DOCKETED		
Docket Number:	23-OPT-02	
Project Title:	Darden Clean Energy Project	
TN #:	252979	
Document Title: Appendix K Traffic and Transportation Analysis_Darden Clean Energy		
Description: Analyzes traffic conditions related to the Darden Clean Ener Project and surrounding transportation facilities		
Filer:	Megan Knight	
Organization:	Rincon Consultants, Inc.	
Submitter Role:	Applicant Consultant	
Submission Date:	sion Date: 11/6/2023 4:03:18 PM	
Docketed Date:	11/6/2023	

<u>Appendix</u> K

Traffic and Transportation Analysis

Darden Clean Energy Project

CEC Traffic & Transportation Analysis October 27, 2023

Prepared for: Rincon Consultants

Prepared by: VRPA Technologies, Inc. 4630 W. Jennifer, Suite 105 Fresno, CA 93722

Table of Contents

Section	Description	Page
1.0	Introduction	1-1
	1.1 Description of the Region/Project1.2 Methodology	1-1 1-2
2.0	Existing and Planned Transportation	
	Facilities	2-1
	 2.1 Existing Functional Roadway Classification System 2.2 Affected Streets and Highways 2.3 Level of Service 2.3.1 Roadway Segment Capacity Analysis 2.4 Public Transit and Active Transport Systems 2.5 Aviation 2.6 Biking Routes 2.7 Railway Facilities 	2-1 2-2 2-3 2-3 2-3 2-3 2-4 2-4
3.0	 Traffic Impacts 3.1 Trip Generation 3.2 Trip Distribution and Project Site Circulation 3.3 Project Construction Traffic 3.4 Project Operation Traffic 3.5 Impacts 3.5.1 Existing Plus Project Construction Traffic Conditions 3.5.2 Project Opening Year Traffic Conditions 	3-1 3-1 3-2 3-2 3-2 3-2 3-2 3-2
4.0	Conclusions	4-1

Appendix

Appendix -A	Modified HCM-Based LOS Tables(Florida tables)
Appendix -B	ADT Counts
Appendix-C	Construction Schedule

List of Tables

1-1	Roadway Segment Level of Service Definitions	1-3
1-2	Average Daily Volumes	1-4
2-1	2023 Existing Roadway Segment ADT Operations	2-6
2-2	2023 Existing Roadway Segment Peak Hour Counts	2-7
2-3	2023 Existing Roadway Segment Truck Percentages	2-8
3-1a	Trip Generation Table (During Peak Construction)	3-3
3-1b	Trip Generation Table (During Operation)	3-4
3-2	2023 Existing Plus Project Construction Roadway Segment	
	Operations 18-month Construction Schedule	3-5
3-3	2023 Existing Plus Project Construction Roadway Segment	
	Operations 36-month Construction Schedule	3-6
3-4	2028 Traffic Plus Project Operation Roadway Segment ADT	
	Operations	3-7
3-5	2023 Traffic Plus Project Construction Roadway Segment	
	Peak Hour Traffic 18-month Schedule	3-8
3-6	2023 Traffic Plus Project Construction Roadway Segment	
	Peak Hour Traffic 36-month Schedule	3-9
3-7	2028 Traffic Plus Project Operation Roadway Segment ADT	
	Operations Peak Hour Traffic	3-10

List of Figures

1-1	Regional Location	1-5
1-2	Project Location	1-6
2-1	Existing Roadway Classification	2-7
2-2	Existing Transportation Facilities	2-8
2-3	Darden Roadway Segments 2023 Average Daily Traffic	
3-1a	Employee Trip Distribution	3-11
3-1b	Truck Trip Distribution	3-12
3-2	Darden Roadway Segments Existing Plus Construction Traffic	
	18-month schedule	3-13
3-3	Darden Roadway Segments Existing Plus Construction Traffic	
	36-month schedule	3-14
3-4	Darden Roadway Segments ADT Opening Year 2028 Plus Project	
	Traffic	3-14
3-3a	Project Construction Passenger Car Equivalent AM Peak Hour	3-15

1.0 Introduction

1.1 Description of the Region/Project

This Transportation Analysis has been prepared for the purpose of analyzing traffic conditions related to the Darden Clean Energy Project (Project) and surrounding transportation facilities. The Project is located on approximately 9,500 acres in an agricultural area within unincorporated Fresno County south of the community of Cantua Creek. Figure 1-1 reflects the site's regional context, while Figure 1-2 reflects the Project location within Fresno County.

The Project consists of the construction, operation, and eventual repowering or decommissioning of a 1,150 megawatt (MW) solar photovoltaic (PV) facility, an up-to 4,600 megawatt-hour (MWh) battery energy storage system (BESS), an up-to 1,150 MW green hydrogen facility a 34.5-500 kilovolt (kV) grid step-up substation, a 10- to 15-mile 500 kV generation intertie (gentie) line, a 500 kV utility switchyard along the Pacific Gas and Electric Company (PG&E) Los Banos-Midway #2 500 kV transmission line, and appurtenances. Once built, the Project would be California's largest solar generator, largest battery storage facility, and largest green hydrogen producer.

1.1.1 Study Area

This study analyzed major roadway segments near the Project site consistent with California Energy Commission (CEC) requirements. The study area included roadway segments (other than freeways) near the project site that are expected to carry 10% or more of Project traffic. Following are the roadway segments that were studied:

Roadway Segments

- ✓ Mt. Whitney Ave/Stanislaus Ave/Harlan Ave between SR 33 and SR 145
- ✓ Colusa Ave between SR 145 and Mt. Whitney Ave
- SR 145 between I-5 and Colusa Ave
- SR 145 between Mt Whitney Ave and SR 180
- SR 269 between SR 198 and Mt. Whitney Ave

1.1.2 Study Scenarios

The following scenarios were studied as a part of this study:

- Existing Conditions utilized to establish the current traffic operating conditions within the study area
- Project Construction Conditions describes the Project's trip generation associated with the construction phase of project
- Project Completion Conditions describes traffic operating conditions following Project construction or once the Project is complete and in the operating phase in opening year 2028.

1.2 Methodology

In analyzing street capacities, Level of Service (LOS) methodologies are applied. LOS standards are applied by transportation agencies to quantitatively assess a street and highway system's performance by rating intersections on a scale of LOS "A" through "F". In addition, safety concerns are analyzed to determine the need for appropriate mitigation resulting from increased traffic near sensitive uses, the need for dedicated ingress and egress access lanes to the Project, and other evaluations such as the need for signalized intersections or other improvements. Tables 1-1 define LOS "A" to "F" by indicating the ranges in the amounts of average delay of roadway segments for each level of service ranging from LOS "A" to "F".

1.2.1 Roadway Segment Analysis

According to the Highway Capacity Manual (HCM), LOS is categorized by two parameters of traffic: uninterrupted and interrupted flow. Uninterrupted flow facilities do not have fixed elements such as traffic signals that cause interruptions in traffic flow. Interrupted flow facilities do have fixed elements that cause an interruption in the flow of traffic, such as stop signs and signalized intersections along arterial roads. A roadway segment is defined as a stretch of roadway generally located between signalized or controlled intersections.

Segment LOS is important in order to understand whether the capacity of a roadway can accommodate future traffic volumes. Table 1-1 provides a definition of segment LOS. The performance criteria used for evaluating volumes and capacities on the road and highway system for this study were estimated using the Modified HCM-Based LOS Tables which are widely accepted throughout the Central Valley, including Fresno County. The tables consider the capacity of individual road and highway segments based on numerous roadway variables (design speed, passing opportunities, signalized intersections per mile, number of lanes, saturation flow, etc.). These variables were identified and applied to reflect segment LOS conditions. Additional information is included in Appendix A. Street segment capacity was determined using information shown in Table 1-1 and 1-2, which come from the Modified Arterial Level of Service Tables included in Appendix A.

1-3 Darden Clean Energy Project CEC Traffic & Transportation Analysis, Introduction

Table 1-1 **Roadway Segment Level of Service Definitions** (Highway Capacity Manual)

LEVEL OF SERVICE	DEFINITION	
A	Represents free flow. Individual vehicles are virtually unaffected by the presence of others in the traffic stream.	
В	Is in the range of stable flow, but the presence of other vehicles in the traffic stream begins to be noticeable. Freedom to select desired speeds is relatively unaffected, but there is a slight decline in the freedom to maneuver.	
С	Is in the range of stable flow, but marks the beginning of the range of flow in which the operation of individual vehicles becomes significantly affected by interactions with other vehicles in the traffic stream.	
D	Is a crowded segment of roadway with a large number of vehicles restricting mobility and a stable flow. Speed and freedom to maneuver are severely restricted, and the driver experiences a generally poor level of comfort and convenience.	
E	Represents operating conditions at or near the level capacity. All speeds are reduced to a low, but relatively uniform value. Small increases in flow will cause breakdowns in traffic movement.	
F	Is used to define forced or breakdown flow (stop-and-go gridlock). This condition exists when the amount of traffic approaches a point where the amount of traffic exceeds the amount that can travel to a destination. Operations within the queues are characterized by stop and go waves, and they are extremely unstable.	

1-4 Darden Clean Energy Project CEC Traffic & Transportation Analysis, Introduction

Level of Service					
Lanes	Divided	В	С	D	E
	State Highways				
2	Undivided	9,200	17,300	24,400	33,300
4	Divided	35,300	49,600	62,900	69,600
6	Divided	52 <i>,</i> 800	74,500	94,300	104,500
		Non-State	Roadways		
2	Undivided	**	12,960	14,580	**
4	Divided	**	30,600	31,950	**
6	Divided	**	46,890	48,150	**

Table 1-2 **Average Daily Volumes**

** Not applicable for that level of service letter grade. Volumes greater than level of service D become F because intersection capacities have been reached.

Darden Solar CEC Analysis (Regional Location) (Figure 1-1)

Fresno County Dept. PWP, California State Parks, Esri, HERE, Garmin, SafeGraph, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, USDA, Esri, NASA, NGA, USGS

Darden Solar Project Project Location within Fresno County

Figure 1-2

2.0 Existing and Planned Transportation Facilities

2.1 Existing Functional Roadway Classification System

Functional classification is the process by which streets and highways are grouped into classes, or systems, according to the type of service they are intended to provide. Fundamental to this process is the recognition that individual streets and highways do not serve travel independently in any major way. These data are extracted from Fresno County Streets shapefiles¹. Rather, most travel involves movement through a network of roads.

The current hierarchical system of roadways in the study area consists of the following six (6) basic classifications:

 Freeways – Limited-access facilities designed for high-speed regional mobility. Freeways may include up to eight lanes (four lanes in each direction).

<u>Intersate-5</u> - (I-5) is an interstate freeway serving the study area. I-5 exists on the southern portion of the Project site as a divided four-lane road without bike lanes throughout. The speed limit is 70 mph and I-5 is entirely grade separated.

<u>SR 198</u> - Dorris Avenue is currently an undivided two-lane road in the study area. The posted speed limit is 65 mph. This roadway directs the traffic towards Visalia.

 Expressways – are high-speed, two- to six-lane divided roadways, primarily servicing through and cross-town traffic, with no direct access to abutting property and at-grade intersections located at approximately half-mile intervals. The following expressways exist within the study area.

<u>SR 33</u> - SR 33 is currently identified as an expressway in the study area. SR 33 is an undivided two-lane road in the study area. The posted speed limit is 65 mph. This highway directs the traffic towards nearby smaller cities to the north of the Project site.

<u>SR 145</u> – SR 145 is currently identified as an expressway facility within the study area. SR 145 is an undivided two-lane road in the study area. The posted speed limit is 55 mph. This highway directs the traffic towards Fresno.

SR 269 - SR 269 is currently identified as an expressway facility in the study area. SR 269

^{1 &}lt;u>https://www.fresnocountyca.gov/Departments/Public-Works-and-Planning/divisions-of-public-works-and-planning/cds/gis-shapefiles</u>

2-2 Darden Clean Energy Project CEC Traffic & Transportation Analysis, Existing Conditions

exists as an undivided two-lane road in the study area. The posted speed limit is 55 mph. This highway merges with SR 145 and carries traffic north of the Project site.

<u>Mt. Whitney Ave</u> – Mt. Whitney Ave is currently identified as an expressway facility in the study area. Mt. Whitney Ave exists as an undivided two-lane road in the study area. The posted speed limit is 55 mph. This highway continues as Harlan Ave to merge with SR 33 and carries traffic north of the Project site.

- Super Arterials are four-to six-lane divided roadways with a primary purpose of moving traffic to and from major traffic generators and between community plan areas. Access will typically be limited to right-turn entrance and exit vehicular movements. Super Arterials do not presently exist within the study area.
- Arterial are four- to six-lane divided roadways, with somewhat limited access to abutting properties, and with the primary purpose of moving traffic within and between community plan areas and to and from freeways and expressways.

West Kamm Road on the north of Project site is identified as Arterial road within study area.

 Collectors – are two to four-lane undivided roadways, with the primary function of connecting local streets and arterials and neighborhood traffic generators and providing access to abutting properties.

El Dorado Avenue and Oakland Avenue are identified as collector facilities within the study area.

Local Streets – are two- to three-lane public or private roadways designed to provide direct access to properties while discouraging through traffic between major streets. They are intended to carry low volumes of traffic and support unrestricted on-street parking. All the nearby streets that carry traffic (except those identified above) are considered to be local streets.

2.2 Affected Streets and Highways

Roadway segments in the vicinity of Project site were analyzed to determine levels of service utilizing HCM-based methodologies described previously. Currently, there are no roadway features identified that would have a threat to public safety. The street and highway segments included in this analysis are listed below. New traffic counts for County roadways were conducted by VRPA in 2023. Traffic counts for State Highways were obtained from the Caltrans Traffic Census website. Additional information on traffic counts is included in Appendix B.

2-3 Darden Clean Energy Project CEC Traffic & Transportation Analysis, Existing Conditions

The capacity of freeway on ramps and off ramps as separate facilities is typically not analyzed because the capacity of freeway ramps is controlled by the merge/diverge areas on the freeway and capacity of the ramp terminal intersections. The roadway segment analysis conducted for the segment of SR 145 between I-5 and Colusa Avenue includes the ramp terminal intersections. The capacity of the freeway and the merge/diverge areas are typically not analyzed in a transportation impact analysis unless specifically requested by Caltrans. Therefore, there is no need to conduct a separate analysis of the I-5 freeway on and off ramps. The existing roadway segments by classification are shown in Figure 2-1 and major transportation facilities near project site are shown in Figure 2-2.

Roadway Segments

- ✓ Mt. Whitney Ave/Stanislaus Ave/Harlan Ave between SR 33 and SR 145
- ✓ Colusa Ave between SR 145 and Mt. Whitney Ave
- ✓ SR 145 between I-5 and Colusa Ave
- SR 145 between Mt Whitney Ave and SR 180
- SR 269 between SR 198 and Mt. Whitney Ave

2.3 Level of Service

2.3.1 Roadway Segment Capacity Analysis

Results of the AM and PM peak hour LOS segment analysis along the existing street and highway system are reflected in Table 2-1. Figure 2-3 shows existing roadway Average Daily Traffic (ADT) volumes Roadway segment analysis was based on the Modified HCM-Based LOS Tables which are widely accepted throughout the Central Valley, including Fresno County. The Tables generated by the Florida Department of Transportation are based on the 2010 HCM. Table 2-1 provides ADT levels of service results for above mentioned roadway segments. Results of the analysis show that all of the study roadway segments are operating at acceptable levels of service. Additional information on existing traffic conditions is provided In Tables 2-2 and 2-3. Peak hour counts are shown in Table 2-2 and truck percentages are shown in Table 2-3.

2.3.2 Pipelines and Canals

In the vicinity of the project construction site, there's a canal that intersects Mt. Whitney Avenue, serving as a source of water for agricultural processes. Despite no visible pipelines on the field's surface, there's a possibility of concealed underground gas and water pipelines that necessitate careful consideration during the construction phase. It is necessary to notify the local public agency responsible for providing these essential services before commencing any construction activities.

2.4 Public Transit and Active Transport Systems

While the private automobile is the dominant mode of travel throughout Fresno County, other modes of transportation are important. The data provided by Fresno Council of Governments (COG) indicates bus routes are available along SR 145, which continues to Mt. Whitney Avenue to the east. Two bus stops are available near the Project site. While congestion is not a major issue in study area, overreliance on automobiles creates other costs for both society and households and means that many in the communities who cannot drive (the young, the elderly, people with disabilities, and low-income residents) must rely on those who can drive for their mobility.

2.5 Aviation

Fresno Yosemite International Airport (FAT) is located 35 miles northeast of the Project site. FAT is the principal passenger airfreight airport in the Central San Joaquin Valley.

2.6 Biking Routes

Bicycling is considered an effective alternative mode of transportation that can help to improve air quality and reduce the number of vehicles traveling along existing highways, especially within the cities and unincorporated communities. There are no designated bike routes available or planned within the study area.

2.7 Railway Facilities

There is a rail line owned by the San Joaquin Valley Railroad situated northwest of the project, running in a NW/SE direction, passing through Helm and adjacent to Colorado Ave at a distance of approximately 7 miles. Although the California High-Speed Rail Authority is planning a high-speed rail system service with new stations in Fresno, it's important to note that the proposed rail line will not pass near the project site. Consequently, this will not impact the transportation considerations of the project.

Table 2-1Darden Clean Energy Project2023 Existing Roadway Segment Daily Average CountsAverage Daily Traffic

STREET SEGMENT	SEGMENT	TARGET	EXISTING (2023)	
	DESCRIPTION	LOS	(Average Daily Traffic) ADT	Level of Service (LOS)
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	D	1,800	C
Colusa Ave to SR 145	1 lane	D	2,200	С
Colusa Avenue				
SR 145 to Mt. Whitney Ave	1 lane	D	850	С
SR 145				
I-5 to Colusa Ave	1 lane	С	3,300	В
Colusa to Whitney Ave	1 Lane	С	4,100	В
Mt Whitney Ave and SP 180	1 Lane	С	7,300	В
	2 Lanes	С	12,000	В
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	С	4,100	В

Table 2-2 Darden Clean Energy Project 2023 Existing Roadway Segment Peak Hour Traffic

		EXISTING (2023)		
STREET SEGMENT	SEGMENT DESCRIPTION	(Average Daily Traffic) ADT	PEAK HOUR	
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	1,800	227	
Colusa Ave to SR 145	1 lane	2,200	277	
Colusa Avenue				
SR 145 to Mt. Whitney Ave	1 lane	850	106	
SR 145				
I-5 to Colusa Ave	1 lane	3,300	360	
Colusa to Whitney Ave	1 Lane	4,100	447	
Mt Whitney Ave and SR 180	1 Lane	7,300	694	
	2 Lanes	12,000	1140	
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	4,100	410	

Table 2-3 Darden Clean Energy Project 2023 Existing Roadway Segment Truck Percentages

STREET SEGMENT	SEGMENT	TRUCK		
	DESCRIPTION	PERCENTAGES		
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	3%		
Colusa Ave to SR 145	1 lane	3%		
Colusa Avenue				
SR 145 to Mt. Whitney Ave	1 lane	3%		
SR 145				
I-5 to Colusa Ave	1 lane	10%		
Colusa to Whitney Ave	1 Lane			
Mt Mikitaan Ana and CD 190	1 Lane	10%		
Nit Whitney Ave and SR 180	2 Lanes	10%		
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	10%		

Darden Solar CEC Analysis Roadway Classification (Figure 2-1)

Darden Solar CEC Analysis Transportation Facilities (Figure 2-2)

VRPA

Darden Solar Project

Darden Roadway Segments 2023 Average Daily Traffic(ADT)

Figure 2-3

3.0 Traffic Impacts

This chapter provides an assessment of the construction and operation traffic that the Project is expected to generate and the impact of that traffic on the surrounding street system.

3.1 Trip Generation

To assess the impacts that the Project may have on the surrounding roadway network, the first step is to determine Project trip generation. This analysis was conducted to analyze maximum construction trips during construction periods. Project construction trips were estimated using construction schedules provided by the Project applicant and information from the Institute of Transportation Engineers (ITE) Trip Generation Manual (11th Edition).

Currently the project has anticipated two different construction schedules:

- 18-month construction schedule
- 36-month construction schedule

The Project trips were generated for two different schedules: an 18-month construction period and a 36-month construction period. The trip generation table for both construction phases is provided in Table 3-1a. Once the Project's construction phase is completed, it will commence daily operation, and the trip generation for the operational phase of the project is illustrated in Table 3-1b. These estimates for Project trips are based on the following assumptions.

- ✓ It is assumed that each employee makes two trips in a day, one for entering the workplace and another when returning from work.
- Truck trip estimates for the entire project's operational phase were derived by considering worker trips and utilizing typical trip generation rates, specifically from the ITE trip generation manual within the Manufacturing category, assuming the same number of employees.
- ✓ For a conservative approach, the trips generated by the hydrogen facility at the I-5/SR 33 location (alternate hydrogen facility) are considered insignificant for traffic analysis purposes, and they have been included within the main project site (Option 1 and Option 2).

The trip generation is based on the Project's construction schedule information which is provided detail in Appendix C.

3.2 Trip Distribution

The impacts of peak of construction activity were analyzed for the surrounding roadway networks. Trip distribution is based upon knowledge of the study area, engineering judgement, prevailing traffic patterns in the study area, major routes, population centers, and other existing developments.

Trips are expected to be generated from the nearby major cities of Fresno and Visalia with SR 145 North transporting traffic towards Fresno and SR 145 South directing traffic to SR 198 or towards Visalia. The trip distribution percentages will vary for autos and trucks. Trip distribution for employees and truck trip distribution is shown in Figures 3-1a and 3-1b.

3.3 Project Construction Traffic

Project traffic as shown in Table 3-1a and 3-1b was distributed to the roadway system using the trip distribution percentages shown in Figures 3-1a and 3-1b. A graphical representation of the resulting autos and trucks are shown separately. The ADT volumes for 18 months construction schedule and 36 months schedule are shown in Figure 3-2 and 3-3. These volumes are computed using employees and truck trip distributions.

3.4 Project Operation Traffic

The impacts of the Project were analyzed during the daily operation phase of Project. Project traffic was distributed to the roadway system using the trip distribution percentages shown in Figures 3-1a and 3-1b. Traffic conditions for daily operating conditions is shown in Figures 3-4.

3.5 Impacts

3.5.1 Existing Plus Project Construction Traffic Conditions

An Existing Plus Project Constructions scenario was analyzed to include existing traffic plus traffic generated by the proposed Project. Results of the ADT LOS segment analysis along the existing street and highway system for 18 months construction schedule and 36 months construction schedule are reflected in Table 3-2 and Table 3-3. Roadway segment analysis was based on the Modified HCM-Based LOS Tables which are widely accepted throughout the Central Valley, including Fresno County. Results of the analysis show that all of the study roadway segments are projected to operate at acceptable levels of service during peak construction operations. During the construction period, the project will raise the proportion of trucks utilizing the local roadways, potentially leading to alterations in the traffic and truck mix. It is expected that there will be an increase in 10% of existing traffic. Anticipated figures include up to 345 trucks during the peak 18-month construction schedule and up to 280 trucks during the peak 36-month construction schedule. Similarly, an estimated 3,010 automobiles are expected to result from worker

3-3 Darden Clean Energy Project CEC Traffic & Transportation Analysis, Traffic Impacts

commutes within the 18-month schedule, while 2,400 automobiles are projected for the 36month schedule. These trucks will primarily be dedicated to delivering construction materials, while project workers will commute using their personal vehicles.

Additional information on existing traffic conditions is provided In Tables 3-5 and 3-6. Peak hour traffic conditions are shown in Table 3-5 for an 18-month construction schedule and peak hour traffic conditions for a 36-month schedule are shown in Table 3-6.

3.5.2 Project Opening Year Traffic Conditions

The Project's operating scenario was analyzed assuming the opening year 2028 to include traffic condition in the opening year plus traffic generated by proposed Project. Table 3-4 provides ADT levels of service results for Mt. Whitney Ave, Colusa Ave and SR 145 and SR 269. Results of the analysis show that all of the study roadway segments are projected to operate at acceptable levels of service during Projects operations in the opening year. Peak hour traffic conditions for Opening Year conditions is shown in Table 3-7.

Table 3-1aDarden Clean Energy ProjectDaily Average Trip During Peak ConstructionTrip Generation Table

	PHASES	DAILY WORKER TRIPS	DAILY TRUCK TRIPS	DAILY WORKER TRIPS	DAILY TRUCK TRIPS
	Description	18 MONTH CONSTRUCTION SCHEDULE		36 MONTH CONST	
1	Site Preparation	200	14	350	10
2	PV Panel System	1600	88	1200	65
3	Inverters, Transformers, Substation Electrical	550	47	500	40
4	Gen Tie	200	29	200	25
5	Battery Storage	300	63	200	50
6	Hydrogen(Electrolyzer 1,150 MW, WTP, Storage	400	130	300	100
7	Utility Switchyard	160	17	160	15
	PEAK TOTAL*	3010	345	2400	280

Daily Project Trip generation is based on the Project Construction Schedule

* The daily worker and truck trips for the project will not sum up to the peak total, as the peak total occurs when different phases take place at various time intervals.

Table 3-1 bDarden Clean Energy ProjectDaily Average Project Trips During Operation

TRIP TYPE	DAILY TRIPS
Daily Worker Trips	80

Note:

Daily trips during operation of the facility were based on the Project Description and traffic counts of similar facilities as published in the Institute of

Transportation Engineers (ITE) Trip Generation Manual, 11th Edition.

Table 3-2Darden Clean Energy Project

2023 Existing Plus Project Construction Roadway Segment Capacity Analysis 18 Month Construction Schedule

STREET SEGMENT	SEGMENT DESCRIPTION	TARGET LOS	EXISTING PLUS PROJECT CONSTRUCTION (2023)	
			ADT	LOS
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	D	2,100	С
Colusa Ave to SR 145	1 lane	D	4,570	С
Colusa Avenue				
SR 145 to Mt. Whitney Ave	1 lane	D	1,190	С
SR 145				
I-5 to Colusa Ave	1 lane	С	3,640	В
Colusa to Whitney Ave	1 Lane	С	4,100	В
Mt Whitney Ave and SP 190	1 Lane	С	8,170	В
Wit Whitney Ave and SK 180	2 Lanes	С	13,470	С
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	С	5,000	В

LOS = Level of Service

Table 3-3

Darden Clean Energy Project 2023 Existing Plus Project Construction 36 Month Construction Schedule

STREET SEGMENT DESCRIPTION		TARGET LOS	GET CONSTRUCTIC (2023)	
			ADT	LOS
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	D	2,040	С
Colusa Ave to SR 145	1 lane	D	4,090	С
Colusa Avenue	-			-
SR 145 to Mt. Whitney Ave	1 lane	D	1,120	С
SR 145				
I-5 to Colusa Ave	1 lane	С	3,570	В
Colusa to Whitney Ave	1 Lane	С	4,100	В
	1 Lane	С	8,470	В
NIT Whitney Ave and SR 180	2 Lanes	С	13,170	С
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	С	4,820	В

LOS = Level of Service

Table 3-4Darden Clean Energy Project

2028 Traffic plus Project Operation Roadway Segment ADT Operations

STREET SEGMENT	SEGMENT DESCRIPTION	TARGET LOS	OPENING YEAR 2028 PLUS PROJECT	
			ADT	LOS
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	D	2,000	с
Colusa Ave to SR 145	1 lane	D	2,500	С
Colusa Avenue				
SR 145 to Mt. Whitney Ave	1 lane	D	950	С
SR 145				
I-5 to Colusa Ave	1 lane	С	3,650	В
Colusa to Whitney Ave	1 Lane	С	4,440	В
Mt Whitney Ave and SR 180	1 Lane	С	8,100	В
	2 Lanes	С	13,290	C
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	С	4,550	В

LOS = Level of Service

Table 3-5Darden Clean Energy Project

2023 Existing Plus Project Construction Roadway Segment Peak Hour Traffic

18 Months Construction Schedule

STREET SEGMENT	SEGMENT DESCRIPTION	TARGET LOS	EXISTING PLUS PROJECT (2023)	
			ADT	PEAK HOUR
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	D	2,100	269
Colusa Ave to SR 145	1 lane	D	4,570	611
Colusa Avenue				
SR 145 to Mt. Whitney Ave	1 lane	D	1,190	153
SR 145				
I-5 to Colusa Ave	1 lane	C	3,640	400
Colusa to Whitney Ave	1 Lane	С	4,100	447
Mt Whitney Ave and SR 180	1 Lane	С	8,170	850
	2 Lanes	С	13,470	1140
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	C	5,000	511

LOS = Level of Service / **BOLD** denotes LOS standard has been exceeded

Table 3-6Darden Clean Energy Project2023 Existing Plus Project Construction RoadwaySegment Peak Hour Traffic36 Months Construction Schedule

STREET SEGMENT	STREET SEGMENT TARGE DESCRIPTION LOS		EXISTING F (2	PLUS PROJECT (023)
			ADT	PEAK HOUR
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	D	2,040	261
Colusa Ave to SR 145	1 lane	D	4,090	544
Colusa Avenue	-		-	
SR 145 to Mt. Whitney Ave	1 lane	D	1,120	143
SR 145				
I-5 to Colusa Ave	1 lane	С	3,570	392
Colusa to Whitney Ave	1 Lane	С	4,100	447
Mt Whitney Ave and SR 180	1 Lane	С	8,470	818
	2 Lanes	С	13,170	1140
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	С	4,820	490

Table 3-7Darden Clean Energy Project

2028 Traffic Plus Project Operation Roadway Segment Peak Hour Traffic

STREET SEGMENT		TARGET	OPENING YEAR 2028 PLUS PROJECT	
	DESCRIPTION	205	ADT	PEAK HOUR
Mt. Whitney Ave				
SR 33 to Colusa Ave	1 lane	D	2,000	253
Colusa Ave to SR 145	1 lane	D	2,500	323
Colusa Avenue				
SR 145 to Mt. Whitney Ave	1 lane	D	950	121
SR 145				
I-5 to Colusa Ave	1 lane	С	3,650	461
Colusa to Whitney Ave	1 Lane	С	4,440	559
Mt Whitney Ave and SP 180	1 Lane	С	8,100	1026
	2 Lanes	С	13,290	1675
SR 269				
SR 198 and Mt. Whitney Ave	1 lane	С	4,550	576

Darden Solar Project Employee Trip Distribution

Darden Solar Project Truck Trip Distribution

Darden Solar ProjectFigureDarden Roadway Segments Existing Plus Construction Traffic3-218-Months Schedule3-2

LEGEND	
State Routes	XX Street names
5 Interstate 5(I-5)	xx Segment Volume XX Location names

Darden Solar Project Darden Roadway Segments Existing Plus Construction Traffic 36-Months Schedule

Darden Solar Project

Darden Roadway Segments Average Daily Traffic(ADT) Opening Year 2028 Plus Project Traffic

Figure 3-4

4.0 Conclusions

Three scenarios of project traffic were analyzed:

- Construction traffic with an 18-month construction schedule
- Construction traffic with a 36-month construction schedule
- Traffic conditions on the expected opening year of the facility (2028)

While an increase in traffic and trucks is expected during the project, it's important to note that no significant adverse impacts are anticipated during both the construction and operation phases. Based on the results of Chapter 3, traffic operations on study area roadways will operate at target levels of service (level of service C or better) for all scenarios and there are no need for any roadway improvements. Additionally, as part of the project approvals process, a comprehensive evaluation will be conducted to assess the potential impact of project-related truck traffic on pavement condition, ensuring the continued integrity of the transportation infrastructure.

APPENDIX A

Modified HCM-Based LOS Tables (Florida Tables)

TABLE 2

Median

Divided

Divided

Median

Divided

Divided

Undivided

Undivided

Lanes

2

4

6

Lanes

2

4

6

Generalized Annual Average Daily Volumes for Florida's Transitioning Areas and

Areas Over 5,000 Not In Urbanized Areas¹ **INTERRUPTED FLOW FACILITIES** UNINTERRUDTED ELOW EACULITIES STATE SIGNALIZED ARTERIALS Class I (40 mph or higher posted speed limit) В C D Ε * 14,400 ** 16,200 * ** 34,000 35,500 * 52,100 53,500 ** Class II (35 mph or slower posted speed limit) **Freeway Adjustments** В С D Е * 6,500 13,300 14,200 * 9,900 28,800 31,600 * 16,000 44,900 47,600

Non-State Signalized Roadway Adjustments

(Alter corresponding state volumes by the indicated percent.) Non-State Signalized Roadways - 10%

Median & Turn Lane Adjustments

	Exclusive	Exclusive	Adjustment
Median	Left Lanes	Right Lanes	Factors
Divided	Yes	No	+5%
Undivided	No	No	-20%
Undivided	Yes	No	-5%
Undivided	No	No	-25%
_	_	Yes	+ 5%
	Median Divided Undivided Undivided Undivided	Exclusive Median Left Lanes Divided Yes Undivided No Undivided Yes Undivided No	ExclusiveExclusiveMedianLeft LanesRight LanesDividedYesNoUndividedNoNoUndividedYesNoUndividedNoNoYes

One-Way Facility Adjustment

Multiply the corresponding two-directional volumes in this table by 0.6

BICYCLE MODE²

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Paved Shoulder/Bicycle

Lane Coverage	В	С	D	E
0-49%	*	2,600	6,100	19,500
50-84%	1,900	5,500	18,400	>19,500
85-100%	7,500	19,500	>19,500	**

PEDESTRIAN MODE²

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Sidewalk Coverage	В	С	D	Е
0-49%	*	*	2,800	9,400
50-84%	*	1,600	8,600	15,600
85-100%	3,800	10,500	17,100	>19,500

BUS MODE (Scheduled Fixed Route)³

(Buses in peak hour in peak direction)

Sidewalk Coverage	В	С	D	E	Florida D
0-84%	> 5	\geq 4	\geq 3	≥ 2	Systems I
85-100%	>4	\geq 3	≥ 2	≥ 1	www.dot.

FREEWAYS							
Lanes	В	С	D	Е			
4	44,100	57,600	68,900	71,700			
6	65,100	85,600	102,200	111,000			
8	85,100	113,700	135,200	150,000			
10	106,200	141,700	168,800	189,000			

12/18/12

Auxiliary Lanes	Ramp
Present in Both Directions	Metering
+20,000	+ 5%

UNINTERRUPTED FLOW HIGHWAYS

Lanes	Median	В	С	D	Е							
2	Undivided	9,200	17,300	24,400	33,300							
4	Divided	35,300	49,600	62,900	69,600							
6	Divided	52,800	74,500	94,300	104,500							
Uninterrupted Flow Highway Adjustments												
Lanes	Median	Exclusive	e left lanes	Adjustment factors								
2	Divided	Y	es	+	5%							
Multi	Undivided	Y	es	-5	5%							
Multi	Undivided	Ν	lo	-25%								

¹Values shown are presented as two-way annual average daily volumes for levels of service and are for the automobile/truck modes unless specifically stated. This table does not constitute a standard and should be used only for general planning applications. The computer models from which this table is derived should be used for more specific planning applications. The table and deriving computer models should not be used for corridor or intersection design, where more refined techniques exist. Calculations are based on planning applications of the Highway Capacity Manual and the Transit Capacity and Quality of Service Manual.

² Level of service for the bicycle and pedestrian modes in this table is based on number of motorized vehicles, not number of bicyclists or pedestrians using the facility.

³ Buses per hour shown are only for the peak hour in the single direction of the higher traffic flow.

* Cannot be achieved using table input value defaults.

** Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached. For the bicycle mode, the level of service letter grade (including F) is not achievable because there is no maximum vehicle volume threshold using table input value defaults.

epartment of Transportation lanning Office state.fl.us/planning/systems/sm/los/default.shtm

TABLE 8

Generalized **Peak Hour Directional** Volumes for Florida's

Transitioning and

			Α	reas O	ver 5,00	0 Not Iı	n Ürbanize	ed Area	s ¹		12/18/12
	INTERR	UPTED FL	OW FACI	LITIES			UNINTER	RUPTED	FLOW FA	CILITIES	· ·
	STATE SI	GNALIZ	ED ART	ERIALS	5			FREEV	WAYS		
Lanes 1 2 3	Class I (40 Median Undivided Divided Divided	mph or high B * *	er posted s C 710 1,740 2,670	peed limit) D 800 1,820 2,740	E ** ** **	Lanes 2 3 4 5	B 2,200 3,260 4,260 5,300	C 2,88 4,28 5,68 7,08	30 3 30 5 30 6 30 8	D ,440 ,100 ,760 3,440	E 3,580 5,540 7,500 9,440
Lanes 1 2 3	Class II (35 Median Undivided Divided Divided Non-State Si (Alter t Non-State	mph or slov B * * * gnalized R r correspondin by the indicate Signalized R	ver posted s C 330 500 810 Oadway A og state volur d percent.) .oadways	speed limit) D 680 1,460 2,280 Adjustmen nes - 10%	E 720 1,600 2,420		F Auxiliary Lane + 1,000	reeway Ad	ljustments	Ramp Metering + 5%	
Lanes 1 2 Multi Multi –	Median Divided Undivided Undivided Undivided	& Turn La Exclusive Left Lanes Yes No Yes No -	ane Adjus Exclus Right L No No No Yes y Adjust t	stments sive Advances	djustment Factors +5% -20% -5% -25% + 5%	Lanes 1 2 3 Lanes 1	UNINTERR Median Undivided Divided Divided Uninterrupt Median Divided	UPTED B B 450 1,740 2,610 ed Flow H Exclusive Y	FLOW H C 850 2,450 3,680 Highway A Heft lanes es	IGHWAY D 1,200 3,110 4,660 djustments Adjustmen +5'	<i>E</i> 1,640 3,440 5,170 s nt factors %
	Multiply vo	y the correspo lumes in this	onding direct table by 1.2	ctional 2		Multi Multi	Undivided Undivided	Y	es Io	-5% -25	% %
(Mi dired Shou Lan	B altiply motorized ctional roadway 1 Paved alder/Bicycle e Coverage 0-49% 50-84% 35-100%	BICYCLE vehicle volum anes to detern volum B * 100 380	MODE ² nes shown be nine two-way es.) C 140 280 1,000	elow by numi y maximum s D 320 940 >1,000	ber of service E 1,000 >1,000 **	¹ Values s are for th constitut compute planning corridor based on Capacity ² Level o of motor ³ Buses p flow.	shown are presented a automob ile/truck e a standard and she r models from whici applications. The ta or intersection desig planning applicatio and Quality of Serv- if service for the bic ized vehicles, not m er hour shown are on	as peak hour of modes unless s uld be used on h this table is d uble and derivir n, where more ns of the Highy vice Manual. ycle and pedess umber of bicyc ly for the peak h	lirectional volu pecifically state ly for general p erived should b ag computer mo refined techniq way Capacity M trian modes in t lists or pedestria	mes for levels of ad. This table do lanning applicat e used for more dels should not ues exist. Calcu fanual and the T his table is based ans using the fac direction of the F	f service and es not ions. The specific be used for lations are 'rans it d on number ility. igher traffic
	PE	DESTRIA	N MOD	E ²	1	* Canno	t be achieved using	table input val	ue defaults.		
Sidew	valk Coverage 0-49% 50-84% 35-100% BUS MOD (Buses	anes to determ volum B * 200 E (Schedu in peak hour	C * 80 540 Ided Fixe in peak direct	D 140 440 880 cd Route)	E 480 800 >1,000	** Not a volumes been read achievab value det	pplicable for that le greater than level o hed. For the bicycl le because there is r faults.	vel of service k f service D bec e mode, the lev to maximum ve	etter grade. For ome F because el of service let ehicle volume tl	the automobile n intersection cap ter grade (includ areshold using ta	mode, acities have ling F) is not able input
Sidew	alk Coverage 0-84% 35-100%	B > 5 > 4	$C \\ \ge 4 \\ > 3$	$D \\ \ge 3 \\ > 2$	E ≥ 2 > 1	Source: Florida I Systems <u>www.dor</u>	Department of Trans Planning Office t.state.fl.us/planning	portation /systems/sm/lo	s/default.shtm		

Appendix B ADT Counts

Prepared by National Data & Surveying Services	
VOLUME	

W Mt Whitney Ave W/O S Colusa Ave

Day: Wednesday City: San Joaquin Date: 9/6/2023 Project #: CA23 090109 001 SB EB WB Total NB DAILY TOTALS DAILY TOTALS 902 1,817 915 0 0 15-Minutes Interval Hourly Intervals TIME NB SB EB WB TOTAL TIME NB SB EB WB TOTAL TIME NB EB WB TOTAL 00:00 12:00 13 13 26 00:00 01:00 15 3 6 9 00:15 2 0 2 12:15 14 12 26 01:00 02:00 9 12 21 00:30 1 5 6 12:30 13 13 26 02:00 03:00 12 9 21 00:45 12:45 03:00 04:00 14 19 12 26 4 14 5 3 01:00 13:00 21 11 32 04:00 05:00 12 14 26 5 8 3 01:15 1 2 3 13:15 11 11 22 05:00 06:00 68 120 188 01:30 3 Δ 7 13:30 13 16 29 06.00 07.00 43 65 108 07:00 40 56 01:45 0 3 3 13:45 13 13 26 08:00 96 02:00 14:00 11 20 08:00 09:00 47 50 97 6 1 7 9 2 3 11 27 51 43 02:15 1 14:15 16 09:00 10:00 94 02:30 1 1 2 14:30 44 17 61 10:00 11:00 40 46 86 02:45 6 9 14:45 11 11 22 11:00 12:00 58 47 105 03:00 1 5 6 15:00 19 19 38 12:00 13:00 52 52 104 27 35 03:15 3 58 51 0 3 15:15 13:00 14:00 109 8 03:30 2 4 15:30 11 27 38 14:00 15:00 82 48 130 6 03:45 4 15:45 14 19 33 15:00 16:00 71 73 144 2 2 04:00 2 1 3 16:00 17 10 27 16:00 17:00 72 40 112 66 51 04:15 0 2 2 16:15 14 11 25 17:00 18:00 117 04:30 60 5 3 8 16:30 28 13 41 18:00 19:00 39 99 24 22 04:45 16:45 19:00 20:00 46 8 13 13 6 19 05:00 13 17:00 15 11 26 20:00 21:00 18 14 32 8 5 05:15 18 28 46 17:15 10 15 25 21:00 22:00 7 13 20 62 12 05:30 20 42 17:30 17 9 26 22:00 23:00 11 23 17:45 23:00 00:00 05:45 45 40 5 22 67 24 16 3 STATISTICS 06:00 7 21 28 18:00 29 10 39 NB FB WB TOTAL 06:15 7 24 31 18:15 15 15 30 SB 17 06:30 12 29 18:30 7 7 14 Peak Period 00:00 to 12:00 876 06:45 12 8 20 18:45 9 16 Volum 391 485 07:00 11 22 Peak Hou 5:00 5:15 5:15 11 19:00 7 2 9 07:15 11 19 30 19:15 7 10 17 68 136 203 Peak Volum 07:30 10 13 23 19:30 10 2 12 ak Hour Facto 0.773 0.756 0.757 07:45 8 13 21 19:45 5 8 3 08:00 14 8 22 20:00 9 5 14 Peak Period 12:00 to 00:00 08:15 12 16 28 20:15 7 2 9 417 941 Volum 524 11 23 20:30 14:30 15:00 14:30 08:30 12 3 4 Peak Hour 1 08:45 10 14 24 20:45 4 Peak Volum 101 73 156 09:00 18 13 31 21:00 2 3 5 ak Hour Facto 0.574 0.676 0.639 09:15 10 13 23 21:15 2 3 5 17 22 09:30 5 21:30 1 4 5 Peak Period 07:00 to 09:00 09:45 12 18 21:45 106 193 6 5 87 Volum 10:00 14 12 26 22:00 6 Peak Hou 8:00 7:00 8:00 3 3 10:15 7 9 16 22:15 2 3 5 Peak Volum 47 56 97 17 10:30 13 30 22:30 2 2 4 Peak Hour Facto 0.839 0.737 0.866 10:45 2 12 14 22:45 8 11:00 23:00 Peak Period 16:00 to 9 15 24 1 1 2 18:00 11:15 17 14 31 23:15 0 0 0 Volum 138 91 229 11:30 11 9 20 23:30 1 2 Peak Hou 16:00 17:00 17:00 1 11:45 21 9 30 23:45 0 Peak Volum 72 51 117 TOTALS 0 0 391 485 876 TOTALS 0 0 524 417 941 Peak Hour Facto 0.643 0.797 0.731 55% 48% SPLIT % 0% 44% 52% SPLIT % 0% 0% 45% 0% 56% 140 120 100 80 60 40 20 0 00:00 00:20 03:00 4:00 05:00 00:90 07:00 08:00 00:60 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Prepared by National Data & Surveying Services										
VOLUME										
· · · · ·										

S Colusa Ave S/O W Mt Whitney Ave

City: San Joaquin

3:00

Day: Wednesday

Project #: CA23 090109 002 Date: 9/6/2023 NB SB EB WB Total DAILY TOTALS **DAILY TOTALS** 0 848 436 412 0 15-Minutes Interval Hourly Intervals WB TOTAL TIME NB SB EB WB TOTAL TIME NB SB EB WB TOTAL TIME SB EB 00:00 12:00 12 00:00 01:00 2 1 Λ 6 00:15 0 1 1 12:15 5 5 10 01:00 02:00 4 2 6 00:30 1 0 1 12:30 12 3 15 02:00 03:00 1 1 2 00:45 12:45 03:00 04:00 10 11 7 0 1 4 3 1 01:00 2 13:00 5 12 04:00 05:00 3 9 12 1 1 01:15 0 1 1 13:15 5 6 11 05:00 06:00 26 60 86 01:30 3 Ω 3 13.30 10 1 11 06.00 07.00 29 37 66 21 41 01:45 0 0 0 13:45 8 15 07:00 08:00 20 7 02:00 14:00 12 08:00 09:00 20 16 36 0 1 1 5 7 0 41 02:15 0 0 14:15 8 7 15 09:00 10:00 25 16 02:30 1 0 1 14:30 12 10 22 10:00 11:00 16 18 34 02:45 0 0 0 14:45 6 11 11:00 12:00 21 26 47 03:00 3 0 3 15:00 11 10 21 12:00 13:00 26 22 48 49 03:15 0 21 0 0 15:15 6 15 13:00 14:00 28 21 03:30 0 1 15:30 40 8 48 14:00 15:00 30 30 60 1 03:45 6 15:45 9 16 15:00 16:00 66 40 106 3 3 04:00 0 1 1 16:00 7 5 12 16:00 17:00 34 29 63 1 9 04:15 1 0 16:15 6 15 17:00 18:00 26 17 43 32 04:30 16:30 20 17 0 4 4 11 9 18:00 19:00 15 04:45 16:45 19:00 20:00 18 2 4 6 9 16 9 9 05:00 0 17:00 12 20:00 21:00 4 13 17 3 3 9 3 05:15 5 8 13 17:15 7 3 10 21:00 22:00 6 2 8 05:30 10 21 31 17:30 8 4 12 22:00 23:00 2 2 4 17:45 23:00 00:00 13 05:45 39 11 28 2 7 9 11 STATISTICS 06:00 7 9 16 18:00 6 7 13 WB TOTAL 06:15 9 11 20 18:15 5 3 8 NB SB FB 06:30 9 11 20 18:30 4 2 6 Peak Period 00:00 to 12:00 387 06:45 4 6 10 18:45 5 Volume 177 210 07:00 19:00 5:30 5:30 5:30 3 0 3 Peak Hou 6 9 3 07:15 10 5 15 19:15 4 3 7 37 69 106 Peak Volum 07:30 4 3 7 19:30 0 3 3 ak Hour Facto 0.841 0.616 0.679 07:45 4 6 10 19:45 5 2 З 08:00 5 7 12 20:00 1 7 8 Peak Period 12:00 to 00:00 08:15 3 3 6 20:15 4 5 259 461 1 Volum 202 08:30 5 20:30 15:00 14:30 15:00 3 2 1 2 Peak Hour 1 08:45 9 4 13 20:45 Peak Volum 66 41 106 09:00 10 5 15 21:00 3 1 4 Peak Hour Facto 0.413 0.683 0.552 09:15 5 4 9 21:15 1 0 1 6 09:30 3 3 21:30 1 0 1 Peak Period 07:00 to 09:00 09:45 11 21:45 2 77 4 Volum 41 36 10:00 6 9 22:00 0 0 0 Peak Hou 7:15 7:15 7:15 3 10:15 5 4 9 22:15 0 0 0 Peak Volum 23 21 44 10:30 2 5 7 22:30 0 2 2 Peak Hour Factor 0.575 0 750 0.733 10:45 6 3 9 22:45 0 2 11:00 23:00 Peak Period 16:00 to 18:00 5 3 8 4 0 4 11:15 6 9 15 23:15 6 0 6 106 Volum 60 46 11:30 4 1 5 23:30 0 1 1 Peak Hou 16:15 16:00 16:00 11:45 6 13 19 23:45 2 Peak Volume 36 29 63 TOTALS 177 210 0 0 387 TOTALS 259 202 0 0 461 Peak Hour Facto 0.818 0.806 0.788 0% 46% SPLIT % 56% 0% 54% SPLIT % 46% 54% 0% 44% 0% 70 60 50 40 30 20 10 o 🌻 00:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 00:60 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

NB

wв

DISTRICT	RTE	RTE_SFX	CNTY	PM_PFX	Mq	PM_SFX	DESCRIPTION	BACK_PEAK_HOUR	BACK_PEAK_MADT	BACK_AADT	AHEAD_PEAK_HOUI	AHEAD_PEAK_MAD	AHEAD_AADT
$\begin{array}{c} 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\$	005 005 005 005 005 005 005 005 005 005	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		R RRR R	0.000 0.228 5.501 14.873 17.964 29.955 38.359 45.798 48.990 52.746 60.077 65.782 66.159 0.000 8.020 14.750 15.370 15.370 15.370 15.370 15.370 16.780 39.853 53.400 61.450 69.20 70.193 70.557 72.837		KINGS/FRESNO COUNTY LINE JCT. RTE. 269, LASSEN AVENUE JAYNE AVENUE JCT. RTE. 198 JCT. RTE. 33 SOUTH, JCT. RTE. 145 NORTH JCT. RTE. 33 NORTH KAMM AVENUE MANNING AVENUE PANOCHE ROAD RUSSELL AVENUE SHIELDS AVENUE SHIELDS AVENUE FRESNO/MERCED COUNTY LINE KINGS/FRESNO COUNTY LINE ALPINE/LOST HILLS ROADS MERCED AVENUE COALINGA, JCT. RTE. 198 WEST COALINGA, JCT. RTE. 198 WEST COALINGA, PHELPS AVENUE GALE AVENUE JCT. RTE. 198 EAST DERRICK AVENUE JCT. RTE. 198 EAST DERRICK AVENUE JCT. RTE. 198 EAST DERRICK AVENUE JCT. RTE. 5 ADAMS AVENUE CALIFORNIA AVENUE MENDOTA, BELMONT AVENUE MENDOTA, BELMONT AVENUE MENDOTA, JCT. RTE. 180 EAST BASS AVENUE FIREBAUGH, 15TH STREET FIREBAUGH, 15TH STREET	2300 5300 5300 5300 5500 5300 5300 5300	45000 46000 46000 45500 45500 44000 48500 48500 48500 48500 48500 48500 3100 52000 5500 4550 3100 2750 2750 2750 22500 2450 2450 2450 2450 2450 2450 2	39000 39500 41000 40000 41000 41500 40500 41500 40500 41500 40500 41000 43500 2000 8300 11300 4100 9400 5100 4300 2650 2400 2400 2650 2400 2400 1750 1900 1900 5400 13000 12800 12800 9600 3150	IH 5300 5200 3200 750 1350 770 1450 330	IF 45000 46000 46000 46500 45500 45500 45500 45500 45500 45500 45500 46000 46000 46500 48500 48500 1800 2700 11600 3750 12000 2750 2400 2450 5700 15100 8200 12600 12600 12600 12600 12600	39000 39500 39500 41000 40000 41000 41000 41500 40500 41000 43500 2000 1750 10200 3600 9100 5400 2400 2400 2400 2400 2400 1750 1750 1750 13000 7300 12000 11800 9100 3100
06 06 06 06 06 06 06 06 06 06 06 06 06 0	033 145 145 145 145 145 145 145 145 145 145			R	79.905 0.000 10.324 13.212 15.220 20.650 25.085 26.090 30.110 33.631 34.370 35.149 36.154 40.166 12.330 19.145 21.190 21.740 22.560		BRANNON AVENUE JCT. RTES. 5 AND 33 EXCELSIOR AVENUE JCT. RTE. 269 CERINI ROAD ELKHORN AVENUE KAMM AVENUE COLORADO ROAD MADERA AVENUE MANNING AVENUE MANNING AVENUE KERMAN, CHURCH AVENUE KERMAN, CHURCH AVENUE KERMAN, D STREET KERMAN, JCT. RTE. 180 BELMONT AVENUE SHAW AVENUE SHAW AVENUE PARKFIELD JUNCTION COALINGA CREEK FIRESTONE AVENUE COALINGA, 80H/POLK STREETS IOT. PTE 23	220 420 600 570 670 740 650 240 370 640 830 1250 990 830 1250 990 830 140 140 150 460	3400 3750 5500 6700 5800 6200 2400 4650 8000 10500 13100 10500 8000 990 1100 1150 1250 3700 2400	2650 3500 4800 5300 5200 6100 6700 5900 2200 4300 7500 10100 12400 8900 7500 840 1000 1050 1150 3500 7000	780 320 440 680 670 740 650 240 290 530 610 830 990 1000 600 120 150 150 460 840	2700 3050 3750 6700 6500 7200 6200 2400 3550 6600 8000 11100 10500 9800 9900 9900 9900 1150 1250 3700 7500 2055	2350 2650 3500 5300 6100 6700 5900 2200 3300 6200 7500 10100 8900 9200 6600 8400 1050 1150 3500 7100
06 06 06 06 06 06 06 06	198 198 198 198 269 269 269 269 269	FF FF FF FF FF FF FF			22.660 26.814 34.660 42.731 0.000 0.150 0.427 12.746 24.764		JCT. RTE. 33 JCT. RTE. 5 JCT. RTE. 269 FRESNO/KINGS COUNTY LINE KINGS/FRESNO COUNTY LINE PLYMOUTH AVE/AVENAL CUTOFF ROAD EAST JCT. RTE. 5 JCT. RTE. 198 JCT. RTE. 145	830 190 400 510 610 560 540 310	7400 2050 4650 5900 5800 5500 5400 3100	5400 4050 5200 5400 4900 4600 2650	440 530 620 560 230 390	2050 4900 6100 5800 5500 2400 3750	1900 4250 5400 5500 4800 2100 3350

Appendix C Construction Schedule

Darden Clean Energy Project

Trip Generation- 18 Month Schedule

	Total Peak Traffic	12/30/2025	1/30/2026	2/28/2026	4/30/2026	5/28/2026	6/30/2026	9/28/2026	10/28/2026	11/28/2026	3/28/2027	4/28/2027	6/28/2027
1	Ph 1: Site Preparation (~8,700 acres) (12/30/2025 - 4/30/2026)	414	414	414	414								
2	Ph 2: PV Panel System (1,150 MW) (2/28/2026 - 6/28/2027)			1688	1688	1688	1688	1688	1688	1688	1688	1688	1688
2	Ph 3: Inverters, Transformers, Substation, Electrical (5/28/2026 -												
5	3/28/2027)					597	597	597	597	597	597		
4	Ph 4: Gen-tie (10-15 miles) (1/30/2026 - 6/30/2026)		229	229	229	229	229						
5	Ph 5: Battery Storage (4,600 MWh) (10/28/2026 - 4/28/2027)								363	363	363	363	
	Ph 6: Hydrogen (Electrolyzer 1,150 MW, WTP, Storage) (9/28/2026 -												
6	4/28/2027)							530	530	530	530	530	
7	Ph 7: Utility Switchyard (500kv) (2/28/2026 - 11/28/2026)			177	177	177	177	177	177	177			
	Peak	414	643	2508	2508	2691	2691	2992	3355	3355	3178	2581	

	One-way Daily Truck Trips	12/30/2025	1/30/2026	2/28/2026	4/30/2026	5/28/2026	6/30/2026	9/28/2026	10/28/2026	11/28/2026	3/28/2027	4/28/2027	6/28/2027
1	Ph 1: Site Preparation (~8,700 acres) (12/30/2025 - 4/30/2026)	14	14	14	14								
2	Ph 2: PV Panel System (1,150 MW) (2/28/2026 - 6/28/2027)			88	88	88	88	88	88	88	88	88	88
2	Ph 3: Inverters, Transformers, Substation, Electrical (5/28/2026 -												
5	3/28/2027)					47	47	47	47	47	47		
4	Ph 4: Gen-tie (10-15 miles) (1/30/2026 - 6/30/2026)		29	29	29	29	29						
5	Ph 5: Battery Storage (4,600 MWh) (10/28/2026 - 4/28/2027)								63	63	63	63	
	Ph 6: Hydrogen (Electrolyzer 1,150 MW, WTP, Storage) (9/28/2026 -												
6	4/28/2027)							130	130	130	130	130	
7	Ph 7: Utility Switchyard (500kv) (2/28/2026 - 11/28/2026)			17	17	17	17	17	17	17			
	Peak	14	43	148	148	181	181	282	345	345	328	281	

	Worker Trip County (One-Way Daily)	12/30/2025	1/30/2026	2/28/2026	4/30/2026	5/28/2026	6/30/2026	9/28/2026	10/28/2026	11/28/2026	3/28/2027	4/28/2027	6/28/2027
1	Ph 1: Site Preparation (~8,700 acres) (12/30/2025 - 4/30/2026)	200	200	200	200								
2	Ph 2: PV Panel System (1,150 MW) (2/28/2026 - 6/28/2027)			1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
2	Ph 3: Inverters, Transformers, Substation, Electrical (5/28/2026 -												
5	3/28/2027)					550	550	550	550	550	550		
4	Ph 4: Gen-tie (10-15 miles) (1/30/2026 - 6/30/2026)		200	200	200	200	200						
5	Ph 5: Battery Storage (4,600 MWh) (10/28/2026 - 4/28/2027)								300	300	300	300	
	Ph 6: Hydrogen (Electrolyzer 1,150 MW, WTP, Storage) (9/28/2026 -												
6	4/28/2027)							400	400	400	400	400	
7	Ph 7: Utility Switchyard (500kv) (2/28/2026 - 11/28/2026)			160	160	160	160	160	160	160			
	Peak	200	400	2160	2160	2510	2510	2710	3010	3010	2850	2300	

Darden Clean Energy Project

Trip Generation- 36 Month Schedule

	Total Peak Traffic	12/31/2025	5/31/2026	7/31/2026	3/31/2027	5/30/2027	11/30/2027	1/30/20208	2/29/2028	5/30/2028	6/30/2028	9/30/2028	12/29/2028
1	Ph 1: Site Preparation (~8,700 acres) (12/31/25 - 7/31/26)	360	360	360									
2	Ph 2: PV Panel System (1,150 MW) (5/31/26 - 6/30/2028)		1265	1265	1265	1265	1265	1265	1265	1265	1265		
2	Ph 3: Inverters, Transformers, Substation, Electrical (5/30/2027 -												
5	5/30/2028)					540	540	540	540	540			
4	Ph 4: Gen-tie (10-15 miles) (11/30/2027 - 5/30/2028)						225	225	225	225			
5	Ph 5: Battery Storage (4,600 MWh) (1/30/2028 - 9/30/2028)							250	250	250	250	250	
	Ph 6: Hydrogen (Electrolyzer 1,150 MW, WTP, Storage)												
6	(2/29/2028 - 12/29/2028)								400	400	400	400	400
7	Ph 7: Utility Switchyard (500kv) (5/31/2026 - 3/31/2027)		175	175	175								
	Peak	360	1800	1800	1440	1805	2030	2280	2680	2680	1915	650	400

12/31/2025 5/31/2026 7/31/2026 3/31/2027 5/30/2027 11/30/2027 1/30/2028 2/29/2028 5/30/2028 6/30/2028 9/30/2028 12/29/2028

	Worker Trip County (One-Way Daily)	12/31/2025	5/31/2026	7/31/2026	3/31/2027	5/30/2027	11/30/2027	1/30/20208	2/29/2028	5/30/2028	6/30/2028	9/30/2028	12/29/2028
1	Ph 1: Site Preparation (~8,700 acres) (12/31/25 - 7/31/26)	350	350	350									
2	Ph 2: PV Panel System (1,150 MW) (5/31/26 - 6/30/2028)		1200	1200	1200	1200	1200	1200	1200	1200	1200		
2	Ph 3: Inverters, Transformers, Substation, Electrical (5/30/2027 -												
5	5/30/2028)					500	500	500	500	500			
4	Ph 4: Gen-tie (10-15 miles) (11/30/2027 - 5/30/2028)						200	200	200	200			
5	Ph 5: Battery Storage (4,600 MWh) (1/30/2028 - 9/30/2028)							200	200	200	200	200	
	Ph 6: Hydrogen (Electrolyzer 1,150 MW, WTP, Storage)												
6	(2/29/2028 - 12/29/2028)								300	300	300	300	300
7	Ph 7: Utility Switchyard (500kv) (5/31/2026 - 3/31/2027)		160	160	160								
	Peak	350	1710	1710	1360	1700	1900	2100	2400	2400	1700	500	300