.73
	07/27/2023 18:55	14.46	2.54	2.33	4.48	0.009	473.6	48.23	234.3	3.66	3.35	3.73
	07/27/2023 18:56	14.46	2,56	2.35	4.48	0.009	473.6	48.23	234.3	3.64	3.33	3.73
	07/27/2023 18:57	14.45	2.58	2.36	4.48	0.009	474.5	48.37	234.3	3.62	3.31	3.69
	07/27/2023 18:58	14.44	2.59	2.37	4.49	0.009	475.2	48.35	234.4	3.59	3.28	3.69
	07/27/2023 18:59	14.45	2.61	2.39	4.48	0.009	474.4	48.29	234.3	3.58	3.27	3.64
	07/27/2023 19:00	14.44	2.63	2.40	4.48	0.009	474.4	48.30	233.9	3.59	3.28	3.69
	07/27/2023 19:01	14.45	2.62	2.40	4,49	0.009	474.8	48.33	234.5	3.62	3.31	3.69
	07/27/2023 19:02	14.44	2.60	2.37	4.49	0.009	475.2	48.40	234.4	3.63	3.32	3.69
	07/27/2023 19:03	14.44	2.51	2.29	3.98	0.008	474.1	48.24	233.8	3.63	3.32	3.68
	07/27/2023 19:04	14.45	2.44	2.23	3.99	0.008	475.3	48.35	234.8	3.63	3.32	3.69
	07/27/2023 19:05	14.43	2.42	2.21	3.99	0.008	475.0	48.34	233.9	3.61	3.29	3.69
	07/27/2023 19:06	14.44	2.42	2.21	3.99	0.008	475.1	48.38	234.3	3.60	3.29	3.69
	07/27/2023 19:07	14.43	2.44	2.23	3.99	0.008	475.2	48.33	234.0	3.60	3.28	3.69
	07/27/2023 19:08	14.45	2.44	2.23	3.99	0.008	474.5	48.29	234.3	3.60	3.29	3.69
	07/27/2023 19:09	14.44	2.44	2.23	3.98	0.008	473.8	48.25	233.7	3.60	3.29	3.68
	07/27/2023 19:10	14.47	2.42	2.22	3.97	0.008	472.8	48.11	234.2	3.60	3.30	3.67
	07/27/2023 19:11	14.47	2.39	2.19	3,97	0.008	472.7	48.15	234.2	3.62	3.32	3.72
	07/27/2023 19:12	14.47	2.37	2.17	3.97	0.008	473.1	48.17	234.4	3.63	3.33	3.73
	07/27/2023 19:13	14.46	2.35	2.15	3.97	0.008	472.8	48.18	233.9	3.64	3.33	3.72
	07/27/2023 19:14	14.47	2.35	2.16	3.97	0.008	472.8	48.15	234.2	3.63	3.33	3.72
	07/27/2023 19:15	14.46	2.35	2.15	3.98	0.008	474.1	48.27	234.5	3,64	3,33	3.73
	07/27/2023 19:16	14.44	2.35	2.15	3.99	0.008	475.0	48.34	234.3	3.64	3.32	3.74
	07/27/2023 19:17	14.44	2.37	2.16	4.00	0.008	476.2	48.42	234.8	3,63	3.32	3.70
	07/27/2023 19:18	14.43	2.40	2.19	3.99	0.008	475.0	48.33	233.9	3.62	3.30	3.69
	07/27/2023 19:19	14.45	2,44	2,23	3,98	0.008	474.0	48.24	234.1	3.62	3.31	3.68

NM

NH3

	Period St.	art:	Average 2_02 %	Average 2_NOXPPM ppm	Average 2_NOX_CORR ppm	Average 2_NOX_LBHR #/br	Average 2_NOX_LBMM #/MBTU	Average 2_GasFlow kscfb	Average 2_LOAD MW	Average 2_STACRFLW kscfm	Average 2_COPPM ppm	Average 2_CO_CORR ppm	Average 2_CO_LBHR #/hr
	07/27/2023	19:20	14.45	2.44	2.23	3.98	0.008	473.5	48.21	233.9	3.61	3.30	3.68
\leq	07/27/2023	19:21	14.46	2.40	2.20	3.97	0.008	472.7	48.15	233.B	3.62	3.32	3.67
6	07/27/2023	19:22	14.46	2.38	2.18	3.98	0.008	474.3	48.26	234.6	3.63	3.33	3.74
õ	07/27/2023	19:23	14.45	2.36	2.16	3.98	0.008	473.6	48.21	233.9	3.63	3.32	3.68
2	07/27/2023	19:24	14.46	2.37	2.17	3.98	0.008	473.4	48.20	234.2	3.63	3.33	3.73
to 1	07/27/2023	19:25	14.46	2.38	2.18	3.98	0.008	473.3	48.17	234.1	3.62	3.32	3.68
ž	07/27/2023	19:26	14.47	2.36	2.17	3.98	0.008	473.4	48.19	234.6	3.62	3.32	3.73
22	07/27/2023	19:27	14.46	2.36	2.16	3.97	0.008	473.0	48.16	234.0	3.63	3.33	3.73
ö	07/27/2023	19:28	14.47	2.36	2.17	3.97	0.008	472.9	48.16	234.3	3.64	3.34	3.72
N	07/27/2023	19:29	14.46	2.35	2.15	3.98	0.008	473.5	48.19	234.2	3.64	3.33	3.73
2	07/27/2023	19:30	14.45	2.34	2.14	3.98	0.008	473.9	48.23	234.1	3.64	3.33	3.73
뉴	07/27/2023	19:31	14.44	2.36	2.16	3.99	0.008	474.5	48.26	234.0	3,64	3.32	3.74
~	07/27/2023	19:32	14.44	2.39	2.18	3.99	0.008	475.3	48.35	234.4	3.61	3.30	3.69
<u>ل</u>	07/27/2023	19:33	14.43	2.40	2.19	4.00	0.008	475.8	48.36	234.3	3.60	3.28	3.70
2	07/27/2023	19:34	14.43	2.42	2.21	3.99	0.008	474.8	48.30	233.8	3.60	3.28	3.69
0	07/27/2023	19:35	14.44	2.41	2.20	4.00	0.008	475.7	48.38	234.6	3.60	3.29	3.70
7	07/27/2023	19:36	14.42	2.41	2.19	4.00	0.008	476.0	48.42	234.0	3.60	3.28	3.70
_	Daily	Average*	14.45	2.49	2.28	4.22	0.008	474.0	48.26	234.2	3.62	3.31	3.70
		Maximum*	14.48	2.67	2.45	4.50	0.009	476.2	48.43	235.0	3.66	3.36	3.74
			07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023
			18:53	18:42	18:42	18:40	19:02	19:17	18:38	18:49	18:55	18:54	19:31
		Minimum*	14.42	2.34	2.14	3.97	0.008	472.6	48.11	233.3	3.55	3.24	3.63
			07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023
			19:36	19:30	19:30	19:28	19:36	18:52	19:10	18:41	18:41	18:41	18:42

* Does not include Invalid Averaging Periods ("N/A")

2-NH3

Average Values Report Generated: 7/27/2023 21:51

W002A	Company: City Of Anahe Plant: 3071 Miraloma A City/St: Anaheim, CA, Source: 2	21m Ave., 92806								Perio Per	od Start: 7/2 riod End: 7/2 Validation T Averaging P Typ	7/2023 20:03 7/2023 21:08 ype: 1/1 min eriod: 1 min e: Block Avg
S-0292	Period Start:	Average 2_02 %	Average 2_NOXPPM ppm	Average 2_NOX_CORR ppm	Average 2_NOX_LBHR #/br	Average 2_NOX_LBMM #/MBTU	Average 2_GasFlow kscfb	Average 2_LOAD MW	Average 2_STACKFLW kscfm	Average 2_COPPM ppm	Average 2_CO_CORR ppm	Average 2_CO_LBHR #/hr
2	07/27/2023 20:03	14.44	2.43	2.22	4.00	0.008	475.9	48.44	234.7	3.66	3.34	3.75
N	07/27/2023 20:04	14.44	2.42	2.21	3.99	0.008	474.5	48,31	234.0	3.66	3.34	3.74
÷	07/27/2023 20:05	14.47	2,42	2.22	3.98	0.008	473.4	48.18	234.6	3.65	3.35	3.73
Ã	07/27/2023 20:06	14.47	2.41	2,21	3.99	0.008	474.9	48.32	235.3	3.64	3.34	3.74
4	07/27/2023 20:07	14.46	2.36	2.16	4.00	0.008	475.6	48.38	235.3	3.66	3.35	3.75
2	07/27/2023 20:08	14,46	2.34	2.14	3.98	0.008	473.5	48.16	234.2	3.68	3.37	3.78
O.	07/27/2023 20:09	14.48	2.36	2.17	3.99	0.008	474.5	48.30	235.4	3.72	3.42	3.84
7	07/27/2023 20:10	14.47	2.36	2.17	3.99	0.008	475.3	48.37	235.5	3.74	3.43	3.84
	07/27/2023 20:11	14.46	2.35	2.15	3.99	0.008	475.4	48.35	235.2	3.73	3.42	3.84
	07/27/2023 20:12	14.46	2.36	2.16	4.00	0.008	475.6	48.43	235.3	3.71	3.40	3.80
	07/27/2023 20:13	14.44	2.36	2.16	3.99	0.008	475.3	48.35	234.4	3.70	3.38	3.79
	07/27/2023 20:14	14.47	2.38	2.18	3.98	0.008	473.3	48.21	234.5	3.71	3.40	3.78
	07/27/2023 20:15	14.47	2,38	2.18	3.99	0.008	474.5	48.29	235.1	3.71	3.40	3.79
	07/27/2023 20:16	14.47	2.35	2.16	3.99	0.008	475.4	48.38	235.5	3.72	3.41	3.84
	07/27/2023 20:17	14.45	2.34	2.14	4.00	0.008	476.0	48.45	235.1	3.73	3.41	3.85
	07/27/2023 20:18	14.45	2.36	2.16	4.00	0.008	475.7	48.38	235.0	3.73	3.41	3.85
	07/27/2023 20:19	14.47	2.38	2.18	3.98	0.008	474.1	48.27	234.9	3.73	3.42	3 83
<i>c</i> .>	07/27/2023 20:20	14.48	2.38	2.19	3.98	0.008	473.4	48.17	234.9	3.72	3.42	3 83
ö	07/27/2023 20:21	14.49	2.37	2.18	3,98	0.008	474.2	48.28	235.7	3 70	3 41	3.79
0	07/27/2023 20:22	14.47	2.34	2,15	3.98	0.008	474.0	48.23	234 8	3 70	3 40	3 79
¥.	07/27/2023 20:23	14.48	2.32	2.13	3.98	0.008	473.2	48.15	234 8	3.72	3.47	3.93
<u>ဂ</u>	07/27/2023 20:24	14.49	2.31	2,13	3.97	0.008	472.9	48.15	235.0	3 75	3 45	3.00
10	07/27/2023 20:25	14.49	2.30	2.12	3,98	0.008	474 1	48 24	235 6	3 77	2 47	2.00
	07/27/2023 20.26	14 48	2 30	2.11	3.99	0.008	474 9	49.33	235.6	3.70	2.40	3.00
	07/27/2023 20:27	14.47	2.30	2.11	2.99	0.008	475 4	48 36	235.5	3 70	2,40	3.09
	07/27/2023 20:28	14 47	2.34	2 15	3 99	0.008	474 6	49 31	235.3	3.70	2.47	3.02
	07/27/2023 20:29	14.47	2.36	2 17	4 00	0.008	475 8	48.40	725 7	3.75	3.45	3.05
	07/27/2023 20.30	14 46	2 35	2.15	3 97	0.008	473.0	49.40	235.7	3.70	3.43	2.00
	07/27/2023 20.31	14 49	2.35	2 16	3 98	0.008	474 3	48.25	231.0	3.79	5.45	3.02
	07/27/2023 20-32	14 48	2.33	2.14	7 98	0.008	477 A	48 20	224 9	3.75	3.42	3.00
	07/27/2023 20.33	14 49	2 31	2.13	1 99	0.000	474 0	10.20	234.5	3.70	3,40	3.00
	07/27/2023 20.34	14 48	2 31	2.12	3 98	0.008	474.0	40.20	235.0	3.70	3.48	3.88
	07/27/2023 20.35	14 48	2 31	2.12	2 99	0.000	474.0	40.20	235.5	3.75	2,40	3.88
	07/27/2023 20.36	14.49	2 31	2 12	2 00	0.008	472.0	40,00	235.4	3.80	3.47	3.88
	07/27/2023 20.30	14 40	2.31	2.11	3.20	0.008	473.0	40,64	235,4	2.80	3.50	3.88
	07/27/2023 20:37	14,40	2.30	2.11	3.30	0.008	473.8	48.19	235.1	3.80	3.49	3.88
	07/27/2023 20:30	14.49	2.30	2.12	3.30	0.008	473.3	48.19	435.4	3.81	3.51	3.93
	07/27/2023 20:33	14.49	2.30	2.12	3.98	0.008	4/3.8	48.22	235.5	3.81	3.51	3.93
	07/27/2023 20:40	14.40	2.29	2.10	3.98	0.008	4/3./	48.24	235.1	3.81	3.50	3.93
	07/27/2023 20:41	14.40	2.28	2.10	3.99	0.008	4/4.5	48.31	235.4	3.80	3.49	3.89
	07/27/2023 20:42	14.48	2.29	2.10	3.99	0.008	474.9	48,32	235.6	3.77	3.46	3.89
	02/22/2023 20:43	14.47	2.31	2.12	3.99	0.008	475.4	48,38	235.5	3.76	3.45	3.84
	07/27/2023 20:44	14.47	2.32	2.13	3.98	800.0	474.0	48.23	234.8	3.76	3.45	3.83
	07/27/2023 20:45	14.48	2.33	2.14	3.98	0.008	474.0	48.22	235.2	3.79	3.48	3.88
	07/27/2023 20:46	14.49	2.32	2.14	3.98	0.008	473.3	48.19	235.2	3.81	3.51	3.93
	07/27/2023 20:47	14.49	2.31	2.13	3.98	0.008	473.6	48.20	235.4	3.83	3.53	3.93
	07/27/2023 20:48	14.49	2.29	2.11	3.98	0.008	473.8	48.23	235.5	3.84	3,53	3.93
	07/27/2023 20:49	14.48	2.28	2.10	3.98	0.008	473.8	48.19	235.1	3.82	3.51	3.93
	07/27/2023 20:50	14,48	2.28	2.10	3.98	0.008	473.2	48.19	234.8	3.81	3.50	3.93
	07/27/2023 20:51	14.49	2.28	2.10	3.97	0.008	473.0	48.13	235.1	3.80	3 50	3 97

2-NH3

10101011 1011

	Period Sta	irt:	Average 2_02 %	Average 2_NOXPPM ppm	Average 2_NOX_CORR ppm	Average 2_NOX_LBHR #/hr	Average 2_NOX_LBMM #/MBTU	Average 2_GasFlow kscfh	Average 2_LOAD MW	Average 2_STACKFLW kscfm	Average 2_COPPM ppm	Average 2_CO_CORR ppm	Average 2_CO_LBHR #/hr
-	07/27/2023	20:52	14.49	2.27	2.09	3.97	0.008	473.1	48.16	235.1	3.82	3.52	3.92
\leq	07/27/2023	20:53	14.49	2.25	2.07	3.98	0.008	474.1	48.25	235.6	3,84	3.53	3.93
S	07/27/2023	20:54	14.48	2.23	2.05	3.98	0.008	474.4	48.28	235.4	3.85	3.54	3.93
ŏ	07/27/2023	20:55	14.48	2.25	2.07	3,99	0.008	474.9	48.34	235.6	3.86	3.55	3.99
2	07/27/2023	20:56	14.47	2.28	2.09	4.00	0.008	475.9	48.40	235.8	3,85	3.53	3.95
Å.	07/27/2023	20:57	14.46	2.30	2.11	4.00	0.008	475.8	48.40	235.4	3.84	3.52	3.95
5	07/27/2023	20:58	14.46	2.31	2.12	4.00	0.008	475.7	48.42	235.3	3.82	3.50	3.95
20	07/27/2023	20:59	14.46	2.34	2.14	3.99	0.008	475.0	48.30	235.0	3.81	3.49	3.89
ö	07/27/2023	21:00	14.48	2.37	2.18	3.98	0.008	473.8	48.16	235.1	3.77	3.46	3.88
Ņ	07/27/2023	21:01	14.49	2.37	2.18	3.98	800.0	473.8	48.25	235.5	3.75	3.45	3.83
2	07/27/2023	21:02	14,48	2.35	2.16	3.99	0.008	474.5	48.30	235.4	3.73	3.43	3.84
<u>-</u>	07/27/2023	21:03	14.47	2.38	2,18	4.00	0.008	475.6	48.40	235.6	3.70	3.40	3.80
~	07/27/2023	21:04	14.46	2.41	2,21	3.99	0.008	475.2	48.29	235.1	3.68	3.37	3.79
~	07/27/2023	21:05	14.48	2.39	2,20	3.98	0.008	473.5	48.16	235.0	3.73	3,43	3.83
2	07/27/2023	21:06	14.47	2.36	2.17	4.00	0.008	475.7	48.35	235.7	3.77	3.46	3.90
0	07/27/2023	21:07	14.46	2.35	2.15	4.00	0.008	476.5	48.40	235.7	3.78	3.46	3.90
7	07/27/2023	21:08	14.47	2.35	2.16	3.97	0.008	473.0	48.15	234.4	3.78	3.47	3.87
	Daily	Average*	14.47	2.33	2.14	3.99	0.008	474.4	48.28	235.2	3.76	3.45	3.86
		Maximum*	14.49	2.43	2.22	4.00	0.008	476.5	48.45	235.8	3.86	3.55	3.99
			07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023
			21:01	20:03	20:05	21:07	21:08	21:07	20:17	20:56	20:55	20:55	20:55
		Minimum*	14.44	2.23	2.05	3.97	0.008	472.9	48.13	234.0	3.64	3.34	3.73
			07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023	07/27/2023
			20:13	20:54	20:54	21:08	21:08	20:24	20:51	20:30	20:06	20:06	20:05

* Does not include Invalid Averaging Periods ("N/A")

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

GENERAL EMISSIONS CALCULATIONS

- I. <u>Stack Gas Velocity</u>
 - A. Stack gas molecular weight, lb/lb-mole

MW_{dry} = 0.44 * % CO₂ + 0.32 * % O₂ + 0.28 * % N₂

 $MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$

B. Absolute stack pressure, iwg

$$P_{s} = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_{s} = 2.9 * C_{p} * \sqrt{\Delta P} * \sqrt{T_{s}} * \sqrt{\frac{29.92 * 28.95}{P_{s} * MW_{wet}}}$$

- II. <u>Moisture</u>
 - A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528^{\circ}R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

- A. Actual stack gas volumetric flow rate, wacfm
- $Q = V_s * A_s * 60$
- B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority – Canyon 3Q23 Unit 2 NH_3

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, Ib/MMBtu

$$\frac{1b}{MMBtu} = \frac{ppm * MW_i * F}{SV * 10^6} * \frac{20.9}{20.9 - \% O_2}$$

VI. <u>Percent Isokinetic</u>

$$I = \frac{17.32 * T_{s} (V_{mstd})}{(1 - B_{wo}) 0 * V_{s} * P_{s} * Dn^{2}} * \frac{520^{\circ}R}{T_{ref}}$$

VII. Particulate Emissions

- (a) Grain loading, gr/dscf C = 0.01543 ($M_n/V_m \text{ std}$)
- (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
- (c) Mass emissions, lb/hr M = C * Q_{sd} * (60 min/hr) / (7000 gr/lb)
- (d) Particulate emission factor

 $Ib/10^6 Btu = Cx - \frac{1 Ib}{7000 gr} * F * \frac{20.9}{20.9 - \% O_2}$

Nomenclature:

As	=	stack area, ft ²
B _{wo}	=	flue gas moisture content, dimensionless
C _{12%CO2}	=	particulate grain loading, gr/dscf corrected to 12% CO ₂
С	=	particulate grain loading, gr/dscf
Cp	=	pitot calibration factor, dimensionless
Dn	=	nozzle diameter, inches
F	=	fuel F-Factor, dscf/MMBtu @ 0% O ₂
Н	=	orifice differential pressure, iwg
I	=	% isokinetics
Mn	=	mass of collected particulate, mg
Mi	=	mass emission rate of specie i, lb/hr
MW	=	molecular weight of flue gas, lb/lb-mole
M _{wi}	=	molecular weight of specie i:
	SO ₂ :	64
	NO _x :	46
	CO:	28
	HC:	16
0	=	sample time, minutes
ΔP	=	average velocity head, iwg = $(\sqrt{\Delta P})^2$
P _{bar}	=	barometric pressure, inches Hg
Ps	=	stack absolute pressure, inches Hg
P _{sg}	=	stack static pressure, iwb
Q	=	wet stack flow rate at actual conditions, wacfm
Q_{sd}	=	dry standard stack flow rate, dscfm
SV	=	specific molar volume of an ideal gas at standard conditions, ft ³ /lb-mole
T _m	=	meter temperature, °R
T _{ref}	=	reference temperature, °R
Ts	=	stack temperature, °R
Vs	=	stack gas velocity, ft/sec
V _{Ic}	=	volume of liquid collected in impingers, ml
V _m	=	uncorrected dry meter volume, dcf
V _{mstd}	=	dry meter volume at standard conditions, dscf
V _{wstd}	=	volume of water vapor at standard conditions, scf
Y _d	=	meter calibration coefficient

Appendix C.2 Spreadsheet Summaries

MONTHOSE

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U2

Identifier	Description	Units	Equation	Value
A	Reference Temperature	F		60
В	Reference Temperature	R	A + 460	520
C	Meter Calibration Factor (Yd)	-		0.986
D	Barometric Pressure	" Hg	-	29.56
E	Meter Volume	acf	-	37.808
F	Meter Temperature	F		79.8
G	Meter Temperature	R	F + 460	539.8
H	Delta H	" H ₂ O		1.0
1	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	35.565
J	Liquid Collected	grams		112.2
к	Water vapor volume	scf	0.0472 * J * B/528	5.216
L	Moisture Content	-	K/(K + I)	0.128
M	Gas Constant	ft-lbf/lb-mole-R		1545.33
N	Specific Molar Volume	SCF/Ib-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu	and the second	8,710
P	HHV	Btu/SCF		1,050
Q	Mass Conversion Factor	lb/ug	(E)	2.2046E-09
R	O ₂ Correction Factor	1. C	-	15
S	Stack Flow Rate @ 68 F	dscfm	-	234,200
т	Stack Flow Rate @ Tref	dscfm	S * B/528	230,652
Ų	Mass NH ₃	ug	-	1,332
V	Mass NH ₃	lb	U*Q	2.94E-06
W	MW of NH ₃	Ib/Ib-mole		17.03
x	NH ₃	ppm	(V * N *10°)/(I * W)	1.8
Y	Flue Gas O ₂	%		14.45
z	NH ₃	ppmc	X * (20.9 - R)/(20.9 - Y)	1.7
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10°)	1.1
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10°) * 20.9/(20.9 - Y)	0.002
AC	NH ₃	Ib/MMSCF	AB * P	2.4

Note:

(1) Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

WA MONTRUSE

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility Unit Sample Location	Canyon U2 Stack	1.33	Parameter Fuel Data By		NH ₃ Natural gas RD
Test Number	1-NH3-U2	2-NH3-U2	Average	Maximum	Limit
Reference Temperature (°F) Test Date Test Method Sample Train Meter Calibration Factor Stack Area (ft ²) Sample Time (Minutes)	60 7/27/2023 SCAQMD 207.1 7-WCS 0.986 106.90 60	60 7/27/2023 SCAQMD 207.1 7-WCS 0.986 106.90 60			
Barometric Pressure ("Hg)	29.56	29.56			
Start/Stop Time Meter Volume (acf) Meter Temperature (°F) Meter Pressure (iwg) Liquid Volume (ml) Stack O ₂ (%) Unit Load (MW)	1830/1936 37.808 79.8 1.0 112.2 14.45 48.26	2002/2108 37.556 71.9 1.0 106.8 14.47 48.28	14.46 48.3	(from facility CEN	ЛS)
Standard Sample Volume (SCF)	35.565	35.852		1.0.0	
Moisture Fraction Stack Flow Rate (dscfm, 68 °F) Stack Flow Rate (@ Tref)	0.128 234,200 230,652	0.122 235,200 231,636	234,700 231,144	(from facility CEN	AS)
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH3 (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft ³ /lb-mole) F-Factor (dscf/MMBtu) HHV(Btu/SCF) Mass Conversion (lb/ug) O ₂ Correction Factor (%)	379.5 8,710 1,050 2.2046E-09 15	379.5 8,710 1,050 2.2046E-09 15			
Mass NH ₃ (ug)	1,332.130	685.727			
Mass NH ₃ (lb)	2.94E-06	1.51E-06			
NH ₃ (ppmv, flue gas)	1.84	0.94	1.39	1.84	
NH_3 (ppmv @ O_2 Correction Factor) NH_3 (lb/hr)	1.68 1.14	0.86 0.58	1.27 0.86	1.68 1.14	5
NH3 (Ib/MMBtu) NH3 (Ib/MMSCF)	0.002 2.41	0.001 1.23	0.002 1.82	0.002 2.41	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

Point	Meter Volume	Delta H	Tm In	Tm Out
3	27.846	1.0	85	84
2			84	82
1			83	82
3			84	82
2			81	80
1			80	79
3			80	78
2			79	77
1			79	76
3			78	76
2			78	75
1			79	75
Stop	65.654			
Result	37.808	1.0	7	9.8

		Impinger	Weights	
Out	#	Post-Test	Pre-Test	Difference
4	1	944.6	743.9	200.7
12	2	776.4	774.0	2.4
12	3	592.8	591.9	0.9
2	4	933.2	925.0	8.2
0	Line Rinse	0.0	100.0	-100.0
9				112.2

2.	N	H	3	-1	12
-			~	-	_

Point	Meter Volume	Delta H	Tm In	Tm Out
3	67.607	1.0	74	73
2			74	72
1			75	72
3			74	71
2			73	71
1			73	70
3			73	71
2			73	70
1			72	70
3			72	70
2			71	70
Ť			71	70
Stop	105.163			
Result	37.556	1.0	7	1.9

#	Post-Test	Pre-Test	Difference
1	933.1	736,2	196.9
2	751.9	749.8	2.1
3	655.4	654.4	1.0
4	907.8	901.0	6.8
Line Rinse	0.0	100.0	-100.0
			106.8

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (Montrose) ASTM D7036-04 certification, Montrose is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. Montrose quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: Montrose has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

Internal Quality Assurance Manual: Montrose has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of Montrose's QA efforts. The manual is revised upon periodic review and as Montrose adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. Montrose training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the Montrose QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

<u>Equipment Maintenance and Calibration</u>: All laboratory and field equipment used as a part of Montrose's emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: Montrose maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: Montrose maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to Montrose source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to Montrose office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)
- Flame Resistant Clothing (if required)

The following safety measures are followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	 Absence of leaks Ability to draw manufacturers required vacuum and flow 	As recommended by manufacturer	 1. Visual inspection 2. Clean 3. Replace parts 4. Leak check
Flow Meters	1. Free mechanical movement	As recommended by manufacturer	1. Visual inspection 2. Clean 3. Calibrate
Sampling Instruments	 Absence of malfunction Proper response to zero span gas 	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	1. Steam clean 2. Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling Lines	1. Sample degradation less than 2%	After each test series	1. Blow dry, inert gas through line until dry

TABLE 1EQUIPMENT MAINTENANCE SCHEDULE

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria	
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range	
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range	
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range	
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg	
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range	
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%	
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	± 5%	
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	± 5%	
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	± 0.1 inches Hg	
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	± 2%	
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	± 2% of semi-annual factor	
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$		
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	± 1.5%	

TABLE 2MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Note: Calibration requirements that meet applicable regulatory agency requirements are used.

Southern California Public Power Authority – Canyon 3Q23 Unit 2 $\ensuremath{\mathsf{NH}}_3$

Appendix D.2 SCAQMD and STAC Certifications

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178 (909) 396-2000 • www.aqmd.gov

May 18, 2023

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice Reference # 96LA1220

Dear Mr. Peterson:

We have completed our review of Montrose Air Quality Services' revised renewal application, which was submitted as notification of Montrose's recent acquisition of AirKinetics, Inc. under the South Coast AQMD Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning May 18, 2023, and ending September 30, 2023, for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

 South Coast AQMD Methods 1-4
 South Coast AQMD Methods 5.1, 5.2, 5.3, 6.1

 South Coast AQMD Methods 10.1 and 100.1
 South Coast AQMD Methods 25.1 and 25.3 (Sampling)

 USEPA CTM-030 and ASTM D6522-00
 Rule 1121/ 1146.2 Protocol

 Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler	Noritz America Corp.	Ajax Boiler, Inc.
1510 North Spring Street	11160 Grace Avenue	2701 S. Harbor Blvd.
Los Angeles, CA 90012	Fountain Valley, CA 92708	Santa Ana, CA 92704
		P. L. L. C. PH. H

VA Laundry Bldg., Greater LA Healthcare Sys. 508 Constitution Avenue Los Angeles, CA 90049 So Cal Gas – Engr Analysis Ctr, Bldg H 8101 Rosemead Blvd Pico Rivera, CA 90660

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Colin Eckerle. He may be reached by telephone at (909) 396-2476, or via e-mail at ceckerle@aqmd.gov.

Sincerely,

D. Sarkar

Dipankar Sarkar Program Supervisor Source Test Engineering

DS:CE Attachment

230518 LapRenewal.doc

Southern California Public Power Authority – Canyon 3Q23 Unit 2 $\ensuremath{\mathsf{NH}}_3$

Appendix D.3 Individual QI Certificate

R ument certifies that this individual d Individual (QI) as defined in Sec	IK Dupont has passed a comprehensiv tion 8.3 of ASTM D7036-04 fc	e examination and is now a r the following method(s):
e Number: <u>002-2021-41</u>		
Life Jundl ckler, VP - Quality Systems	DATE OF ISSUE:	12/02/2021
	DATE OF EXPIRATION:	12/01/2026

Rik D	upont	
its document certifies that this individual has pa Qualified Individual (QI) as defined in Section 8.3	ssed a comprehensive of ASTM D7036-04 for	examination and is now a the following method(s):
SCAQMD M	ethod 207.1	
ertificate Number: 002-2021-26		
Juk Studd	DATE OF ISSUE:	8/19/21
Tate Strickler, VP – Quality Systems	DATE OF EXPIRATION:	8/19/26

Appendix D.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID:	153992
Date(s) Tested:	July 27, 2023
Facility Name:	Canyon Power Plant
Equipment Address:	3071 E. Mira Loma Avenue
	Anaheim, California 92806
Equipment Tested:	Unit 2
Device ID, A/N, P/N:	D7

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm:	Montrose Air Quality Services, LLC
Business Address:	1631 E. St. Andrew PI.
	Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in **District Rule 304(k)**:

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory;
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing; or the source testing information provided to the SCAQMD.

Signature:	1 With the	Date:	9/25/2023	
Rik Dupor	nt Field Project Manager	(714) 279-6777	9/25/2023	
(Name)	(Title)	(Phone)	(Date)	

FORM ST-110 :stevforl.doc (Revised 11/18/98

Southern California Public Power Authority – Canyon 3Q23 Unit 2 $\ensuremath{\mathsf{NH}}_3$

APPENDIX E APPLICABLE PERMIT SECTIONS

FACILITY PERMIT TO OPERATE **CANYON POWER PLANT**

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1: POWER GENI	RATI	ON		and the account of the	
GAS TURBINE, NO. 2, NATURAL GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 479 MMBTU/HR AT 46 DEG F, WITH INLET CHILLING, WITH WATER INJECTION WITH A/N: 555829	D7	C9	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; <i>RULE 1303(a)(1)</i> - <i>BACT, 12-6-2002</i>]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 12-4-2015]; NOX: 25 PPMV NATURAL GAS (4) [40CFR 60 Subpart KKKK, 3-20-2009]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; <i>RULE 475, 8-7-1978</i>]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; <i>RULE 1303(b)(2)</i> -Offset, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; <i>RULE 475, 8-7-1978</i>]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SO2: 0.06 LBS/MMBTU NATURAL GAS (3) [40CFR 60 Subpart KKKK, 3-20-2009]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; <i>RULE 1303(a)(1)-BACT, 12-6-2002</i>]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1, I298.2, K40.1
GENERATOR, 50.95 MW					1

(1) (1A) (1B) Denotes RECLAIM emission factor

- Denotes RECLAIM concentration limit (3)
- (5) (5A) (5B) Denotes command and control emission limit (6)
- (7) Denotes NSR applicability limit
 - See App B for Emission Limits
- (2) (2A) (2B) Denotes RECLAIM emission rate

Denotes BACT emission limit

- Denotes air toxic control rule limit
- (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

See section J for NESHAP/MACT requirements (9) (10) Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. **

(4)

FACILITY PERMIT TO OPERATE **CANYON POWER PLANT**

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1: POWER GENE	RATI	ON	a set alter and the set of the set of the		
CO OXIDATION CATALYST, NO. 2, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476657	C9	D7 C10			
SELECTIVE CATALYTIC REDUCTION, NO. 2, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476657 AMMONIA INJECTION	C10	C9 S12		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; <i>RULE 1303(a)(1)</i> - <i>BACT</i> , 12-6-2002]	A195.5, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 2, HEIGHT: 86 FT ; DIAMETER: 11 FT 8 IN A/N: 555829	S12	C10			

(1) (1A) (1B) Denotes RECLAIM emission factor

- Denotes RECLAIM concentration limit (3)
- (5) (5A) (5B) Denotes command and control emission limit (6) Denotes NSR applicability limit
- (2) (2A) (2B) Denotes RECLAIM emission rate
 - Denotes BACT emission limit
 - Denotes air toxic control rule limit
- (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(9) See App B for Emission Limits (10) See section J for NESHAP/MACT requirements Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

(4)

(7)

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section I Facility	D ID:	Page: 28 153992
Revision	#:	4
Date:	Au	gust 19, 2021

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition : C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 11-1-2019; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-1-2017; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart IIII, 7-7-2016]

[Devices subject to this condition : D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR serving this equipment

W002AS-029212-RT-5107

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Page: 29 Facility ID: 153992 Revision #: 4 Date: August 19, 2021

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted quarterly during the first twelve months of operation of the catalytic control device and annually thereafter when four consecutive quarterly source tests demonstrate compliance with the ammonia emission limit. If an annual test is failed, four consecutive quarterly source tests must demonstrate compliance with the ammonia emissions limits prior to resuming annual source tests.

The South Coast AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using South Coast AQMD Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the South Coast AQMD within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1135, 11-2-2018; RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]

[Devices subject to this condition : D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Labcratory Method 307-91	District-approved averaging time	Fuel sample

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section	D	Page: 30
Revisio	n#:	4
Date:	Aus	gust 19, 2021

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

PM emissions

VOC emissions District Method 25.3 Modified District method 5.1

1 hour

4 hours

Outlet of the SCR serving this equipment Outlet of the SCR. serving this equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name:	Mr. Rik Dupont
Title:	Field Project Manager
Region:	West
Email:	RDupont@montrose-env.com
Phone:	(714) 279-6777

Name:	Mr. Matt McCune
Title:	Regional Vice President
Region:	West
Email:	MMccune@montrose-env.com
Phone:	(714) 279-6777

TEST REPORT FOR FOURTH QUARTER 2023 AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 3 FACILITY ID: 153992, DEVICE ID: D13

Prepared For:

Canyon Power Plant

3071 E. Mira Loma Avenue Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Rik Dupont

Test Date:October 25, 2023Production Date:December 5, 2023Report Number:W002AS-029212-RT-5447

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	Rikt	Date:	12/5/2023
Name:	Rik Dupont	Title:	Field Project Manager

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

Signature:	Sun	Date:	12/5/2023
Namai		Title:	Soniar Donarting OC Specialist
Name:	Surya Adhikari		Senior Reporting QC Specialist

TABLE OF CONTENTS

<u>SEC</u>	TION	<u> </u>	PAGE
1.0	INTRO	ODUCTION AND SUMMARY	5
2.0	UNIT	AND CEMS DESCRIPTION	6
	2.1	UNIT DESCRIPTION	6
	2.2	CEMS DESCRIPTION	7
	2.3	TEST CONDITIONS	7
	2.4	SAMPLE LOCATION	7
3.0	TEST	DESCRIPTION	8
4.0	TEST	RESULTS AND OVERVIEW	9
	4.1	TEST RESULTS	9
	4.2	TEST OVERVIEW	9
LIS		APPENDICES	
А	TEST	DATA	10
	A.1	SCAQMD Method 1.1 Data	11
	A.2	Sample Data Sheets	13
	A.3	Laboratory Data	17
	A.4	QA/QC Data	23
В	FACIL	LITY CEMS DATA	27
С	CALC	ULATIONS	32
	C.1	General Emissions Calculations	33
	C.2	Spreadsheet Summaries	37
D	QUAL	ITY ASSURANCE	41
	D.1	Quality Assurance Program Summary	42
	D.2	SCAQMD and STAC Certifications	48
	D.3	Individual QI Certificate	51
	D.4	Statement of No Conflict of Interest	54
Е	APPL	ICABLE PERMIT SECTIONS	56
LIS	T OF T	ABLES	
1-1	AMM	IONIA SLIP TEST RESULTS SUMMARY	5
4-1	AMM	IONIA SLIP TEST RESULTS	9
LIS [.]	T OF F	IGURES	
2-1	SIMF	PLIFIED PROCESS BLOCK DIAGRAM	6
3-1	SCA	OMD METHOD 207 1 SAMPLING FOUIPMENT	R
5 1	00/0		

1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted by Southern California Public Power Authority (SCPPA) Canyon Power Plant to perform an ammonia slip test at Unit 3 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on October 25, 2023. The test was performed by Rik Dupont, Ray Madrigal, Nestor Gonzalez, and Luis Olivares. Rik Dupont was the on-site Qualified Individual for MAQS. Ms. Bertha Hernandez of SCPPA City of Anaheim coordinated the test for Canyon Power Plant.

MAQS qualifies as an independent testing laboratory under SCAQMD Rule 304 (no conflict of interest) and is certified by the SCAQMD to conduct testing for criteria pollutants according to District Methods.

The test consisted of duplicate ammonia tests performed at 49.9 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMARY SCPPA – CANYON POWER PLANT UNIT 3 OCTOBER 25, 2023

Parameter/Units	Result ⁽¹⁾	Limit
NH3		
ppm	1.1	
ppm @ 15% O ₂	1.1	5

(1) Maximum of duplicate runs, as required by SCAQMD Method 207.1.

Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.

2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46°F, with water injection. The units are equipped with a CO oxidation catalyst and Selective Catalytic Reduction (SCR) system for emissions controls. A simplified process block diagram of the unit is presented as Figure 2-1.

FIGURE 2-1 SIMPLIFIED PROCESS BLOCK DIAGRAM SCPPA – CANYON POWER PLANT UNIT 3

Stack Inside Diameter: Distance from Upstream Disturbance: Distance from Stack Exit: 11 feet, 8 inches 23 feet, 4 inches (2.0 Diameters) 16 feet, 6 inches (1.4 Diameters)

2.2 CEMS DESCRIPTION

 NO_x and CO emissions from the unit are monitored by a dry, extractive Continuous Emission Monitoring System (CEMS). Stack flow rate is determined from fuel flow rate, O_2 concentration, standard

F-Factor, and fuel higher heating value using EPA Method 19.

2.3 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 49.9 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.4 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit. A diagram of the sample location and individual traverse points is contained in Appendix A.1.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a titanium probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis. A diagram of the sampling equipment is presented as Figure 3-1.

Stack NO_x and O₂ concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O₂.

FIGURE 3-1 SCAQMD METHOD 207.1 SAMPLING EQUIPMENT

4.0 TEST RESULTS AND OVERVIEW

4.1 TEST RESULTS

The results of the test are summarized in Table 4-1. The results show that the maximum ammonia slip was 1.1 ppm @ $15\% O_2$ which is less than the permitted limit of 5 ppm @ $15\% O_2$.

TABLE 4-1 AMMONIA SLIP TEST RESULTS SCPPA – CANYON POWER PLANT UNIT 3 OCTOBER 25, 2023

Parameter/Units	1-NH₃	2-NH ₃	Average	Maximum ⁽¹⁾	Limit
Start/Stop Time	1954/2100	2122/2228			
Stack Flow, dscfm @ T _{ref} ⁽²⁾	234,098	234,689	234,394		
NO _x , ppm @ 15% O ₂ ⁽²⁾	2.3	2.3	2.3		2.5
O ₂ , % ⁽²⁾	14.48	14.49	14.49		
NH ₃ ppm ppm @ 15% O ₂ Ib/hr Ib/MMBtu Ib/MMSCF	1.1 1.0 0.7 0.001 1.4	1.1 1.1 0.7 0.001 1.5	1.1 1.0 0.7 0.001 1.5	1.1 1.1 0.7 0.001 1.5	 5

(1) Maximum of duplicate test runs, as required by SCAQMD Method 207.1.

(2) From facility CEMS.

4.2 TEST OVERVIEW

The test program was successful in meeting the program objectives. The QA/QC requirements of SCAQMD Method 207.1 were met. The results are considered representative of the source at the time of the tests.

Southern California Public Power Authority – Canyon 4Q23 Unit 3 $\ensuremath{\mathsf{NH}}_3$

APPENDIX A TEST DATA

Appendix A.1 SCAQMD Method 1.1 Data

A A 1 1	C 3 5 1	PE 1 1 1 1 1	N. 11. Pt.
A M	CON	I K(79F

METHOD 1 DATA SHEET SAMPLE LOCATION

Southern California Public Power Authority – Canyon 4Q23 Unit 3 $\ensuremath{\mathsf{NH}}_3$

Appendix A.2 Sample Data Sheets

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

W002AS-029212-RT-5447	CLIENT: SCPPA CANYON LOCATION: CANYON DATE: NNIT 3 RUN NO: $1 - NH3 - U3$ OPERATOR: LO METER BOX NO: $17 - WCS$ METER $\Delta H@:$ $1 - S15$ METER Yd: 0.993 STACK AREA, FT ² : 106.9 TRAVERSE POINTS, MIN/POINT: 12, 5 MIN $\Delta H = 1.0$ X ΔP : Probe Condition, pre/post test: C_{7000} (500) Silica Gel Expended, YM: $U0$ Filter Condition after Test: NIA				AMBIENT TEMPERATURE: 64" BAROMETRIC PRESSURE: 29.69 ASSUMED MOISTURE: 11.5% PITOT TUBE COEFF, Cp: MIA PROBE ID NO/MATERIAL: TI PROBE LENGTH: P' NOZZLE ID NO/ MATERIAL: TI PROBE LENGTH: P' NOZZLE DIAMETER: NIA FILTER NO/TYPE: NIA PRE-TEST LEAK RATE:: 20.00% CFM@ PITOT LEAK CHECK - PRE: NIA PITOT LEAK CHECK - PRE: NIA POST-TEST DEAK RATE:: SAMPLE CUSTODIAN MARDER DO						Imp. # Contents Post-Test - Pre-Test = Difference 1 01. N H_{2SOY} 854/5 664/3 2 01. N H_{2SOY} 754.9 753.8 3 Ψ_{mo} 655. J 654.6 4 B_{ST} 941. J 933.9					
Ī	CHOCK VI	leight.	Meter AD		٨H	Stack	Probe	Filter	Imp. Out	MeterT	emp, °F	Vacuum	O ₂	Pstatic		
	Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	In	Out	in. Hg.	%	in. H ₂ O		
-	3	1954	354 900	NIA	1.0	NIA	NIA	NA	58	71	69	-3"				
~	2	1959	357.750		1.0				50	71	69	3"				
14 of 61	1	2004	360.605		1.0				49	73	70	3"	-			
	PC	2009	363.385		÷			-		-	-	-				
	3	2011	363.385		1-0		100 Tal. 10 A.		53	Fa	69	3"				
	Ъ	2010	306-270		1.0				50	74	69	3"		1		
1	1	2021	369.080		1.0				49	76	70	3"		1		
1	PC	2026	371.850		-				-	-	-	1		1		
	3	2018	371.850		1.0				57	74	72	3"		ALC: NOT		
	2	2033	374.686	- 1 - 1	1.0				50	76	TI	3"		1		
61	1	2038	377.505		1.0				50	76	76	3"				
	R	2043	386, 350		-					10.48		-				
	3	2045	386,350		1.0	· · · · · · · · · · · · · · · · · · ·		0.0-1	57	74	71	39		1		
	2	2050	383.180	1.1.1	1.0				51	76	71	311	-			
	1	2055	386.000		1.0		2 - 1 - 1 V		50	77	71	3"		h		
	E	2100	388.830		-	1:			-	-	-	-		10000		
	Average	ents:														

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

CLIENT: SCPPA CANYON LOCATION: CANYON (UNIT 3) DATE: 10123 2625 RUN NO: 2 - NH3-U3 OPERATOR: LO METER BOX NO: 17-WC METER AH@: 1.815 METER Yd: 0.993 STACK AREA, FT ² : 106.9 TRAVERSE POINTS, MIN/POINT: 12, 5m/H $\Delta H= (X \Delta P)$: Probe Condition, pre/post test: 6 600 6600 Silica Gel Expended, YM: AU				AMBIEN BAROMI ASSUME PITOT T PROBE PROBE NOZZLE FILTER I PRE-TES POST-TE PITOT LI CHAIN C	AMBIENT TEMPERATURE: 49^{-1} BAROMETRIC PRESSURE: $29^{-1}69^{-1}$ ASSUMED MOISTURE: $11.5'_{-1}$ PITOT TUBE COEFF, Cp: NIA PROBE ID NO/MATERIAL: T_{-1} PROBE LENGTH: $7'_{-1}$ NOZZLE ID NO/MATERIAL: N/A NOZZLE DIAMETER: N/A FILTER NO/TYPE: N/A PRE-TEST LEAK RATE: 20.005 CFM@ $13''_{-1}$ in. Hg. POST-TEST LEAK RATE: 20.005 CFM@ $10''_{-1}$ in. Hg. PITOT LEAK CHECK - PRE: N/A $POST_{-1}$ CHAIN OF CUSTODY: SAMPLE CUSTODIAN CM_{-1}						Imp. # Contents Post-Test - Pre-Test = Difference $\frac{1}{1} = \frac{1 N H^2 soy 917.1 735.4}{2}$ $\frac{2}{3} = \frac{1 N H^2 soy 757.4 755.8}{3}$ $\frac{3}{4} = \frac{1 N H^2 soy 757.4 755.8}{654.0}$ $\frac{4}{4} = \frac{1 N H^2 soy 757.3 966.5}{100 M L}$ $\frac{1 N H^2 soy 757.4 755.8}{100 M L}$ $\frac{1 N H^2 soy 757.4 755.8}{100 M L}$					
Filter Co	ndition aft	er Test: N	1pr			SAMPLER_	LO									
Point	Time	Meter Volume, ft ³	ΔP in, H ₂ O	∆H in, H₂O	Stack Temp, °F	Probe Temp, °F	Filter Temp. °F	Imp. Out Temp. °F	Meter T	emp, °F	Vacuum in, Hg,	O2 %	Pstatic in, H ₂ O			
3	2122	390.800	A 1 V D	1.0	AVIA .	NIA	NIA	60	72	31	2"					
2	2127	393.620	and	1.0		1.503	IST I	50	172	3)	34					
1	2132	396.440		1.0	1			48	74	72	31					
PC	2137	399.255				· · · · · · · · · · · · · · · · · · ·		-	-	-	-					
3	2139	399.255		1.0				52	75	71	"3"					
2	2144	402.090		1.0				49	45	71	3"					
1	2149	404.925		1.0			1.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	49	76	71	3"					
PC	2154	407.750		-			2 - 1 -	*	-	-	-					
3	2156	407.750		1.0				53	75	71	3"					
2	2201	410.000		1-0				50	77	72	311					
1	2206	413.405		1.0				50	78	72	3"					
PL	2211	416.235		-				-	-	-	-					
3	7213	416.235		1-0				58	75	72	3"					
2	2218	419.075		1-0				49	77	TL	3"					
1	2223	421.945		1.0				49	++	12	<u>S</u> .	-				
E	3-1-25	424-770		5				~		-	-					
Average																
Comme	ents:	11			1			1								

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

Probe Cond Silica Gel E Filter Condi Check Weig	dition, pre Expended ition after ght: 50	a/post test: ↓ YND 20 C T Test:C	CLIENT: SCPPA LOCATION: UNITES DATE: LOCATION: UNITES RUN NO: COLO BLANT OPERATOR: NE PG-NH3-03 METER BOX NO: T-00C METER AHQ: 1.815 METER Yd: 0.993 STACK AREA, FT ² : 06.90 TRAVERSE POINTS, MIN/POINT: NA AH= $\underline{N^{(n)}} X \Delta P$: Probe Condition, pre/post test: bud bud Silica Gel Expended, YND 00 Filter Condition after Test: NG				AMBIENT TEMPERATURE: 63° BAROMETRIC PRESSURE: 29.69° ASSUMED MOISTURE: 10% PITOT TUBE COEFF, Cp: 20% PROBE ID NO/MATERIAL: 11% PROBE LENGTH: $6'$ NOZZLE ID NO/ MATERIAL: 11% PROBE LENGTH: $6'$ NOZZLE ID NO/ MATERIAL: 10% PROBE LENGTH: $6'$ NOZZLE DIAMETER: 20% PRE-TEST LEAK RATE: 20% POST-TEST LEAK RATE: 20% PITOT LEAK CHECK - PRE: 20% CHAIN OF CUSTODY: SAMPLE CUSTODIAN SAMPLER 20%				Imp. # Contents Post-Test - Pre-Test = Difference I $01N 1+2 SOY$ $851.8 751.3$ 2 $1W$ $142 SOY$ $851.8 751.3$ 2 $1W$ $142 SOY$ $742.5 742.8$ 3 $2 mpt^{1/3}$ $645.2 645.2$ 4 $5 G$ $931.2 931$ Ll^2 $100 M$ L Total:			
Point	Time	Meter Volume ft ³	ΔP in H ₂ O	ΔH in H ₂ O	Stack	Probe	Filter	Imp. Out	Meter T	emp, °F	Vacuum in Ho	O2 %	Pstatic	
					C		P	50						

Comments:

Southern California Public Power Authority – Canyon 4Q23 Unit 3 $\ensuremath{\mathsf{NH}}_3$

Appendix A.3 Laboratory Data

002AS-LAB-FM-1

MAQS-SW(M:)/Santa Ana/Forms/Lab Datasheets

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION DATA

District Method: SCAQMD 207.1

IN A	NI	$^{\circ}$	N	T	RO	SE
- C	1.2	323	6633	15	'N1.8!'	1.1

		PROJ-029212	Project Number:
-56.4963	Calibration Curve Slope:	SCPPA/Canyon Power Plant	Client/Location:
116.1213	Y-intercept:	U3 Stack	Sample Location:
0.9992	R ² :	10/25/2023	Sample Date:
7	Thermometer #:	11/3/2023	Analysis Date:
20	ISE Electrode #:	PR	Analyst's Initials:

Sample	Total Volume (mL)	Sample Temperature (°C)	Electrode Potential (mV)	Conc. µg NH3 /ml as N	C _{avg} as N	C_{avg} as NH_3	µg NH ₃ / sample
Standard Check:	NA	21.8	36.6	25.559	25.876	31.453	NA
28 µg NH ₃ / ml as N	NA	21.8	36.0	26.192			
1-NH3	541.0	22.9	113.5	1,113	1.115	1.355	733.260
1-1113-5		23.0	113.4	1.117			
2-NH3	588.2	23.0	114.8	1.055	1.068	1.299	763.892
2-1113-5		22.9	114.2	1.081			
Spike	NA	22.9	40.6	21.714	21.409	26.024	NA
2-NH3-3	NA	22.8	41.3	21.104			
Standard Check:	NA	22.5	36.4	25.768	25.874	31.451	NA
28 µg NH ₃ / ml as N		22.5	36.2	25.979			
Reagent Blank	NA	23.8	208.5	0.023	0.023	0.028	NA
0.1N H2SO4		23.5	209.0	0.023			
DI H.O Black	NA	22.5	205.5	0.026	0.026	0.031	NA
DI H2O BIGHK	04	22.5	206.6	0.025			
Fleid Blank	507.0	23.1	207.6	0.024	0.023	0.029	14.458
		23.1	208.8	0.023			
Standard Check:	NA	23.0	32.8	29.841	29.599	35.980	NA
28 µg NH ₃ / ml as N	NA	23.1	33.2	29.358			

Notes:

- Measured Concentration of Ammonia (C) in ug NH 3 / ml as N.

- C=10^{(P-B)/M}, P = electrode potential (mV), M=slope and B=intercept.

- Average Measured Ammonia Concentration (C avg) = (C1 + C2)/2 where C1, C2 are results from duplicate analyses (ug NH 3/ml as N).

- C_{avg} (ug NH₃/ml as NH₃) = C_{avg} (ug NH₃/ ml as N) * 17.03/14.01.

- ug NH_3 / sample = C_{avg} (ug NH_3 /ml as NH_3) * TV.

- Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate, analyzed in duplicate.

- Sample pH and temperatures can be found on the laboratory datasheet.

- Maximum number of samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

- All samples are collected in 0.1N H 2SO4 and allowed to equilibrate to room temperature.

- All calibration verification standard (C.V.) are prepared in 0.04N H 2504 and allowed to equilibrate to room temperature.

- Sample solutions, blanks and C.V. Standard temperature must be within ± 2°C.

- Spike: 100 ml sample + 2 ml 1000ppm NH] as N.
002AS-LAB-FM-1 MAQS-SW(M:)/Santa Ana/Forms/Lab Datasheets

MONIKUSE

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL District Method: SCAQMD 207.1

Project Number: PROJ-029212 Client/ Location: SCPPA/Canyon Power Plant Sample Location: U3 Stack Sample Date: 10/25/2023 Analysis Date: 11/3/2023 Analyst's Initials: PR

Sample	Recovery (%)	RPD (%)	RPA (%)
Standard Check: 28 µg NH ₃ / ml as N	NA	-2.45	-7.587
1-NH3-3	NA	-0.41	NA
2-NH3-3	NA	-2.45	NA
Spike 2-NH3-3	105.88	2.85	NA
Standard Check: 28 µg NH ₃ / ml as N	NA	-0.82	-7.593
Reagent Blank 0.1N H ₂ SO ₄	NA	2.04	NA
DI H ₂ O Blank	NA	4.48	NA
Field Blank	NA	4.89	NA
Standard Check: 28 µg NH ₃ / ml as N	NA	1.63	5.712

Notes:

- Spike: 100 ml sample + 2 ml 1000ppm NH 3 as N.

- Matrix Spike Percent Recovery (%R).

- %R = $(C_{spike}*0.104 - C_{sample}*0.102)/2 *100.$

- Cspike = average result of matrix spike (ug NH 3/ ml as N).

- Relative Percent Difference (RPD) = (C $_1$ -C₂)/ C_{avg} *100 (must be 5% or less).

- Relative Percent Accuracy (RPA) (must be 10% or less).

- RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100.

AUNTROSE

AMMONIA ELECTRODE CALIBRATION CURVE DATA

District Method:	SCAQMD 207.1		
Date:	November 3, 2023		
Project Number:	PROJ-029212		
Client/Location:	SCPPA/Canyon Power Plant		

NH ₃ concentration (µg NH3 / ml as N)	$Log NH_3$ concentration	Electrode Potential (mV)	Sample Temperature (°C)	Room Temperature (°C)
1	0.000	116.2	23.0	23.0
5	0.699	75.5	22.5	23.0
20	1.301	44.5	22.5	23.0
100	2.000	2.3	22.4	23.0

Slope	Y-Intercept	R ²
-56.4963	116.1213	0.9992

NH ₃ concentration (µg NH3 / ml as N)	Value LR line Difference % Di		% Difference
1	0.9968	-0.0032	-0.3202
5	5.2361	0.2361	4.7221
20	18.5232	-1.4768	-7.3839
100	103.4351	3.4351	3.4351

Notes:

- Regression Line: P=M*log(ug of NH/ ml as N)+B.

- Measured Concentration of Ammonia (C) in ug / ml NH as N: $C=10^{(P-B)/M}$ where P = electrode potential, M = slope and B = intercept.

- All standards are prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

- Slope of calibration curve must be between -54 and -60.

- R² must be 0.997 or greater.

- Calibration solution temperature must be within ± 2°C.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS DATA

District Method: SCAQMD 207.1

MONTROSE

Project Number:	PROJ-029212
Client/Location:	SCPPA/Canyon Power Plant
Sample Location:	U3 Stack
Sample Date:	10/25/2023
Analysis Date:	11/3/2023
Contraction of the Contract of	

Calibration Curve:	V =-56.9963x+116.1213
R ² :	0.9992
Thermometer #:	7
ISE Electrode #:	20
Analyst's Initials:	PR
the second se	

NH3 concentration (µg NH3 / mI as N)	Electrode Potential (mV)	Sample Temperature (°C)	Room Temperature (°C)	
1	116.2	23.0	23.0	
5	75.5	PR 22.5 22.5	23.0	
20	44.5 P	11/3/23 220 22.5	23.0	
100	2.3	2:2,4	23.0	

Sample	Total Volume (mL)	Sample Temperature (°C)	Electrode Potential (mV)	Blue after ISA (Y/N)	рН
Standard Check:	NA	21.8	36.6	Y	NA
28 µg NH ₃ / ml as N	NA	21.8	36.0	У	INA
1 111 -2	C111 C	22.9	113.5	Y	~
1-1013-5	541-0	23.0	113.4	Y	42
- 101-3	590 7	23.0	114.8	y	
2-1013-5	500.0	22,9	114.2	Y	LC
Calles 7-NH2-3	3NA	22.9	40.6	V	NIA
Spike: 2 1415 5		22.8	41,3	У	NA
Standard Check:	NA	22,5	36.4	Y I	NIA
28 µg NH ₃ / ml as N	NA	22,5	36.2	У	NA
Reagent Blank		23.8	208.5	y	NIA
0.1N H2SO4	NA	23.5	209.0	Y	NA
	la de	22.5	205.5	У	NIA
DI H20 Blank	NA	22.5	2010.60	У	NA
Field Bleets	~70	23.1	207.6	У	17
Field Blank	50+.0	23.1	208.8	У	u
Standard Check:		23.0	\$2.8	V	RI A
28 µg NH ₃ / ml as N	NA	23.1	33.2	Y	NA

Notes:

- Used 100 ml of samples or standards with 2 ml ISA and constant stirring rate.

- Spike: 100 ml sample + 2 ml 1000ppm NH₃ as N.

 All calibration solution and calibration verification standard (C.V.) are prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

- All samples are collected in 0.1N H₂SO₄ and allowed to equilibrate to room temperature.

- All solutions turned blue and remained blue with ISA unless otherwise indicated.

- Maximum number of samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

- All samples must have a pH of less than 2.

- Sample solutions, calibration solution and C.V. standard temperature must be within ± 2°C of one another.

- Slope of calibration curve must be between -54 and -60.

- R² must be 0.997 or greater.

CHAIN OF CUSTODY

CLIENT: SCPPA - Canyon P		CLIENT: SCPPA - Canyon Power Plant PROJECT #: PROJ-029		PROJECT #: PROJ-029212	TEST DATE(S):	10/25/2023	
	LOCATION:	U3			SAMPLER(S):	NG, LO	
SAMPLE LOCATION: Stack				PROJECT MANAGER:	RD		
TEST N	METHOD(S):	SCAQMD 207.1			DATE DUE:	11/1/2023	
OUTSIDE LAB R	REQUIRED?:	No			COMPLIANCE TEST?:	Yes	
DATE	TIME	TEST #	SAMPLE DESCRIPTIO	N CONTAINERS	SAMPLER	COMMENTS	
10/25/2023	1954/2100	1-NH3-U3	Probe, Line, Impingers	1	NG, LO		
10/25/2023	2122/2228	2-NH3-U3	Probe, Line, Impingers	1	NG, LO		
10/25/2023		Reagent Blank	0.1 N H ₂ SO ₄	1	RM		
10/25/2023		Reagent Blank	DI H2O	1	RM		
10/25/2023		FB-NH3-U2	Probe, Line, Impingers	1	NG, LO		
6		37		RECEI			
PEASOLIUM	NB		10128 23 Q 2.55A	m(UB) 8 CB		11/3/23 2:30 pra	
NALYSIS REQU	IRED:	NH₂ by SCAQMD 2	207.1 (ISE)				

MONTROSE Date of Last Revision 9/1/2017 Master Doc

Chain of Custody - DS834001 - Excel Master Document Storage\Forms\Datasheets\Lab Forms

Appendix A.4 QA/QC Data

AMONTROSE

Barometric Pressure Determination				
Date:	10/25/23			
Data By:	Rik Dupont			
Reference:	https:// 117.85	forecast.weather.gov/MapClick.php?lon=- 962867946365⪫=33.863355545614255		
Reference Barometer ID		FW0063 Fullerton CSU (F0063)		
Reference Barometer Location		Lat: 33.8805°NLon: 117.88417°WElev: 247ft.		
Reference Barometer Other Info.		Last update 25 Oct 04:38 PM PDT		
Reference Barometer Indication, corrected to sea	a level	30.03		
Reference Barometer Reference Elevation		247		
Reference Barometer Actual Pressure		29.78		
Test Barometer Location/Site		Canyon Power Plant		
Location/Site Elevation		279		
Location/Site Barometric Pressure		29.75		
Sampling Location Height (above/below site elev	ation)	60		
Sampling Location Barometric Pressure		29.69		

Orifice Method	I - Triplicate Runs/Four Calibration Points	Model #:	E.S. C-5000	Source Sampler
English Meter	Box Units, English K' Factor	ID #:	17-WCS	
Filename:	W:\SW\Santa Ana\Equipment\Test Equipment\Calibrations\Dry Gas Meters\17-WCS\2023\[17WCS Semi Annual Cal 8-10-202	Date:	8/10/2023	
File Modified I	From: APEX 522 Series Meter box Calibration	Bar. Pressure:	29.89	(in. Hg)
Revised:	4/8/2005	Performed By:	L. Olivares	
		Reviewed By:	M. Chowsan	itphon

				DRY GAS M	ETER READ	INGS			CRITIC	AL ORIFICE REA	ADINGS			
dH	Time	Votume Initial	Volume Final	Volume Total	Initial Inlet	Temps. Outlet	Fina Inlet	Temps. Outlet	Orifice Serial#	K' Orifice Coefficient	Actual Vacuum	A Initial	mbient Temper Final	ature Average
(in H2O)	(min)	(cu ft)	(cu ft)	(cu ft)	(deg F)	(deg F)	(deg F)	(deg F)	(number)	(see above)	(in Hg)	(deg F)	(deg F)	(deg F)
0.14	26.00	1.900	7.590	5.690	86.0	85.0	85.0	85.0	14742-33	0.1618	18.0	77.0	76.0	76.5
0.14	26.00	7.590	13.280	5.690	85.0	85.0	85.0	85.0	14742-33	0.1618	18.0	76.0	76.0	76.0
0.14	26.00	13.280	18.965	5.685	85.0	85.0	85.0	84.0	14742-33	0,1618	18.0	76.0	77.0	76.5
0.66	12.00	984.900	990.470	5.570	88.0	84.0	87.0	84.0	PK-48	0.3452	17.0	76.0	78.0	76.0
0.66	12.00	990.470	996,040	5.570	87.0	84.0	88.0	84.0	PK-48	0.3452	17.0	76.0	76.0	76.0
0.66	12.00	996.040	1001.605	5.565	88.0	84,0	88.0	85.0	PK-48	0.3452	17.0	76.0	76.0	76.0
1.80	7.00	967.700	973.010	5.310	90.0	82.0	90,0	82,0	PK-63	0.5666	16.0	76.0	76.0	76.0
1.80	7.00	973.010	978.315	5.305	90.0	82.0	90.0	83.0	PK-63	0.5666	16.0	76.0	76.0	76.0
1.80	7,00	978.315	983.615	5.300	90.0	83.0	90.0	83.0	PK-63	0.5666	16.0	76.0	78.0	76.0
3.50	5.00	951 400	956,630	5 230	89.0	79.0	90.0	80.0	PK-73	0.7871	15.0	75.0	76.0	75.5
3.50	5.00	956.630	961,850	5,230	90.0	80.0	91.0	81.0	PK-73	0.7871	15.0	76.0	76.0	76.0
3.50	5.00	961.860	967.100	5.240	91.0	81.0	91.0	81.0	PK-73	0.7871	15.0	76.0	75.0	75.5
		the second se												

DRY GA	S METER		ORIFICE		DF	RY GAS METER	ORIFICE	Individual	Individual	Orifice	Orifice
VOLUME	VOLUME	VOLUME	VOLUME	VOLUME	GALL		CALISIANICITACION	Run	Orifice	Average	Average
CORRECTED	CORRECTED	CORRECTED	CORRECTED	NOMINAL		Y	dH@	200.00	11		
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	Vcr		Value	Value	0.95 < Y	Ymax - Ymin	0.98 < Y/Yd	dH@ - dH@ av
(cu ft)	(liters)	(cu ft)	(liters)	(cu ft)		(number)	(in H2O)	< 1.05?	< 0.010?	< 1.02?	< 0.155?
5.504	155.9	5.429	153.7	5.524		0.986	1.748	Pass			
5.507	155.9	5.431	153.8	5.521		0.986	1.747	Pass			
5.504	155.9	5.429	153.7	5.524		0.986	1.750	Pass			
					Average	0.986	1.748		Pass	Pass	Pass
5.390	152.6	5.348	151.5	5.437		0.992	1.812	Pass			
5.390	152.6	5.348	151.5	5.437		0.992	1.812	Pass			
5.380	152.4	5.348	151.5	5.437		0.994	1.811	Pass			
					Average	0.993	1.812		Pass	Pass	Pass
5.150	145.9	5.121	145.0	5.205		0.994	1.841	Pass			
5.143	145.7	5.121	145.0	5.205		0.996	1.840	Pass			
5.136	145.5	5.121	145.0	5.205		0.997	1.838	Pass			
					Average	0.996	1.840		Pass	Pass	Pass
5.108	144.7	5.083	144.0	5.163		0.995	1.862	Pass			
5.099	144.4	5.081	143.9	5.165		0.997	1.861	Pass			
5,104	144.5	5.083	144.0	5.163		0.996	1.857	Pass			
	2.2.2.2				Average	0.996	1.860		Pass	Pass	Pass

Average Yd:	0.993	dH@:	1.815
and the second se		Q @ dH = 1:	0.557

SIGNED: Signature on File 8/10/2023

Date:

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 17-WCS

Readout Description: Control Box Date: 7/5/2023 Performed By: L. Olivares

Calibrated Thermocouple ID: TC-Cal T1 Reference Thermometer ID: 313010 T2 Reference Thermometer ID: 805002770 T3 Reference Thermometer ID: 805002803

T/C I.D.	Readout		T/C - F	Readout 'F			Reference 1	l'hermometer 'F		Diffe	erence	1
TC-Cal	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	1
T3 (~ 370 F)	17-WCS	372	372	372	372	375	375	375	375	3.0	0.4%	Pas
T2 (~212 F)	17-WCS	214	214	214	214	210	210	210	210	4.0	0.6%	Pas
T1 (~ 32 F)	17-WCS	34	34	34	34	32	32	32	32	2.0	0.4%	Pas

1) Difference % (°R) = Difference (°F) / (Average Tref + 460)

2) Pass if all Differences are less than 1.5% (°R)

Thermocouple Source Readings T/C - Readout T/C Source Difference °F °F T/C Source °F %. (°R) S/N Reading 1 Reading 2 Reading 3 Reading 1 Reading 2 Reading 3 Average Average T4 (~650 F) 129462 647 647 647 647 650 650 650 650 3.0 0.3% Pass T3 (~370 F) 129462 365 365 365 365 370 370 370 370 5.0 0.6% Pass T2 (-212 F) 129462 214 214 214 214 212 212 212 212 2.0 0.3% Pass T1 (~32 F) 129462 33 33 33 33 32 1.0 0.2% 32 32 32 Pass

1) Difference % (°R) = Difference (°F) / (Average Tref + 460)

2) Pass if all Differences are less than 1.5% (°R)

APPENDIX B FACILITY CEMS DATA

Average Values Report Generated: 10/25/2023 21:26

W002A	Company: City Of Anahe Plant: 3071 Miraloma A City/St: Anaheim, CA, Source: 3	im ve., 92806									Period Peri	Start: 10/2 od End: 10/2 Validation T Averaging P Typ	5/2023 19:55 5/2023 21:00 ype: 1/1 min eriod: 1 min e: Block Avg
\S-029	Period Start:	Average 3_02 %	Average 3_NOXPPM ppm	Average 3_NOX_CORR ppm	Average 3_NOX_LBHR #/hr	Average 3_NOX_LBMM #/MBTU	Average 3_COPPM ppm	Average 3_CO_CORR	Average 3 CO LBHR #/hr	Average 3_CO_LEMM #/MBTU	Average 3_GasFlow kscfh	Average 3_LOAD MW	Average 3_STACKFLW kscfm
20	10/25/2023 19:55	14.47	2.52	2.31	4.52	0.009	3.30	3,03	3.42	0.0068	478.8	50.05	237.2
	10/25/2023 19:56	14.50	2.55	2.35	4.53	0.009	3.31	3.05	3.42	0.0068	479.1	49.99	238.5
Ņ	10/25/2023 19:57	14.44	2.54	2.32	4.52	0.009	3.32	3.03	3.41	0.0068	478.2	49.89	235.8
ż	10/25/2023 19:58	14.52	2.53	2.34	4.53	0.009	3.34	3.09	3.47	0.0069	479.0	49.97	239.2
-	10/25/2023 19:59	14.50	2.53	2.33	4.53	0.009	3.33	3.07	3.47	0.0069	479.4	50.09	238.6
ப்	10/25/2023 20:00	14.45	2.54	2,32	4.52	0.009	3.31	3.03	3,42	0.0068	478.8	50.02	236.5
4	10/25/2023 20:01	14.47	2.54	2.33	4.52	0,009	3.30	3.03	3.42	0.0068	478.5	49.88	237.1
4	10/25/2023 20:02	14.47	2.54	2.33	4.53	0.009	3.30	3.03	3,42	0.0068	479.2	49.94	237.4
	10/25/2023 20:03	14.49	2.53	2.33	4.52	0.009	3.30	3.04	3.41	0,0068	478.1	49.83	237.6
	10/25/2023 20:04	14.47	2.53	2.32	4.53	0.009	3.30	3.03	3.42	0.0068	479.0	49.76	237.3
	10/25/2023 20:05	14.49	2.52	2.32	4.53	0.009	3.30	3.04	3.42	0.0068	479.2	50.15	238.2
	10/25/2023 20:06	14.48	2.52	2.32	4,53	0.009	3.31	3.04	3.42	0.0068	479.3	49.94	237.9
	10/25/2023 20:07	14.47	2.53	2.32	4.53	0.009	3.32	3.05	3.42	0.0068	479.0	49.93	237.3
	10/25/2023 20:08	14.47	2.53	2,32	4.52	0.009	3.31	3.04	3.42	0.0068	478.4	49.85	237.0
	10/25/2023 20:09	14.49	2.51	2.31	4.52	0.009	3.32	3.06	3.47	0.0069	478.5	49.96	237.8
	10/25/2023 20:10	14.51	2.50	2,31	4.52	0.009	3.34	3.08	3.46	0.0069	478.2	49.83	238.4
	10/25/2023 20:11	14.45	2.49	2.28	4.02	0.008	3.37	3.09	3.47	0.0069	478.9	50.09	236.9
	10/25/2023 20:12	14.48	2.49	2.29	4.02	0.008	3.37	3.10	3.47	0.0069	478.3	49.86	237.3
	10/25/2023 20:13	14.49	2.50	2.30	9.03	0.008	3.35	3.08	3.47	0.0069	479.2	50.02	238,2
N	10/25/2023 20:14	14.49	2.51	2.31	4.53	0.009	3.35	3.08	3.47	0.0069	478.9	49.96	238.0
œ	10/25/2023 20:15	14.49	2.51	2.31	4.52	0.009	3.35	3,08	3.47	0.0069	478.8	49.97	237.9
<u>o</u>	10/25/2023 20:16	14.46	4.51	2.30	4.02	0.008	3.35	3.07	3.47	0.0069	479.1	49.90	237.0
Ē	10/25/2023 20:17	14.49	2.51	2.31	4.53	0.009	3.34	3.07	3.97	0.0069	479.2	49,97	238.2
<u> </u>	10/25/2023 20:18	14.50	2.51	2.31	4.53	0.009	3.34	3.08	3.47	0.0069	4/9.6	50.10	238.7
	10/25/2023 20:19	14,48	4,31	2.31	4.03	0.008	3.34	3.07	3.47	0.0069	479.2	50,01	237.8
	10/25/2023 20:20	14.47	2.50	2.27	4.02	0.008	3.34	3,00	3.47	0.0069	478.8	49.92	237.2
	10/25/2023 20:21	14.47	2.50	2.23	4.02	0.008	3.35	3.07	3.47	0.0069	479.1	49.94	237.4
	10/25/2023 20:22	14.47	2.50	2,23	4.02	0.008	3.35	3.07	3.47	0.0069	479.1	49.91	237.4
	10/25/2023 20:23	14 49	2.50	2.30	4.02	0.008	3.30	3.09	3.47	0.0069	472.1	50.10	237.0
	10/25/2023 20:25	14.95	2.50	2,30	4.03	0.000	3.35	3.08	3.47	0.0069	475,4	30.07	237.9
	10/25/2023 20:25	14.40	2.50	2,30	4.03	0.008	3.35	3.06	3.47	0.0009	475.0	49.99	238.0
	10/25/2023 20.25	14.49	2 52	2.32	4.52	0.009	3.34	3.07	3.47	0.0069	478.5	40.03	230.2
	10/25/2023 20:28	14.48	2 50	2.30	4 03	0.008	3.34	3.07	3.47	0.0069	470.3	49.51	237.9
	10/25/2023 20.29	14.46	2.49	2.28	4.03	0.008	9.33	3.05	3 42	0.0068	479 3	49.76	237.3
	10/25/2023 20:30	14.47	2.49	2.28	4.02	0.008	3.34	3.06	3.47	0.0069	478.4	49 99	237.0
	10/25/2023 20:31	14.47	2.49	2.28	4.03	0.008	3.36	3.08	3.48	0.0069	480.1	49.92	237.9
	10/25/2023 20:32	14.48	2.54	2.33	4.52	0.009	3.39	3.12	3.51	0.0070	478.0	49.94	237.2
	10/25/2023 20:33	14.46	2.57	2.35	4.52	0.009	3.40	3.11	3.52	0.0070	478.6	50.03	236.7
	10/25/2023 20:34	14.50	2.52	2.32	4.53	0.009	3.39	3.13	3.52	0.0070	479.1	49.93	238.5
	10/25/2023 20:35	14.47	2.47	2.27	4.03	0.008	3.38	3.10	3.52	0.0070	479.4	49.79	237.5
	10/25/2023 20:36	14.47	2.47	2.27	4.03	0.008	3.37	3.09	3.47	0.0069	479.2	49.98	237.4
	10/25/2023 20:37	14.47	2.47	2.27	4.02	0.008	3.36	3.08	3.47	0.0069	478.7	50.04	237.2
	10/25/2023 20:38	14.48	2.47	2.27	4.02	0.008	3.36	3.09	3.47	0.0069	479.1	50.13	237.8
	10/25/2023 20:39	14.50	2.47	2.28	4.02	0.008	3.36	3,10	3.47	0.0069	478.9	49.95	238 4
	10/25/2023 20:40	14.49	2.47	2.27	4.03	0.008	3.37	3.10	3.52	0.0070	479.5	49,98	238 3
	10/25/2023 20:41	14.49	2.46	2.26	4.02	0.008	3.38	3,11	3.52	0.0070	478 6	49 96	227 0
	10/25/2023 20:42	14.49	2.46	2.26	4.03	0.008	3.40	3.13	3 53	0.0070	479.6	49 95	230 4
	10/25/2023 20:43	14.50	2.47	2.28	4.02	0.008	3.41	3.14	3.57	0.0071	478.5	49 79	238.3
	10/25/2023 20:44	14.45	2.47	2.26	4-02	0.008	3.41	3.12	3.52	0.0070	479.1	50.00	236 7
	10/25/2023 20:45	14.49	2.45	2.26	4.02	0.008	3,41	3,14	3.52	0.0070	478 7	49,82	237 0
	10/25/2023 20:46	14.48	2.46	2.26	4.02	0.008	3.40	3,12	3,52	0.0070	479 1	49 90	237.5
	10/25/2023 20:47	14.50	2.45	2.26	4.03	0.008	3.40	3.13	3.53	0.0070	479.5	49.65	238.7
	10/25/2023 20:48	14.48	2.46	2.26	4.03	0.008	3.39	3 12	3 52	0.0070	479.3	50 10	237.0

1-

1-NH3

Version 48.0

CEMTER KVB-Enertec NetDAHSC

	Period Start:	Average 3_02 %	Average 3_NOXPPM ppm	Average 3_NOX_CORR ppm	Average 3_NOX_LBHR #/hr	Average 3_NOX_LBMM #/MBTD	Average 3_COPPM ppm	Average 3_CO_CORR ppm	Average 3_CO_LBHR #/br	Average 3_CO_LBMM #/MBTU	Average 3_GasFlow kscfb	Average 3_LOAD MW	Average 3_STACKFLW kscfm
	10/25/2023 20:49	14.47	2.47	2.27	4.03	0.008	3.37	3.09	3.48	0.0069	479.9	49.87	237.8
<	10/25/2023 20:50	14.48	2.49	2.29	4.03	0.008	3.37	3.10	3.48	0.0069	479.8	49.86	238.1
\geq	10/25/2023 20:51	14.49	2.52	2,32	4.53	0.009	3.36	3.09	3.47	0.0069	479.6	50.03	238.4
ĕ	10/25/2023 20:52	14.47	2.53	2.32	4.53	0.009	3.36	3.08	3.47	0.0069	479.4	49.98	237.5
Ñ	10/25/2023 20:53	14.49	2.53	2.33	4.53	0.009	3.38	3.11	3.52	0.0070	479.4	49.97	238.3
≥.	10/25/2023 20:54	14.48	2.51	2.31	4.03	0.008	3.39	3.12	3.53	0.0070	480.1	49.96	238.2
Ņ	10/25/2023 20:55	14.49	2.49	2.29	4.03	0.008	3.39	3.12	3.52	0.0070	479.2	49.89	238.2
ò	10/25/2023 20:56	14.49	2.49	2.29	4.03	0.008	3.39	3.12	3.53	0.0070	479.8	49.95	238.5
N	10/25/2023 20:57	14.49	2.48	2.28	4.03	0.008	3.40	3.13	3.53	0.0070	480.0	49.95	238.6
N.	10/25/2023 20:58	14.47	2.48	2.28	4.03	0.008	3.39	3.11	3.52	0.0070	479.3	49.89	237.5
12	10/25/2023 20:59	14.50	2.48	2.29	4.04	0.008	3.38	3.12	3.53	0.0070	480.4	49.85	239.1
N	10/25/2023 21:00	14.46	2.50	2.29	4.03	0.008	3.39	3.11	3.53	0.0070	480.0	49.87	237.4
- 1 1	Daily Average*	14.48	2.50	2.30	4.23	0.008	3.36	3.08	3.48	0.0069	479.1	49.95	237.7
~	Maximum*	14.52	2.57	2.35	4.53	0.009	3.41	3.14	3.57	0.0071	480.4	50.15	239.2
1		10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023
δı		19:58	20:33	20:33	20:53	20:53	20:45	20:45	20:43	20:43	20:59	20:05	19:58
4	Minimum*	14.44	2.45	2.26	4.02	0.008	3.30	3.03	3.41	0.0068	478.0	49.65	235.8
7		10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023
		20:26	20:47	20:48	20:46	21:00	20:05	20:04	20:03	20:29	20:32	20:47	19:57

* Does not include Invalid Averaging Periods ("N/A")

Average Values Report Generated: 10/25/2023 22:33

W002/	Company: City Of Anahe Plant: 3071 Miraloma A City/St: Anaheim, CA, Source: 3	im ive., 92806									Period Peri	Start: 10/2 od End: 10/2 Validation T Averaging P Typ	5/2023 21:23 5/2023 22:28 ype: 1/1 min eriod: 1 min e: Block Avg
\S-02	Period Start.	Average 3_02	Average 3_NOXPPM	Average 3_NOX_CORR	Average 3_NOX_LBHR #/br	Average 3_NOX_LBMM	Average 3_COPPM	Average 3_CO_CORR	Average 3_CO_LBHR	Average 3 CO LEMM	Average 3_GasFlow	Average 3_LOAD	Average 3_STACKFLW
Ó	10/25/2023 21:23	14.49	2.52	2.32	4.53	0.009	3.91	2 95	3.32	0,0055	479 5	50 01	220.2
Ň	10/25/2023 21:24	14.52	2.51	2.32	4.52	0.009	3.21	2.97	3.37	0.0067	478 7	49 92	239.0
2	10/25/2023 21:25	14.51	2.51	2.32	4.53	0.009	3.22	2.97	3.37	0.0067	479 3	49 89	239.0
1	10/25/2023 21:26	14.49	2.51	2.31	4.53	0.009	3.23	2.97	3.37	0.0067	479.7	49.96	239 4
2	10/25/2023 21:27	14.49	2.52	2.32	4.53	0.009	3.23	2.97	3.37	0.0067	479.7	49.91	239.4
7	10/25/2023 21:28	14.49	2.53	2.33	4.52	0.009	3.21	2,95	3.32	0.0066	478.8	49.91	237.9
ų	10/25/2023 21:29	14.49	2.52	2.32	4.53	0.009	3.22	2.96	3.32	0.0065	479.2	49.95	238.2
4	10/25/2023 21:30	14.49	2.53	2.33	4.53	0.009	3.22	2.96	3.32	0.0066	479.3	49,90	238.2
ゴ	10/25/2023 21:31	14.50	2.53	2.33	4.53	0.009	3.22	2.97	3.37	0.0067	479.1	49.78	238.5
	10/25/2023 21:32	14.47	2.53	2.32	4.53	0.009	3.21	2.95	3.33	0.0066	479.8	49.98	237.7
	10/25/2023 21:33	14.49	2.53	2.33	4.53	0.009	3.20	2.95	3.32	0.0066	479.4	49,99	238.3
	10/25/2023 21:34	14.48	2.53	2.33	4.54	0.009	3.19	2.93	3.33	0.0066	480.6	49.81	238.5
	10/25/2023 21:35	14.48	2.54	2.33	4.53	0.009	3.17	2.91	3.27	0.0065	479.0	49.84	237.7
	10/25/2023 21:36	14.52	2.54	2.35	4.54	0.009	3.19	2.95	3.33	0,0066	480.0	49.90	239.7
	10/25/2023 21:37	14.49	2.52	2,32	4.53	0.009	3.20	2.95	3.32	0.0065	479.2	49.68	238.2
	10/25/2023 21:38	14.50	2.50	2,30	4.03	0.008	3.20	2.95	3.32	0.0066	479.5	49.98	238.7
	10/25/2023 21:39	14.50	2.51	2,31	4.53	0.009	3.19	2.94	3.32	0.0066	479.2	49.90	238.5
	10/25/2023 21:40	14.48	2.53	2.33	4.53	0.009	3.21	2.95	3.32	0.0066	479.1	49.88	237.8
	10/25/2023 21:41	14,49	2.53	2.33	4.53	0.009	3.21	2.95	3,32	0,0066	479.5	49.89	238.3
0	10/25/2023 21:42	14.47	2.54	2.33	4.53	0.009	3.20	2.94	3.32	0.0066	479.4	49.87	237.5
g	10/25/2023 21:43	14.47	2.54	2.33	4.53	0.009	3.20	2.94	3.32	0.0066	479.3	50.15	237.5
$\tilde{}$	10/25/2023 21:44	14.47	2.54	2.33	4.53	0.009	3.20	2.94	3.32	0,0066	479.1	49.83	237.4
¥	10/25/2023 21:45	14,50	2.53	2.33	4.53	0.009	3.20	2.95	3.32	0,0066	479.3	49.80	238.6
S	10/25/2023 21:46	14.50	2.52	2.32	4.54	0.009	3.20	2.95	3.33	0.0066	480.0	49.95	238.9
-	10/25/2023 21:47	14,49	2.50	2.30	4.02	0.008	3.21	2.95	3.32	0.0066	478.7	49.98	237.9
	10/25/2023 21:48	14.49	2.52	2.32	4.53	0.009	3.21	2.95	3.32	0.0066	479.6	50.08	238.4
	10/25/2023 21:49	14.49	2.53	2.33	4.52	0.009	3.20	2.95	3.32	0.0066	478.8	49.87	237.9
	10/25/2023 21:50	14.53	2.52	2.33	4.53	0.009	3.20	2.96	3.32	0.0066	479.3	49.70	239.7
	10/25/2023 21:51	14.49	2.51	2.31	4.53	0.009	3.21	2,95	3.32	0.0066	479.3	49.80	238.2
	10/25/2023 21:52	14.49	2.51	2.31	4.53	0.009	3.22	2.96	3.32	0-0066	479.2	49.94	238.2
	10/25/2023 21:53	14.49	2.52	2.32	4.53	0.009	3.21	2.95	3.32	0.0066	479.2	49,94	238.2
	10/25/2023 21:54	14.48	2.53	2.33	4.53	0.009	3.20	2.94	3.32	0,0066	479.2	49,76	237.8
	10/25/2023 21:55	14.50	2.52	2,32	4.53	0.009	3.20	2,95	3,32	0,0066	479.6	49.86	238.7
	10/25/2023 21:56	14.47	2.52	2,31	4.52	0.009	3.21	2.95	3.32	0,0065	478.8	49.93	237.2
	10/25/2023 21:57	14.51	2.52	2,33	4.53	0.009	3.21	2.96	3.33	0.0066	479.8	50.10	239.2
	10/25/2023 21:58	14.48	2.52	2.32	4.54	0.009	3.20	2.94	3,33	0.0066	480.1	50.02	238.2
	10/25/2023 21:59	14.49	2.53	2.33	4.53	0.009	3.20	2.95	3,32	0.0066	479.7	49.96	238.4
	10/25/2023 22:00	14.51	2.54	2,35	4.53	0.009	3.21	2.96	3,34	0.0066	479.6	49,99	239.1
	10/25/2023 22:01	14.50	2.00	2,00	4.53	0.009	3.20	4.95	3,32	0,0066	479.5	49.80	238.7
	10/25/2023 22:02	14,40	2.00	4.54	4.53	0.009	3.20	2.94	3,34	0.0066	479.6	49.97	238.0
	10/25/2023 22:03	14,48	4.04 2.54	2,55	4.55	0.009	3.19	2.93	3.36	0.0066	479.3	49.98	237.9
	10/25/2023 22:04	14,40	4.04	2.55	4.35	0.009	3.13	2.93	3,54	0,0066	479.2	49.80	237.8
	10/25/2023 22:03	14.50	2.00	2.33	4.53	0.009	3.20	2.95	3.34	0.0066	475.7	19.79	238.8
	10/25/2023 22:00	14.40	2.51	2.30	4.02	0.008	3 21	2.25	3.20	0.0066	470.4	49.79	237.4
	10/25/2023 22:0/	14.50	2.50	2.30	4.03	0.008	3 24	2.30	3 20	0.0066	479.8	49 65	238.8
	10/25/2023 22:08	14.50	2.51	2 31	4.03	0.008	3 25	2 00	3 20	0.0067	479 0	49.82	220.7
	10/25/2023 22.10	14 57	2 51	2 32	4.03	0.008	3.25	2,39	3.38	0.0007	475.9	49.97	238.1
	10/25/2023 22.11	14 46	2.51	2 30	4.00	0.009	3.24	3.00	3,37	0.0067	479.5	49.95	239.4
	10/25/2023 22:12	14.47	2.50	2.29	4 03	0.008	3.23	2.96	3.32	0 0066	470.7	49.82	430.8
	10/25/2023 22:13	14.49	2.49	2.29	4.03	0.008	3.23	2.97	3,30	0 0067	490 1	49.89	437.0
	10/25/2023 22:14	14.47	2.50	2.29	4,03	0.008	3,23	2.95	3,32	0.0056	479 9	45.51	430.D
	10/25/2023 22:15	14.46	2,53	2.32	4,53	0.009	3,21	2.94	3.35	0.0056	478 9	49.95	237.8
	10/25/2023 22:16	14.49	2.53	2.33	4.54	0,009	3.21	2.95	3, 33	0.0055	470.9	49 60	230.9

R-NH3

Version 48.0

CEMTER KVB-Enertec NetDAHS®

	Period St	art:	Average 3_02 %	Average 3_NOXPPM ppm	Average 3_NOX_CORR ppm	Average 3_NOX_LBHR #/br	Average 3_NOX_LBMM #/MBTU	Average 3_COPPM ppm	Average 3_CO_CORR ppm	Average 3_CO_LBHR #/hr	Average 3_CO_LEMM #/MBTU	Average 3_GasFlow kscfh	Average 3_LOAD MW	Average 3_STACKFLW kscfm
	10/25/2023	22:17	14.47	2,51	2.30	4,03	0.008	3.21	2.95	3.33	0.0066	480.1	49.91	237.9
\leq	10/25/2023	22:18	14.49	2.53	2.33	4.53	0.009	3.21	2.95	3.32	0.0066	479.3	50.00	238.2
\leq	10/25/2023	22:19	14.51	2.55	2.35	4.54	0.009	3.20	2.95	3.33	0.0066	480.2	50.00	239.4
ğ	10/25/2023	22:20	14.48	2.54	2.33	4,54	0.009	3.21	2.95	3.33	0.0066	480.0	50.08	238.2
Ñ	10/25/2023	22;21	14.50	2.52	2.32	4.54	0.009	3.22	2,97	3.38	0.0067	480.1	49.96	239.0
≥	10/25/2023	22:22	14.47	2.52	2.31	4.53	0.009	3.23	2.96	3.32	0.0066	479.5	49.97	237.6
Ņ	10/25/2023	22:23	14.49	2.51	2.31	4.53	0.009	3.23	2.97	3.37	0.0067	479,5	49.80	238.3
ò	10/25/2023	22:24	14.48	2.50	2.30	4.03	0.008	3.23	2.97	3.37	0.0067	479.4	50.06	237.9
Ň	10/25/2023	22:25	14.48	2.50	2.30	4.03	0.008	3.23	2.97	3.38	0.0067	479.9	49.78	238.1
Ň	10/25/2023	22:26	14.49	2.50	2.30	4.03	0.008	3.23	2.97	3.37	0.0067	479.3	50.06	238.2
12	10/25/2023	22:27	14.48	2.50	2.30	4.03	0.008	3.24	2.98	3.37	0.0067	479.6	49.78	238.0
N	10/25/2023	22:28	14.48	2.50	2.30	4.03	0.008	3.25	2.99	3.37	0.0057	479.2	49.83	237.8
÷10	Daily	Average*	14.49	2.52	2.32	4.41	0.009	3.21	2.96	3.33	0.0066	479,5	49.92	238.3
2		Maximum*	14.53	2.55	2.35	4.54	0.009	3.25	3.00	3.38	0.0067	480.5	50.15	239.7
7			10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023
бı			21:50	22:19	22:19	22:21	22:23	22:28	22:10	22:25	22:28	21:34	21:43	21:50
4		Minimum*	14.46	2.49	2.29	4.02	0.008	3.17	2.91	3.27	0.0065	478.4	49.58	236.8
더			10/25/2023 22:15	10/25/2023 22:13	10/25/2023 22:14	10/25/2023 22:11	10/25/2023 22:28	10/25/2023 21:35	10/25/2023 21:35	10/25/2023 21:35	10/25/2023 21:35	10/25/2023 22:05	10/25/2023 21:37	10/25/2023 22:11

* Does not include Invalid Averaging Periods ("N/A")

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

GENERAL EMISSIONS CALCULATIONS

- I. <u>Stack Gas Velocity</u>
 - A. Stack gas molecular weight, lb/lb-mole

 $MW_{dry} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$

 $MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$

B. Absolute stack pressure, iwg

$$P_{s} = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_{s} = 2.9 * C_{p} * \sqrt{\Delta P} * \sqrt{T_{s}} * \sqrt{\frac{29.92 * 28.95}{P_{s} * MW_{wet}}}$$

- II. <u>Moisture</u>
 - A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528^{\circ}R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

- A. Actual stack gas volumetric flow rate, wacfm
- $Q = V_s * A_s * 60$
- B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, Ib/MMBtu

$$\frac{1b}{MMBtu} = \frac{ppm * MW_i * F}{SV * 10^6} * \frac{20.9}{20.9 - \% O_2}$$

VI. <u>Percent Isokinetic</u>

$$I = \frac{17.32 * T_{s} (V_{mstd})}{(1 - B_{wo}) 0 * V_{s} * P_{s} * Dn^{2}} * \frac{520^{\circ}R}{T_{ref}}$$

VII. Particulate Emissions

- (a) Grain loading, gr/dscf C = 0.01543 ($M_n/V_m \text{ std}$)
- (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
- (c) Mass emissions, lb/hr M = C * Q_{sd} * (60 min/hr) / (7000 gr/lb)
- (d) Particulate emission factor

 $Ib/10^6 Btu = Cx - \frac{1 Ib}{7000 gr} * F * \frac{20.9}{20.9 - \% O_2}$

Nomenclature:

As	=	stack area, ft ²
B _{wo}	=	flue gas moisture content, dimensionless
C _{12%CO2}	=	particulate grain loading, gr/dscf corrected to 12% CO ₂
С	=	particulate grain loading, gr/dscf
Cp	=	pitot calibration factor, dimensionless
Dn	=	nozzle diameter, inches
F	=	fuel F-Factor, dscf/MMBtu @ 0% O ₂
Н	=	orifice differential pressure, iwg
I	=	% isokinetics
Mn	=	mass of collected particulate, mg
Mi	=	mass emission rate of specie i, lb/hr
MW	=	molecular weight of flue gas, lb/lb-mole
M _{wi}	=	molecular weight of specie i:
	SO ₂ :	64
	NO _x :	46
	CO:	28
	HC:	16
0	=	sample time, minutes
ΔP	=	average velocity head, iwg = $(\sqrt{\Delta P})^2$
P _{bar}	=	barometric pressure, inches Hg
Ps	=	stack absolute pressure, inches Hg
P _{sa}	=	stack static pressure, iwb
Q	=	wet stack flow rate at actual conditions, wacfm
Q_{sd}	=	dry standard stack flow rate, dscfm
SV	=	specific molar volume of an ideal gas at standard conditions, ft ³ /lb-mole
T _m	=	meter temperature, °R
T _{ref}	=	reference temperature, °R
Ts	=	stack temperature, °R
Vs	=	stack gas velocity, ft/sec
V _{Ic}	=	volume of liquid collected in impingers, ml
V _m	=	uncorrected dry meter volume, dcf
V _{mstd}	=	dry meter volume at standard conditions, dscf
V _{wstd}	=	volume of water vapor at standard conditions, scf
Y _d	=	meter calibration coefficient

Appendix C.2 Spreadsheet Summaries

MUNIRUSE

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility	Canyon		Parameter	***********	NH ₃
Unit	U3		Fuel	******	Natural gas
Sample Location	Stack		Data By	mannanananan	RD
Test Number	1-NH3-U3	2-NH3-U3	Average	Maximum	Limit
Reference Temperature (°F)	60	60			
Test Date	10/25/2023	10/25/2023			
Test Method	SCAQMD 207 1	SCAQMD 207.1			
Sample Train	17-WCS	17-WCS			
Meter Calibration Factor	0.993	0.993			
Stack Area (ft ²)	106.90	106.90			
Sample Time (Minutes)	60	60			
Barometric Pressure ("Hg)	29.69	29.69			
Start/Stop Time	1954/2100	2122/2228			
Meter Volume (acf)	33,930	33.970	8		
Meter Temperature (°F)	72.2	73.4			
Meter Pressure (iwg)	1.0	1.0			
Liquid Volume (ml)	99.2	90,9		1	
Stack O ₂ (%)	14.48	14.49	14.49	(from facility CEI	VIS)
Unit Load (MW)	50.0	49.9	49.9	1	
Standard Sample Volume (SCF)	32.746	32.710			
Moisture Fraction	0.123	0.114			
Stack Flow Rate (dscfm, 68 °F)	237,700	238,300	238,000	(from facility CEI	VIS)
Stack Flow Rate (@ Tref)	234,098	234,689	234,394		- N.
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft ³ /lb-mole)	379.5	379.5			
F-Factor (dscf/MMBtu)	8,710	8,710			
HHV(Btu/SCF)	1,050	1,050			
Mass Conversion (lb/ug)	2.2046E-09	2.2046E-09			
O2 Correction Factor (%)	15	15			
Mass NH ₃ (ug)	733.260	763.892			
Mass NH ₃ (lb)	1.62E-06	1.68E-06			
NH ₃ (ppmv, flue gas)	1.10	1.15	1.12	1.15	
NH ₃ (ppmv @ O ₂ Correction Factor)	1.01	1.06	1.03	1.06	5
NH ₃ (lb/hr)	0.69	0.72	0.71	0.72	
NH ₃ (Ib/MMBtu)	0.001	0.001	0.001	0.001	
NH ₃ (lb/MMSCF)	1.45	1.51	1.48	1.51	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

Point	Meter Volume	Delta H	Tm In	Tm Out
3	354.900	1.0	71	69
2			71	69
1			73	70
3			72	69
2			74	69
1			76	70
3			74	72
2			76	71
1			76	70
3			74	71
2			76	71
1			77	71
Stop	388.830	-		
Result	33.930	1.0	7:	2.2

1-NH3-U3		Impinger	Weights	
Tm Out	#	Post-Test	Pre-Test	Difference
69	1	854.5	664.3	190.2
69	2	754.9	753.8	1.1
70	3	655.2	654.6	0.6
69	4	941.2	933.9	7.3
69	Line Rinse	0.0	100.0	-100.0
70				99.2

2		10	1.10
2.1	ΝН	· · · ·	113
			23

Point	Meter Volume	Delta H	Tm In	Tm Out
3	390.800	1.0	72	71
2			72	71
1			74	72
3			75	71
2			75	71
1			76	71
3			75	71
2			77	72
1			78	72
3			75	72
2			77	72
1			77	72
Stop	424.770			
Result	33.970	1.0	7	3.4

#	Post-Test	Pre-Test	Difference
1	917.1	735.4	181.7
2	757.4	755.8	1.6
3	654 8	654.0	0.8
4	973.3	966.5	6.8
Line Rinse	0.0	100.0	-100.0
			90.9

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U3

Identifier	Description	Units	Equation	Value
А	Reference Temperature	F		60
В	Reference Temperature	R	A + 460	520
С	Meter Calibration Factor (Yd)	1. HE		0.993
D	Barometric Pressure	"Hg		29.69
E	Meter Volume	acf	-	33.930
F	Meter Temperature	F		72.2
G	Meter Temperature	R	F + 460	532.2
н	Delta H	" H ₂ O		1.0
1	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	32.746
J	Liquid Collected	grams		99.2
ĸ	Water vapor volume	scf	0.0472 * J * B/528	4.611
L	Moisture Content	÷	K/(K + I)	0.123
M	Gas Constant	ft-lbf/lb-mole-R		1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu		8,710
P	HHV	Btu/SCF	-	1,050
Q	Mass Conversion Factor	lb/ug	1.H	2.2046E-09
R	O ₂ Correction Factor	-	-	15
S	Stack Flow Rate @ 68 F	dscfm		237,700
т	Stack Flow Rate @ Tref	dscfm	S * B/528	234,098
U	Mass NH ₃	ug		733
V	Mass NH ₃	lb	U * Q	1.62E-06
W	MW of NH ₃	lb/lb-mole		17.03
x	NH ₃	ppm	(V * N *10 ⁵)/(I * W)	1.1
Y	Flue Gas O ₂	%	Contract Ball Street, and	14.48
Z	NH ₃	ppmc	X * (20.9 - R)/(20.9 - Y)	1.0
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10 ⁶)	0.7
AB	NH ₃	Ib/MMBtu	(X * W * O)/(385.3 * 10°) * 20.9/(20.9 - Y)	0.001
AC	NH ₃	Ib/MMSCF	AB * P	1.4

Note:

(1) Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

<u>Equipment Maintenance and Calibration</u>: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)
- Flame Resistant Clothing (if required)

The following safety measures are followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	 Absence of leaks Ability to draw manufacturers required vacuum and flow 	As recommended by manufacturer	 1. Visual inspection 2. Clean 3. Replace parts 4. Leak check
Flow Meters	1. Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	 Absence of malfunction Proper response to zero span gas 	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	1. Steam clean 2. Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	1. Sample degradation less than 2%	After each test series	1. Blow dry, inert gas through line until dry

TABLE 1EQUIPMENT MAINTENANCE SCHEDULE

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	± 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	± 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	± 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	± 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	± 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	± 1.5%

TABLE 2MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Note: Calibration requirements that meet applicable regulatory agency requirements are used.

Appendix D.2 SCAQMD and STAC Certifications

September 14, 2023

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice Reference # 96LA1220

Dear Mr. Peterson:

We have completed our review of Montrose Air Quality Services' revised renewal application, which was submitted as notification of Montrose's recent acquisition of AirKinetics, Inc. under the South Coast AQMD Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2023, and ending September 30, 2024, for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

South Coast AQMD Methods 1-4 South Coast AQMD Methods 10.1 and 100.1 South Coast AQMD Methods 5.1, 5.2, 5.3, 6.1 (Sampling and Analysis) South Coast AQMD Methods 25.1 and 25.3 (Sampling) Rule 1121/1146.2 Protocol Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling USEPA CTM-030 and ASTM D6522-00

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler	Noritz Americ	ca Corp.	Ajax Boiler, Inc.
1510 North Spring Street	11160 Grace .	Avenue	2701 S. Harbor Blvd.
Los Angeles, CA 90012	Fountain Vall	ey, CA 92708	Santa Ana, CA 92704
VA Laundry Bldg., Greater LA	Healthcare Sys.	So Cal Gas - Er	ngr Analysis Ctr, Bldg H
508 Constitution Avenue		8101 Rosemead	Blvd
Los Angeles, CA 90049		Pico Rivera, CA	90660

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Colin Eckerle. He may be reached by telephone at (909) 396-2476, or via e-mail at ceckerle@aqmd.gov.

Sincerely,

D. Sarkar

Dipankar Sarkar Program Supervisor Source Test Engineering

DS:CE Attachment

230914 LapRenewal.doc

Appendix D.3 Individual QI Certificate

	ik Dunnant	
Control of the second of the s	here a comprehensive tion 8.3 of ASTM D7036-04 for	e examination and is now a r the following method(s):
SCAQN	ID Methods 1.1 - 4.1	
ite Number: <u>002-2021-41</u>		
Life Alardd rickler, VP - Quality Systems	DATE OF ISSUE:	12/02/2021
	DATE OF EXPIRATION:	12/01/2026

Rik D	upont	
its document certifies that this individual has pa Qualified Individual (QI) as defined in Section 8.3	assed a comprehensive of ASTM D7036-04 for	examination and is now a the following method(s):
SCAQMD M	ethod 207.1	
ertificate Number: 002-2021-26		
Juk Studd	DATE OF ISSUE:	8/19/21
Tate Strickler, VP – Quality Systems	DATE OF EXPIRATION:	8/19/26

Appendix D.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID:	153992
Date(s) Tested:	October 25, 2023
Facility Name:	Canyon Power Plant
Equipment Address:	3071 E. Mira Loma Avenue
	Anaheim, California 92806
Equipment Tested:	Unit 3
Device ID, A/N, P/N:	D13

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm:	Montrose Air Quality Services, LLC
Business Address:	1631 E. St. Andrew PI.
	Santa Ana, California 92705
Business Address:	1631 E. St. Andrew Pl. Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in District Rule 304(k):

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory;
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing, or the source testing information provided to the SCAQMD.

Signature:	1 Wh A	Date:	12/5/2023
Rik Dupont	Field Project Manager	(714) 279-6777	12/5/2023
(Name)	(Title)	(Phone)	(Date)

FORM ST-110 :stevforl.doc (Revised 11/18/98

Southern California Public Power Authority – Canyon 4Q23 Unit 3 $\ensuremath{\mathsf{NH}}_3$

APPENDIX E APPLICABLE PERMIT SECTIONS

Section D Page: -5 153992 Facility ID: Revision #: August 19, 2021 Date:

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1: POWER GENE	RATI	ON			
GAS TURBINE, NO. 3, NATURAL GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 479 MMBTU/HR AT 46 DEG F, WITH INLET CHILLING, WITH WATER INJECTION WITH A/N: 555830	D13	C15	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; <i>RULE 1303(a)(1)</i> - <i>BACT, 12-6-2002</i>]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 12-4-2015]; NOX: 25 PPMV NATURAL GAS (4) [AULE 2005, 12-4-2015]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 3-20-2009]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; <i>RULE 475, 8-7-1978</i>]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; <i>RULE 1303(b)(2)</i> - <i>Offset, 12-6-2002</i>]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; <i>RULE</i> 475, 8-7-1978]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SO2: 0.06 LBS/MMBTU NATURAL GAS (8) [40CFR 60 Subpart KKKK, 3-20-2009]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; <i>RULE 1303(a)(1)-BACT, 12-6-2002</i>]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1, I298.3, K40.1
GENERATOR, 50.95 MW					

* (1) (1A) (1B) Denotes RECLAIM emission factor

- Denotes RECLAIM concentration limit
- (3) (5) (5A) (5B) Denotes command and control emission limit (6)
- (7)Denotes NSR applicability limit
- (9)
- (2) (2A) (2B) Denotes RECLAIM emission rate

Denotes BACT emission limit

- (4) Denotes air toxic control rule limit
 - (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)
- See App B for Emission Limits
- See section J for NESHAP/MACT requirements (10)** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

Section D	Page:	6	
Facility ID:	1539	92	
Revision #:		4	
Date: Aug	ust 19, 20	21	

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1: POWER GENE	RAND	<u>(ON</u>			
CO OXIDATION CATALYST, NO. 3, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476660	C15	D13 C16			
SELECTIVE CATALYTIC REDUCTION, NO. 3, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476660 AMMONIA INJECTION	C16	C15 S18		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.6, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 3, HEIGHT: 86 FT ; DIAMETER: 11 FT 8 IN A/N: 555830	S18	C16			

* (1) (1A) (1B) Denotes RECLAIM emission factor

(2) (2A) (2B) Denotes RECLAIM emission rate Denotes BACT emission limit

Denotes RECLAIM concentration limit (4) Denotes

(5) (5A) (5B) Denotes command and control emission limit (6)

- (7) Denotes NSR applicability limit
- (9) See App B for Emission Limits

- Denotes air toxic control rule limit
- (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10) See section J for NESHAP/MACT requirements

** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

(3)

Section D Facility ID	Page: 28): 153992
Revision #	: 4
Date:	August 19, 2021

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition : C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 11-1-2019; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-1-2017; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart IIII, 7-7-2016]

[Devices subject to this condition : D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR
		.	serving this equipment

Section D Facility ID	Page: 29): 153992
Revision #	4
Date:	August 19, 2021

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted quarterly during the first twelve months of operation of the catalytic control device and annually thereafter when four consecutive quarterly source tests demonstrate compliance with the ammonia emission limit. If an annual test is failed, four consecutive quarterly source tests must demonstrate compliance with the ammonia emissions limits prior to resuming annual source tests.

The South Coast AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using South Coast AQMD Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the South Coast AQMD within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1135, 11-2-2018; **RULE 1303(a)(1)-BACT, 5-10-1996;** RULE 1303(a)(1) -BACT, 12-6-2002]

[Devices subject to this condition : D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Labcratory Method 307-91	District-approved averaging time	Fuel sample

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name:	Mr. Rik Dupont
Title:	Field Project Manager
Region:	West
Email:	RDupont@montrose-env.com
Phone:	(714) 279-6777

Name:	Mr. Matt McCune
Title:	Regional Vice President
Region:	West
Email:	MMccune@montrose-env.com
Phone:	(714) 279-6777

TEST REPORT FOR FOURTH QUARTER 2023 AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 4 FACILITY ID 153992, DEVICE ID D19

Prepared For:

Canyon Power Plant 3071 E. Mira Loma Avenue. Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Rik Dupont

Test Date:October 27, 2023Production Date:December 5, 2023Report Number:W002AS-029212-RT-5450

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	Thit	Date:	12/5/2023
Name:	Rik Dupont	Title:	Field Project Manager

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

Signature:	Sun	Date:	12/5/2023	
Name:	Surya Adhikari	Title:	Senior Reporting QC Specialist	

TABLE OF CONTENTS

<u>SEC</u>	TION	<u> </u>	PAGE
1.0	INTRO	ODUCTION AND SUMMARY	5
2.0	UNIT	AND CEMS DESCRIPTION	6
	2.1	UNIT DESCRIPTION	6
	2.2	CEMS DESCRIPTION	7
	2.3	TEST CONDITIONS	7
	2.4	SAMPLE LOCATION	7
3.0	TEST	DESCRIPTION	8
4.0	RESL	ILTS AND OVERVIEW	9
	4.1	TEST RESULTS	9
	4.2	TEST OVERVIEW	9
LIS'		APPENDICES	
А	RAW	DATA	10
	A.1	SCAQMD Method 1.1 Data	11
	A.2	Sample Data Sheets	13
	A.3	Laboratory Data	17
	A.4	QA/QC Data	23
В	FACIL	ITY CEMS DATA	27
С	CALC	ULATIONS	32
	C.1	General Emissions Calculations	33
	C.2	Spreadsheet Summaries	37
D	QUAL	ITY ASSURANCE	41
	D.1	Quality Assurance Program Summary	42
	D.2	SCAQMD and STAC Certifications	48
	D.3	Individual QI Certificate	51
	D.4	Statement of No Conflict of Interest	54
Е	APPL	ICABLE PERMIT SECTIONS	56
LIS	T OF T	ABLES	
1-1	RES	ULTS SUMMARY	5
4-1	DET	AILED TEST RESULTS	9
LIS.	T OF F	IGURES	
2-1	SIME	PLIFIED PROCESS BLOCK DIAGRAM	6
21	SC 1		۰ م
3-1	SUA		0

1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted by the Canyon Power Plant to perform an ammonia slip test at Unit 4 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on October 27, 2023. The test was performed by Rik Dupont, Ray Madrigal, Nestor Gonzalez, and Luis Olivares. Rik Dupont was the on-site Qualified Individual for MAQS. MAQS qualifies as an independent testing laboratory under SCAQMD Rule 304 (no conflict of interest) and is certified by the SCAQMD to conduct testing for criteria pollutants according to District Methods. Ms. Bertha Hernandez coordinated the test for Canyon Power Plant.

The test consisted of duplicate ammonia tests performed at 50.0 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1 RESULTS SUMMARY CANYON POWER PLANT UNIT 4 OCTOBER 27, 2023

Parameter/Units	Result ⁽¹⁾	Limit
NH₃ ppm	11	
ppmc	1.0	5

(1) Maximum of duplicate runs, as required by SCAQMD Method 207.1.

Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.

2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46°F, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for NO_x control. A simplified process block diagram of the unit is presented as Figure 2-1.

FIGURE 2-1 SIMPLIFIED PROCESS BLOCK DIAGRAM CANYON POWER PLANT UNIT 4

Stack Inside Diameter: Distance from Upstream Disturbance: Distance from Stack Exit: 11 feet, 8 inches

23 feet, 4 inches (2.0 Diameters)

16 feet, 6 inches (1.4 Diameters)

2.2 CEMS DESCRIPTION

 NO_x and CO emissions from the unit are monitored by a dry, extractive Continuous Emission Monitoring System (CEMS). Stack flow rate is determined from fuel flow rate, O_2 concentration, standard F-Factor, and fuel higher heating value using EPA Method 19.

2.3 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 50.0 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.4 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit. A diagram of the sample location and individual traverse points is contained in Appendix A.1.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack. Each test was performed over a 60-minute interval. The sample gas was drawn through a Titanium probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by lon Specific Electrode analysis. A diagram of the sampling equipment is presented as Figure 3-1.

Stack O_2 and NO_x concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

FIGURE 3-1 SCAQMD METHOD 207.1 SAMPLING EQUIPMENT

4.0 RESULTS AND OVERVIEW

4.1 TEST RESULTS

The results of the test are summarized in Table 4-1. The results show that the maximum ammonia slip was 1.0 ppm @ $15\% O_2$ which is less than the permitted limit of 5 ppm @ $15\% O_2$.

TABLE 4-1 DETAILED TEST RESULTS CANYON POWER PLANT UNIT 4 OCTOBER 27, 2023

Parameter/Units	1-NH ₃	2-NH ₃	Average	Maximum ⁽¹⁾	Limit
Start/Stop Time	1956/2102	2124/2230			
Stack Flow, dscfm @ T _{ref} ⁽²⁾	237,152	237,250	237,201		
O ₂ , % ⁽²⁾	14.42	14.42	14.42		
NO_x , ppm @ 15% O ₂ ⁽²⁾	2.3	2.2	2.2		2.5
NH ₃ ppm ppm 15% O ₂ Ib/hr Ib/MMBtu Ib/MMSCF	1.1 1.0 0.7 0.001 1.4	1.0 0.9 0.6 0.001 1.2	1.0 0.9 0.6 0.001 1.3	1.1 1.0 0.7 0.001 1.4	 5

(1) Maximum of duplicate test runs, as required by SCAQMD Method 207.1.

(2) From facility CEMS.

4.2 TEST OVERVIEW

The test program was successful in meeting the program objectives. The QA/QC requirements of SCAQMD Method 207.1 were met. The results are considered representative of the source at the time of the tests.

Southern California Public Power Authority - Canyon 4Q23 Unit 4 $\ensuremath{\mathsf{NH}}_3$

APPENDIX A RAW DATA

Appendix A.1 SCAQMD Method 1.1 Data

METHOD 1 DATA SHEET SAMPLE LOCATION

Southern California Public Power Authority - Canyon 4Q23 Unit 4 $\ensuremath{\mathsf{NH}_3}$

Appendix A.2 Sample Data Sheets

ET CHEMICAL SAMPLIN AMBIENT TEMPERATURE: BAROMETRIC PRESSURE: BAROMETRIC PRESSURE: ASSUMED MOISTURE: PROBE ID NO/MATERIAL: PROBE ID		M M M M M M M M M M M M M M	Mill UIT 4 Unitable Unitable<	MULLIAIL MULLIAIL MI. CAPA-CAN YON TION: UNIT 4 TION: UNIT 4 UNIT 4 MI. TION: UNIT 4 UNIT 4 MO: 1.231.023 NO: 1.231.023 NO: 1.241.023 MI MINIPOINT: 12, 5 min MI Condition, pre/post test: Cook) 4000 RESE POINTS, MINIPOINT: 12, 5 min MI Condition, pre/post test: Cook) 4000 Condition, pre/post test: Cook) 4000 Gel Expended, Y(M) MI Meter NIA Meter Volume, fr3 in. H2O Point SSN - SOO NIA Point SSN - SOO Point Point SSN - SOO Point Point SSN - SOO Point Poi
--	--	--	---	--

Date of last revision 2/14/2017

W002AS-029212-RT-5450

14 0961

CLIENT: SC PF LOCATION: DATE: VU) RUN NO: 2 OPERATOR: METER BOX NC METER AH@: METER Yd:	24 CANYON UNIT 4 27/2023 -NH3-U4											
LOCATION: DATE: VO RUN NO: 2 OPERATOR: METER BOX NC METER AH@: METER Yd:	27/2023 - NH3-UY		AMBIEN	T TEMPERATL	JRE:	50		lmp.#	Contents	Post-Test	- Pre-Test	Difference
METER BOX NC METER BOX NC METER BOX NC METER AH@: METER Yd:	-11-2-01	1	BAROMI	ETRIC PRESS	JRE:	29.66			111 112	930.	4 -10 0	
OPERATOR: METER BOX N(METER ΔH@: METER Yd:	27		PITOT T	UBE COEFF. C	:o:	N N	1	-		and had	A. W	
METER BOX NC METER AH@: METER Yd:			PROBE	ID NO/MATERI.	AL:	TI		2	IN H2	sey 753.	1 753.2	
METER AH@: METER Yd:	Di 17-WC	S	PROBE	LENGTH:		1		(-	
MELEK Yd:	5181		NOZZLE	ID NO/ MATE	RIAL:	オーシ		γ	Europ	0.10.	2-1669.C	
	5640			DIAMETER:		12	1	7	10	aula.	0000 1	
	TIZE MINIOUTIN		FILTER	NO/TYPE:	10.00 CT	Me JUV		•	3	1.11	1 51.0	
AH= / XA		VILL OF	POST-TF	ST I FAK RAT	F: J D DOSCE	, C1 (0)M	in Ho.	LA	NTH	D ION M		
Probe Condition	pre/post test: 6	000 4000	PITOT LI	EAK CHECK - I	PRE: NA	POST:	AIN A					
Silica Gel Exper	ded, YM	0	CHAIN C	DF CUSTODY:	SAMPLE CL		hur	Total:				
Check Weight:	SC010	1500 0			SAMPLE CL	JSTODIAN	Cur					
	Meter	ΔP	HΔ	Stack	Probe	Filter	Imp. Out	Meter Te	emp, °F	Vacuum	02	Pstatic
Point Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	Ē	Out	in. Hg.	%	in. H ₂ O
rela n	573100	412	0-1	42	42	42	28	00	66	S"		
P2150	O-CB-SES	1	0,	/	~	~	94	64	69	2		
ある	0ft. 5t5		0.1				45	69	8	9.		
PC 3139	585.185	-	1	/			1	1	۱ (1		
3 214	581 535	/	0				20	70	to.	Зŕ		
PHC CO	015-Yes		0-			-	+ 1	7	+9	3		
25	122140	/	1-0			/	ty	d,	64	ۍ ۲		
21-0 × 10	8 28 2 1 S						i		L	1		
Velte E	21-22 247	/	0.			1	60	Pi	19	= 2)		
4 040	COU. 40- 0		0-1-				Xh.	4	20	: D		
240	13. 610 		2				21	12	à	0		
2128 2	CAC 430		-				1	1 F	14	112		
1440	Otton C		0				Xn	64	ee ee	21		
SERE 1	1004.110		1.0				81	1th	69	31		
E Prat	066.990	1	1	1		/	1	ł	i	1		
		_		1		/						
		-		-		/						
									T			
									T			
Average:												

Date of last revision 2/14/2017

Master Document Storage/Forms/Datasheets/Field Datasheets

1

15 of 61

	Fest - Pre-Test = Difference 94. 3 754. 2 15.5 7463 15.5 7463 10.3 69000 10.3 69000 100 m C	Petatic % in H2O in H2O	
SHEET	Imp. # Contents Post-T <u>1</u> <u>11N Hirew</u> <u>8</u> <u>2</u> <u>1N Hirew</u> <u>8</u> <u>3</u> <u>2</u> <u>1N Hirew</u> <u>74</u> <u>3</u> <u>2</u> <u>1N Hirew</u> <u>74</u> <u>3</u> <u>2</u> <u>1N Hirew</u> <u>74</u> <u>4</u> <u>50</u> <u>95</u> <u>17</u> <u>17</u> <u>17</u> <u>17</u> <u>17</u> <u>17</u> <u>17</u> <u>17</u> <u>17</u> <u>17</u> <u>17</u>	Meter Temp, °F Vacuu In Out in. Hg	
AND WORK	in. Hg.	Temp, °F	
STEM DATA	67 29.66 29.66 29.66 20.00 25.66	Temp, "F	
MPLING SY	APLING SY: URE: CP: CP: CP: CP: CP: CP: CP: CP: CP: CP	Probe	
EMICAL SA	NT TEMPERA METRIC PRES MED MOISTUR TUBE COEFF, TUBE COEFF, TUBE COEFF, E ID NO/MATE E ID NO/MATE E DIAMETER: R NO/TYPE EST LEAK RA TEST LEAK RA LEAK CHECK OF CUSTODY	Stack Temp, °F	
WET CH	WET CHI WET CHI AMBIE AMBIE ASSUN ASSUN ASSUN PITOT PROBI FILTEF FILTEF PRE-T POST- CHAIN	H ² O ¹	
	NT: N of Walt	й. П. Н2О Н3О Н3О Н3О Н3О Н3О Н3О Н3О Н3О Н3О Н3	
VTROSE	21-27 21-27 21-27 2-1-27 2-1-27 1-9-1	Volume, fi	
MOK MOL	CLIENT: SC LOCATION: SC DATE: 10- RUN NO: 10- OPERATOR: METER AH@: METER AH@: METER Yd: STACK AREA, F TRAVERSE POI AH= 2 VP- X A Probe Condition silica Gel Expen Silica Gel Expen Filter Condition s	Point	Average:

I

Date of last revision 2/14/2017

Southern California Public Power Authority - Canyon 4Q23 Unit 4 $\ensuremath{\mathsf{NH}_3}$

Appendix A.3 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION DATA

District Method: SCAQMD 207.1

Project Number: Client/Location: Sample Location: Sample Date: Analysis Date:	PROJ-029212 SCPPA/Canyon Power Plant U4 Stack <u>10/25/2023</u> 11/6/2023	10/27/202	Calibra	tion Curve Slope: Y-intercept: R ² : Thermometer #:	-55.6129 109.4129 0.9993 7	-	
Analyst's Initials:	PR	-		ISE Electrode #:	20		
Sample	Total Volume (mL)	Sample Temperature (°C)	Electrode Potential (mV)	Conc. µg NH3 /ml as N	C _{avg} as N	C _{avg} as NH ₃	µg NH ₃ / sample
Standard Check: 28 μ g NH ₃ / ml as N	NA	23.2 23.2	30.7 30.2	26.024 26.568	26.296	31.964	NA
1-NH ₃ -4	626.0	22.9 22.8	110.5 111.5	0.956	0.937	1.138	712.697
2-NH ₃ -4	599.5	23.0 23.0	112.4 112.9	0.884	0.875	1.063	637.354
Spike 1-NH3-4	NA	23.2 23.3	39.1 38.7	18.379 18.686	18.533	22.528	NA
Standard Check: 28 μ g NH ₃ / ml as N	NA	23.2 23.2	31.0 31.4	25.703 25.280	25.492	30.986	NA
Reagent Blank 0.1N H ₂ SO ₄	NA	24.1 23.9	209.4 208.9	0.016	0.016	0.020	NA
DI H ₂ O Blank	NA	22.8 22.8	206.5 207.6	0.018	0.018	0.021	NA
Field Blank	593.0	23.4 23.3	204.9 205.1	0.019 0.019	0.019	0.023	13.773
Standard Check: 28 μ g NH ₃ / ml as N	NA	23.0 23.0	30.3 30.2	26.458 26.568	26.513	32.229	NA

Notes:

- Measured Concentration of Ammonia (C) in ug NH $_{\rm 3}$ / ml as N.

- C=10 $^{(P-B)/M},$ P = electrode potential (mV), M=slope and B=intercept.

- Average Measured Ammonia Concentration (C $_{avg}$) = (C₁ + C₂)/2 where C₁, C₂ are results from duplicate analyses (ug NH $_3$ /ml as N).

 $- C_{avg} (ug NH_3/ml as NH_3) = C_{avg} (ug NH_3/ml as N) * 17.03/14.01.$

- ug NH₃ / sample = C_{avg} (ug NH₃/ml as NH₃) * TV.

- Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate, analyzed in duplicate.

- Sample pH and temperatures can be found on the laboratory datasheet.

- Maximum number of samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

- All samples are collected in 0.1N H $_2 SO_4$ and allowed to equilibrate to room temperature.

- All calibration verification standard (C.V.) are prepared in 0.04N H _2SO4 and allowed to equilibrate to room temperature.

- Sample solutions, blanks and C.V. Standard temperature must be within \pm 2°C.

- Spike: 100 ml sample + 2 ml 1000ppm NH 3 as N.

MONTROSE

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Project Number:	PROJ-029212	
Client/ Location:	SCPPA/Canyon	Power Plant
Sample Location:	U4 Stack	
Sample Date:	10/25/2023	10/27/2023
Analysis Date:	11/6/2023	GA Wha
Analyst's Initials:	PR	

District Method: SCAQMD 207.1

Sample	Recovery (%)	RPD (%)	RPA (%)
Standard Check: 28 μ g NH ₃ / ml as N	NA	-2.07	-6.086
1-NH3-4	NA	4.14	NA
2-NH3-4	NA	2.07	NA
Spike 1-NH3-4	91.59	-1.66	NA
Standard Check: 28 µg NH ₃ / ml as N	NA	1.66	-8.959
Reagent Blank 0.1N H ₂ SO ₄	NA	-2.07	NA
DI H ₂ O Blank	NA	4.55	NA
Field Blank	NA	0.83	NA
Standard Check: 28 μ g NH ₃ / ml as N	NA	-0.41	-5.310

Notes:

- Spike: 100 ml sample + 2 ml 1000ppm NH 3 as N.

- Matrix Spike Percent Recovery (%R).

- %R = $(C_{spike}*0.104 - C_{sample}*0.102)/2 *100.$

- Cspike = average result of matrix spike (ug NH $_{\rm 3}/$ ml as N).

- Relative Percent Difference (RPD) = (C $_1$ -C $_2$)/ C $_{avg}$ *100 (must be 5% or less).

- Relative Percent Accuracy (RPA) (must be 10% or less).

- RPA = (C_{avg} -theoretical value of standard)/ theoretical value of standard * 100.

100

22.8

22.8

MONTROSE

23.0

AMMONIA ELECTRODE CALIBRATION CURVE DATA

District Method:	SCAQMD 207.1
Date:	November 6, 2023
Project Number:	PROJ-029212
Client/Location:	SCPPA/Canyon Power Plant

1.301

2.000

Client/Lecation	SCDDA (Conver Dover Diont	•2		
Cheft/Location.	SCPPA/Callyon Power Plant	- ?		
NH ₃ concentration (µg NH3 / ml as N)	Log NH_3 concentration	Electrode Potential (mV)	Sample Temperature (°C)	Room Temperature (°C)
1	0.000	108.3	23.0	23.0
5	0.699	71.8	23.0	23.0
20	1.301	37.9	22.8	23.0

37.9

-2.8

Slope	Y-Intercept	R ²			
-55.6129	109.4129	0.9993			

NH ₃ concentration (µg NH3 / ml as N)	Value LR line	Difference	% Difference		
1	1.0472	0.0472	4.7155		
5	4.7461	-0.2539	-5.0786		
20	19.3155	-0.6845	-3.4227		
100	104.1718	4.1718	4.1718		

Notes:

- Regression Line: P=M*log(ug of NH/ ml as N)+B.

- Measured Concentration of Ammonia (C) in ug / ml NH as N: C=10^{(P-B)/M} where P = electrode potential, M= slope and B= intercept.

- All standards are prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

- Slope of calibration curve must be between -54 and -60.

- R² must be 0.997 or greater.

- Calibration solution temperature must be within \pm 2°C.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS DATA

District Method: SCAQMD 207.1

(Niv	M	OI	VI	RO	Ś	È
And a second	253	1327	10137	- 1 f U P	IK.	

Project Number:	PROJ-029212	
Client/Location:	SCPPA/Canyon Power	Plant
Sample Location:	U4 Stack	
Sample Date:	10/25/2023	10/27/2023
Analysis Date:	11/6/2023	SA 1429

Calibration Curve:	V= -55.6129x+109.4120
R ² :	0.9993
Thermometer #:	7
ISE Electrode #:	20
Analyst's Initials:	PR
-	

NH3 concentration (µg NH3 / ml as N)	Electrode Potential (mV)	Sample Temperature (°C)	Room Temperature (°C)
1	108.3	23.0	23.0
5	71.8	23.0	23,0
20	37.9	22.8	23.0
100	-2.8	22.8	23,0

Sample	Total Volume (mL)	Sample Temperature (°C)	Electrode Potential (mV)	Blue after ISA (Y/N)	рН
Standard Check: 28 ug NH ₂ / ml as N	NA	23.2	30.7	Y	NA
1-NH3-4	626.0	22.9	110.5	Y Y	42
2-NH3-4	599.5	23.0	112.4	Y Y	12
Spike: <u>1-NH3-4</u>	NA	23.2	39.1	Y	NA
Standard Check: 28 µg NH ₃ / ml as N	NA	23.2	31.0	Ý	NA
Reagent Blank 0.1N H ₂ SO ₄	NA	24.1	209.4	Ý V	NA
DI H ₂ O Blank	NA	22.8	206.5	Ý V	NA
Field Blank	593.0	23.4 23.3	204.9	ý y	12
Standard Check: 28 µg NH ₃ / ml as N	NA	23.0	30.3	Y Y	NA

Notes:

- Used 100 ml of samples or standards with 2 ml ISA and constant stirring rate.

- Spike: 100 ml sample + 2 ml 1000ppm $\rm NH_3$ as N.

- All calibration solution and calibration verification standard (C.V.) are prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

- All samples are collected in $0.1 \text{N}~\text{H}_2\text{SO}_4$ and allowed to equilibrate to room temperature.

- All solutions turned blue and remained blue with ISA unless otherwise indicated.

- Maximum number of samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

- All samples must have a pH of less than 2.

- Sample solutions, calibration solution and C.V. standard temperature must be within \pm 2°C of one another.

- Slope of calibration curve must be between -54 and -60.

- R² must be 0.997 or greater.

	CLIENT:	SCPPA - Canyon Pe	ower Plant	PROJECT #: PROJ-029212	TEST DATE(S)	: 10/27/2023
	LOCATION:	U4			SAMPLER(S)	: NG, LO
SAMPLE	LOCATION:	Stack		ā	ROJECT MANAGER	: RD
TESTI	METHOD(S):	SCAQMD 207.1			DATE DUE	: 11/3/2023
DUTSIDE LAB F	REQUIRED?:	No		ŏ	OMPLIANCE TEST?	: Yes
DATE	TIME	TEST #	SAMPLE DESCRIPTION	CONTAINERS	SAMPLER	COMMENTS
10/27/2023	2124/2230	1-NH3-U4 2-NH3-U4	Probe, Line, Impingers Probe, Line, Impingers		NG, LO NG, LO	
10/27/2023		Reagent Blank	0.1 N H ₂ SO ₄	1	RM	
10/27/2023		Reagent Blank	DI H2O	1	RM	
10/27/2023		FB-NH3-U2	Probe, Line, Impingers	-	NG, LO	
			DATE/TIME			DATERIMAE
A - A	NELEASEU					
TUS CIU	く生		AN) WHY SS: 7 NO 55 80101	8) 10900		11/3/23 2:300
			17 1 (ISE)			
וארזטוט אבער	וואבח:	INTS BY SCAUNIU Z				
NOM	ROSE				Chain of	f Custody - DS834001 -
AIR QUALD	e strutes	Date of Last Revisio	n 9/1/2017	Mat	ster Document Stora	ge/Forms/Datasheets/Lab

CHAIN OF CUSTODY

Southern California Public Power Authority - Canyon 4Q23 Unit 4 $\ensuremath{\mathsf{NH}_3}$

Appendix A.4 QA/QC Data

MONTROSE

Baromet	ric Pressure De	termination
Date:1	0/27/23	
Data By:Ri	k Dupont	e
Reference:	<u>https://f</u> 117.859	orecast.weather.gov/MapClick.php?lon=- 62867946365⪫=33.863355545614255
Reference Barometer ID		FW0063 Fullerton CSU (F0063)
Reference Barometer Location		Lat: 33.8805°NLon: 117.88417°WElev: 247ft.
Reference Barometer Other Info.		Last update 27 Oct 04:23 PM PDT
Reference Barometer Indication, corrected to sea level		30.00
Reference Barometer Reference Elevation		247
Reference Barometer Actual Pressure		29.75
Test Barometer Location/Site		Canyon Power Plant
Location/Site Elevation		279
Location/Site Barometric Pressure		29.72
Sampling Location Height (above/below site elevation)		60
Sampling Location Barometric Pressure		29.66

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

		ant Temperature Final Average	(4 geb) (7 geb	76.0 76.5	77.0 76.5	0.95	76.0 76.0	76.0 76.0	76.0 76.0	76.0 76.0	76.0 76.0	76.0 75.5	76.0 76.0	75.0 75.5		Orifice Orifice	werage Average	8 < Y/Yd dH@ - dH@ av : 1.02? < 0.155?			Pass			Pass Pass			Pass Pass			Pass Pass	
hon		Ambie Initiał	(deg F) (77.0	76.0	0.02	76.0	76.0	76.0	76.0	76.0	75.0	76.0	76.0		Individual	Orifice A	Ymax - Ymin 0.9 < 0.010? <			Pass			Pass			Pass			Pass	
Olivares M. Chowsanit	DINGS	Actual Vacuum	(in Hg)	18.0	18.0	17.0	17.0	17.0	16.0	16.0	16.0	15.0	15.0	15.0		Individual	Run	0.95 < Y < 1.05?	Pass	Pass		Pass	Pass		Pass	Pass		Pass	Pass	-	
Performed By: Reviewed By:	- ORIFICE REA	K' Orifice Coefficient	(see above)	0.1618	0.1618	0.946.0	0 3452	0.3452	0 5666	0.5666	0.5666	0.7871	0.7871	0.7871		CTOR															
L L	CRITICAL	Orifice Serial#	(number)	14742-33	14/42-33	DIV 40	PK-48	PK-48	PK-63	PK-63	PK-63	PK-73	PK-73	PK-73	ORIFICE	IBRATION FA	0H0	Value (in H2O)	1.748	1.750	1.748	1.812	1.811	1.812	1.841	1.838	1.840	1.862	1.861 1 857	1.860	1.815
		Temps. Outlet	(deg F)	85.0	84.0	010	04.0	85.0	82.0	83.0	83.0	80.0	81.0	81.0	ĝ	CTOR CAL															:@Hp
		Final Inlet	(deg F)	85.0	85.0	010	01.0	88.0	0.00	0.08	90.0	90.06	91.0	91.0	V GAS MET	RATION FA	۶	Value (number)	0.986	0.986	0.986	0.992	0.994	0.993	0.994	066.0 0 997	0.996	0.995	0.997	0.996	0.993
	NGS	Temps. Outlet	(deg F)	85.0	85.0	040	04.U	84.0	82.0	82.0	83.0	79.0	80.0	81.0		CALIB					Average			Average			Average			Average	verage Yd:
	TER READI	Initial ⁻ Inlet	(deg F)	86.0	85.0	0.00	87.0	88.0	0.00	0.09	90.0	89.0	90.06	91.0			VOLUME	Vor (cu ft)	5.524	5.524		5.437	5.437		5.205	5.205 5.205		5.163	5.165 5.163	2	A
	DRY GAS ME	Volume Total	(cu ft)	5.690	5.685	6 670	0.070	5.565	5 310	5.305	5.300	5.230	5.230	5.240	ORIFICE	2	VOLUME	Vor(std)	153.7	153.7		151.5	151.5		145.0	145.0 145.0		144.0	143.9		
		Volume Final	(cu ft)	7.590	13.280	000 130	006 040	1001.605	973.010	978.315	983.615	956.630	961.860	967.100			VOLUME	Vcr(std)	5.429	5.429		5.348	5.348		5.121	5.121	-	5.083	5.081 5.082	2000	
		Volume Initial	(thut)	1.900	13.280	004 000	984.900	996.040	967 700	973.010	978.315	951.400	956.630	961.860			0														
/8/2005		Time	(min)	26.00	26.00	00.04	12.00	12.00	7 00	2 00	7.00	5.00	5.00	5.00	MFTFR		VOLUME	Vm(std)	155.9	155.9		152.6	152.4		145.9	145.7		144.7	144.4 144 E		
vised: 4		ΗÞ	(in H2O)	0.14	0.14	0.00	0.00	0.66	1 80	1 80	1.80	3.50	3.50	3.50	DRY GAS		VOLUME	Vm(std)	5.504	5.504		5.390	5.380 5.380		5.150	5.143 5.136	8	5.108	5.099	5	

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 17-WCS Readout Description: Control Box Date: 7/5/2023 Performed By: L. Olivares

Calibrated Thermocouple ID: TC-Cal T1 Reference Thermometer ID: 313010 T2 Reference Thermometer ID: 805002770 T3 Reference Thermometer ID: 805002803

T/C			T/C - F	Readout			Reference T	hermometer		Diffe		
I.D.	Readout		c	Ϋ́F			0					
TC-Cal	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (~ 370 F)	17-WCS	372	372	372	372	375	375	375	375	3.0	0.4%	Pass
T2 (~212 F)	17-WCS	214	214	214	214	210	210	210	210	4.0	0.6%	Pass
T1 (~ 32 F)	17-WCS	34	34	34	34	32	32	32	32	2.0	0.4%	Pass

1) Difference % (°R) = Difference (°F) / (Average Tref + 460)

2) Pass if all Differences are less than 1.5% ($^{\rm o}{\rm R})$

Thermocouple Source Readings

			T/C - F	Readout			T/C S	Source		Diffe	erence	
	T/C Source		c	Ϋ́F			0	°F				
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	129462	647	647	647	647	650	650	650	650	3.0	0.3%	Pass
T3 (~370 F)	129462	365	365	365	365	370	370	370	370	5.0	0.6%	Pass
T2 (~212 F)	129462	214	214	214	214	212	212	212	212	2.0	0.3%	Pass
T1 (~32 F)	129462	33	33	33	33	32	32	32	32	1.0	0.2%	Pass

1) Difference % (°R) = Difference (°F) / (Average Tref + 460)

2) Pass if all Differences are less than 1.5% (°R)

Southern California Public Power Authority - Canyon 4Q23 Unit 4 $\ensuremath{\mathsf{NH}}_3$

APPENDIX B FACILITY CEMS DATA

CEMTEK KVB-Enertec NetDAHS®

NH3 (i)

Average Values Report Generated: 10/27/2023 22:47

		90	
im	ve.	928	
ahe	la A	À,	
Ar	alon	2	
ч о	Mira	heir	
Cit	171	Ana	
: Át	30	:: ;;	4
mpar	ant	ty/5	urce
0 U	ЦЧ Ц	IJ	ŝ

	ity Of Anahe 1 Miraloma 2 waheim, CA,	im ve., 92806									Period	. Start: 10/27 od End: 10/27 Validation Ty Averaging Pe Type	/2023 19:57 /2023 21:02 pe: 1/1 min riod: 1 min : Block Avg
1 1	art:	Average 4_02 %	Average 4_NOXPPM DDM	Average 4_NOX_CORR DDM	Average 4_NOX_LBMM #/MBTU	Average 4_NOX_LBHR #/hr	Average 4_COPPM DDM	Average 4_CO_CORR nnm	Average 4_C0_LBHR #/hr	Average 4_C0_LBMM #/METTT	Average 4_GasFlow	Average 4_LOAD	Average 4_STACKFLW
Mathematical Ma	19:57	14.42	2.48	2.26	0.008	4.12	3.41	3.10	3.60	0.0070	490.2	49.99	KSCIM 241.0
1 1	1 19:59	14.42	2.47	2.25	0,008	4.12	3.42 84 F	3.11	3.61	0.0070	490.6	49.98	241.2
10.10 11.40 2.00 4.12 1.00 4.12 1.00 4.01 <	3 20:00	14.42	2.45	2.23	0.008	4.12	55. 55.	3.23	3.76	T/00.0	490.3	50.04 50 16	240.8
0000 1101 2.10 2.10 0.001 0001 <t< td=""><td>3 20:01</td><td>14.42</td><td>2.42</td><td>2.20</td><td>0.008</td><td>4.12</td><td>3.59</td><td>3.27</td><td>3.76</td><td>0.0073</td><td>490.3</td><td>50.10</td><td>241.0</td></t<>	3 20:01	14.42	2.42	2.20	0.008	4.12	3.59	3.27	3.76	0.0073	490.3	50.10	241.0
0 0	20:02	14.42	2.40	2.19	0.008	4.12	3.60	3.28	3.81	0.0074	490.0	50.08	240.9
0 0	20:04	14.42	4.4.0	2.19	0.008	4.12 7 11	3.60	0, 28	3.81	0.0074	490.0	49.97	240.9
1 1	20:05	14.42	2.42	2.20	0.008	4.11	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.27	0 / · 0 5 / · 6	0.0073	489.6 489 5	49.94	240.7
10010 1142 2.41 2.00 4.10 3.45 3.40 0.003 4.00 3.40 3.40 0.003 4.00 3.40 3.40 0.003 4.00 3.40 3.40 0.003 4.00 3.40 3.40 0.003 4.00 3.40 3.40 0.003 4.00 3.40 3.40 0.003 4.00 3.40 3.40 0.003 4.00 3.40 3.40 0.003 4.00 3.40 0.003 4.00 3.40 0.003 4.00 3.40 0.003 4.00 3.40 0.003 4.00 3.40 0.003 4.00 3.40 0.003 4.00 3.40 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003 4.00 0.003	: 20:06	14.42	2.42	2.20	0.008	4.11	3.58	3.26	3.75	0.0073	C. 684	49.99	240.7
1 1	1 20:07	14.42	2.42	2.20	0.008	4.10	3.57	3.25	3.74	0.0073	488.3	49.92	240.0
0100 1144 2.46 2.34 0.001 4.11 3.44 3.13 0.001 40.1 3.00 <	3 20:08	14.42	2.43	2.21	0.008	4.09	3.52	3.20	3.68	0.0072	487.2	49.88	239.5
00110 14:04 2:47 2:12 0.000 4:12 3:40 3:10 3:55 0.000 4:04 0:01 00110 14:42 2:49 2:13 0.000 4:11 3:40 3:10 0:02 4:04 0:01 00110 14:42 2:31 0.000 4:11 3:55 1:20 0.007 4:01 3:60 0:073 0:073 0:073 0:073 0:073 0:073 0:073 0:073 0:073 0:013<	3 20:09	14.42	2.46	2.24	0,008	4.11	3.44	3.13	3.59	0.0070	488.8	50.02	240.3
00111 14:15 2:45 0.001 4:11 3:47 3:15 3:15 0:071 4:93 5:013 2:013	3 20:10	14.42	2.47	2.25	0.008	4.12	3.40	3.10	3.55	0.0069	490.4	50.04	241.1
00.11 11.0 2.10 0.11 3.15 3.15 0.073 49.7 50.13 20.14 00.11 11.0 2.11 2.12 0.001 49.1 50.13 20.13 00.11 11.0 2.11 2.13 0.001 4.11 3.16 0.017 49.7 50.13 20.13 10.011 11.02 2.41 2.13 0.001 4.11 3.16 3.11 0.007 49.7 50.13 20.13 10.012 14.12 2.45 2.23 0.001 4.11 3.16 3.11 0.007 49.7 50.13 20.11 10.021 14.14 2.45 2.23 0.001 4.11 3.16 3.11 0.007 49.7 50.11 20.13 10.021 14.14 2.45 2.23 0.001 4.11 3.16 0.007 49.7 50.11 20.11 10.021 14.14 2.45 2.23 0.001 4.11 3.16 3.11 <	3 20:11	14.42	2.45	2.23	0.008	4.12	3.47	3.16	3.65	0.0071	489.9	50.13	240.8
00111 11101 2.14 2.13 0.100 44.11 3.61 3.13 3.61 0.007 40.3 50.01 24.13 00111 11102 2.14 2.13 0.100 41.11 3.61 3.13 3.61 0.007 40.3 50.01 24.13 00111 11102 2.14 0.100 4.11 3.61 3.13 3.61 0.007 40.3 50.01 24.01 00121 1142 2.44 2.23 0.000 4.11 3.61 3.71 0.007 40.3 50.01 24.01 00121 1442 2.45 2.23 0.000 4.11 3.61 3.71 0.007 40.3 3.01 20.01 00121 1442 2.43 2.13 0.001 4.11 3.61 3.71 0.007 40.3 3.01 20.01 00121 1442 2.43 2.13 0.007 4.11 3.11 3.11 0.007 40.11 3.01 3.	2T:07 6	14.42	2.45	2.23	0.008	4.11	3.55	3.23	3.75	0.0073	489.7	50.18	240.8
0.011 11.1 0.013	5T:07 0	14 43	2.44	52.2	0.008	4.11	3.61	3.29	3.81	0.0074	489.8	50.05	241.2
NINE NINE <th< td=""><td>2 20.15</td><td>27.77 CV VL</td><td>T#.7</td><td>6T.2</td><td>0.008</td><td>4.12</td><td>3.66</td><td>E.E</td><td>3.86</td><td>0.0075</td><td>490.3</td><td>50.01</td><td>241.0</td></th<>	2 20.15	27.77 CV VL	T#.7	6T.2	0.008	4.12	3.66	E.E	3.86	0.0075	490.3	50.01	241.0
0 0	3 20.16	14.42	0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	01.0	800.0	11.4	0.00	00°0	08.V 0	67.00.0	490.1	49.99	240.9
2 1 1 2 2 0	3 20:17	14.42	2.41	2.19	0.008	77.F	59.6	20° 6	0.0.0	6/00.0 V200.0	490.4	11.03	241.0
10010 1442 2.42 0.008 4.11 3.55 3.75 0.0073 469.5 5.90 2.001 1 0.022 14.42 2.43 0.008 4.11 3.55 3.23 3.75 0.0073 469.5 50.06 241.2 1 0.022 14.42 2.43 0.008 4.11 3.55 3.13 3.61 0.0073 469.5 50.01 241.2 1 0.022 14.42 2.43 0.008 4.11 3.56 3.10 3.61 0.0073 469.5 50.01 240.1	3 20:18	14.42	2.43	2.21	0.008	4.11	3.60	3.28	3.80	0.0074	489 5		0 ° 0 # 7
1 00.210 144.42 2.44 2.22 0.008 4.112 3.55 3.75 0.073 490.5 50.06 20.112 1 00.221 144.42 2.45 2.23 0.008 4.112 3.55 3.75 0.073 490.5 50.01 20.112 1 00.223 144.42 2.23 0.008 4.112 3.56 3.73 3.76 0.073 490.5 50.01 20.112 20.012 2 0.0224 144.42 2.53 0.009 4.11 3.56 3.73 3.76 0.073 490.5 50.01 20.11 2 0.023 144.42 2.54 2.23 0.009 4.65 3.29 3.70 0.0073 490.5 50.01 20.013 20.013 20.013 20.014 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013 20.013	1 20:19	14.42	2.42	2.20	0.008	4.11	3.58	3.26	3.75	0.0073	489.2	49.96	240.5
1 1 2 2 0 0 1 3 5 3 3 7 0 0 3 0	1 20:20	14.42	2.44	2.22	0.008	4.12	3.55	3.23	3.76	0.0073	490.6	50.06	241.2
2012 1442 2.45 2.23 0.003 4.12 3.67 3.25 3.71 0.073 490.5 50.01 241.0 2012 14.42 2.45 2.23 0.008 4.11 3.56 3.31 3.81 0.073 490.5 50.01 241.0 2012 14.43 2.25 2.310 0.008 4.11 3.56 3.31 3.81 0.073 490.5 50.01 241.0 2012 2.14 2.23 0.009 4.61 3.36 3.31 3.81 0.073 490.5 50.01 241.0 2013 14.42 2.56 2.33 0.009 4.63 3.31 20.06 240.3 20.01 240.3 24	20:21	14.42	2.45	2.23	0.008	4.11	3.55	3.23	3.75	0.0073	489.5	50.06	240.7
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	20:22	14.42	2.45	2.23	0.008	4.12	3.57	3.25	3.76	0.0073	490.5	50.01	241.1
2013 1414 2.14 0.007 4.11 3.62 3.01 0.0074 490.1 49.19 240.3 20125 14.42 2.52 2.16 0.009 4.11 3.50 3.19 3.00 0.007 499.5 50.10 240.3 20128 14.42 2.52 2.16 0.009 4.62 3.29 3.00 0.0074 499.6 50.10 240.3 20131 14.42 2.52 2.16 0.009 4.63 3.27 2.99 3.44 0.0067 499.6 50.16 240.3 20131 14.42 2.56 2.37 0.009 4.63 3.27 2.99 3.45 0.0067 499.6 50.16 240.3 20131 14.42 2.56 2.37 0.009 4.11 3.31 3.01 3.45 0.0067 499.6 50.16 240.3 20131 14.42 2.59 2.00 0.009 4.11 3.31 3.01 3.065 30.01	52:02	14.43	C4.2	52.2	0.008	4.12	3.60	3.28	3.81	0.0074	490.2	50.12	241.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 - OC	14 47	44.2	22.2	0.008	4. TZ	59.5 C	15.5	3.81	0.0074	490.1	49.99	240.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.26	21.14.43	0 E C	17.2		4-11	3.62	05.5	08-5	0.0074	489.6	49.88	240.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20:27	14.42	97.9 97.7	2.36	000.0 0000	11.1 1	3.200	3. LY 2. DE	0/.r	0.0072	489.5	50.00	241.0
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	20:28	14.42	2.60	2.37	0.00	4.62	100 C			0.0067	484.4	50.14 40.95	240.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20:29	14.42	2.58	2.35	0.009	4.62	3.28	66.2	3.44	0.0067	1884	C0.C4	240.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20:30	14.42	2.55	2.32	0.009	4.63	3.27	2.98	3.45	0.0067	489.9	50.06	240.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20:31	14.42	2.60	2.37	0.009	4.63	3.27	2.98	3.45	0.0067	489.9	50.01	240.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20:32	14.42	2.64	2.40	0.009	4.63	3.30	3.00	3.45	0.0067	490.0	50.04	240.9
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	5 20:33	14.42	2,58	2.35	0.009	4.63	3.31	3.01	3.50	0.0068	489.6	50.03	240.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20:34 20:35	14.42	50.7 50.7	2,30	0.008	4.11	3.31	3.01	3.50	0.0068	489.5	50.02	240.7
201314.42 2.26 0.008 4.11 3.30 3.00 3.44 0.0067 488.9 49.49 240.6 2013814.42 2.26 0.008 4.11 3.30 3.00 3.44 0.0067 488.9 49.96 240.8 2013814.42 2.26 0.008 4.11 3.30 3.00 3.45 0.0067 499.9 49.96 240.8 2013914.42 2.24 0.008 4.11 3.30 3.00 3.45 0.0067 499.9 49.96 240.8 2014014.42 2.24 0.008 4.11 3.30 3.00 3.45 0.0067 499.9 49.96 240.8 2014114.42 2.24 0.008 4.11 3.30 3.00 3.45 0.0067 499.9 49.96 240.7 20143 14.42 2.24 0.008 4.11 3.20 3.00 3.45 0.0067 499.9 240.8 20143 14.42 2.24 0.008 4.11 3.20 3.00 3.45 0.0067 49.96 240.7 20144 14.42 2.24 0.008 4.11 3.20 3.45 0.0067 499.9 240.7 20145 14.42 2.47 2.25 0.008 4.11 3.30 3.00 3.45 0.0067 49.96 240.6 20145 14.42 2.49 0.008 4.11 3.30 3.00 3.45 0.0067 49.96 2	20.36	25.57	00.4 0	07.7		77.5	67.C	00.5	5.40 24.0	0.0067	490.5	50.18	241.1
20:38 14.42 2.26 0.008 4.12 3.28 2.99 3.45 0.0067 490.0 59.09 240.3 $20:39$ 14.42 2.24 0.0087 4.12 3.28 2.99 3.45 0.0067 499.0 59.02 240.3 $20:40$ 14.42 2.24 0.0087 4.11 3.328 2.99 3.45 0.0067 499.0 59.02 240.3 $20:41$ 14.42 2.24 0.008 4.11 3.330 3.00 3.45 0.0067 499.0 49.91 240.3 $20:42$ 14.42 2.24 0.008 4.11 3.28 2.99 3.45 0.0067 499.0 240.3 $20:43$ 14.42 2.24 0.008 4.11 3.28 2.99 3.46 0.0067 499.6 240.7 $20:44$ 14.42 2.24 0.008 4.11 3.28 2.99 3.46 0.0067 499.6 240.7 $20:45$ 14.42 2.24 0.008 4.11 3.29 3.00 3.45 0.0067 499.6 240.7 $20:45$ 14.42 2.24 0.008 4.112 3.29 3.00 3.45 0.0067 499.6 240.7 $20:47$ 14.42 2.24 0.008 4.112 3.30 3.00 3.45 0.0067 49.96 240.6 $20:47$ 14.42 2.24 0.008 4.111 3.30 3.00 3.44 0.0067 49.96 <	3 20:37	14.42	2.49	2.27	0,008	11.1	00.0		0.44	1900.0	489.4	49.94	240.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\$ 20:38	14.42	2.48	2.26	0,008	4.12	9.28	2.99	5 4 C	0.0067	0057	47.84 F0 00	240.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20:39	14.42	2.48	2.26	0.008	4.12	3.28	2.99	3.45	0.0067	489.9	49.96	240.9 8 040
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 20:40	14.42	2.46	2.24	0.008	4.11	3.30	3.00	3.44	0.0067	489.0	49.91	240.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 20:41	14.42	2.46	2.24	0.008	4.11	3.29	3.00	3.45	0.0067	489.8	50.02	240.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20:42	14.42	2.46	2.24	0.008	4.12	3.28	2.99	3.45	0.0067	489.9	49.90	240.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54:02	74.47	2.46	2.24	0.008	4.11	3.28	2.99	3.44	0.0067	489.6	49.95	240.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111.00	24.41	0 17	47.7 LC C	0.008	4.12	3.29	3.00	3.45	0.0067	490.2	50.17	241.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.45	24.42	14.2	57-7 CC C	0.008	4.12	3.30	3.00	3.45	0.0067	490.3	49.94	241.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20:47	14.42	2.48	2.26	800.0 800.0	4.11	05.5	3.00	3.45	0.0067	489.8	50.13	240.8
20:49 14.42 2.45 2.24 0.008 4.11 3.28 2.99 3.44 0.0067 490.6 50.05 240.7 240.6 50.05 240.7 240.6 50.05 240.7 240.0 50.08 240.7 240.0 50.08 240.7 240.0 50.08 240.7	20:48	14.42	2.46	2.24	0.008	4 11			1 . U	/900.0	487.4	49.91 	240.6
20:50 14.42 2.45 2.23 0.008 4.12 3.28 2.99 3.45 0.0057 490.0 50.08 240.5 240.5	20:49	14.42	2.46	2.24	0.008	4.11	3.28	66.C	3.44	0.0067	437.4	49.89 ED OF	240.6
	20:50	14.42	2.45	2.23	0.008	4.12	3.28	2.99	3.45	0.0067	490.0	50.08	240.9

Image Average Average Average Average 4_mox_corr 4_mox_corr 4_mox_corr 4_co_corr
2.23 0.008 4.12 3.28
5 2.23 0.008 4.11 3.28
5 2.24 0.008 4.11 3.29
5 2.24 0.008 4.11 3.28
5 2.23 0.008 4.11 3.30
4 2.22 0.008 4.11 3.31
1 2.22 0.008 4.11 3.33
5 2.23 0.008 4.11 3.34
5 2.23 0.008 4.11 3.35
5 2.23 0.008 4.11 3.35
5 2.23 0.008 4.12 3.35
2.23 0.008 4.12 3.40
2.25 0.008 4.17 3.42
E 2.40 0.009 4.63 3.68
3 10/27/2023 10/27/2023 10/27/2023 10/27/2023
2 20:32 20:33 20:33 20:15
3 2.18 0.008 4.09 3.27
3 10/27/2023 10/27/2023 10/27/2023 10/27/2023
5 20:16 21:02 20:08 20:31

* Does not include Invalid Averaging Periods $("\mathrm{N/A"})$
CEMTEK KVB-Enertec NetDAHS®

NH3 (2)

Average Values Report Generated: 10/27/2023 23:11

leim	Ave.,	92806	
Anał	oma	Ą	
0£	iral	eim,	
ity	Ц	nahe	
2	307		4
[naŋ]	nt:	y/St	rce
COT	Ρla	cit	Sou

Plant: 3071 Miraloma Av City/St: Anaheim, CA, 9 Source: 4	2806									Period Perio	Start: 10/27 od End: 10/27 Validation Ty Averaging Pe Type	/2023 21:24 /2023 22:30 pe: 1/1 min riod: 1 min : Block Avg
Period Start:	Average 4_02 %	Average 4_NOXPPM ppm	Average 4_NOX_CORR DDM	Average 4_NOX_LBMM #/MBTU	Average 4_NOX_LBHR #/hr	Average 4_COPPM DDM	Average 4_CO_CORR DDDm	Average 4_CO_LBHR #/hr	Average 4_CO_LBMM #/womn	Average 4_GaaFlow Least	Average 4_LOAD	Average 4 STACKFLW
10/27/2023 21:24	14.42	2.40	2.19	0.008	4.12	3.43	3.12	3.60	0.0070	489.9	50.15	KBCLIN 240.8
10/27/2023 21:25 10/27/2023 21:26	14.42	2.40	2.19	0.008	4.12	3.41	3.10	3.60	0.0070	489.9	50.01	240.8
10/27/2023 21:27	14.42	2.42	2.20	0,008	4.12	0 0 0 0 0 0 0 0 0	5.09 80.8	3.55 7.7	0,0069	490.0	50.06	240.9
10/27/2023 21:28	14.42	2,42	2.20	0.008	4.11	3.38	3.08	. 50 . 50	0.0069	489.5	49.91	240.8
10/27/2023 21:29	14.42	2.42	2.20	0.008	4.12	3.41	3.10	3.60	0.0070	489.9	50.01	240.8
10/27/2023 21:30 10/27/2023 21:30	14.42	67.2 67.0	2.21	0.008	4.12	3.44	3.13	3.60	0.0070	490.3	50.02	241.0
10/27/2023 21:32	14.42 14.42	44.7	22.22	0.008 0000	4.12	3.45	3.14	3.60	0.0070	490.0	50.10	240.9
10/27/2023 21:33	14.42	2.41	2.19	0.008	4.12	0.4.0 0.38	3.08	3.55	0.00.0	489.8 490 6	49.89 FO OF	240.8
10/27/2023 21:34	14.42	2.41	2.19	0.008	4.12	3.38	3.08	3.55	0.0069	490.3	49.95	241.0
10/27/2023 21:35	14.42	2.42	2.20	0.008	4.11	3.40	3.10	3.55	0.0069	489.4	50.05	240.6
10/27/2023 21:36	14.42	2.43	2.21	0.008	4.12	3.41	3.10	3.60	0.0070	489.9	50.01	240.8
10/27/2023 21:37 10/27/2023 21:38	14.42 14.42	24.2	02.2	0,000	4.12	85.5 17	3.08	50. M	0.0069	490.3	50.10	241.0
10/27/2023 21:39	14.42	2.43	2.21	0.008	11.1	14.0	3.1U	5.54 5.54	0/00/0	488.8	49.97	240.3
10/27/2023 21:40	14.42	2.42	2.20	0.008	4.12	3.42	3.11	3.60	0.0070	490.3	50.05	241.0
10/27/2023 21:41	14.42	2.43	2.21	0.008	4.11	3.37	3.07	3.55	0.0069	489.8	50.01	240.8
10/27/2023 21:42	14.42	2.43	2.21	0.008	4.12	3.35	3.05	3.50	0,0068	490.3	50.38	241.0
54:12 5202/12/0T 10/77/76 5606/76/01	24.41 24.41	14.2	2.19	0.008	4.12	3.38	3,08	9.52 . 1	0.0069	490.1	50.09	240.9
10/27/2023 21:45	14.42	0F. C	01.2 81.C		21.4	04.6	0T.5		0.0069	490.2	49.97	241.0
10/27/2023 21:46	14.42	2.40	2.19	0.008	4.12	15.0 10.0	07.C	3.55	0,00/0	490.0 490.6	71.02 71.03	240.9
10/27/2023 21:47	14.42	2.43	2.21	0.008	4.12	3.38	3.08	3.55	0.0069	490.0	10.00	240.9
10/27/2023 21:48	14.42	2.43	2.21	0.008	4.11	3.39	3.09	3.55	0.0069	489.3	49.89	240.6
10/27/2023 21:49	14.42	2.42	2.20	0.008	4.11	66° 6	3.09	3.55	0.0069	489.6	50.00	240.7
10/27/2023 21:51	14.42	2.43	2.21	0.008	4.12 4.12	85.F	3.08	3.55 3.55	0.0069	489.9	50.01	240.8
10/27/2023 21:52	14.42	2.42	2.20	0.008	4.12	0 0 0 0 0 0 0	3.09	9.55 0.55	0,0069	490.3	0T.05	741.L
10/27/2023 21:53	14.42	2.43	2.21	0.008	4.11	3.41	3.10	3.60	0.0070	489.6	49.96	240.7
10/27/2023 21:54	14.42	2.42	2.20	0.008	4.11	3.41	3.10	3.60	0.0070	489.8	50.09	240.8
10/27/2023 21:55	14.42	2.41	2.19	0.008	4.12	3.43	3.12	3.61	0.0070	490.7	50.01	241.2
10/27/2023 Z1:50 10/27/2023 21:57	14.42	14.2	61.2	0.008	4.12	3.45	9,14 6, 6	9.60 2.50	0.0070	490.2	50.00	241.0
10/27/2023 21:58	14.42	2.42	2.20	0.008	4.11	40°	6T.6 01 6	3.6U	0/00/0	490.1	50.06	240.9
10/27/2023 21:59	14.42	2.42	2.20	0.008	4.11	3.38	3.08	3.55	0.0069	489.7	50.7R	C.U.2 240 g
10/27/2023 22:00	14.42	2.43	2.21	0.008	4.12	3.40	3.10	3.55	0.0069	490.0	49.98	240.9
10/27/2023 22:01	14.42	2.43	2.21	0.008	4.11	3.42	3.11	3.60	0.0070	489.2	49.87	240.5
20:22 22/22/27/01	24.47 27 11	2.44	2.22	0.008	4.11	3.43	3.12	3.60	0.0070	489.1	49.93	240.5
10/27/2023 22:04	14.42	44.2 7 44	22.2		4-TT 4 11	5.42	3.11	09.5	0.0070	489.6	49.98	240.7
10/27/2023 22:05	14.42	2.43	2.21	0.008	4.11	3.41	3.10	3.60	0.0070	489.2	49.86	240.5
10/27/2023 22:06	14.42	2.42	2.20	0.008	4.12	3.40	3.10	3.55	0.0069	490.5	50.23	241.1
10/27/2023 22:07	14.42	2.44	2.22	0.008	4.12	3.44	3.13	3,61	0.0070	490.9	50.02	241.3
10/27/2023 22:08	14.42	2.45	2.23	0.008	4.12	3.51	3.20	3.71	0.0072	490.3	50.07	241.0
10/27/2023 22:10	14.42	44.2	22.2	800.0 0 000	21.4	50.5 11.00	42.5	3.76	0.0073	489.9	49.92	240.8
10/27/2023 22:11	14.42	2.43	2.21	0.008	4.12	00.0 07.6	000 6	0/ · C	0.0013	490.0	50.03	240.9
10/27/2023 22:12	14.42	2.44	2.22	0.008	4.12	3.49	3.18	3.65	0.0071	490.0	50.05	241.1 240 9
10/27/2023 22:13	14.42	2.44	2.22	0,008	4.12	3.47	3.16	3.65	0.0071	490.0	50.03	240.9
10/27/2023 22:14 10/27/2023 22:15	14.42	2.43	2.21	0.008	4.12	3.48	3.17	3.65	0.0071	489.9	50.04	240.8
CT:22 CZ02//2/01 91:22 202/22/01	14.42	24.43 24.43	12.2	0.008	4.12	3.48	3.17	3.66	0.0071	490.6	50.08	241.2
10/27/2023 22:17	14.42	2.43	2.21	0.008	4.12	3.49	3.18	9.65 9.65	0.0071	490.0	50.07 49.98	241.3 240.9

CEMTEK KVB-Enertec NetDAHS®

Version 48.0

, the second	Average	Average 4_NOXPPM	Average 4_NOX_CORR	Average 4 NOX LBMM	Average 4_NOX_LBHR	Average 4_coppm	Average 4_CO_CORR	Åverage 4_co_lbhr	Åverage 4_Co_LBMM	Average 4_GasFlow	Average 4 LOAD	Average 4 STACKFLW
ITPAC DOLLAR	io i	шđđ	udd	#/WBTU	#/br	mqq	mqq	#/br	#/MBTU	kscfh	MM	kecfm
T0/27/2023 22:18	14.42	2.44	2.22	0.008	4.11	3.48	3.17	3.65	1200.0	489.6	49.90	240 7
10/27/2023 22:19	14.42	2.45	2.23	0.008	4.12	3.47	3.16	3.66	L700.0	490.7	50.02	C 17C
10/27/2023 22:20	14.42	2.45	2.23	0.008	4.12	3.45	3.14	3.61	0.0070	491.0	50.05 70.05	V 1VC
10/27/2023 22:21	14.42	2.44	2.22	0.008	4.11	3.46	3.15	3.64	0.0071	488 B	00.02	
10/27/2023 22:22	14.42	2.43	2.21	0.008	4.11	3.44	3.13	3.60	0.0070	4 9 4 4 A 9 4 4	00.01	
10/27/2023 22:23	14.42	2.44	2.22	0.008	4.12	3.43	3.12	3.61	0.0070	490.6	00 07	C 17C
10/27/2023 22:24	14.42	2.45	2.23	0.008	4.12	3.44	3.13	3.61	0.0070	490 5	01.05	7.115
10/27/2023 22:25	14.42	2.43	2.21	0.008	4.12	3.49	3,18	3.66	1700.0	490.4		1.1150
10/27/2023 22:26	14.42	2.42	2.20	0.008	4.12	3.52	3.20	3.71	0.0072	491 0		T.TE2
10/27/2023 22:27	14.42	2.43	2.21	0.008	4.12	3.54	3.22	3.71	0.0072	490.3	49.97	5.772 0 1 7 0
10/27/2023 22:28	14.42	2.43	2.21	0.008	4.12	3.52	3.20	3.70	0.0072	489.9	49 92	0.145
10/27/2023 22:29	14.42	2.41	2.19	0.008	4.12	3.47	3.16	3.66	0.0071	490.5	20.02	
10/27/2023 22:30	14.42	2.41	2.19	0.008	4.12	3.44	3.13	3.60	0.0070	490.1	50.03	240.9
Daily Average*	14.42	2.43	2.21	0.008	4.12	3.43	3.12	3.60	0.0070	490.0	50.02	240.9
Maximum*	14.42	2.45	2.23	0.008	4.12	3.56	3.24	3.76	0.0073	491.0	50.38	241 4
	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023
	22:30	22:24	22:24	22:30	22:30	22:09	22:09	22:10	22:10	22:26	21:42	22:26
Minimu*	14.42	2.39	2.18	0.008	4.11	3.35	3.05	3.50	0.0068	488.8	49.86	240.3
	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023	10/27/2023
	22:30	21:45	21:45	22:30	22:22	21:42	21:42	21:42	21:42	22:21	22:04	22:21

* Does not include Invalid Averaging Periods ("N/A")

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

GENERAL EMISSIONS CALCULATIONS

- I. <u>Stack Gas Velocity</u>
 - A. Stack gas molecular weight, lb/lb-mole

MW_{dry} = 0.44 * % CO₂ + 0.32 * % O₂ + 0.28 * % N₂

 $MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$

B. Absolute stack pressure, iwg

$$P_{s} = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_{s} = 2.9 * C_{p} * \sqrt{\Delta P} * \sqrt{T_{s}} * \sqrt{\frac{29.92 * 28.95}{P_{s} * MW_{wet}}}$$

- II. <u>Moisture</u>
 - A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd}$$
 = 0.0472 * V_{ic} * $\frac{T_{ref}}{528^{\circ}R}$

C. Moisture content, dimensionless

$$\mathsf{B}_{\mathsf{wo}} = \frac{\mathsf{V}_{\mathsf{wstd}}}{(\mathsf{V}_{\mathsf{mstd}} + \mathsf{V}_{\mathsf{wstd}})}$$

III. Stack Gas Volumetric Flow Rate

- A. Actual stack gas volumetric flow rate, wacfm
- $Q = V_s * A_s * 60$
- B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, Ib/MMBtu

$$\frac{1b}{MMBtu} = \frac{ppm * MW_i * F}{SV * 10^6} * \frac{20.9}{20.9 - \% O_2}$$

VI. <u>Percent Isokinetic</u>

$$I = \frac{17.32 * T_{s} (V_{mstd})}{(1 - B_{wo}) 0 * V_{s} * P_{s} * Dn^{2}} * \frac{520^{\circ}R}{T_{ref}}$$

VII. Particulate Emissions

- (a) Grain loading, gr/dscf C = 0.01543 ($M_n/V_m \text{ std}$)
- (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
- (c) Mass emissions, lb/hr M = C * Q_{sd} * (60 min/hr) / (7000 gr/lb)
- (d) Particulate emission factor

 $Ib/10^6 Btu = Cx - \frac{1 Ib}{7000 gr} * F * \frac{20.9}{20.9 - \% O_2}$

Nomenclature:

As	=	stack area, ft ²
B _{wo}	=	flue gas moisture content, dimensionless
C _{12%CO2}	=	particulate grain loading, gr/dscf corrected to 12% CO ₂
С	=	particulate grain loading, gr/dscf
Cp	=	pitot calibration factor, dimensionless
Dn	=	nozzle diameter, inches
F	=	fuel F-Factor, dscf/MMBtu @ 0% O ₂
Н	=	orifice differential pressure, iwg
I	=	% isokinetics
Mn	=	mass of collected particulate, mg
Mi	=	mass emission rate of specie i, lb/hr
MW	=	molecular weight of flue gas, lb/lb-mole
M _{wi}	=	molecular weight of specie i:
	SO ₂ :	64
	NO _x :	46
	CO:	28
	HC:	16
0	=	sample time, minutes
ΔP	=	average velocity head, iwg = $(\sqrt{\Delta P})^2$
P _{bar}	=	barometric pressure, inches Hg
Ps	=	stack absolute pressure, inches Hg
P _{sq}	=	stack static pressure, iwb
Q	=	wet stack flow rate at actual conditions, wacfm
Q_{sd}	=	dry standard stack flow rate, dscfm
SV	=	specific molar volume of an ideal gas at standard conditions, ft ³ /lb-mole
T _m	=	meter temperature, °R
T _{ref}	=	reference temperature, °R
Ts	=	stack temperature, °R
Vs	=	stack gas velocity, ft/sec
V _{Ic}	=	volume of liquid collected in impingers, ml
V _m	=	uncorrected dry meter volume, dcf
V _{mstd}	=	dry meter volume at standard conditions, dscf
V _{wstd}	=	volume of water vapor at standard conditions, scf
Y _d	=	meter calibration coefficient

Appendix C.2 Spreadsheet Summaries

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility	Canyon		Parameter		NH ₃
Unit	U4		Fuel		Natural gas
Sample Location	Stack		Data By		RD
Test Number	1-NH3-U4	2-NH3-U4	Average	Maximum	Limit
Reference Temperature (°F)	60	60			
Test Date	10/27/2023	10/27/2023			
Test Method	SCAQMD 207.1	SCAQMD 207,1			
Sample Train	17-WCS	17-WCS			
Meter Calibration Factor	0.993	0.993			
Stack Area (ft ²)	106.90	106.90			
Sample Time (Minutes)	60	60			
Barometric Pressure ("Hg)	29.66	29.66			
Start/Stop Time	1956/2102	2124/2230			
Meter Volume (acf)	33.905	33.890			
Meter Temperature (°F)	65.8	69.0			
Meter Pressure (iwg)	1.0	1.0			
Liquid Volume (ml)	99.3	96.7			
Stack O ₂ (%)	14.42	14.42	14.42	(from facility CE	VIS)
Unit Load (MW)	50	50	50.0		
Standard Sample Volume (SCF)	33.086	32.872			
Moisture Fraction	0.122	0.120			
Stack Flow Rate (dscfm, 68 °F)	240,800	240,900	240,850	(from facility CE	MS)
Stack Flow Rate (@ Tref)	237,152	237,250	237,201		
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft ³ /lb-mole)	379.5	379.5		1	
F-Factor (dscf/MMBtu)	8,710	8,710			
HHV(Btu/SCF)	1,050	1,050			
Mass Conversion (lb/ug)	2.2046E-09	2.2046E-09			
O2 Correction Factor (%)	15	15			
Mass NH ₃ (ug)	712.697	637.354			
Mass NH ₃ (lb)	1.57E-06	1.41E-06			
NH ₃ (ppmv, flue gas)	1.06	0.95	1.01	1.06	
NH ₃ (ppmv @ O ₂ Correction Factor)	0.96	0.87	0.92	0.96	5
NH ₃ (lb/hr)	0.67	0.61	0.64	0.67	
NH ₃ (Ib/MMBtu)	0.001	0.001	0.001	0.001	
NH ₃ (Ib/MMSCF)	1.38	1.24	1.31	1.38	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

Point	Meter Volume	Delta H	Tm In	Tm Out
3	536.800	1.0	65	65
2			65	65
1			66	65
3			66	65
2			67	65
1			67	65
3			66	65
2			67	65
1			67	65
3			67	65
2			68	65
1			68	65
Stop	570.705			
Result	33.905	1.0	6	5.8

1-11113-04		Impinger	Weights	
Dut	#	Post-Test	Pre-Test	Difference
	1	929.7	737.8	191.9
	2	754.8	753.8	1.0
	3	655.0	654.9	0.1
	4	979.6	973.3	6.3
	Line Rinse	0.0	100.0	-100.0
				99.3

0.0010.014	
Z-NH3-U4	

Point	Meter Volume	Delta H	Tm In	Tm Out
3	573.100	1.0	66	66
2			67	66
1			69	66
3			70	67
2			71	67
1			72	67
3			70	67
2			72	68
1			73	68
3			72	68
2			73	68
1			74	69
Stop	606.990			
Result	33.890	1.0	6	9.0

#	Post-Test	Pre-Test	Difference
1	930.4	745.8	184.6
2	753.4	753.2	0.2
3	670.2	669.0	1.2
4	949.7	939.0	10.7
Line Rinse	0.0	100.0	-100.0
			96.7

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U4

Identifier	Description	Units	Equation	Value
А	Reference Temperature	F	810	60
В	Reference Temperature	R	A + 460	520
С	Meter Calibration Factor (Yd)		-	0.993
D	Barometric Pressure	" Hg	-	29.66
E	Meter Volume	acf	-	33.905
F	Meter Temperature	F	-	65.8
G	Meter Temperature	R	F + 460	525.8
Н	Delta H	" H ₂ O		1.0
I I	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	33.086
J	Liquid Collected	grams	-	99.3
K	Water vapor volume	scf	0.0472 * J * B/528	4.616
L	Moisture Content		K/(K + I)	0.122
M	Gas Constant	ft-lbf/lb-mole-R	-	1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu	-	8,710
Р	HHV	Btu/SCF		1,050
Q	Mass Conversion Factor	lb/ug		2.2046E-09
R	O ₂ Correction Factor			15
S	Stack Flow Rate @ 68 F	dscfm		240,800
Т	Stack Flow Rate @ Tref	dscfm	S * B/528	237,152
U	Mass NH ₃	ug		713
V	Mass NH_3	lb	U * Q	1.57E-06
W	MW of NH ₃	lb/lb-mole		17.03
Х	NH ₃	ppm	(V * N *10 ^⁰)/(I * W)	1.1
Y	Flue Gas O ₂	%		14.42
z	NH ₃	ppmc	X * (20.9 - R)/(20.9 - Y)	1.0
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10 ⁶)	0.7
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10 ⁶) * 20.9/(20.9 - Y)	0.001
AC	NH ₃	Ib/MMSCF	AB * P	1.4

Note:

(1) Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

<u>Equipment Maintenance and Calibration</u>: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

Southern California Public Power Authority - Canyon 4Q23 Unit 4 NH_3

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)
- Flame Resistant Clothing (if required)

The following safety measures are followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	 Absence of leaks Ability to draw manufacturers required vacuum and flow 	As recommended by manufacturer	 1. Visual inspection 2. Clean 3. Replace parts 4. Leak check
Flow Meters	1. Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	 Absence of malfunction Proper response to zero span gas 	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	1. Steam clean 2. Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	1. Sample degradation less than 2%	After each test series	1. Blow dry, inert gas through line until dry

TABLE 1EQUIPMENT MAINTENANCE SCHEDULE

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	± 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	± 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	± 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	± 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	± 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	± 1.5%

TABLE 2MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Note: Calibration requirements that meet applicable regulatory agency requirements are used.

Appendix D.2 SCAQMD and STAC Certifications

September 14, 2023

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice Reference # 96LA1220

Dear Mr. Peterson:

We have completed our review of Montrose Air Quality Services' revised renewal application, which was submitted as notification of Montrose's recent acquisition of AirKinetics, Inc. under the South Coast AQMD Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2023, and ending September 30, 2024, for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

South Coast AQMD Methods 1-4 South Coast AQMD Methods 10.1 and 100.1 South Coast AQMD Methods 5.1, 5.2, 5.3, 6.1 (Sampling and Analysis) South Coast AQMD Methods 25.1 and 25.3 (Sampling) Rule 1121/1146.2 Protocol Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling USEPA CTM-030 and ASTM D6522-00

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler	Noritz Americ	ca Corp.	Ajax Boiler, Inc.
1510 North Spring Street	11160 Grace .	Avenue	2701 S. Harbor Blvd.
Los Angeles, CA 90012 Fountain Vall		ey, CA 92708	Santa Ana, CA 92704
VA Laundry Bldg., Greater LA	Healthcare Sys.	So Cal Gas - Engr Analysis Ctr, Bldg H	
508 Constitution Avenue		8101 Rosemead Blvd	
Los Angeles, CA 90049		Pico Rivera, CA 90660	

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Colin Eckerle. He may be reached by telephone at (909) 396-2476, or via e-mail at ceckerle@aqmd.gov.

Sincerely,

D. Sarkar

Dipankar Sarkar Program Supervisor Source Test Engineering

DS:CE Attachment

230914 LapRenewal.doc

Appendix D.3 Individual QI Certificate

CERTIFICATE OF COMPLETION	Rik Dupont	int certifies that this individual has passed a comprehensive examination and is now dividual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):	SCAQMD Methods 1.1 - 4.1	umber: 002-2021-41	Like Junil Date of Issue: 12/02/2021	sr, VP – Quality Systems DATE OF EXPIRATION: 12/01/2026
		is document Qualified Indiv		rtificate Numl	La	ate strickler, V

This document certifies that this individual P Qualified Individual (QI) as defined in Secti	as passed a comprehensiv on 8.3 of ASTM D7036-04 fo	e examination and is now a r the following method(s):
Certificate Number: 002-2021-26	AD Method 207.1	
Like Stall	DATE OF ISSUE:	8/19/21
Tate Strickler, VP – Quality Systems	DATE OF EXPIRATION:	8/19/26

Appendix D.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID:	153992
Date(s) Tested:	October 27, 2023
Facility Name:	Canyon Power Plant
Equipment Address:	3071 E. Mira Loma Avenue
	Anaheim, California 92806
Equipment Tested:	Unit 4
Device ID, A/N, P/N:	D19

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm:	Montrose Air Quality Services, LLC
Business Address:	1631 E. St. Andrew PI.
	Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in District Rule 304(k):

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory;
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing, or the source testing information provided to the SCAQMD.

Signature:	1 WEAR	Date:	12/5/2023
Rik Dupont	Field Project Manager	(714) 279-6777	12/5/2023
(Name)	(Title)	(Phone)	(Date)

FORM ST-110 :stevforl.doc (Revised 11/18/98

APPENDIX E APPLICABLE PERMIT SECTIONS

Section D Page: 153992 Facility ID: Revision #: August 19, 2021 Date:

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1: POWER GENE	RADI	ON			
GAS TURBINE, NO. 4, NATURAL GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 479 MMBTU/HR AT 46 DEG F, WITH INLET CHILLING, WITH WATER INJECTION WITH A/N: 555831	D19	C21	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; <i>RULE 1303(a)(1)</i> - <i>BACT, 12-6-2002</i>]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 12-4-2015]; NOX: 25 PPMV NATURAL GAS (4) [40CFR 60 Subpart KKKK, 3-20-2009]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; <i>RULE 475, 8-7-1978</i>]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5A) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; <i>RULE 1303(b)(2)</i> - <i>Offset, 12-6-2002</i>]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; <i>RULE 475, 8-7-1978</i>]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SO2: 0.06 LBS/MMBTU NATURAL GAS (6) [40CFR 60 Subpart KKKK, 3-20-2009]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; <i>RULE 1303(a)(1)-BACT, 12-6-2002</i>]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1, I298.4, K40.1
GENERATOR. 50.95 MW					

(1) (1A) (1B) Denotes RECLAIM emission factor * Denotes RECLAIM concentration limit (4) (3) (5) (5A) (5B) Denotes command and control emission limit (6)

(2) (2A) (2B) Denotes RECLAIM emission rate

Denotes BACT emission limit

- Denotes air toxic control rule limit
- Denotes NSR applicability limit (7)
- (9) See App B for Emission Limits
- (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)
- (10)

See section J for NESHAP/MACT requirements ** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

Facility ID: 153992	
Revision #: 4	
Date: August 19, 2021	

FACILITY PERMIT TO OPERATE **CANYON POWER PLANT**

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1: POWER GENE	RATI	ON			
CO OXIDATION CATALYST, NO. 4, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476663	C21	D19 C22			
SELECTIVE CATALYTIC REDUCTION, NO. 4, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476663 AMMONIA INJECTION	C22	C21 S24		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.7, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 4, HEIGHT: 86 FT ; DIAMETER: 11 FT 8 IN A/N: 555831	S24	C22			54

(1) (1A) (1B) Denotes RECLAIM emission factor

Denotes RECLAIM concentration limit (3)

(2) (2A) (2B) Denotes RECLAIM emission rate (4)

Denotes BACT emission limit

- (5) (5A) (5B) Denotes command and control emission limit (6)
- Denotes NSR applicability limit (7)
- See App B for Emission Limits (9)

- Denotes air toxic control rule limit
- (8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

See section J for NESHAP/MACT requirements (10)

** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

Section Facility	D Page: 28 ID: 153992	
Revisio	n#: 4	
Date:	August 19, 2021	

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition : C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 11-1-2019; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-1-2017; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart IIII, 7-7-2016]

[Devices subject to this condition : D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR serving this equipment

Section D Page: 29 Facility ID: 153992 Revision #: 4 Date: August 19, 2021

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted quarterly during the first twelve months of operation of the catalytic control device and annually thereafter when four consecutive quarterly source tests demonstrate compliance with the ammonia emission limit. If an annual test is failed, four consecutive quarterly source tests must demonstrate compliance with the ammonia emissions limits prior to resuming annual source tests.

The South Coast AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using South Coast AQMD Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the South Coast AQMD within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1135, 11-2-2018; **RULE 1303(a)(1)-BACT, 5-10-1996;** RULE 1303(a)(1) -BACT, 12-6-2002]

[Devices subject to this condition : D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Labcratory Method 307-91	District-approved averaging time	Fuel sample

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name:	Mr. Rik Dupont
Title:	Field Project Manager
Region:	West
Email:	RDupont@montrose-env.com
Phone:	(714) 279-6777

Name:	Mr. Matt McCune
Title:	Regional Vice President
Region:	West
Email:	MMccune@montrose-env.com
Phone:	(714) 279-6777

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 17

AQ-14 & AQ-24 RTC INVENTORY

December 29, 2022

BERTHA A. HERNANDEZ ENVIRONMENTAL SERVICES SPECIALIST CANYON POWER PLANT (ID: 153992) 3071 E MIRALOMA AVE ANAHEIM, CA 92806

Dear BERTHA A. HERNANDEZ:

Enclosed is your re-issued Facility Permit for Compliance Year 2023 (January 1, 2023 – December 31, 2023). This reissuance is an Administrative Permit Revision to your RECLAIM/Title V Facility Permit and includes the Title Page, Table of Contents, and Section B (RECLAIM Annual Emission Allocations) in accordance with Rule 2002(b)(4).

Please review the enclosed Section B carefully, as it will be part of your official Facility Permit. The changes are stated below. Please note that the South Coast Air Quality Management District (South Coast AQMD) rules allow you to appeal the terms and conditions of any section(s) of the enclosed Facility Permit by petitioning the Hearing Board within thirty days of receipt of the permit.

We recently sent you an invoice for the annual operating renewal fee for your facility permit. This must be paid on or before the due date indicated on the invoice or your facility permit will expire due to non-payment of fees.

A. Facility Permit

The enclosed Facility Permit contains changes described as follows:

- 1. The revision numbers and dates of the Title Page and the Table of Contents have been updated to reflect the reissuance of the relevant permit sections.
- 2. Section B RECLAIM Annual Emission Allocation

Section B has been updated to reflect all approved RECLAIM Trading Credit (RTC) transactions approved as of December 16, 2022. Therefore, if you have submitted any RTC transactions in December, please review your records carefully to ensure that you take into account any RTC transactions that have not been approved as of that date and make necessary changes to your facility's RTC balances when reconciling your facility's emissions.

In addition, the South Coast AQMD has updated Section B of the Facility Permit to list your facility's allocation balances for the next fifteen years pursuant to Rule

Cleaning the air that we breathe ...

2002(b)(4). Also, your facility's Starting Allocation and Non-Tradable RTCs in Compliance Year 1994 are listed within this section. This establishes the level used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions.

B. Appeals

As previously mentioned, if you determine that certain changes or clarifications need to be made to the enclosed permit, you may appeal the terms and conditions by petitioning the Hearing Board within thirty days of receipt. If you determine there are <u>administrative errors</u> in these permit sections, please notify South Coast AQMD staff within thirty days of receipt of your permit sections. Your facility is still bound by the requirements of your entire Facility Permit while your appeal is under consideration by South Coast AQMD staff and/or Hearing Board.

Any comments or questions regarding your RECLAIM/Title V Facility Permit may be directed to Li Chen, Supervising Air Quality Engineer at (909) 396-2426 or lchen@aqmd.gov.

Sincerely,

Mulu

Shannon Lee, P.E. Senior Air Quality Engineering Manager Mechanical/Chemical/Energy/Ports/Terminals

Enclosure

cc: Gerardo Rios, U.S. EPA (via cdx.epa.gov) Rafael Reynosa, Sr. Enforcement Manager – Compliance

Title PageFacility ID:153992Revision #:19Date:January 01, 2023

FACILITY PERMIT TO OPERATE

CANYON POWER PLANT 3071 E MIRALOMA AVE ANAHEIM, CA 92806

NOTICE

IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR A COPY THEREOF MUST BE KEPT AT THE LOCATION FOR WHICH IT IS ISSUED.

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT SHALL NOT BE CONSTRUED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF ANY OTHER FEDERAL, STATE OR LOCAL GOVERNMENTAL AGENCIES.

Wayne Nastri Executive Officer

By

Jasha Aspell Deputy Executive Officer Engineering and Permitting

Table of ContentFacility ID:153992Revision #:19Date:January 01, 2023

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

TABLE OF CONTENTS

Section	Description	Revision #	Date Issued
А	Facility Information	3	08/19/2021
В	RECLAIM Annual Emission Allocation	16	01/01/2023
С	Facility Plot Plan	TO BE DEVE	ELOPED
D	Facility Description and Equipment Specific Conditions	4	08/19/2021
E	Administrative Conditions	2	08/19/2021
F	RECLAIM Monitoring and Source Testir Requirements	122	08/19/2021
G	Recordkeeping and Reporting Requirements for RECLAIM Sources	2	08/19/2021
Н	Permit To Construct and Temporary Permit to Operate	4	08/19/2021
Ι	Compliance Plans & Schedules	2	08/19/2021
J	Air Toxics	2	08/19/2021
K	Title V Administration	2	08/19/2021
Appendix			
А	NOx and SOx Emitting Equipment Exem From Written Permit Pursuant to Rule 219	pt 2	08/19/2021
В	Rule Emission Limits	2	08/19/2021

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Ye Begin (month/	^{ar} End 'year)	Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2023 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
7/2020	6/2021	Coastal	0	6589	2548
1/2021	12/2021	Coastal	0	13521	3295
7/2021	6/2022	Coastal	0	11260	2585
1/2022	12/2022	Coastal	0	37141	6543
7/2022	6/2023	Coastal	0	21527	5133
1/2023	12/2023	Coastal	0	37141	0
7/2023	6/2024	Coastal	0	21527	0
1/2024	12/2024	Coastal	0	37141	0
7/2024	6/2025	Coastal	0	21527	0
1/2025	12/2025	Coastal	0	37141	0
7/2025	6/2026	Coastal	0	21527	0
1/2026	12/2026	Coastal	0	37141	0
7/2026	6/2027	Coastal	0	21527	0
1/2027	12/2027	Coastal	0	37141	0
7/2027	6/2028	Coastal	0	21527	0
1/2028	12/2028	Coastal	0	37141	0
7/2028	6/2029	Coastal	0	21527	0

Footnotes:

1. This number may change due to pending trades, emissions reported under Quarterly Certification of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC information can be obtained from the District's RTC Listing.

2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Yea Begin (month/	ar End year)	Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2023 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
1/2029	12/2029	Coastal	0	37141	0
7/2029	6/2030	Coastal	0	21527	0
1/2030	12/2030	Coastal	0	37141	0
7/2030	6/2031	Coastal	0	21527	0
1/2031	12/2031	Coastal	0	37141	0
7/2031	6/2032	Coastal	0	21527	0
1/2032	12/2032	Coastal	0	37141	0
7/2032	6/2033	Coastal	0	21527	0
1/2033	12/2033	Coastal	0	37141	0
7/2033	6/2034	Coastal	0	21527	0
1/2034	12/2034	Coastal	0	37141	0
7/2034	6/2035	Coastal	0	21527	0
1/2035	12/2035	Coastal	0	37141	0
7/2035	6/2036	Coastal	0	21527	0
1/2036	12/2036	Coastal	0	37141	0
7/2036	6/2037	Coastal	0	21527	0
1/2037	12/2037	Coastal	0	37141	0

Footnotes:

1. This number may change due to pending trades, emissions reported under Quarterly Certification of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC information can be obtained from the District's RTC Listing.

2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Ye Begin (month/	ar End year)	Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2023 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
7/2037	6/2038	Coastal	0	21527	0
1/2038	12/2038	Coastal	0	37141	0

Footnotes:

- 1. This number may change due to pending trades, emissions reported under Quarterly Certification of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC information can be obtained from the District's RTC Listing.
- 2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. If the facility submits a permit application to increase in an annual allocation to a level greater than the facility's starting Allocation plus Non-Tradable credits as listed below, the application will be evaluated for compliance with Rule 2005 (c)(4). Rule 2005 (e) - Trading Zone Restrictions applies if an annual allocation is increased to a level greater than the facility's Starting Allocation plus Non-Tradable Credits:

Year Begin End Zone Startin (month/year)

RTC Starting Allocation (pounds)

Non-Tradable Credits(NTC) (pounds)

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 18

AQ-17 NH3 FLOW METER ACCURACY REPORTS

HOMER R. DULIN CO. 729 EAST WILLOW STREET

SIGNAL HILL, CALIFORNIA 90755 (562) 424-8533 HRDULIN@AOL.COM

CERT. NO. 4-127-23 CALIBRATION CERTIFICATION

SUBMITTED BY: SCPPA - CANYON POWER PLANT

FLOWMETER SERIAL NO:

MANUFACTURER: MICRO MOTION

TUBE NO: N/A

MFG. SERIAL NO: <u>14139410</u> MODEL: CMF025M313NQBUEZZZ

FLOAT NO: N/A

DATA IS: As Found/As Left ; In Tolerance

See Remarks 🔽

Calibrated @ customer's facility

REMARKS: DIRECT READING ELECTRONIC INDICATOR TRANSMITTER S/N: 14139410, CALIBRATED IN LBS/HR H20 @ 75°F. SP.GR. 1.0 METER IS UNSTABLE

ACCURACY ± 1% RATE

INDICATED	ACTUAL	
LB/HR	LBS/HR	
150.10	149.76	
135.00	134.21	
121.50	121.51	
106.50	105.96	
92.20	91.61	
78.70	78.01	
64.20	64.00	
49.60	49.45	
34.80	34.65	
19.80	19.75	
0.00	0.00	

-	-				
Flowmeter	Certified	with	HOMER	R	
	00111100	441211		L X .	DOLIN OO.

Equip. No.:	11605	Accuracy:	0.005%	Equip. Cal. Date:	9/13/21	Cal. Due:	9/13/24	
NIST Cert. No.:	MSML	CC #21188 A		Proced	ure No.: ISA	:RP 16.6		

Our standards are certified by or are traceable to the National Institute of Standards and Technology and systems comply with MIL-STD 45662A, ANSI/NCSL Z540.3, ISO/IEC 17025, and ISO 10012. The collective uncertainty of the standards used in this calibration does not exceed 25% of the certified accuracy of the instrument under test. This document may not be reproduced, except in full, without prior written approval of the Homer R. Dulin Co. Rev.2 Dated 4/16/22

P.O. No.: SC	PPA-2300174	Shipper No.:	
4-6-23		4-6-24	J. LAGUNA Cohas Asam
CALIBRATION DATE	RE	CALIBRATION DUE	CALIBRATION TECHNICIAN

Page 1 of 2

Re Contraction of the second s

Page 2 of 2

HOMER R. DULIN CO. 729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755 (562) 424-8533 HRDULIN@AOL.COM

CERT. NO. 4-214-23 CALIBRATION CERTIFICATION

SUBMITTED BY: SCPPA - CANYON POWER PLANT

FLOWMETER SERIAL NO:

MFG. SERIAL NO: 14134531

Procedure No.: ISA:RP 16.6

MODEL: CMF025M313NQBUEZZZ

MANUFACTURER: MICRO MOTION

FLOAT NO: N/A

DATA IS: As Found/As Left ; In Tolerance

See Remarks 📝

Calibrated @ customer's facility

REMARKS: DIRECT READING ELECTRONIC INDICATOR TRANSMITTER S/N: 14134531, CALIBRATED IN LBS/HR H20 @ 75°F. SP.GR. 1.0 METER UNSTABLE BELOW 20.09 LB/HR INDICATED.

ACCURACY ± 1% RATE

TUBE NO: N/A

INDICATED	ACTUAL	
LB/H	LBS/HR	
150.52	149.46	
131.86	131.26	_
124.17	123.56	
114.12	113.71	
94.99	94.76	
76.20	76.01	
57.31	57.15	
47.37	47.25	_
38.07	37.90	_
20.79	20.65	
0.00	0.00	_

Flowmeter Certified with HOMER R. DULIN CO.

Equip. No.:	11605	Accuracy:	0.005%	Equip. Cal. Date:	9/13/21	Cal. Due:	9/13/24
-------------	-------	-----------	--------	-------------------	---------	-----------	---------

NIST Cert. No.: MSML CC #21188 A

Our standards are certified by or are traceable to the National Institute of Standards and Technology and systems comply with MiL-STD 45662A, ANSI/NCSL Z540.3, ISO/IEC 17025, and ISO 10012. The collective uncertainty of the standards used in this calibration does not exceed 25% of the certified accuracy of the instrument under test. This document may not be reproduced, except in full, without prior written approval of the Homer R. Dulin Co. Rev.2 Dated 4/16/22

P.O. No.: SCPPA-23001	74 Shipper No.		
4-12-23	4-12-24	J. LAGUNA	us hanna
CALIBRATION DATE	RECALIBRATION DUE	CALIBRATION TECH	NICIAN
	Dana 4 af 2		(E)

Page 1 of 2

HOMER R. DULIN CO. 729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755 (562) 424-8533 HRDULIN@AOL.COM

CERT. NO. 4-265-23 CALIBRATION CERTIFICATION

SUBMITTED BY: SCPPA - CANYON POWER PLANT

FLOWMETER SERIAL NO:

MANUFACTURER: MICRO MOTION

MFG. SERIAL NO: __14136005

MODEL: CMF025M313NQBUEZZZ

FLOAT NO: N/A

TUBE NO: N/A

DATA IS: As Found/As Left ; In Tolerance

See Remarks V

Calibrated @ customer's facility

REMARKS: DIRECT READING ELECTRONIC INDICATOR TRANSMITTER S/N: 14136005, CALIBRATED IN LBS/HR H20 @ 75°F. SP.GR. 1.0 METER READINGS ARE AVERAGED. METER IS VERY UNSTABLE.

ACCURACY ± 1% RATE

INDICATED	ACTUAL	
LB/H	LBS/HR	
150.03	150.76	
135.40	136.56	
121.30	122.01	
106.60	107.16	
92.64	93.31	
77.80	78.36	
63.65	64.06	
49.64	49.90	
34.52	34.75	
20.99	21.00	

Flowmeter	Certified v	D	\circ
TIOWITICLET	Certined v	Π.	U

Equip. No.:	11605	Accuracy:	0.005%	Equip. Cal. Date:	9/13/21	Cal. Due:	9/13/24
NIST Cert. No.:	MSML (CC #21188 A		Proced	ure No.: ISA	:RP 16.6	

Our standards are certified by or are traceable to the National Institute of Standards and Technology and systems comply with MIL-STD 45662A, ANSI/NCSL Z540.3, ISO/IEC 17025, and ISO 10012. The collective uncertainty of the standards used in this calibration does not exceed 25% of the certified accuracy of the instrument under test. This document may not be reproduced, except in full, without prior written approval of the Homer R. Dulin Co. Rev.2 Dated 4/16/22

P.O. No.:	SCPPA-2300174	Shipper No.:	
4-18-23		4-18-24	J. LAGUNA

CALIBRATION DATE

RECALIBRATION DUE

CALIBRATION TECHNICIAN

Page 1 of 2

HOMER R. DULIN CO. 729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755

(562) 424-8533 HRDULIN@AOL.COM

CERT. NO. 4-316-23

CALIBRATION CERTIFICATION

SUBMITTED BY: SCPPA - CANYON POWER PLANT

FLOWMETER SERIAL NO:

MANUFACTURER: MICRO MOTION

MFG. SERIAL NO: <u>14236418</u>

TUBE NO: N/A

MODEL: CMF025M313NQBUEZZZ

FLOAT NO: N/A

DATA IS: As Found/As Left ; In Tolerance

See Remarks 🗹 Calibrated @ customer's facility HRD

REMARKS: DIRECT READING ELECTRONIC INDICATOR TRANSMITTER S/N: 14138117, CALIBRATED IN LBS/HR H20 @ 75°F. SP.GR. 1.0 - METER IS UNSTABLE

ACCURACY ± 1% RATE

INDICATED	ACTUAL	
LB/HR	LBS/HR	
150.70	150.91	
130.10	129.76	
109.20	109.41	
95.22	95.16	
80.41	80.06	
70.10	69.91	
54.20	54.05	
36.91	36.90	
26.95	27.00	
16.68	16.70	

		FIO	wmeter Certin	ed with HOMER R. I	JULIN CO.		
Equip. No.:	1605	Accuracy:	0.005%	Equip. Cal. Date:	9/13/21	Cal. Due:	9/13/24
NIST Cert. No.:	MSML (C #21188 A		Proced	ure No.: ISA	.:RP 16.6	
Our standards are c ANSI/NCSL Z540.3,	ertified by ISO/IEC	or are traceable 17025, and ISO	to the National In: 10012. The collec	stitute of Standards and T tive uncertainty of the sta	Fechnology and Indards used in t	systems comply w his calibration doe	ith MIL-STD 45662A, s not exceed 25% of
the certified accurac	y of the in	strument under t	est. This docume	nt may not be reproduced	I, except in full,	without prior writte	an approval of the
	Rev.z Dat		74	ObtantoN			
1.0.140	J 0	CFPA-23001	74	Shipper No.:	•	1	

4-24-23 CALIBRATION DATE 4-24-24 RECALIBRATION DUE

J. LAGUNA CALIBRATION TECHNICIAN

Page 1 of 2

(Here)

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 19

AQ-18 SCR INLET TEMPERATURE SENSOR

CALIBRATION REPORTS

Calibration: SCR Inlet Temperature Unit 1 TE-403A-403D

Certificate Number: Position ID: 1-TE-403A

Position		Device		
Name	SCR INLET TEMP	Device ID	1-TE-403A	
Work Order Number	r	Serial Number		
Location NH3 INJ SKID		Manufacturer		
Plant CANYON/ERU/U1/		Rangeability		
		Operating	Operat	ing Humidity
Function		Calibration Ev	ent	
Name	U1 SCR INLET TEMP (ud)	Calibration time	1/23/2023 10:00:25 AM	
Transfer Function	Linear	Next Calibration		
Range	100 1000 °F 100 1000 °F	Environment	Enviror	nment
Calibration Pro	ocedure	Calibrators		
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:
Calibration Strategy		Output Module		Due Date:

Certificate Number: Position ID: 1-TE-403B

Position		Device		
Name	SCR INLET TEMP	Device ID	1-TE-403B	
Work Order Number		Serial Number		
Location	NH3 INJ SKID	Manufacturer		
Plant	CANYON/ERU/U1/	Rangeability		
		Operating	Operati	ing Humidity
Function		Calibration Ev	ent	
Name	U1 SCR INLET TEMP (ud)	Calibration time	1/23/2023 10:03:26 AM	
Transfer Function	Linear	Next Calibration		
Range	100 1000 °F 100 1000 °F	Environment	Enviror	nment
Calibration Pro	cedure	Calibrators		
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:
Calibration Strategy		Output Module		Due Date:

Certificate Number: Position ID: 1-TE-403C

Position		Device		
Name	SCR INLET TEMP	Device ID	1-TE-403C	
Work Order Number		Serial Number		
Location	NH3 INJ SKID	Manufacturer		
Plant	CANYON/ERU/U1/	Rangeability		
		Operating	Operati	ng Humidity
Function		Calibration Ev	ent	
Name	U1 SCR INLET TEMP (ud)	Calibration time	1/23/2023 10:05:50 AM	
Transfer Function	Linear	Next Calibration		
Range	100 1000 °F 100 1000 °F	Environment	Environ	ment
Calibration Pro	cedure	Calibrators		
Due Date	1/24/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:
Calibration Strategy		Output Module		Due Date:

1. As Four	nd	PAS	SED, DO NO	OT ADJUST			
Maximum Error: -0.667 % of span							
Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]			
100.0	100.00	100.0	94.000	-0.667			
550.0	550.00	550.0	545.000	-0.556			
1000.0	1000.00	1000.0	995.500	-0.500			

Certificate Number: Position ID: 1-TE-403D

Position		Device		
Name	SCR INLET TEMP	Device ID	1-TE-403D	
Nork Order Number		Serial Number		
_ocation	NH3 INJ SKID	Manufacturer		
Plant	CANYON/ERU/U1/	Rangeability		
		Operating	Operati	ng Humidity
Function		Calibration Ev	ent	
Name	U1 SCR INLET TEMP (ud)	Calibration time	1/23/2023 10:08:32 AM	
Transfer Function	Linear	Next Calibration		
Range	100 1000 °F 100 1000 °F	Environment	Enviror	iment
Calibration Pro	cedure	Calibrators		
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:
Calibration Strategy		Output Module		Due Date:

1. As Fou	und	PAS	SED, DO NO	OT ADJUST
Maximum Erro	or: -0.500 % of s	span		
Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.00	100.0	95.500	-0.500
550.0	550.00	550.0	546.500	-0.389
1000.0	1000.00	1000.0	996.500	-0.389

Calibration: SCR Inlet Temperature Unit 2 TE-403A-403D

Certificate Number: Position ID: 2-TE-403A

Position		Device			
Name	SCR INLET TEMP	Device ID	2-TE-403A		
Nork Order Numbe	r	Serial Number			
_ocation	NH3 INJ SKID	Manufacturer			
Plant	CANYON/ERU/U2/	Rangeability			
		Operating	Operating Humidity		
Function		Calibration Ev	ent		
Name	U2 SCR INLET TEMP (ud)	Calibration time	1/23/2023 10:40:22 AM		
Transfer Function	Linear	Next Calibration			
Range	100 1000 °F 100 1000 °F	Environment	Environment		
Calibration Pro	ocedure	Calibrators			
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:	
Calibration Strategy		Output Module		Due Date:	

Certificate Number: Position ID: 2-TE-403B

Position		Device			
Name	SCR INLET TEMP	Device ID	2-TE-403B		
Work Order Number	r	Serial Number			
Location	NH3 INJ SKID	Manufacturer			
Plant	CANYON/ERU/U2/	Rangeability			
		Operating	Operati	ng Humidity	
Function		Calibration Ev	ent		
Name	U2 SCR INLET TEMP (ud)	Calibration time	1/23/2023 10:44:52 AM		
Transfer Function	Linear	Next Calibration			
Range	100 1000 °F 100 1000 °F	Environment	Environment		
Calibration Pro	ocedure	Calibrators			
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:	
Calibration Strategy		Output Module		Due Date:	

Certificate Number: Position ID: 2-TE-403C

Position		Device			
Name	SCR INLET TEMP	Device ID	2-TE-403C		
Work Order Number		Serial Number			
Location	NH3 INJ SKID	Manufacturer			
Plant	CANYON/ERU/U2/	Rangeability			
		Operating	Operati	ing Humidity	
Function		Calibration Ev	ent		
Name	U2 SCR INLET TEMP (ud)	Calibration time	1/23/2023 10:47:18 AM		
Transfer Function	Linear	Next Calibration			
Range	100 1000 °F 100 1000 °F	Environment	Enviror	nment	
Calibration Pro	cedure	Calibrators			
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:	
Calibration Strategy		Output Module		Due Date:	

Certificate Number: Position ID: 2-TE-403D

Position		Device			
Name	SCR INLET TEMP	Device ID	2-TE-403D		
Nork Order Number		Serial Number			
_ocation	NH3 INJ SKID	Manufacturer			
Plant	CANYON/ERU/U2/	Rangeability			
		Operating	Operati	ing Humidity	
Function		Calibration Ev	vent		
Name	U2 SCR INLET TEMP (ud)	Calibration time	1/23/2023 10:49:45 AM		
Fransfer Function	Linear	Next Calibration			
Range	100 1000 °F 100 1000	Environment	Environment		
Calibration Pro	cedure	Calibrators			
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:	
Calibration Strategy		Output Module		Due Date:	

1. As Fou	Ind	PAS	SED, DO NO	OT ADJUST
Maximum Erro	r: -0.334 % of s	pan		
Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.01	100.0	97.000	-0.334
550.0	550.01	550.0	547.500	-0.279
1000.0	1000.01	1000.0	997.500	-0.279

Calibration: SCR Inlet Temperature Unit 3 TE-403A-403D

Certificate Number: Position ID: 3-TE-403A

Position			Device		
Name	SCR INLET TEMP		Device ID	3-TE-403A	
Nork Order Number			Serial Number		
ocation	NH3 INJ SKID		Manufacturer		
Plant	CANYON/ERU/U3/		Rangeability		
			Operating	Operat	ing Humidity
Function			Calibration Ev	ent	
Vame	U3 SCR INLET TEMP (ud)		Calibration time	1/23/2023 12:11:48 PM	
Fransfer Function	Linear		Next Calibration		
Range	100 1000 °F	100 1000 °F 100 1000 °F		Environment	
Calibration Pro	cedure		Calibrators		
Due Date	1/23/2024 Int	erval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	2 % of span		Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023
Adjust To Error <	40 % of Reject If Error Cla	assification	Output Calibrator		Due Date:
Calibration Strategy			Output Module		Due Date:

1. As Fo	und	PAS	SED, DO NO	OT ADJUST
Maximum Err	or: 0.442 % of s	pan		
Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.02	100.0	104.000	0.442
550.0	550.02	550.0	553.500	0.387
1000.0	1000.01	1000.0	1003.500	0.388

Certificate Number: Position ID: 3-TE-403B

	Device			
SCR INLET TEMP	Device ID	3-TE-403B		
	Serial Number			
NH3 INJ SKID	Manufacturer			
CANYON/ERU/U3/	Rangeability			
	Operating	Operati	ng Humidity	
	Calibration Ev	ent		
U3 SCR INLET TEMP (ud)	Calibration time	1/23/2023 12:14:34 PM		
Linear	Next Calibration			
100 1000 °F 100 1000 °F	Environment	Environment		
edure	Calibrators			
1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
40 % of Reject If Error Classification	Output Calibrator		Due Date:	
	Output Module		Due Date:	
	SCR INLET TEMP NH3 INJ SKID CANYON/ERU/U3/ U3 SCR INLET TEMP (ud) Linear 100 1000 °F 100 1000 °F edure 1/23/2024 Interval 1 years 2 % of span 40 % of Reject If Error Classification	SCR INLET TEMP Device NH3 INJ SKID Manufacturer CANYON/ERU/U3/ Rangeability U3 SCR INLET TEMP (ud) Calibration Events Linear Next Calibration 100 1000 °F 100 1000 °F 1/23/2024 Interval 1 years 1/23/2024 Interval 1 years 40 % of Reject If Error Classification Output Module	SCR INLET TEMP Device ID 3-TE-403B NH3 INJ SKID Manufacturer Serial Number NH3 INJ SKID Manufacturer Canyon/ERU/U3/ CANYON/ERU/U3/ Rangeability Operating U3 SCR INLET TEMP (ud) Calibration Event Calibration Event U3 SCR INLET TEMP (ud) Calibration time 1/23/2023 12:14:34 PM Linear Next Calibration Environment 100 1000 °F 100 1000 °F Environment edure Calibrators Environ 1/23/2024 Interval 1 years 1/23/2024 Interval 1 years 2 % of span Input Module TC-R-OUT/ TC1 : 65279 40 % of Reject If Error Classification Output Module TC-R-OUT/ TC1 : 65279	

1. As Fou	Ind	PAS	SED, DO NO	OT ADJUST
Maximum Erro	r: 0.554 % of s	ban		
Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.02	100.0	104.500	0.498
550.0	550.01	550.0	554.000	0.443
1000.0	1000.01	1000.0	1005.000	0.554

Certificate Number: Position ID: 3-TE-403C

Position		Device			
Name	SCR INLET TEMP	Device ID	3-TE-403C		
Nork Order Number		Serial Number			
ocation	NH3 INJ SKID	Manufacturer	Manufacturer		
Plant	CANYON/ERU/U3/	Rangeability			
		Operating	Operating Humidity		
unction		Calibration Event			
Vame	U3 SCR INLET TEMP (ud)	Calibration time	1/23/2023 12:17:12 PM		
Fransfer Function	Linear	Next Calibration			
Range	100 1000 °F 100 1000 °F	Environment	Environment		
Calibration Pro	cedure	Calibrators			
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:	
Calibration Strategy		Output Module		Due Date:	

		DAC		
1. AS FOU	ina	PAS	SED, DO NO	JI ADJUSI
Maximum Erro	or: 0.388 % of sp	pan		
Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.01	100.0	103.000	0.332
550.0	550.01	550.0	553.500	0.388
1000.0	1000.01	1000.0	1003.500	0.388

Certificate Number: Position ID: 3-TE-403D

Position		Device			
Name	SCR INLET TEMP	Device ID	3-TE-403D		
Work Order Number		Serial Number			
Location	NH3 INJ SKID	Manufacturer	Manufacturer		
Plant	CANYON/ERU/U3/	Rangeability			
		Operating	Operating Humidity		
Function		Calibration Event			
Name	U3 SCR INLET TEMP (ud)	Calibration time	1/23/2023 12:19:52 PM		
Transfer Function	Linear	Next Calibration			
Range	100 1000 °F 100 1000 °F	Environment	Environment		
Calibration Pro	cedure	Calibrators			
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
Reject If Error >	2 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:	
Calibration Strategy		Output Module		Due Date:	

Calibration: SCR Inlet Temperature Unit 4 TE-403A-403D

Certificate Number: Position ID: 4-TE-403A

Position			Device		
Name	SCR INLET TEMP		Device ID	4-TE-403A	
Nork Order Number			Serial Number		
_ocation	NH3 INJ SKID		Manufacturer		
Plant	CANYON/ERU/U4/		Rangeability		
			Operating	Operati	ng Humidity
Function			Calibration Event		
Name	U4 SCR INLET TEMP	ud)	Calibration time	1/23/2023 1:31:26 PM	
Fransfer Function	Linear		Next Calibration		
Range	100 1000 °F	100 1000 °F	Environment	Environment	
Calibration Pro	cedure		Calibrators		
Due Date	1/23/2024 Inte	val 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	2.5 % of span		Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023
Adjust To Error <	40 % of Reject If Error Clas	sification	Output Calibrator		Due Date:
Calibration Strategy			Output Module		Due Date:

1. As Fou	Ind	PAS	SED, DO NO	OT ADJUST
Maximum Erro	or: -0.502 % of s	pan		
Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.02	100.0	95.500	-0.502
550.0	550.01	550.0	546.000	-0.446
1000.0	1000.01	1000.0	996.000	-0.446

Certificate Number: Position ID: 4-TE-403B

Position			Device				
Name	SCR INLET TEMP		Device ID	4-TE-403B			
Work Order Number			Serial Number				
Location NH3 INJ SKID			Manufacturer				
Plant CANYON/ERU/U4/			Rangeability				
			Operating	Operati	ng Humidity		
Function			Calibration Event				
Name	U4 SCR INLET TEMP	(ud)	Calibration time	1/23/2023 1:34:05 PM			
Transfer Function	Linear		Next Calibration				
Range	100 1000 °F	100 1000 °F	Environment	Environment			
Calibration Pro	cedure		Calibrators				
Due Date	1/23/2024 Inte	erval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023		
Reject If Error >	2 % of span		Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023		
Adjust To Error <	40 % of Reject If Error Cla	ssification	Output Calibrator		Due Date:		
Calibration Strategy			Output Module		Due Date:		
			•				

1. As Fou	und	PAS	SED, DO NO	OT ADJUST
Maximum Erro	or: -0.112 % of s	pan		
Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.01	100.0	99.000	-0.112
550.0	550.01	550.0	549.500	-0.057
1000.0	1000.01	1000.0	999.000	-0.112

Certificate Number: Position ID: 4-TE-403C

Position		Device			
Name	SCR INLET TEMP	Device ID	4-TE-403C		
Work Order Number		Serial Number			
Location	NH3 INJ SKID	Manufacturer			
Plant	CANYON/ERU/U4/	Rangeability			
		Operating	Operati	ng Humidity	
Function		Calibration Event			
Name	U4 SCR INLET TEMP (ud)	Calibration time	1/23/2023 1:36:37 PM		
Transfer Function	Linear	Next Calibration			
Range	100 1000 °F 100 1000 °F	Environment	Environment		
Calibration Pro	cedure	Calibrators			
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
Reject If Error >	2.5 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:	
Calibration Strategy		Output Module		Due Date:	

Certificate Number: Position ID: 4-TE-403D

Position		Device			
Name	SCR INLET TEMP	Device ID	4-TE-403D		
Work Order Number		Serial Number			
Location	NH3 INJ SKID	Manufacturer			
Plant	CANYON/ERU/U4/	Rangeability			
		Operating	Operati	ng Humidity	
Function		Calibration Event			
Name	U4 SCR INLET TEMP (ud)	Calibration time	1/23/2023 1:39:01 PM		
Transfer Function	Linear	Next Calibration			
Range	100 1000 °F 100 1000 °F	Environment	Environment		
Calibration Pro	cedure	Calibrators			
Due Date	1/23/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023	
Reject If Error >	2.5 % of span	Input Module	TC-R-OUT/ TC1 : 65279	Due Date: 2/28/2023	
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator		Due Date:	
Calibration Strategy		Output Module		Due Date:	

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 20

AQ-19 SCR DIFFERENTIAL PRESSURE SENSOR

CALIBRATION REPORTS
Calibration Report: SCR Differential Pressure Sensor Unit 1 PDIT-403

Certificate Number: Position ID: 1-PDIT-403

Position		Device		
Name	U1 SCR DP	Device ID	1-PDIT-403	
Work Order Numbe	r	Serial Number		
Location	U1 ERU	Manufacturer	Rosemount 3051S2CI	D1A2F12A1AB3E5L4M5Q4
Plant	CANYON/ERU/U1/	Rangeability		
		Operating	O	perating Humidity
Function		Calibration Ev	ent	
Name	U1 SCR DP (ud)	Calibration time	1/18/2023 8:26:55 AM	
Transfer Function	Linear	Next Calibration		
Range	0 10 inH2O (G) 4 20 mA	Environment	Er	nvironment
Calibration Pro	ocedure	Calibrators		
Due Date	1/18/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	1 % of span	Input Module	P2C : 69381	Due Date: 3/1/2023
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator	MC6 : 605835	Due Date: 2/25/2023
Calibration Strategy		Output Module	IN : 25613	Due Date: 2/25/2023

Found Error [% of span]	Actual Output [mA]	Nominal Output [mA]	Actual Input [inH2O]	Nominal Input [inH2O]
-0.179	3.9714	4.0000	0.00	0.0000
-0.177	7.8757	8.000	2.44	2.500
-0.215	12.0136	12.000	5.03	5.000
-0.126	16.0598	16.000	7.55	7.500
-0.174	19.9721	20.000	10.00	10.000
-0.162	16.1501	16.000	7.61	7.500
-0.149	12.0402	12.000	5.04	5.000
-0.176	7.8119	8.000	2.40	2.500
-0.088	4.2420	4.0000	0.16	0.0000

Calibration Report: SCR Differential Pressure Sensor Unit 2 PDIT-403

Certificate Number: Position ID: 2-PDIT-403

Position		Device		
Name	U2 SCR DP	Device ID	2-PDIT-403	
Work Order Number		Serial Number		
Location	U2 ERU	Manufacturer	Rosemount 3051S2C	D1A2F12A1AB3E5L4M5Q4
Plant	CANYON/ERU/U2/	Rangeability		
		Operating	0	perating Humidity
Function		Calibration Eve	ent	
Name	U2 SCR DP (ud)	Calibration time	1/18/2023 9:02:39 AN	1
Transfer Function	Linear	Next Calibration		
Range	0 10 inH2O (G) 4 20 mA	Environment	E	nvironment
Calibration Pro	cedure	Calibrators		
Due Date	1/18/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	1 % of span	Input Module	P2C : 69381	Due Date: 3/1/2023
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator	MC6 : 605835	Due Date: 2/25/2023
Calibration Strategy		Output Module	IN : 25613	Due Date: 2/25/2023

T ADJUST	SED, DO NO	PAS	1. As Found		
		pan	r: -0.344 % of s	Maximum Erro	
Found Error [% of span]	Actual Output [mA]	Nominal Output [mA]	Actual Input [inH2O]	Nominal Input [inH2O]	
-0.226	3.9638	4.0000	0.00	0.0000	
-0.193	8.0491	8.000	2.55	2.500	
-0.225	11.8040	12.000	4.90	5.000	
-0.218	16.0131	16.000	7.53	7.500	
-0.259	20.2305	20.000	10.17	10.000	
-0.292	16.0813	16.000	7.58	7.500	
-0.344	12.1689	12.000	5.14	5.000	
-0.310	8.0624	8.000	2.57	2.500	
-0.226	3.8999	4.0000	-0.04	0.0000	

Calibration Report: SCR Differential Pressure Sensor Unit 3 PDIT-403

Certificate Number: Position ID: 3-PDIT-403

Position		Device		
Name	U3 SCR DP	Device ID	3-PDIT-403	
Work Order Numbe	r	Serial Number		
Location	U3 ERU	Manufacturer	Rosemount 3051S2CI	D1A2F12A1AB3E5L4M5Q4
Plant	CANYON/ERU/U3/	Rangeability		
		Operating	O	perating Humidity
Function		Calibration Ev	ent	
Name	U3 SCR DP (ud)	Calibration time	1/18/2023 10:04:58 A	M
Transfer Function	Linear	Next Calibration		
Range	0 10 inH2O (G) 4 20 mA	Environment	Er	nvironment
Calibration Pro	ocedure	Calibrators		
Due Date	1/18/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	1 % of span	Input Module	P2C : 69381	Due Date: 3/1/2023
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator	MC6 : 605835	Due Date: 2/25/2023
Calibration Strategy		Output Module	IN : 25613	Due Date: 2/25/2023

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	0.00	4.0000	4.0416	0.260
2.500	2.58	8.000	8.1679	0.249
5.000	5.02	12.000	12.0668	0.218
7.500	7.52	16.000	16.0830	0.319
10.000	9.98	20.000	20.0117	0.273
7.500	7.55	16.000	16.1109	0.193
5.000	5.07	12.000	12.1417	0.186
2.500	2.33	8.000	7.7637	0.223
0.0000	-0.09	4.0000	3.8999	0.274

Calibration Report: SCR Differential Pressure Sensor Unit 4 PDIT-403

Certificate Number:

Position ID: 4-PDIT-403

Position		Device		
Name	U4 SCR DP	Device ID	4-PDIT-403	
Work Order Numbe	r	Serial Number	393481	
Location	U4 ERU	Manufacturer	Rosemount 3051C	
Plant	CANYON/ERU/U4/	Rangeability		
		Operating	Op	perating Humidity
Function		Calibration Ev	ent	
Name	U4 SCR DP (ud)	Calibration time	1/18/2023 10:30:52 AM	Л
Transfer Function	Linear	Next Calibration		
Range	0 10 inH2O (G) 4 20 mA	Environment	Er	vironment
Calibration Pro	ocedure	Calibrators		
Due Date	1/18/2024 Interval 1 years	Input Calibrator	MC6 : 605835	Due Date: 2/25/2023
Reject If Error >	1 % of span	Input Module	P2C : 69381	Due Date: 3/1/2023
Adjust To Error <	40 % of Reject If Error Classification	Output Calibrator	MC6 : 605835	Due Date: 2/25/2023
Calibration Strategy	,	Output Module	IN : 25613	Due Date: 2/25/2023
2 000			As Found (1)	
2.000			Error Limit	

1. As Fou	und	PAS	SED, DO NO	OT ADJUST
Nominal Input [inH2O]	Actual Input [inH2O]	pan Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	0.01	4.0000	3.9742	-0.261
2.500	2.50	8.000	7.9840	-0.100
5.000	5.14	12.000	12.2234	-0.004
7.500	7.51	16.000	16.0116	-0.028
10.000	9.99	20.000	19.9987	0.092
7.500	7.45	16.000	15.9339	0.087
5.000	4.98	12.000	11.9630	-0.031
2.500	2.47	8.000	7.9442	-0.049
0.0000	0.00	4.0000	3.9783	-0.136

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 21

WASTE-10 COOLING TOWER SLUDGE TESTING

No Sludge developed for CY 2023

THIS IS THE LAST PAGE OF THIS DOCUMENT