DOCKETED	
Docket Number:	09-AFC-08C
Project Title:	Genesis Solar Energy Project
TN #:	251023
Document Title:	2023 S1 Groundwater Detection Monitoring Reportpdf
Description:	2023 S1 Groundwater Detection Monitoring Report.pdf
Filer:	Cynthia Keller
Organization:	NexteraEnergy Resources
Submitter Role:	Applicant
Submission Date:	7/12/2023 7:46:23 AM
Docketed Date:	7/12/2023

2023 FIRST SEMIANNUAL GROUNDWATER DETECTION MONITORING REPORT Genesis Solar Energy Project

Riverside County, California

COC S&W-6

July 5, 2023

Prepared By:

Northstar Environmental Remediation

26225 Enterprise Court

Lake Forest, California 92630

SIGNATURE PAGE

2023 THIRD SEMIANNUAL GROUNDWATER DETECTION MONITORING REPORT RIVERSIDE COUNTY, CALIFORNIA

PROFESSIONAL STATEMENT

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

I further certify that this report has been reviewed by the appropriate authority at NextEra Energy Resources and is being submitted with their written consent.

Arlin W. Brewster

Professional Geologist 9207

July 5, 2023

Table of Contents

1.0 INTRODUCTION	1
1.1 Background	1
1.2 Geographic Setting	2
1.3 Hydrogeologic Setting	2
1.4 Monitoring Program Objectives	3
2.0 EVAPORATION PONDS	4
2.1 Evaporation Pond Overview	4
2.2 Monitoring Methods	4
2.3 Evaporation Pond Sample Results	5
3.0 LEAKAGE DETECTION SYSTEM	5
3.1 Leakage Detection System Overview	5
3.2 Monitoring Methods	5
3.3 Monitoring Results	5
4.0 DETECTION MONITORING WELLS	6
4.1 Detection Monitoring Well Overview	6
4.2 Monitoring Methods	6
4.3 Results of Water Level Measurements	8
4.4 Groundwater Flow Velocity	8
4.5 General Chemical Analysis	10
4.6 Non-Statistical Analysis	11
4.7 Quality Assurance/Quality Control	11
5.0 LAND TREATMENT UNIT SUMMARY	13
6.0 ANNUAL SUMMARY	15
7.0 CONCLUSIONS	15
8 O REFERENCES	16

LIST OF FIGURES

Figure 1 Site Vicinity Map

Figure 2 Hydrogeologic Setting

Figure 3 Monitoring Area Showing Detection Monitoring Wells

Figure 4 Groundwater Elevation Contour Map – June 2023

Figure 5 Leak Detection System Detail

LIST OF TABLES

Table 1 Detection Monitoring Well Details
 Table 2 Groundwater Level Measurements
 Table 3 Field Data Collected During the Most Recent Groundwater Monitoring Event
 Table 4 Summary of Laboratory Analytical Results
 Table 5 Summary of Leakage Detection System Data

LIST OF APPENDICES

Appendix A Field Data Sheets

Appendix B Laboratory Analytical Reports – Evaporation Ponds

Appendix C Laboratory Analytical Reports – Detection Monitoring Wells

Appendix D Laboratory Analytical Reports – Land Treatment Units

1.0 INTRODUCTION

Northstar Environmental Remediation (Northstar) has prepared this 2023 First Semiannual Groundwater Detection Monitoring Report on behalf of Genesis Solar, LLC (Genesis). This report details groundwater detection monitoring performed in the first half of 2023 at the Genesis Solar Energy Project (GSEP).

The GSEP lies roughly 25 miles west of the city of Blythe, California in eastern Riverside County on lands managed by the Bureau of Land Management (BLM) (**Figure 1**). The GSEP consists of two independent concentrated solar electric generating facilities with a nominal net electrical output of 125 megawatts (MW) each (a total net electrical output of 250 MW).

Northstar conducts groundwater detection monitoring in accordance with Condition of Certification Soil & Water 6 (COC S&W-6) as presented in the California Energy Commission (CEC) Final Decision document dated October 12, 2010 (CEC, 2010). The COC S&W-6 requires compliance with Waste Discharge Requirements (WDR) and Monitoring and Reporting Program (MRP) Board Order No. R7-2013-0005, issued by the California Regional Water Quality Control Board, Colorado River Basin Region (CRWQCB).

1.1 Background

Genesis submitted an updated Plan of Development (POD) for the GSEP in September 2010 (Genesis Solar, LLC 2010). In addition, Genesis filed an Application for Certification (AFC) for the GSEP to the CEC in August 2009 (Genesis Solar, LLC 2009). The CEC issued its Final Decision on the GSEP on October 12, 2010 (CEC, 2010). The BLM issued the Final Environmental Impact Statement (FEIS) for the GSEP for public comment on August 27, 2010.

The GSEP uses dry cooling technology and relies on groundwater as a water source during operation. Three groundwater production wells installed at the GSEP between July and October 2011 are permitted to pump groundwater at an average rate of 202 acre-feet per year (afy) (up to 1,348 afy during construction).

The Final Decision and FEIS discuss the potential impacts associated with the proposed groundwater use by the GSEP. Groundwater drawdown impacts are anticipated to be less than significant, but because the prediction of groundwater level effects by computer modeling entails inherent uncertainty, both the Final Decision and the FEIS adopted COC S&W-2 for the GSEP to monitor groundwater level at the vicinity of the GSEP.

Two evaporation ponds (licensed as Class II Surface Impoundments) located between Solar Fields 1 and 2 accept wastewater generated during GSEP operation (**Figure 3**). Three detection monitoring wells (DM-1, DM-2, and DM-3) were installed, per the Final Decision, along the west, east, and south perimeter of the

evaporation ponds in February 2012 (**Figure 4**). Groundwater samples were collected for four quarterly events prior to GSEP operation to establish baseline conditions. Semiannual sampling will be conducted to comply with the requirements of COC S&W-6 and the WDR and MRP documents.

1.2 Geographic Setting

The GSEP lies between the communities of Blythe and Desert Center, California. Land use is predominantly open space and conservation and wilderness areas occupied by a community of low creosote and bursage vegetation. Chuckwalla and Ironwood State Prisons are located approximately 6 miles southeast of the GSEP.

The GSEP lies on broad, relatively flat topography sloping north to south at elevations between 400 and 370 feet above mean sea level (amsl). The surface is underlain by alluvial deposits derived from the Palen Mountains to the north-northwest, and the McCoy Mountains to the northeast (**Figure 1**).

The deposits immediately adjacent to the mountains have formed alluvial fans from multiple identifiable sources, and multiple fan surfaces have coalesced into a single bajada surface that wraps around each of these mountain fronts. Between the bajada surfaces from each mountain chain lies a broad valley-axial drainage that extends southward between the mountains and drains to the Ford Dry Lake playa, located about 1 mile south of the GSEP facility.

Climatic data collected from Weather Station Blythe Riverside Airport (33.61°N, -114.71°W, at an elevation of about 387 feet amsl) indicate the average maximum temperature in the airport vicinity is approximately 87.8°F (31.0°C). Average rainfall is reported to be approximately 3.83 inches (97.3 mm). Northstar obtained this data from the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information 1981-2010 Normals.

1.3 Hydrogeologic Setting

The GSEP lies within the Chuckwalla Valley Groundwater Basin (Chuckwalla Basin) which has a surface area of 940 mi² (2,435 km²) underlying Chuckwalla Valley. It is bounded upgradient by three groundwater basins including the eastern part of the Orocopia Valley and Pinto Valley Groundwater Basins and the southern part of the Cadiz Valley Groundwater Basin, and downgradient by the Palo Verde Mesa Groundwater Basin (Palo Verde Basin) (Figure 2). Groundwater occurs at depths of about 80 to 140 feet below ground surface (bgs) and groundwater flow is generally southeast to eastward, from the Chuckwalla Basin to the Palo Verde Basin (Figure 2).

Sources of groundwater recharge to the Chuckwalla Basin includes precipitation, inflow from the Orocopia Valley and Pinto Valley Groundwater Basins, and return flows from agricultural sources and treated wastewater effluent. Groundwater is the only available water resource in Chuckwalla Valley, with extraction to meet local demand the primary source of groundwater outflow. Other minor sources of

outflow include underflow to the Palo Verde Basin and evapotranspiration in portions of Palen Dry Lake (where shallow groundwater is present).

Calculations of the Chuckwalla Basin groundwater budget prior to GSEP operations indicate a stable surplus of 2,600 afy (CEC, 2010). Current operational demand, based on calendar year 2022 extraction data, is approximately 121.3 afy.

The region of the Chuckwalla Basin occupied by the GSEP and associated groundwater monitoring wells is underlain by four geological units. The shallowest unit is the unconsolidated Holocene-aged Alluvium, consisting of geologically recent lake, river, and wind deposits (DWR, 1963). Beneath the Alluvium is the unconsolidated Pleistocene-aged Pinto Formation, consisting of coarse alluvial fan deposits (known as fanglomerate), interspersed with clays and basalt (DWR, 1963). Beneath the Pinto Formation is the unconsolidated to partially consolidated Pliocene-aged Bouse Formation, consisting of coarse alluvium and fanglomerate deposits (Wilson and Owen-Joyce, 1994). Below the Bouse Formation is bedrock consisting of metamorphic rocks and intrusive igneous basalts (DWR, 1963).

Groundwater in the GSEP monitoring region occurs in two aquifers: the shallower Alluvium aquifer (extending to a maximum approximate depth of 250 feet below ground surface); and, the deeper Bouse Formation aquifer (extending between approximately 250 to 6,500 feet below ground surface) (Wilson and Owen-Joyce, 1994). The Pinto Formation exists only on the eastern fringe of the Chuckwalla Basin and is generally not encountered by the GSEP monitoring wells. Monitoring data indicate a downward vertical hydraulic gradient of groundwater flow from the Alluvium to the Bouse Formation aquifer.

Based on recent monitoring data, the depth to groundwater in the Bouse Formation ranges from approximately 87.35 feet bgs (300.05 feet amsl) in TW-1, located upgradient of the site, to 136.18 feet bgs (255.92 feet amsl) in Well 23a, located downgradient of the site. Perched water exists at the Chuckwalla State Prison but is unlikely to occur within the GSEP boundaries as there is no irrigation.

1.4 Monitoring Program Objectives

Northstar performs groundwater detection monitoring in accordance with COC S&W-6 as described in the CEC's Final Decision. The primary objectives for the evaporation pond detection as outlined in the MRP are to:

- Establish baseline conditions by conducting four quarters of monitoring prior to discharge of wastewater to the ponds;
- Collect water level elevation data to characterize groundwater flow conditions in the uppermost water-bearing zone beneath the evaporation pond area;
- Collect and evaluate water quality data using approved statistical and other methods to identify
 potential changes in the existing water quality of the aquifer immediately underlying the
 evaporation ponds; and,

 Demonstrate compliance with the discharge requirements contained in COC S&W-6 and the WDR for the GSEP.

2.0 EVAPORATION PONDS

2.1 Evaporation Pond Overview

The North and South Evaporation Ponds (sometimes referred to as the West and East ponds, respectively) were designed by Fluor Corp. and are identified on **Figure 3**. Each pond is constructed with multiple layers of containment that drain to a centralized collection sump. The pond drainage sump slopes away from the centerline of the ponds to the north and south and is equipped with a set of three moisture detection probes in each side. Each pond is also equipped with a pump to return all accumulated water back to the pond surface.

2.2 Monitoring Methods

On a semiannual basis, a sample is collected from each of the evaporation ponds and identified as the North Pond and South Pond. Representative water is collected in a clean, dedicated 5-gallon bucket and processed into sample containers inside the containment area. Laboratory samples are submitted to SunStar Laboratories, Inc. (SunStar) of Lake Forest, California. SunStar subcontracts the heat transfer fluid analysis to Eurofins Calscience Laboratories, Inc. (Eurofins) of Tustin, California. All laboratories are state and federally certified and analyze the samples by the following methods, as detailed in the Final Decision, WDR, and MRP documents:

- Chloride, Sulfate, and Nitrate by EPA Method 300.0;
- Mercury by Standard Method 7470A;
- Total Dissolved Solids by Standard Method 2540C;
- pH by Standard Method 4500H;
- Specific Conductance by Standard Method 2510B;
- Heat Transfer Fluid (HTF) by EPA Method 8015B;
- Heavy Metals by EPA Method 200.7 and 200.8;
- Oil & Grease by EPA Method 1664A; and,
- Oxygen-18 and Deuterium by Isotope Geochemistry.

2.3 Evaporation Pond Sample Results

Analytical data for the evaporation ponds is included in **Table 4** and certified laboratory reports are included in **Appendix B**. In summary:

- The laboratory did not detect copper, potassium, iron, magnesium, antimony, cadmium, chromium, cobalt, lead, nickel, mercury, oil & grease, or heat transfer fluid in either pond; and,
- Compound concentrations were slightly higher in the North Pond.

3.0 POND DRAINAGE SUMP SYSTEM

3.1 Pond Drainage Sump System Overview

A cross-sectional schematic of the pond drainage sump system is included in **Figure 5**. As shown in the figure, each pond is equipped with a total of six probes (Watermark Model 200SS electrical resistance probes) installed at a distance of 15, 70, and 110 feet from the pond centerline.

The water return pumps are installed on the north side of the North Pond and the south side of the South Pond. Readings from the totalizers on each pump are recorded on a quarterly basis.

3.2 Monitoring Methods

Terminals attached to the probe wire leads are stored in a weatherproof vault at the north and south end of each pond, where resistivity readings can be collected using a Watermark 30-KTCD-NL meter. Values can range from 0-10 centibars (saturated) to 199 centibars (dry). Readings are collected from the probes and the nearby water return pumps on a quarterly basis and summarized in **Table 5**. If the pump totalizers show any signs of increase, or if the probes display values within the saturated range (usually started with probe #1 in the lowest part of the sump), Northstar notifies NextEra operations who then conduct further investigation.

3.3 Monitoring Results

No water was pumped from the North or South Pond during the reporting period and the totalizers currently read 605.55 and 7.48 gallons, respectively.

None of the moisture detection probes showed signs of water saturation during monitoring. Probe #1W and #2W in the North Pond currently shown signs of increasing humidity, and probe #3E in the North Pond currently shows signs of decreasing humidity. Probe #1W in the North Pond currently shows signs of increasing humidity.

4.0 DETECTION MONITORING WELLS

4.1 Detection Monitoring Well Overview

A total of three detection monitoring wells were installed around the perimeter of the evaporation ponds (**Figure 4**). Detection monitoring wells DM-1, DM-2, and DM-3 were installed to a total depth of 120 feet bgs into the shallow Alluvium aquifer with screened intervals between 100 to 120 feet bgs. **Table 1** provides construction details for the wells. Well DM-1 is located upgradient, west of the ponds. Well DM-2 and DM-3 are located downgradient, east and south of the ponds, respectively.

4.2 Monitoring Methods

Northstar measured the depth to groundwater in each well using a Solinst interface probe. Field staff documented depth to water to the nearest hundredth (0.01) foot below a surveyed measuring mark located on the north side of the top of casing (toc) on a groundwater level measurement form (**Appendix A**). **Table 2** includes the groundwater level measurements and calculated water level elevations. **Figure 4** illustrates the groundwater elevation contours and flow direction.

Each detection monitoring well has a dedicated 1.66-inch diameter Geotech® stainless steel submersible bladder pump and dedicated Teflon-lined tubing with water intakes set at the middle of wetted screen at approximately 115 feet btoc. Field staff collect samples from these wells using the low flow purging method in accordance with the most recent EPA guidance document (USEPA, 2017).

Field staff decontaminated reusable/non-dedicated equipment (water level probe and flow-through cell) prior to use at each well. Decontamination of reusable equipment consisted of washing with a laboratory-grade non-phosphate detergent (Liquinox or equivalent) and potable water solution followed by a double rinse with demineralized water.

Field staff measure groundwater parameters with a Horiba water quality field instrument. Staff calibrate the Horiba at the beginning of each day and decontaminate the instrument prior to use and between wells. Measurements of field parameters (pH, electrical conductivity (EC), temperature, turbidity, and oxidation-reduction potential (ORP)) were taken at 5-minute intervals and at the time of sampling as part of the low flow purge method of sampling.

Wells were purged until water quality parameters stabilized over three successive readings (+/- 0.2 for pH, +/- 10% for EC, ORP and turbidity) and the discharge volume exceeded the drawdown, tubing, and flow-through cell volume. Northstar staff recorded the sampling methods, volume of water purged, pumping rate, field parameter measurements, and observations of water turbidity and odor on the groundwater sampling field form (Appendix A).

After purging and parameter stabilization, the flow-through cell was disconnected so samples could be collected from the pump discharge. Field staff wore new nitrile gloves to collect groundwater samples in clean bottles (preserved as appropriate) provided by the laboratory. Where required, samples were field filtered with a new 0.45-micron filter attached to the end of the discharge tubing. Staff labeled sample containers with the well identification, date, time, sampler, analytical method, and placed them in a chilled ice chest. Northstar delivered the samples under proper chain-of-custody protocol to the laboratory.

Groundwater purged from DM-1, DM-2, and DM-3 was temporarily contained in a sealed 5-gallon bucket and then disposed in the evaporation ponds as directed in the MRP (Part II A.1.b.). **Table 3** includes the measured field parameters documented at the end of purging activities.

Laboratory samples are submitted to SunStar Laboratories, Inc. (SunStar) of Lake Forest, California. SunStar subcontracts the heat transfer fluid analysis to Eurofins Calscience Laboratories, Inc. (Eurofins) of Tustin, California. They also subcontract the oxygen-18 and deuterium analysis to Isotech Laboratories, Inc. of Champaign, Illinois. All laboratories are state and federally certified and analyze the samples by the following methods, as detailed in the Final Decision, WDR, and MRP documents:

- Chloride, Sulfate, and Nitrate by EPA Method 300.0;
- Mercury by Standard Method 7470A;
- Total Dissolved Solids by Standard Method 2540C;
- pH by Standard Method 4500H;
- Specific Conductance by Standard Method 2510B;
- Heat Transfer Fluid (HTF) by EPA Method 8015B;
- Heavy Metals by EPA Method 200.7 and 200.8;
- Oil & Grease by EPA Method 1664A; and,
- Oxygen-18 and Deuterium by Isotope Geochemistry.

The laboratory conducted standard Quality Assurance/Quality Control (QA/QC) to assure analytical accuracy and precision. This included preparation and analysis of method blanks, surrogate spikes, matrix spike/matrix spike duplicate (MS/MSD) pairs and laboratory control samples (LCS), as required, with each analytical batch.

Northstar collects a duplicate sample once per sampling event that is submitted to the laboratory without identifiers that associate the sample with a well, date, or time. During this event, a duplicate sample from well PW-2 was collected for analysis. **Table 4** of the *Groundwater Quality Monitoring Report* (Northstar, 2023) provides a summary of analytical results for the duplicate sample.

In addition to these methods, a set of quality control blank samples is collected and put on hold at the laboratory pending analysis of the groundwater samples. These samples include a field blank and trip blank. The field blank bottle set is filled with demineralized water and set adjacent to the work area with the lids off during the workday and is intended to screen out constituents in ambient air. The trip blank

bottle sets are prepared at the laboratory and are sealed throughout the groundwater sampling event. They are stored inside the sample coolers and are intended to screen out constituents in the coolers. The quality control blank samples are only analyzed if there is anomalous data present for the groundwater sampling results.

4.3 Results of Water Level Measurements

Table 2 provides the wellhead reference elevation (toc elevation), depth-to-groundwater, and water level elevations for each detection monitoring well. Depth to groundwater ranged from 104.68 (well DM-3) to 107.82 (well DM-2) feet bgs, and the calculated groundwater elevations range from 283.50 (well DM-2) to 284.00 (well DM-1) feet amsl.

Northstar used groundwater elevation data to generate a potentiometric surface contour map of the uppermost water-bearing zone beneath the evaporation pond (**Figure 4**). The groundwater flow direction and gradient beneath the site were determined based on linear interpolation between contours of equal elevation. Groundwater flow beneath the evaporation ponds was determined to be predominantly in an east to southeast direction at a gradient of approximately 0.0004 feet/foot. The groundwater flow direction and gradient are consistent with historical monitoring events. Groundwater flow direction has historically ranged between east-northeast and southeast and the gradient has ranged between 0.0004 and 0.0007 feet/foot.

4.4 Groundwater Flow Velocity

The average horizontal groundwater flow velocity beneath the evaporation ponds was estimated using the following equation:

V = (KhI)/ne

Where:

V = average linear groundwater velocity (in feet per day)

Kh = aquifer horizontal hydraulic conductivity (in feet per day)

I = average hydraulic gradient (vertical change in groundwater elevation/corresponding horizontal distance in feet per lateral feet), and

ne = effective aquifer porosity.

Each monitoring well is screened from 100-120 feet bgs in fine-grained sand, as detailed in the Detection Monitoring Well Installation Report (WorleyParsons, 2012). The reported hydraulic conductivity for fine-grained sand is approximately 0.03 to 60 feet/day, as stated in scientific references (Domenico and Schwartz, 1990). Based on the characteristics of the shallow Alluvium aquifer in which the detection monitoring wells are screened, this calculation assumes an average hydraulic conductivity value of 15 to 30 feet/day, an effective porosity of 25 percent, and an average gradient of 0.0004 feet/foot, as estimated from **Figure 4**.

Based on these calculations, the average groundwater velocity estimated in the uppermost water-bearing zone beneath the evaporation ponds is approximately 0.024 to 0.048 feet laterally per day, or 8.76 to 17.52 lateral feet per year. Historically, estimates of groundwater flow velocity have ranged from 8.76 to 30.66 lateral feet per year.

4.5 General Chemical Analysis

Table 4 provides a summary of the detection monitoring well groundwater sample analytical results. **Appendix C** contains copies of the laboratory analytical reports for the groundwater samples. Groundwater samples from detection monitoring wells DM-1, DM-2, and DM-3 were analyzed for the parameters listed in Section 4.2. The concentration of detected analytes is generally similar between the detection monitoring wells. Similarity in the concentrations of analytes is expected as the three wells are located within 1,000 feet of each other and are screened at the same depth interval (100-120 feet bgs).

The following is a summary of the groundwater monitoring results for the detection monitoring wells since the beginning of the monitoring program:

- **Chloride** detections have been consistent for all wells and have ranged from 4,400 to 9,760 milligrams per liter (mg/L), averaging 5,413 mg/L.
- Sulfate as SO₄ detections have been consistent for all wells and have ranged from 1,600 to 4,350 mg/L, averaging 2,130 mg/L.
- Nitrate as NO₃ detections have been consistent for all wells and have ranged from non-detect to 21.2 mg/L, averaging 7.86 mg/L.
- **Total Dissolved Solid** concentrations have been consistent for all wells and have ranged from 6,800 to 14,000 mg/L, averaging 10,617 mg/L.
- **pH** levels have been consistent for all wells and have ranged from 7.2 to 8.0 standard units, averaging 7.8 standard units.
- Specific Conductivity levels have been consistent for all wells and have ranged from 13,000 to 22,000 microSiemens per centimeter (μs/cm), averaging 17,647 μs/cm.
- Antimony has not been detected above the reporting limit for all wells.
- Arsenic detections have been consistent for all wells and have ranged from non-detect to 26 μg/L, averaging 11.4 μg/L.
- **Barium** detections have been inconsistent between all wells, averaging 34.4 μg/L in upgradient well DM-1, 63.9 μg/L in downgradient well DM-2, and 18.6 μg/L in downgradient well DM-3.
- Cadmium has not been detected above the reporting limit for all wells.
- Calcium detections have been consistent for all wells and have ranged from 190 to 470 mg/L, averaging 253 mg/L.
- Chromium (Total) detections have been inconsistent because the concentrations are frequently between the MDL and RL. Reportable concentrations have ranged from 3.1 to 3.7 μg/L, averaging 3.4 μg/L.
- Cobalt has not been detected above the reporting limit for all wells.
- Copper detections have been inconsistent because the concentrations are frequently between the MDL and RL. Reportable concentrations have ranged from 0.006 to 0.027 mg/L, averaging 0.011 mg/L.
- Lead has not been detected above the reporting limit for all wells.

- Mercury has only been detected once above the reporting limit in upgradient well DM-1 at a concentration of 0.26 μg/L. Mercury has not been detected at or above the reporting limit in wells DM-2 and DM-3.
- Nickel has only been detected once above the reporting limit in downgradient well DM-3 at a concentration of 10 μg/L. Nickel has not been detected at or above the reporting limit in wells DM-1 or DM-2.
- Selenium detections have been inconsistent because the concentrations are frequently between the MDL and RL. Reportable concentrations have ranged from 0.68 to 55 μg/L, averaging 15.1 μg/L.
- **Zinc** detections have been inconsistent because the concentrations are frequently between the MDL and RL. Reportable concentrations have ranged from 0.55 to 76 μ g/L, averaging 24.4 μ g/L.

4.6 Non-Statistical Analysis

In accordance with the MRP Part II.A.5 and Part III.A.2, a non-statistical analysis has been applied to the groundwater analytical results for this sampling event.

The non-statistical analysis requires all detections of the constituents of concern (ie, those defined in Part II.A.4 of the same document) reported above the method detection limit (MDL) in the downgradient wells (DM-2 and DM-3) that do not appear in the upgradient well (DM-1) be identified, and where there are either a) two or more constituents identified in this list from a single downgradient monitoring point, or b) one of the identified constituents in this list exceeds the Practical Quantification Limit (PQL), a release is tentatively indicated.

For the purposes of this report, the PQL is equal to the reporting limit (RL) as identified for each constituent in the laboratory report, which is generally 5 times the MDL. The results of the non-statistical method for this sampling event is as follows:

- Well DM-2: There are no constituents of concern that meet the release detection criteria.
- Well DM-3: Arsenic was detected above the PQL of 10 μ g/L at a concentration of 16 μ g/L. Arsenic has historically been detected at low concentrations in all detection monitoring wells onsite. The detected concentration of 16 μ g/L matches the average background concentration of 16 μ g/L for this well.

4.7 Quality Assurance/Quality Control

As documented in the attached laboratory reports (see **Appendix C**), groundwater samples collected from the evaporation pond detection monitoring wells during this sampling event were received by the laboratory in good condition, within the temperature limits required, and analyzed within the required

holding times using the specified methods (with the exception of pH, which has a 15-minute hold time, and nitrate as NO3, which has a 48-hour hold time).

No analytes were detected in the method blank sample.

Matrix spike/matrix spike duplicate (MS/MSD) and laboratory control sample (LCS) recoveries for each method and analytical batch were within the laboratory's established control limits for the final report, with the following exceptions:

- The spike recovery and/or relative percent difference (RPD) was outside acceptable limits for the MS and/or MSD, but the batch was accepted based on acceptable LCS recovery data. This may have affected the results for calcium only.
- The spike recovery was outside acceptable limits for the MS and/or MSD due to possible matrix interference. The LCS was within acceptable criteria and the data was accepted because the chemist determined that there should be no impact to the final results. This may have affected the results for many analytes including calcium, chloride, iron, magnesium, potassium, sodium, and sulfate as SO4.
- A blank sample was outside of the acceptable range, but the data was accepted based on a
 duplicate blank sample passing, both samples having an acceptable RPD, and other acceptable QC
 criteria. This may have affected the results for oil & grease only.

Duplicate sample control: For this event, a duplicate sample (named DUP) was collected from sample point PW-2 (as reported in the *Groundwater Quality Monitoring Report* (Northstar, 2023). The sample was submitted to the laboratory without date or time qualifiers. For this event, all sample results for PW-2 and DUP agreed within 10% except for the following:

• Arsenic by EPA Method 200.8, which was reported at concentrations of 28 and 32 μ g/L, respectively (13% difference).

5.0 LAND TREATMENT UNIT SUMMARY

The Land Treatment Unit (LTU) is an onsite bioremediation landfarm utilized for the treatment of soil contaminated with the heat transfer fluid (HTF) Therminol. Soil from all HTF spills is excavated within 48 hours and placed in one of four treatment bays, numbered LTU #1 to 4. The soil is then tested to determine whether it can be effectively treated onsite (under 10,000 mg/kg of HTF) or if it is hazardous and would be more effectively treated offsite (above 10,000 mg/kg of HTF).

Soil in the LTUs is overturned on a weekly basis by onsite staff to aid in the bioremediation of the soil. A representative composite soil sample is collected from each bay on a quarterly basis (or as needed) and analyzed by EPA Method 8015M for Therminol (characterized by the chemical markers 1,1'-oxybis-benzene and 1,1'-biphenyl) to monitor the progress of remediation. Once the concentration is less than 100 mg/kg of HTF, the soil may be removed from the LTU and staged onsite for later use. Treatment is enhanced by the addition of moisture and fertilizers. Laboratory reports for the data referenced below is included in **Appendix D**.

In response to a minor spill of motor oil onsite, soil was added to LTU Bay #4 in late January 2023 and was sampled on February 2, 2023 to develop a waste profile. The soil was analyzed for the full range of petroleum hydrocarbons, Title 22 metals, mercury, and Therminol. The following summarizes the results:

• LTU Bay #4:

■ 1,1'-oxybis-benzene: Not Detected

1,1'-biphenyl: Not Detected

Gasoline-Range Organics: Not Detected

Diesel-Range Organics: 2,300 mg/kg

Oil-Range Organics: 930 mg/kg

 Various metals were detected below hazardous concentrations, including arsenic, barium, cobalt, chromium, copper, molybdenum, nickel, vanadium, zinc, and lead.

Mercury: Not Detected

After receiving the results, the soil was sampled again on March 29, 2023 and analyzed for VOCs, which were all non-detect. The soil was then transported offsite for disposal.

As reported previously, soil with elevated concentrations of Therminol were present in LTU Bays #1 to 3 since the third quarter of 2022. Despite the elevated concentrations, an attempt to bioremediate the soil stockpiles was undertaken until they were resampled on March 29, 2023. The following summarizes the results:

• LTU Bay #1:

1,1'-oxybis-benzene: 25,000 mg/kg

• 1,1'-biphenyl: 8,000 mg/kg

• LTU Bay #2:

• 1,1'-oxybis-benzene: 27,000 mg/kg

• 1,1'-biphenyl: 9,000 mg/kg

• LTU Bay #3:

• 1,1'-oxybis-benzene: 22,000 mg/kg

• 1,1'-biphenyl: 6,900 mg/kg

Due to the persistent elevated concentrations of Therminol in all samples, the soil has been removed from the LTUs and is temporarily staged in the transporter's shipping containers onsite while the final transport is being scheduled. There were no releases of Therminol in the first half of 2023, and all land treatment unit bays are currently empty.

6.0 ANNUAL SUMMARY

The 2023 annual summary will be included in the 2023 First Semiannual and Annual Groundwater Detection Monitoring Report, produced by Northstar by January 15, 2024.

7.0 CONCLUSIONS

Based on the available data obtained during this sample event:

- A detection of arsenic above the PQL in detection monitoring well DM-3 during the first semiannual monitoring event did not meet the tentative release criteria because no other constituents of concern were detected in this well that were not present in upgradient background well DM-1.
- Available groundwater quality data is generally stable with minor trend fluctuations.
- Groundwater flow direction, gradient, and velocity is consistent with historical events.

All data currently indicates compliance with the discharge requirements contained in COC S&W-6 and the WDR for the GSEP, with exceptions as noted above.

8.0 REFERENCES

Bureau of Land Management, 2010. Final Environmental Impact Statement, Genesis Solar Energy Project. August 27, 2010.

California Department of Water Resources (DWR), 1963. Data on Water Wells and Springs in the Chuckwalla Valley Area, Riverside County, California. Bulletin No. 91-7.

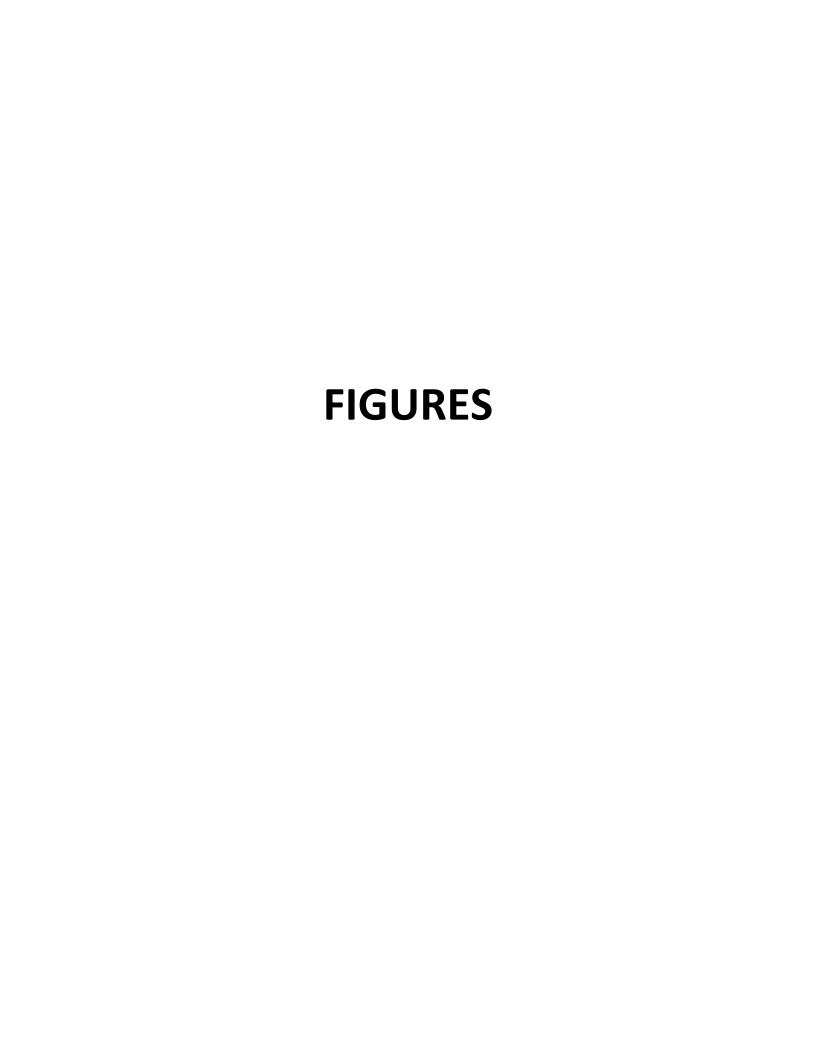
California Energy Commission (CEC), 2010. *Genesis Solar Energy Project Commission Decision*. October 12, 2010.

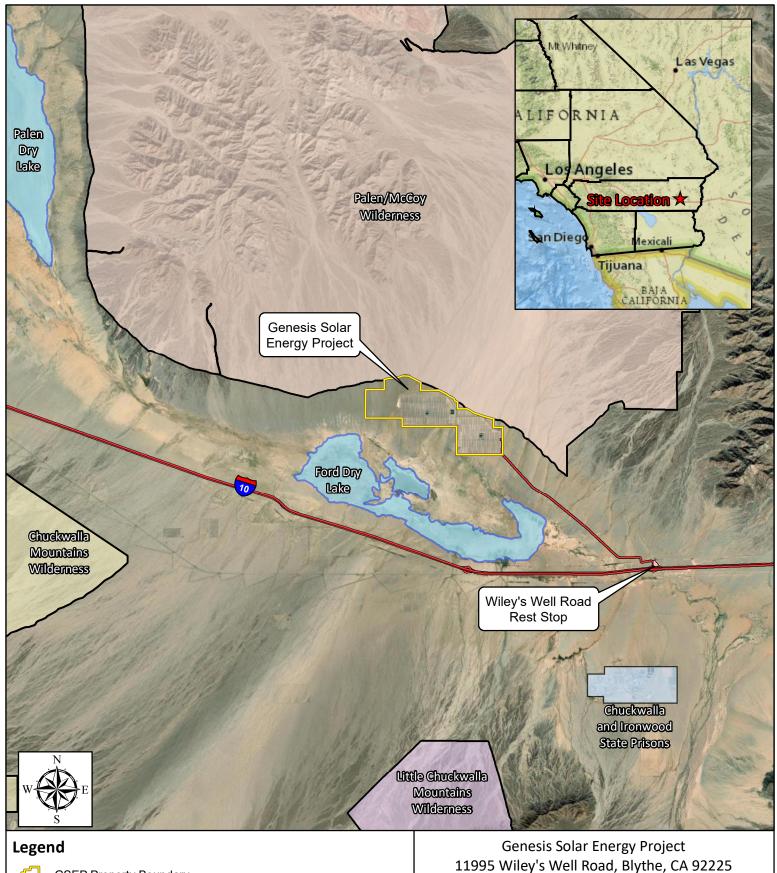
California Regional Water Quality Control Board – Colorado River Basin Region, 2013a. *Monitoring and Reporting Program R7-2013-0005 for Genesis Solar, LLC.* March 21, 2013.

California Regional Water Quality Control Board – Colorado River Basin Region, 2013b. *Board Order R7-2013-0005 Waste Discharge Requirements for Genesis Solar, LLC.* March 21, 2013.

Domenico, P. and Schwartz, F., 1990. Physical and Chemical Hydrogeology. J. Wiley & Sons.

Genesis Solar, LLC, 2009. *Application for Certification, Genesis Solar Energy Project, Riverside County, California*. August 31, 2009.


Genesis Solar, LLC, 2010. Plan of Development CA48880, Genesis Solar Energy Project, Riverside County, California. October 2010.


Northstar Environmental Remediation, 2023. 2023 First Semiannual Groundwater Quality Monitoring Report, Genesis Solar Energy Project, Riverside County, California. July 5, 2023.

- U.S. Bureau of Reclamation, 1972. *Inland Basins Project, California-Nevada, Summary Report:* Reconnaissance Investigations. 1972.
- U.S. Environmental Protection Agency (USEPA), 2017. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. September 19, 2017.

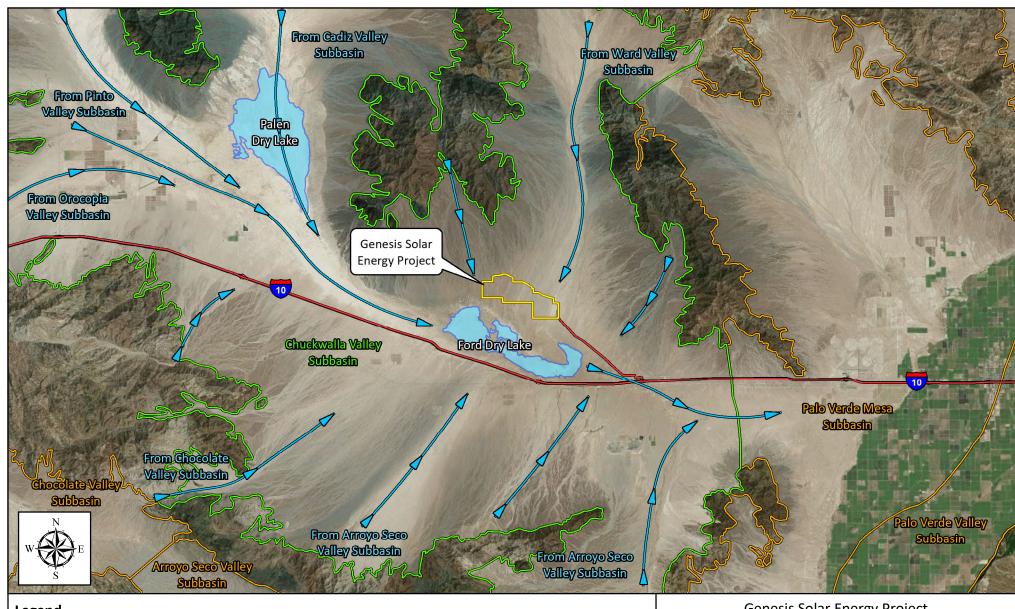
Wilson, R.P., and Owen-Joyce, S.J., 1994. *Method to identify wells that yield water that will be replaced by Colorado River water in Arizona, California, Nevada, and Utah*. U.S. Geological Survey, Water Resources Investigation Report 94-4005.

WorleyParsons, 2012. *Detection Monitoring Well Installation Report*. Genesis Solar Energy Project, March 30, 2012.

GSEP Property Boundary

Chuckwalla and Ironwood State Prisons Chuckwalla Mountains Wilderness Area

Little Chuckwalla Mountains Wilderness Area


Palen/McCoy Wilderness Area
Dry Lakes

DORTHSTER Environmental Remotistion FIGURE 1
Site Vicinity Map

Scale: 1:200,000 Draw Date: 07/06/22
Drawn By: AWB Checked By: AWB

File Name: Figure 1 - Vicinity Map

Roads

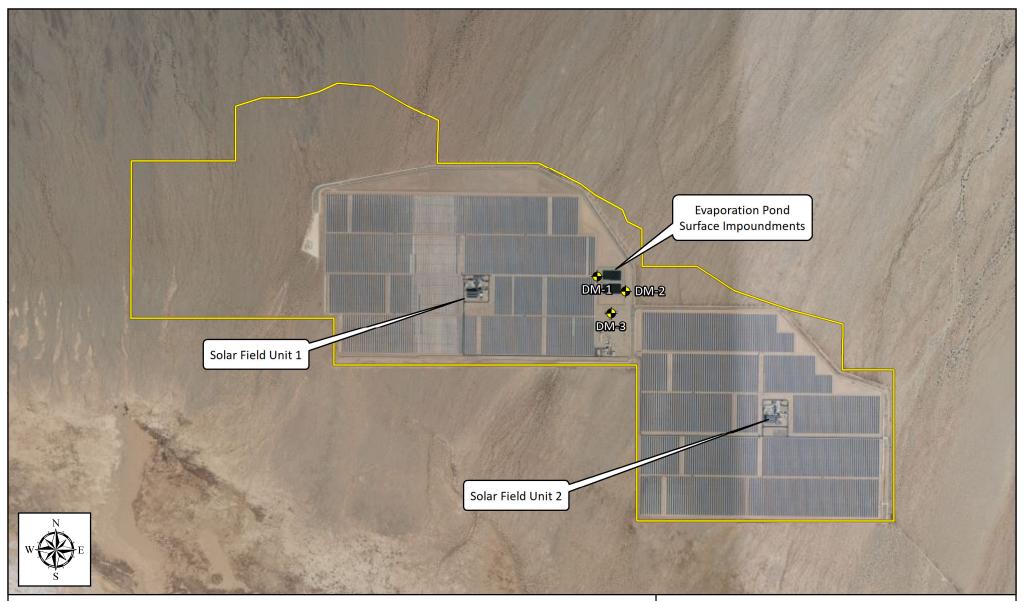
Legend

GSEP Property Boundary

Chuckwalla Valley Groundwater Subbasin

Adjacent Groundwater Subbasins

Dry Lakes


■ Water Flow Direction

Genesis Solar Energy Project 11995 Wiley's Well Road, Blythe, CA 92225

FIGURE 2 **Hydrogeologic Setting**

NORTHSTER Envisions and Legislation
--

Scale: 1:360,000	Draw Date: 07/06/22
Drawn By: AWB	Checked By: AWB

Legend

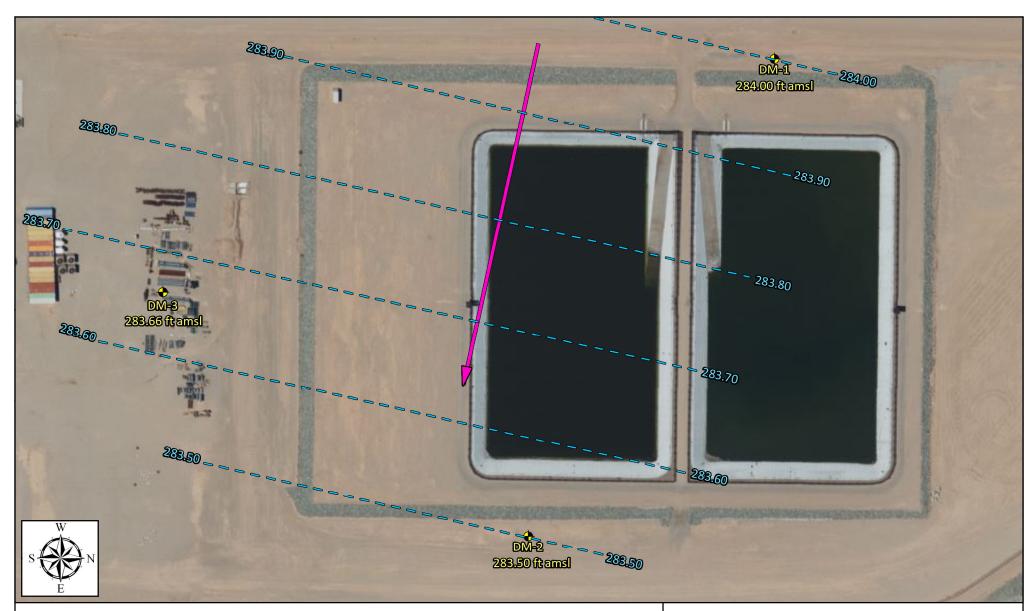
4

GSEP Property Boundary

•

Detection Monitoring Wells

Genesis Solar Energy Project 11995 Wiley's Well Road, Blythe, CA 92225


FIGURE 3 Monitoring Area Showing Detection Monitoring Wells

Scale: 1:36,000 Draw Date: 07/07/22

Drawn By: AWB

Checked By: AWB

Legend

Detection Monitoring Wells

Groundwater Elevation Contour Line (in feet above mean sea level)

Groundwater Gradient Direction

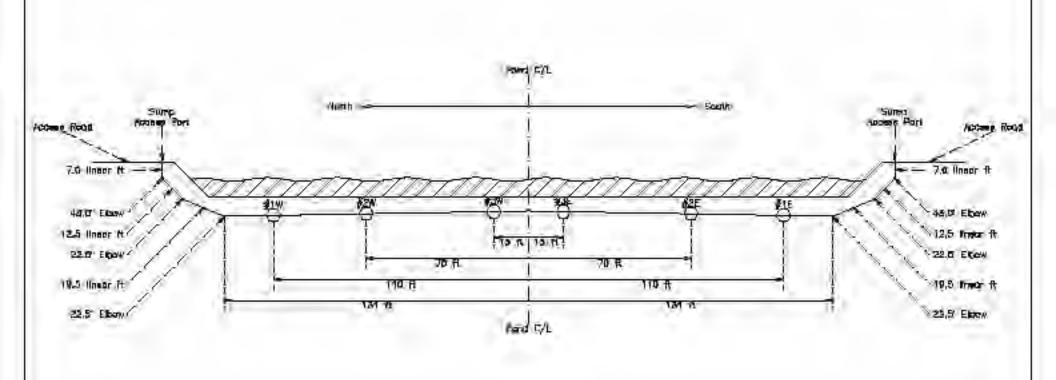
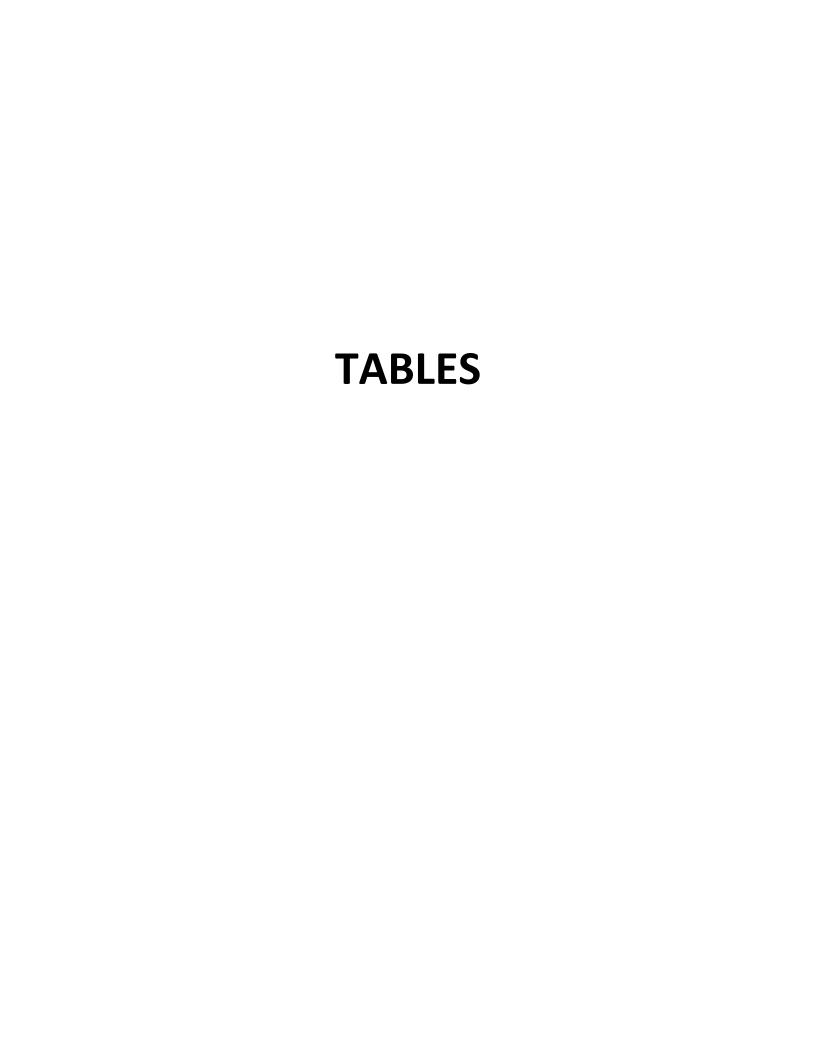

Genesis Solar Energy Project 11995 Wiley's Well Road, Blythe, CA 92225

FIGURE 4 Groundwater Elevation Contour Map June 2023

Sca	le: 1"	= 180'	Draw	Da	te: 5 .	Jul 2023	3
_	_						

Drawn By: AWB | Checked By: AWB


Thorses in the state of the sta

Probes installed in 4-inch diameter perforated pipe with approximate 1 degree slope away from C/L.
 Moisture probes furnished with two leads for direct read by Watermark Model 30 KTCD-NL meter.

Project Name Genesis Solar Energy Project	Project Number 196-004-05
11995 Wiley's Well Rd, Blythe, CA	AWB
Northstar Environmental Remediation	01/13/2023
Pond Drainage Sump System Detail	Figure 5

TABLE 1

DETECTION MONITORING WELL DETAILS

Genesis Solar Energy Project, Riverside County, California

Well ID	Other Name	Owner	Installation Date Use/Status		Well Casing Diameter (inches)	Approximate Ground Surface Elevation (feet amsl)	Top Of Casing Elevation (feet amsl)	Well Depth (feet bgs)	Screened Interval (feet bgs)	Geologic Unit					
	WELLS INCLUDED IN THE GROUNDWATER MONITORING PROGRAM														
DM-1	Detection Monitoring Well 1	Genesis Solar, LLC	2/22/2012	Monitoring / Active	4		391.49	120	100 to 120	Alluvium					
DM-2	Detection Monitoring Well 2	Genesis Solar, LLC	2/21/2012	Monitoring / Active	4		391.32	120	100 to 120	Alluvium					
DM-3	Detection Monitoring Well 3	Genesis Solar, LLC	2/20/2012	Monitoring / Active	4		388.34	120	100 to 120	Alluvium					

Notes:

-- = information is not available or unknown

amsl = above mean sea level

bgs = below ground surface

TABLE 2 GROUNDWATER LEVEL MEASUREMENTS

Genesis Solar Energy Project, Riverside County, California

Well ID	Date	Source	Top of Casing Elevation (feet amsl)	Depth to Water (feet below TOC)	Groundwater Elevation (feet amsl)	Difference from Baseline (feet)	Comments / Use
		WEL			N MONITORING PROGRAM		
DM-1	2/27/2012	WorleyParsons	391.49	106.63	284.86	N/A	Monitoring
DM-1	5/24/2012	WorleyParsons	391.49	107.11	284.38	0.00	Baseline
DM-1	7/26/2012	WorleyParsons	391.49	107.10	284.39	0.01	Monitoring
DM-1	11/14/2012	WorleyParsons	391.49	108.15	283.34	-1.04	Monitoring
DM-1	3/29/2013	WorleyParsons	391.49	107.34	284.15	-0.23	Monitoring
DM-1	6/19/2013	WorleyParsons	391.49	107.19	284.30	-0.08	Monitoring
DM-1 DM-1	8/13/2013	WorleyParsons	391.49	107.07	284.42 284.27	0.04 -0.11	Monitoring Monitoring
DM-1	11/12/2013 2/26/2014	WorleyParsons WorleyParsons	391.49 391.49	107.22 107.13	284.27	-0.11 -0.02	Monitoring
DM-1	5/22/2014	Northstar	391.49	107.05	284.44	0.06	Monitoring
DM-1	8/8/2014	Northstar	391.49	107.11	284.38	0.00	Monitoring
DM-1	12/4/2014	Northstar	391.49	107.03	284.46	0.08	Monitoring
DM-1	3/26/2015	Northstar	391.49	107.22	284.27	-0.11	Monitoring
DM-1	6/11/2015	Northstar	391.49	107.01	284.48	0.10	Monitoring
DM-1	12/10/2015	Northstar	391.49	106.98	284.51	0.13	Monitoring
DM-1	6/2/2016	Northstar	391.49	107.18	284.31	-0.07	Monitoring
DM-1	11/30/2016	Northstar	391.49	107.27	284.22	-0.16	Monitoring
DM-1	6/1/2017	Northstar	391.49	107.12	284.37	-0.01	Monitoring
DM-1	12/5/2017	Northstar	391.49	107.38	284.11	-0.27	Monitoring
DM-1	5/30/2018	Northstar	391.49	107.10	284.39	0.01	Monitoring
DM-1	12/4/2018	Northstar	391.49	107.45	284.04	-0.34	Monitoring
DM-1	6/14/2019	Northstar	391.49	107.18	284.31	-0.07	Monitoring
DM-1 DM-1	12/5/2019	Northstar	391.49	107.42	284.07 284.39	-0.31 0.01	Monitoring Monitoring
DM-1	6/4/2020 12/3/2020	Northstar Northstar	391.49 391.49	107.10 107.70	283.79	-0.59	Monitoring
DM-1	6/3/2021	Northstar	391.49	107.06	284.43	0.05	Monitoring
DM-1	12/2/2021	Northstar	391.49	107.35	284.14	-0.24	Monitoring
DM-1	6/2/2022	Northstar	391.49	107.25	284.24	-0.14	Monitoring
DM-1	12/1/2022	Northstar	391.49	107.40	284.09	-0.29	Monitoring
DM-1	6/8/2023	Northstar	391.49	107.49	284.00	-0.38	Monitoring
DM-2	2/27/2012	WorleyParsons	391.32	106.92	284.40	N/A	Monitoring
DM-2	5/24/2012	WorleyParsons	391.32	107.37	283.95	0.00	Baseline
DM-2	7/26/2012	WorleyParsons	391.32	107.33	283.99	0.04	Monitoring
DM-2	11/14/2012	WorleyParsons	391.32	108.33	282.99	-0.96	Monitoring
DM-2	3/29/2013	WorleyParsons	391.32	107.59	283.73	-0.22	Monitoring
DM-2	6/19/2013	WorleyParsons	391.32	107.41	283.91	-0.04	Monitoring
DM-2 DM-2	8/13/2013 11/12/2013	WorleyParsons WorleyParsons	391.32 391.32	107.31 107.63	284.01 283.69	0.06 -0.26	Monitoring Monitoring
DM-2	2/26/2014	WorleyParsons	391.32	107.40	283.92	-0.20	Monitoring
DM-2	5/22/2014	Northstar	391.32	107.28	284.04	0.09	Monitoring
DM-2	8/8/2014	Northstar	391.32	107.28	284.04	0.09	Monitoring
DM-2	12/4/2014	Northstar	391.32	107.43	283.89	-0.06	Monitoring
DM-2	3/26/2015	Northstar	391.32	107.61	283.71	-0.24	Monitoring
DM-2	6/11/2015	Northstar	391.32	107.40	283.92	-0.03	Monitoring
DM-2	12/10/2015	Northstar	391.32	107.30	284.02	0.07	Monitoring
DM-2	6/2/2016	Northstar	391.32	107.38	283.94	-0.01	Monitoring
DM-2	11/30/2016	Northstar	391.32	107.52	283.80	-0.15	Monitoring
DM-2	6/1/2017	Northstar	391.32	107.47	283.85	-0.10	Monitoring
DM-2	12/5/2017	Northstar	391.32	107.78	283.54	-0.41	Monitoring
DM-2	5/30/2018	Northstar	391.32	107.45	283.87	-0.08	Monitoring
DM-2 DM-2	12/4/2018 6/14/2019	Northstar Northstar	391.32 391.32	107.80 107.55	283.52 283.77	-0.43 -0.18	Monitoring Monitoring
DM-2	12/5/2019	Northstar	391.32	107.72	283.60	-0.18	Monitoring
DM-2	6/4/2020	Northstar	391.32	107.45	283.87	-0.08	Monitoring
DM-2	12/3/2020	Northstar	391.32	108.03	283.29	-0.66	Monitoring
DM-2	6/3/2021	Northstar	391.32	107.64	283.68	-0.27	Monitoring
DM-2	12/2/2021	Northstar	391.32	107.71	283.61	-0.34	Monitoring
DM-2	6/2/2022	Northstar	391.32	107.65	283.67	-0.28	Monitoring
DM-2	12/1/2022	Northstar	391.32	107.72	283.60	-0.35	Monitoring
DM-2	6/8/2023	Northstar	391.32	107.82	283.50	-0.45	Monitoring
DM-3	2/27/2012	WorleyParsons	388.34	103.85	284.49	N/A	Monitoring
DM-3	5/24/2012	WorleyParsons	388.34	104.35	283.99	0.00	Baseline
DM-3	7/26/2012	WorleyParsons	388.34	104.28	284.06	0.07	Monitoring
DM-3	11/14/2012	WorleyParsons	388.34	105.25	283.09	-0.90	Monitoring
DM-3 DM-3	3/29/2013	WorleyParsons	388.34 388.34	104.35 104.20	283.99 284.14	0.00	Monitoring
DIVI-3 DM-3	6/19/2013 8/13/2013	WorleyParsons WorleyParsons	388.34	104.20	284.14	0.15 0.04	Monitoring Monitoring
DM-3	11/12/2013	WorleyParsons	388.34	104.43	283.91	-0.08	Monitoring
DM-3	2/26/2014	WorleyParsons	388.34	104.31	284.03	0.04	Monitoring
	, .,	,				. • •	

TABLE 2 GROUNDWATER LEVEL MEASUREMENTS

Genesis Solar Energy Project, Riverside County, California

Well ID	Date	Source	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Difference from Baseline	Comments / Use
	- 1 1		(feet amsl)	(feet below TOC)	(feet amsl)	(feet)	
DM-3	5/22/2014	Northstar	388.34	104.20	284.14	0.15	Monitoring
DM-3	8/8/2014	Northstar	388.34	104.21	284.13	0.14	Monitoring
DM-3	12/4/2014	Northstar	388.34	104.39	283.95	-0.04	Monitoring
DM-3	3/26/2015	Northstar	388.34	104.59	283.75	-0.24	Monitoring
DM-3	6/12/2015	Northstar	388.34	104.18	284.16	0.17	Monitoring
DM-3	12/11/2015	Northstar	388.34	103.96	284.38	0.39	Monitoring
DM-3	6/3/2016	Northstar	388.34	104.38	283.96	-0.03	Monitoring
DM-3	12/2/2016	Northstar	388.34	104.28	284.06	0.07	Monitoring
DM-3	6/1/2017	Northstar	388.34	104.25	284.09	0.10	Monitoring
DM-3	12/5/2017	Northstar	388.34	104.62	283.72	-0.27	Monitoring
DM-3	5/30/2018	Northstar	388.34	104.27	284.07	0.08	Monitoring
DM-3	12/4/2018	Northstar	388.34	104.68	283.66	-0.33	Monitoring
DM-3	6/14/2019	Northstar	388.34	104.38	283.96	-0.03	Monitoring
DM-3	12/6/2019	Northstar	388.34	104.66	283.68	-0.31	Monitoring
DM-3	6/5/2020	Northstar	388.34	104.32	284.02	0.03	Monitoring
DM-3	12/3/2020	Northstar	388.34	104.80	283.54	-0.45	Monitoring
DM-3	6/3/2021	Northstar	388.34	104.29	284.05	0.06	Monitoring
DM-3	12/2/2021	Northstar	388.34	104.50	283.84	-0.15	Monitoring
DM-3	6/2/2022	Northstar	388.34	104.50	283.84	-0.15	Monitoring
DM-3	12/1/2022	Northstar	388.34	104.50	283.84	-0.15	Monitoring
DM-3	6/8/2023	Northstar	388.34	104.68	283.66	-0.33	Monitoring

Notes:

amsl = above mean sea level TOC = top of casing

TABLE 3

FIELD DATA COLLECTED DURING THE MOST RECENT GROUNDWATER MONITORING EVENT

Genesis Solar Energy Project, Riverside County, California

			Groundwater Pu	rging	Field Parameters										
Well ID	Date	Rate of Groundwater Discharge (mL/min)	Purging Method	Total Volume Purged (mL)	Temperature (°C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	ORP (mV)	D.O. (mg/L)					
DM-1	6/8/2023	180	Bladder Pump	3,600	31.6	7.80	18.90		+119	6.01					
DM-2	6/8/2023	138	Bladder Pump	2,760	29.7	7.76	18.70	-	+120	2.58					
DM-3	6/8/2023	143	Bladder Pump	2,860	31.9	7.80	18.60		+90	4.01					

NOTES:

mL = milliliters mL/min = milliliters per minute mS/cm = millisiemens per centermeter NTU = Nephelometric Turbidity Units DO = Dissolved Oxygen mg/L = milligrams per liter ⁰C = degree Celsius

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS Genesis Solar Energy Project, Riverside County, California

				Sulfate	Nitrate											Chromium								Total Dissolved	Specific	pН	Oil & Grease /		Deuterium Oxyg	/gen-18
		Campling	Chloride	` .′			1		Potassium (mg/L)	Iron (mg/L)	Magnesium		Arsenic	Barium	Cadmium	(Total) (ug/L)	Cobalt (ug/L)	Lead (ug/L)	Manganese		Selenium (ug/L)	Zinc (ug/L)	Mercury (ug/L)		Conductance (us/cm)		HEM (mg/L)		(% relative (% r to VSMOW) to VS	relative
Well ID	Date Sampled	Sampling Method		Method 3	(mg/L) 300.0	(IIIg/L)	(mg/L)		thod 200.7	(IIIg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		A Method 200		(ug/L)	(ug/L)	(ug/L)	(ug/L)	1	(mg/L) SM2540C			SM1664A		Isotope Geocher	
DM-1 DM-1	5/24/2012 10/24/2012	Low Flow Low Flow	4,600 5,400	2,000 2,300	3.9 <1.1	250 210	<0.10 <0.010	3,800 3,200	23.0	<0.40 <0.040	56 58	-	-	-	-	-	-	-	- 11	-	-	-	-	12,000 11,000	16,000 18,000	7.84 7.83	-	-		-8.8 -8.6
DM-1	5/22/2014	Low Flow	5,300	2,000	-	240	<0.010	3,700	22	<0.040	54	<10	6.2	52	<5.0	<10	<5.0	<5.0	2.5 ^J	4.6 ^J	3.0 ^J	<100	<0.20	11,000	19,000	7.83	<5.0	-		8.51
DM-1	5/22/2014 1	Low Flow	5,200	2,000	-	230	<0.010	3,600	22	<0.040	53	<10	5.6	50	<5.0	<10	<5.0	<5.0	<5.0	3.9 ^J	3.1 ^J	<100	<0.20	11,000	19,000	7.74	<5.3	-	-69.47 -8	8.74
DM-1	12/4/2014	Low Flow	4,800	1,700	2.9	230	<0.050	3,600	21	<0.20	57	<10	7.7	50	<5.0	<10	<5.0	<5.0	<5.0 3.6 ^J	9.2 ^J	<10	25 ^J	0.15	11,000	19,000	7.92	<4.7	<0.094		N/A ²
DM-1 DM-1	6/11/2015 12/10/2015	Low Flow	4,600 5,300	2,000 2,100	3.7 ^J	230 260	<0.10 <0.010	3,600 3,700	21	<0.40 <0.040	52 57	<10 <10	3.8 ³	36 38	<5.0 <5.0	2.9 ³	<5.0 <5.0	<5.0 <5.0	<5.0	6.3 ³	3.6 ³ 5.2 ³	<100 <100	0.26 <0.20	10,000 12,000	19,000 19,000	7.81 7.79	<4.7 <5.0	<0.10 <0.094		·8.47 ·8.57
DM-1	6/2/2016	Low Flow	4,700	1,800	7.8	230	<0.10	3,800	18	<0.40	57	<2.0	5.1	31	<1.0	1.9 ^J	<1.0	<1.0	0.99 ^J	1.1	3.3	2.5	<0.20	11,000	20,000	7.87	<4.7	<0.094		-8.83
DM-1	11/30/2016	Low Flow	5,200	2,000	<5.5	230	<0.010	3,700	23	<0.040	59	<20	6.7 ^J	31	<10	<20	<10	<10	<10	<10	13 ^J	<200	<0.20	11,000	17,000	7.8	<4.7	<0.093		8.68
DM-1 DM-1	6/1/2017 12/5/2017	Low Flow Low Flow	4,600 7,130	1,900 2,770	4.2 ^J	250 230	<0.10 0.025	4,100 1,100	30	<1.0 <1.0	62 59	<10 <1.0	4.8 ³ 6.2	28 28	<5.0 <2.5	5.9 ³ 3.1	<5.0 <2.5	<5.0 <2.5	<5.0	7.6 ³ <2.5	6.9 ³ 5.1	<100 6.6	<0.20 <0.50	11,000 10,000	16,000 17,200	7.9 7.8	<5.1 <5.0	<0.094 <0.10		-8.57 -8.90
DM-1	5/30/2018	Low Flow	5,190	2,030	14.7	270	0.096 ^J	5,200	63	0.78 ^J	64	<0.50	5.0	30	<0.50	<5.0	<0.50	<5.0	-	<5.0	5.9	9.5	<0.50	11,000	17,300	7.9	<5.0	<0.10		-8.57
DM-1	12/4/2018 6/14/2019	Low Flow	8,180 5,040	3,280 1,930	9.00 8.76	260 280	<0.5 0.006	4,800 4,800	33 65	<20 0.35	68 63	<10 <10	10 <10	31 <10	<10 <10	<10 <10	<10 <10	<10 <10	-	<10 <10	<10 <10	<10	<0.50 <0.50	11,000 9,600	17,400 17,700	7.7 7.2	<5.0 <5.0	<0.10 <0.10		-8.55 -8.58
DM-1 DM-1	12/5/2019	Low Flow Low Flow	7,460	2,150 J	16.3	250	0.000	4,200	32	<0.20	67	<5.0	0.80	32	<5.0	2.1	<5.0	<5.0	-	<5.0	0.80	47	<0.50	11,000	17,700	7.7	<5.0	<0.10		8.55
DM-1	6/4/2020	Low Flow	5,500	2,090	8.04	220	0.007	4,300	24	<0.20	53	<5.0	<5.0	33	<5.0	<5.0	<5.0	<5.0	-	<5.0	13	16	<0.50	12,000	17,800	7.3	<5.0	<0.096		8.57
DM-1 DM-1	12/3/2020 6/3/2021	Low Flow	5,530 5,520	2,150 2,050	8.50 8.28	230 220	<0.005 <0.50	9,500 3,800	35 <50	<0.20 <20	49 57	<5.0 <10	<5.0 <10	35 31	<5.0 <10	<5.0 <10	<5.0 <10	<5.0 <10	-	<5.0 <10	0.87 17	<0.50 <10	<0.50 <0.50	12,000 8,100	18,000 17,800	7.9 7.7	<5.0 <5.0	<0.11 <0.095		-8.57 -8.62
DM-1	12/2/2021	Low Flow	5,360	1,930	8.59	230	<0.50	4,200	<50	<20	58	<10	<10	29	<10	<10	<10	<10	-	<10	16	<10	<1.0	14,000	17,800	7.8	<5.0	<0.099	-70.10 -8	8.58
DM-1 DM-1	6/2/2022 12/1/2022	Low Flow	5,530 5,130	2,070 1,960	8.70 7.36	240 230	<2.5 <0.005	4,500 4,500	<250 58	<100 <0.20	69 61	<50 <25	<50 <25	<50 26	<50 <25	<50 <25	<50 <25	<50 <25	-	<50 <25	52 <25	<50 <25	<1.0 <1.0	9,300 11,000	17,800 17,900	7.8 7.8	<5.0 <5.0	<0.095 <0.096		-8.62 -8.62
DM-1	6/8/2023	Low Flow	5,300	2,000	7.58	240	<0.50	4,100	<50	<20	65	<10	<10	29	<10	<10	<10	<10	-	<10	<10	<10	<1.0	10,000	18,000	7.8	<5.0	<0.097		8.53
DM-2	5/24/2012	Low Flow	4,500	2,000	2.9	290	<0.10	3,500	25.0	<0.40	59	-	-	-	-	-	-	-	-	-	-	-	-	13,000	16,000	7.80	_	-	-71.7	-8.8
DM-2	10/23/2012	Low Flow	4,800	2,000	<1.1	470	<0.010	2,600	27.0	<0.040	54	-	-	-	-	-	-	-	110	-	-	-	-	9,900	16,000	7.72	-	-		-8.9
DM-2	5/22/2014	Low Flow	5,100	2,000	-	320	<0.020	3,500	23	0.022 ^J	54	<10	4.7 ^J	97	<5.0	<10	<5.0	<5.0	59	4.1 ^J	3.3 ^J	<100	<0.20	11,000	18,000	7.79	<5.1	-	3	8.72
DM-2 DM-2	12/4/2014 6/11/2015	Low Flow Low Flow	4,400 4,500	1,600 2,000	3.0 3.8 ^J	300 290	<0.050 <0.10	3,100 3,500	20	0.082° <0.40	55 55	<10 <10	5.7 4.1 ^J	140 110	<5.0 <5.0	<10 2.9 ^J	<5.0 <5.0	<5.0 <5.0	90	8.4° 4.9 ^J	<10 <10	<100 <100	<0.20 <0.20	9,900 9,600	17,000 18,000	7.90 7.92	<4.7 <4.7	<0.095 <0.10		N/A ² -8.52
DM-2	12/10/2015	Low Flow	5,400	2,200	<5.5	290	<0.10	3,600	21	0.062	61	<10	5.9	85	<5.0	<10	<5.0	<5.0	88	<10	5.5 ^J	<100	<0.20	12,000	18,000	7.85	<5.0	<0.096	***************************************	8.43
DM-2	6/2/2016	Low Flow	4,800	1,900	8.0	280	<0.10	3,800	20	0.27 ^J	60	0.51 ^J	4.7	62	<1.0	1.5 ^J	<1.0	<1.0	62	1.1 ^J	3.5	<20	<0.20	12,000	22,000	7.95	<4.9	<0.097	-69.53 -8	8.63
DM-2	11/30/2016	Low Flow	5,300	2,200	2.8	290	<0.010	4,200	28	<0.040	61	<20	5.9 ^J	56	<10	<20	<10	<10	40	<20	18 ^J	<200	<0.20	11,000	17,000	7.8	<4.7	<0.097		8.37
DM-2 DM-2	6/1/2017 12/5/2017	Low Flow Low Flow	4,800 4,930	1,900 1,960	3.1 ³ 13.4	280 250	<0.10 <0.025	4,100 1,400	21 34	<1.0 <1.0	62 62	<10 <1.0	4.4 ³ 5.5	52 69	<5.0 <2.5	<10 3.7	<5.0 <2.5	<5.0 <2.5	17	5.2 ³	5.6 ³ 5.7	<100 4.5	<0.20 <0.50	12,000 11,000	16,000 17,200	7.9 7.8	<5.2 <5.0	<0.097 <0.10		-8.51 -8.63
DM-2	5/30/2018	Low Flow	6,000	2,280	17.5	300	0.11	4,800	68	<10	67	<5.0	5.1	51	<0.50	<5.0	<0.50	<0.50	-	<0.50	6.3	<5.0	<0.50	9,900	17,000	7.9	<5.0	<0.11		8.39
DM-2 DM-2	12/4/2018 6/14/2019	Low Flow Low Flow	5,290 5,240	1,770 2,080	11.4	240 300	<0.5 <0.005	4,900 5,100	35 68	<20 <0.20	60 67	<10 <10	<10 <10	57 <10	<10 <10	<10 <10	<10 <10	<10 <10	-	<10 <10	<10 <10	28	<0.50 <0.50	7,100 9,300	13,000 18,000	7.8 7.3	<5.0 <5.0	<0.10 <0.10		-8.98 -8.50
DM-2	12/5/2019	Low Flow	7,680	2,330	21.2	310	0.007	4,400	30	<0.20	65	<5.0	<5.0	50	<5.0	2.9	<5.0	<5.0	-	<5.0	3.2	76	<0.50	10,000	17,000	7.6	<5.0	<0.10		8.48
DM-2	6/4/2020	Low Flow	5,580 5,730	2,240 2,340	10.4 9.46	280 250	0.007	4,100 11,000	41 34	<0.20 <0.20	55 51	<5.0	<5.0	46 49	<5.0	<5.0	<5.0	<5.0	-	<5.0	9.8	24	<0.50	11,000	18,100	7.4 7.8	<5.0	<0.096		-8.47 -8.50
DM-2 DM-2	12/3/2020 6/3/2021	Low Flow Low Flow	5,610	2,210	7.85	230	<0.005 <0.50	3,800	<50	<20	58	<5.0 <10	<5.0 <10	45	<5.0 <10	<5.0 <10	<5.0 <10	<5.0 <10	-	<5.0 <10	0.94 16	<0.50 <10	<0.50 <0.50	10,000 9,000	18,000 18,200	7.6	<5.0 <5.0	<0.11 <0.092		8.50
DM-2	12/2/2021	Low Flow	5,470	2,100	10.0	270	<0.50	4,500	<50	<20	63	<10	<10	44	<10	<10	<10	<10	-	<10	16	<10	<1.0	13,000	18,200	7.8	<5.0	<0.095		8.47
DM-2 DM-2	6/2/2022 12/1/2022	Low Flow Low Flow	5,860 5,450	2,160 2,180	10.9 9.45	240 250	<2.5 <0.005	4,200 4,700	<250 57	<100 <0.20	67 65	<50 <25	<50 <25	<50 37	<50 <25	<50 <25	<50 <25	<50 <25	-	<50 <25	53 <25	<50 <25	<1.0 <1.0	9,300 10,000	18,200 18,300	7.7 7.8	<5.0 <5.0	<0.093 <0.098		-8.51 -8.49
DM-2	6/8/2023	Low Flow	5,470	2,190	9.73	300	<0.50	4,800	<50	<20	85	<10	<10	37	<10	<10	<10	<10	-	<10	<10	<10	<1.0	6,800	18,300	7.6	<5.0	<0.100	-70.00 -8	8.51
DM-3	5/24/2012	Low Flow	4,600	2,000	<2.2	220	<0.10	3,500	20.0	<0.40	51	-	-	-	-	-	-	-	-	-	-	-	-	12,000	16,000	7.83	-	-	-71.4	-8.9
DM-3	10/23/2012	Low Flow	5,100	2,100	<2.2	210	<0.010	3,000	20.0	<0.040	52	-	-	-	-	-	-	-	<1.0	-	-	-	-	11,000	18,000	7.83	-	-		-8.7
DM-3 DM-3	5/22/2014 12/5/2014	Low Flow Low Flow	5,400 4,900	2,100 1,800	1.8 ^J	230 230	<0.010	3,600 3,600	21	<0.040 <0.20	51 56	<10 <10	13 16	18 18	<5.0 <5.0	<10 <10	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	9.6 ^J	<10 <10	<100 <100	<0.20 <0.20	11,000 11,000	19,000 18,000	7.66 7.82	<4.9 <4.7	<0.099		-8.52 N/A ²
DM-3	6/12/2015	Low Flow	4,400	1,900	<5.5	220	<0.10	3,600	18	<0.40	50	<10	14	17	<5.0	<10	<5.0	<5.0	<5.0	4.5 ^J	<10	<100	<0.20	9,800	18,000	7.75	<4.9	<0.10	············	-8.90
DM-3	12/11/2015	Low Flow	5,100	2,200	<5.5	250	0.0057 ^J	3,500	19	<0.040	51	<10	17	21	<5.0	<10	<5.0	<5.0	<5.0	<10	3.1	<100	<0.20	11,000	18,000	7.79	<5.0	<0.094		8.73
DM-3 DM-3	6/3/2016	Low Flow	4,700	1,900	7.1	220 240	<0.10 0.0052 ^J	3,700 4,100	23	<0.40 <0.040	53 56	<2.0	14	16	<1.0	0.66	<1.0	<1.0	0.64 ³ <5.0	0.88	1.0 ³	5.1'	<0.20	11,000	20,000 17,000	7.86	<4.7	<0.093 <0.097		·8.75 ·8.75
DIVI-3	12/2/2016 6/1/2017	Low Flow Low Flow	4,900 4,800	2,100 2,000	<5.5 <5.5	240	<0.10	3,900	19	<1.0	55	<10 <10	16 15	18 18	<5.0 <5.0	<10 <10	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10 3.9 ^J	2.7 ^J	<100 <100	<0.20 <0.20	11,000 11,000	16,000	7.8 7.9	<4.8 <5.1	<0.097		8.71
DM-3	12/5/2017	Low Flow	4,880	2,020	2.77	230	0.027	1,200	31	0.073 ^J	59	<2.5	15	15	<2.5	<2.5	<2.5	<2.5	-	<2.5	<2.5	5.6	<0.50	13,000	17,000	7.8	<5.0	<0.10		8.87
DM-3	5/30/2018	Low Flow	6,350	2,600	10.7	260	0.11	4,100	61	<10	61	<0.50	14	15	<0.50	<5.0	<0.50	<0.50	-	<0.50	<5.0	<5.0	<0.50	12,000	17,100	7.9	<5.0	<0.11		8.67
DM-3 DM-3	12/4/2018 6/14/2019	Low Flow Low Flow	6,770 4,880	2,840 1,960	2.50	280 270	<0.5 0.009	5,200 4,900	33 60	<20 <0.20	69 59	<10 <10	20 <10	34 <10	<10 <10	<10 <10	<10 <10	<10 <10	-	<10 <10	<10 <10	<10	<0.50 <0.50	9,700 9,300	17,100 16,800	7.8 7.5	<5.0 <5.0	<0.10 <0.10		-8.67 -8.69
DM-3	12/6/2019	Low Flow	9,760	4,350	3.52	240	0.006	4,100	31	<0.20	58	<5.0	11	18	<5.0	0.90 ^J	<5.0	<5.0	-	<5.0	0.40 ^J	51	<0.50	11,000	17,800	7.7	<5.0	<0.10	-70.50 -8	8.64
DM-3 DM-3	6/5/2020 12/3/2020	Low Flow Low Flow	5,250 5,420	2,080 2,300	2.44	230 220	0.007 <0.005	4,000 9,100	35 29	<0.20 <0.20	48 45	<5.0 <5.0	16 <5.0	17 20	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	-	<5.0 <5.0	6.4 0.68	13 0.55	<0.50 <0.50	11,000 10,000	17,400 17,000	7.5 7.9	<5.0 <5.0	<0.097 <0.11		-8.65 -8.71
DM-3	6/3/2021	Low Flow	5,380	2,130	2.44	190	<0.50	3,500	<50	<20	48	<10	17	18	<10	<10	<10	<10	-	<10	20	10	<0.50	7,700	17,400	7.7	<5.0	<0.011		8.69
DM-3 DM-3	12/2/2021 6/2/2022	Low Flow Low Flow	5,230 5,570	2,020 2,110	3.06 2.82	220 240	<0.50 <2.5	4,000 4,500	<50 <250	<20 <100	53 59	<10 <50	26 <50	17 <50	<10 <50	<10 <50	<10 <50	<10 <50	-	<10 <50	11 55	<10 50	<1.0 <1.0	12,000 8,500	17,400 17,400	7.8 7.8	<5.0 <5.0	<0.094 <0.090		-8.69 -8.71
DM-3	12/1/2022	Low Flow	5,300	2,110	3.11	210	<0.005	4,400	55	<0.20	56	<25	<25	<25	<25	<25	<25	<25	-	<25	<25	<25	<1.0	9,900	17,600	7.8	<5.0	<0.099		8.71

TABLE 4

SUMMARY OF LABORATORY ANALYTICAL RESULTS

Genesis Solar Energy Project, Riverside County, California

																								Total			Oil &			
				Sulfate	Nitrate											Chromium								Dissolved	Specific	pН	Grease /		Deuterium	Oxygen-18
			Chloride	(SO4)	(NO3)-N	Calcium	Copper	Sodium	Potassium	Iron	Magnesium	Antimony	Arsenic	Barium	Cadmium	(Total)	Cobalt	Lead	Manganese	Nickel	Selenium	Zinc	Mercury	Solids	Conductance	(standard	HEM	HTF [†]	(‰ relative	(% relative
		Sampling	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(us/cm)	Units)	(mg/L)	(mg/L)	to VSMOW)	to VSMOW)
Well ID	Date Sampled	Method	EPA	Method 3	00.0			EPA M	ethod 200.7		•					EPA	A Method 20	0.8	<u>'</u>				SM7470A	SM2540C	SM2510B	SM4500H	SM1664A	8015B	Isotope Geo	ochemistry
DM-3	6/8/2023	Low Flow	5,230	2,100	2.61	240	<0.50	4,200	<50	<20	66	<10	16	17	<10	<10	<10	<10	-	<10	<10	<10	<1.0	9,800	17,600	7.7	<5.0	<0.099	-71.10	-8.76
																													İ	
North Pond	6/1/2018	Composite	61,700	21,000	0.870	230	<0.015	12,000	430	<0.35	4.6 ^J	<10	470	230	<10	<0.50	<10	<0.50	-	25	<25	62	<0.50	120,000	148,000	9.4	<1.40	<0.095	N/A	N/A
North Pond	12/3/2018	Composite	241,000	18,600	24.3	630	2.9	46,000	8,300	<20	27	<25	1,000	68	<25	<25	<25	<25	-	59	<25	<25	<0.50	400,000	241,000	7.6	<5.00	<0.099	N/A	N/A
North Pond	6/13/2019	Composite	39,800	12,000	<0.500	280	0.038	41,000	<0.10	<0.20	5.7	<10	25	12	<10	<10	<10	<10	-	<10	<10	-	<0.50	72,000	108,000	9.1	<5.00	< 0.094	N/A	N/A
North Pond	12/5/2019	Composite	83,000	27,000	<500	380	0.090	43,000	340	<0.20	3.0	<5.0	800	200	<5.0	<50	<50	<5.0	-	<50	<50	4,300	<0.50	120,000	120,000	8.8	<5.00	<0.095	N/A	N/A
North Pond	6/4/2020	Composite	40,900	11,300	27.4	510	3.4	20,000	240	<20	570	<25	560	76	<25	<25	<25	<25	-	<25	38	39	<0.50	70,000	107,000	9.4	<5.00	<0.090	N/A	N/A
North Pond	12/3/2020	Composite	38,000	11,800	7.73	390	<0.5	30,000	250	<20	19	<25	8.7	330	<25	<25	<25	<25	-	<25	0.81	0.81	<0.50	57,000	95,000	8.9	<5.00	<0.10	N/A	N/A
North Pond	6/4/2021	Composite	48,200	15,200	53.1	400	<0.50	31,000	230	<20	12	<25	510	130	<25	<25	<25	<25	-	30	53	<25	<0.50	16,000	119,000	9.4	<5.00	<0.087	N/A	N/A
North Pond	12/2/2021	Composite	57,500	18,600	<50.0	470	<0.50	44,000	300	<20	17	<20	640	170	<20	<20	<20	<20	-	<20	31	<20	<1.0	91,000	142,000	8.9	<5.00	<0.092	N/A	N/A
North Pond	6/2/2022	Composite	86,200	30,400	47.8	<100	<5.0	79,000	<500	<200	<100	<50	940	300	<50	<50	<50	<50	-	<50	89	<50	<1.0	180,000	175,000	8.6	<5.00	<0.098	N/A	N/A
North Pond	12/1/2022	Composite	24,200	8,040	47.8	250	<1.2	21,000	<250	<50	<25	<25	340	170	<25	<25	<25	<25	-	<25	41	56	<1.0	41,000	70,300	8.4	<5.00	<0.100	N/A	N/A
North Pond	6/8/2023	Composite	28,700	7,800	1,910	380	<2.0	23,000	<200	<80	<40	<10	340	280	<10	<10	<10	<10	-	<10	<10	<10	<1.0	46,000	75,500	8.8	<5.00	<0.099	N/A	N/A
South Pond	6/1/2018	Composite	152,000	59,500	22.2	27	<0.015	17,000	1,100	<0.35	17	<10	1,100	85	<25	<10	<10	<0.50	-	46	43	79	<0.50	310,000	218,000	8.3	<1.40	<0.090	N/A	N/A
South Pond	12/3/2018	Composite	33,200	8,710	65.1	410	2.8	34,000	420	<20	27	<25	390	310	<25	<25	<25	<25	-	<25	<25	160	<0.50	39,000	61,200	8.9	36.4	<0.097	N/A	N/A
South Pond	6/13/2019	Composite	38,700	10,800	57.2	430	0.064	40,000	<0.10	<0.20	16	<10	28	25	<10	<10	<10	<10	-	<10	<10	-	<0.50	68,000	104,000	9.3	<5.00	<0.097	N/A	N/A
South Pond	12/5/2019	Composite	30,000	6,770	2.17	200	0.041	14,000	160	<0.20	13	<5.0	200	170	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	190	<0.50	35,000	49,700	9.0	<5.00	<0.099	N/A	N/A
South Pond	6/4/2020	Composite	74,600	23,900	14.8	390	4.2	62,000	470	<20	1,100	<25	1,100	360	<25	<25	<25	<25	-	36	68	48	<0.50	130,000	166,000	8.8	<5.00	<0.091	N/A	N/A
South Pond	12/3/2020	Composite	73,700	16,600	10.6	370	<0.5	42,000	480	<20	23	<25	14	290	<25	<25	<25	<25	-	<25	0.73	3.0	<0.50	92,000	150,000	8.6	<5.00	<0.099	N/A	N/A
South Pond	6/4/2021	Composite	91,000	22,300	<50.0	420	<0.50	55,000	620	<20	29	<25	1,100	420	<25	<25	<25	<25	-	56	69	100	<0.50	25,000	183,000	9.0	<5.00	<0.091	N/A	N/A
South Pond	12/2/2021	Composite	24,000	6,560	<50.0	240	<0.50	19,000	150	<20	16	<10	290	200	<10	<10	<10	<20	-	21	18	64	<1.0	38,000	67,500	8.9	<5.00	<0.090	N/A	N/A
South Pond	6/2/2022	Composite	80,200	21,900	45.2	300	<5.0	65,000	<500	<200	100	<50	920	310	<50	<50	<50	<50	-	<50	82	<50	<1.0	140,000	168,000	8.4	<5.00	<0.095	N/A	N/A
South Pond	12/1/2022	Composite	24,000	5,500	<25.0	300	<1.2	20,000	<250	<50	<25	<25	260	210	<25	<25	<25	<25	-	<25	59	60	<1.0	35,000	67,400	8.5	<5.00	<0.100	N/A	N/A
South Pond	6/8/2023	Composite	25,800	5,600	959	270	<2.0	19,000	<200	<80	<40	<10	280	210	<10	<10	<10	<10	-	<10	12	39	<1.0	22,000	66,300	8.2	<5.00	<0.099	N/A	N/A
																													1	

NOTES:

mg/L = milligrams per liter

ug/L = micrograms per liter

uS/cm = microsiemens per centimeter

‰ = parts per thousand

VSMOW = Vienna Standard Mean Ocean Water

- < = not detected at or above the indicated reporting limit
- = information is unknown / not applicable / not analyzed
- J Result is less than the reporting limit but greater than or equal to the method detection limit, thus the concentration is an approximate value.
 † Heat Transfer Fluid (HTF) is characterized by the analytes 1,1'-oxybis-benzene and 1,1'-biphenyl.

Duplicate sample
 Analytical results not available at time of reporting due to laboratory equipment failure.
 Analytical data shaded grey is a monitored Contaminant of Concern as defined in the Waste Discharge Requirements, Condition 79, Page 16

TABLE 5 SUMMARY OF POND DRAINAGE SUMP DATA Genesis Solar Energy Project, Riverside County, California

	North Pond South Pond														
Date of Reading	#1W	#2W	#3W	#1E	#2E	#3E	Totalizer	#1W	#2W	#3W	#1E	#2E	#3E	Totalizer	Comments
1st Qtr 2014	199	199	199	199	199	199	-	199	199	199	199	199	199	-	All probes are dry
2nd Qtr 2014	199	199	199	199	199	199	-	199	199	199	199	199	199	-	
3rd Qtr 2014	199	199	199	199	199	199	-	199	199	199	199	199	199	-	
12/05/2014	199	199	199	199	199	199	-	199	199	199	199	199	199	-	
03/26/2015	199	199	199	199	199	199	-	199	199	199	199	199	199	-	
06/12/2015	133	199	199	199	199	199	-	199	199	199	199	199	199	-	
09/03/2015	78	199	199	199	199	199	-	199	199	199	199	199	199	-	
09/15/2015	67	199	199	199	199	199	-	199	199	199	199	199	199	-	
12/10/2015	0	75	199	199	199	199	-	199	199	199	199	199	199	-	Sump pumps turned on - no water
03/01/2016	6	101	199	199	199	199	-	199	199	199	199	199	199	-	
06/02/2016	4	80	199	199	199	199	-	199	199	199	199	199	199	-	
09/01/2016	0	42	146	199	175	105	-	199	199	199	199	199	199	-	
12/01/2016	0	59	199	199	199	188	1,144.79	199	199	199	183	199	199	24.21	Readings on arrival
12/01/2016	199	199	199	199	199	199	1,144.79	199	199	199	183	199	199	24.21	Readings on departure, new probes in North Pond
03/02/2017	199	199	199	199	199	199	1,144.79	199	199	199	199	199	199	24.21	
06/01/2017	199	199	199	199	199	199	1,144.79	199	199	199	199	199	199	24.21	
09/04/2017	199	199	199	199	199	199	1,695.44	199	199	199	192	178	199	24.21	
12/05/2017	114	165	199	199	179	180	1,695.66	199	199	199	166	199	199	24.21	To date, all totalizer increases are from pump testing
03/06/2018	186	199	199	199	199	199	1,695.66	199	199	199	199	199	199	24.21	
06/01/2018	159	199	199	199	199	199	1,695.66	199	199	199	177	186	199	24.21	
09/12/2018	78	192 181	199	199 199	199	192 199	1,694.83	199	199 199	199 199	197	187	199 199	24.21	
12/03/2018 03/08/2019	119 150	181	199 199	199	199 199	199	1,688.26 1,690.80	199 199	199	199	199 115	168 168	199	24.21 24.21	
06/13/2019	199	199	199	199	199	199	1,690.80	199	199	199	188	199	199	24.21	
09/08/2019	199	199	199	199	199	199	1,686.68	199	199	199	188	199	199	24.21	
12/05/2019	145	199	199	199	199	199	1,683.78	199	199	199	199	199	199	24.21	
03/17/2020	168	199	199	199	199	199	1,681.87	199	199	199	199	199	199	24.21	
06/04/2020	109	199	199	199	199	199	1,657.23	199	199	199	199	199	199	22.64	
09/16/2020	199	199	199	199	199	199	1,619.72	199	199	199	199	199	199	20.34	
12/03/2020	98	199	199	199	199	199	1,624.77	199	199	199	199	199	199	20.34	
03/23/2021	104	199	199	199	199	199	1,628.91	199	199	199	199	199	199	20.34	
06/04/2021	119	199	199	199	199	199	2,017.91	199	199	199	199	199	199	205.98	Sump pumps tested prior to readings
09/21/2021	89	199	199	199	199	199	2,188.61	199	199	199	199	199	199	197.30	Tamp Pamer 1990ed billor to regamb
12/02/2021	97	199	199	199	199	199	2,186.30	199	199	199	199	199	199	N/A ²	
03/30/2022	134	199	199	199	199	199	2,183.93	199	199	199	199	199	199	N/A ²	
06/02/2022	151	199	199	199	199	199	7.48	199	199	199	189	199	199	7.48	New pumps and totalizers installed in 2nd quarter
08/04/2022	109	191	199	199	199	105	605.44	199	199	199	188	199	199	7.48	Verification readings following leak reported by NextEra
09/30/2022	105	189	199	199	199	122	605.44	199	199	199	199	199	199	7.48	Termode of reddings following leak reported by Nextera
12/01/2022	103	179	199	199	197	176	605.55	171	199	199	189	174	199	7.48	
03/29/2023	181	199	199	199	199	199	605.55	199	199	199	199	199	199	7.48	
06/08/2023	56	198	199	199	199	196	605.55	199	199	199	198	199	199	7.48	
33,00,2023	30	130	100	133	133	130	003.55	133	133	133	130	133	100	7.40	

 $[\]bf 1$ - Readings in centibars, collected with a Watermark 30 KTCD-NL Soil Moisture Meter $\bf 2$ - Pump totalizer not functioning

APPENDIX A

FIELD DATA SHEETS

GROUNDWATER SAMPLING FIELD FORM

Date: 6/8/23Site: Genesis Solar Energy ProjectProject No: 196-004-06Project: Groundwater Quality Monitoring ProgramProject Manager: AWBTechnicians: AWB/RCDWeather: Hot

Sampling Method: Low-Flow Sampling with Submersible Pump (EPA 2017 Protocols)

	1					T			
Well No.	DM-1	Time	Water Level	Temp °C	pН	Cond (mS/cm)	Turbidity	ORP	DO
Well No.	DIVI-1	(5 Min Int)	(ft btoc)	(3%)	(+/- 0.1)	(3%)	(NTUs) (10%)	(mV) (+/- 10)	(mg/L) (10%)
Casing Diameter (in.)	4.0	17:50	107.40	32.7	7.88	19.4		+123	8.90
Total Depth (ft btoc)	120	17:55	107.40	31.8	7.80	19.1		+121	6.07
Screen Interval (ft btoc)	100 - 120	18:00	107.40	31.7	7.80	19.0		+120	6.05
Depth to Water (ft btoc)	107.49	18:05	107.40	31.6	7.80	18.9		+119	6.01
Depth of Inlet (ft btoc)	115.00								
Discharge Time (sec)	30								
Fill Time (sec)	20								
Cycles per Minute	1.2								
Volume per Cycle (mL)	150								
Pump Rate (mL/min)	180								
Volume Purged (mL)	3,600								
Sample Date	06/08/23								
Sample Time	18:10								

Purge Volume Calculation: Total must exceed tubing volume (1,204 mL) plus drawdown volume (2,460 mL/foot) = 1,425 mL

Well No.	DM-2	Time	Water Level	Temp °C	pН	Cond (mS/cm)	-	ORP	DO
Well No.	DIVI-Z	(5 Min Int)	(ft btoc)	(3%)	(+/- 0.1)	(3%)	(NTUs) (10%)	(mV) (+/- 10)	(mg/L) (10%)
Casing Diameter (in.)	4.0	19:20	108.10	30.5	7.85	19.1	-	+126	5.28
Total Depth (ft btoc)	120	19:25	108.20	29.9	7.75	18.8		+122	2.98
Screen Interval (ft btoc)	100 - 120	19:30	108.30	29.8	7.75	18.8		+121	2.62
Depth to Water (ft btoc)	107.82	19:35	108.32	29.7	7.76	18.7	-	+120	2.58
Depth of Inlet (ft btoc)	115.00								
Discharge Time (sec)	28								
Fill Time (sec)	37								
Cycles per Minute	0.9								
Volume per Cycle (mL)	150								
Pump Rate (mL/min)	138								
Volume Purged (mL)	2,760								
Sample Date	06/08/23								
Sample Time	19:40								

Purge Volume Calculation: Total must exceed tubing volume (1,204 mL) plus drawdown volume (2,460 mL/foot) = 2,434 mL

	DM 0	Time	Water Level	Temp °C	рН	Cond (mS/cm)	Turbidity	ORP	DO
Well No.	DM-3	(5 Min Int)	(ft btoc)	(3%)	(+/- 0.1)	(3%)	(NTUs) (10%)	(mV) (+/- 10)	(mg/L) (10%)
Casing Diameter (in.)	4.0	16:25	104.69	34.1	7.14	19.8	-	+91	6.85
Total Depth (ft btoc)	120	16:30	104.69	32.6	7.77	18.7		+91	4.03
Screen Interval (ft btoc)	100 - 120	16:35	104.69	31.7	7.79	18.5		+90	4.00
Depth to Water (ft btoc)	104.68	16:40	104.69	31.9	7.80	18.6		+90	4.01
Depth of Inlet (ft btoc)	115.00								
Discharge Time (sec)	28								
Fill Time (sec)	35								
Cycles per Minute	1.0								
Volume per Cycle (mL)	150								
Pump Rate (mL/min)	143								
Volume Purged (mL)	2,860								
Sample Date	06/08/23								
Sample Time	16:45								

Purge Volume Calculation: Total must exceed tubing volume (1,204 mL) plus drawdown volume (2,460 mL/foot) = 1,229 mL

APPENDIX B

LABORATORY ANALYTICAL RESULTS EVAPORATION PONDS

23 June 2023

Arlin Brewster
Northstar Environmental Remediation
26225 Enterprise Court
Lake Forest, CA 92630

RE: Genesis Solar LTUs & Ponds

Enclosed are the results of analyses for samples received by the laboratory on 06/09/23 08:25. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeff Lee

Project Manager

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
North Pond	T231541-01	Water	06/08/23 15:50	06/09/23 08:25
South Pond	T231541-02	Water	06/08/23 16:00	06/09/23 08:25

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 1 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

DETECTIONS SUMMARY

ample ID: North Pond	Labora	tory ID:	T231541-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	340	10	ug/l	200.8	FILT
Barium	280	10	ug/l	200.8	FILT
Calcium	380	200	mg/l	EPA 200.7	FILT
Sodium	23000	200	mg/l	EPA 200.7	FILT
рН	8.8	0.10	pH Units	SM 4500-H+B	
Total Dissolved Solids	46000	10	mg/l	TDS by SM2540C	
pH Temperature °C	19		pH Units	SM 4500-H+B	
Specific Conductance (EC)	75500	10.0	mho/cm @25°0	SM2510b mod.	
Chloride	28700	10000	mg/l	EPA 300.0	
Sulfate as SO4	7800	2500	mg/l	EPA 300.0	
Nitrate as NO3	1910	1000	mg/l	EPA 300.0	
Nitrate as N	440	400	mg/l	EPA 300.0	
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	280	10	ug/l	200.8	FILT
Barium	210	10	ug/l	200.8	FILT
Selenium	12	10	ug/l	200.8	FILT
Zinc	39	10	ug/l	200.8	FILT
Calcium	270	200	mg/l	EPA 200.7	FILT
Sodium	19000	200	mg/l	EPA 200.7	FILT
рН	8.7	0.10	pH Units	SM 4500-H+B	
Total Dissolved Solids	22000	10	mg/l	TDS by SM2540C	
Specific Conductance (EC)	66300	10.0	mho/cm @25°(SM2510b mod.	
pH Temperature °C	20		pH Units	SM 4500-H+B	
Chloride	25800	5000	mg/l	EPA 300.0	
Sulfate as SO4	5600	5000	mg/l	EPA 300.0	

SunStar Laboratories, Inc.

Nitrate as N

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

mg/l

EPA 300.0

Jeff Lee, Project Manager Page 2 of 14

220

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager

Page 3 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

North Pond T231541-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratori	es, Inc.					
Metals by EPA 200 Series Methods									
Copper	ND	2.0	mg/l	400	23F0140	06/09/23	06/16/23	EPA 200.7	FILT, R-01
Calcium	380	200	"	"	"	"	06/16/23	n	FILT
Iron	ND	80	"	"	**	**	11	**	FILT, R-01
Magnesium	ND	40	**	"	"	"	H	**	FILT, R-01
Potassium	ND	200	"	**	"	"	"	"	FILT, R-01
Sodium	23000	200	**	**	**	**	H.	Ħ	FILT
Antimony	ND	10	ug/l	20	23F0149	06/09/23	06/13/23	200.8	FILT, R-01
Arsenic	340	10	**	11	17	17	II .	11	FILT
Barium	280	10	**	**	"	"	H.	**	FILT
Cadmium	ND	10	**	"	"	"	n	"	FILT, R-01
Chromium	ND	10	**	11	"	"	n	**	FILT, R-01
Cobalt	ND	10	**	11	17	17	II .	11	FILT, R-01
Lead	ND	20	"	40	**	17	06/13/23	11	FILT, R-01
Nickel	ND	10	"	20	"	"	06/13/23	n	FILT, R-01
Selenium	ND	10	"	"	"	"	H.	**	FILT, R-01
Zinc	ND	10	"	"	"	u	"	**	FILT, R-01
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	1.0	ug/l	1	23F0143	06/09/23	06/12/23	EPA 7470A Water	
Conventional Chemistry Parameters by Al	PHA/EPA/AST	M Methods							
Oil & Grease	ND	5.00	mg/l	1	23F0155	06/09/23	06/14/23	EPA 1664B	
Specific Conductance (EC)	75500	10.0	umho/cm @25°C	11	23F0163	06/09/23	06/12/23	SM2510b mod.	
рН	8.8	0.10	pH Units	11	23F0139	06/09/23	06/09/23	SM 4500-H+B	
pH Temperature °C	19		**	"	"	"	H	Ħ	
Total Dissolved Solids	46000	10	mg/l	"	23F0162	06/09/23	06/16/23	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 4 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

North Pond T231541-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	28700	10000	mg/l	2000	23F0138	06/09/23	06/12/23	EPA 300.0	
Sulfate as SO4	7800	2500	**	500	"	tt	06/10/23	"	
Nitrate as NO3	1910	1000	"	2000	"	"	"	"	
Nitrate as N	440	400	"	"	**	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 5 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

South Pond T231541-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorio	es, Inc.					
Metals by EPA 200 Series Methods									
Copper	ND	2.0	mg/l	400	23F0140	06/09/23	06/16/23	EPA 200.7	FILT, R-01
Calcium	270	200	"	"	**	"	06/16/23	**	FILT
Iron	ND	80	n	"	**	"	"	**	FILT, R-01
Magnesium	ND	40	"	**	**	**	"	**	FILT, R-01
Potassium	ND	200	"	"	**	**	"	**	FILT, R-01
Sodium	19000	200	n .	"	"	"	"	**	FILT
Antimony	ND	10	ug/l	20	23F0149	06/09/23	06/13/23	200.8	FILT, R-01
Arsenic	280	10	"	"	**	"	"	**	FILT
Barium	210	10	"	"	**	**	11	**	FILT
Cadmium	ND	10	***	"	Ħ	**	"	**	FILT, R-01
Chromium	ND	10	n	"	**	**	11	**	FILT, R-01
Cobalt	ND	10	n	"	**	**	"	**	FILT, R-01
Lead	ND	10	"	**	**	**	"	**	FILT, R-01
Nickel	ND	10	***	**	**	**	"	**	FILT, R-01
Selenium	12	10	"	"	**	**	11	Ħ	FILT
Zinc	39	10	"	"	**	"	n	Ħ	FILT
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	1.0	ug/l	1	23F0143	06/09/23	06/12/23	EPA 7470A Water	
Conventional Chemistry Parameters by A	PHA/EPA/ASTI	Methods							
Oil & Grease	ND	5.00	mg/l	1	23F0155	06/09/23	06/14/23	EPA 1664B	
Specific Conductance (EC)	66300	10.0	umho/cm @25°C	11	23F0163	06/09/23	06/12/23	SM2510b mod.	
рН	8.7	0.10	pH Units	n	23F0139	06/09/23	06/09/23	SM 4500-H+B	
pH Temperature °C	20		"	"	**	**	"	Ħ	
Total Dissolved Solids	22000	10	mg/l	"	23F0162	06/09/23	06/16/23	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 6 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

South Pond T231541-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	25800	5000	mg/l	1000	23F0138	06/09/23	06/10/23	EPA 300.0	
Sulfate as SO4	5600	5000	"	**	**	.11	II .	n	
Nitrate as NO3	959	500	"	"	"	"	"	n	
Nitrate as N	220	200	**	"	n	n	n .	n	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 7 of 14

RPD

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

Reporting

Metals by EPA 200 Series Methods - Quality Control

SunStar Laboratories, Inc.

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 23F0140 - EPA 3010A										
Blank (23F0140-BLK1)				Prepared: 0	06/09/23 Aı	nalyzed: 06	5/16/23			
Copper	ND	0.005	mg/l							
Calcium	ND	0.50	11							
Iron	ND	0.20	"							
Magnesium	ND	0.10	11							
Potassium	ND	0.50	"							
Sodium	ND	0.50	11							
LCS (23F0140-BS1)				Prepared: 0	06/09/23 At	nalyzed: 06	5/16/23			
Copper	1.53	0.005	mg/l	1.50		102	85-115			
Calcium	1.52	0.50	"	1.50		101	80-120			
Iron	1.52	0.20	"	1.50		101	80-120			
Magnesium	1.56	0.10	"	1.50		104	80-120			
Potassium	1.44	0.50	"	1.50		96.0	80-120			
Sodium	1.44	0.50	IF	1.50		95.9	80-120			
Matrix Spike (23F0140-MS1)	Sour	ce: T231538-	01	Prepared: 0	06/09/23 At	nalyzed: 06	5/16/23			
Copper	1.99	0.50	mg/l	1.50	0.058	129	70-130			
Calcium	31.4	50	"	1.50	28.4	195	70-130			QM-07, R-01
Iron	2.24	20	"	1.50	0.847	92.6	70-130			R-01
Magnesium	ND	10	"	1.50	ND		70-130			QM-05, R-01
Potassium	ND	50	"	1.50	ND		70-130			QM-05, R-01
Sodium	614	50	"	1.50	590	NR	70-130			QM-05
Matrix Spike Dup (23F0140-MSD1)	Sour	ce: T231538-	01	Prepared: 0	06/09/23 Aı	nalyzed: 06	5/16/23			
Copper	1.78	0.50	mg/l	1.50	0.058	115	70-130	11.2	30	
Calcium	29.0	50	"	1.50	28.4	40.8	70-130	7.65	30	QM-05, R-01
Iron	1.73	20	"	1.50	0.847	59.1	70-130	25.3	30	QM-05, R-01
Magnesium	ND	10		1.50	ND		70-130		30	QM-05, R-01
Potassium	17.2	50	"	1.50	ND	NR	70-130		30	QM-05, R-01
Sodium	576	50		1.50	590	NR	70-130	6.32	30	QM-05, R-01

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 8 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

Metals by EPA 200 Series Methods - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 23F0149 - EPA 3010A										
Blank (23F0149-BLK1)				Prepared: ()6/09/23 Aı	nalyzed: 06	/13/23			
Antimony	ND	0.50	ug/l							
Arsenic	ND	0.50	11							
Barium	ND	0.50	11							
Cadmium	ND	0.50	11							
Chromium	ND	0.50	11							
Cobalt	ND	0.50	11							
Lead	ND	0.50	11							
Nickel	ND	0.50	11							
Selenium	ND	0.50	11							
Zinc	ND	0.50	11							
LCS (23F0149-BS1)				Prepared: (06/09/23 Aı	nalyzed: 06	/13/23			
Arsenic	23.6	0.50	ug/l	25.0		94.3	85-115			
Barium	23.6	0.50	H	25.0		94.6	85-115			
Cadmium	23.6	0.50	"	25.0		94.5	85-115			
Chromium	23.9	0.50	"	25.0		95.7	85-115			
Lead	25.4	0.50	"	25.0		102	85-115			
Matrix Spike (23F0149-MS1)	Sou	rce: T231538-	02	Prepared: (06/09/23 Aı	nalyzed: 06	/13/23			
Arsenic	27.0	10	ug/l	25.0	0.400	106	70-130			
Barium	36.8	10	11	25.0	13.8	92.0	70-130			
Cadmium	25.6	10	"	25.0	3.80	87.2	70-130			
Chromium	23.6	10	"	25.0	ND	94.4	70-130			
Lead	27.0	10	"	25.0	ND	108	70-130			
Matrix Spike Dup (23F0149-MSD1)	Sou	rce: T231538-	02	Prepared: (06/09/23 Aı	nalyzed: 06	/13/23			
Arsenic	29.2	10	ug/l	25.0	0.400	115	70-130	7.83	20	
Barium	37.4	10	11	25.0	13.8	94.4	70-130	1.62	20	
Cadmium	28.0	10	11	25.0	3.80	96.8	70-130	8.96	20	
Chromium	24.0	10	11	25.0	ND	96.0	70-130	1.68	20	
	27.2	10			ND					

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 9 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number: 196-004-05Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/23/23 17:21

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
. mary to	TOBUL	2,11111	Cinto		resure	, with	Limits	102	- Dillint	110105
Batch 23F0143 - EPA 7470A Water										
Blank (23F0143-BLK1)	Prepared: 06/09/23 Analyzed: 06/12/23									
Mercury	ND	1.0	ug/l							
LCS (23F0143-BS1)				Prepared: 0	06/09/23 A	nalyzed: 06	/12/23			
Mercury	7.33	1.0	ug/l	7.50		97.7	80-120			
Matrix Spike (23F0143-MS1)	Sour	ce: T231538-	01	Prepared: 0	06/09/23 A	nalyzed: 06	/12/23			
Mercury	7.76	1.0	ug/l	7.50	ND	103	80-120			
Matrix Spike Dup (23F0143-MSD1)	Sour	Prepared: 0	nalyzed: 06							
Mercury	7.98	1.0	ug/l	7.50	ND	106	80-120	2.80	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 10 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number: 196-004-05Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/23/23 17:21

Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 23F0139 - General Preparation										
Duplicate (23F0139-DUP1)	Sou	rce: T231538	-01	Prepared &	ն Analyzed:	06/09/23				
pH	8.22	0.10	pH Units		8.31			1.09	10	
pH Temperature °C	18.9		"		18.5			2.14	200	
Batch 23F0155 - General Preparation										
Blank (23F0155-BLK1)				Prepared: (06/09/23 A	nalyzed: 06	/14/23			
Oil & Grease	ND	5.00	mg/l							
LCS (23F0155-BS1)				Prepared:	06/09/23 A	nalyzed: 06	/14/23			
Oil & Grease	41.5	5.00	mg/l	53.1		78.2	78-114			
LCS Dup (23F0155-BSD1)				Prepared:	06/09/23 A	nalyzed: 06	/14/23			
Oil & Grease	40.0	5.00	mg/l	53.1		75.3	78-114	3.68	20	BS-4
Batch 23F0162 - General Preparation										
Blank (23F0162-BLK1)				Prepared:	06/09/23 A	nalyzed: 06	/16/23			
Total Dissolved Solids	ND	10	mg/l		·		·			
LCS (23F0162-BS1)				Prepared: (06/09/23 A	nalyzed: 06	/16/23			
Total Dissolved Solids	564	10	mg/l	500		113	80-120			
Duplicate (23F0162-DUP1)	Sou	rce: T231538	-01	Prepared: (06/09/23 A	nalyzed: 06	/16/23			
Total Dissolved Solids	1400	10	mg/l		1490			6.09	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 11 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number:196-004-05Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/23/23 17:21

Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 23F0163 - General Preparation

Duplicate (23F0163-DUP1)	Source:	Г231538-01	Prepared: 06/09/23 Analyzed: 06/12/23		
Specific Conductance (EC)	2680		no/cm 2690	0.372	15
		a	25°C		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 12 of 14

RPD

%REC

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number: 196-004-05Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/23/23 17:21

Reporting

Anions by EPA Method 300.0 - Quality Control

SunStar Laboratories, Inc.

Spike

Source

		reporting		Spike	Bource		/orche		KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 23F0138 - General Preparation										
Blank (23F0138-BLK1)				Prepared &	z Analyzed:	06/09/23				
Fluoride	ND	0.500	mg/l							
Chloride	ND	5.00	"							
Nitrite as NO2	ND	0.500	11							
Sulfate as SO4	ND	5.00	II							
Nitrate as NO3	ND	0.500	II							
Phosphate, Total as Orthophosphate	ND	0.500	"							
Nitrite as N	ND	0.200	11							
Nitrate as N	ND	0.200	II							
LCS (23F0138-BS1)										
Fluoride	22.6	0.500	mg/l	25.0		90.4	75-125			
Chloride	24.6	5.00	"	25.0		98.3	75-125			
Sulfate as SO4	25.4	5.00	"	25.0		101	75-125			
Nitrate as NO3	25.7	0.500	"	25.0		103	75-125			
Matrix Spike (23F0138-MS1)	Sou	rce: T231538-	01	Prepared &	z Analyzed:	06/09/23				
Fluoride	29.4	0.500	mg/l	25.0	4.80	98.6	75-125			
Chloride	449	125	"	25.0	451	NR	75-125			QM-0
Sulfate as SO4	392	125	III	25.0	390	7.30	75-125			QM-0
Nitrate as NO3	24.6	0.500	"	25.0	0.888	94.7	75-125			
Matrix Spike Dup (23F0138-MSD1)	Sou	rce: T231538-	01	Prepared &	z Analyzed:	06/09/23				
Fluoride	26.8	0.500	mg/l	25.0	4.80	88.2	75-125	9.20	20	
Chloride	445	125	11	25.0	451	NR	75-125	0.744	20	QM-0
Sulfate as SO4	391	125	11	25.0	390	4.20	75-125	0.198	20	QM-0
Nitrate as NO3	24.8	0.500	n	25.0	0.888	95.6	75-125	0.953	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 13 of 14

Northstar Environmental Remediation Project: Genesis Solar LTUs & Ponds

26225 Enterprise CourtProject Number: 196-004-05Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/23/23 17:21

Notes and Definitions

R-01 The Reporting Limit has been raised to account for dilution necessary due to matrix interference.

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

FILT The sample was filtered prior to analysis.

BS-4 A BS was outside of acceptance range, however, the data was accepted based on the passing duplicate BS, acceptable RPD, and other

batch QCs.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 14 of 14

	Jo		Client Project #: 196-004-05_	EDF#: Not Required	Comments/Preserval			HOLD	НОГД					Notes		 Reporting limits mus previous repo
	Page:	sp.	Slient	:DF#	# Gl yroterode									4	0.00	3
		& Ponds												le s		
		Project Name: Genesis Solar LTUs										20 A 1		Total # of containers	Seals intact? Y/N/MA	
					015M - Therminol (Subcontract)	$ \times$	\times	71		1				ofc	ntact	
	~	Sola		=	SM2540C - Total Dis. Solids	i ×	\times							tal #	als ir	,
	6/9/2023	esis	Collector. Arlin Brewster	723154	SM2510B - Conductivity, Specific	i ×	×							اً ك	Seg) . " . '
	16	3en	Bre	\sim	Hq - 0406	i×	×							\L \frac{1}{2}	eceiv	
	3	<u>ن</u>	Æ	F	VinoreM - A074	4 ×	×							\ \[\sqrt{\gamma}_2 \]) r	
		Nan	JF. A		664 - Oll and Grease	ų×	×							12		
	i) o	<u>ject</u>	lect	Batch #:	0.00 - Chloride, Nitrate, Sulfate	≅İ×	×) 		me .	1 P. C.	me
	Date:	P.	3	Bat	200.8 - Dissolved Metals: Sb, As, 3a, Cd, Cr, Co, Pb, Ni, Se, Zn F.F.)	ıl×	×							Date / Ti	Date / Time	Date / Time
					200.7 - Dissolved Metals: Ca, Cu, va, K, Fe, Mg (FIELD FILTERED)	×	×									
					Container	Various	Various	Various	Various					(signature)	(signature)	(signature)
		92630			Sample	M	M	M	M					Received by	Received by: (signature	Received by: (signature)
	ion		Fax			1550	88	A/N	N/A					ing Sg.	me	Je.
	tal Remediat	ourt, Lake Fo		iter	Date Sampled	6/8/23		N/A	N/A					Date / Time / 19/23 @ OS?	Date / Time	Date / Time
aboratories, inc. nmercentre Dr. st, CA 92630 320	star Environmental Remediation	225 Enterprise Court, Lake Forest, CA	274-1719	ager: Arlin Brewster	mole ID	th Pond	th Pond	Blank	Blank					* (signature)	oy: (signature)	oy: (signature)

Pickup ___

Return to client

Il Instructions: Disposal @ \$2.00 each

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #: T231541	
Client Name: Northstar Environmental Remediation	Project: Genesis Solar LTUs and Ponds
Delivered by:	GLS FedEx Other
	Date/Time Courier Received:
Lad Received by:	Date/Time Lab Received: 6.9.23 082
Total number of coolers received: \(\) Thermometer ID: _	그들은 것이 많은 사람들이 보는 이 사람이 살고 살아 있다면 하는데 있다. 선생님은 생각하는데
Temperature: Cooler #1 0.7 °C +/- the CF (+ 0.1°C) Temperature: Cooler #2 °C +/- the CF (+ 0.1°C) Temperature: Cooler #3 °C +/- the CF (+ 0.1°C)	= °C corrected temperature
Temperature criteria = $\leq 6^{\circ}$ C Within crit	
If NO: Samples received on ice? □Yes If on ice, samples received same day □Yes →	□No → Complete Non-Conformance Sheet □No → Complete Non-Conformance Sheet
Custody seals intact on cooler/sample	□Yes □No* ⊠ N⁄A
Sample containers intact	∑Yes □No*
Sample labels match Chain of Custody IDs	⊠Yes □No*
Total number of containers received match COC	X Yes □No*
Proper containers received for analyses requested on COC	X Yes □No*
Proper preservative indicated on COC/containers for analyses	requested XYes \(\sum No* \(\sum N/A \)
Complete shipment received in good condition with correct ter- containers, labels, volumes preservatives and within method sp holding times	(2) 美麗 - 사람이 가는 사람들이 되었다. (1) 10 전 기계 가는 사람들이 되었다. 그 사람들이 되는 사람들이 되었다. 그 사람들이 되었다.
* Complete Non-Conformance Receiving Sheet if checked Cool	ler/Sample Review - Initials and date: 86 6.7.23
Comments:	
	경기 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :
	<u> </u>

14

10

ANALYTICAL REPORT

PREPARED FOR

Attn: Jeff Lee SunStar Laboratories Inc 25712 Commercentre Drive Lake Forest, California 92630

Generated 6/22/2023 3:54:55 PM

JOB DESCRIPTION

T231541

JOB NUMBER

570-141351-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 6/22/2023 3:54:55 PM

Authorized for release by Sandy Tat, Project Manager I Sandy.Tat@et.eurofinsus.com Designee for Don Burley, Senior Project Manager Donald.Burley@et.eurofinsus.com (657)212-3033

14

Client: SunStar Laboratories Inc Project/Site: T231541 Laboratory Job ID: 570-141351-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

Definitions/Glossary

Client: SunStar Laboratories Inc Job ID: 570-141351-1

Project/Site: T231541

Qualifiers

GC Semi VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Calscience

6/22/2023

Page 4 of 16

А

E

7

8

10

13

14

Case Narrative

Client: SunStar Laboratories Inc

Project/Site: T231541

Job ID: 570-141351-1

Job ID: 570-141351-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-141351-1

Comments

No additional comments.

Receipt

The samples were received on 6/12/2023 10:17 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.8° C.

GC Semi VOA

Method 8015B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 570-337466 and analytical batch 570-338949 recovered outside control limits for the following analytes: Benzene, 1,1'-oxybis-. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3510C: The laboratory control sample (LCS) was performed in duplicate (LCSD) to provide precision data for this batch.

Method 3510C: The following samples formed emulsions during the extraction procedure: T231541-01 (570-141351-1) and T231541-02 (570-141351-2). The emulsions were broken up using Na2SO4.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

_

0

0

_

9

10

12

13

14

Detection Summary

Client: SunStar Laboratories Inc Job ID: 570-141351-1

Project/Site: T231541

Client Sample ID: T231541-01 Lab Sample ID: 570-141351-1

No Detections.

Client Sample ID: T231541-02 Lab Sample ID: 570-141351-2

No Detections.

,

2

4

5

6

8

9

11

13

14

Client Sample Results

Client: SunStar Laboratories Inc Job ID: 570-141351-1

Project/Site: T231541

Method: SW846 8015B - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

72

Surrogate

n-Octacosane (Surr)

Client Sample ID: T231541-01						Lab Sam	ple ID: 570-14	
Date Collected: 06/08/23 15:50							Matrix	: Water
Date Received: 06/12/23 10:17								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	*+	99	ug/L		06/14/23 20:52	06/20/23 18:36	1
1,1'-Biphenyl	ND		99	ug/L		06/14/23 20:52	06/20/23 18:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	67		53 - 151			06/14/23 20:52	06/20/23 18:36	1
Client Sample ID: T231541-02						Lab Sam	ple ID: 570-14	1351-2
Date Collected: 06/08/23 16:00)						Matrix	: Water
Date Received: 06/12/23 10:17								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	*+	99	ug/L		06/14/23 20:52	06/20/23 19:01	1
1,1'-Biphenyl	ND		99	ug/L		06/14/23 20:52	06/20/23 19:01	1

Limits

53 - 151

Prepared

06/14/23 20:52 06/20/23 19:01

Analyzed

Surrogate Summary

Job ID: 570-141351-1 Client: SunStar Laboratories Inc

Project/Site: T231541

Method: 8015B - Diesel Range Organics (DRO) (GC)

Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(53-151)	
570-141351-1	T231541-01	67	
570-141351-2	T231541-02	72	
LCS 570-337466/2-A	Lab Control Sample	106	
LCSD 570-337466/3-A	Lab Control Sample Dup	119	
MB 570-337466/1-A	Method Blank	92	
Surrogate Legend			
OTCSN = n-Octacosar	ne (Surr)		

Page 8 of 16

QC Sample Results

Client: SunStar Laboratories Inc Job ID: 570-141351-1

Project/Site: T231541

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-337466/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 338949

Benzene, 1,1'-oxybis-

Analyte

1,1'-Biphenyl

MB MB Result Qualifier RL Unit D Prepared Analyzed Dil Fac 06/14/23 20:52 06/20/23 17:23 ND 100 ug/L

ug/L

MB MB

ND

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac n-Octacosane (Surr) 92 53 - 151 06/14/23 20:52 06/20/23 17:23

100

Lab Sample ID: LCS 570-337466/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 338949

LCS LCS Spike

Added Result Qualifier Limits **Analyte** Unit D %Rec 1229 *+ 57 - 120 Benzene, 1,1'-oxybis-1000 ug/L 123 1,1'-Biphenyl 1000 898.4 ug/L 90 45 - 120

LCS LCS Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 106 53 - 151

Lab Sample ID: LCSD 570-337466/3-A

Matrix: Water

Analysis Batch: 338949

Prep Batch: 337466 LCSD LCSD RPD Spike %Rec Result Qualifier Limits RPD Limit **Analyte** Added Unit %Rec Benzene, 1,1'-oxybis-1000 1375 *+ 137 57 - 120 20 ug/L 11 1000 1003 100 45 - 120 20 1,1'-Biphenyl ug/L 11

LCSD LCSD

Surrogate %Recovery Qualifier Limits 53 - 151 n-Octacosane (Surr) 119

Prep Type: Total/NA

06/14/23 20:52 06/20/23 17:23

Client Sample ID: Lab Control Sample Dup

Prep Batch: 337466

Prep Type: Total/NA

Prep Batch: 337466 %Rec

Prep Type: Total/NA

QC Association Summary

Client: SunStar Laboratories Inc Job ID: 570-141351-1

Project/Site: T231541

GC Semi VOA

Prep Batch: 337466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-141351-1	T231541-01	Total/NA	Water	3510C	
570-141351-2	T231541-02	Total/NA	Water	3510C	
MB 570-337466/1-A	Method Blank	Total/NA	Water	3510C	
LCS 570-337466/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 570-337466/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 338949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-141351-1	T231541-01	Total/NA	Water	8015B	337466
570-141351-2	T231541-02	Total/NA	Water	8015B	337466
MB 570-337466/1-A	Method Blank	Total/NA	Water	8015B	337466
LCS 570-337466/2-A	Lab Control Sample	Total/NA	Water	8015B	337466
LCSD 570-337466/3-A	Lab Control Sample Dup	Total/NA	Water	8015B	337466

1

3

4

6

9

10

12

13

14

Lab Chronicle

Client: SunStar Laboratories Inc Job ID: 570-141351-1

Project/Site: T231541

Client Sample ID: T231541-01 Lab Sample ID: 570-141351-1

Date Collected: 06/08/23 15:50 Matrix: Water Date Received: 06/12/23 10:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			251.8 mL	2.5 mL	337466	06/14/23 20:52	UFLU	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	338949	06/20/23 18:36	N5Y3	EET CAL 4
	Instrumer	nt ID: GC70B								

Client Sample ID: T231541-02

Date Collected: 06/08/23 16:00

Lab Sample ID: 570-141351-2

Matrix: Water

Date Received: 06/12/23 10:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			251.9 mL	2.5 mL	337466	06/14/23 20:52	UFLU	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	338949	06/20/23 19:01	N5Y3	EET CAL 4
	Instrumer	t ID: GC70B								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

5

7

9

10

12

11

Accreditation/Certification Summary

Client: SunStar Laboratories Inc Job ID: 570-141351-1

Project/Site: T231541

Laboratory: Eurofins Calscience

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Oregon	NELAP	4175	02-02-24

•

3

4

Q

9

11

14

14

Method Summary

Client: SunStar Laboratories Inc

Project/Site: T231541

Job ID: 570-141351-1

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

6

3

4

5

7

10

11

13

14

Sample Summary

Client: SunStar Laboratories Inc

Project/Site: T231541

Job ID: 570-141351-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-141351-1	T231541-01	Water	06/08/23 15:50	06/12/23 10:17
570-141351-2	T231541-02	Water	06/08/23 16:00	06/12/23 10:17

SUBCONTRACT ORDER

SunStar Laboratories, Inc.

T231541

SENDING LABORATORY:

SunStar Laboratories, Inc. 25712 Commercentre Drive Lake Forest, CA 92630

Phone: (949) 297-5020 Fax: (949) 297-5027 Project Manager: Jeff Lee

RECEIVING LABORATORY:

Eurofins Calscience (Tustin) 2841 Dow Ave, Suite 100 Tustin, CA 92780 Phone :(949) 261-1022

Fax: N/A

Analysis	Due	Expires	Laboratory ID	Comments	
Sample ID: T231541-01	Water 5	Sampled:06/08/23 15:50			
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 15:50		8015M- Therminol	
Sample ID: T231541-02	Water	Sampled:06/08/23 16:00			
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00) 12/05/23 16:00		8015M- Therminol	

Received By Date Received By Date Date

Released By

Date

Received By

Date とよ SG Page 1 of 1 2

4

3

7

9

11

14

Login Sample Receipt Checklist

Client: SunStar Laboratories Inc Job Number: 570-141351-1

Login Number: 141351 List Source: Eurofins Calscience

List Number: 1

Creator: Vitente, Precy

Creator. Viterite, Frecy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

Λ

5

0

10

12

10

Printed: 6/9/2023 10:22:11AM

WORK ORDER

T231541

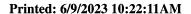
Client: Northstar Environmental Remediation Project Manager: Jeff Lee
Project: Genesis Solar LTUs & Ponds Project Number: 196-004-05

Report To:

Northstar Environmental Remediation Arlin Brewster

26225 Enterprise Court Lake Forest, CA 92630

Date Due: 06/26/23 00:00 (11 day TAT)


Received By: Joann Marroquin Date Received: 06/09/23 08:25 Logged In By: Jeff Lee Date Logged In: 06/09/23 10:18

Samples Received at: 0.8°C

Custody Seals No Received On Ice Yes

COC/Labels Agree Yes
Preservation Confiri Yes

Analysis	Due	TAT	Expires	Comments
T231541-01 North Pond [V	Water] Sampled 06/08/	/23 15:50 (0	GMT-08:00) Pacifi	c
1664	06/16/23 15:00	5	07/06/23 15:50	Oil & Grease
200.7	06/16/23 15:00	5	12/05/23 15:50	Ca,Cu,Na,K,Fe,Mg (F.F)
200.8	06/16/23 15:00	5	12/05/23 15:50	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (F.F)
300.0 - F, Cl, Br, SO4	06/16/23 15:00	5	07/06/23 15:50	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/16/23 15:00	5	06/10/23 15:50	Nitrate
7470/71 Hg	06/16/23 15:00	5	09/06/23 15:50	
Conductivity	06/16/23 15:00	5	07/06/23 15:50	
pH water SM 4500-H+B	06/14/23 15:00	3	06/09/23 15:50	
TDS-160.1	06/16/23 15:00	5	06/15/23 15:50	
T231541-02 South Pond [V Time (US &	Water] Sampled 06/08/	/23 16:00 (0	GMT-08:00) Pacifi	c
1664		_		
	06/16/23 15:00	5	07/06/23 16:00	Oil & Grease
200.7	06/16/23 15:00	5	12/05/23 16:00	Ca,Cu,Na,K,Fe,Mg (F.F)
200.7 200.8				
	06/16/23 15:00	5	12/05/23 16:00	Ca,Cu,Na,K,Fe,Mg (F.F)
200.8	06/16/23 15:00 06/16/23 15:00	5	12/05/23 16:00 12/05/23 16:00	Ca,Cu,Na,K,Fe,Mg (F.F) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (F.F)
200.8 300.0 - F, Cl, Br, SO4	06/16/23 15:00 06/16/23 15:00 06/16/23 15:00	5 5 5	12/05/23 16:00 12/05/23 16:00 07/06/23 16:00	Ca,Cu,Na,K,Fe,Mg (F.F) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (F.F) Chloride,Sulfate only
200.8 300.0 - F, Cl, Br, SO4 300.0 - NO2, NO3, PO4	06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00	5 5 5 5	12/05/23 16:00 12/05/23 16:00 07/06/23 16:00 06/10/23 16:00	Ca,Cu,Na,K,Fe,Mg (F.F) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (F.F) Chloride,Sulfate only
200.8 300.0 - F, Cl, Br, SO4 300.0 - NO2, NO3, PO4 7470/71 Hg	06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00	5 5 5 5 5	12/05/23 16:00 12/05/23 16:00 07/06/23 16:00 06/10/23 16:00 09/06/23 16:00	Ca,Cu,Na,K,Fe,Mg (F.F) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (F.F) Chloride,Sulfate only

WORK ORDER

T231541

Comments

Client: Northstar Environmental Remediation **Project Manager:** Jeff Lee

Project: Genesis Solar LTUs & Ponds **Project Number:** 196-004-05

TAT

Expires

T231541-03 Field Blank [Water] Sampled 06/08/23 00:00 (GMT-08:00) Pacific HOLD

Due

Time (US &

Analysis

[NO ANALYSES]

T231541-04 Trip Blank [Water] Sampled 06/08/23 00:00 (GMT-08:00) Pacific **HOLD**

Time (US &

[NO ANALYSES]

Eurofins Calscience (Tustin)

T231541-01 North Pond [Water] Sampled 06/08/23 15:50 (GMT-08:00) Pacific

Time (US &

Misc Water Testing #1 06/23/23 00:00 10 12/05/23 15:50 8015M-Therminol

T231541-02 South Pond [Water] Sampled 06/08/23 16:00 (GMT-08:00) Pacific

Time (US &

06/23/23 00:00 Misc Water Testing #1 10 12/05/23 16:00 8015M-Therminol

Reviewed By Date Page 2 of 2

APPENDIX C

LABORATORY ANALYTICAL RESULTS DETECTION MONITORING WELLS

29 June 2023

Arlin Brewster
Northstar Environmental Remediation
26225 Enterprise Court
Lake Forest, CA 92630

RE: Genesis Solar Groundwater

Enclosed are the results of analyses for samples received by the laboratory on 06/09/23 08:25. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeff Lee

Project Manager

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/29/23 12:05

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DM-1	T231538-10	Water	06/08/23 18:10	06/09/23 08:25
DM-2	T231538-11	Water	06/08/23 19:40	06/09/23 08:25
DM-3	T231538-12	Water	06/08/23 16:45	06/09/23 08:25

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 1 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/29/23 12:05

DETECTIONS SUMMARY

mple ID: DM-1	Labora	tory ID:	T231538-10		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	29	10	ug/l	200.8	FILT
Calcium	240	50	mg/l	EPA 200.7	FILT
Magnesium	65	10	mg/l	EPA 200.7	FILT
Sodium	4100	50	mg/l	EPA 200.7	FILT
pН	7.8	0.10	pH Units	SM 4500-H+B	
Total Dissolved Solids	10000	10	mg/l	TDS by SM2540C	
pH Temperature °C	21		pH Units	SM 4500-H+B	
Specific Conductance (EC)	18000	10.0	mho/cm @25°0	SM2510b mod.	
Chloride	5300	1000	mg/l	EPA 300.0	
Sulfate as SO4	2000	1000	mg/l	EPA 300.0	
Nitrate as NO3	7.58	0.500	mg/l	EPA 300.0	
Nitrate as N	1.71	0.200	mg/l	EPA 300.0	

ample ID: DM-2	Labora	tory ID:	T231538-11					
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Barium	37	10	ug/l	200.8	FILT			
Calcium	300	50	mg/l	EPA 200.7	FILT			
Magnesium	85	10	mg/l	EPA 200.7	FILT			
Sodium	4800	50	mg/l	EPA 200.7	FILT			
рН	7.6	0.10	pH Units	SM 4500-H+B				
Total Dissolved Solids	6800	10	mg/l	TDS by SM2540C				
pH Temperature °C	20		pH Units	SM 4500-H+B				
Specific Conductance (EC)	18300	10.0	mho/cm @25°(SM2510b mod.				
Chloride	5470	1000	mg/l	EPA 300.0				
Sulfate as SO4	2190	1000	mg/l	EPA 300.0				
Nitrate as NO3	9.73	0.500	mg/l	EPA 300.0				
Nitrate as N	2.20	0.200	mg/l	EPA 300.0				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 2 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/29/23 12:05

Sample ID: DM-3	Labora	ntory ID:	T231538-12		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	16	10	ug/l	200.8	FILT
Barium	17	10	ug/l	200.8	FILT
Calcium	240	50	mg/l	EPA 200.7	FILT
Magnesium	66	10	mg/l	EPA 200.7	FILT
Sodium	4200	50	mg/l	EPA 200.7	FILT
Total Dissolved Solids	9800	10	mg/l	TDS by SM2540C	
pH	7.7	0.10	pH Units	SM 4500-H+B	
pH Temperature °C	19		pH Units	SM 4500-H+B	
Specific Conductance (EC)	17600	10.0	mho/cm @25°(SM2510b mod.	
Chloride	5230	1000	mg/l	EPA 300.0	
Sulfate as SO4	2100	1000	mg/l	EPA 300.0	
Nitrate as NO3	2.61	0.500	mg/l	EPA 300.0	
Nitrate as N	0.590	0.200	mg/l	EPA 300.0	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 3 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/29/23 12:05

DM-1 T231538-10 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratori	es, Inc.					
Metals by EPA 200 Series Methods									
Copper	ND	0.50	mg/l	100	23F0140	06/09/23	06/16/23	EPA 200.7	FILT, R-01
Calcium	240	50	"	**	"	**	06/16/23	17	FILT
Iron	ND	20	"	"	"	"	"	**	FILT, R-01
Magnesium	65	10	"	**	"	**	H	**	FILT
Potassium	ND	50	"	"	"	**	H.	**	FILT, R-01
Sodium	4100	50	"	"	"	**	H	***	FILT
Antimony	ND	10	ug/l	20	23F0149	06/09/23	06/13/23	200.8	FILT, R-01
Arsenic	ND	10	"	"	"	"	H	**	FILT, R-01
Barium	29	10	**	**	**	**	H	**	FILT
Cadmium	ND	10	"	"	"	**	H	***	FILT, R-01
Chromium	ND	10	"	"	17	**	II	11	FILT, R-01
Cobalt	ND	10	"	"	17	17	11	**	FILT, R-01
Lead	ND	10	"	"	17	v v	H	**	FILT, R-01
Nickel	ND	10	"	"	"	"	11	**	FILT, R-01
Selenium	ND	10	"	"	"	"	n	**	FILT, R-01
Zine	ND	10	"	**	"	"	"	"	FILT, R-01
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	1.0	ug/l	1	23F0143	06/09/23	06/12/23	EPA 7470A Water	FILT
Conventional Chemistry Parameters by Al	PHA/EPA/AST	M Methods							
Oil & Grease	ND	5.00	mg/l	1	23F0155	06/09/23	06/14/23	EPA 1664B	
Specific Conductance (EC)	18000	10.0	umho/cm @25°C	11	23F0163	06/09/23	06/12/23	SM2510b mod.	
рН	7.8	0.10	pH Units	"	23F0139	06/09/23	06/09/23	SM 4500-H+B	
pH Temperature °C	21		"	"	"	"	11	**	
Total Dissolved Solids	10000	10	mg/l	"	23F0162	06/09/23	06/16/23	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 4 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/29/23 12:05

DM-1 T231538-10 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	5300	1000	mg/l	200	23F0138	06/09/23	06/09/23	EPA 300.0	
Sulfate as SO4	2000	1000	"	"	**	**	"	n	
Nitrate as NO3	7.58	0.500	"	1	"	17	06/09/23	11	
Nitrate as N	1.71	0.200	"	"	"	**	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 5 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/29/23 12:05

DM-2 T231538-11 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorio	es, Inc.					
Metals by EPA 200 Series Methods									
Copper	ND	0.50	mg/l	100	23F0140	06/09/23	06/16/23	EPA 200.7	FILT, R-01
Calcium	300	50	"	"	**	"	06/16/23	"	FILT
Iron	ND	20	"	"	**	"	"	**	FILT, R-01
Potassium	ND	50	"	**	**	"	**	**	FILT, R-01
Magnesium	85	10	"	"	**	17	II	**	FILT
Sodium	4800	50	"	**	**	"	H	Ħ	FILT
Antimony	ND	10	ug/l	20	23F0149	06/09/23	06/13/23	200.8	FILT, R-01
Arsenic	ND	10	"	**	**	"	**	"	FILT, R-01
Barium	37	10	"	"	**	17	II	11	FILT
Cadmium	ND	10	"	**	**	"	H	Ħ	FILT, R-01
Chromium	ND	10	"	"	n	"	n	Ħ	FILT, R-01
Cobalt	ND	10	"	"	**	**	H	Ħ	FILT, R-01
Lead	ND	10	"	"	**	**	11	**	FILT, R-01
Nickel	ND	10	"	"	**	"	**	**	FILT, R-01
Selenium	ND	10	"	**	**	"	**	**	FILT, R-01
Zinc	ND	10	"	**	**	"	"	**	FILT, R-01
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	1.0	ug/l	1	23F0143	06/09/23	06/12/23	EPA 7470A Water	FILT
Conventional Chemistry Parameters by AP	HA/EPA/ASTI	M Methods							
Oil & Grease	ND	5.00	mg/l	1	23F0155	06/09/23	06/14/23	EPA 1664B	
Specific Conductance (EC)	18300	10.0	umho/cm @25°C	11	23F0163	06/09/23	06/12/23	SM2510b mod.	
pH	7.6	0.10	pH Units	"	23F0139	06/09/23	06/09/23	SM 4500-H+B	
pH Temperature °C	20		"	"	**	**	II	Ħ	
Total Dissolved Solids	6800	10	mg/l	"	23F0162	06/09/23	06/16/23	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 6 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/29/23 12:05

DM-2 T231538-11 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	5470	1000	mg/l	200	23F0138	06/09/23	06/09/23	EPA 300.0	
Sulfate as SO4	2190	1000	n	"	Ħ	**	"	**	
Nitrate as NO3	9.73	0.500	"	1	"	**	06/09/23	**	
Nitrate as N	2.20	0.200	**	"	**	**	"	**	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 7 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/29/23 12:05

DM-3 T231538-12 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	Laboratorio	es, Inc.					
Metals by EPA 200 Series Methods									
Copper	ND	0.50	mg/l	100	23F0140	06/09/23	06/16/23	EPA 200.7	FILT, R-01
Calcium	240	50	"	"	**	"	06/16/23	"	FILT
Iron	ND	20	"	"	Ħ	**	H .	**	FILT, R-01
Potassium	ND	50	"	"	**	"	"	**	FILT, R-01
Magnesium	66	10	"	"	**	"	"	**	FILT
Sodium	4200	50	"	"	**	17	11	"	FILT
Antimony	ND	10	ug/l	20	23F0149	06/09/23	06/13/23	200.8	FILT, R-01
Arsenic	16	10	"	"	**	"	"	"	FILT
Barium	17	10	"	"	**	17	11	"	FILT
Cadmium	ND	10	"	"	**	"	**	**	FILT, R-01
Chromium	ND	10	"	"	**	17	II	"	FILT, R-01
Cobalt	ND	10	"	"	"	"	11	"	FILT, R-01
Lead	ND	10	"	"	"	"	"	"	FILT, R-01
Nickel	ND	10	"	"	**	"	W	11	FILT, R-01
Selenium	ND	10	"	"	**	17	n	11	FILT, R-01
Zinc	ND	10	**	11	**	11	н	"	FILT, R-01
Cold Vapor Extraction EPA 7470/7471									
Mercury	ND	1.0	ug/l	1	23F0143	06/09/23	06/12/23	EPA 7470A Water	FILT
Conventional Chemistry Parameters by AP	HA/EPA/AST	M Methods							
Oil & Grease	ND	5.00	mg/l	1	23F0155	06/09/23	06/14/23	EPA 1664B	
Specific Conductance (EC)	17600	10.0	umho/cm @25°C	"	23F0163	06/09/23	06/12/23	SM2510b mod.	
pH	7.7	0.10	pH Units	n	23F0139	06/09/23	06/09/23	SM 4500-H+B	
pH Temperature °C	19		"	"	**	**	"	"	
Total Dissolved Solids	9800	10	mg/l	**	23F0162	06/09/23	06/16/23	TDS by SM2540C	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 8 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/29/23 12:05

DM-3 T231538-12 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Anions by EPA Method 300.0									
Chloride	5230	1000	mg/l	200	23F0138	06/09/23	06/09/23	EPA 300.0	
Sulfate as SO4	2100	1000	"	"	**	**	II .	n	
Nitrate as NO3	2.61	0.500	"	1	"	**	06/09/23	n	
Nitrate as N	0.590	0.200	"	"	Ħ	**	H	Ħ	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 9 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise Court Project Number: 196-004-06 Reported: Lake Forest CA, 92630 Project Manager: Arlin Brewster 06/29/23 12:05

Metals by EPA 200 Series Methods - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Ullits	Level	Result	/OKEC	Lillius	Ni D	Liiiit	110105
Batch 23F0140 - EPA 3010A										
Blank (23F0140-BLK1)				Prepared: (06/09/23 A	nalyzed: 06	5/16/23			
Copper	ND	0.005	mg/l							
Calcium	ND	0.50	11							
Iron	ND	0.20	11							
Magnesium	ND	0.10	11							
Potassium	ND	0.50	11							
Sodium	ND	0.50	11							
LCS (23F0140-BS1)				Prepared: (06/09/23 A	nalyzed: 06	5/16/23			
Copper	1.53	0.005	mg/l	1.50		102	85-115			
Calcium	1.52	0.50	11	1.50		101	80-120			
Iron	1.52	0.20		1.50		101	80-120			
Potassium	1.44	0.50	"	1.50		96.0	80-120			
Magnesium	1.56	0.10	"	1.50		104	80-120			
Sodium	1.44	0.50	"	1.50		95.9	80-120			
Matrix Spike (23F0140-MS1)	Sou	rce: T231538-	01	Prepared: (06/09/23 A	nalyzed: 06	5/16/23			
Copper	1.99	0.50	mg/l	1.50	0.058	129	70-130			
Calcium	31.4	50	11	1.50	28.4	195	70-130			QM-07, R-01
Iron	2.24	20	11	1.50	0.847	92.6	70-130			R-01
Magnesium	ND	10	11	1.50	ND		70-130			QM-05, R-01
Potassium	ND	50	11	1.50	ND		70-130			QM-05, R-01
Sodium	614	50	II.	1.50	590	NR	70-130			QM-05
Matrix Spike Dup (23F0140-MSD1)	Sou	rce: T231538-	01	Prepared: (06/09/23 Aı	nalyzed: 06	5/16/23			
Copper	1.78	0.50	mg/l	1.50	0.058	115	70-130	11.2	30	
Calcium	29.0	50	"	1.50	28.4	40.8	70-130	7.65	30	QM-05, R-01
Iron	1.73	20	"	1.50	0.847	59.1	70-130	25.3	30	QM-05, R-01
Magnesium	ND	10		1.50	ND		70-130		30	QM-05, R-01
Potassium	17.2	50		1.50	ND	NR	70-130		30	QM-05, R-01
Sodium	576	50	11	1.50	590	NR	70-130	6.32	30	QM-05, R-01
										~ .

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 10 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise Court Project Number: 196-004-06 Reported: Lake Forest CA, 92630 Project Manager: Arlin Brewster 06/29/23 12:05

Metals by EPA 200 Series Methods - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 23F0149 - EPA 3010A										
Blank (23F0149-BLK1)				Prepared: (06/09/23 Aı	nalyzed: 06	/13/23			
Antimony	ND	0.50	ug/l							
Arsenic	ND	0.50	"							
Barium	ND	0.50	"							
Cadmium	ND	0.50	"							
Chromium	ND	0.50	"							
Cobalt	ND	0.50	"							
Lead	ND	0.50	"							
Nickel	ND	0.50	"							
Selenium	ND	0.50	"							
Zinc	ND	0.50	"							
LCS (23F0149-BS1)				Prepared: (06/09/23 Aı	nalyzed: 06	/13/23			
Arsenic	23.6	0.50	ug/l	25.0		94.3	85-115			
Barium	23.6	0.50	"	25.0		94.6	85-115			
Cadmium	23.6	0.50	"	25.0		94.5	85-115			
Chromium	23.9	0.50	"	25.0		95.7	85-115			
Lead	25.4	0.50	"	25.0		102	85-115			
Matrix Spike (23F0149-MS1)	Sou	rce: T231538-	02	Prepared: (06/09/23 A	nalyzed: 06	/13/23			
Arsenic	27.0	10	ug/l	25.0	0.400	106	70-130			
Barium	36.8	10	"	25.0	13.8	92.0	70-130			
Cadmium	25.6	10	"	25.0	3.80	87.2	70-130			
Chromium	23.6	10	"	25.0	ND	94.4	70-130			
Lead	27.0	10	"	25.0	ND	108	70-130			
Matrix Spike Dup (23F0149-MSD1)	Sou	rce: T231538-	02	Prepared: (06/09/23 Aı	nalyzed: 06	/13/23			
Arsenic	29.2	10	ug/l	25.0	0.400	115	70-130	7.83	20	
Barium	37.4	10	11	25.0	13.8	94.4	70-130	1.62	20	
Cadmium	28.0	10		25.0	3.80	96.8	70-130	8.96	20	
Chromium	24.0	10		25.0	ND	96.0	70-130	1.68	20	
Lead	27.2	10		25.0	ND	109	70-130	0.738	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 11 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/29/23 12:05

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 23F0143 - EPA 7470A Water										
Blank (23F0143-BLK1)				Prepared: (6/09/23 A	nalyzed: 06	/12/23			
Mercury	ND	1.0	ug/l							
LCS (23F0143-BS1)				Prepared: (06/09/23 A	nalyzed: 06	/12/23			
Mercury	7.33	1.0	ug/l	7.50		97.7	80-120			
Matrix Spike (23F0143-MS1)	Sour	ce: T231538-)1	Prepared: (06/09/23 A	nalyzed: 06	/12/23			
Mercury	7.76	1.0	ug/l	7.50	ND	103	80-120			
Matrix Spike Dup (23F0143-MSD1)	Sour	ce: T231538-) 1	Prepared: (06/09/23 A	nalyzed: 06	/12/23			
Mercury	7.98	1.0	ug/l	7.50	ND	106	80-120	2.80	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 12 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

1400

10

mg/l

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/29/23 12:05

Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Allalyte	Kesuit	Lillit	Oilits	Level	Result	/OKEC	Lillits	KFD	Lillit	INUICS
Batch 23F0139 - General Preparation										
Duplicate (23F0139-DUP1)	Sou	ırce: T231538	-01	Prepared &	Analyzed:	06/09/23				
pH	8.22	0.10	pH Units		8.31			1.09	10	
pH Temperature °C	18.9		II		18.5			2.14	200	
Batch 23F0155 - General Preparation										
Blank (23F0155-BLK1)				Prepared: (06/09/23 A	nalyzed: 06	5/14/23			
Oil & Grease	ND	5.00	mg/l							
LCS (23F0155-BS1)				Prepared: (06/09/23 A	nalyzed: 06	5/14/23			
Oil & Grease	41.5	5.00	mg/l	53.1		78.2	78-114			
LCS Dup (23F0155-BSD1)				Prepared: (06/09/23 A	nalyzed: 06	5/14/23			
Oil & Grease	40.0	5.00	mg/l	53.1		75.3	78-114	3.68	20	BS-4
Batch 23F0162 - General Preparation										
Blank (23F0162-BLK1)				Prepared: (06/09/23 A	nalyzed: 06	/16/23			
Total Dissolved Solids	ND	10	mg/l							
LCS (23F0162-BS1)				Prepared: (06/09/23 A	nalyzed: 06	6/16/23			
Total Dissolved Solids	564	10	mg/l	500		113	80-120			
Duplicate (23F0162-DUP1)	Sou	ırce: T231538	-01	Prepared: (06/09/23 A	nalyzed: 06	5/16/23			

SunStar Laboratories, Inc.

Total Dissolved Solids

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6.09

20

1490

Jeff Lee, Project Manager Page 13 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number:196-004-06Reported:Lake Forest CA, 92630Project Manager:Arlin Brewster06/29/23 12:05

${\bf Conventional\ Chemistry\ Parameters\ by\ APHA/EPA/ASTM\ Methods\ -\ Quality\ Control}$

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 23F0163 - General Preparation

Duplicate (23F0163-DUP1)	Source:	T231538-01	Prepared: 06/09/23 Analyzed: 06/12/23			
Specific Conductance (EC)	2680	10.0 umho/cm	2690	0.372	15	
		@25°C				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 14 of 16

RPD

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/29/23 12:05

Reporting

Anions by EPA Method 300.0 - Quality Control

SunStar Laboratories, Inc.

Spike

Source

%REC

		reporting		Spike	Bource		/orche		KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 23F0138 - General Preparation										
Blank (23F0138-BLK1)				Prepared &	z Analyzed:	06/09/23				
Fluoride	ND	0.500	mg/l							
Chloride	ND	5.00	"							
Nitrite as NO2	ND	0.500	11							
Sulfate as SO4	ND	5.00	II							
Nitrate as NO3	ND	0.500	II							
Phosphate, Total as Orthophosphate	ND	0.500	"							
Nitrite as N	ND	0.200	11							
Nitrate as N	ND	0.200	II							
LCS (23F0138-BS1)				Prepared &	Analyzed:	06/09/23				
Fluoride	22.6	0.500	mg/l	25.0		90.4	75-125			
Chloride	24.6	5.00	"	25.0		98.3	75-125			
Sulfate as SO4	25.4	5.00	"	25.0		101	75-125			
Nitrate as NO3	25.7	0.500	"	25.0		103	75-125			
Matrix Spike (23F0138-MS1)	Sou	rce: T231538-	01	Prepared &	z Analyzed:	06/09/23				
Fluoride	29.4	0.500	mg/l	25.0	4.80	98.6	75-125			
Chloride	449	125	"	25.0	451	NR	75-125			QM-0
Sulfate as SO4	392	125	III	25.0	390	7.30	75-125			QM-0
Nitrate as NO3	24.6	0.500	II.	25.0	0.888	94.7	75-125			
Matrix Spike Dup (23F0138-MSD1)	Sou	rce: T231538-	01	Prepared &	z Analyzed:	06/09/23				
Fluoride	26.8	0.500	mg/l	25.0	4.80	88.2	75-125	9.20	20	
Chloride	445	125	11	25.0	451	NR	75-125	0.744	20	QM-0
Sulfate as SO4	391	125	11	25.0	390	4.20	75-125	0.198	20	QM-0
Nitrate as NO3	24.8	0.500	n	25.0	0.888	95.6	75-125	0.953	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 15 of 16

Northstar Environmental Remediation Project: Genesis Solar Groundwater

26225 Enterprise CourtProject Number: 196-004-06Reported:Lake Forest CA, 92630Project Manager: Arlin Brewster06/29/23 12:05

Notes and Definitions

R-01 The Reporting Limit has been raised to account for dilution necessary due to matrix interference.

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

FILT The sample was filtered prior to analysis.

BS-4 A BS was outside of acceptance range, however, the data was accepted based on the passing duplicate BS, acceptable RPD, and other

batch QCs.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Lee, Project Manager Page 16 of 16

Chain of Custody Record

ಕ

12007

Date:__

aboratories, Inc. nmercentre Dr

st, CA 92630

Comments/Preserval ** Deuterium & Oxy subcontract has 10 Reporting limits mus previous repo Client Project #: 196-004-06 Notes EDF #: T10000006093 Page: 0.8 Laboratory ID# 2 Project Name: Genesis Solar Groundwater Turn around time: Standard ** Received good condition/cold Total # of containers Chain of Custody seals Y/N/N/Seals intact? Y/N/N/ 300.0 - Fluoride Deuterium, Oxygen-18 (Subcont.) X 8015M - Therminol (Subcontract) X SM2540C - Total Dis. Solids Collector: Arlin Brewster SM2510B - Conductivity, Specific Hd - 0+06 × × × 7470A - Mercury $\times | \times$ 9/22 8.25 ➤ 1664 - Oil and Grease Batch #: × 300.0 - Chloride, Nitrate, Sulfate Date / Time Date / Time X X Ba, Cd, Cr, Co, Pb, Ni, Se, Zn Date/ Na, K, Fe, Mg (FIELD FILTERED) × ,uO ,sO: Tiesolved Metals: Ca, Cu, Container Type Received by (signature) Receiyed by: (signature) Received by: (signature) Various Various Various Sample Type ≥ ≶ ≥ 225 Enterprise Court, Lake Forest, CA 92630 940 6/9/ね3 e CBAS Date / Time Time 1810 ıstar Environmental Remediation Date / Time Date / Time $\mathcal{E}_{\mathcal{L}}$ Sampled 6/8/3 Date ager: Arlin Brewster by (signature) by: (signature) by: (signature) -274-1719 mple ID **JM-2 S-MC**

Pickup

Return to client

Il Instructions: Disposal @ \$2.00 each

SAMPLE RECEIVING REVIEW SHEET

Batch/Work Order #:	T231538		
Client Name:	Northstar	Project:	Genesis Solar Ground
Delivered by:	✓ Client ☐ SunStar Courie	r 🗆 GLS [☐ FedEx ☐ Other
If Courier, Received by:		Date/Time Co Received:	
Lab Received by:	Joann	Date/Time Lal Received:	b 6-9-23 8:25
Total number of coolers re	eceived: Thermometer ID:	SC-1	
Temperature: Cooler #1	0.7 °C +/- the CF (+ 0.1°C)	= 9.%	°C corrected temperature
Temperature: Cooler #2	°C +/- the CF (+ 0.1°C)		°C corrected temperature
Temperature: Cooler #3	°C +/- the CF (+ 0.1°C)	에 1명 : 이 1명 (1) 1552년 - 1882년 - 1882년 -	°C corrected temperature
Temperature criteria = 5 (no frozen containers)	≤6°C Within cr	riteria?	✓Yes □No □N/A
If NO:			□No →
Samples received	그녀는 물이 가입니다면서 하는 것이 없는데 얼마를 먹었다.		Complete Non-Conformance Sheet
If on ice, samples collected?	received same day	Acceptable	
Custody seals intact on co	ooler/sample		□Yes □No* ☑N/A
Sample containers intact			☑Yes □No*
Sample labels match Chair	in of Custody IDs		☑Yes □No*
Total number of container	rs received match COC		✓Yes □No*
Proper containers received	d for analyses requested on COC		✓Yes □No*
Proper preservative indica	ated on COC/containers for analyses	s requested	✓Yes □No* □N/A
	yed in good condition with correct to es preservatives and within method		✓ Yes □No*
* Complete Non-Conforman	nce Receiving Sheet if checked Co	oler/Sample Revi	ew - Initials and date: 7B 6-9-23
			공연장이 아이들에게 다고 있다. 남고 있는 나는 자연이 되었다고 있다.
Comments:			
Comments:			
Comments:			

13 14 15

ANALYTICAL REPORT

PREPARED FOR

Attn: Jeff Lee SunStar Laboratories Inc 25712 Commercentre Drive Lake Forest, California 92630

Generated 6/23/2023 10:05:59 AM Revision 1

JOB DESCRIPTION

T231538

JOB NUMBER

570-141353-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 6/23/2023 10:05:59 AM Revision 1

Authorized for release by Sandy Tat, Project Manager I Sandy.Tat@et.eurofinsus.com Designee for Don Burley, Senior Project Manager Donald.Burley@et.eurofinsus.com (657)212-3033

3

5

Client: SunStar Laboratories Inc Project/Site: T231538

Laboratory Job ID: 570-141353-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	17

Definitions/Glossary

Client: SunStar Laboratories Inc Job ID: 570-141353-1

Project/Site: T231538

Qualifiers

GC Semi VOA

*+ LCS and/or LCSD is outside acceptance limits, high biased.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
--------------	---	--

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

_

b

Ω

0

10

III.

13

14

Case Narrative

Client: SunStar Laboratories Inc

Project/Site: T231538

Job ID: 570-141353-1

Job ID: 570-141353-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-141353-1

Comments

No additional comments.

Receipt

The samples were received on 6/12/2023 10:17 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.9° C.

GC Semi VOA

Method 8015B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 570-337466 and analytical batch 570-338949 recovered outside control limits for the following analytes: Benzene, 1,1'-oxybis-. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3510C: The laboratory control sample (LCS) was performed in duplicate (LCSD) to provide precision data for this batch.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

_

၁

6

0

10

11

13

14

Detection Summary

Project/Site: T231538	Job ID: 570-141353-1
Client Sample ID: T231538-10	Lab Sample ID: 570-141353-8
No Detections.	
Client Sample ID: T231538-11	Lab Sample ID: 570-141353-9
No Detections.	
Client Sample ID: T231538-12	Lab Sample ID: 570-141353-10

No Detections.

Client Sample Results

Client: SunStar Laboratories Inc Job ID: 570-141353-1

Project/Site: T231538

Method: SW846 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: T231538-10 Date Collected: 06/08/23 18:10						Lab Sam _l	ple ID: 570-14 Matrix	11353-8 : Water
Date Received: 06/12/23 10:17 Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	*+	97	ug/L		06/14/23 20:52	06/20/23 22:16	1
1,1'-Biphenyl	ND		97	ug/L		06/14/23 20:52	06/20/23 22:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	101		53 - 151			06/14/23 20:52	06/20/23 22:16	1
Client Sample ID: T231538-11						Lab Sam	ple ID: 570-14	1353-9
Date Collected: 06/08/23 19:40							Matrix	: Water
Date Received: 06/12/23 10:17								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	*+	100	ug/L		06/14/23 20:52	06/20/23 22:41	1
1,1'-Biphenyl	ND		100	ug/L		06/14/23 20:52	06/20/23 22:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	94		53 - 151			06/14/23 20:52	06/20/23 22:41	1
Client Sample ID: T231538-12						Lab Samp	le ID: 570-141	353-10
Date Collected: 06/08/23 16:45						- -	Matrix	: Water
Date Received: 06/12/23 10:17								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	*+	99	ug/L		06/14/23 20:52	06/20/23 23:06	1
1,1'-Biphenyl	ND		99	ug/L		06/14/23 20:52	06/20/23 23:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	99		53 - 151			06/14/23 20:52	06/20/23 23:06	1

Surrogate Summary

Client: SunStar Laboratories Inc Job ID: 570-141353-1

Project/Site: T231538

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)
	OTCSN1	
Client Sample ID	(53-151)	
T231538-10	101	
T231538-11	94	
T231538-12	99	
	T231538-10 T231538-11	Client Sample ID (53-151) T231538-10 101 T231538-11 94 T231538-12 99

1 2

3

5

7

8

9

11

12

14

QC Sample Results

Job ID: 570-141353-1 Client: SunStar Laboratories Inc

Project/Site: T231538

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-337466/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 338949	Prep Batch: 337466

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND		100	ug/L		06/14/23 20:52	06/20/23 17:23	1
1,1'-Biphenyl	ND		100	ug/L		06/14/23 20:52	06/20/23 17:23	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)			53 151			06/14/23 20:52	06/20/23 17:23	

Lab Sample ID: LCS 570- Matrix: Water Analysis Batch: 338949	337466/2-A					Clie	ent Sa	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 337466
_			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene, 1,1'-oxybis-			1000	1229	*+	ug/L		123	57 - 120
1,1'-Biphenyl			1000	898.4		ug/L		90	45 - 120
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
n-Octacosane (Surr)	106		53 - 151						

Lab Sample ID: LCSD 570-337466/3-A Matrix: Water Analysis Batch: 338949			(Client Sa	ample	ID: Lak	Control Prep Ty Prep Ba	pe: Tot	al/NA
-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene, 1,1'-oxybis-	1000	1375	*+	ug/L		137	57 - 120	<u>11</u>	20
1,1'-Biphenyl	1000	1003		ug/L		100	45 - 120	11	20
1000 1000									

			эріке	LCSD	LCOD				%Rec		KPU
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene, 1,1'-oxybis-	-		1000	1375	*+	ug/L		137	57 - 120	11	20
1,1'-Biphenyl			1000	1003		ug/L		100	45 - 120	11	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
n-Octacosane (Surr)	119		53 - 151								
_											

QC Association Summary

Client: SunStar Laboratories Inc Job ID: 570-141353-1

Project/Site: T231538

GC Semi VOA

Prep Batch: 337466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-141353-8	T231538-10	Total/NA	Water	3510C	
570-141353-9	T231538-11	Total/NA	Water	3510C	
570-141353-10	T231538-12	Total/NA	Water	3510C	

Analysis Batch: 338949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-141353-8	T231538-10	Total/NA	Water	8015B	337466
570-141353-9	T231538-11	Total/NA	Water	8015B	337466
570-141353-10	T231538-12	Total/NA	Water	8015B	337466

2

3

4

5

_

9

10

12

13

-

Lab Chronicle

Client: SunStar Laboratories Inc Job ID: 570-141353-1

Project/Site: T231538

Client Sample ID: T231538-10 Lab Sample ID: 570-141353-8

Date Collected: 06/08/23 18:10

Date Received: 06/12/23 10:17

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			257.5 mL	2.5 mL	337466	06/14/23 20:52	UFLU	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	338949	06/20/23 22:16	N5Y3	EET CAL 4
	Instrumer	nt ID: GC70B								

Client Sample ID: T231538-11 Lab Sample ID: 570-141353-9

Date Collected: 06/08/23 19:40 Matrix: Water Date Received: 06/12/23 10:17

Batch Batch Dil Initial **Final Batch Prepared** Number Method **Prep Type** Type Run **Factor Amount Amount** or Analyzed Analyst Lab 3510C Total/NA 337466 06/14/23 20:52 UFLU EET CAL 4 248.5 mL 2.5 mL Prep Total/NA Analysis 8015B 1 mL 338949 06/20/23 22:41 N5Y3 **EET CAL 4** 1 mL Instrument ID: GC70B

Client Sample ID: T231538-12 Lab Sample ID: 570-141353-10

Date Collected: 06/08/23 16:45 Matrix: Water

Date Received: 06/12/23 10:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			252.8 mL	2.5 mL	337466	06/14/23 20:52	UFLU	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	338949	06/20/23 23:06	N5Y3	EET CAL 4
	Instrumer	nt ID: GC70B								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

2

3

5

7

8

9

11

13

<u> 14</u>

15

Eurofins Calscience

Accreditation/Certification Summary

Client: SunStar Laboratories Inc Job ID: 570-141353-1

Project/Site: T231538

Laboratory: Eurofins Calscience

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Oregon	NELAP	4175	02-02-24

•

3

2

4

5

a

10

12

4 4

Method Summary

Client: SunStar Laboratories Inc

Project/Site: T231538

Job ID: 570-141353-1

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

_

1

5

7

8

3

11

12

4 4

Sample Summary

Client: SunStar Laboratories Inc

Project/Site: T231538

Job ID: 570-141353-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-141353-8	T231538-10	Water	06/08/23 18:10	06/12/23 10:17
570-141353-9	T231538-11	Water	06/08/23 19:40	06/12/23 10:17
570-141353-10	T231538-12	Water	06/08/23 16:45	06/12/23 10:17

3

2

4

5

0

10

11

12

4 4

6

SUBCONTRACT ORDER

SunStar Laboratories, Inc. T231538

SENDING LABORATORY:

SunStar Laboratories, Inc. 25712 Commercentre Drive Lake Forest, CA 92630 Phone: (949) 297-5020 Fax: (949) 297-5027

Project Manager: Jeff Lee

RECEIVING LABORATORY:

Eurofins Calscience (Tustin) 2841 Dow Ave, Suite 100 Tustin, CA 92780

Phone :(949) 261-1022

Fax: N/A

570-141353 Chain of Custody

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: T231538-01	Water Samp	pled:06/ 08/23 14:15		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 14:15		8015M- Therminol
Sample ID: T231538-02	Water Samp	pled:06/08/23 12:30		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 12:30		8015M- Therminol
Sample ID: T231538-03	Water Samp	pled:06/08/23 12:00		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 12:00		8015M- Therminol
Sample ID: T231538-04	Water Samj	pled:06/08/23 14:30		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 14:30		8015M- Therminol
Sample ID: T231538-05	Water Samp	pled:06/08/23 15:05		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 15:05		8015M- Therminol
Sample ID: T231538-06	Water Samp	pled:06/08/23 15:20		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 15:20		8015M- Therminol
5/	/ 140 -	27 10:17	0	EZ 6/11/13 12:17
Released By	Date		Received By	Date
Released By	Date	1	Received By	7/2-9 Schate Page 1 of

SUBCONTRACT ORDER

SunStar Laboratories, Inc.

T231538

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: T231538-07	Water Sam	pled:06/08/23 00:00		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 00:00		8015M- Therminol
Sample ID: T231538-10	Water Sam	płed:06/08/23 18:10		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 18:10		8015M- Therminol
Sample ID: T231538-11	Water Sam	pled:06/08/23 19:40		
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 19:40	,	8015M- Therminol
Sample ID: T231538-12	Water Sam	pled:06/08/23 16:45	Ministery ments	
Misc Water Testing #1 Containers Supplied:	06/23/23 00:00	12/05/23 16:45		8015M- Therminol

Released By Date Received By Date

Date

Date

Released By

Date

Received By

Date

Login Sample Receipt Checklist

Client: SunStar Laboratories Inc Job Number: 570-141353-1

Login Number: 141353 List Source: Eurofins Calscience

List Number: 1

Creator: Vitente, Precy

ordior. Vicinio, i recy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

5

8

10

13

14

www.isotechlabs.com

Co. Job#: Lab #: 874738 Job #: 54935 IS-101168 Sample Name: Co. Lab#: T231538-10 Company: SunStar Laboratories, Inc API/Well: Container: 250ml Plastic Bottle Field/Site Name: T231538 Location: Formation/Depth: Sampling Point: Date Sampled: 6/08/2023 18:10 Date Received: 6/13/2023 Date Reported: 6/27/2023 δD of water -69.3 % relative to VSMOW $\delta^{18}O$ of water -8.53 ‰ relative to VSMOW Tritium content of water ----na δ^{13} C of DIC na ¹⁴C content of DIC na $\delta^{15}N$ of nitrate na $\delta^{18}O$ of nitrate na δ^{34} S of sulfate na $\delta^{18}O$ of sulfate na

Remarks:

Vacuum Distilled? *

No

www.isotechlabs.com

Co. Job#: Lab #: 874739 Job #: 54935 IS-101168 Sample Name: Co. Lab#: T231538-11 Company: SunStar Laboratories, Inc API/Well: Container: 250ml Plastic Bottle Field/Site Name: T231538 Location: Formation/Depth: Sampling Point: Date Sampled: 6/08/2023 19:40 Date Received: 6/13/2023 Date Reported: 6/27/2023 δD of water -70.0 % relative to VSMOW $\delta^{18}O$ of water -8.51 ‰ relative to VSMOW Tritium content of water ----na δ^{13} C of DIC na ¹⁴C content of DIC na $\delta^{15}N$ of nitrate na $\delta^{18}O$ of nitrate na δ^{34} S of sulfate na $\delta^{18}O$ of sulfate na

Vacuum Distilled? *

Remarks:

No

^{*}Indicates if vacuum distillation was utilized for hydrogen and oxygen isotopic analysis of water

www.isotechlabs.com

Co. Job#: Lab #: 874740 Job #: 54935 IS-101168 Sample Name: Co. Lab#: T231538-12 Company: SunStar Laboratories, Inc API/Well: Container: 250ml Plastic Bottle Field/Site Name: T231538 Location: Formation/Depth: Sampling Point: Date Sampled: 6/08/2023 16:45 Date Received: 6/13/2023 Date Reported: 6/27/2023 δD of water -71.1 % relative to VSMOW $\delta^{18}O$ of water -8.76 ‰ relative to VSMOW Tritium content of water ----na δ^{13} C of DIC na ¹⁴C content of DIC na $\delta^{15}N$ of nitrate na $\delta^{18}O$ of nitrate na δ^{34} S of sulfate na $\delta^{18}O$ of sulfate na

Vacuum Distilled? *

Remarks:

No

^{*}Indicates if vacuum distillation was utilized for hydrogen and oxygen isotopic analysis of water

Printed: 6/9/2023 9:27:12AM

WORK ORDER

T231538

Client: Northstar Environmental Remediation **Project Manager:** Jeff Lee **Project: Genesis Solar Groundwater Project Number:** 196-004-06

Report To:

Northstar Environmental Remediation

Arlin Brewster

26225 Enterprise Court Lake Forest, CA 92630

Date Due:

06/26/23 00:00 (11 day TAT)

Yes

Received By: Joann Marroquin

Logged In By: Jeff Lee Date Received: 06/09/23 08:25

Date Logged In: 06/09/23 09:19

Samples Received at:

 $0.8^{\circ}C$ Custody Seals No

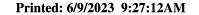
Containers Intact Yes

Received On Ice

COC/Labels Agree Preservation Confiri Yes

	Due	TAT	Expires	Comments
T231538-01 23a [Water] 8	Sampled 06/08/23 14:15	5 (GMT-08	:00) Pacific Time (US
1664	06/16/23 15:00	5	07/06/23 14:15	Oil & Grease
200.7	06/16/23 15:00	5	12/05/23 14:15	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/16/23 15:00	5	12/05/23 14:15	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/16/23 15:00	5	07/06/23 14:15	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/16/23 15:00	5	06/10/23 14:15	Nitrate
7470/71 Hg	06/16/23 15:00	5	09/06/23 14:15	
Conductivity	06/16/23 15:00	5	07/06/23 14:15	
pH water SM 4500-H+B	06/14/23 15:00	3	06/09/23 14:15	
	06/16/02 15:00	_	06/15/02 14 15	
TDS-160.1	06/16/23 15:00	5	06/15/23 14:15	
T231538-02 OBS-1 [Wate				ne
T231538-02 OBS-1 [Wate (US &				ne Oil & Grease
T231538-02 OBS-1 [Wate (US & 1664	r] Sampled 06/08/23 12	2:30 (GMT	-08:00) Pacific Tim	
T231538-02 OBS-1 [Wate (US & 1664 200.7	r] Sampled 06/08/23 12 06/16/23 15:00	2:30 (GMT 5	-08:00) Pacific Tim	Oil & Grease Ca,Cu,Na,K,Fe,Mg (Field Filtered)
T231538-02 OBS-1 [Wate (US & 1664 200.7	r] Sampled 06/08/23 12 06/16/23 15:00 06/16/23 15:00	2:30 (GMT 5 5	-08:00) Pacific Tim 07/06/23 12:30 12/05/23 12:30	Oil & Grease Ca,Cu,Na,K,Fe,Mg (Field Filtered)
T231538-02 OBS-1 [Wate (US & 1664 200.7 200.8	r] Sampled 06/08/23 12 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00	2:30 (GMT 5 5 5	-08:00) Pacific Tim 07/06/23 12:30 12/05/23 12:30 12/05/23 12:30	Oil & Grease Ca,Cu,Na,K,Fe,Mg (Field Filtered) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
T231538-02 OBS-1 [Wate (US & 1664 200.7 200.8 300.0 - F, Cl, Br, SO4 300.0 - NO2, NO3, PO4	r] Sampled 06/08/23 12 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00	5 5 5 5	-08:00) Pacific Tim 07/06/23 12:30 12/05/23 12:30 12/05/23 12:30 07/06/23 12:30	Oil & Grease Ca,Cu,Na,K,Fe,Mg (Field Filtered) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered) Chloride,Sulfate only
T231538-02 OBS-1 [Wate (US & 1664 200.7 200.8 300.0 - F, Cl, Br, SO4 300.0 - NO2, NO3, PO4 7470/71 Hg	06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00	2:30 (GMT 5 5 5 5 5 5 5 5	-08:00) Pacific Tim 07/06/23 12:30 12/05/23 12:30 12/05/23 12:30 07/06/23 12:30 06/10/23 12:30	Oil & Grease Ca,Cu,Na,K,Fe,Mg (Field Filtered) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered) Chloride,Sulfate only
T231538-02 OBS-1 [Wate (US & 1664 200.7 200.8 300.0 - F, Cl, Br, SO4	r] Sampled 06/08/23 12 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00 06/16/23 15:00	5 5 5 5 5 5	-08:00) Pacific Tim 07/06/23 12:30 12/05/23 12:30 12/05/23 12:30 07/06/23 12:30 06/10/23 12:30 09/06/23 12:30	Oil & Grease Ca,Cu,Na,K,Fe,Mg (Field Filtered) Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered) Chloride,Sulfate only

Printed: 6/9/2023 9:27:12AM



WORK ORDER

T231538

Client: Northstar Environmental Remediation Project Manager: Jeff Lee
Project: Genesis Solar Groundwater Project Number: 196-004-06

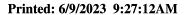
Analysis	Due	TAT	Expires	Comments
T231538-03 TW-1 [Water (US &] Sampled 06/08/23 12:	:00 (GMT-	08:00) Pacific Time	e
1664	06/16/23 15:00	5	07/06/23 12:00	Oil & Grease
200.7	06/16/23 15:00	5	12/05/23 12:00	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/16/23 15:00	5	12/05/23 12:00	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/16/23 15:00	5	07/06/23 12:00	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/16/23 15:00	5	06/10/23 12:00	Nitrate
7470/71 Hg	06/16/23 15:00	5	09/06/23 12:00	
Conductivity	06/16/23 15:00	5	07/06/23 12:00	
pH water SM 4500-H+B	06/14/23 15:00	3	06/09/23 12:00	
TDS-160.1	06/16/23 15:00	5	06/15/23 12:00	
T231538-04 TW-2 [Water (US &] Sampled 06/08/23 14:	:30 (GMT-	08:00) Pacific Time	e
1664	06/16/23 15:00	5	07/06/23 14:30	Oil & Grease
200.7	06/16/23 15:00	5	12/05/23 14:30	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/16/23 15:00	5	12/05/23 14:30	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/16/23 15:00	5	07/06/23 14:30	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/16/23 15:00	5	06/10/23 14:30	Nitrate
7470/71 Hg	06/16/23 15:00	5	09/06/23 14:30	
Conductivity	06/16/23 15:00	5	07/06/23 14:30	
pH water SM 4500-H+B	06/14/23 15:00	3	06/09/23 14:30	
TDS-160.1	06/16/23 15:00	5	06/15/23 14:30	
T231538-05 PW-0 [Water]	Sampled 06/08/23 15:	05 (GMT-	08:00) Pacific Time	e
1664	06/16/23 15:00	5	07/06/23 15:05	Oil & Grease
200.7	06/16/23 15:00	5	12/05/23 15:05	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/16/23 15:00	5	12/05/23 15:05	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/16/23 15:00	5	07/06/23 15:05	Chloride,Sulfate, and Fluoride only
300.0 - NO2, NO3, PO4	06/16/23 15:00	5	06/10/23 15:05	Nitrate
7470/71 Hg	06/16/23 15:00	5	09/06/23 15:05	
Conductivity	06/16/23 15:00	5	07/06/23 15:05	
pH water SM 4500-H+B	06/14/23 15:00	3	06/09/23 15:05	
TDS-160.1	06/16/23 15:00	5	06/15/23 15:05	

WORK ORDER

T231538

Client: Northstar Environmental Remediation Project Manager: Jeff Lee
Project: Genesis Solar Groundwater Project Number: 196-004-06

Analysis	Due	TAT	Expires	Comments
T231538-06 PW-2 [Water]	Sampled 06/08/23 15:	:20 (GMT-	08:00) Pacific Time	e
(US &				
1664	06/16/23 15:00	5	07/06/23 15:20	Oil & Grease
200.7	06/16/23 15:00	5	12/05/23 15:20	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/16/23 15:00	5	12/05/23 15:20	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/16/23 15:00	5	07/06/23 15:20	Chloride, Sulfate, and Fluoride only
300.0 - NO2, NO3, PO4	06/16/23 15:00	5	06/10/23 15:20	Nitrate
7470/71 Hg	06/16/23 15:00	5	09/06/23 15:20	
Conductivity	06/16/23 15:00	5	07/06/23 15:20	
pH water SM 4500-H+B	06/14/23 15:00	3	06/09/23 15:20	
TDS-160.1	06/16/23 15:00	5	06/15/23 15:20	
T231538-07 DUP [Water] S	Sampled 06/08/23 00:0	——— 00 (GMT-0	8:00) Pacific Time	
(US &	T	(-2.22	-,	
1664	06/16/23 15:00	5	07/06/23 00:00	Oil & Grease
200.7	06/16/23 15:00	5	12/05/23 00:00	Ca,Cu,Na,K,Fe,Mg (Field Filtered)
200.8	06/16/23 15:00	5	12/05/23 00:00	Sb,As,Ba,Cd,Cr,Co,Pb,Ni,Se,Zn (Field Filtered)
300.0 - F, Cl, Br, SO4	06/16/23 15:00	5	07/06/23 00:00	Chloride,Sulfate only
300.0 - NO2, NO3, PO4	06/16/23 15:00	5	06/10/23 00:00	Nitrate
7470/71 Hg	06/16/23 15:00	5	09/06/23 00:00	
Conductivity	06/16/23 15:00	5	07/06/23 00:00	
pH water SM 4500-H+B	06/14/23 15:00	3	06/09/23 00:00	
TDS-160.1	06/16/23 15:00	5	06/15/23 00:00	
T231538-08 Field Blank [W	aterl Sampled 06/08/	/23 00:00 (CMT-08·00) Pacifi	c HOLD
Time (US &	ateri Sampiea voi voi	(3 00.00) 1	
[NO ANALYSES]				
T221520 00 T ' DI I IVI	aterl Sampled 06/08/2	23 00:00 (G	MT-08:00) Pacific	HOLD
1231538-09 Trip Blank TW				
T231538-09 Trip Blank [Wa Time (US &	ater j Sampiea vo vo z			


Printed: 6/9/2023 9:27:12AM

WORK ORDER

T231538

Client: Northstar Environmental Remediation **Project Manager:** Jeff Lee **Project: Genesis Solar Groundwater Project Number:** 196-004-06 **Analysis** Due TAT **Expires** Comments **Eurofins Calscience (Tustin)** T231538-03 TW-1 [Water] Sampled 06/08/23 12:00 (GMT-08:00) Pacific Time (US & 8015M-Therminol Misc Water Testing #1 06/23/23 00:00 10 12/05/23 12:00 T231538-04 TW-2 [Water] Sampled 06/08/23 14:30 (GMT-08:00) Pacific Time (US & Misc Water Testing #1 06/23/23 00:00 10 12/05/23 14:30 8015M-Therminol T231538-05 PW-0 [Water] Sampled 06/08/23 15:05 (GMT-08:00) Pacific Time (US & 06/23/23 00:00 8015M-Therminol Misc Water Testing #1 10 12/05/23 15:05 T231538-06 PW-2 [Water] Sampled 06/08/23 15:20 (GMT-08:00) Pacific Time (US & 06/23/23 00:00 Misc Water Testing #1 10 12/05/23 15:20 8015M-Therminol T231538-07 DUP [Water] Sampled 06/08/23 00:00 (GMT-08:00) Pacific Time (US & 06/23/23 00:00 12/05/23 00:00 8015M-Therminol Misc Water Testing #1 10 Isotech Laboratories, Inc. T231538-01 23a [Water] Sampled 06/08/23 14:15 (GMT-08:00) Pacific Time (US 06/23/23 00:00 10 Misc Water Testing #2 12/05/23 14:15 Deuterium, Oxygen-18 T231538-02 OBS-1 [Water] Sampled 06/08/23 12:30 (GMT-08:00) Pacific Time (US & Misc Water Testing #2 06/23/23 00:00 10 12/05/23 12:30 Deuterium, Oxygen-18 T231538-03 TW-1 [Water] Sampled 06/08/23 12:00 (GMT-08:00) Pacific Time (US & 12/05/23 12:00 Misc Water Testing #2 06/23/23 00:00 10 Deuterium, Oxygen-18 T231538-04 TW-2 [Water] Sampled 06/08/23 14:30 (GMT-08:00) Pacific Time (US & 06/23/23 00:00 Misc Water Testing #2 10 12/05/23 14:30 Deuterium, Oxygen-18 T231538-05 PW-0 [Water] Sampled 06/08/23 15:05 (GMT-08:00) Pacific Time (US & Misc Water Testing #2 06/23/23 00:00 10 12/05/23 15:05 Deuterium, Oxygen-18

WORK ORDER

T231538

Client: Northstar Environmental Remediation Project Manager: Jeff Lee
Project: Genesis Solar Groundwater Project Number: 196-004-06

Analysis Due TAT Expires Comments

Isotech Laboratories, Inc.

T231538-06 PW-2 [Water] Sampled 06/08/23 15:20 (GMT-08:00) Pacific Time

(US &

Misc Water Testing #2 06/23/23 00:00 10 12/05/23 15:20 Deuterium,Oxygen-18

T231538-07 DUP [Water] Sampled 06/08/23 00:00 (GMT-08:00) Pacific Time

(US &

Misc Water Testing #2 06/23/23 00:00 10 12/05/23 00:00 Deuterium, Oxygen-18

Reviewed By Date Page 5 of 5

APPENDIX D

LABORATORY ANALYTICAL RESULTS LAND TREATMENT UNITS

ANALYTICAL REPORT

PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630

Generated 2/21/2023 6:59:47 PM

JOB DESCRIPTION

GSEP LTU & Ponds SDG NUMBER Genesis Solar, LLC

JOB NUMBER

570-126382-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender and destroy this report immediately. This report shall not be reproduced except in full, without prior express written approval by the laboratory.

The data in the report relate to the field sample(s) as received by the laboratory and associated QC. All results have been reviewed and have been found to be compliant with laboratory and accreditation requirements, with the exception of the noted deviation(s). For questions, please contact the Project Manager.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 2/21/2023 6:59:47 PM

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
Lab Chronicle	10
QC Sample Results	11
QC Association Summary	18
Certification Summary	20
Method Summary	21
Chain of Custody	22
Receipt Checklists	23

2

4

6

8

10

12

13

Definitions/Glossary

Client: Northstar Environmental Remediation

Job ID: 570-126382-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Qualifiers

GC Semi VOA

Qualifier **Qualifier Description** LCS and/or LCSD is outside acceptance limits, high biased.

F1 MS and/or MSD recovery exceeds control limits.

Н Sample was prepped or analyzed beyond the specified holding time

S1+ Surrogate recovery exceeds control limits, high biased.

Metals

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

Glossary

Abbreviation	These commonly	y used abbreviations ma	y or may not be	present in this report.
--------------	----------------	-------------------------	-----------------	-------------------------

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-126382-1 SDG: Genesis Solar, LLC

Job ID: 570-126382-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-126382-1

Receipt

The sample was received on 2/3/2023 6:01 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.9°C

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015B_DRO: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 570-305349 and analytical batch 570-305391 recovered outside control limits for the following analytes: Benzene, 1,1'-oxybis-. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8015B_DRO: The following sample was re-prepared outside of preparation holding time due to insufficient spike used during first extraction: LTU #4 (570-126382-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries of Antimony for preparation batch 570-301658 and analytical batch 570-302021 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits. (570-126466-A-26-B MS ^5) and (570-126466-A-26-C MSD ^5)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

O

7

8

10

12

13

14

Sample Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-126382-1 SDG: Genesis Solar, LLC

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-126382-1	LTU #4	Solid	02/02/23 09:20	02/03/23 18:01

3

4

5

7

8

10

11

13

14

Detection Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-126382-1 SDG: Genesis Solar, LLC

Client Sample ID: LTU #4

Lab Sample ID: 570-126382-1

Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
C13-C22 - DL	2300		50	mg/Kg		8015B	Total/NA
C23-C40 - DL	930		50	mg/Kg	10	8015B	Total/NA
Arsenic	3.0		3.0	mg/Kg	5	6010B	Total/NA
Barium	69		3.0	mg/Kg	5	6010B	Total/NA
Cobalt	3.4		1.0	mg/Kg	5	6010B	Total/NA
Chromium	7.8		1.0	mg/Kg	5	6010B	Total/NA
Copper	13		2.0	mg/Kg	5	6010B	Total/NA
Molybdenum	11		2.0	mg/Kg	5	6010B	Total/NA
Nickel	7.0		2.0	mg/Kg	5	6010B	Total/NA
Vanadium	12		1.0	mg/Kg	5	6010B	Total/NA
Zinc	1100		5.1	mg/Kg	5	6010B	Total/NA
Lead	7.7		2.0	ma/Ka	5	6010B	Total/NA

4

6

0

9

10

Client Sample Results

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Client Sample ID: LTU #4

Date Collected: 02/02/23 09:20

Lab Sample ID: 570-126382-1

Matrix: Solid

Date Collected: 02/02/23 09:20 Date Received: 02/03/23 18:01

Mercury

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (C4-C12)	ND		0.10	mg/Kg		02/06/23 10:42	02/06/23 19:15	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Bromofluorobenzene (Surr)	55		42 - 126			02/06/23 10:42	02/06/23 19:15	
Method: SW846 8015B - Dies	el Range Or	ganics (DR	(C) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene, 1,1'-oxybis-	ND	H *+ F1	5.0	mg/Kg		02/20/23 15:58	02/20/23 21:01	
,1'-Biphenyl	ND	Н	5.0	mg/Kg		02/20/23 15:58	02/20/23 21:01	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
n-Octacosane (Surr)	129		60 - 138			02/20/23 15:58	02/20/23 21:01	-
Method: SW846 8015B - Diese				l Init	г.	Droporod	Analyzed	Dir
Analyte		Qualifier	RL 50	Unit	D	Prepared	Analyzed	Dil F
C13-C22	2300			mg/Kg		02/03/23 18:20	02/08/23 12:36	
C23-C40	930		50	mg/Kg		02/03/23 18:20	02/08/23 12:36	
							A I	D:/ E
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	
Surrogate n-Octacosane (Surr)	%Recovery 119	Qualifier	Limits 60 - 138			Prepared 02/03/23 18:20	02/08/23 12:36	Dil Fa
n-Octacosane (Surr)	119	Qualifier						
n-Octacosane (Surr) Method: SW846 6010B - Meta	119 Is (ICP)	Qualifier Qualifier		Unit	D			
n-Octacosane (Surr) Method: SW846 6010B - Meta Analyte	119 Is (ICP)	<u> </u>	60 - 138	Unit mg/Kg	<u>D</u>	02/03/23 18:20	02/08/23 12:36	
n-Octacosane (Surr) Method: SW846 6010B - Meta Analyte Silver	119 Is (ICP) Result	<u> </u>	60 - 138 RL		<u>D</u>	02/03/23 18:20 Prepared	02/08/23 12:36 Analyzed	
-Octacosane (Surr) Method: SW846 6010B - Meta Analyte Silver Arsenic	Is (ICP) Result ND	<u> </u>	RL	mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03	02/08/23 12:36 Analyzed 02/08/23 00:43	
n-Octacosane (Surr) Method: SW846 6010B - Meta Analyte Silver Arsenic Barium	119 Is (ICP) Result ND 3.0	<u> </u>	RL	mg/Kg mg/Kg	D_	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium	119 Is (ICP) Result ND 3.0 69	<u> </u>	RL 1.5 3.0 3.0	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
-Octacosane (Surr) Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Cadmium	119 Is (ICP) Result ND 3.0 69 ND	<u> </u>	RL 1.5 3.0 3.0 0.51	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Cadmium	119 Is (ICP) Result ND 3.0 69 ND ND ND	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	119 Is (ICP) Result ND 3.0 69 ND ND ND 3.4	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51 1.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper	119 Is (ICP) Result ND 3.0 69 ND ND ND 3.4 7.8	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51 1.0 1.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper Molybdenum	119 Is (ICP) Result ND 3.0 69 ND ND 3.4 7.8 13	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51 1.0 1.0 2.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper Molybdenum Nickel	119 Is (ICP) Result ND 3.0 69 ND ND 3.4 7.8 13	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51 1.0 2.0 2.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Codmium Cobalt Chromium Copper Molybdenum Nickel Antimony	119 Is (ICP) Result ND 3.0 69 ND ND 3.4 7.8 13 11 7.0	<u> </u>	RL 1.5 3.0 0.51 0.51 1.0 2.0 2.0 2.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Codmium Cobalt Chromium Copper Molybdenum Nickel Antimony Selenium	119 Is (ICP) Result ND 3.0 69 ND ND 3.4 7.8 13 11 7.0 ND	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51 1.0 2.0 2.0 2.0 10	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
	119 Is (ICP) Result ND 3.0 69 ND ND 3.4 7.8 13 11 7.0 ND ND	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51 1.0 2.0 2.0 2.0 10 3.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper Molybdenum Nickel Antimony Selenium Challium Chanadium	119 Is (ICP) Result ND 3.0 69 ND ND 3.4 7.8 13 11 7.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51 1.0 1.0 2.0 2.0 2.0 10 3.0 10	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03 02/07/23 08:03	Analyzed 02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	
Method: SW846 6010B - Meta Analyte Silver Arsenic Barium Beryllium Cobalt Chromium Copper Molybdenum Nickel Antimony Selenium Challium	119 Is (ICP) Result ND 3.0 69 ND ND 3.4 7.8 13 11 7.0 ND ND ND	<u> </u>	RL 1.5 3.0 3.0 0.51 0.51 1.0 1.0 2.0 2.0 2.0 10 3.0 10 1.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 02/07/23 08:03	Analyzed 02/08/23 12:36 Analyzed 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43 02/08/23 00:43	

02/08/23 17:23 02/09/23 14:09

0.082

mg/Kg

ND

Job ID: 570-126382-1

SDG: Genesis Solar, LLC

3

5

7

0

1 U

12

14

Surrogate Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-126382-1 SDG: Genesis Solar, LLC

Method: 8015B - Gasoline Range Organics - (GC)

Prep Type: Total/NA **Matrix: Solid**

			Percent Surrogate Recovery (Acceptance Limits)
		BFB1	
₋ab Sample ID	Client Sample ID	(42-126)	
70-126373-A-1-F MS	Matrix Spike	107	
570-126373-A-1-G MSD	Matrix Spike Duplicate	123	
570-126382-1	LTU #4	55	
CS 570-301382/1-A	Lab Control Sample	111	
CSD 570-301382/2-A	Lab Control Sample Dup	121	
MB 570-301382/3-A	Method Blank	86	
Surrogate Legend			

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(60-138)	
570-126256-G-3-B MS	Matrix Spike	109	
570-126256-G-3-C MSD	Matrix Spike Duplicate	106	
570-126382-1 - DL	LTU #4	119	
570-126382-1	LTU #4	129	
570-126382-1 MS	LTU #4	137	
570-126382-1 MSD	LTU #4	155 S1+	
LCS 570-301060/2-A	Lab Control Sample	107	
LCS 570-305349/2-A	Lab Control Sample	120	
LCSD 570-301060/3-A	Lab Control Sample Dup	112	
LCSD 570-305349/3-A	Lab Control Sample Dup	105	
MB 570-301060/1-A	Method Blank	108	
	Method Blank	112	

Eurofins Calscience

Page 9 of 23

Lab Chronicle

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Client Sample ID: LTU #4

Date Collected: 02/02/23 09:20 Date Received: 02/03/23 18:01 Lab Sample ID: 570-126382-1

Matrix: Solid

Job ID: 570-126382-1

SDG: Genesis Solar, LLC

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			4.97 g	5 mL	301382	02/06/23 10:42	U1MC	EET CAL 4
Total/NA	Analysis	8015B		1	5 g	5 mL	301354	02/06/23 19:15	A9VE	EET CAL 4
	Instrumer	nt ID: GC22								
Total/NA	Prep	3550C	DL		9.99 g	10 mL	301060	02/03/23 18:20	KH3Z	EET CAL 4
Total/NA	Analysis	8015B	DL	10	10 mL	10 mL	301981	02/08/23 12:36	N5Y3	EET CAL 4
	Instrumer	nt ID: GC48								
Total/NA	Prep	3550C			10.01 g	10 mL	305349	02/20/23 15:58	KH3Z	EET CAL 4
Total/NA	Analysis	8015B		1	1 mL	1 mL	305391	02/20/23 21:01	N5Y3	EET CAL 4
	Instrumer	nt ID: GC70B								
Total/NA	Prep	3050B			1.98 g	50 mL	301658	02/07/23 08:03	GYR8	EET CAL 4
Total/NA	Analysis	6010B		5			302021	02/08/23 00:43	K1UV	EET CAL 4
	Instrumer	nt ID: ICP11								
Total/NA	Prep	7471A			0.51 g	50 mL	302294	02/08/23 17:23	CS5Z	EET CAL 4
Total/NA	Analysis	7471A		1			302557	02/09/23 14:09	C0YH	EET CAL 4
	Instrumer	nt ID: HG7								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

4

5

7

0

9

11

12

4 /

Client: Northstar Environmental Remediation

Job ID: 570-126382-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8015B - Gasoline Range Organics - (GC)

Lab Sample ID: MB 570-301382/3-A

Matrix: Solid

Analysis Batch: 301354

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 301382

Result Qualifier RL Unit D Analyzed Dil Fac Analyte Prepared Gasoline Range Organics (C4-C12) ND 0.099 mg/Kg 02/06/23 09:42 02/06/23 11:07

MB MB

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 02/06/23 09:42 02/06/23 11:07 4-Bromofluorobenzene (Surr) 86 42 - 126

Lab Sample ID: LCS 570-301382/1-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 301354

Gasoline Range Organics

Prep Batch: 301382 LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits 1.93 2.18 113 70 - 124

(C4-C13)

LCS LCS

Limits Surrogate %Recovery Qualifier 4-Bromofluorobenzene (Surr) 42 - 126 111

Lab Sample ID: LCSD 570-301382/2-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 301354

Prep Type: Total/NA **Prep Batch: 301382**

mg/Kg

%Rec **RPD**

Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit 1.93 2.25 Gasoline Range Organics mg/Kg 117 70 - 124 18

Spike

LCSD LCSD

MS MS

(C4-C13)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 121 42 - 126

Lab Sample ID: 570-126373-A-1-F MS

Matrix: Solid

Analysis Batch: 301354

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 301382

%Rec

Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec 1.91 48 - 114 Gasoline Range Organics ND 2.09 mg/Kg 106

Spike

(C4-C13)

MS MS

Sample Sample

%Recovery Qualifier Limits Surrogate 42 - 126 4-Bromofluorobenzene (Surr) 107

Lab Sample ID: 570-126373-A-1-G MSD

Matrix: Solid

Analysis Batch: 301354

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA Prep Batch: 301382

%Rec **RPD**

Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Gasoline Range Organics ND 1.93 2.00 mg/Kg 100 48 - 114 4 23

(C4-C13)

MSD MSD

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 123 42 - 126

Eurofins Calscience

Job ID: 570-126382-1 SDG: Genesis Solar, LLC

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-301060/1-A

Lab Sample ID: LCS 570-301060/2-A

Matrix: Solid

Analyte

C13-C22

C23-C40

Analysis Batch: 301403

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 301060 MB MB Result Qualifier RL Unit Analyzed Dil Fac **Prepared** ND 5.0 mg/Kg 02/03/23 18:20 02/07/23 03:58

mg/Kg

MB MB

ND

Qualifier Surrogate %Recovery I imite Prepared Analyzed Dil Fac n-Octacosane (Surr) 108 60 - 138 02/03/23 18:20 02/07/23 03:58

5.0

Client Sample ID: Lab Control Sample

02/03/23 18:20 02/07/23 03:58

Prep Type: Total/NA

Prep Batch: 301060

Analysis Batch: 301403 Spike LCS LCS %Rec

Added Limits Result Qualifier Unit D %Rec Analyte 80 - 130 **Diesel Range Organics** 400 466 mg/Kg 116

[C10-C28]

Matrix: Solid

LCS LCS

%Recovery Qualifier Limits Surrogate n-Octacosane (Surr) 107 60 - 138

Lab Sample ID: LCSD 570-301060/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 301403 Prep Batch: 301060** LCSD LCSD %Rec Spike **RPD**

Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec Diesel Range Organics 400 479 120 80 - 130 mg/Kg

[C10-C28]

LCSD LCSD

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138 112

Lab Sample ID: 570-126256-G-3-B MS **Client Sample ID: Matrix Spike**

Matrix: Solid

Analysis Batch: 301403

Prep Batch: 301060 MS MS %Rec Sample Sample Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits

ND 399 Diesel Range Organics 471 mg/Kg 118 43 - 165

[C10-C28]

MS MS

Surrogate %Recovery Qualifier Limits 60 - 138 n-Octacosane (Surr) 109

Lab Sample ID: 570-126256-G-3-C MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Solid

Prep Type: Total/NA **Prep Batch: 301060 Analysis Batch: 301403** MSD MSD %Rec **RPD**

Spike Sample Sample %Rec Result Qualifier Added Result Qualifier Unit Limits RPD Limit Diesel Range Organics ND 399 468 mg/Kg 117 43 - 165

[C10-C28]

Eurofins Calscience

Prep Type: Total/NA

Client: Northstar Environmental Remediation

Job ID: 570-126382-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 570-126256-G-3-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid Analysis Batch: 301403

MSD MSD

%Recovery Qualifier Surrogate Limits n-Octacosane (Surr) 106 60 - 138

Lab Sample ID: MB 570-305349/1-A

Matrix: Solid

Analysis Batch: 305391

Analyte	Result Qual	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND	5.0	mg/Kg		02/20/23 15:58	02/20/23 18:54	1
1,1'-Biphenyl	ND	5.0	mg/Kg		02/20/23 15:58	02/20/23 18:54	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
n-Octacosane (Surr)	112		60 - 138	02/20/23 15:58 02/20/23 18:54	1

100 100

Lab Sample ID: LCS 570-305349/2-A

Matrix: Solid

Anal	ysis	Batch:	305391

	эріке	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene, 1,1'-oxybis-	100	146	*+	mg/Kg		146	68 - 120	
1,1'-Biphenyl	100	107		mg/Kg		107	57 - 120	

Chika

LCS LCS

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138

Lab Sample ID: LCSD 570-305349/3-A

Matrix: Solid

Analysis Batch: 305391							Prep Batch: 30534		
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene, 1,1'-oxybis-	100	153	*+	mg/Kg		153	68 - 120	5	20
1,1'-Biphenyl	100	112		mg/Kg		112	57 - 120	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
n-Octacosane (Surr)	105		60 - 138

Lab Sample ID: 570-126382-1 MS

Matrix: Solid Analysis Batch: 305391										rpe: Total/NA atch: 305349
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene, 1,1'-oxybis-	ND	H *+ F1	99.5	137	F1	mg/Kg		138	68 - 120	
1,1'-Biphenyl	ND	Н	99.5	99.8		mg/Kg		100	57 - 120	

MS MS

Surrogate	%Recovery Qualifier	r Limits
n-Octacosane (Surr)	137	60 - 138

Eurofins Calscience

Page 13 of 23

Prep Type: Total/NA

Prep Batch: 301060

Prep Type: Total/NA Prep Batch: 305349

Prep Type: Total/NA Prep Batch: 305349

Prep Type: Total/NA

Client Sample ID: LTU #4

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

2/21/2023

QC Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-126382-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 570-126382-1 MSD Client Sample ID: LTU #4 Prep Type: Total/NA

Matrix: Solid Analysis Batch: 305391

Prep Batch: 305349 Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Analyte Benzene, 1,1'-oxybis-ND H*+ F1 99.8 144 F1 mg/Kg 144 68 - 120 5 20 1,1'-Biphenyl ND H 99.8 105 mg/Kg 105 57 - 120 5 20

MSD MSD

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 155 S1+ 60 - 138

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 570-301658/1-A ^5

Matrix: Solid

Analysis Batch: 302021

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 301658**

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac 1.5 Silver ND mg/Kg 02/07/23 08:03 02/07/23 23:47 5 ND Arsenic 3.1 mg/Kg 02/07/23 08:03 02/07/23 23:47 5 Barium ND 3.1 mg/Kg 02/07/23 08:03 02/07/23 23:47 5 02/07/23 08:03 02/07/23 23:47 5 Bervllium ND 0.51 mg/Kg Cadmium ND 5 0.51 mg/Kg 02/07/23 08:03 02/07/23 23:47 Cobalt ND 1.0 mg/Kg 02/07/23 08:03 02/07/23 23:47 5 Chromium ND 1.0 02/07/23 08:03 02/07/23 23:47 5 mg/Kg Copper ND 2.0 mg/Kg 02/07/23 08:03 02/07/23 23:47 5 ND 2.0 02/07/23 08:03 02/07/23 23:47 5 Molybdenum mg/Kg Nickel ND 2.0 mg/Kg 02/07/23 08:03 02/07/23 23:47 5 ND 10 02/07/23 08:03 02/07/23 23:47 5 Antimony mg/Kg 5 Selenium ND 3.1 mg/Kg 02/07/23 08:03 02/07/23 23:47 Thallium ND 10 mg/Kg 02/07/23 08:03 02/07/23 23:47 5 5 Vanadium ND 1.0 mg/Kg 02/07/23 08:03 02/07/23 23:47 Zinc ND 5.1 mg/Kg 02/07/23 08:03 02/07/23 23:47 5 ND 2.0 02/07/23 08:03 02/07/23 23:47 Lead mg/Kg

Lab Sample ID: LCS 570-301658/2-A ^5

M

Matrix: Solid						•	Prep Type: Total/NA	4
Analysis Batch: 302021							Prep Batch: 301658	3
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Silver	25.4	23.1		mg/Kg		91	80 - 120	-

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Silver	25.4	23.1		mg/Kg		91	80 - 120	
Arsenic	50.8	46.1		mg/Kg		91	80 - 120	
Barium	50.8	46.6		mg/Kg		92	80 - 120	
Beryllium	50.8	46.1		mg/Kg		91	80 - 120	
Cadmium	50.8	46.3		mg/Kg		91	80 - 120	
Cobalt	50.8	46.2		mg/Kg		91	80 - 120	
Chromium	50.8	47.0		mg/Kg		93	80 - 120	
Copper	50.8	46.5		mg/Kg		92	80 - 120	
Molybdenum	50.8	47.1		mg/Kg		93	80 - 120	
Nickel	50.8	46.9		mg/Kg		92	80 - 120	
Antimony	50.8	51.2		mg/Kg		101	80 - 120	
Selenium	50.8	44.1		mg/Kg		87	80 - 120	
Thallium	50.8	46.4		mg/Kg		91	80 - 120	
Vanadium	50.8	46.0		mg/Kg		91	80 - 120	

Eurofins Calscience

Client Sample ID: Lab Control Sample

Page 14 of 23 2/21/2023

Client: Northstar Environmental Remediation

Job ID: 570-126382-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 570-301658/2-A ^5

Matrix: Solid

Analysis Batch:

LCS 570-301658/2-A ^5			Client Sample ID: Lab Control Sample	
			Prep Type: Total/NA	
: 302021			Prep Batch: 301658	
	Snike	LCS LCS	%Rec	

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Zinc	 50.8	46.3		mg/Kg		91	80 - 120	
Lead	50.8	46.4		mg/Kg		91	80 - 120	

Lab Sample ID: LCSD 570-301658/3-A ^5 **Client Sample ID: Lab Control Sample Dup Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 302021

Prep Batch: 301658 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Silver 25.3 23.4 mg/Kg 93 80 - 120 20 50.5 Arsenic 46.5 mg/Kg 92 80 - 120 20 Barium 50.5 47.3 94 80 - 120 20 mg/Kg Beryllium 50.5 46.8 mg/Kg 93 80 - 120 2 20 Cadmium 50.5 47.0 mg/Kg 93 80 - 120 20 Cobalt 50.5 47.3 mg/Kg 94 80 - 120 20 Chromium 50.5 47.9 mg/Kg 95 80 - 120 20 Copper 50.5 47.2 94 80 - 120 20 mg/Kg Molybdenum 50.5 47.8 mg/Kg 95 80 - 120 20 Nickel 50.5 47.6 94 80 - 120 20 mg/Kg Antimony 50.5 51.6 mg/Kg 102 80 - 120 20 Selenium 50.5 44.4 mg/Kg 88 80 - 120 20 Thallium 50.5 47.0 93 80 - 120 20 mg/Kg Vanadium 50.5 46.7 92 80 - 120 20 mg/Kg Zinc 50.5 46.6 92 20 mg/Kg 80 - 120 Lead 50.5 47.2 94 80 - 120 20 mg/Kg

Lab S

Matr

Ana

Client Sample ID: Matrix Spike
Prep Type: Total/NA
Prep Batch: 301658
%Rec

Analysis Batch: 302021									Prep Batch: 301656
	•	Sample	Spike		MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	_ D	%Rec	Limits
Silver	ND		25.5	23.5		mg/Kg		92	75 - 125
Arsenic	ND		51.0	49.1		mg/Kg		91	75 - 125
Barium	21		51.0	72.2		mg/Kg		101	75 - 125
Beryllium	ND		51.0	47.2		mg/Kg		92	75 - 125
Cadmium	ND		51.0	46.6		mg/Kg		91	75 - 125
Cobalt	1.4		51.0	48.3		mg/Kg		92	75 - 125
Chromium	11		51.0	59.3		mg/Kg		94	75 - 125
Copper	ND		51.0	50.7		mg/Kg		96	75 - 125
Molybdenum	ND		51.0	47.3		mg/Kg		93	75 - 125
Nickel	7.7		51.0	55.7		mg/Kg		94	75 - 125
Antimony	ND	F1	51.0	35.3	F1	mg/Kg		69	75 - 125
Selenium	ND		51.0	46.1		mg/Kg		90	75 - 125
Thallium	ND		51.0	47.1		mg/Kg		92	75 - 125
Vanadium	6.2		51.0	54.5		mg/Kg		95	75 - 125
Zinc	6.2		51.0	52.6		mg/Kg		91	75 - 125
Lead	ND		51.0	48.3		mg/Kg		92	75 - 125

Client: Northstar Environmental Remediation

Job ID: 570-126382-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

MSD MSD

22.7

47.4

68.9

45.5

44.8

46.6

57.7

48.7

45.3

53.5

43.5

45.7

52.6

51.1

46.6

33.5 F1

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Result Qualifier

Spike

Added

25.3

50.5

50.5

50.5

50.5

50.5

50.5

50.5

50.5

50.5

50.5

50.5

50.5

50.5

50.5

50.5

Method: 6010B - Metals (ICP) (Continued)

Sample Sample

ND

ND

21

ND

ND

1.4

11

ND

ND

7.7

ND

ND

6.2

6.2

ND

ND F1

Result Qualifier

Lab Sample ID: 570-126466-A-26-C MSD ^5

Matrix: Solid

Analyte Silver

Arsenic

Barium

Beryllium

Cadmium

Chromium

Molybdenum

Cobalt

Copper

Nickel

Antimony

Selenium

Thallium

Vanadium

Zinc

Lead

Analysis Batch: 302021

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

			op . y	po o .	WII 117 1	
			Prep Ba	itch: 30	1658	ĺ
			%Rec		RPD	
Unit	D	%Rec	Limits	RPD	Limit	i
mg/Kg		90	75 - 125	4	20	
mg/Kg		89	75 - 125	4	20	
mg/Kg		95	75 - 125	5	20	
mg/Kg		90	75 - 125	4	20	ı
mg/Kg		89	75 - 125	4	20	
mg/Kg		90	75 - 125	4	20	
mg/Kg		92	75 - 125	3	20	
mg/Kg		93	75 - 125	4	20	
mg/Kg		90	75 - 125	4	20	ı

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

91

66

86

90

92

89

89

20 20

20

20

20

20

20

5

6

3

3

Prep Batch: 302294

Lab Sample ID: MB 570-302294/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 302557	Prep Batch: 302294

Analysis Batch: 302557

Method: 7471A - Mercury (CVAA)

MB MB

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac 0.082 02/08/23 17:23 02/09/23 13:07 Mercury ND mg/Kg

Lab Sample ID: LCS 570-302294/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Mercury 0.408 0.443 mg/Kg 109 80 - 120

Lab Sample ID: LCSD 570-302294/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 302557** Prep Batch: 302294

Spike LCSD LCSD %Rec **RPD** Added Limit Result Qualifier Limits RPD Analyte Unit D %Rec Mercury 0.392 0.427 mg/Kg 109 80 - 120 4

Client Sample ID: Matrix Spike Lab Sample ID: 570-126774-E-17-E MS Prep Type: Total/NA **Matrix: Solid**

Analysis Batch: 302557 Prep Batch: 302294 Spike MS MS %Rec Sample Sample Result Qualifier Added Result Qualifier Unit %Rec Limits

Analyte Mercury ND 0.408 0.513 mg/Kg 114 80 - 120

QC Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-126382-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 570-126774-E-17-F MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 302557 Prep Batch: 302294 Sample Sample MSD MSD %Rec RPD Spike

Result Qualifier Added Limits RPD Limit Analyte Result Qualifier Unit D %Rec 0.392 80 - 120 20 Mercury ND 0.446 mg/Kg 102 14

QC Association Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

GC VOA

Analysis Batch: 301354

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1	LTU #4	Total/NA	Solid	8015B	301382
MB 570-301382/3-A	Method Blank	Total/NA	Solid	8015B	301382
LCS 570-301382/1-A	Lab Control Sample	Total/NA	Solid	8015B	301382
LCSD 570-301382/2-A	Lab Control Sample Dup	Total/NA	Solid	8015B	301382
570-126373-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B	301382
570-126373-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	301382

Prep Batch: 301382

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1	LTU #4	Total/NA	Solid	5030C	
MB 570-301382/3-A	Method Blank	Total/NA	Solid	5030C	
LCS 570-301382/1-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 570-301382/2-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
570-126373-A-1-F MS	Matrix Spike	Total/NA	Solid	5030C	
570-126373-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5030C	

GC Semi VOA

Prep Batch: 301060

Lab Sample ID 570-126382-1 - DL	Client Sample ID LTU #4	Prep Type Total/NA	Matrix Solid	Method 3550C	Prep Batch
MB 570-301060/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-301060/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-301060/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
570-126256-G-3-B MS	Matrix Spike	Total/NA	Solid	3550C	
570-126256-G-3-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3550C	

Analysis Batch: 301403

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-301060/1-A	Method Blank	Total/NA	Solid	8015B	301060
LCS 570-301060/2-A	Lab Control Sample	Total/NA	Solid	8015B	301060
LCSD 570-301060/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	301060
570-126256-G-3-B MS	Matrix Spike	Total/NA	Solid	8015B	301060
570-126256-G-3-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	301060

Analysis Batch: 301981

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1 - DL	LTU #4	Total/NA	Solid	8015B	301060

Prep Batch: 305349

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1	LTU #4	Total/NA	Solid	3550C	
MB 570-305349/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-305349/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-305349/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
570-126382-1 MS	LTU #4	Total/NA	Solid	3550C	
570-126382-1 MSD	LTU #4	Total/NA	Solid	3550C	

Analysis Batch: 305391

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1	LTU #4	Total/NA	Solid	8015B	305349

Eurofins Calscience

Page 18 of 23 2/21/2023

3

Job ID: 570-126382-1

SDG: Genesis Solar, LLC

3

6

0

9

11

12

13

14

Le

QC Association Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-126382-1 SDG: Genesis Solar, LLC

GC Semi VOA (Continued)

Analysis Batch: 305391 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-305349/1-A	Method Blank	Total/NA	Solid	8015B	305349
LCS 570-305349/2-A	Lab Control Sample	Total/NA	Solid	8015B	305349
LCSD 570-305349/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	305349
570-126382-1 MS	LTU #4	Total/NA	Solid	8015B	305349
570-126382-1 MSD	LTU #4	Total/NA	Solid	8015B	305349

Metals

Prep Batch: 301658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1	LTU #4	Total/NA	Solid	3050B	
MB 570-301658/1-A ^5	Method Blank	Total/NA	Solid	3050B	
LCS 570-301658/2-A ^5	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-301658/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	3050B	
570-126466-A-26-B MS ^5	Matrix Spike	Total/NA	Solid	3050B	
570-126466-A-26-C MSD ^5	Matrix Spike Duplicate	Total/NA	Solid	3050B	

Analysis Batch: 302021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1	LTU #4	Total/NA	Solid	6010B	301658
MB 570-301658/1-A ^5	Method Blank	Total/NA	Solid	6010B	301658
LCS 570-301658/2-A ^5	Lab Control Sample	Total/NA	Solid	6010B	301658
LCSD 570-301658/3-A ^5	Lab Control Sample Dup	Total/NA	Solid	6010B	301658
570-126466-A-26-B MS ^5	Matrix Spike	Total/NA	Solid	6010B	301658
570-126466-A-26-C MSD ^5	Matrix Spike Duplicate	Total/NA	Solid	6010B	301658

Prep Batch: 302294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1	LTU #4	Total/NA	Solid	7471A	
MB 570-302294/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 570-302294/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 570-302294/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
570-126774-E-17-E MS	Matrix Spike	Total/NA	Solid	7471A	
570-126774-E-17-F MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	

Analysis Batch: 302557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-126382-1	LTU #4	Total/NA	Solid	7471A	302294
MB 570-302294/1-A	Method Blank	Total/NA	Solid	7471A	302294
LCS 570-302294/2-A	Lab Control Sample	Total/NA	Solid	7471A	302294
LCSD 570-302294/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	302294
570-126774-E-17-E MS	Matrix Spike	Total/NA	Solid	7471A	302294
570-126774-E-17-F MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	302294

Accreditation/Certification Summary

Client: Northstar Environmental Remediation

Job ID: 570-126382-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date			
California		State	3082	07-31-23			
the agency does not o	offer certification.	•		This list may include analytes for which			
Analysis Method	Prep Method	Matrix	Analyte				
8015B	3550C	Solid	1,1'-Biphenyl				
8015B	3550C	Solid	Benzene, 1,1'-oxybis-				

Method Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-126382-1 SDG: Genesis Solar, LLC

Method	Method Description	Protocol	Laboratory
8015B	Gasoline Range Organics - (GC)	SW846	EET CAL 4
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
6010B	Metals (ICP)	SW846	EET CAL 4
7471A	Mercury (CVAA)	SW846	EET CAL 4
3050B	Preparation, Metals	SW846	EET CAL 4
3550C	Ultrasonic Extraction	SW846	EET CAL 4
5030C	Purge and Trap	SW846	EET CAL 4
7471A	Preparation, Mercury	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Eurofins Calscience Irvine

2841 Dow Avenue Tustin CA 92780 (714) 730-7950

Page 22 of 23

2/21/2023

Chain of Custody Recor-

🔅 eurofins |

Enviro Americ

Loc: 570 **126382**

Client Information	Sampler Mr Raiph DeLai	Parra		Sher	РМ. ri Far	ma	_	570-1	2638	32 Ch	ain of	Custo	ody			_		GOG No:
Client Contact: Mr. Arlin Brewster	Phone: (949) 702-0968		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	E-Mai		കരം	- eurofii	nset c	αm			Ca	liforni	а		_		Page: Page 1 of 1
Company'	(343) 702-0300	I	PWSID'	Siter	1.12111	12 (2)	-410111	1001.0										Job #:
Northstar Environmental Remediation						~~			A	nalys	is Re	eque	sted				-	Discounties Pades
Address: 26225 Enterprise Court	Due Date Requeste	ed																Preservation Codes, A - HCL M - Hexane
City Lake Forest	TAT Requested (da 10 business day																	B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip*																		D - Nitrio Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
CA, 92630 Phone.	Compliance Projec	t: A Yes A	No-		1 /													F - MeOH R - Na2S2O3
(949) 274-1719	196-004-05				ĵ		=											G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email: Arlin.Brewster@NorthstarER.com	WO#;				or N	(è	4										Si Si	I - Ice U - Acetone J DI Water V - MCAA
Project Name: GSEP LTU & Ponds	Project#:	70-13	5297		e (Yes	es or	W +										containers	K-EDTA W-pH 4-5 L-EDA Z-other (specify)
Site:	SSOW#:	<u> </u>				۵	ä										fcor	Other
Genesis Solar, LLC			1			SE	olinol Track	2							1	-	er of	
		Sample	Type (w	atrīx =water =solid, vasto/oil,	d Filter	Perform MS/MSD (Yes or No)	8015M Therminol	Title 22 Metals	Mercury				<				Total Number	Special Instructions/Note. EDF file NOT required
Sample Identification	Sample Date	Time	G=grab) _{BT=Tis}	sue, A=Alr		E E	804	Ē	Mer				-				Ē	
		\sim	Preservation	Code.	X	4	1		1			+	 	-			X	
LTU#1-					\coprod		_ _		_			_	_			_	-	
LTT#5					Ц	_			-				_					
LTU#3					Ш													
LTU#4	2-2-23	0920	С	s	Ш		x)	(x	X								3	
					П													
					П													
					П													
					IT													
Possible Hazard Identification		,	<u> </u>		1						-					are re	tain	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant Pois	on B Unkno	own - R	ladiological		_		Reti						osal E	By Lat)		_rch	ive For Months
Deliverable Requested T II, III, IV, Other (specify)					Ì	oped	aai in	structi	uns/C	QC Red	uirem	ENIS				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	III I CHILL	P-months
Empty Rit Relinquished by		Date.	١		Tim								Meti	nod of	Shipmen			
Relinquisheddy	Date Jime: 2-2	3 6-16	701 N	THAT!	ارا	-	Receive	d by	1						Date/Ti	ne: 2- 2	ر.	18:01 Company EC
Relinquished by	Date/Time.		Comp				Receive	d by					***************************************		Date/Ti			Company
Custody Seals Intact Custody Seal No Δ Yes Δ No	· foreign and the second		ــــــــــــــــــــــــــــــــــــــ		inp-m		cooler	emper	rature(s) °C an	d Other	Remar	ks.	1.	91	1.	9	5011
L		aliminini d	· · · · · · · · · · · · · · · · · · ·												1		-1-	Var-01/16/2010

Login Sample Receipt Checklist

Client: Northstar Environmental Remediation

Job Number: 570-126382-1

SDG Number: Genesis Solar, LLC

List Source: Eurofins Calscience

Login Number: 126382

List Number: 1

Creator: Skinner, Alma D

Creator: Skinner, Aima D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

6

8

10

12

13

13

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630

Generated 4/14/2023 5:19:22 PM

JOB DESCRIPTION

GSEP LTU & Ponds SDG NUMBER Genesis Solar, LLC

JOB NUMBER

570-132948-2

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender and destroy this report immediately. This report shall not be reproduced except in full, without prior express written approval by the laboratory.

The data in the report relate to the field sample(s) as received by the laboratory and associated QC. All results have been reviewed and have been found to be compliant with laboratory and accreditation requirements, with the exception of the noted deviation(s). For questions, please contact the Project Manager.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 4/14/2023 5:19:22 PM

Authorized for release by

Rossina Tomova, Project Manager I Rossina.Tomova@et.eurofinsus.com

Designee for

Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com

(657)210-6368

Eurofins Calscience is a laboratory within Eurofins Environment Testing Southwest, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	9
Lab Chronicle	10
QC Sample Results	11
QC Association Summary	12
Certification Summary	13
Method Summary	14
Chain of Custody	15
Receipt Checklists	16

6

8

10

12

Definitions/Glossary

Client: Northstar Environmental Remediation

Job ID: 570-132948-2 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Qualifiers

GC Semi VOA

Qualifier **Qualifier Description**

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

 $\mathsf{DL}, \mathsf{RA}, \mathsf{RE}, \mathsf{IN}$ Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-132948-2 SDG: Genesis Solar, LLC

Job ID: 570-132948-2

Laboratory: Eurofins Calscience

Narrative

570-132948-2

Comments

No additional comments.

Receipt

The samples were received on 3/29/2023 4:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.7° C.

GC Semi VOA

Method 8015B: Surrogate recovery for the following samples were outside control limits: LTU #1 (570-132948-1), LTU #2 (570-132948-2) and LTU #3 (570-132948-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 8015B: The matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 570-316563 and analytical batch 570-320013 was not reported. The MS/MSD was not performed at the same dilution as the sample. The laboratory control sample (LCS) was performed in duplicate (LCSD) to provide precision data for this batch.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

11

12

13

Sample Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-132948-2 SDG: Genesis Solar, LLC

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-132948-1	LTU #1	Solid	03/29/23 08:28	03/29/23 16:00
570-132948-2	LTU #2	Solid	03/29/23 08:30	03/29/23 16:00
570-132948-3	LTU #3	Solid	03/29/23 08:32	03/29/23 16:00

9

Δ

8

9

10

12

Detection Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-132948-2

SDG: Genesis Solar, LLC

Client Sample ID: LTU #1	Lab Sample ID: 570-132948-1
--------------------------	-----------------------------

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene, 1,1'-oxybis DL2	25000	490	mg/Kg	100	8015B	Total/NA
1,1'-Biphenyl - DL2	8000	490	mg/Kg	100	8015B	Total/NA

Client Sample ID: LTU #2 Lab Sample ID: 570-132948-2

Analyte	Result Qualifier	RL	Unit	Dil Fac	O Method	Prep Type
Benzene, 1,1'-oxybis DL2	27000	490	mg/Kg	100	8015B	Total/NA
1,1'-Biphenyl - DL2	9000	490	mg/Kg	100	8015B	Total/NA

Lab Sample ID: 570-132948-3 Client Sample ID: LTU #3

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene, 1,1'-oxybis DL	22000	490	mg/Kg	100	8015B	Total/NA
1.1'-Biphenvl - DL	6900	490	ma/Ka	100	8015B	Total/NA

Client Sample Results

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Lab Sample ID: 570-132948-1

Matrix: Solid

Job ID: 570-132948-2

SDG: Genesis Solar, LLC

Date Collected: 03/29/23 08:28 Date Received: 03/29/23 16:00

Client Sample ID: LTU #1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	25000		490	mg/Kg		03/31/23 15:20	04/14/23 13:05	100
1,1'-Biphenyl	8000		490	mg/Kg		03/31/23 15:20	04/14/23 13:05	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	161	S1+	60 - 138			03/31/23 15:20	04/14/23 13:05	100

Lab Sample ID: 570-132948-2 Client Sample ID: LTU #2 Matrix: Solid

Date Collected: 03/29/23 08:30

Date Received: 03/29/23 16:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	27000		490	mg/Kg		03/31/23 15:20	04/14/23 13:29	100
1,1'-Biphenyl	9000		490	mg/Kg		03/31/23 15:20	04/14/23 13:29	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	307	S1+	60 - 138			03/31/23 15:20	04/14/23 13:29	100

Client Sample ID: LTU #3 Lab Sample ID: 570-132948-3 **Matrix: Solid**

Date Collected: 03/29/23 08:32 Date Received: 03/29/23 16:00

Method: SW846 8015B - Diesel Range Organics (DRO) (GC) - DL Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac 22000 490 mg/Kg 03/31/23 15:20 04/14/23 12:15 100 Benzene, 1,1'-oxybis-03/31/23 15:20 04/14/23 12:15 1,1'-Biphenyl 6900 490 mg/Kg 100 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac n-Octacosane (Surr) 162 S1+ 60 - 138 03/31/23 15:20 04/14/23 12:15 100

Surrogate Summary

Client: Northstar Environmental Remediation

Job ID: 570-132948-2 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8015B - Diesel Range Organics (DRO) (GC)

Prep Type: Total/NA Matrix: Solid

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(60-138)	
570-132948-1 - DL2	LTU #1	161 S1+	
570-132948-2 - DL2	LTU #2	307 S1+	
570-132948-3 - DL	LTU #3	162 S1+	
LCS 570-316563/30-A	Lab Control Sample	106	
LCSD 570-316563/31-A	Lab Control Sample Dup	96	
MB 570-316563/1-A	Method Blank	94	
Surrogate Legend			

Eurofins Calscience

Page 9 of 16 4/14/2023

Lab Chronicle

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-132948-2 SDG: Genesis Solar, LLC

Lab Sample ID: 570-132948-1

Matrix: Solid

Date Collected: 03/29/23 08:28 Date Received: 03/29/23 16:00

Client Sample ID: LTU #1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL2		10.21 g	10 mL	316563	03/31/23 15:20	KH3Z	EET CAL 4
Total/NA	Analysis	8015B	DL2	100	1 mL	1 mL	320013	04/14/23 13:05	SP9M	EET CAL 4
	Instrumen	t ID: GC70B								

Client Sample ID: LTU #2

Date Collected: 03/29/23 08:30 Date Received: 03/29/23 16:00

Lab Sample ID: 570-132948-2 **Matrix: Solid**

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	DL2		10.28 g	10 mL	316563	03/31/23 15:20	KH3Z	EET CAL 4
Total/NA	Analysis	8015B	DL2	100	1 mL	1 mL	320013	04/14/23 13:29	SP9M	EET CAL 4
	Instrumer	nt ID: GC70B								

Lab Sample ID: 570-132948-3 **Client Sample ID: LTU #3 Matrix: Solid**

Date Collected: 03/29/23 08:32 Date Received: 03/29/23 16:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	<u>Ruii</u>		10.24 g	10 mL	316563	03/31/23 15:20		EET CAL 4
Total/NA	Analysis	8015B	DL	100	1 mL	1 mL	320013	04/14/23 12:15	SP9M	EET CAL 4
	Instrumer	nt ID: GC70B								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Client: Northstar Environmental Remediation

Job ID: 570-132948-2 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-316563/1-A	Client Sample ID: Method Blank
Lab Gample ID: IIID G7 G-G 100007 1-A	Offerit Cample ID: Method Blan

Matrix: Solid

Analysis Batch: 320013							Prep Batch:	316563
-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene, 1,1'-oxybis-	ND		5.0	mg/Kg		03/31/23 15:20	04/14/23 00:23	1
1,1'-Biphenyl	ND		5.0	mg/Kg		03/31/23 15:20	04/14/23 00:23	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	94	60 - 138	03/31/23 15:20	04/14/23 00:23	1

Lab Sample ID: LCS 570-316563/30-A **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Solid Analysis Batch: 320013

Analysis Batch: 320013		Spike	LCS	LCS				Prep Batch %Rec	316563
Analyte		Added	_	Qualifier	Unit	D	%Rec	Limits	
Benzene, 1,1'-oxybis-		100	116		mg/Kg		116	68 - 120	
1,1'-Biphenyl		100	84.9		mg/Kg		85	57 - 120	
	LCS LCS								

%Recovery Qualifier Surrogate Limits n-Octacosane (Surr) 106 60 - 138

Lab Sample ID: LCSD 570-316563/31-A

Matrix: Solid Analysis Batch: 320013							Prep Ty Prep Ba	•	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene, 1,1'-oxybis-	100	117		mg/Kg		117	68 - 120	1	20
1,1'-Biphenyl	100	85.9		mg/Kg		86	57 - 120	1	20

	LCSD LCSI	,
Surrogate	%Recovery Qual	ifier Limits
n-Octacosane (Surr)	96	60 - 138

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

QC Association Summary

Client: Northstar Environmental Remediation

Job ID: 570-132948-2 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

GC Semi VOA

Prep Batch: 316563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-132948-1 - DL2	LTU #1	Total/NA	Solid	3550C	
570-132948-2 - DL2	LTU #2	Total/NA	Solid	3550C	
570-132948-3 - DL	LTU #3	Total/NA	Solid	3550C	
MB 570-316563/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-316563/30-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-316563/31-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

Analysis Batch: 320013

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-132948-1 - DL2	LTU #1	Total/NA	Solid	8015B	316563
570-132948-2 - DL2	LTU #2	Total/NA	Solid	8015B	316563
570-132948-3 - DL	LTU #3	Total/NA	Solid	8015B	316563
MB 570-316563/1-A	Method Blank	Total/NA	Solid	8015B	316563
LCS 570-316563/30-A	Lab Control Sample	Total/NA	Solid	8015B	316563
LCSD 570-316563/31-A	Lab Control Sample Dup	Total/NA	Solid	8015B	316563

Accreditation/Certification Summary

Client: Northstar Environmental Remediation

Job ID: 570-132948-2 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
California		State	3082	07-31-24
the agency does not o		report, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8015B	3550C	Solid	1,1'-Biphenyl	
8015B	3550C	Solid	Benzene, 1,1'-oxybis-	

Method Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-132948-2 SDG: Genesis Solar, LLC

Method	Method Description	Protocol	Laboratory
8015B	Diesel Range Organics (DRO) (GC)	SW846	EET CAL 4
3550C	Ultrasonic Extraction	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

10

11

13

14

Eurofins Calscience Irvine

2841 Dow Avenue Tuetin CA 92780

Chain of Custody Record

Environment Test America	ing
Loc: 5	
— 132	948
es:	
M - Hexane N - None O - AsNaO2 P - Na2O4S O - Na2SO3 R - Na2SO3 S - H2SO4 T - TSP Dodecahyd U - Acetone V - MCAA W - pH 4-5 Z - other (specify)	rate
structions/Note: NOT required	
lysis- ASA	IP
lysis- ASA	IP
lysis- ASA	IP
	IP
Nysis - ASA month) Months	IP

Client Information	Sampler: Mr. Ralph DeL:	aParra		Lab She	PM: eri Fam a	a					Carrier Trac	king No(s):		COC No: Loc: 570
Client Contact: Mr. Artin Brewster	Phone: (949) 702-0968			E-M			ofinse	et.com			State of Origin: California			Page: 1329 Page 1 of 1
Company:	(545) 102 5000		PWSID:	9110			2001			lucio (-			Job #:
Northstar Environmental Remediation Address:	Due Date Reques	ted:							Ana	lysis i	Requested			Preservation Codes:
26225 Enterprise Court					-	ш			П					A - HCL M - Hexane
City: Lake Forest	TAT Requested (c	ivs			ш	ш	l							B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip		MOCS - ASAP Rush empliance Project: A Yes A No				H								D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
CA, 92630 Phone:	PO#	от. д тез	4 110		100		İ			i I				F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
949) 274–1719 imail:	196-004-05 WO#:				2		ē		3	\$				H - Ascorbic Acid T - TSP Dodecahydrate
Arlin.Brewster@NorthstarER.com	VVO #.				No So		Motor		V	⊰			5	J - DI Water V - MCAA
Project Name: GSEP LTU & Ponds	Project #:				ي و ال		*		5.1	<u> </u>			aine	K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Site:	SSOW#:					Ш	Diese						COU	Other:
Genesis Solar, LLC		T		_	d Sa	jori	+ aL		Mc				er of	
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solld, O=waste/oil,	Field Filtere	8015M Therm	8015B Gasoli	e 22 Metals	Mercury %260 V				tal Numb	Special Instructions/Note: EDF file NOT required
Sample Identification	Sample Date	Time		=Tissue, A=Ai		i i	8	Title :	<u>₹</u> ×	5			P	Please report vocs ASAP
	1/1	100	Preservation		HX	11			+	+			X	
.TU #1	03/29/23	0828	С	S	1	X				\perp			1	
TU #2		0830	С	S		X							1	- In
.TU #3		0832	С	S		х							1	
.TU #4		0834	c	5	П		- 0		Y	-			1	Rush analysis - ASAF
	9	1000							_				1	Last analysis 11 mil
					H		-	+	+	+			+	
		-			++-	\vdash	_	_	+	-				
		1			\bot				_					
							Щ							
									\top					
					Ħ		\dashv	_	+	++				
70-132948 Chain of Custody					₩		-		_	+		-	-	
2					Щ		2:		46-					
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B Ulnkr	,	Padiological			A PARTY OF	1000	To Cli		_	Disposal By			ed longer than 1 month) ive For Months
Deliverable Requested: I, II, III, IV, Other (specify)	TOISON B CHAI	OWN 1	Radiological		_					Require		Lab L		IVE I OI IVIORITIS
Empty Kit Relinquished by:	+	Date:			Time:						Metho	d of Shipment:	-	
V 17 H	Date/Time:		Ico	mpany		Recei	ved-bay	مدة				Date/Time:	,	Company
Jun Do	Date/Time:	2 1600	/	16rth	star	1	11		5	7	_	3/20	1/2	7
Rellinquished by:	Date/Time:		C	mpany		Recei	ved by	<i>f</i> :				Date/Time:		Company
Custody Seals Intact: Custody Seal No.:						Coole	r Tem	peratur	e(s) °C	and Othe	er Remarks:	-7/1.7		2 //
Δ Yes Δ No											1,7	- // (/		5011

Login Sample Receipt Checklist

Client: Northstar Environmental Remediation

Job Number: 570-132948-2

SDG Number: Genesis Solar, LLC

List Source: Eurofins Calscience

Login Number: 132948

List Number: 1

Creator: Ortiz-Luis, Michael

Creator: Ortiz-Luis, Michael		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

10

12

13

A E

ANALYTICAL REPORT

PREPARED FOR

Attn: Arlin Brewster Northstar Environmental Remediation 26225 Enterprise Court Lake Forest, California 92630

Generated 3/30/2023 12:07:48 PM

JOB DESCRIPTION

GSEP LTU & Ponds SDG NUMBER Genesis Solar, LLC

JOB NUMBER

570-132948-1

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin CA 92780

Eurofins Calscience

Job Notes

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender and destroy this report immediately. This report shall not be reproduced except in full, without prior express written approval by the laboratory.

The data in the report relate to the field sample(s) as received by the laboratory and associated QC. All results have been reviewed and have been found to be compliant with laboratory and accreditation requirements, with the exception of the noted deviation(s). For questions, please contact the Project Manager.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Calscience Project Manager.

Authorization

Generated 3/30/2023 12:07:48 PM

Authorized for release by Sheri Fama, Project Manager I Sheri.Fama@et.eurofinsus.com (657)210-6368

3

4

5

6

8

9

10

12

10

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
Lab Chronicle	11
QC Sample Results	12
QC Association Summary	21
Certification Summary	22
Method Summary	23
Chain of Custody	24
Receipt Checklists	25

Definitions/Glossary

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown) ND NEG Negative / Absent POS Positive / Present

PRES 0C

PQL

Presumptive **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Practical Quantitation Limit

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Calscience

3

Page 4 of 25 3/30/2023

Case Narrative

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-132948-1 SDG: Genesis Solar, LLC

Job ID: 570-132948-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-132948-1

Receipt

The samples were received on 3/29/2023 4:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.7°C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

0

10

11

13

14

Sample Summary

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-132948-4	LTU #4	Solid	03/29/23 08:34	03/29/23 16:00

Detection Summary

Client: Northstar Environmental Remediation

Client Sample ID: LTU #4

Project/Site: GSEP LTU & Ponds

Job ID: 570-132948-1 SDG: Genesis Solar, LLC

Lab Sample ID: 570-132948-4

No Detections.

J

4

6

8

9

11

14

Client Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Client Sample ID: LTU #4

Date Collected: 03/29/23 08:34 Date Received: 03/29/23 16:00

Lab Sample ID: 570-132948-4

Matrix: Solid

Analyte	Result Qualifier	RL	Unit	_ D Pre	pared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	1.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	•
1,1,1-Trichloroethane	ND	1.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	•
1,1,2,2-Tetrachloroethane	ND	2.0	ug/Kg	03/29	/23 16:30	03/30/23 00:38	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	ug/Kg	03/29	/23 16:30	03/30/23 00:38	•
1,1,2-Trichloroethane	ND	1.0	ug/Kg	03/29	/23 16:30	03/30/23 00:38	•
1,1-Dichloroethane	ND	1.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	
1,1-Dichloroethene	ND	1.0	ug/Kg	03/29	/23 16:30	03/30/23 00:38	
1,1-Dichloropropene	ND	2.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	
1,2,3-Trichlorobenzene	ND	2.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	•
1,2,3-Trichloropropane	ND	2.0	ug/Kg	03/29	/23 16:30	03/30/23 00:38	
1,2,4-Trichlorobenzene	ND	2.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	
1,2,4-Trimethylbenzene	ND	2.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	
1,2-Dibromo-3-Chloropropane	ND	10	ug/Kg	03/29	/23 16:30	03/30/23 00:38	
1,2-Dibromoethane	ND	1.0	ug/Kg	03/29	/23 16:30	03/30/23 00:38	
1,2-Dichlorobenzene	ND	1.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	
1,2-Dichloroethane	ND	1.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	
1,2-Dichloropropane	ND	1.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	
1,3,5-Trimethylbenzene	ND	2.0	ug/Kg		/23 16:30		
1,3-Dichlorobenzene	ND	1.0	ug/Kg			03/30/23 00:38	
1,3-Dichloropropane	ND	1.0	ug/Kg		/23 16:30		
1,4-Dichlorobenzene	ND	1.0	ug/Kg		/23 16:30		
2,2-Dichloropropane	ND	5.0	ug/Kg		/23 16:30		
2-Butanone	ND	20	ug/Kg		/23 16:30		
2-Chlorotoluene	ND	1.0	ug/Kg		/23 16:30		
2-Hexanone	ND	20	ug/Kg		/23 16:30		
4-Chlorotoluene	ND	1.0	ug/Kg		/23 16:30		
4-Methyl-2-pentanone	ND	20	ug/Kg			03/30/23 00:38	
Acetone	ND ND	20	ug/Kg			03/30/23 00:38	
Benzene	ND	1.0	ug/Kg ug/Kg			03/30/23 00:38	
Bromobenzene	ND	1.0	ug/Kg ug/Kg			03/30/23 00:38	
Bromochloromethane						03/30/23 00:38	
Bromodichloromethane	ND ND	2.0 1.0	ug/Kg			03/30/23 00:38	
Bromoform	ND		ug/Kg				
		5.0	ug/Kg			03/30/23 00:38	
Bromomethane	ND	20	ug/Kg			03/30/23 00:38	
cis-1,2-Dichloroethene	ND	1.0	ug/Kg			03/30/23 00:38	
cis-1,3-Dichloropropene	ND	1.0	ug/Kg			03/30/23 00:38	
Carbon disulfide	ND	10	ug/Kg			03/30/23 00:38	•
Carbon tetrachloride	ND	1.0	ug/Kg			03/30/23 00:38	•
Chlorobenzene	ND	1.0	ug/Kg			03/30/23 00:38	
Chloroethane	ND	2.0	ug/Kg			03/30/23 00:38	•
Chloroform	ND	1.0	ug/Kg			03/30/23 00:38	•
Chloromethane	ND	20	ug/Kg			03/30/23 00:38	
Dibromochloromethane	ND	2.0	ug/Kg			03/30/23 00:38	
Dibromomethane	ND	1.0	ug/Kg			03/30/23 00:38	
Dichlorodifluoromethane	ND	2.0	ug/Kg			03/30/23 00:38	
Di-isopropyl ether (DIPE)	ND	1.0	ug/Kg	03/29	/23 16:30	03/30/23 00:38	
Ethanol	ND	250	ug/Kg	03/29	/23 16:30	03/30/23 00:38	
Ethylbenzene	ND	1.0	ug/Kg	03/29/	/23 16:30	03/30/23 00:38	•
Ethyl-t-butyl ether (ETBE)	ND	1.0	ug/Kg	03/29	/23 16:30	03/30/23 00:38	

Eurofins Calscience

Page 8 of 25 3/30/2023

Client Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Client Sample ID: LTU #4

Date Collected: 03/29/23 08:34 Date Received: 03/29/23 16:00

Lab Sample ID: 570-132948-4

Matrix: Solid

Analyte	Result Qu	ıalifier RI	L Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND ND	1.0	ug/Ko		03/29/23 16:30	03/30/23 00:38	1
Methylene Chloride	ND	10	0 ug/Kឲ	J	03/29/23 16:30	03/30/23 00:38	1
Methyl-t-Butyl Ether (MTBE)	ND	2.0) ug/Ko)	03/29/23 16:30	03/30/23 00:38	1
Naphthalene	ND	10) ug/Ko	J	03/29/23 16:30	03/30/23 00:38	1
n-Butylbenzene	ND	1.0	0 ug/Kឲ	3	03/29/23 16:30	03/30/23 00:38	1
N-Propylbenzene	ND	2.0	ug/Ko	3	03/29/23 16:30	03/30/23 00:38	1
o-Xylene	ND	1.0	0 ug/Kឲ	3	03/29/23 16:30	03/30/23 00:38	1
m,p-Xylene	ND	2.0	0 ug/Kឲ	3	03/29/23 16:30	03/30/23 00:38	1
p-Isopropyltoluene	ND	1.0) ug/Ko	3	03/29/23 16:30	03/30/23 00:38	1
sec-Butylbenzene	ND	1.0) ug/Ko	J	03/29/23 16:30	03/30/23 00:38	1
Styrene	ND	1.0	ug/Ko	J	03/29/23 16:30	03/30/23 00:38	1
trans-1,2-Dichloroethene	ND	1.0	0 ug/Kզ)	03/29/23 16:30	03/30/23 00:38	1
trans-1,3-Dichloropropene	ND	2.0	0 ug/Kឲ	J	03/29/23 16:30	03/30/23 00:38	1
Tert-amyl-methyl ether (TAME)	ND	1.0	0 ug/Kឲ	J	03/29/23 16:30	03/30/23 00:38	1
tert-Butyl alcohol (TBA)	ND	2) ug/Ko)	03/29/23 16:30	03/30/23 00:38	1
tert-Butylbenzene	ND	1.0	ug/Ko	J	03/29/23 16:30	03/30/23 00:38	1
Tetrachloroethene	ND	1.0	0 ug/Kឲ	J	03/29/23 16:30	03/30/23 00:38	1
Toluene	ND	1.0	0 ug/Kg	3	03/29/23 16:30	03/30/23 00:38	1
Trichloroethene	ND	2.0	0 ug/Kឲ	J	03/29/23 16:30	03/30/23 00:38	1
Trichlorofluoromethane	ND	10) ug/Ko	J	03/29/23 16:30	03/30/23 00:38	1
Vinyl acetate	ND	10	ug/Ko]	03/29/23 16:30	03/30/23 00:38	1
Vinyl chloride	ND	1.0	0 ug/Kឲ	J	03/29/23 16:30	03/30/23 00:38	1
Xylenes, Total	ND	2.0	0 ug/Kç	1	03/29/23 16:30	03/30/23 00:38	1
Surrogate	%Recovery Qu	ualifier Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	32 - 179	_		03/29/23 16:30	03/30/23 00:38	1
4-Bromofluorobenzene (Surr)	103	80 - 120			03/29/23 16:30	03/30/23 00:38	1
Dibromofluoromethane (Surr)	101	58 - 147			03/29/23 16:30	03/30/23 00:38	1
Toluene-d8 (Surr)	103	80 - 120			03/29/23 16:30	03/30/23 00:38	1

Surrogate Summary

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(32-179)	(80-120)	(58-147)	(80-120)
570-132818-A-2-C MS	Matrix Spike	104	102	101	101
570-132818-A-2-D MSD	Matrix Spike Duplicate	106	99	100	99
570-132948-4	LTU #4	105	103	101	103
LCS 570-315949/1-A	Lab Control Sample	103	100	104	102
LCSD 570-315949/2-A	Lab Control Sample Dup	102	99	100	102
MB 570-315949/5-A	Method Blank	101	102	102	99
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Calscience

Page 10 of 25

Lab Chronicle

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Client Sample ID: LTU #4

Lab Sample ID: 570-132948-4 Date Collected: 03/29/23 08:34 **Matrix: Solid**

Date Received: 03/29/23 16:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030C			4.96 g	5 mL	315949	03/29/23 16:30	AJ4K	EET CAL 4
Total/NA	Analysis	8260B		1	5 g	5 mL	315901	03/30/23 00:38	N1A	EET CAL 4
	Instrumer	t ID: GCMSCC								

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Job ID: 570-132948-1

QC Sample Results

Client: Northstar Environmental Remediation Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 570-315949/5-A

Matrix: Solid

Analysis Batch: 315901

Client Sample ID:	Method	Blank
Prep	Type: Tot	al/NA
		4 = 0 4 0

Prep Batch: 315949

	MB							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/Kg		03/29/23 16:30		1
1,1,1-Trichloroethane	ND		1.0	ug/Kg			03/29/23 21:50	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,1,2-Trichloroethane	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,1-Dichloroethane	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,1-Dichloroethene	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,1-Dichloropropene	ND		2.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2,3-Trichlorobenzene	ND		2.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2,3-Trichloropropane	ND		2.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2,4-Trichlorobenzene	ND		2.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2,4-Trimethylbenzene	ND		2.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2-Dibromo-3-Chloropropane	ND		10	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2-Dibromoethane	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2-Dichlorobenzene	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2-Dichloroethane	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,2-Dichloropropane	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,3,5-Trimethylbenzene	ND		2.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,3-Dichlorobenzene	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,3-Dichloropropane	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
1,4-Dichlorobenzene	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1
2,2-Dichloropropane	ND		5.0	ug/Kg			03/29/23 21:50	1
2-Butanone	ND		20	ug/Kg			03/29/23 21:50	1
2-Chlorotoluene	ND		1.0	ug/Kg			03/29/23 21:50	1
2-Hexanone	ND		20	ug/Kg			03/29/23 21:50	1
4-Chlorotoluene	ND		1.0	ug/Kg			03/29/23 21:50	1
4-Methyl-2-pentanone	ND		20	ug/Kg			03/29/23 21:50	1
Acetone	ND		20	ug/Kg			03/29/23 21:50	1
Benzene	ND		1.0	ug/Kg			03/29/23 21:50	1
Bromobenzene	ND		1.0	ug/Kg			03/29/23 21:50	1
Bromochloromethane	ND		2.0	ug/Kg			03/29/23 21:50	1
Bromodichloromethane	ND		1.0	ug/Kg			03/29/23 21:50	1
Bromoform	ND		5.0	ug/Kg			03/29/23 21:50	1
Bromomethane	ND		20	ug/Kg			03/29/23 21:50	
cis-1,2-Dichloroethene	ND		1.0	ug/Kg		03/29/23 16:30		1
cis-1,3-Dichloropropene	ND		1.0	ug/Kg			03/29/23 21:50	1
Carbon disulfide	ND		10	ug/Kg			03/29/23 21:50	
Carbon tetrachloride	ND		1.0	ug/Kg			03/29/23 21:50	1
Chlorobenzene	ND ND		1.0	ug/Kg			03/29/23 21:50	1
Chloroethane	ND		2.0				03/29/23 21:50	
Chloroform	ND ND		1.0	ug/Kg			03/29/23 21:50	1
Chloromethane				ug/Kg				1
	ND		20	ug/Kg			03/29/23 21:50	1
Dibromochloromethane	ND		2.0	ug/Kg			03/29/23 21:50	1
Dibromomethane Diablara diffusione at bone	ND		1.0	ug/Kg			03/29/23 21:50	1
Dichlorodifluoromethane	ND		2.0	ug/Kg			03/29/23 21:50	1
Di-isopropyl ether (DIPE)	ND		1.0	ug/Kg			03/29/23 21:50	1
Ethanol	ND		250	ug/Kg			03/29/23 21:50	1
Ethylbenzene	ND		1.0	ug/Kg		03/29/23 16:30	03/29/23 21:50	1

Eurofins Calscience

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 570-315949/5-A

Matrix: Solid

Analysis Batch: 315901

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 315949

MB MB Result Qualifier RL Unit Prepared Analyzed Dil Fac Ethyl-t-butyl ether (ETBE) ND 1.0 ug/Kg 03/29/23 16:30 03/29/23 21:50 Isopropylbenzene ND 1.0 ug/Kg 03/29/23 16:30 03/29/23 21:50 ND 03/29/23 16:30 03/29/23 21:50 Methylene Chloride 10 ug/Kg Methyl-t-Butyl Ether (MTBE) 2.0 ND ug/Kg 03/29/23 16:30 03/29/23 21:50 Naphthalene ND 10 03/29/23 16:30 03/29/23 21:50 ug/Kg n-Butylbenzene ND 1.0 ug/Kg 03/29/23 16:30 03/29/23 21:50 N-Propylbenzene ND 2.0 ug/Kg 03/29/23 16:30 03/29/23 21:50 o-Xylene ND 1.0 ug/Kg 03/29/23 16:30 03/29/23 21:50 m,p-Xylene 03/29/23 16:30 03/29/23 21:50 ND 2.0 ug/Kg p-Isopropyltoluene ND 03/29/23 16:30 03/29/23 21:50 1.0 ug/Kg sec-Butylbenzene ND 03/29/23 16:30 03/29/23 21:50 1.0 ug/Kg ND 03/29/23 16:30 03/29/23 21:50 Styrene 1.0 ug/Kg trans-1,2-Dichloroethene ND 1.0 03/29/23 16:30 03/29/23 21:50 ug/Kg 03/29/23 16:30 03/29/23 21:50 ND trans-1,3-Dichloropropene 2.0 ug/Kg Tert-amyl-methyl ether (TAME) ND 1.0 ug/Kg 03/29/23 16:30 03/29/23 21:50 tert-Butyl alcohol (TBA) ND 20 ug/Kg 03/29/23 16:30 03/29/23 21:50 tert-Butylbenzene ND 1.0 03/29/23 16:30 03/29/23 21:50 ug/Kg Tetrachloroethene ND 1.0 03/29/23 16:30 03/29/23 21:50 ug/Kg ND Toluene 1.0 ug/Kg 03/29/23 16:30 03/29/23 21:50 Trichloroethene ND 2.0 03/29/23 16:30 03/29/23 21:50 ug/Kg Trichlorofluoromethane ND 10 ug/Kg 03/29/23 16:30 03/29/23 21:50 Vinyl acetate ND 10 ug/Kg 03/29/23 16:30 03/29/23 21:50 ND Vinyl chloride 1.0 ug/Kg 03/29/23 16:30 03/29/23 21:50 Xylenes, Total ND 2.0 ug/Kg 03/29/23 16:30 03/29/23 21:50

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	101		32 - 179	03/29/23 16:30	03/29/23 21:50	1
	4-Bromofluorobenzene (Surr)	102		80 - 120	03/29/23 16:30	03/29/23 21:50	1
	Dibromofluoromethane (Surr)	102		58 - 147	03/29/23 16:30	03/29/23 21:50	1
١	Toluene-d8 (Surr)	99		80 - 120	03/29/23 16:30	03/29/23 21:50	1

Lab Sample ID: LCS 570-315949/1-A

Matrix: Solid

Analysis Batch: 315901

Cilent	sample	ID: Lab	Control	Sample

Prep Type: Total/NA Prep Batch: 315949

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	56.4		ug/Kg		113	80 - 125	
1,1,1-Trichloroethane	50.0	52.2		ug/Kg		104	78 - 130	
1,1,2,2-Tetrachloroethane	50.0	49.3		ug/Kg		99	80 - 124	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	48.5		ug/Kg		97	73 - 130	
ne								
1,1,2-Trichloroethane	50.0	49.5		ug/Kg		99	80 - 123	
1,1-Dichloroethane	50.0	50.9		ug/Kg		102	79 - 124	
1,1-Dichloroethene	50.0	48.9		ug/Kg		98	74 - 132	
1,1-Dichloropropene	50.0	47.8		ug/Kg		96	78 - 130	
1,2,3-Trichlorobenzene	50.0	53.9		ug/Kg		108	80 - 123	
1,2,3-Trichloropropane	50.0	52.8		ug/Kg		106	79 - 120	
1,2,4-Trichlorobenzene	50.0	57.3		ug/Kg		115	80 - 125	
1,2,4-Trimethylbenzene	50.0	49.6		ug/Kg		99	80 - 124	

Eurofins Calscience

Page 13 of 25

QC Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-315949/1-A

Matrix: Solid

Analysis Batch: 315901

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 315949**

Analysis Batch: 315901	0				Prep Batch: 31594
Analyte	Spike Added		LCS Qualifier Unit	D %Rec	%Rec Limits
1,2-Dibromo-3-Chloropropane	50.0	49.1	ug/K		67 - 120
1,2-Dibromoethane	50.0	53.4	ug/K		80 - 120
1,2-Dichlorobenzene	50.0	52.2	ug/K	-	80 - 120
1,2-Dichloroethane	50.0	54.1	ug/K		77 - 120
1,2-Dichloropropane	50.0	49.6	ug/K		80 - 126
1,3,5-Trimethylbenzene	50.0	51.6	ug/K	-	80 - 121
1,3-Dichlorobenzene	50.0	52.2	ug/K		80 - 120
1,3-Dichloropropane	50.0	53.4	ug/K	-	80 - 120
1,4-Dichlorobenzene	50.0	52.3	ug/K	-	80 - 120
2,2-Dichloropropane	50.0	51.6	ug/K		73 - 135
2-Butanone	50.0	49.2	ug/K	-	67 - 136
2-Chlorotoluene	50.0	51.2	ug/K	-	80 - 120
2-Hexanone	50.0	50.9	ug/K		70 - 137
4-Chlorotoluene	50.0	49.8	ug/K	•	80 - 121
4-Methyl-2-pentanone	50.0	48.8	ug/K	-	74 - 124
Acetone	50.0	45.7	ug/K		61 - 142
Benzene	50.0	49.7	ug/K	-	80 - 120
Bromobenzene	50.0	53.6	ug/K	-	80 - 120
Bromochloromethane	50.0	53.2	ug/K		80 - 120
Bromodichloromethane	50.0	55.2	ug/K	-	80 - 125
Bromoform	50.0	53.7	ug/K	-	74 - 138
Bromomethane	50.0	48.7	ug/K	(g 97	58 - 136
cis-1,2-Dichloroethene	50.0	50.5	ug/K	ig 101	80 - 124
cis-1,3-Dichloropropene	50.0	48.8	ug/K	ig 98	80 - 123
Carbon disulfide	50.0	42.6	ug/K	īg 85	68 - 128
Carbon tetrachloride	50.0	53.8	ug/K	(g 108	75 - 140
Chlorobenzene	50.0	50.9	ug/K	(g 102	80 - 120
Chloroethane	50.0	51.3	ug/K	.g 103	76 - 137
Chloroform	50.0	48.2	ug/K	ig 96	80 - 121
Chloromethane	50.0	47.9	ug/K	ig 96	74 - 133
Dibromochloromethane	50.0	56.2	ug/K	(g 112	80 - 132
Dibromomethane	50.0	55.5	ug/K	íg 111	80 - 120
Dichlorodifluoromethane	50.0	51.6	ug/K	íg 103	63 - 146
Di-isopropyl ether (DIPE)	50.0	53.9	ug/K	(g 108	73 - 132
Ethanol	500	584	ug/K	-	46 - 159
Ethylbenzene	50.0	49.6	ug/K	(g 99	80 - 120
Ethyl-t-butyl ether (ETBE)	50.0	50.4	ug/K	(g 101	77 - 129
Isopropylbenzene	50.0	55.6	ug/K	-	80 - 122
Methylene Chloride	50.0	49.3	ug/K		74 - 120
Methyl-t-Butyl Ether (MTBE)	50.0	53.6	ug/K		79 - 123
Naphthalene	50.0	51.3	ug/K	-	79 - 121
n-Butylbenzene	50.0	50.1	ug/K		79 - 131
N-Propylbenzene	50.0	52.1	ug/K		80 - 122
o-Xylene	50.0	50.5	ug/K	-	80 - 120
m,p-Xylene	100	101	ug/K		80 - 120
p-Isopropyltoluene	50.0	50.1	ug/K		80 - 126
sec-Butylbenzene	50.0	50.5	ug/K	-	80 - 125
Styrene	50.0	52.5	ug/K		80 - 120
trans-1,2-Dichloroethene	50.0	48.6	ug/K	(g 97	75 - 123

Eurofins Calscience

3/30/2023

QC Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-315949/1-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 315901

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 315949

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,3-Dichloropropene	50.0	54.8		ug/Kg		110	80 - 124	
Tert-amyl-methyl ether (TAME)	50.0	50.7		ug/Kg		101	80 - 120	
tert-Butyl alcohol (TBA)	250	254		ug/Kg		102	74 - 123	
tert-Butylbenzene	50.0	50.2		ug/Kg		100	80 - 124	
Tetrachloroethene	50.0	52.9		ug/Kg		106	80 - 122	
Toluene	50.0	48.5		ug/Kg		97	80 - 120	
Trichloroethene	50.0	51.2		ug/Kg		102	80 - 127	
Trichlorofluoromethane	50.0	57.7		ug/Kg		115	70 - 144	
Vinyl acetate	50.0	47.4		ug/Kg		95	71 - 125	
Vinyl chloride	50.0	46.2		ug/Kg		92	79 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		32 - 179
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	104		58 - 147
Toluene-d8 (Surr)	102		80 - 120

Lab Sample ID: LCSD 570-315949/2-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Added Result Qualifier Unit D %Rec Limits RPD Limit ,1,12-Eterachloroethane 50.0 53.9 ug/Kg 10.8 80.125 5 22 ,1,12-Trichloroethane 50.0 47.5 ug/Kg 95 78.130 9 20 ,1,2-Trichloroethane 50.0 40.7 ug/Kg 98 80.124 1 20 ,1,2-Trichloroethane 50.0 51.7 ug/Kg 103 80.123 10 20 ,1,2-Trichloroethane 50.0 51.7 ug/Kg 103 80.123 16 20 ,1,2-Trichloroethane 50.0 43.5 ug/Kg 103 80.123 16 20 ,1,2-Trichloroethane 50.0 42.3 ug/Kg 103 80.123 15 20 ,1-Dichloroethane 50.0 42.3 ug/Kg 105 80.123 15 20 ,1-Dichloroethane 50.0 51.2 ug/Kg 107 80.123<	Analysis Batch: 315901							Prep Ba	atch: 3	15949
1,1,2-Tetrachloroethane 50.0 53.9 ug/Kg 108 80.125 5 20.1,1-Trichloroethane 50.0 47.5 ug/Kg 95 78.130 9 20.1,2,2-Tetrachloroethane 50.0 49.6 ug/Kg 99 80.124 1 20.1,2-Trichloroethane 50.0 40.7 ug/Kg 81 73.130 17 20.0 19.1,2-Trichloroethane 50.0 50.0 51.7 ug/Kg 103 80.123 4 20.1,2-Trichloroethane 50.0 51.7 ug/Kg 87 79.124 16 20.1,2-Trichloroethane 50.0 43.5 ug/Kg 87 79.124 16 20.1,1-Dichloroethane 50.0 43.5 ug/Kg 87 79.124 16 20.1,1-Dichloroethane 50.0 43.5 ug/Kg 85 74.132 15 20.1,1-Dichloroethene 50.0 43.5 ug/Kg 85 74.132 15 20.1,1-Dichloroptopene 50.0 43.5 ug/Kg 85 74.132 15 20.1,1-Dichloroptopene 50.0 52.5 ug/Kg 87 78.130 9 20.2,3-Trichlorobenzene 50.0 52.5 ug/Kg 105 80.123 3 20.2,3-Trichlorobenzene 50.0 52.5 ug/Kg 107 80.125 7 20.2,1-Trichlorobenzene 50.0 53.3 ug/Kg 107 80.125 7 20.2,1-Trichlorobenzene 50.0 47.4 ug/Kg 95 80.124 5 20.2,1-Trimethylbenzene 50.0 47.4 ug/Kg 95 80.124 5 20.2,1-Dichloroptopane 50.0 54.4 ug/Kg 101 67.120 2 20.2,1-Dichlorobenzene 50.0 54.4 ug/Kg 109 80.120 2 20.2,1-Dichlorobenzene 50.0 54.4 ug/Kg 109 80.120 2 20.2,1-Dichlorobenzene 50.0 51.4 ug/Kg 109 80.120 2 20.2,1-Dichlorobenzene 50.0 51.4 ug/Kg 103 77.120 5 20.2,1-Dichloropenpane 50.0 51.4 ug/Kg 103 77.120 5 20.2,1-Dichloropenpane 50.0 47.9 ug/Kg 103 77.120 5 20.2,1-Dichloropenpane 50.0 48.9 ug/Kg 103 77.120 5 20.2,1-Dichloropenpane 50.0 48.9 ug/Kg 103 77.120 5 20.2,1-Dichloropenpane 50.0 48.9 ug/Kg 103 80.120 6 20.2,1-Dichloropenpane 50.0 48.9 ug/Kg 101 80.120 6 20.3,1-Dichloropenpane 50.0 49.8 ug/Kg 101 80.120 6 20.3,1-Dichloropenpane 50.0 47.4 ug/Kg 109 80.120 5 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 109 80.120 5 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 100 80.120 5 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 100 80.120 5 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 100 80.120 5 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 100 80.120 5 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 100 80.120 5 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 104 80.120 6 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 104 67.136 5 20.2,1-Dichloropenpane 50.0 47.4 ug/Kg 104 67.136 5 20.2,1		Spike	LCSD	LCSD				%Rec		RPD
1,1-Trichloroethane 50.0 47.5 ug/Kg 95 78.130 9 20.12.2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 50.0 40.7 ug/Kg 99 80.124 1 20.12.1.2.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	50.0	53.9		ug/Kg		108	80 - 125	5	20
1,1,2-Trichloro-1,2,2-trifluoroetha	1,1,1-Trichloroethane	50.0	47.5		ug/Kg		95	78 - 130	9	20
e 1,12-Trichloroethane 50.0 51.7 ug/Kg 103 80.123 4 20,1-Dichloroethane 50.0 43.5 ug/Kg 87 79-124 16 20,1-Dichloroethane 50.0 42.3 ug/Kg 85 74-132 15 20,1-Dichloroptopene 50.0 43.5 ug/Kg 87 78-130 9 20,2-3-Trichloroptopene 50.0 52.5 ug/Kg 105 80-123 3 20,2-3-Trichloroptopene 50.0 52.5 ug/Kg 105 80-123 3 20,2-3-Trichloroptopene 50.0 51.0 ug/Kg 102 79-120 4 22,2-4-Trichloroptopene 50.0 51.0 ug/Kg 102 79-120 4 22,2-4-Trichloroptopane 50.0 53.3 ug/Kg 107 80-125 7 20,2-4-Trichloroptopane 50.0 50.0 53.3 ug/Kg 107 80-125 7 20,2-4-Trichloroptopane 50.0 50.4 ug/Kg 95 80-124 5 20,2-Dichloroptopane 50.0 50.4 ug/Kg 101 67-120 2 20,2-Dichloroptopane 50.0 50.4 ug/Kg 101 67-120 2 20,2-Dichloroptopane 50.0 51.2 ug/Kg 109 80-120 2 20,2-Dichloroptopane 50.0 51.4 ug/Kg 109 80-120 2 20,2-Dichloroptopane 50.0 51.4 ug/Kg 103 77-120 5 20,2-Dichloroptopane 50.0 51.4 ug/Kg 103 77-120 5 20,2-Dichloroptopane 50.0 47.9 ug/Kg 99 80-121 4 20,3-Dichloroptopane 50.0 49.5 ug/Kg 99 80-121 4 20,3-Dichloroptopane 50.0 48.9 ug/Kg 99 80-121 4 20,3-Dichloroptopane 50.0 48.9 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 5 20,2-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 5 20,2-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 5 20,2-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 5 20,2-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 47.4 ug/Kg 99 80-120 5 20,2-Dichloroptopane 50.0 47.4 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-120 6 20,3-Dichloroptopane 50.0 49.8 ug/Kg 99 80-12	1,1,2,2-Tetrachloroethane	50.0	49.6		ug/Kg		99	80 - 124	1	20
,1,2-Trichloroethane 50.0 51.7 ug/Kg 103 80 - 123 4 20 ,1-Dichloroethane 50.0 43.5 ug/Kg 87 79 - 124 16 20 ,1-Dichloroethene 50.0 42.3 ug/Kg 85 74 - 132 15 20 ,1-Dichloropropene 50.0 43.5 ug/Kg 87 78 - 130 9 20 ,2,3-Trichlorobenzene 50.0 52.5 ug/Kg 105 80 - 123 3 20 ,2,3-Trichloropropane 50.0 51.0 ug/Kg 107 80 - 123 3 20 ,2,4-Trichlorobenzene 50.0 53.3 ug/Kg 107 80 - 125 7 20 ,2,4-Trimethylbenzene 50.0 47.4 ug/Kg 95 80 - 124 5 20 ,2-Dibromo-3-Chloropropane 50.0 50.4 ug/Kg 101 67 - 120 2 20 ,2-Dichlorobenzene 50.0 51.2 ug/Kg 103 80 - 120 2 20 ,2-Dichloroptopane 50.0 51.4 ug/	1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	40.7		ug/Kg		81	73 - 130	17	20
,1-Dichloroethane 50.0 43.5 ug/Kg 87 79-124 16 20 ,1-Dichloroethene 50.0 42.3 ug/Kg 85 74-132 15 20 ,1-Dichloropropene 50.0 43.5 ug/Kg 87 78-130 9 20 ,2,3-Trichlorobenzene 50.0 52.5 ug/Kg 105 80-123 3 20 ,2,4-Trichlorobenzene 50.0 51.0 ug/Kg 102 79-120 4 20 ,2,4-Trichlorobenzene 50.0 53.3 ug/Kg 107 80-125 7 20 ,2,4-Trimethylbenzene 50.0 47.4 ug/Kg 95 80-124 5 20 ,2,-Dibromo-3-Chloropropane 50.0 47.4 ug/Kg 95 80-124 5 20 ,2-Dibromoethane 50.0 54.4 ug/Kg 109 80-120 2 20 ,2-Dichlorobenzene 50.0 51.4 ug/Kg 102 80-120 2 20 ,2-Dichloropropane 50.0 47.9 ug/Kg 96 <td>ne</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ne									
,1-Dichloroethene 50.0 42.3 ug/Kg 85 74 - 132 15 20 ,1-Dichloropropene 50.0 43.5 ug/Kg 87 78 - 130 9 20 ,2,3-Trichlorobenzene 50.0 52.5 ug/Kg 105 80 - 123 3 20 ,2,3-Trichloropropane 50.0 51.0 ug/Kg 102 79 - 120 4 20 ,2,4-Trichlorobenzene 50.0 53.3 ug/Kg 107 80 - 125 7 20 ,2,4-Trimethylbenzene 50.0 47.4 ug/Kg 95 80 - 124 5 20 ,2-Dibromo-3-Chloropropane 50.0 47.4 ug/Kg 101 67 - 120 2 20 ,2-Dibromo-4-Chloropropane 50.0 54.4 ug/Kg 109 80 - 124 5 20 ,2-Dichlorobenzene 50.0 51.2 ug/Kg 102 80 - 120 2 20 ,2-Dichloropropane 50.0 47.9 ug/Kg 96 80 - 126 3 20 ,2-Dichloropropane 50.0 49.5 <	1,1,2-Trichloroethane	50.0	51.7		ug/Kg		103	80 - 123	4	20
,1-Dichloropropene 50.0 43.5 ug/Kg 87 78-130 9 20 ,2,3-Trichlorobenzene 50.0 52.5 ug/Kg 105 80-123 3 20 ,2,3-Trichloropropane 50.0 51.0 ug/Kg 102 79-120 4 20 ,2,4-Trichlorobenzene 50.0 53.3 ug/Kg 107 80-125 7 20 ,2,4-Trimethylbenzene 50.0 47.4 ug/Kg 95 80-124 5 20 ,2-Dibromo-3-Chloropropane 50.0 50.4 ug/Kg 101 67-120 2 20 ,2-Dichlorobenzene 50.0 54.4 ug/Kg 109 80-120 2 20 ,2-Dichlorobenzene 50.0 51.2 ug/Kg 102 80-120 2 20 ,2-Dichloroptopane 50.0 51.4 ug/Kg 103 77-120 5 20 ,2-Dichloroptopane 50.0 47.9 ug/Kg 96 80-126 3 20 ,3-Dichloroptopane 50.0 48.9 ug/Kg 98<	1,1-Dichloroethane	50.0	43.5		ug/Kg		87	79 - 124	16	20
2,3-Trichlorobenzene 50.0 52.5 ug/Kg 105 80 - 123 3 20 2,2,3-Trichloropropane 50.0 51.0 ug/Kg 102 79 - 120 4 20 2,2,4-Trichlorobenzene 50.0 53.3 ug/Kg 107 80 - 125 7 20 2,2,4-Trimethylbenzene 50.0 47.4 ug/Kg 95 80 - 124 5 20 2,2-Dibromo-3-Chloropropane 50.0 50.4 ug/Kg 101 67 - 120 2 20 2,2-Dibromoethane 50.0 54.4 ug/Kg 109 80 - 120 2 20 2,2-Dichlorobenzene 50.0 51.2 ug/Kg 102 80 - 120 2 20 2,2-Dichloroptane 50.0 51.4 ug/Kg 103 77 - 120 5 20 2,2-Dichloroptane 50.0 47.9 ug/Kg 96 80 - 126 3 20 3,5-Trimethylbenzene 50.0 49.5 ug/Kg 99 80 - 121 4 20 3,-Dichloropropane 50.0 48.9 u	1,1-Dichloroethene	50.0	42.3		ug/Kg		85	74 - 132	15	20
2,3-Trichloropropane 50.0 51.0 ug/Kg 102 79 - 120 4 20 2,24-Trichlorobenzene 50.0 53.3 ug/Kg 107 80 - 125 7 20 2,24-Trimethylbenzene 50.0 47.4 ug/Kg 95 80 - 124 5 20 2,2-Dibromo-3-Chloropropane 50.0 50.4 ug/Kg 101 67 - 120 2 20 2,2-Dibromoethane 50.0 54.4 ug/Kg 109 80 - 120 2 20 2,2-Dichlorobenzene 50.0 51.2 ug/Kg 102 80 - 120 2 20 2,2-Dichloroptopane 50.0 51.4 ug/Kg 103 77 - 120 5 20 2,2-Dichloropropane 50.0 47.9 ug/Kg 96 80 - 126 3 20 3,3-Frrimethylbenzene 50.0 49.5 ug/Kg 98 80 - 121 4 20 3,3-Dichlorobenzene 50.0 48.9 ug/Kg 98 80 - 120 6 20 3,4-Dichloropropane 50.0 49.8 u	1,1-Dichloropropene	50.0	43.5		ug/Kg		87	78 - 130	9	20
,2,4-Trichlorobenzene 50.0 53.3 ug/Kg 107 80 - 125 7 20, 2,4-Trimethylbenzene 50.0 47.4 ug/Kg 95 80 - 124 5 20, 2-Dibromo-3-Chloropropane 50.0 50.4 ug/Kg 101 67 - 120 2 20, 2-Dibromoethane 50.0 50.4 ug/Kg 109 80 - 120 2 20, 2-Dibromoethane 50.0 51.2 ug/Kg 109 80 - 120 2 20, 2-Dichlorobenzene 50.0 51.2 ug/Kg 102 80 - 120 2 20, 2-Dichloropropane 50.0 51.4 ug/Kg 103 77 - 120 5 20, 2-Dichloropropane 50.0 47.9 ug/Kg 96 80 - 126 3 20, 3,5-Trimethylbenzene 50.0 49.5 ug/Kg 99 80 - 121 4 20, 3-Dichloropropane 50.0 48.9 ug/Kg 98 80 - 120 6 20, 3-Dichloropropane 50.0 48.9 ug/Kg 101 80 - 120 6 20, 3-Dichloropropane 50.0 49.8 ug/Kg 101 80 - 120 5 20, 4-Dichloropropane 50.0 49.8 ug/Kg 100 80 - 120 5 20, 4-Dichloropropane 50.0 47.4 ug/Kg 95 73 - 135 9 20, 4-Dichloropropane 50.0 47.1 ug/Kg 94 67 - 136 5 20, 4-Dichloropropane 50.0 49.3 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 49.3 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 49.3 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 49.3 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 49.3 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.3 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 47.1 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 49.3 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 ug/Kg 99 80 - 120 4 20, 4-Dichloropropane 50.0 ug/Kg 99 80 - 120	1,2,3-Trichlorobenzene	50.0	52.5		ug/Kg		105	80 - 123	3	20
2,4-Trimethylbenzene 50.0 47.4 ug/Kg 95 80 - 124 5 20 ,2-Dibromo-3-Chloropropane 50.0 50.4 ug/Kg 101 67 - 120 2 20 ,2-Dibromoethane 50.0 54.4 ug/Kg 109 80 - 120 2 20 ,2-Dichlorobenzene 50.0 51.2 ug/Kg 102 80 - 120 2 20 ,2-Dichloroptane 50.0 51.4 ug/Kg 103 77 - 120 5 20 ,2-Dichloroptane 50.0 47.9 ug/Kg 96 80 - 126 3 20 ,3-5-Trimethylbenzene 50.0 49.5 ug/Kg 99 80 - 121 4 20 ,3-Dichlorobenzene 50.0 48.9 ug/Kg 98 80 - 120 6 20 ,4-Dichloropropane 50.0 50.3 ug/Kg 101 80 - 120 6 20 ,4-Dichloropropane 50.0 49.8 ug/Kg 101 80 - 120 5 20 ,2-Dichloropropane 50.0 47.4 ug/Kg <	1,2,3-Trichloropropane	50.0	51.0		ug/Kg		102	79 - 120	4	20
,2-Dibromo-3-Chloropropane 50.0 50.4 ug/Kg 101 67 - 120 2 20 20 20 20 20 20 20 20 20 20 20 20	1,2,4-Trichlorobenzene	50.0	53.3		ug/Kg		107	80 - 125	7	20
,2-Dibromoethane 50.0 54.4 ug/Kg 109 80 - 120 2 20 ,2-Dichlorobenzene 50.0 51.2 ug/Kg 102 80 - 120 2 20 ,2-Dichloroethane 50.0 51.4 ug/Kg 103 77 - 120 5 20 ,2-Dichloropropane 50.0 47.9 ug/Kg 96 80 - 126 3 20 ,3-5-Trimethylbenzene 50.0 49.5 ug/Kg 99 80 - 121 4 20 ,3-Dichlorobenzene 50.0 48.9 ug/Kg 98 80 - 120 6 20 ,3-Dichloropropane 50.0 50.3 ug/Kg 101 80 - 120 6 20 ,4-Dichlorobenzene 50.0 49.8 ug/Kg 100 80 - 120 5 20 ,2-Dichloropropane 50.0 47.4 ug/Kg 95 73 - 135 9 20 ,8-Dichloropropane 50.0 47.1 ug/Kg 94 67 - 136 5 20 ,8-Dichloropropane 50.0 47.1 ug/Kg 94 <td>1,2,4-Trimethylbenzene</td> <td>50.0</td> <td>47.4</td> <td></td> <td>ug/Kg</td> <td></td> <td>95</td> <td>80 - 124</td> <td>5</td> <td>20</td>	1,2,4-Trimethylbenzene	50.0	47.4		ug/Kg		95	80 - 124	5	20
,2-Dichlorobenzene 50.0 51.2 ug/Kg 102 80 - 120 2 20 20 20 20 20 20 20 20 20 20 20 20	1,2-Dibromo-3-Chloropropane	50.0	50.4		ug/Kg		101	67 - 120	2	20
,2-Dichloroethane 50.0 51.4 ug/Kg 103 77 - 120 5 20 ,2-Dichloropropane 50.0 47.9 ug/Kg 96 80 - 126 3 20 ,3,5-Trimethylbenzene 50.0 49.5 ug/Kg 99 80 - 121 4 20 ,3-Dichlorobenzene 50.0 48.9 ug/Kg 98 80 - 120 6 20 ,3-Dichloropropane 50.0 50.3 ug/Kg 101 80 - 120 6 20 ,4-Dichloropropane 50.0 49.8 ug/Kg 101 80 - 120 5 20 ,2-Dichloropropane 50.0 47.4 ug/Kg 95 73 - 135 9 20 ,2-Dichloropropane 50.0 47.1 ug/Kg 94 67 - 136 5 20 -Chlorotoluene 50.0 49.3 ug/Kg 104 70 - 137 2 20 -Chlorotoluene 50.0 51.8 ug/Kg 104 70 - 137 2 20 -Chloropropane 50.0 51.8 ug/Kg 104 70 - 137 70 -Chloropropane 50.0 51.8 ug/Kg 104 70 - 137 70 -Chloropropa	1,2-Dibromoethane	50.0	54.4		ug/Kg		109	80 - 120	2	20
,2-Dichloropropane 50.0 47.9 ug/Kg 96 80 - 126 3 20 ,3,5-Trimethylbenzene 50.0 49.5 ug/Kg 99 80 - 121 4 20 ,3-Dichlorobenzene 50.0 48.9 ug/Kg 98 80 - 120 6 20 ,3-Dichloropropane 50.0 50.3 ug/Kg 101 80 - 120 6 20 ,4-Dichlorobenzene 50.0 49.8 ug/Kg 100 80 - 120 5 20 ,2-Dichloropropane 50.0 47.4 ug/Kg 95 73 - 135 9 20 -Butanone 50.0 47.1 ug/Kg 94 67 - 136 5 20 -Chlorotoluene 50.0 49.3 ug/Kg 104 70 - 137 2 20 -Hexanone	1,2-Dichlorobenzene	50.0	51.2		ug/Kg		102	80 - 120	2	20
3,5-Trimethylbenzene 50.0 49.5 ug/Kg 99 80 - 121 4 20 ,3-Dichlorobenzene 50.0 48.9 ug/Kg 98 80 - 120 6 20 ,3-Dichloropropane 50.0 50.3 ug/Kg 101 80 - 120 6 20 ,4-Dichlorobenzene 50.0 49.8 ug/Kg 100 80 - 120 5 20 ,2-Dichloropropane 50.0 47.4 ug/Kg 95 73 - 135 9 20 -Butanone 50.0 47.1 ug/Kg 94 67 - 136 5 20 -Chlorotoluene 50.0 49.3 ug/Kg 99 80 - 120 4 20 -Hexanone 50.0 51.8 ug/Kg 104 70 - 137 2 20	1,2-Dichloroethane	50.0	51.4		ug/Kg		103	77 - 120	5	20
,3-Dichlorobenzene 50.0 48.9 ug/Kg 98 80 - 120 6 20 ,3-Dichloropropane 50.0 50.3 ug/Kg 101 80 - 120 6 20 ,4-Dichlorobenzene 50.0 49.8 ug/Kg 100 80 - 120 5 20 ,2-Dichloropropane 50.0 47.4 ug/Kg 95 73 - 135 9 20 -Butanone 50.0 47.1 ug/Kg 94 67 - 136 5 20 -Chlorotoluene 50.0 49.3 ug/Kg 99 80 - 120 4 20 -Hexanone 50.0 51.8 ug/Kg 104 70 - 137 2 20	1,2-Dichloropropane	50.0	47.9		ug/Kg		96	80 - 126	3	20
,3-Dichloropropane 50.0 50.3 ug/Kg 101 80 - 120 6 20 ,4-Dichlorobenzene 50.0 49.8 ug/Kg 100 80 - 120 5 20 ,2-Dichloropropane 50.0 47.4 ug/Kg 95 73 - 135 9 20 -Butanone 50.0 47.1 ug/Kg 94 67 - 136 5 20 -Chlorotoluene 50.0 49.3 ug/Kg 99 80 - 120 4 20 -Hexanone 50.0 51.8 ug/Kg 104 70 - 137 2 20	1,3,5-Trimethylbenzene	50.0	49.5		ug/Kg		99	80 - 121	4	20
,4-Dichlorobenzene 50.0 49.8 ug/Kg 100 80 - 120 5 20 ,2-Dichloropropane 50.0 47.4 ug/Kg 95 73 - 135 9 20 -Butanone 50.0 47.1 ug/Kg 94 67 - 136 5 20 -Chlorotoluene 50.0 49.3 ug/Kg 99 80 - 120 4 20 -Hexanone 50.0 51.8 ug/Kg 104 70 - 137 2 20	1,3-Dichlorobenzene	50.0	48.9		ug/Kg		98	80 - 120	6	20
,2-Dichloropropane 50.0 47.4 ug/Kg 95 73 ـ 135 9 20 -Butanone 50.0 47.1 ug/Kg 94 67 - 136 5 20 -Chlorotoluene 50.0 49.3 ug/Kg 99 80 ـ 120 4 20 -Hexanone 50.0 51.8 ug/Kg 104 70 ـ 137 2 20	1,3-Dichloropropane	50.0	50.3		ug/Kg		101	80 - 120	6	20
-Butanone 50.0 47.1 ug/Kg 94 67 - 136 5 20 -Chlorotoluene 50.0 49.3 ug/Kg 99 80 - 120 4 20 -Hexanone 50.0 51.8 ug/Kg 104 70 - 137 2 20	1,4-Dichlorobenzene	50.0	49.8		ug/Kg		100	80 - 120	5	20
-Chlorotoluene 50.0 49.3 ug/Kg 99 80 - 120 4 20 -Hexanone 50.0 51.8 ug/Kg 104 70 - 137 2 20	2,2-Dichloropropane	50.0	47.4		ug/Kg		95	73 - 135	9	20
-Hexanone 50.0 51.8 ug/Kg 104 70 - 137 2 20	2-Butanone	50.0	47.1		ug/Kg		94	67 - 136	5	20
ů ů	2-Chlorotoluene	50.0	49.3		ug/Kg		99	80 - 120	4	20
-Chlorotoluene 50.0 47.6 ug/Kg 95 80 - 121 5 20	2-Hexanone	50.0	51.8		ug/Kg		104	70 - 137	2	20
	4-Chlorotoluene	50.0	47.6		ug/Kg		95	80 - 121	5	20

Eurofins Calscience

Page 15 of 25

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 570-315949/2-A

Matrix: Solid

Analysis Batch: 315901

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 315949 %Rec

Analysis Batch: 315901	Onilea	1.000	LCSD				Prep Ba	attii. 3	
Analyte	Spike Added	_		Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
4-Methyl-2-pentanone		50.6		ug/Kg	_ =	101	74 ₋ 124	4	20
Acetone	50.0	44.7		ug/Kg		89	61 - 142	2	23
Benzene	50.0	45.8		ug/Kg ug/Kg		92	80 - 120	8	20
Bromobenzene	50.0	51.0		ug/Kg ug/Kg		102	80 - 120	5	20
Bromochloromethane	50.0	47.2		ug/Kg ug/Kg		94	80 - 120	12	20
Bromodichloromethane	50.0	49.4		ug/Kg ug/Kg		99	80 - 125	11	20
Bromoform	50.0	52.7				105	74 - 138	2	20
Bromomethane	50.0	45.8		ug/Kg ug/Kg		92	58 ₋ 136	6	20
cis-1,2-Dichloroethene	50.0	46.0				92	80 - 124	9	20
cis-1,3-Dichloropropene	50.0	45.7		ug/Kg				9 7	
				ug/Kg		91	80 - 123		20
Carbon disulfide	50.0	34.7		ug/Kg		69	68 - 128	20	20
Carbon tetrachloride	50.0	48.8		ug/Kg		98	75 - 140	10	20
Chlorobenzene	50.0	48.5		ug/Kg		97	80 - 120	5	20
Chloroethane	50.0	48.5		ug/Kg		97	76 - 137	6	20
Chloroform	50.0	46.4		ug/Kg		93	80 - 121	4	20
Chloromethane	50.0	50.0		ug/Kg		100	74 - 133	4	20
Dibromochloromethane	50.0	55.2		ug/Kg		110	80 - 132	2	20
Dibromomethane	50.0	53.7		ug/Kg		107	80 - 120	3	20
Dichlorodifluoromethane	50.0	52.4		ug/Kg		105	63 - 146	1	20
Di-isopropyl ether (DIPE)	50.0	48.6		ug/Kg		97	73 - 132	10	20
Ethanol	500	616		ug/Kg		123	46 - 159	5	30
Ethylbenzene	50.0	47.9		ug/Kg		96	80 - 120	3	20
Ethyl-t-butyl ether (ETBE)	50.0	48.0		ug/Kg		96	77 - 129	5	20
Isopropylbenzene	50.0	53.0		ug/Kg		106	80 - 122	5	20
Methylene Chloride	50.0	43.1		ug/Kg		86	74 - 120	13	20
Methyl-t-Butyl Ether (MTBE)	50.0	47.9		ug/Kg		96	79 - 123	11	20
Naphthalene	50.0	51.5		ug/Kg		103	79 - 121	0	20
n-Butylbenzene	50.0	47.9		ug/Kg		96	79 - 131	4	20
N-Propylbenzene	50.0	48.9		ug/Kg		98	80 - 122	6	20
o-Xylene	50.0	48.1		ug/Kg		96	80 - 120	5	20
m,p-Xylene	100	96.2		ug/Kg		96	80 - 120	5	20
p-Isopropyltoluene	50.0	48.6		ug/Kg		97	80 - 126	3	20
sec-Butylbenzene	50.0	48.1		ug/Kg		96	80 - 125	5	20
Styrene	50.0	50.1		ug/Kg		100	80 - 120	5	20
trans-1,2-Dichloroethene	50.0	42.8		ug/Kg		86	75 - 123	13	20
trans-1,3-Dichloropropene	50.0	53.7		ug/Kg		107	80 - 124	2	20
Tert-amyl-methyl ether (TAME)	50.0	48.9		ug/Kg		98	80 - 120	4	20
tert-Butyl alcohol (TBA)	250	279		ug/Kg ug/Kg		112	74 - 123	10	20
tert-Butylbenzene	50.0	48.9		ug/Kg ug/Kg		98	80 ₋ 124	3	20
Tetrachloroethene	50.0	49.7					80 - 124		
				ug/Kg		99		6	20
Toluene	50.0	45.6		ug/Kg		91	80 - 120	6	20
Trichloroethene	50.0	48.0		ug/Kg		96	80 - 127	7	20
Trichlorofluoromethane	50.0	58.4		ug/Kg		117	70 - 144	1	20
Vinyl acetate	50.0	41.7		ug/Kg		83	71 - 125	13	20
Vinyl chloride	50.0	46.3		ug/Kg		93	79 - 133	0	20

LCSD LCSD

%Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 102 32 - 179

Eurofins Calscience

QC Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

102

Lab Sample ID: LCSD 570-315949/2-A

Matrix: Solid

Surrogate

Analysis Batch: 315901

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 315949**

LCSD LCSD Limits %Recovery Qualifier 99 80 - 120 100 58 - 147

Lab Sample ID: 570-132818-A-2-C MS **Client Sample ID: Matrix Spike**

80 - 120

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 315901

Prep Type: Total/NA

Prep Batch: 315949

Analysis Batch: 315901	Sample	Sample	Spike	MS	MS				%Rec
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND		49.8	46.8	- Guainici	ug/Kg	_ =	94	61 - 129
1,1,1-Trichloroethane	ND		49.8	45.3		ug/Kg		91	67 - 125
1,1,2,2-Tetrachloroethane	ND		49.8	47.2		ug/Kg		95	20 - 164
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		49.8	44.2		ug/Kg		89	62 - 125
ne			.0.0			~g,g			02-120
1,1,2-Trichloroethane	ND		49.8	45.9		ug/Kg		92	52 - 134
1,1-Dichloroethane	ND		49.8	45.0		ug/Kg		90	66 - 125
1,1-Dichloroethene	ND		49.8	42.8		ug/Kg		86	60 - 125
1,1-Dichloropropene	ND		49.8	41.6		ug/Kg		84	69 - 125
1,2,3-Trichlorobenzene	ND		49.8	42.8		ug/Kg		86	20 - 145
1,2,3-Trichloropropane	ND		49.8	46.5		ug/Kg		93	53 - 128
1,2,4-Trichlorobenzene	ND		49.8	46.4		ug/Kg		93	20 - 146
1,2,4-Trimethylbenzene	ND		49.8	41.8		ug/Kg		84	51 - 129
1,2-Dibromo-3-Chloropropane	ND		49.8	41.5		ug/Kg		83	33 - 126
1,2-Dibromoethane	ND		49.8	47.0		ug/Kg		94	65 - 125
1,2-Dichlorobenzene	ND		49.8	43.8		ug/Kg		88	47 - 130
1,2-Dichloroethane	ND		49.8	47.5		ug/Kg		95	66 - 127
1,2-Dichloropropane	ND		49.8	44.7		ug/Kg		90	70 - 125
1,3,5-Trimethylbenzene	ND		49.8	44.6		ug/Kg		90	50 - 132
1,3-Dichlorobenzene	ND		49.8	43.6		ug/Kg		88	48 - 128
1,3-Dichloropropane	ND		49.8	46.7		ug/Kg		94	66 - 125
1,4-Dichlorobenzene	ND		49.8	44.0		ug/Kg		88	47 - 127
2,2-Dichloropropane	ND		49.8	46.9		ug/Kg		94	61 - 128
2-Butanone	ND		49.8	41.6		ug/Kg		84	48 - 134
2-Chlorotoluene	ND		49.8	42.9		ug/Kg		86	54 - 127
2-Hexanone	ND		49.8	43.8		ug/Kg		88	48 - 136
4-Chlorotoluene	ND		49.8	40.9		ug/Kg		82	54 - 125
4-Methyl-2-pentanone	ND		49.8	44.5		ug/Kg		89	55 - 133
Acetone	ND		49.8	43.2		ug/Kg		87	30 - 175
Benzene	ND		49.8	43.5		ug/Kg		87	70 - 125
Bromobenzene	ND		49.8	45.6		ug/Kg		92	57 - 129
Bromochloromethane	ND		49.8	47.6		ug/Kg		96	67 - 125
Bromodichloromethane	ND		49.8	46.0		ug/Kg		92	64 - 130
Bromoform	ND		49.8	44.3		ug/Kg		89	49 - 133
Bromomethane	ND		49.8	45.3		ug/Kg		91	30 - 149
cis-1,2-Dichloroethene	ND		49.8	47.2		ug/Kg		95	71 - 125
cis-1,3-Dichloropropene	ND		49.8	42.8		ug/Kg		86	63 - 126
Carbon disulfide	ND		49.8	33.9		ug/Kg		68	53 - 125
						0 0			
Carbon tetrachloride	ND		49.8	45.1		ug/Kg		91	60 - 130

Eurofins Calscience

Page 17 of 25

Job ID: 570-132948-1 SDG: Genesis Solar, LLC

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 570-132818-A-2-C MS

Matrix: Solid

Analysis Batch: 315901

Client Sample ID: Matrix Spike

Prep Type: Total/NA **Prep Batch: 315949**

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroethane	ND		49.8	46.1		ug/Kg		93	51 - 131	
Chloroform	ND		49.8	44.2		ug/Kg		89	70 - 125	
Chloromethane	ND		49.8	45.4		ug/Kg		91	43 - 125	
Dibromochloromethane	ND		49.8	47.6		ug/Kg		96	56 - 132	
Dibromomethane	ND		49.8	49.3		ug/Kg		99	67 - 127	
Dichlorodifluoromethane	ND		49.8	46.3		ug/Kg		93	47 - 127	
Di-isopropyl ether (DIPE)	ND		49.8	48.0		ug/Kg		96	62 - 125	
Ethanol	ND		498	500		ug/Kg		100	21 - 168	
Ethylbenzene	ND		49.8	43.2		ug/Kg		87	64 - 125	
Ethyl-t-butyl ether (ETBE)	ND		49.8	47.3		ug/Kg		95	61 - 125	
Isopropylbenzene	ND		49.8	47.7		ug/Kg		96	59 - 129	
Methylene Chloride	ND		49.8	44.9		ug/Kg		90	60 - 125	
Methyl-t-Butyl Ether (MTBE)	ND		49.8	49.1		ug/Kg		99	61 - 125	
Naphthalene	ND		49.8	42.0		ug/Kg		84	25 - 136	
n-Butylbenzene	ND		49.8	42.0		ug/Kg		84	35 - 135	
N-Propylbenzene	ND		49.8	44.8		ug/Kg		90	52 - 131	
o-Xylene	ND		49.8	43.5		ug/Kg		87	59 - 128	
m,p-Xylene	ND		99.6	85.4		ug/Kg		86	60 - 125	
p-Isopropyltoluene	ND		49.8	41.9		ug/Kg		84	46 - 132	
sec-Butylbenzene	ND		49.8	42.2		ug/Kg		85	47 - 131	
Styrene	ND		49.8	44.8		ug/Kg		90	58 - 128	
trans-1,2-Dichloroethene	ND		49.8	44.5		ug/Kg		89	67 - 125	
trans-1,3-Dichloropropene	ND		49.8	46.7		ug/Kg		94	59 - 132	
Tert-amyl-methyl ether (TAME)	ND		49.8	44.7		ug/Kg		90	66 - 127	
tert-Butyl alcohol (TBA)	ND		249	237		ug/Kg		95	50 - 142	
tert-Butylbenzene	ND		49.8	42.1		ug/Kg		84	53 - 126	
Tetrachloroethene	ND		49.8	45.1		ug/Kg		90	62 - 129	
Toluene	ND		49.8	42.5		ug/Kg		85	68 - 125	
Trichloroethene	ND		49.8	44.1		ug/Kg		89	41 - 169	
Trichlorofluoromethane	ND		49.8	57.0		ug/Kg		115	63 - 128	
Vinyl acetate	ND		49.8	38.1		ug/Kg		77	20 - 154	
Vinyl chloride	ND		49.8	45.0		ug/Kg		90	59 - 125	
	Me	МС								

MS MS

Sample Sample

ND

ND

ND

ND

Result Qualifier

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		32 - 179
4-Bromofluorobenzene (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	101		58 - 147
Toluene-d8 (Surr)	101		80 - 120

Lab Sample ID: 570-132818-A-2-D MSD

Matrix: Solid

Analysis Batch: 315901

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,2-Trichloro-1,2,2-trifluoroetha

1,1,1-Trichloroethane

Client Sample	ID: Matrix	Spike	Duplicate
---------------	------------	-------	-----------

83

62 - 125

Prep Type: Total/NA **Prep Batch: 315949**

%Rec **RPD** Limits Limit %Rec RPD 102 61 - 129 23 96 67 - 125 20 96 20 - 164 40

ne

Analyte

Eurofins Calscience

Spike

Added

49.2

49.2

49.2

49.2

MSD MSD

50.0

47.3

47.4

41.1

Result Qualifier

Unit

ug/Kg

ug/Kg

ug/Kg

ug/Kg

QC Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 570-132818-A-2-D MSD

Matrix: Solid

Analysis Ratch: 315001

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA
Prep Batch: 315949

Analysis Batch: 315901		0	0"		1400				Prep Ba	atch: 3	
Analyta	Sample	Sample Qualifier	Spike		MSD Qualifier	Unit		0/ Boo	%Rec	DDD	RPD
Analyte 1,1,2-Trichloroethane	ND	Qualifier	49.2	47.1	Quaimer	Unit ug/Kg	D	%Rec 96	Limits 52 - 134	<u>RPD</u> 3	Limi 2
1,1-Dichloroethane	ND ND		49.2	44.7		ug/Kg ug/Kg		91	66 ₋ 125	1	20
1,1-Dichloroethene	ND		49.2	41.3		ug/Kg		84	60 - 125		20
1,1-Dichloropropene	ND ND		49.2	43.6		ug/Kg ug/Kg		89	69 ₋ 125	4	20
1,2,3-Trichlorobenzene	ND ND		49.2	43.8		ug/Kg ug/Kg		89	20 - 145	2	39
1,2,3-Trichloropropane	ND		49.2	46.9		ug/Kg ug/Kg		95	53 - 128	<u>2</u>	25
1,2,4-Trichlorobenzene	ND ND		49.2	46.9				93 94	20 - 146	0	38
1,2,4-Trimethylbenzene	ND ND		49.2 49.2	44.5		ug/Kg		90	51 ₋ 129	6	27
· · · · · · · · · · · · · · · · · · ·	ND		49.2	44.3		ug/Kg		88	33 - 126	4	29
1,2-Dibromo-3-Chloropropane						ug/Kg			65 - 125		
1,2-Dibromoethane	ND		49.2 49.2	48.6 46.2		ug/Kg		99	47 ₋ 130	3 5	2° 29
1,2-Dichlorobenzene	ND					ug/Kg		94			
1,2-Dichloroethane	ND ND		49.2	46.9 44.1		ug/Kg		95	66 - 127 70 - 125	1	20
1,2-Dichloropropane			49.2			ug/Kg		90		1	20
1,3,5-Trimethylbenzene	ND		49.2	46.7		ug/Kg		95	50 - 132	5	29
1,3-Dichlorobenzene	ND		49.2	45.8		ug/Kg		93	48 - 128	5	28
1,3-Dichloropropane	ND		49.2	48.1		ug/Kg		98	66 - 125	3	20
1,4-Dichlorobenzene	ND		49.2	45.8		ug/Kg		93	47 - 127	4	28
2,2-Dichloropropane	ND		49.2	47.7		ug/Kg		97	61 - 128	2	20
2-Butanone	ND		49.2	39.2		ug/Kg		80	48 - 134	6	24
2-Chlorotoluene	ND		49.2	44.9		ug/Kg		91	54 - 127	4	27
2-Hexanone	ND		49.2	46.9		ug/Kg		95	48 - 136	7	28
4-Chlorotoluene	ND		49.2	44.5		ug/Kg		90	54 - 125	8	26
4-Methyl-2-pentanone	ND		49.2	44.9		ug/Kg		91	55 - 133	1	23
Acetone	ND		49.2	37.6		ug/Kg		76	30 - 175	14	30
Benzene	ND		49.2	44.8		ug/Kg		91	70 - 125	3	20
Bromobenzene	ND		49.2	47.8		ug/Kg		97	57 - 129	5	26
Bromochloromethane	ND		49.2	47.7		ug/Kg		97	67 - 125	0	20
Bromodichloromethane	ND		49.2	47.5		ug/Kg		97	64 - 130	3	20
Bromoform	ND		49.2	46.7		ug/Kg		95	49 - 133	5	27
Bromomethane	ND		49.2	44.7		ug/Kg		91	30 - 149	1	31
cis-1,2-Dichloroethene	ND		49.2	46.0		ug/Kg		94	71 - 125	2	20
cis-1,3-Dichloropropene	ND		49.2	42.8		ug/Kg		87	63 - 126	0	20
Carbon disulfide	ND		49.2	31.5		ug/Kg		64	53 - 125	7	20
Carbon tetrachloride	ND		49.2	47.4		ug/Kg		96	60 - 130	5	20
Chlorobenzene	ND		49.2	45.6		ug/Kg		93	65 - 125	3	22
Chloroethane	ND		49.2	45.6		ug/Kg		93	51 - 131	1	21
Chloroform	ND		49.2	45.0		ug/Kg		91	70 - 125	2	20
Chloromethane	ND		49.2	47.1		ug/Kg		96	43 - 125	4	21
Dibromochloromethane	ND		49.2	50.4		ug/Kg		102	56 - 132	6	24
Dibromomethane	ND		49.2	49.9		ug/Kg		101	67 - 127	1	20
Dichlorodifluoromethane	ND		49.2	48.1		ug/Kg		98	47 - 127	4	20
Di-isopropyl ether (DIPE)	ND		49.2	46.3		ug/Kg		94	62 - 125	4	20
Ethanol	ND		492	491		ug/Kg		100	21 - 168	2	40
Ethylbenzene	ND		49.2	45.6		ug/Kg		93	64 - 125	5	22
Ethyl-t-butyl ether (ETBE)	ND		49.2	46.0		ug/Kg		93	61 - 125	3	20
Isopropylbenzene	ND		49.2	49.8		ug/Kg		101	59 - 129	4	26
Methylene Chloride	ND		49.2	41.6		ug/Kg		85	60 - 125	8	20
Methyl-t-Butyl Ether (MTBE)	ND		49.2	47.0		ug/Kg		95	61 - 125	4	20
Naphthalene	ND		49.2	44.1		ug/Kg		90	25 - 136	5	32

Eurofins Calscience

Page 19 of 25

QC Sample Results

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 570-132818-A-2-D MSD

Matrix: Solid

Vinyl acetate

Vinyl chloride

Analysis Batch: 315901

Client Sample ID: Matrix Spike Duplicate

69

94

20 - 154

59 - 125

Prep Type: Total/NA Prep Batch: 315949

Allaryold Batolii Grood									Op D		.00-10
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
n-Butylbenzene	ND		49.2	43.8		ug/Kg		89	35 - 135	4	35
N-Propylbenzene	ND		49.2	46.1		ug/Kg		94	52 - 131	3	27
o-Xylene	ND		49.2	46.3		ug/Kg		94	59 - 128	6	24
m,p-Xylene	ND		98.4	90.4		ug/Kg		92	60 - 125	6	24
p-Isopropyltoluene	ND		49.2	44.3		ug/Kg		90	46 - 132	5	30
sec-Butylbenzene	ND		49.2	45.2		ug/Kg		92	47 - 131	7	30
Styrene	ND		49.2	47.1		ug/Kg		96	58 - 128	5	24
trans-1,2-Dichloroethene	ND		49.2	42.2		ug/Kg		86	67 - 125	5	20
trans-1,3-Dichloropropene	ND		49.2	49.9		ug/Kg		101	59 - 132	7	22
Tert-amyl-methyl ether (TAME)	ND		49.2	45.3		ug/Kg		92	66 - 127	1	20
tert-Butyl alcohol (TBA)	ND		246	228		ug/Kg		92	50 - 142	4	27
tert-Butylbenzene	ND		49.2	45.2		ug/Kg		92	53 - 126	7	28
Tetrachloroethene	ND		49.2	48.2		ug/Kg		98	62 - 129	7	21
Toluene	ND		49.2	44.1		ug/Kg		90	68 - 125	4	20
Trichloroethene	ND		49.2	47.1		ug/Kg		96	41 - 169	6	21
Trichlorofluoromethane	ND		49.2	55.9		ug/Kg		114	63 - 128	2	20

49.2

49.2

34.1

46.3

ug/Kg

ug/Kg

MSD MSD

ND

ND

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		32 - 179
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	100		58 ₋ 147
Toluene-d8 (Surr)	99		80 - 120

40

20

QC Association Summary

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

GC/MS VOA

Analysis Batch: 315901

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-132948-4	LTU #4	Total/NA	Solid	8260B	315949
MB 570-315949/5-A	Method Blank	Total/NA	Solid	8260B	315949
LCS 570-315949/1-A	Lab Control Sample	Total/NA	Solid	8260B	315949
LCSD 570-315949/2-A	Lab Control Sample Dup	Total/NA	Solid	8260B	315949
570-132818-A-2-C MS	Matrix Spike	Total/NA	Solid	8260B	315949
570-132818-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	315949

Prep Batch: 315949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-132948-4	LTU #4	Total/NA	Solid	5030C	
MB 570-315949/5-A	Method Blank	Total/NA	Solid	5030C	
LCS 570-315949/1-A	Lab Control Sample	Total/NA	Solid	5030C	
LCSD 570-315949/2-A	Lab Control Sample Dup	Total/NA	Solid	5030C	
570-132818-A-2-C MS	Matrix Spike	Total/NA	Solid	5030C	
570-132818-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5030C	

Accreditation/Certification Summary

Client: Northstar Environmental Remediation

Job ID: 570-132948-1 Project/Site: GSEP LTU & Ponds SDG: Genesis Solar, LLC

Laboratory: Eurofins Calscience

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date			
California	fornia S		3082	07-31-24			
The following analytes the agency does not d		port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which			
Analysis Method	Prep Method	Matrix	Analyte				
8260B	5030C	Solid	1,1,2-Trichloro-1,2,2-trifluoro	pethane			
8260B	5030C	Solid	1,1-Dichloropropene				
8260B	5030C	Solid	1,2,3-Trichlorobenzene				
8260B	5030C	Solid	1,2,4-Trimethylbenzene				
8260B	5030C	Solid	Solid 1,3,5-Trimethylbenzene				
8260B	5030C	Solid	1,3-Dichloropropane				
8260B	5030C	Solid	2,2-Dichloropropane				
8260B	5030C	Solid	2-Butanone				
8260B	5030C	Solid	2-Chlorotoluene				
8260B	5030C	Solid	2-Hexanone				
8260B	5030C	Solid	Acetone				
8260B	5030C	Solid	Ethanol				
8260B	5030C	Solid	Isopropylbenzene				
8260B	5030C	Solid	p-Isopropyltoluene				
8260B	5030C	Solid	Vinyl acetate				

Method Summary

Client: Northstar Environmental Remediation

Project/Site: GSEP LTU & Ponds

Job ID: 570-132948-1 SDG: Genesis Solar, LLC

Protocol	Laboratory
CIMOAG	EET CAL 4

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET CAL 4
5030C	Purge and Trap	SW846	EET CAL 4

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Eurofins Calscience Irvine

2841 Dow Avenue Tustin, CA 92780

Chain of Custody Record

ofins		
	Environment Testing	
	P* P4	i
	Loc: 570	
	— 132948	
of 1	132340	
01 1		
ation Co	des:	
	M - Hexane	
d cetate	N - None O - AsNaO2	
Acid	P - Na2O4S	i
604 H	Q - Na2SO3 R - Na2S2O3	
nlor	S = H2SO4	
rbic Acid	T - TSP Dodecahydrate U - Acetone	
ater	V - MCAA	
4	W - pH 4-5 Z - other (specify)	i
	L - Other (Specify)	
necial In	structions/Note:	
EDF file	structions/Note: NOT required	
repor	LVOCS ASAP	
	1510	
h and	alysis-ASAP	
th and	alysis-ASAP	
h and	alysis-ASAP	
h and	alysis-ASAP	
h and	alysis-ASAP	
th and	alysis-ASAP	
th and	alysis-ASAP	
th and	alysis-ASAP	
h and	alysis-ASAP	
h and	alysis-ASAP	
h and	alysis-ASAP	
h and	alysis-ASAP	
	month)	
h and	month)	
	month)	
	month)	

Client Information	Sampler: Mr. Ralph DeLa	Parra			ь РМ: neri Fam	ri Fama					Carrier Tracking No(s):			OC No:	Loc: 570 13294	
Client Contact: Mr. Arlin Brewster	Phone: (949) 702-0968					ama@eurofinset.com					State of Origin: California			age: Page 1 of 1	13294	
Company:	(===, /=======	PWSID:			T	Analysis Re					•		_	ob #:		
Northstar Environmental Remediation	Due Date Request	ed:	1						Ana	lysis r	Requested		P	reservation Codes:		
26225 Enterprise Court					-1111				П					A-HCL M-He	xane	
city: Lake Forest	TAT Requested (d 10 business da	TAT Requested (days): 10 business days									B - NaOH N - Nor C - Zn Acetate O - Ash					
itate, Zip	VOCS - A	10 business days VOCs - ASAP Rush Compliance Project: Δ Yes Δ No			-1111								D	D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3		
CA, 92630 hone:	PO#:				-1111								ÎF			
949) 274-1719	196-004-05				<u>©</u>		=			3					Dodecahydrate	
mail: .rlin.Brewster@NorthstarER.com	WO #:	WO #:			No Sor N		tor Oil		3	2		1.1		- Ice U - Ace I - DI Water V - MC		
roject Name:	Project #:						+ Motor						E K	(-EDTA W-pH EDA Z-othe		
SSEP LTU & Ponds	SSOW#:				- es s		esel		2	2		container		L - EDA Z - other (specify) Other:		
Genesis Solar, LLC	S50VV#.				Sam SD (-	+ Di		ر	<u>د</u> ا			≒ I			
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=waste/oil,	Field Filtered	8015M Thermin	8015B Gasoline	e 22 Metals	ASTO NOC				tal Number	Special Instruction EDF file NOT in Plase report VOC	ons/Note: equired	
Sample Identification	Sample Date	Time		BT=Tissue, A=/		8	80	뢅 :	§ \$	ŏ				lease report voc	S ASAP	
		A		tion Code:	Y			1	-	+			X -			
.TU #1	03/29/23	0828	С	S	4	X							1			
TU #2		0830	С	S		X							1			
TU #3		0832	С	s		х							1			
TU #4		0834	c	5					V	-			1	Rush analysis	- 45AD	
		000			+			_	1					Maria araily 313	11 3/11	
					+	+-		-	+	+			-			
									_				_			
· • • • • • • • • • • • • • • • • • • •	•															
JA 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.									1							
					++	+		-+-	+	+						
					++-	_		-	+	+						
70-132948 Chain of Custody					Ш											
Possible Hazard Identification					Sá	mple	Disp	osal (A fee			es are retai	ined	longer than 1 month))	
X Non-Hazard Flammable Skin Irritant	Poison B Unkno	own L	Radiological					To Cli			Disposal By Lab		chive	For Mon	ths	
eliverable Requested: I, II, III, IV, Other (specify)					Sp	ecial	Instru	ictions	/QC F	Requirer	nents:					
mpty Kit Relinquished by:		Date:			Time				*****		Method of Shipr	nent:				
elinquished by:	Date/Time:			Company	1	Rece	iyed b	m		_	Date	Time:	20	1600 Compa	ny	
elinquished by:	Date/Time:	1600		16vth	star	Rece	ived b	//C	کر	/		/7.0/	CZ	/600 /2 Compa		
7 (3) - 37																
Custody Seals Intact: Custody Seal No.:						Coole	r Tom	parature	0(s) °C	and Othe	r Remarks:	1.7				

Login Sample Receipt Checklist

Client: Northstar Environmental Remediation Job Number: 570-132948-1 SDG Number: Genesis Solar, LLC

List Source: Eurofins Calscience

Login Number: 132948

List Number: 1

Creator: Ortiz-Luis, Michael		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	