

2009 Integrated Energy Policy Report Staff Workshop

INTRODUCTION TO THE LEVELIZED COST OF ELECTRICITY GENERATION TECHNOLOGIES PROJECT

April 16, 2009

Al Alvarado, Manager Electricity Analysis Office California Energy Commission

DOCKET

09-IEP-1E

DATE April 16 2009

RECD. April 15 2009

Context to the Levelized Cost of Generation Project

- Support the development of the 2009 Integrated Energy Policy Report (IEPR)
- Update of the 2003 and 2007 IEPR cost analysis
- Serves as a building block for electricity resource planning studies
- Subject of today's workhop is the first phase of overall project

Cost of Generation Project Tasks:

- Modify the Levelized Cost of Generation Model
- Update engineering and financial model inputs
 - Renewable, IGCC and Nuclear generation (today's workshop topic)
 - Natural Gas-fired generation
- Study how individual factors may change in time
- Consider uncertainty variables
- Calculate range of current and future costs
- Compare different levelized cost models.

<u>INPUTS</u>

OUTPUTS

Goals of Project:

- Develop transparent and easy to use analytical features in the Levelized Cost of Generation Model
- Consistent set of financial and operational assumptions that apply to different generation technologies
- Understand the variables and scope of uncertainty that will affect the future costs of different technologies.
- Calculate range of levelized costs

Comparison of Levelized Costs in Different Studies

Data Sources: [1] California Energy Commission, 2005, Strategic Value Analysis [cost data reports]; [2] California Energy Commission, Dec 2007, Comparative Costs of California Central Station Electricity Generation Technologies, Final Staff Report; [3] California Energy Commission, 2008 (forthcoming), Scenario Analyses of California's Electricity System: Final Results for the 2007 Integrated Energy Policy Report, Final Staff Report; [4] CPUC, Nov 2005, Achieving a 33% Renewable Energy Target, by CRS for the CPUC; [5] E3, 2008 (forthcoming), CPUC GHG Modeling; [6] RETI Coordinating Committee, March 2008, Renewable Energy Transmission Initiative Phase 1A Draft Report; [7] US Department of Energy, EERE, May 2008, 20% Wind Energy by 2030 Increasing Wind Energy's Contribution to U.S. Electricity Supply.

Note: Anaerobic Digestion data from [2] and [6]; Biogas data from [2] and [5]; Biomass data from [2], [3], [5], and [6]; Concentrating Solar Power and Geothermal data from [1], [2], [3], [4], [5], [6]; Landfill Gas data from [1], [2], [4], [5], [6]; and Wind data from [1], [2], [3], [4], [5], [6], and [7].

2007 Levelized Cost Estimates

Start Year = 2007 (2007 Nominal\$)

EFFECT OF TAX CREDITS

Levelized Cost Estimates Are Sensitive to Input Assumptions

LEVELIZED COST COMPARISON

Application of Levelized Cost of Generation Project:

- Evaluate how different factors may affect current and future levelized costs
- Analyze the financial feasibility of generation project proposals
- Screening tool to compare different technologies
- Energy Efficiency program evaluation
- Input to resource planning studies
- Benchmark for wholesale energy costs

Next Steps

- Modify renewable, IGCC and nuclear generation assumptions based on today's workshop comments, if needed
- Input to Cost of Generation Model to calculate range of levelized costs
- Study results will be subject of July 22, 2009 workshop