DOCKETED	
Docket Number:	23-OPT-01
Project Title:	Fountain Wind Project
TN #:	250985
Document Title:	Fountain Wind Traffic Study_07072023
Description:	N/A
Filer:	Caitlin Barns
Organization:	Stantec Consulting Services, Inc.
Submitter Role:	Applicant Consultant
Submission Date:	7/10/2023 11:33:25 AM
Docketed Date:	7/10/2023

Westwood

TRAFFIC STUDY
Fountain Wind Power

Shasta County, California June 10, 2023

Prepared For:

Fountain Wind Project

Shasta County, California Project Number: 0023714.00

Date: 7/7/2023

Prepared for:

ConnectGEN

Prepared by:

CONTENTS

1.0	INTRODUCTION	1
2.0	PROJECT ACCESS	1
3.0	EXISTING TRAFFIC CONDITIONS	1
4.0	CONSTRUCTION TRAFFIC OVERVIEW	6
5.0	CONSTRUCTION & SCHEDULE	10
6.0	OVERSIZED LOADS AND PERMITTING	11
	CONSTRUCTION TRAFFIC MANAGEMENT PLAN	
8.0	ANALYSIS	15
9.0	SIGNAGE	23
10.0	SUMMARY	23
FIG	SURES	
FIGU	RE 1 – CONSTRUCTION PEAK HOUR CONDITIONS	.19
	PE 2 _ DOST CONSTRUCTION DEAK HOUR CONDITIONS	20

EXHIBITS

EXHIBIT 1 - PR	2424 DJECT SITE PLAN
EXHIBIT 2 - REG	GIONAL DELIVERY ROUTES25
EXHIBIT 3 - LO	CAL DELIVERY ROUTES26
EXHIBIT 4 - FO	UNTAIN WIND PROJECT – ESTIMATED VEHICLE TRIPS DURING AND POST
CONSTRUCTIO	N27
T 4 D 1 F 0	
TABLES	
Table 1.1 – Ro	adway Segment Traffic Information Summary3
Table 1.2 – Ro	adway Segment Geometric and Crash Information4
Table 1.3 – Ro	adway Segment Geometric and Crash Collision Rates5
APPENDI	V
APPENDI	^
4 D D E N D I V 4	
APPENDIX A	Burney Express Schedule
	Truck Route Exhibit
	Caltrans Traffic Census Program 2020 Annual Average Daily Traffic (AADT) Volumes
	Caltrans Traffic Census Program 2020 Truck Volumes and Percentages Roadway Grade Exhibits
APPENDIX B	April 4, 5, and 6, 2023 – Volume, Speed, and Classification Counts near proposed
AFF ENDIX D	Site Entrances
APPENDIX C	Crash Data 2018-2020
APPENDIX D	Highway Capacity Software Calculations
APPENDIX E	Potential Transportation Environmental Protection Measures for the Fountain
2.105.7.2	Wind Project
APPENDIX F	Synchro Level of Service Calculations
APPENDIX G	AASHTO Guidance for Left Turn Lanes on Two-Lane Highways (AASHTO Green
	Book, Seventh Edition)
APPFNDIX H	Responses to California Energy Commission Comments

1.0 INTRODUCTION

The Fountain Wind project is proposed as a 205 MW wind project consisting of 48 wind turbines with associated access roads, collection system, meteorological (MET) towers, operations and maintenance facility (O&M), staging yards, substation, and interconnection. The construction of the Fountain Wind project will generally require conventional construction worker personal vehicles, logging trucks, aggregate dump trucks, concrete ready-mix trucks, single unit and semi-tractor trailer trucks, crawler cranes, and a limited number of specialized transportation vehicles for the oversize/overweight vehicles associated with the delivery of wind turbine components and substation main power transformers (MPTs).

The scope of this report is to determine the total number of vehicles entering the project site from public roads and to calculate the approximate peak hourly traffic entering the site from public roads.

This report also contains responses to comments made by the California Energy Commission (CEC). A spreadsheet containing point-by-point responses to CEC comments is contained in **Appendix H**.

2.0 PROJECT ACCESS

Traffic entering the project site is composed of commuter trips for construction workers and delivery trips for materials and equipment. Materials and equipment deliveries include aggregate, concrete, and water, as well as turbines, electrical equipment and cables, and items such as reinforcing steel and forms for concrete foundations.

All traffic will reach the site using State Route (SR) 299 (see **Exhibit 1**). Deliveries of manufactured components (e.g., turbine components and turbine blades) will likely originate from the east and travel from Reno, Nevada to the site via US 395 and SR 299. These deliveries would be scheduled to avoid the peak hours of traffic on SR 299 and the scheduled first trip of the westbound Burney Express bus departing Burney at 5:50 am and arriving in Redding at 7:15 am (see **Appendix A**).

Locally sourced materials such as aggregate and water will likely come from Burney, located approximately 6 miles to the east of the project site, or from pits and quarries east of Burney. If the concrete is not batched on-site, there are several concrete plants in Redding about 35 miles to the west of the project site that can provide concrete during project construction.

Project workers will most likely commute from towns located both to the east and to the west of the project. The Burney Express does not appear to be a convenient option for commuters (see **Appendix A**). Redding is the largest town in the region. Other towns west of the project are very small and not likely to be able to accommodate many project

workers. Several small towns including Burney, Fall River Mills, and McArthur are located east of the project and may also accommodate project workers. Based on the relative size of towns located to the east and west of the project site, this study assumes that 60 percent of the commuting traffic travels to the site from the west and that 40 percent travels to the site from the east on SR 299. **Exhibits 2 and 3** illustrate the assumed regional and local delivery routes for manufactured components, turbine blades, and building materials and the anticipated commuter routes. SR 299 is a Terminal Access (STAA) truck route (see **Appendix A**).

Two access roads are proposed to coincide with existing logging roads at the intersections with SR 299 (see **Exhibit 1**). The West Access is proposed along a road called G Line, which intersects with SR 299 approximately 37 miles east of the interchange with I-5 in Redding. There is a widened shoulder at this intersection, but no turn lanes.

The East Access is approximately eight miles west of Burney. This access is proposed along an existing and unnamed logging road that provides access to the area south of SR 299. As with the other access points, there is a widened shoulder at this access, but no turn lanes.

As points of reference, the Shasta Green plant lies along SR 299 approximately 4.4 miles east of the East Access, and the Sierra Pacific Industries plant lies another 1.2 miles to the east of that. The Shasta Green plant has both eastbound and westbound turn lanes along SR 299. The Sierra Pacific Industries plant has no turn lanes.

The nearby Hatchet Ridge Wind Farm accesses SR 299 at Bunch Grass Lookout Road. This access is approximately one mile east of the East Access for the Fountain Wind project. Both eastbound and westbound turn lanes serve the Hatchet Ridge access. Bunch Grass Lookout Road is located at a four-way intersection on SR 299, with Terry Mill Road accessing to the south.

3.0 EXISTING TRAFFIC CONDITIONS

According to the Caltrans 2020 listing of Annual Average Daily Traffic (AADT) volumes (see **Appendix A**), urban centers on each end of SR 229 record the highest traffic volumes, then diminish significantly in the rural and mountainous areas in between. There are nine daily and peak hour count locations listed between I-5 in Redding, California, and Plumas Street in Burney, California¹.

The highest existing two-way AADT on SR 299 is 18,800 vehicles per day at I-5 in Redding where the highway has a four-lane freeway alignment. The highest existing two-way peak hour volume is 2,200 vehicles per hour. The capacity of a lane along a freeway segment is calculated as a function of the Free-Flow Speed (FFS), which is affected by the

¹ CalTrans Traffic Census Program.

percentage of heavy trucks traveling along the segment (see **Appendix A**), the average grade of the segment (see **Appendix A**), and either the observed free-flow speed or the average number of access points per mile within the segment.

The two access roads for the Fountain Wind project are all located within the segment of SR 299 between Big Bend Road and Tamarack Road. Volume, speed, and classification counts were collected at two locations along this segment on April 4, April 5, and April 6, 2023 (see **Appendix B**). The observed AADT along this segment was 1.55 times less than the 2020 Caltrans AADT collected along this segment. Additionally, the observed truck percentage along this segment was 1.4 times higher than the 2020 Caltrans observed truck percentage.

Roadway segment traffic volume and capacity information is summarized in **Table 1.1**. Roadway segment geometric and crash information (see **Appendix C**) are summarized in **Table 1.2** and **Table 1.3**.

Roadway capacity calculations are included in **Appendix D**. The roadway segments that are affected by project traffic are anticipated to have sufficient capacity for construction demand and post-construction demand.

								T	able 1.	1 - Roa	adway	Segme	ent Tra	ffic In	forma	tion S	umma	ry								
																					Pre-Cons	struction	Constr	uction	Post-Con	nstruction
Segment	Road	Location	Milepost	2020 Caltr Two-		2023 O AA	bserved .DT		rans <u>Peak</u> wo-Way		erved <u>Peak</u> our		tion Peak our		struction Hour	н	eavy Vehicl	es	Capacity pc/h/ln		LOS Bette	er than C?	LOS Bette	er than C?	LOS Bette	ter than C?
Number	Name	Location	To)					ED													(D/	C) ^f	(D/C) ^f		(D/C) ^f	
				Ahead	Back	EB	WB	EB (Ahead)	EB (Back)	EB	WB	EB	WB	EB	WB	(%)	SUT	TT	EB	WB	EB	WB	EB	WB	EB	WB
0		I-5 Junction (Redding)	24.8							_																
1		I-5 to Hawley Road	24.9-25.5	10800	18800			575°	1100 ^c			666 ^e	1160 ^e	583 ^e	1108 ^e	4.73	17	83	2006	2006	(YES)-A 0.16	(YES)-B 0.31	(YES)-A 0.19	(YES)-B 0.33	(YES)-A 0.16	(YES)-B 0.31
2		Hawley Road to Old Oregon Trail	25.5 -27.2	9500	10800			475°	575°			566 ^e	635 ^e	483 ^e	583 ^e	3.76	23	77	1998	2006	(YES)-A 0.13	(YES)-A	(YES)-A 0.16	(YES)-A 0.18	(YES)-A	(YES)-A
3		Old Oregon Trail to Deschutes Road	27.2-31.5	4750	7700			260 ^c	455 [°]			351 ^e	515 ^e	268 ^e	463 ^e	3.76 ^a			1700	1700	(YES)-A 0.16	0.16 (YES)-B 0.28	(YES)-B 0.22	(YES)-C 0.32	(YES)-A 0.17	0.16 (YES)-C 0.29
4		Deschutes Road to Terry Mill Road	31.5-53.3	3950	3900			130°	130°			221 ^e	190 ^e	138 ^e	138 ^e	14.9 ^a			1400	1400	(YES)-A 0.1	(YES)-A 0.1	(YES)-A 0.17	(YES)-A 0.14	(YES)-A 0.1	(YES)-A 0.1
5	CA-299 E	Terry Mill Road to Big Bend Road	53.5-60.1	3350	3550			135°	135°			226 ^e	195 ^e	143 ^e	143 ^e	14.9 ^a			1700	1700	(YES)-A 0.08	(YES)-A 0.08	(YES)-A 0.14	(YES)-A 0.12	(YES)-A	(YES)-A 0.09
6	0.1 2 9 9 2	Big Bend Road to Site Entrance 1	60.1-62.3	3350 ^a	3550 ^a	1275 ^b	1255 ^b	168 ^{a&c&g}	168 ^{a&c&g}	138 ^{b&d}	133 ^{b&d}	259 ^e	228 ^e	176 ^e	176 ^e	31^{b}			1700	1700	(YES)-A	(YES)-A	(YES)-B	(YES)-A	(YES)-A	(YES)-A
7		Site Entrance 1 to Site Entrance 2	62.3-67.3	3250 ^a	3350 ^a	1269 ^a	1259 ^a	168 ^{a&c&g}	168 ^{a&c&g}	161 ^{a&b&d}	133 ^{a&b&d}	259 ^e	228 ^e	176 ^e	176 ^e	31^{b}			1100	1100	(YES)-A 0.16	(YES)-A 0.16	(YES)-A 0.25	(YES)-A	(YES)-A	(YES)-A 0.17
8		Site Entrance 2 to Tamarack Road	67.3 -73.1	3150	3150	1263 ^b	1263 ^b	200 ^c	200 ^c	161 ^{b&d}	126 ^{b&d}	291 ^e	260 ^e	208 ^e	208 ^e	$30^{\rm p}$			1100	1700	(YES)-A	(YES)-A	(YES)-A	(YES)-B	(YES)-A	(YES)-A
9		Tamarack	73.1-74.5	3600	2400			180°	185°			271 ^e	245 ^e	188 ^e	193 ^e	17.5			1700	1700	(YES)-A 0.11	(YES)-A 0.12	(YES)-A 0.17	(YES)-A 0.15	(YES)-A 0.12	(YES)-A 0.12
10		Elm Street to Plumas Street (Burney)	74.5-75.0	8200	3600			435 ^c	180°			526 ^e	240 ^e	443 ^e	188 ^e	19			1700	1700	(YES)-C	(YES)-A 0.11	(YES)-C 0.33	(YES)-A	(YES)-C 0.28	(YES)-A 0.12

⁽a) - Assumed Value from Neighboring Segment. Segment 7 volumes are averages.

⁽b) - Observed Value from counts performed on April 4, 5, and 6 of 2023

⁽c) - Numbers listed in Appendix A were representatives of two-way traffic. These Numbers are divided by two under the assumption of equal traffic in each direction.

⁽d) - Peak Hour Count from QC - Were Adjusted using a correction factor of 1.55

⁽e) - Peak hour analysis used the highest AM or PM Volumes.

⁽f) - Demand over Capacity Ratio

⁽g) - Reference values only, not used for peak hour construction volumes analysis

						Ta	ble 1.2	- Roadw	ay Segm	ent Ge	ometrio	and Cras	sh Info	rmation					
Segment Number	Road Name	Location	Milepost (From- To)	Length (mi)	Surface / Condition	Elevation Start (ft)	Elevation End (ft)	Eastbound Average Grade	Westbound Average Grade	Lane Width (ft)	Shoulder Width (ft)	Number of Directional Travel Lanes	Passing Zones	Roadway Functional Classification	Passing Zones	Average Access Points per Mile	Truck Route Designation	Weight and Load Limitations	Posted Speed Limit
О		I-5 Junction (Redding)	24.8			640													
1		I-5 to Hawley Road	24.9 - 25.5	0.6		<u>641</u>	<u>628</u>	-0.41	0.41			2		Principal Arterial		0			
2		Hawley Road to Old Oregon Trail	25.5 -27.2	1.7		628	<u>621</u>	-0.08	0.08				n/a			0			
3		Old Oregon Trail to Deschutes Road	27.2 - 31.5	4.3		621	<u>539</u>	-0.36	0.36				Passing Zones		Passing Zones	8			
4		Deschutes Road to Terry Mill Road	31.5 - 53.3	21.8		539	<u>2092</u>	1.35	-1.35				Passing Lanes		Passing Lanes	4			
5	CA-299 E	Dig Delia	53.5 - 60.1	6.8	Asphalt /	2092	<u>3128</u>	2.89	-2.89	12	6		Passing Lanes EB only		Passing Lanes EB only	6	Terminal Access /	80000 lb Max	55
6		Big Bend	60.1 - 62.3	2.3	Good	3128	<u>3640</u>	4.22	-4.22				Passing Zones	Min on Autorial	Passing Zones	3	STAA Route		
7		Site Entrance 1 to Site Entrance 2	62.3 - 67.3	4.9		3640	<u>4215</u>	2.22	-2,22			1	Passing Lanes	Minor Arterial	Passing Lanes	2			
8		Site Entrance 2 to Tamarack Road	67.3 -73.1	5.8		4215	<u>3209</u>	-3.29	3.29				Passing Lanes EB only		Passing Lanes EB only	2			
9		Tamarack Road to Elm Street	73.1 - 74.5	1.4		3209	<u>3189</u>	-0.27	0.27				Passing Zones		Passing Zones	5			
10		Elm Street to Plumas Street (Burney)	74.5 - 75.0	0.5		3189	<u>3125</u>	-2.42	2.42				Constricted		Constricted	22			

									Tab	le 1.3 - R	Roadwa	y Segment (Geometric an	d Crash Collision Ra	ates							
																	s	R-299 (TIM	IS Tool- UC Be	rkeley)		de 3-Yr Rates 2019, 2020)
Segment Number	Road Name	Location	Milepost (From- To)	Length (mi)	2020 Caltrans Ahead AADT 2wy	2020 Caltrans Back AADT 2wy	Ahead MVM	Back MVM	Total MVM	Number of Directional Travel Lanes	Passing Zones	Roadway Functional Classification	Passing Zones	Average Access Points per Mile	Truck Route Designation	Weight and Load Limitations	Number of Crashes 2018- 2020	Number of Fatal Crashes 2018- 2020	Crash Total per MVM	Fatal+Injury per MVM	Crash Total per MVM	Fatal+Injury per MVM
o		I-5 Junction (Redding)	24.8																			
1		I-5 to Hawley Road	24.9 - 25.5	0.6	10800	18800	2.3652	4.1172	6.4824	2	n/a	Principal Arterial		0			5	0	0.77	0.00	1.05	0.5
2		Hawley Road to Old Oregon Trail	25.5 -27.2	1.7	9500	10800	5.89475	6.7014	12.59615					0			1	0	0.08	0.00	1.05	0.5
3		Old Oregon Trail to Deschutes Road	27.2 - 31.5	4.3	4750	7700	7.455125	12.08515	19.540275		Passing Zones		Passing Zones	8			16	0	0.82	0.00	1.07	0.47
4		Deschutes Road to Terry Mill Road	31.5 - 53.3	21.8	3950	3900	31.43015	31.0323	62.46245		Passing Lanes		Passing Lanes	4			37	6	0.59	0.10	1.07	0.47
5	CA-299 E	Terry Mill Road to Big Bend Road	53.5 - 60.1	6.8	3350	3550	8.3147	8.8111	17.1258		Passing Lanes EB only		Passing Lanes EB only	6	Terminal Access /	80000 lb	11	0	0.64	0.00	1.07	0.47
6		Big Bend Road to Site Entrance 1	60.1 - 62.3	2.3	3350 ^a	3550 ^a	2.812325	2.980225	5.79255		Passing Zones		Passing Zones	3	STAA Route	<u>Max</u>	0	0	0.00	0.00	1.07	0.47
7		Site Entrance 1 to Site Entrance 2	62.3 - 67.3	4.9	3250 ^a	3350 ^a	5.812625	5.991475	11.8041	1	Passing Lanes	Minor Arterial	Passing Lanes	2			4	0	0.34	0.00	1.07	0.47
8		Site Entrance 2 to Tamarack Road	67.3 -73.1	5.8	3150	3150	6.66855	6.66855	13.3371		Passing Lanes EB only		Passing Lanes EB only	2			4	O	0.30	0.00	1.07	0.47
9		Tamarack Road to Elm Street	73.1 - 74.5	1.4	3600	2400	1.8396	1.2264	3.066		Passing Zones		Passing Zones	5			1	0	0.33	0.00	1.07	0.47
10		Elm Street to Plumas Street (Burney)	74.5 - 75.0	0.5	8200	3600	1.4965	0.657	2.1535		Constricted		Constricted	22			2	0	0.93	0.00	1.07	0.47

4.0 CONSTRUCTION TRAFFIC OVERVIEW

Westwood estimated the full construction period traffic volume based on the types of delivery, construction, operations, maintenance, and worker vehicles required during the various phases of the project. Westwood estimated trips into and out of the development area based on the projected number of deliveries, the required types of equipment and material, and the projected number of employees necessary to complete the project over the estimated construction period. Typically, the selected construction contractor will determine the project timeline. These volumes of trips were calculated using a spreadsheet that lists every known phase of construction with corresponding equipment, material, and numbers of employees, which are then averaged over the course of the project period.

During construction, the project will employ an estimated maximum number of 199 workers/day during the peak period of construction, which include construction workers, project management staff, equipment operators, survey staff, and delivery vehicle drivers during the peak period. The calculation of workers and delivery vehicles was developed using a construction estimation based on time and materials and using crew productivity data from RS Means, an industry-standard construction cost estimating software package. The total number of trips was determined by using the number of employees in each of the categories listed above, dividing that number by an estimated vehicle occupancy of 2 employees and multiplying by the number of workdays for each employee category. Typically, construction projects show a bell-curve distribution of workers through the construction period. Initial site mobilization and early site preparation work will have fewer workers. The number of workers will build to a peak during the period of greatest activity. As construction draws to a close, the average number of workers per day will decrease as crews complete their work.

As a result, the estimated number of workdays and total number of two-way trips for each category are:

- 250 days for commuters (36,966 total two-way trips);
- 250 days for equipment (262 total two-way trips);
- 250 days for aggregate deliveries (26,749 total two-way trips);
- 200 days for turbine deliveries (5,909 total two-way trips);
- 230 days for concrete deliveries (5,140 total two-way trips);
- 250 days for miscellaneous materials deliveries (560 total two-way trips) and;
- 250 days for water deliveries (8,418 total two-way trips)

Thus, over the estimated two-year construction period, the total number of all two-way trips is approximately 84,003 trips.

After the construction of the wind farm, operations, and maintenance traffic will be limited to a few passenger vehicle trips per day.

General summaries of the construction work tasks, and related delivery and construction vehicles are listed below.

4.1 WORK TASKS

Work Tasks are generally listed in chronological order, but extensive overlap can be expected depending on the contractor's scheduling.

- Survey the project site and set construction stakes
- Install and maintain erosion and sediment control
- Timber removal/clear and grub laydown, substations, O&M, access roads, and turbine pads areas
- Grade field office and O&M locations
- Deliver and Install Field Office trailers
- Grade temporary laydown areas
- Improve logging roads/construct access roads grade and place aggregate
- Erect security fencing enclosing laydown yards and facilities
- Excavate turbine foundations
- Place foundation mud mat
- Place foundation reinforcing
- Place foundation forms
- Place foundation concrete
- Strip forms
- Backfill foundations
- Unload turbine components
- Erect turbine tower sections using base crane
- Erect top turbine tower section, nacelle, hub, and blades using topping crane
- Grade transformer pad areas
- Install turbine transformers
- Connect turbine to transformer wiring
- Grade substation and switching substation areas
- Construct substation and O&M foundations
- Trench underground collector system (34.5kV)
- Install overhead collection system lines (34.5kV)
- Construct O&M Facility
- Construct substation and switching substation equipment and main power transformer foundations
- Install step-up substation and switching substation equipment and Supervisory Control and Data Acquisition (SCADA)
- Place step-up substation and switching substation aggregate
- Install security fence around step-up substation and switching substation
- Connect step-up substation to switching substation
- Connect switching substation to transmission line
- Test and commission equipment

- Remove field offices, security fencing, and replace topsoil
- Remove staging area security fences and replace topsoil
- Restore, revegetate, and remove temporary erosion and sediment control

4.2 CONSTRUCTION EQUIPMENT

Examples of the types of equipment generally used in wind farm construction are listed below. **Exhibit 4** lists the number and type of equipment assumed for construction:

- Erosion and sediment control silt fence trenchers
- Timber harvest/removal typical forestry equipment such as feller-bunchers, shears, skidders, hydro-axe, and logging trucks
- Grading (field office location, staging areas, O&M facility, step-up substation, and switching substation) – medium bulldozers, scrapers, road grader, compaction rollers, and water trucks
- Logging road/access road improvements medium bulldozers, road grader, scrapers, compaction rollers, and water trucks
- Materials handling equipment (unloading wind turbine components) hydraulic (helper) cranes, small flat-bed trailers pulled by pick-up trucks, heavy crawler cranes
- Security fencing skid-steer with auger attachment, and hydraulic post driver attachment, and hand tools for each crew
- Turbine foundations medium bulldozer, excavator, hydraulic crane, and concrete pump truck
- Tower base erection hydraulic (helper) cranes and base crane
- Tower top/nacelle/hub/blades erection hydraulic cranes and topper crane
- Pad mounted transformers at each turbine truck mounted or mobile hydraulic crane
- Turbine wiring hand tools
- 34.5 kV underground collector trenching specialized trenching equipment, cable plows, and back hoes, cable reel trailers
- 34.5 kV overhead collection line backhoe with auger attachment, specialized pole setting equipment (boom trucks), bucket trucks, cable reel trailers
- O&M and substation equipment foundations back hoe
- Substation construction bulldozer, backhoe, compaction roller, water trucks, mobile hydraulic crane, large crane (MPT)
- Switching substation construction bulldozers, backhoes, compaction rollers, water trucks, mobile hydraulic crane
- Substation to interconnect transmission line foundation auger mounted on back hoe, mobile hydraulic crane
- O&M Building mobile hydraulic crane
- Removal of temporary aggregate (field office location and staging areas) Front end loader

 Revegetation and removal of erosion and sediment control – chisel plow (decompaction), small tractor and tilling equipment, skid steer loader, hydro-seeding/hydro-mulching equipment

4.3 MATERIALS

Examples of materials used in the construction of wind farms is listed below. **Exhibit 4** lists the materials assumed for construction:

- Silt fence, bio log, and other erosion and sediment control materials
- Aggregate (access roads, staging areas, O&M facility, substations)
- Security fencing (field office location, staging areas, substations)
- Field Offices and storage trailers
- Formwork for foundations (equipment pads, O&M, substation transformers and equipment, and switching substation equipment)
- Rebar for above concrete foundations
- Concrete for wind turbine foundations and transformer pads
- Concrete for O&M facility foundation
- Concrete for substation foundations (Main Power Transformer (MPT), electrical equipment, and control building)
- O&M Building materials
- Collection system wiring (underground and overhead)
- Electrical equipment (transformers, switch gear, circuit breakers, junction boxes, conduit, SCADA, etc.)
- Structural steel for substation racking
- Structural steel poles for overhead collection line
- Main power transformers
- Transmission line cables (from switching substation to transmission line)
- Water for aggregate/backfill compaction, vegetation establishment, and dust control
- Miscellaneous consumables
- Plant stock, seed, and mulch

4.4 MATERIAL DELIVERY VEHICLES

The types of vehicles used for material deliveries is listed below. **Exhibit 4** lists the material delivery vehicles assumed for construction:

- Semi-Trailer Flatbed Trucks for hauling logs off of site
- Single Unit Flatbed Trucks Erosion and sediment control materials, plant stock, seed, and mulch, miscellaneous consumables
- Gravel Semi-Trailer Dump Trucks with a 16 cubic yard load capacity (loose volume) with an approximate gross vehicle weight of 80,000 pounds and a load weight of approximately 40,000 pounds.
- Field office trailers (one 40' x 12' for PM use; 12' x 36' triple wide for subs use)

- Concrete Trucks- with a 10 CY capacity, weighing approximately 69,000 pounds
- Semi-Trailer Flat Bed security fence, concrete forms, rebar, O&M building components, transformers, miscellaneous turbine materials, structural steel for substations, electrical equipment for substation, Non-permit load size 8'-6" x 8'-6" x 48'-0", gross vehicle weight 80,000 pounds, up to 45,000 pound loads
- Cable trailers 34.5 kV underground, 34.5 kV overhead, and overhead transmission from switching substation to transmission line
- Overhead collection system pole trailers
- Water trucks 4000 gallon capacity, single unit tank trucks, weighing approximately 59,000 pounds
- Lowboy Multi-Axel Trailer Main power transformer, substation control building
- Workers' trucks (Pick-up trucks –average 1.5 occupants)

4.5 EQUIPMENT DELIVERY VEHICLES

Types of vehicles used for the delivery of construction equipment:

- Lowboy semi-trailer Logging equipment, bulldozers, scrapers, compaction rollers, road grader, excavator, trenching equipment, backhoes, hydraulic (helper) cranes, crawler cranes, skid steer loaders, trenchers, cable plows, agricultural plows
- Single unit flatbed truck Hydro much/hydro-seed equipment
- Small flatbed trailers towed behind pick-up trucks for small equipment and tools

5.0 CONSTRUCTION & SCHEDULE

Construction of wind farms requires that a few tasks be repeated across the project site. Some sequencing of tasks is required, but many tasks may overlap across the site for efficient scheduling. The construction of the operations and maintenance facility, substation, switching substation, and underground and overhead collection systems can overlap with other tasks or can be exceptions, depending on the scheduling of and priority of precedent activities.

For the purpose of determining the daily volume of traffic, construction time is estimated to take approximately two years (approximately 250 business days), with construction occurring only during the spring, summer, and fall. Wind farm sites are large and allow many crews to work simultaneously without interfering with one another. Nevertheless, the size of the project (number of wind turbines) impacts the construction time significantly because the cost of mobilizing the large cranes required for turbine erection is high, and because the cranes are in such high demand that mobilizing a small number of cranes is typical on wind projects.

6.0 OVERSIZED LOADS AND PERMITTING

The logistics of delivering the oversized loads for the wind turbines, with the use of specialized transportation vehicles, also creates schedule constraints. A Transportation Management Plan would be prepared to minimize impacts from the transportation of oversized loads and to direct deliveries to off-peak hours.

Trucks carrying turbine components such as blades and nacelles will be oversized and will be required to be accompanied by pilot cars. Oversized load transportation permits will be obtained in coordination with CalTrans.

These oversized trucks would likely be required to travel over bridges and overpasses. Weight and size limits may require detours in accordance with Caltrans direction. A logistical route analysis that focuses more on geometrics and bridge capacity will be performed following the final selection of the turbine model to be used for the project. Because there is direct project access to the state highway, and based on the fact that the adjacent Hatchet Ridge project delivered oversized components along this same infrastructure, the existing highway and bridge geometrics will likely be able to accommodate the planned deliveries. This will be verified by a logistical route survey when a turbine manufacturer, turbine model, and contractor have been selected.

Westwood has contacted Caltrans' Office of Transportation Permits. This office reviews and approves oversize/overweight permits along state highways. They have responded that any specific weight and height limitations would only be determined once a contractor has been selected and a Route Request Permit defining the origin and destination of the equipment/components is requested. The Caltrans variance coordinator will then review the request and issue the permit.

Variance permits are required for anything over 53 feet in length with a maximum kingpin of 43 feet. A variance permit would be required for each blade or component delivery.

Once the requested route permit has been received by Caltrans, it will take up to thirty days to review and issue the permit. Bridge ratings will be tested depending on the loads forecast for each component and delivery vehicle.

Also, the Transportation Permit office states that even though SR 299 is identified as a "Blue Route" and pilot cars will be assumed for each blade delivery vehicle, the contractor will likely be required to contract with the California Highway Patrol (CHP) for escorts.

As far as roadway connections to SR 299, Caltrans Transportation Permits Office noted that coordination with the District 2 Encroachments Office will be required to determine what additional planning or roadway improvements would be needed to accommodate the oversized loads. A "Swept Path Analysis" must be completed that shows turn-by-turn

impacts that might be experienced by the oversized loads along SR 299 or at side road intersections.

In summary, the sizes and weights of the selected components, the dimensions of the vehicles delivering them, the delivery routes and the route surveys will be completed as part of the Caltrans review process.

Nevertheless, all deliveries of components and materials for the Fountain Wind project will be similar to those of the Hatchet Ridge project, with the exception of turbine blade deliveries. Fountain is proposing WTG ranging from 3 to 7.2 MW. WTG models in the lower size range of those proposed will have similar blade lengths as the 2.3 MW Siemens WTGs constructed on Hatchet Ridge. The largest blade length proposed for Fountain would be approximately 261' in length, which would be approximately 90' longer than those delivered to Hatchet Ridge. Although Fountain may utilize longer blade lengths, the haul trucks will include rear-axle steering capabilities, thereby mitigating potential turning constraints.

Caltrans roads are designed to comply with the state Highway Design Manual. Vehicular design speeds are listed for various highway types. For conventional rural highways, the following design speeds are listed:

Flat terrain 55-70 mph
 Rolling terrain 50-60 mph
 Mountainous terrain 40-50 mph

It is uncertain as to which design speed SR 299 is designed. It is likely that the design speed varies throughout its length – flat to rolling near Redding, rolling to mountainous near Montgomery Creek and Hillcrest.

According to the Caltrans Highway Design Manual, the k-value is the distance in feet required to achieve a 1% change in grade. Thus, the following k-values are listed under each condition:

- For stopping sight distances on crest vertical curves, the k-value = 68 feet when design speed is 40 mph
- For stopping sight distances on crest vertical curves, the k-value = 139 feet when design speed is 50 mph
- For stopping sight distances on sag vertical curves, the k-value = 62 feet when design speed is 40 mph
- For stopping sight distances on sag vertical curves, the k-value = 97 feet when design speed is 50 mph

According to a "desktop review", there appear to be no underpasses along SR 299 east of I-5. There are two overpasses, however – one at Churn Creek Road and one at Old Oregon Trail on the east side of Redding. Further to the east, there appear to be two creek crossings (Salt Creek Bridge 6-49 and Cedar Creek Bridge 6-20) along SR 299 between I-5 and the proposed access roadways for Fountain Wind. There is one creek crossing along SR 299 between the proposed access roads for Fountain Wind and Burney (Burney Creek Bridge 6-12). As of this writing, weight limits for these bridges have not been determined.

Regarding horizontal curves, a "desktop review" of SR 299 shows three curves with radii less than 1,000 feet. SR 299 has a curve with a radius of approximately 600 feet near Montgomery Creek. SR 299 has a curve with a radius of approximately 700 feet near Hillcrest. Near Burney, there appears to be a curve with a radius of approximately 650 feet.

The speed limit along SR 299 is 55 mph for trucks with three or more axles, but there are places along SR 299 where the advisory speed drops to 40 and 45 mph approaching the sharper curves. Also, there are passing lanes at some of the steeper inclines.

The geometry resulting from the basic highway design criteria appears to exceed the requirements for turbine component delivery, which requires a minimum k-value in the range of 20 (and which comfortably falls within the k-values of the highway design above). Further, turbine component delivery specifications require a minimum horizontal curve of 200'. Therefore, while it appears there is little risk that the turbine delivery vehicles will not be able to navigate the existing geometry of the highway, a route survey by a permit service and a "swept path" analysis will be able to verify this statement and support Caltrans authorizations.

Upon approach to the site, turbine deliveries will be directed to proceed directly to the appropriate turbine pad sites for offloading. Construction access points off SR 299 will provide adequate turning radii to ingress/egress the site with minimal time required for turning maneuvers. Because the turbine pad sites are distributed throughout the site and not directly adjacent to state SR 299, if queuing were to occur, it is expected that the queues would take place on access roads near the turbine pad sites – wholly within the project site.

7.0 CONSTRUCTION TRAFFIC MANAGEMENT PLAN

A Construction Traffic Management Plan (CTMP) will be developed and presented once the construction contractor has been selected. Upon selection, the contractor will review the site and available aggregate and water sources. The contractor will provide input on project staging and equipment delivery that will be incorporated and used to define the CTMP. Therefore, the CTMP will be specific to the construction approach and phasing, as well as specific to the location and environment, of the project area.

Specifically, the CTMP will be implemented for the Fountain Wind Project site during construction to address the safety requirements of the project. This plan will reflect the assessment conducted to define the plan, as well as the details of the plan itself. The CTMP will include:

- A consideration of the existing traffic, pedestrian, and cycling activity along SR 299 as well as the related road/intersection operations;
- A determination of the route that minimizes conflicts with emergency vehicles between staging/loading sites and proposed wind turbine sites;
- An articulation plan to manage construction traffic in a manner that minimizes the potential impact on local wildlife;
- The specific measures to be implemented during the construction phase of the project, which incorporate the principles and guidelines of the Caltrans Transportation Permits Manual; and
- Any additional environmental protection measures that the project proposed to further avoid or minimize potential impacts to traffic and safety. **Appendix E** of this report includes a list of potential Environmental Protection Measures (EPMs) that may be applicable for inclusion in the CTMP prepared for the Fountain Wind project.

The ConnectGen/Westwood Team will work with the contractor to ensure that key transportation considerations related to residents and businesses along SR 299 and within Shasta County and the planned construction of wind turbines are sensitive to the following:

- Potential conflicts between construction-related traffic and the day-to-day activities
 associated with the local area, including local travel by car, school bus, bicycle, or on foot
 as well as the movement of logging equipment;
- The need to ensure that residents and emergency response agencies are aware of the temporary conditions during construction that could affect traffic mobility and safety in various parts of the county depending on the location of the work sites; and,
- The need to ensure that local wildlife and its habitat are not adversely impacted by the construction traffic associated with the project.

The ConnectGen/Westwood Team will work with the contractor to develop a public information strategy to ensure that communication of the traffic plan will be shared with the residents and businesses in the area. This includes installing Road Restriction Notice Signs near all work sites a minimum of one week before any lane closures or detours. This will allow residents to effectively plan their routes, and mitigate the overall impact caused by the work and deliveries to the site. An activity forecast report shall be provided to the California Energy Commission and Shasta County outlining construction activity a minimum of two weeks before any work commencing.

8.0 ANALYSIS

The traffic impacts of the Fountain Wind Project were evaluated with three different analyses during the project construction period and after the project construction period. **Vehicle Miles Traveled** (VMT) were calculated per the requirements of California Senate Bill 743. **Intersection Level of Service** (LOS) was analyzed at the intersections of the two Project access roads with SR 299. **Left Turn Warrants** were also evaluated at the intersections of the two Project access roads with SR 299.

8.1 VMT ANALYSIS

California Senate Bill 743 was signed into law in 2013 in order to utilize VMT to review the potential impact of land use projects on the State Highway System. As of July 1, 2020, the state of California has fully adopted a change in the California Environmental Quality Act (CEQA) significant impact methodology for transportation impacts to use VMT as opposed to LOS. The intent of SB 743 is to align transportation impacts under CEQA with the State's overall goals of increasing long-term sustainability by encouraging infill development, increasing reliance on mass transit, and reducing greenhouse gas (GHG) emissions. VMT analysis focuses on automobile and light-duty truck trips, although heavy duty truck trips can be included in the analysis for convenience (OPR, 2018). Construction trips typically are not analyzed in a VMT analysis because they are temporary and would not impact overall per capita VMT in the region; however, they are provided here for informational purposes. Note also that CEQA Guidelines section 15064.3 (b)(3) suggests that analysis of VMT from construction traffic be qualitative. This same section also suggests that the focus be on automobile (e.g. passenger vehicle) trips.

VMT is calculated by multiplying the amount of daily traffic on a roadway segment by the length of the segment, then summing all the segments (see **Exhibit 4**). Westwood estimated the number of trips taken by trucks and other vehicles to haul equipment, material, aggregate, turbines, concrete, water, and employees. Westwood then estimated the mileage that would be logged to perform these trips during the two-year construction period.

For this analysis, it was assumed that deliveries of manufactured components (i.e., turbine components and blades) will likely originate from the east and travel from Reno, Nevada to the site via US 395, SR 139, and SR 299. Similarly, the Project identified other equipment and materials would be delivered prior to construction from the city of Redding to the west and the town of Burney to the east. From these calculations, it is estimated that the total VMT during the construction period will be **4,766,749 vehicle miles traveled** (see **Exhibit 4**) based on the

following number of workdays and total VMT of two-way trips for each trip category:

- 250 days for commuters (1,256,844 total two-way VMT)
- 250 days for equipment (13,100 total two-way VMT)
- 250 days for aggregate trips (534,980 total two-way VMT)
- 250 days for turbine deliveries (2,025,068 total two-way VMT)
- 250 days for concrete deliveries (257,000 total two-way VMT)
- 250 days for miscellaneous materials deliveries (27,978 total two-way VMT) and;
- 250 days for water deliveries (168,360 total two-way VMT)

As provided above, the majority of VMT results from delivery of turbine components, due to the long distance traveled from Reno, NV. Construction commuter trips are the next largest contributor to construction VMT, due to the number of daily trips from construction workers. However, most of these workers are expected to come from the region and would not represent a large influx of commutes, but rather a redistribution from other construction sites in the region to the Project site. Note again that all of these vehicle miles travelled are temporary and would cease to occur following completion of construction. SB 743 was enacted to chiefly address on-going sources of greenhouse gas emissions from land use projects such as residential, office, and retail developments and not to address temporary construction traffic for renewable energy projects.

The post-construction VMT would be much less. Westwood assumed there would be four(4) vehicles per day utilized for operations and maintenance of the wind farm. It is assumed that each vehicle would be traveling an average of 60 miles per day from their place of origin to the wind farm for inspection, maintenance, and operation, and then return. Therefore, the total VMT per day post-construction is estimated to be **240 vehicle miles traveled**. Per capita daily VMT for the permanent employees at the facility is estimated to be approximately **30 vehicle miles per day**.

It is recommended that in adopting a VMT significance threshold for this project, the California Energy Commission choose a metric that takes into account that the ultimate goal and purpose of the project is to create a utility-scale electricity generation source with near-zero GHG emissions and to displace the generation of electricity through the use of GHG-emitting fossil fuels. As set forth in the Shasta County Draft EIR on VMT:

The intent of SB 743 is to encourage land use and transportation planning decisions and investments to reduce VMT and thereby contribute to the reduction of GHG emissions, as required by Assembly Bill 32. Therefore, for purposes of this Project, the Project's impact to VMT would be significant if it would conflict with an applicable plan, policy or regulation adopted for

the purpose of reducing the emissions of GHGs. The evalution of Impact 3.10-2 in Section 3.10, GHG Emissions, concludes that the Project would result in a less-than-significant impact related to a potential conflict with an applicable plan, policy or regulation adopted for the purpose of reducing GHG emissions, aso too would result in a less-than-significant transportation impact relating to VMTs.

Shasta County Draft EIR at p. 3.14-12.

Naturally, travel to and from the project is temporarily increased during construction. However, long-term travel to the project is negligible post-construction. Any potential reduction in VMT would likely occur in the construction phase, through the implementation of various Transportation Demand Management (TDM) programs that are designed to reduce trips. These programs are anticipated to provide other benefits such as reduction in travel times, parking requirements, traffic congestion and air pollution. All of these benefits can be achieved by reducing trips and shifting travel times and modes. Measures such as carpooling for construction workers between the site and hotels/residences in both Redding and Burney can reduce the total VMT during construction. Given the location of the site, carpooling is likely the only feasible method for reducing construction VMT, as there are no public transit facilities that serve the project site.

Additionally, most workers will arrive at the site in the early morning, and stay onsite all day, leaving in the late afternoon or early evening outside of peak hours. Accordingly, project construction will not adversely affect traffic conditions (as discussed further below).

Finally, heavy construction equipment and wind turbine components (e.g., blades, nacelles) would be delivered to the Project Site using area roadways, some of which may require transport by oversize/overweight vehicles. The transport of these materials would require Caltrans review. Further, heavy equipment associated with these components would not be hauled to/from the site daily, but rather would be hauled in and out on an as needed basis. Heavy vehicle deliveries also will arrive outside peak hours to facilitate smooth flow of traffic. The Project would implement a CTMP, as well as identify anticipated construction delivery times and vehicle travel routes to potential conflicts with other travelers. Accordingly, no significant environmental impacts are anticipated from the use of oversized vehicles to transport large turbine components.

8.2 PROJECT ACCESS LOS ANALYSIS

A **Level of Service** (LOS) analysis measured delay per vehicle and operational performance. The LOS analysis was performed using the traffic engineering industry-standard software package *Synchro/SimTraffic* for AM and PM peak hour conditions for periods during and after construction. It is noted that LOS-A generally represents free-flow conditions, while LOS-F generally represents gridlock conditions.

To estimate peak hour conditions, Westwood used the peak hour volumes that were collected on April 4, 5, and 6 (see **Appendix A**). Since the observed AADT along the segment were significantly lower than the AADT collected by Caltrans in 2020, these peak hour volumes were multiplied by a factor of 1.55, consistent with the difference in observed AADT along this segment and the 2020 Caltrans AADT collected along this segment. For the commuter traffic it was assumed that 60% of the peak hour background traffic would be coming to and from the west, while 40% would be coming to and from the east.

Directional distribution of the construction, equipment and material delivery trips was made based on the number of projected wind turbines along each access road. Therefore, it was assumed that 56% of the construction trips would use the West Access Road, and 44% would use the East Access Road. Construction trips were assigned based on these percentages.

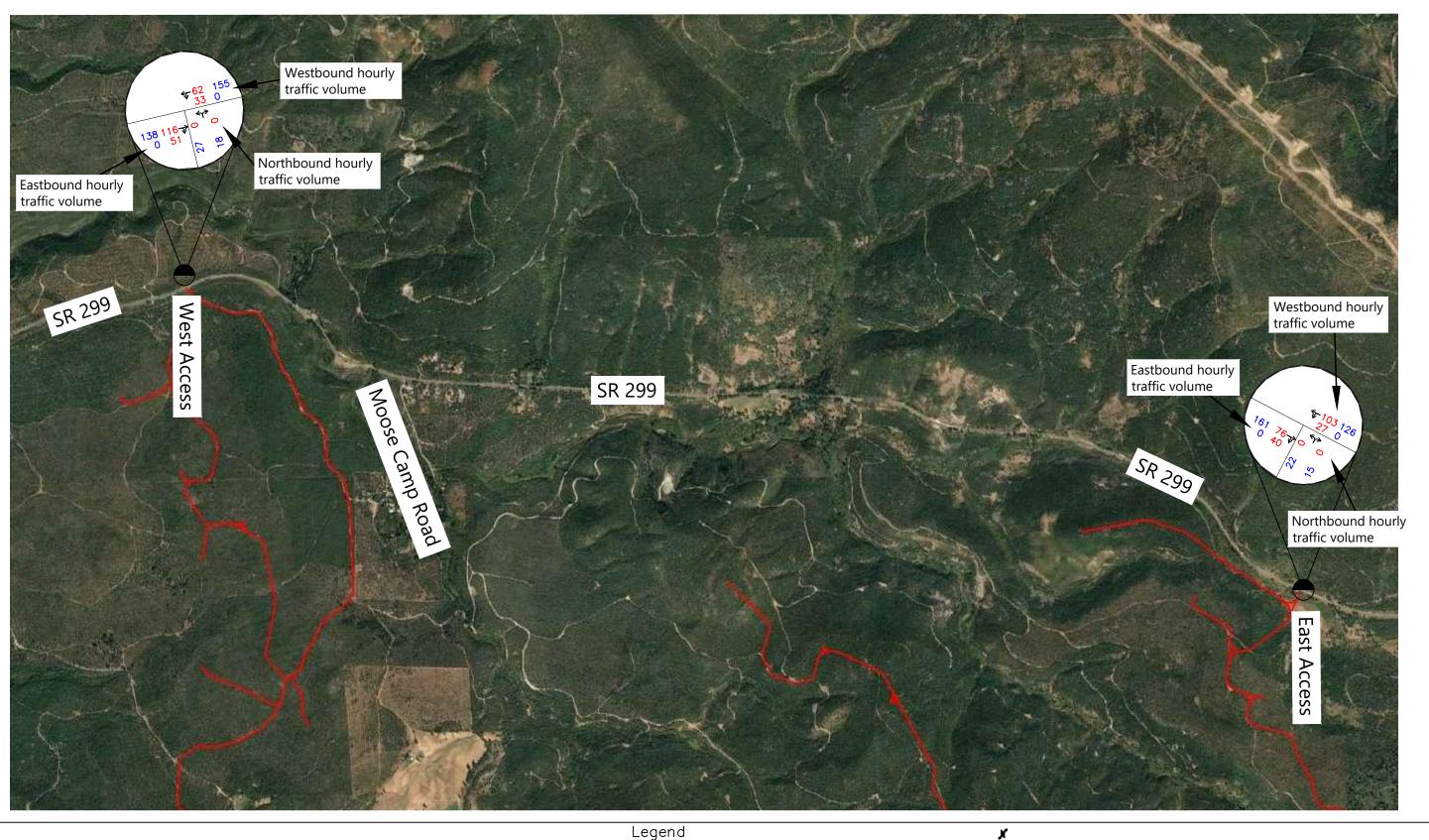
Consistent with the proposed CTMP, it is assumed that heavy vehicle trips will occur outside the peak hours and only commuter trips will affect the peak hour traffic movements. Consistent with information provided by ConnectGen, seventy-five percent (75%) of the commuting workers are anticipated to arrive during a morning hour of 6am – 7am. Forty percent (40%) of the commuting workers are anticipated to leave the site during an afternoon peak hour of 5pm – 6pm.

Figure 1 shows the resulting turning movements projected during the construction phase of the project. The red numbers indicate the AM peak hour directional flow (either left turn, through traffic, or right turn). Likewise, blue numbers represent the PM peak hour turning volumes. **Table 2** lists the resulting levels of service by both intersection and movement in the construction phase of the project.

Table 2 - Level of Service - During and Post Construction

		CO	NSTRUCTIO	N CONDITI	ONS	POST (CONSTRUCT	ION COND	ITIONS		
INTERSECTION	TRAFFIC	А	М	Р	М	А	М	Р	М		
William	MANEUVER	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay		
INTERSECTION CO	NTDOL		TW	'SC			TW	'SC			
INTERSECTION COL		Unmiti	gated			Unmiti	gated				
	Overall	А	1.0	Α	1.3	А	0.2	А	0.2		
	NBL	А	0.00	В	10.10	А	0.00	В	10.10		
	NBR	А	0.00	Α	0.00	А	0.00	А	0.00		
#1 SR-299 and West Access	EBT	А	0.00	Α	0.00	А	0.00	А	0.00		
	EBR	А	0.00	А	0.00	А	0.00	А	0.00		
	WBL	А	7.70	А	0.00	А	7.30	А	0.00		
	WBT	А	0.00	А	0.00	А	0.00	А	0.00		
INTERCECTION COL	NITROL		TW	'SC		TWSC					
INTERSECTION COI	NIROL		Unmiti	gated		Unmitigated					
	Overall	А	0.8	А	1.2	А	0.2	А	0.2		
	NBL	А	0.00	В	10.10	А	0.00	В	10.10		
	NBR	А	0.00	А	0.00	А	0.00	А	0.00		
#2 SR-299 and East Access	EBT	А	0.00	А	0.00	А	0.00	А	0.00		
	EBR	А	0.00	А	0.00	А	0.00	А	0.00		
	WBL	А	7.50	А	0.00	А	7.50	А	0.00		
	WBT	А	0.00	А	0.00	А	0.00	А	0.00		

(Source: Westwood Professional Services, 2023)


NBL – Northbound Left; NBR – Northbound Right; EBT – Eastbound Through; EBR – Eastbound Right; WBL – Westbound Left; WBT – Westbound Through

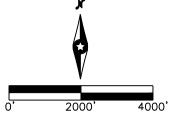
In the post-construction (i.e., day-to-day operation and maintenance) scenario, there are a minimal number of employees accessing the site for operations and maintenance activities. Therefore, it was assumed a total of eight (8) operations and maintenance workers in four (4) commuter vehicles daily would be entering any of the access points during the AM peak hour from the east and west, and four would be exiting east/westbound during the PM peak hour.

Figure 2 shows the resulting turning movements projected during the post-construction phase of the project. **Table 2** also lists the resulting levels of service by both intersection and movement in the day-to-day operation and maintenance of the project.

Detailed Level of Service calculations are included in **Appendix F**.

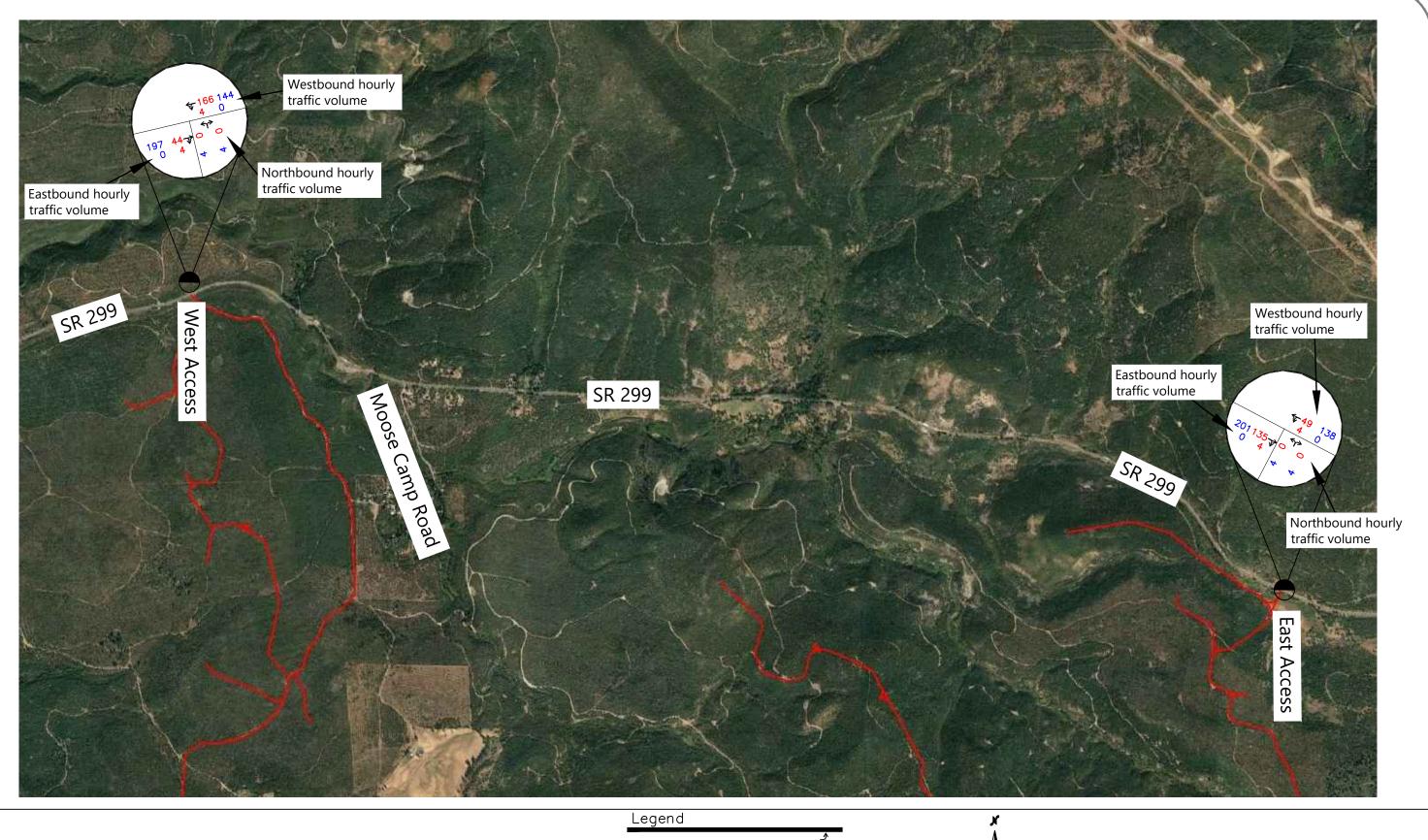
Commuting vehicles are anticipated to enter and exit the site during the AM and PM peak hours with minimal delay under construction conditions and post-construction conditions.

FOUNTAIN WIND POWER - SHASTA COUNTY, CA CONSTRUCTION PEAK HOUR CONDITIONS


LANE DESIGNATION

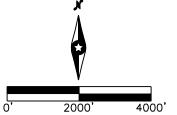
AM PEAK HOUR TRAFFIC VOLUME

PM PEAK HOUR TRAFFIC VOLUME


SIGNALIZED INTERSECTION

UNSIGNALIZED INTERSECTION

FIGURE 1 Westwood


Phone (702) 284-5300 Fax (702) 284-5399 westwoodps.com Westweed Professional Services, Inc. 5725 W. Badura Avenue, Suite 100 Las Vegas, NV 89118

FOUNTAIN WIND POWER - SHASTA COUNTY, CA POST CONSTRUCTION PEAK HOUR CONDITIONS

LANE DESIGNATION AM PEAK HOUR TRAFFIC VOLUME PM PEAK HOUR TRAFFIC VOLUME SIGNALIZED INTERSECTION UNSIGNALIZED INTERSECTION

XX XX

FIGURE 2 Westwood

Phone (702) 284-5300 Fax (702) 284-5399 westwoodps.com

5725 W. Badura Avenue, Suite 100 Las Vegas, NV 89118

8.3 PROJECT ACCESS LEFT TURN LANE WARRANT ANALYSIS

To test whether any access required left turn lanes, Westwood utilized <u>AASHTO Green Book</u>, <u>2018 Edition</u> Table 9-25, "Suggested Left-Turn Treatment Guidelines Based on Results from Benefit-Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas". Westwood calculated whether any project intersection met the guidelines for bypass lanes or left turn lanes on the two-lane highway. **Appendix G** of this document shows that access point left turn lanes are necessary during the AM and PM peak hour in the construction scenario. This analysis assumes that peak hour traffic will only be impacted by commuter traffic for the project. Shifting the arrival of at least seventy-five percent (75%) of the commuting AM hour traffic to 6am – 7am, promoting carpooling, and adding ingressing left turn lanes for commuters traveling to the site from Burney would further reduce congestion at project access intersections. Commuters from Burney could also be directed to drive westbound past both accesses and enter the Hillcrest Rest Area located approximately 1.6 miles to the west of the project site to turn around and head eastbound to turn right into the project site.

² Table 9-25, Suggested Left-Turn Treatment Guidelines Based on Results from Benefit-Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas, <u>A Policy on Geometric Design of Highways and Streets</u>, 7th Edition, American Association of State Highway and Transportation Officials, Washington, DC, 2018.

9.0 SIGNAGE

The number of trucks turning from SR 299 onto the access roads may require advance warning signs based on sight distance. Caltrans may require any of the following to signs to be installed along SR 299 in advance of the access roads during construction.

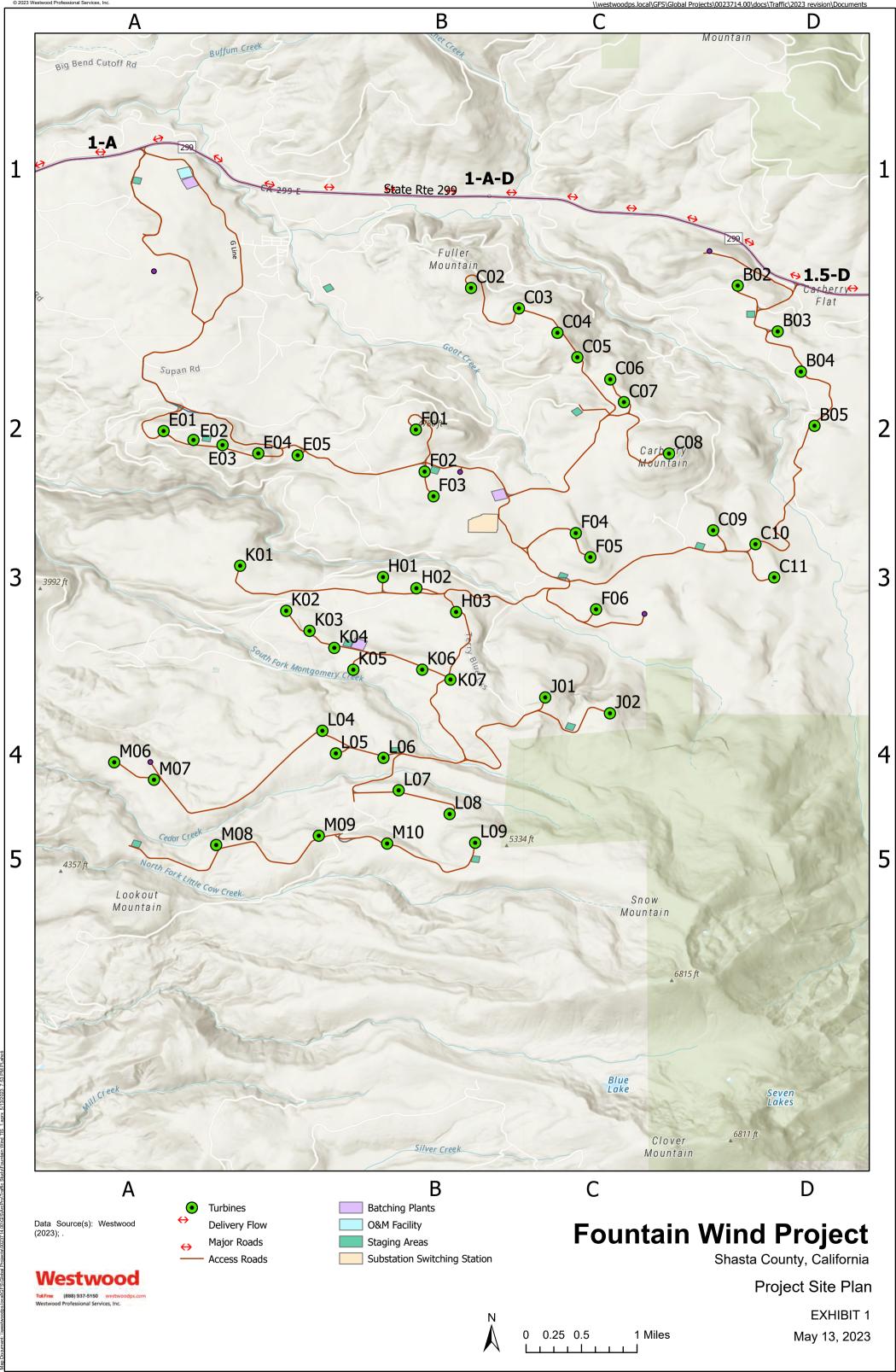
(These signs may be black on orange for construction)

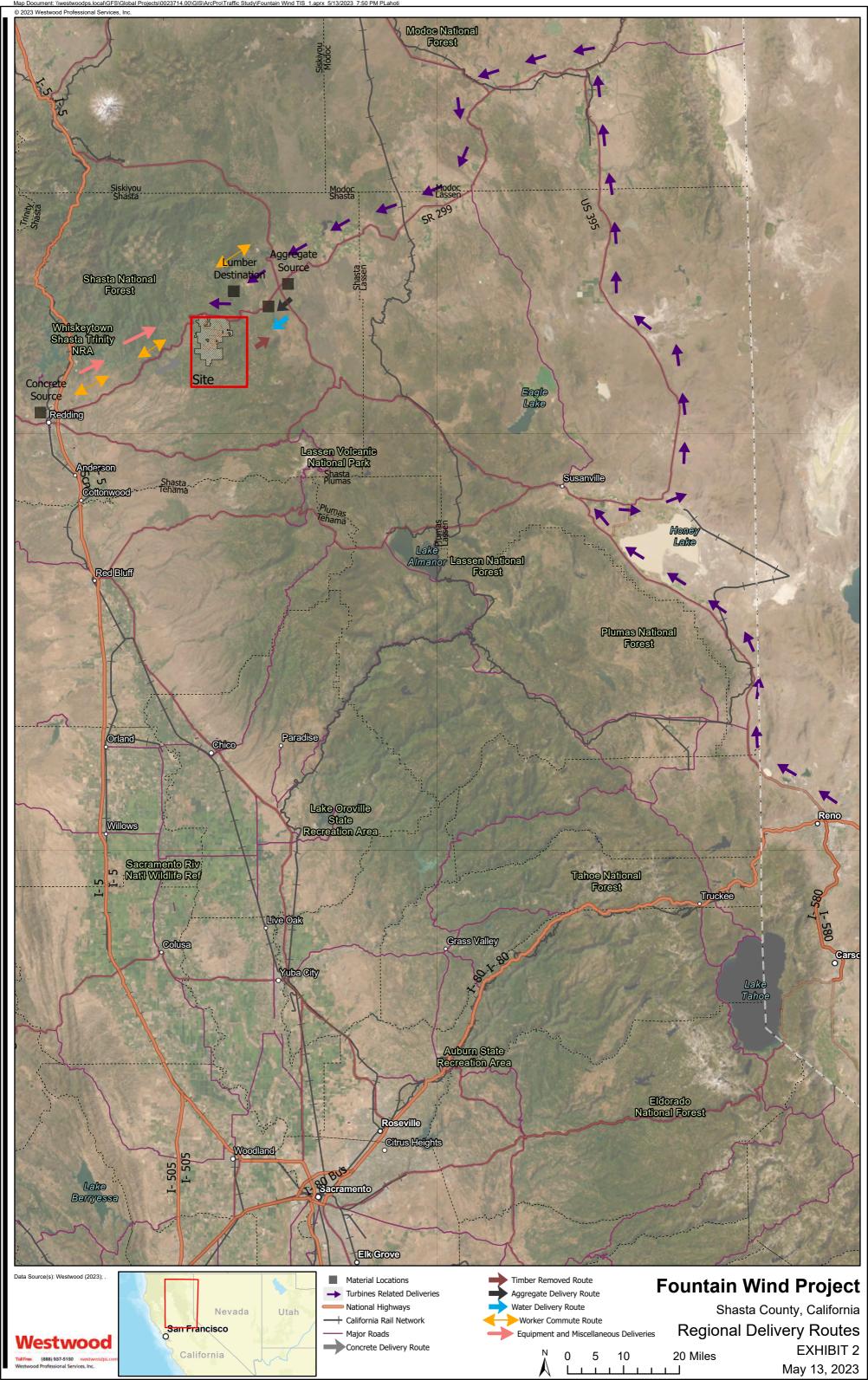
10.0 SUMMARY

During construction, the project will employ an estimated maximum number of 199 workers/day during the peak period of construction, which include construction workers, project management staff, equipment operators, survey staff, and delivery vehicle drivers during the peak period. Thus, over the estimated two-year construction period, the total number of all two-way trips is approximately 84,003 trips.

After construction of the wind farm, operations and maintenance traffic will be limited to a few passenger vehicle trips per day.

Westwood estimated that the total VMT during the construction period will be 4,766,749 vehicle miles traveled. The total VMT per day post-construction is assumed to be 240 vehicle miles traveled. Per capita daily VMT during operations is estimated to be 30 miles per day. It is recommended that in adopting a VMT significance threshold for this project, the California Energy Commission choose a metric that takes into account that the ultimate goal and purpose of the project is to create a utility-scale electricity generation source with near-zero GHG emissions and to displace the generation of electricity through the use of GHG-emitting fossil fuels. Naturally, travel to and from the project is temporarily increased during construction. However, long-term travel to the project is negligible post-construction. Any potential reduction in VMT would likely occur in the construction phase, through the implementation of various Transportation Demand Management (TDM) programs that are designed to reduce trips. These programs are anticipated to provide other benefits such as reduction in travel times, parking requirements, traffic congestion and air pollution. All of these benefits can be achieved by reducing trips and shifting travel times and modes. Measures such as carpooling for construction workers between the site and hotels/residences in both Redding and Burney can reduce the total VMT during construction. Given the location of the site, carpooling


is likely the only feasible method for reducing construction VMT, as there are no public transit facilities that serve the project site.


Commuting vehicles are anticipated to enter and exit the site during the AM and PM peak hours with minimal delay under construction conditions and post-construction conditions.

Both project access intersections meet the warrants for left turn lanes during the AM and PM peak hour in the construction scenario. Shifting the arrival of at least seventy-five percent (75%) of the commuting AM peak hour traffic to 6am – 7am, promoting carpooling, and adding ingressing left turn lanes for commuters traveling to the site from Burney would further reduce congestion at project access intersections. Commuters from Burney could also be directed to drive westbound past both accesses and enter the Hillcrest Rest Area located approximately 1.6 miles to the west of the project site to turn around and head eastbound to turn right into the project site.

Westwood

Exhibit 4 - Fountain Wind Project - Estimated Vehicle Trips During Construction

	Exhibit 4	- Founta		Project -	- Estimated Vehicle T	rips During	Construction
		Number of	Estimated Gross	Load Weight			
Vehicles	•	Two-Way Truck Trips	Vehicle Weight	(Pounds)	Miles	VMT	Notes/ Assumptions
Commuter Trips - Pick-up trucks			(Pounds)				
Total Pick-up Trucks Two-Way Trips	18483	36,966				1,256,844	Assume 60% trips from West and 40% trips from East
Peak Number of Pick-up Truck Trips/Day	100	200					
Equipment							
Feller Buncher (logging)	2	4	71,711		50	200	2 nos. (Cat 522B)
Logging Trucks Skidder	8 2	16 4	35,000 41,000		50 50	800 200	8 Flat-Bed Semi Trailers and Tractors 2 skidders
Bulldozer (medium) Scraper	14	28 8	57,440 93,000		50 50	1,400 400	14 nos. (Cat D7 Bulldozers) 4 nod. (Cat 627K's)
Drum Compactor	4	16	41,000		50	800	8 Cat CS41B
Skid Steer Loader Road Grader	13 3	26 6	4,000 42,647		50 50	1,300 300	13 nos. (Cat 272D2) 3 nos. (Cat 12M)
Excavator Transhing Favinment	5	10	66,250		50	500	5 nos. (Cat 326F) 4 nos. (Wolfe 7000)
Trenching Equipment Backhoe Loader (includes setting collector system pole		8	52,000 24,000		50 50	400 400	4 nos. (Cat 415F2)
Cable Reel Truck (Includes auger for pole foundations Concrete Pump Truck	5) 7 2	14 4	46,000 46,000		50 50	700 200	7 nos. (Includes manlift basket for rigging poles) 2 nos. (Schwing 31 XT)
Mobile Hydraulic Crane	19	38	117,235		50	1,900	19 nos. (Grove RT890E)
Rubber Tired Forklifts Hydro Axe	2	14 4	52,000 52,000		50 50	700 200	7 nos. (Forklift) 2 nos.
Boom Lift Large Crawler Crane	12 4	24 8	93,000 794,000		50 50	1,200 400	12 nos. 4 nos. (Terrex Demag CC2800-1)
Equipments	114	240	734,000	<u> </u>	30	12,000	Assume all trips from SR 299 West - Schedule to avoid peak hours
Mahila Hama (Field Office)		22	50.000	40.000		1 100	Assume all twins from CD 200 Mast. Cabadula to social modula to some
Mobile Home (Field Office)	11	22	60,000	40,000	50	1,100	Assume all trips from SR 299 West - Schedule to avoid peak hours
Total Equipments Trips	125	262			50	13,100	
Materials							
Erosion and Sediment Control Materials Public Road Aggregate	4 60	8 121	45,000 80,000	10,000 40,200	20 20	160 2,420	Based on perimeter control on one side of road length Based on 2000 feet of public road improvements, 6" depth
Access Road Aggregate	9,005	18,011	80,000	40,200	20	360,220	Based on 42 miles of access roads, 8 trucks
Temporary Laydown Area Aggregate Substation Aggregate	1,923 218	3,846 437	80,000 80,000	40,200 40,200	20 20	76,920 8,740	Based on 18 staging areas totaling 44 acres Based on a 5 acre substation
O&M/Field Office Aggregate	218	437	80,000	40,200	20	8,740	Based on a 5 acre O&M/Field Office Area
Switching Substation Aggregate	655	1,311	80,000	40,200	20	26,220	Based on an 15 acre switching substation
Total Aggregate for Compaction Deliveries	12,084	24,171				483,420	Assume all trips from SR 299 East - Schedule to avoid peak hours
Substation Rock	328	656	80,000	40,200	20	13,120	Based on a 3.5 acre substation
Field Office/O&M Rock Switching Substation Rock	230 721	460 1,442	80,000 80,000	40,200 40,200	20 20	9,200 28,840	Based on a 3.5 acre O&M/Field Office Area Based on an 11 acre battery storage system
Concrete Aggregate	10	20	80,000	40,200	20	400	Based on Aggregate equal to 76% of weight
Total Aggregate Deliveries for structures	1289	2,578	26,159	Tons	1	51,560	Assume all trips from SR 299 East - Schedule to avoid peak hours
	•				4		
Total Aggregate Deliveries	13,373	26,749				534,980	Assume all trips from SR 299 East - Schedule to avoid peak hours
Wind Turbine Tower Base	40	06		452.400	355	24.400	D
Wind Turbine Tower Base Wind Turbine Tower Lower Mid-Section	48 48	96 96		153,400 120,100	255 255	24,480 24,480	Based on GE 3.4 137, HH 110m Based on GE 3.4 137, HH 110m
Wind Turbine Tower Upper Mid-Section Wind Turbine Tower Top Section	48 48	96 96		112,850 86,900	255 255	24,480 24,480	Based on GE 3.4 137, HH 110m Based on GE 3.4 137, HH 110m
Wind Turbine Nacelle	48	96		150,700	255	24,480	Based on GE 3.4 137
Wind Turbine Hub Wire and Cable - Underground Colletion System	48 38	96 76	80,000	88,050 45,000	255 255	24,480 19,380	Based on GE 3.4 137 Based on 3 conductors, 1.9 pounds/foot
Wire and Cable - Overhead Collection System	12	24	80,000	45,000	255	6,120	Based on 3 conductors, 2.1 pounds/foot
Overhead Collection Line Poles Transmission Line Poles	85 77	170 154	30,000 27,000	15,000 12,000	255 255	43,223 39,270	Assume 250' wire span, 4 - 2000 pound Poles per trailer Assume 750' wire span, 1 - 8000 pound Pole per trailer
Met Poles	5	10	·		255	2,550	Assume 1 Met Pole can be carried on a single truck
Transformers Miscellaneous Turbine Components	48 192	96 384	80,000 80,000	45,000 45,000	255 255	24,480 97,920	Based on 3.5 MW transformer Based on 4 miscellaneous deliveries per turbine
Pilot Cars (Front and Back) Wind Turbine Blades (3)	1,490 144	2979 288		37,750	255 255	759,645 177,120	Pilot Cars for Wind Turbines Based on GE 3.4 137
Pilot Cars for blades (Front and Back)	576	1152		37,730	255	708,480	Pilot Cars for Wind Turbines Blades
Total Turbine Related Deliveries	2,234	5,909		3,989		2,025,068	Assume all trips from SR 299 East and US-395 from Reno - Schedule to avoid peak hours
	1 −,20 ⁻¹	-,505		2,000			
Concrete for Turbine Foundations	2400	4,800	69,000	40,000	50	240,000	48 turbines
Concrete Pump Trucks Concrete for Substation Foundations	2 41	4 82	69,000	40,000	50 50	200	2 trucks Based on 2 MPT - Foundation 8'-6" x 24'-0" x 1'-4"
Concrete for Switching Station Foundations	41 41	82	69,000	40,000	50	4,100 4,100	Based on 40' container each with 6 foundation pies
Concrete for Overhead Collection System Pole Foundati Concrete for Transformer Pads	ons 25 48	50 96	40,332 41,180	11,332 12,180	50 50	2,500 4,800	Assume 1 concrete foundations (terminations & angles) Assume Pad 9' \times 9' \times 1'
Concrete for O&M Building	13	26	69,000	40,000	50	1,300	Based on foundation wall 78' x 70' x 1' thick x 5' deep + 4" floor slab
Total Concrete Deliveries	2,570	5,140	24,946	CuYds		257,000	Assume all trips from SR 299 West - Schedule to avoid peak hours
	, ,	4			1		
Cement for Concrete Batch Plant Formwork	2 2	4 3.84	80,000 80,000	40,000 45,000	50 50	198 192	Based on Aggregate equal to 16% of weight Based on 25 reuses of forms
Reinforcing Steel (Rebar)	96 20	192	80,000	45,000	50	9,600	Based on 45 tons per turbine
Building Materials Structural Steel - Substation	20 4	40 9	80,000 80,000	45,000 45,000	50 50	2,000 444	Based on 5460 square foot prefabricated metal building Based on 200,000 Pounds of Structural Steel
Structural Steel - Switching Substation	4	8 20	80,000	45,000	50	400	Based on 200,000 Pounds of Structural Steel
Elecrical Equipment - Substation Elecrical Equipment - Switchingsubstation	10 10	20 20	80,000 80,000	45,000 45,000	50 50	1,000 1,000	Includes Control Building, switch gear, capacitors, etc. Includes Control Building, switch gear, capacitors, etc.
CMP Culverts Chain Link Fence	4 7	8 14	80,000 80,000	45,000 45,000	50 50	400 724	Culvert Extensions and new culverts Based on 30,600 linear feet of fence at 10.65 pounds/ ft
Micellaneous Consumables	26	52	60,000	20,000	50	2,600	10 Trucks
Fuel Deliveries Sanitation	25 52	50 104	26,000 50,000	7,000 10,000	50 50	2,500 5,200	Based on 2000 Gallons/week ea. of diesel on-road & off road Based on weekly maintenance visits
Plant Stock, Seed and Mulch	17	34	52,600	12,800	50	1,719	Based on 2.5 tons/acre
Total Miscellaneous Deliveries	280	560				27,978	Assume all trips from SR 299 West - Schedule to avoid peak hours
Water (Compaction)	1,228	2456	33,400	0	20	49,120	Based on 20 gallons/ton of aggregate (Roads, Laydown, etc.)
Water (Dust Control) Water (Vegetation establishment)	2,869	5738 220	33,400	0	20	114,760	Based on 300 gallons/acre/day of Road, staging, and field office area areas, 6 trucks Based on 10,000 gallons/acre of Laydown areas
Water (Vegetation establishment) Water (Concrete Batching)	110 2	4	33,400 33,400	0 0	20 20	4,400 80	Based on Aggregate equal to 8% of weight
Total Water	4,209	8,418	16,826,893	Gallons		168,360	Assume all trips from SR 299 East- Schedule to avoid peak hours
i otai watei	4,203	0, 1 10	±0,020,033	Janons		100,300	and the second second second to avoid peak flours
Total Trips	41,274	84,003			TOTAL VMT	4,766,749	
-							

Exhibit 4	Fountair	Wind P	roject - Estimat	ed Vehic	cle Trips - Post-Construction
Vehicles	Number of One way Truck Trips	Number of One way Truck Trips	Miles	VMT	Notes/ Assumptions
Pick-Up Trucks - 8 Full time Employees Total Pick-up Trucks	4	8	50 - West ; 10 - East	240	
Equipment Equipment Operators	0	I		0	Assume all trips on SR 299 West
Mobile Home (Field Office)	0		50	0	
Materials Total Aggregate for Compaction Deliveries	0	[0	Assume all trips on SR 299 East
Concrete Aggregate	0		0	0	Based on Aggregate equal to 76% of weight
Total Aggregate Deliveries	0	I		0	Assume all trips on SR 299 East
Total Turbine Related Deliveries	0			0	Assume all trips on SR 299 west - Schedule to avoid peak hours
Total Concrete Deliveries	0			0	Assume all trips on SR 299 west
Cement for Concrete Batch Plant	0		0	0	Based on Aggregate equal to 16% of weight
Total Miscellaneous Deliveries	0			0	Assume all trips on SR 299 West
Total Water	0			0	Assume all trips on SR 299 East
	Trucks				
SR 299 West	2	4		200]
SR 299 East	2	4		40	
Total Trips	4	8	TOTAL VMT	240	

Burney Express is provided by the County of Shasta and operated by RABA. This service is outside of the RABA Service Area.

Route and Stops

Burney Express mostly travels on SR 299, connecting Burney on the east to Redding on the west.

Burney Express stops include:

- · Burney (@ Burney Sporting Goods)
- Montgomery Creek (@ Montgomery Creek Library)
- · Round Mountain (@ Round Mountain Store/Cafe)
- Bella Vista (@ My-T Fine Foods)
- Shasta College
- · Redding (@ Downtown Transit Center)

Schedule

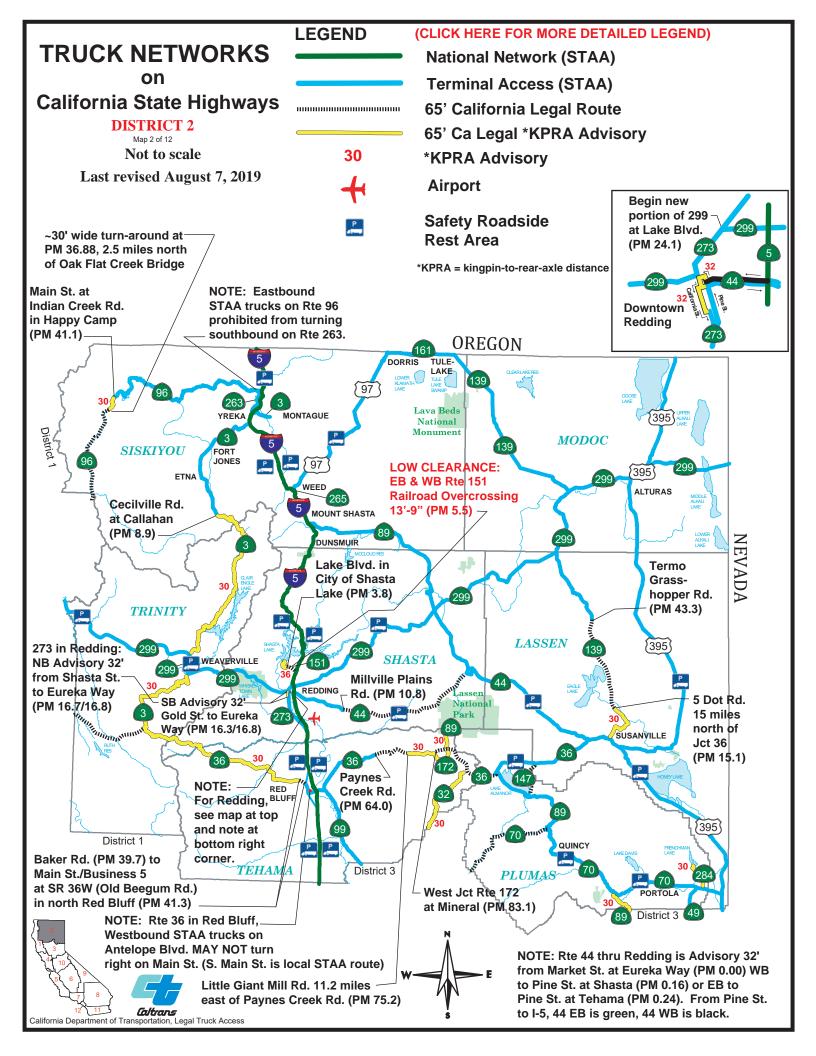
Burney Express provides three trips in each direction during the weekdays.

			WESTBOUND			
2nd Trip	Burney	Montg Creek	Round Mtn	Bella Vista	Shasta College	Redding
1st Trip	5:50 am	6:15 am	6:25 am	6:55 am	7:05 am	7:15 am
2nd Trip	11:50 am	12:15 pm	12:25 pm	12:55 pm	1:05 pm	1:15 pm
3rd Trip	3:50 pm	4:15 pm	4:25 pm	4:55 pm	5:05 pm	5:15 pm

			EASTBOUND			
	Redding	Shasta College	Bella Vista	Round Mtn	Montg Creek	Burney
1st Trip	10:25 am	10:35 am	10:45 am	11:15 am	11:25 am	11:50 am
2nd Trip	2:25 pm	2:35 pm	2:45 pm	3:15 pm	3:25 pm	3:50 pm
3rd Trip	5:35 pm	5:45 pm	5:55 pm	6:25 pm	6:35 pm	7:00 pm

There is no service on the weekends.

There is no service on the following holidays:


 New Year's Day (January 1st), Memorial Day (last Monday of May), Independence Day (July 4th), Labor Day (first Monday of September), Thanksgiving Day (fourth Thursday of November), or Christmas Day (December 25th).

Fares

	TO											
FROM	Shasta College/ Bella Vista	Round Mtn/ Montg Creek	Burney	Redding								
Redding	\$2.00	\$3.50	\$5.00	-								
Burney	\$3,50	\$2.00	3+ .	\$5,00								

Additional Resources

· Rural Transit in Shasta County

TRUCK MAP LEGEND TRUCK LENGTHS & ROUTES

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

Click here for the Truck Network Map

CALIFORNIA LEGAL ROUTES California Legal trucks (black trucks) can travel on STAA routes (green and blue routes), CA Legal routes (black routes), and Advisory routes (yellow routes). CA Legal trucks have access to the entire State highway system except where prohibited (some red routes).

Semitrailer length: no limit

KPRA* : 40 feet maximum for two or more axles,

38 feet maximum for single-axle trailers

Overall length : 65 feet maximum *(KPRA = kingpin-to-rear-axle)

California Legal Truck Tractor - Semitrailer - Trailer (Doubles)

Option A

Trailer length: 28 feet 6 inches maximum (each trailer)

Overall length: 75 feet maximum

Option B

Trailer length: one trailer 28 feet 6 inches maximum

other trailer may be longer than 28 feet 6 inches

Overall length: 65 feet maximum

CA LEGAL ADVISORY ROUTES - CA Legal trucks only; however, *travel not advised* if KPRA length is over posted value. KPRA advisories range from 30 to 38 feet.

STAA ROUTES The STAA Network allows the "interstate" STAA trucks which are the green trucks shown below. The STAA Network consists of the National Network (green routes, primarily interstates) and Terminal Access routes (blue, primarily State routes). ("STAA" = federal Surface Transportation Assistance Act of 1982.)

(Click here for the Truck Network Map.)

Interstate "STAA" Truck Tractor - Semitrailer

Semitrailer length: 48 feet maximum

KPRA* : no limit

Overall length : no limit *(KPRA = kingpin-to-rear-axle)

Semitrailer length: over 48 feet up to 53 feet maximum KPRA: 40 feet maximum for two or more axles,

38 feet maximum for single-axle trailers

Overall length : no limit

Interstate "STAA" Truck Tractor - Semitrailer - Trailer (Doubles)

Trailer length: 28 feet 6 inches maximum (each trailer)

Overall length: no limit

Terminal Access - Interstate "STAA" trucks may travel on State highways that exhibit this sign.

Service Access - Interstate "STAA" trucks may travel up to one road mile from the off ramp to obtain services (food, fuel, lodging, repairs), provided the route displays this sign.

SPECIAL RESTRICTIONS - Route restricted for vehicle length or weight, cargo type, or number of axles. Click here for the list of Special Route Restrictions.

CalTrans Traffic Census Program 2020 Annual Average Daily Traffic (AADT) Volumes

DISTRICT	ROUTE RTE SFX		PM_PFX	X DESCRIPTION σ L	BACK_PEAK_HOUR	BACK_PEAK_MADT	BACK_AADT	AHEAD_PEAK_HOUI	AHEAD_PEAK_MAD	AHEAD_AADT
02	299	SHA	24.822	REDDING, JCT. RTE. 5				2200	22500	18800
02	299	SHA	25.540	HAWLEY ROAD	2200	22500	18800	1150	12500	10800
02	299	SHA	27.239	OLD OREGON TRAIL	1150	12500	10800	950	10500	9500
02	299	SHA	31.460	DESCHUTES ROAD	910	8200	7700	520	6000	4750
02	299	SHA	53.263	TERRY MILL ROAD	260	4850	3900	260	4900	3950
02	299	SHA	60.050	BIG BEND ROAD	270	4400	3550	270	4150	3350
02	299	SHA	73.130	TAMARACK ROAD	400	4450	3150	400	4450	3150
02	299	SHA	74.480	ELM ST	370	4050	2400	360	4200	3600
02	299	SHA	74.980	BURNEY, PLUMAS ST	360	4200	3600	870	9600	8200

CalTrans Traffic Census Program 2020 Truck Volumes and Percentages

	RTE_SFX DIST	CNTY POSTMII E PEX	POSTMILE	POSTMILE_SFX	LEG	DESCRIPTION	VEHICLE_AADT_TOTA	TRUCK_AADT_TOTAL	TRK_PERCENT_TOT	TRK_2_AXLE	TRK_3_AXLE	TRK_4_AXLE	TRK_5_AXLE	TRK_2_AXLE_PCT	TRK_3_AXLE_PCT	TRK_4_AXLE_PCT	TRK_5_AXLE_PCT	EAL YFAR VFR	EST
299	02 S	HA	24.822	A	٦	REDDING, JCT. RTE. 5	18800	890	4.73	552	94	11	233	62.02	10.56	1.24	26.18	110 20) V
299	02 S	HA	25.540	A	4	HAWLEY ROAD	10800	406	3.76	69	84	19	234	17.07	20.73	4.63	57.56	94 16	6 E
299	02 S	HA	27.239	A	4	OLD OREGON TRAIL	9500	357	3.76	81	47	10	219	22.66	13.29	2.72	61.33	84 16	6 E
299	02 S	HA	60.050	Е	3	BIG BEND ROAD	3550	529	14.90	93	76	13	347	17.59	14.35	2.55	65.51	132 16	ε
299	02 S	HA	72.640	()	HAYNES ROAD	3150	615	19.52	168	159	3	285	27.32	25.85	0.49	46.34	119 19) V
299	02 S	HA	73.130	A	4	TAMARACK ROAD	3150	551	17.49	197	83	5	266	35.75	15.06	0.91	48.28	107 20) V
299	02 S	HA	74.980	E	3	BURNEY, PLUMAS STREET	3600	684	19.00	259	104	9	312	37.87	15.20	1.32	45.61	128 20) E

Elevations At Locations of Interest Along CA-299E

	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Average Section Average Slope
Between I-5 and Hawley Road	24.9 - 25.5	0.6	641	628	-0.41

Elevations At Locations of Interest Along CA-299E

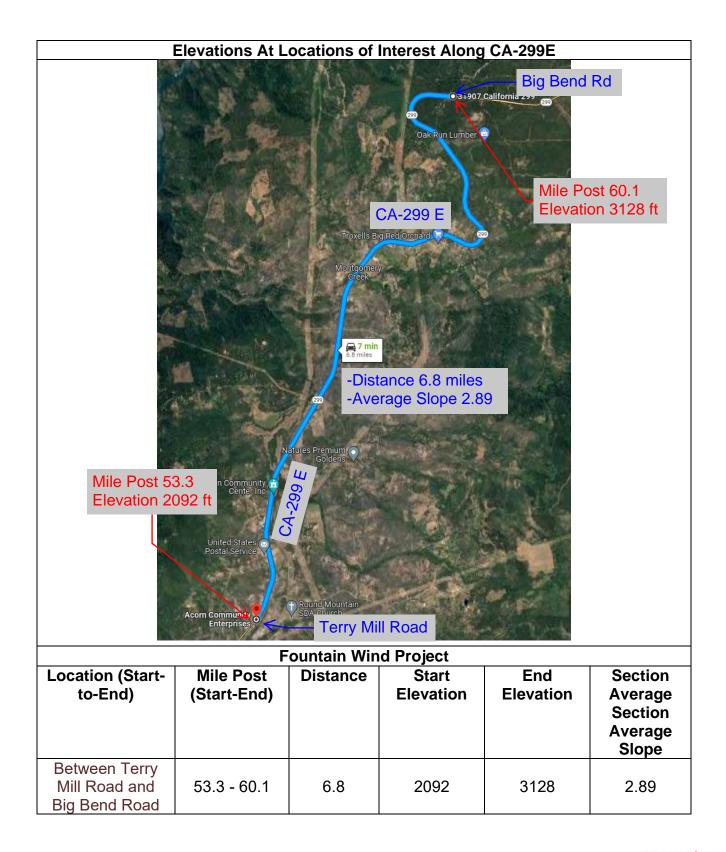
Mile Post 27.2 Elevation 621 ft

Mile Post 25.5 Elevation 628 ft

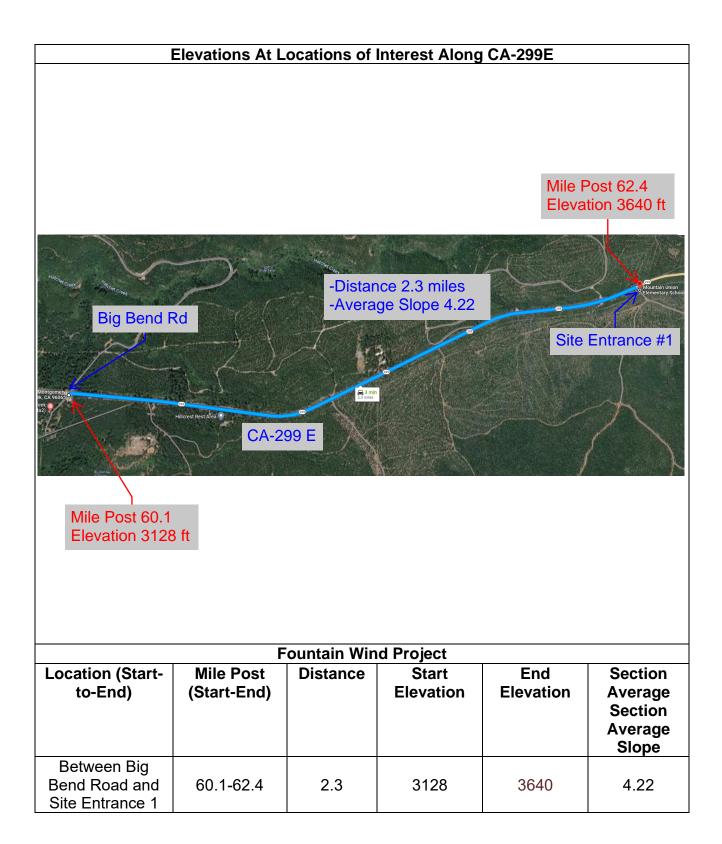
	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Slope
Between Hawley Road and Old Oregon Trail	25.5 - 27.2	1.7	628	621	0.1

Elevations At Locations of Interest Along CA-299E

Mile Post 31.5 Elevation 539 ft


	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Section Average Slope
Between Old Trail and Deschutes Road	27.2 - 31.5	4.3	621	539	-0.36

Elevations At Locations of Interest Along CA-299E



Fountain Wind Project Location (Start-Mile Post **Distance** Start End Section **Elevation Elevation** to-End) (Start-End) **Average** Section **Average** Slope Between **Deschutes Road** 31.5 - 53.3 21.8 539 2092 1.35 and Terry Mill Road

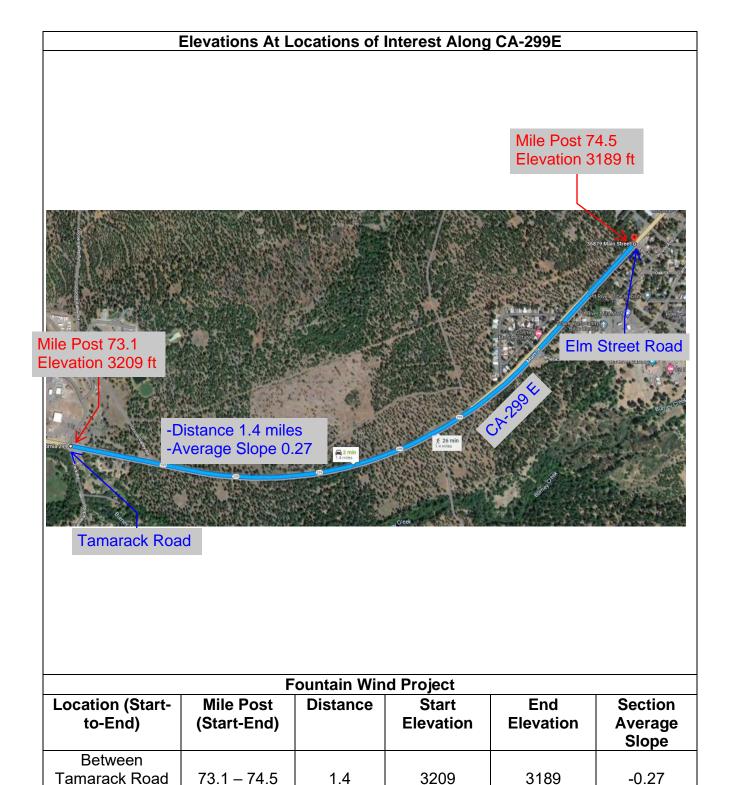
Elevations At Locations of Interest Along CA-299E

Mile Post 62.4 Elevation 3640 ft

Site Entrance #2

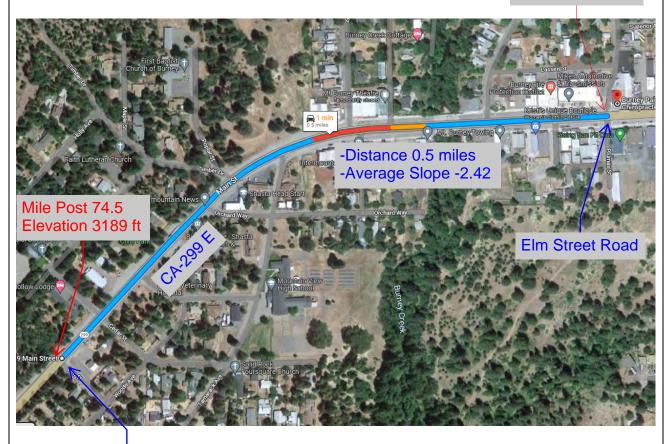
	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Slope
Between Site Entrance 1 and Site Entrance 2	62.4-67.3	4.9	3640	4215	2.22

Elevations At Locations of Interest Along CA-299E

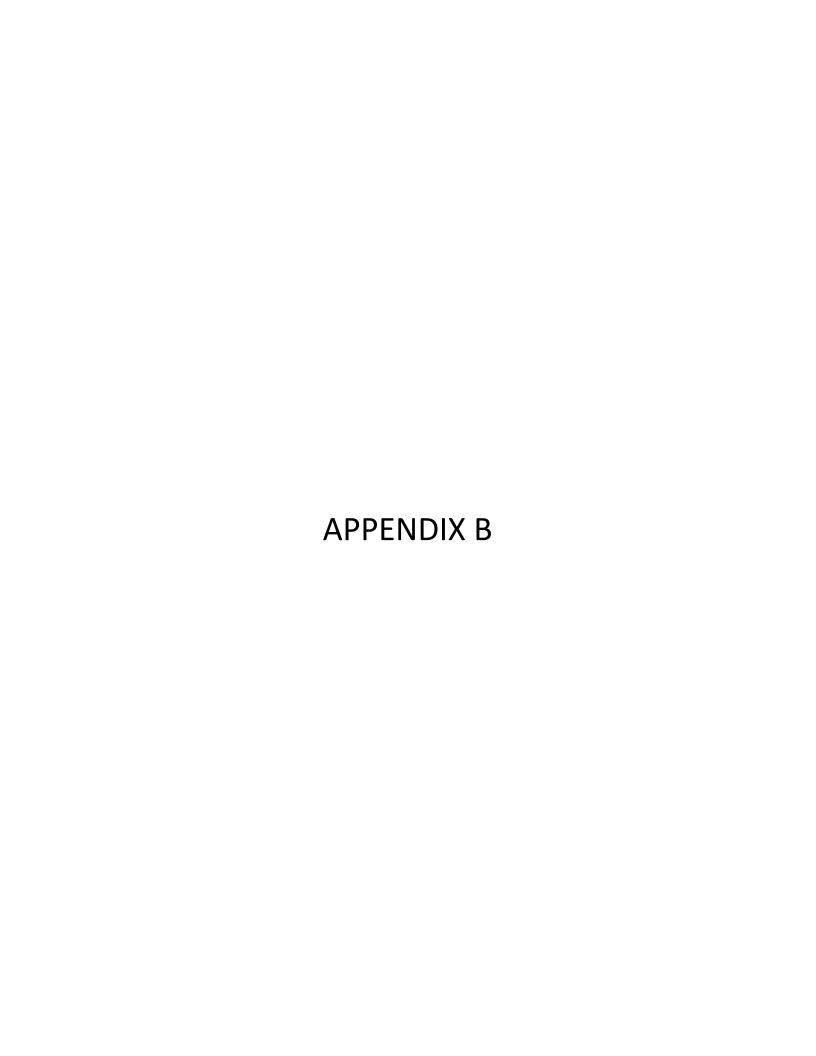


Site Entrance #2

	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Slope
Between Site Entrance 2 and Tamarack Road	67.3 – 73.1	5.8	4215	3209	-3.29


and Elm Street

maln (702) 284-5300


Elevations At Locations of Interest Along CA-299E

Mile Post 75.0 Elevation 3125 ft

Elm Street Road

	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Slope
Between Elm Street Plumas Street (Burney)	74.5 – 75.0	0.5	3189	3125	-2.42

SPECIFIC LOCATION:

QC JOB #: 16124307 **DIRECTION: EB**

CITY/STATE:	1		21	26	21	36	41	46	51	56	61	66	71	76		DATE: Ap	Numbe
Start Time	1 15	16 20	21 25	30	31 35	40	41 45	46 50	55	60	65	70	71 75	999	Total	Pace Speed	in Pac
12:00 AM	0	0	0	0	1	1	5	1	0	0	0	0	0	0	8	39-48	6
01:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	41-50	1
02:00 AM	0	0	0	0	0	2	0	1	0	0	0	0	0	0	3	31-40	2
03:00 AM	0	0	0	0	0	0	1	0	2	0	0	0	0	0	3	46-55	2
04:00 AM	1	0	0	0	1	1	3	0	3	0	0	0	0	0	9	36-45	4
05:00 AM	2	0	1	1	3	3	11	5	1	0	0	0	0	0	27	41-50	16
06:00 AM	0	0	0	1	1	6	22	8	7	2	0	0	0	0	47	41-50	30
07:00 AM	3	0	4	1	3	9	36	23	1	1	0	0	0	0	81	41-50	59
08:00 AM	0	0	0	0	4	10	28	22	5	0	0	0	0	0	69	41-50	50
09:00 AM	3	0	0	3	6	6	31	24	11	1	0	0	0	0	85	41-50	55
10:00 AM	6	0	0	11	2	3	22	24	11	0	0	0	0	0	79	41-50	46
11:00 AM	0	0	0	6	8	9	14	27	13	2	0	0	0	0	79	41-50	41
12:00 PM	5	0	0	5	7	4	27	23	7	4	0	0	0	0	82	41-50	50
01:00 PM	3	0	0	2	2	12	19	26	14	1	0	0	0	0	79	41-50	45
02:00 PM	2	0	0	0	5	8	22	30	14	2	0	1	0	0	84	41-50	52
03:00 PM	4	0	0	4	6	2	23	33	12	5	2	0	0	0	91	41-50	56
04:00 PM	1	0	0	2	0	6	51	42	22	4	1	0	0	0	129	41-50	93
05:00 PM	0	0	0	0	0	4	16	47	17	3	0	0	0	0	87	46-55	64
06:00 PM	1	0	0	0	5	10	13	18	22	0	0	0	0	0	69	46-55	40
07:00 PM	0	0	0	0	0	5	9	10	11	2	0	0	0	0	37	46-55	21
08:00 PM	0	0	0	0	1	6	14	11	0	0	0	0	0	0	32	41-50	25
09:00 PM	0	0	2	0	2	4	13	4	2	1	1	0	0	0	29	41-50	17
10:00 PM	0	0	0	0	0	1	3	3	2	1	0	0	0	0	10	41-50	6
11:00 PM	0	0	0	0	0	2	1	1	2	1	0	0	0	0	7	36-45	3
Day Total	31	0	7	36	57	114	384	384	179	30	4	1	0	0	1227	41.50	768
Percent	2.5%	0%	0.6%	2.9%	4.6%	9.3%	31.3%	31.3%	14.6%	2.4%	0.3%	0.1%	0%	0%	1227	41-50	768
AM Peak Volume	10:00 AM 6	12:00 AM 0	7:00 AM 4	10:00 AM 11	11:00 AM 8	8:00 AM 10	7:00 AM 36	11:00 AM 27	11:00 AM 13	6:00 AM 2	12:00 AM 0	12:00 AM 0	12:00 AM 0	12:00 AM 0	9:00 AM 85		
PM Peak Volume	12:00 PM 5	12:00 PM 0	9:00 PM 2	12:00 PM 5	12:00 PM 7	1:00 PM 12	4:00 PM 51	5:00 PM 47	4:00 PM 22	3:00 PM 5	3:00 PM 2	2:00 PM 1	12:00 PM 0	12:00 PM 0	4:00 PM 129		

SPECIFIC LOCATION:

QC JOB #: 16124307 **DIRECTION: EB**

CITY/STATE:			24	26	24	26	44	4.6	F4	FC	C4		74	7.0		DATE: Ap	
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Number in Pace
12:00 AM	0	0	4	0	0	0	1	1	0	0	0	0	0	0	6	16-25	4
01:00 AM	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2	26-35	1
02:00 AM	0	0	0	0	0	1	3	0	1	1	0	0	0	0	6	36-45	4
03:00 AM	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	41-50	3
04:00 AM	0	0	0	0	0	0	5	2	2	0	0	0	0	0	9	41-50	7
05:00 AM	2	0	0	0	1	3	5	8	2	2	1	0	0	0	24	41-50	13
06:00 AM	1	0	0	0	5	11	12	13	7	0	0	0	0	0	49	41-50	25
07:00 AM	1	0	1	5	3	6	22	21	8	1	0	0	0	0	68	41-50	43
08:00 AM	5	0	1	3	8	14	19	15	14	2	1	0	0	0	82	41-50	34
09:00 AM	2	0	0	4	7	3	20	34	8	2	0	0	0	0	80	41-50	54
10:00 AM	2	0	0	4	3	10	25	32	12	2	1	0	0	0	91	41-50	57
11:00 AM	3	0	1	3	2	14	20	17	14	2	0	0	0	0	76	41-50	37
12:00 PM	1	0	2	1	5	4	17	31	8	3	0	0	0	0	72	41-50	48
01:00 PM	4	0	0	0	1	5	26	31	15	3	0	0	0	0	85	41-50	57
02:00 PM	3	0	0	2	3	1	13	48	22	0	1	0	0	0	93	46-55	70
03:00 PM	1	0	0	2	7	4	20	43	24	5	0	0	0	0	106	46-55	67
04:00 PM	5	0	0	1	3	12	34	50	26	5	0	0	0	0	136	41-50	84
05:00 PM	1	0	0	0	0	4	23	37	21	7	3	0	0	0	96	41-50	60
06:00 PM	3	0	0	0	0	3	11	23	22	9	5	0	0	0	76	46-55	45
07:00 PM	1	0	0	0	0	1	10	9	9	1	1	1	0	0	33	41-50	19
08:00 PM	1	0	0	0	0	3	12	9	9	2	0	0	0	0	36	41-50	21
09:00 PM	0	0	0	0	1	2	10	8	5	2	0	0	0	0	28	41-50	18
10:00 PM	1	0	0	1	0	1	6	6	2	0	0	0	0	0	17	41-50	12
11:00 PM	1	0	0	0	0	0	4	5	1	1	0	0	0	0	12	41-50	9
Day Total	38	0	9	26	50	102	318	447	232	50	13	1	0	0			
Percent	3%	0%	0.7%	2%	3.9%	7.9%	24.7%	34.8%	18%	3.9%	1%	0.1%	0%	0%	1286	41-50	765
AM Peak	8:00 AM	12:00 AM	12:00 AM	7:00 AM	8:00 AM	8:00 AM	10:00 AM	9:00 AM	8:00 AM	5:00 AM	5:00 AM	12:00 AM	12:00 AM	12:00 AM	10:00 AM		
Volume	5	0	4	5	8	14	25	34	14	2	1	0	0	0	91		
PM Peak Volume	4:00 PM 5	12:00 PM 0	12:00 PM 2	2:00 PM 2	3:00 PM 7	4:00 PM 12	4:00 PM 34	4:00 PM 50	4:00 PM 26	6:00 PM 9	6:00 PM 5	7:00 PM 1	12:00 PM 0	12:00 PM 0	4:00 PM 136		

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 6 2023

CITY/STATE:	Shasta,	CA														DATE: Ap	or 6 202
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numb
start rille	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	race speed	in Pac
12:00 AM	0	0	0	0	0	2	2	4	1	1	0	0	0	0	10	41-50	6
01:00 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	36-45	1
02:00 AM	0	0	0	0	0	1	1	2	2	1	0	0	0	0	7	46-55	4
03:00 AM	1	0	0	0	1	0	2	3	3	0	0	0	0	0	10	46-55	6
04:00 AM	0	0	0	1	0	1	7	0	4	1	0	0	0	0	14	36-45	8
05:00 AM	2	0	0	0	3	2	4	12	4	0	0	0	0	0	27	43-52	16
06:00 AM	2	0	0	1	0	5	8	16	12	7	0	0	0	0	51	46-55	28
07:00 AM	2	0	0	0	8	1	15	29	17	4	0	0	0	0	76	46-55	46
08:00 AM	3	0	0	1	3	8	15	33	16	3	0	0	0	0	82	46-55	49
09:00 AM	2	0	0	1	6	10	15	30	17	4	0	0	0	0	85	46-55	47
10:00 AM	1	0	0	7	1	4	19	26	21	3	2	0	0	0	84	46-55	47
11:00 AM	4	0	0	6	13	1	9	42	14	2	1	0	0	0	92	46-55	56
12:00 PM	2	0	0	3	6	5	21	38	14	5	0	0	0	0	94	41-50	59
01:00 PM	1	0	0	6	2	4	14	27	23	4	4	0	0	0	85	46-55	50
02:00 PM	3	0	0	0	6	4	20	37	24	5	1	0	0	0	100	46-55	61
03:00 PM	2	0	0	5	3	8	21	41	29	4	0	0	0	0	113	46-55	70
04:00 PM	5	0	0	1	7	6	24	46	20	5	2	0	0	0	116	41-50	70
05:00 PM	3	0	0	0	0	3	24	33	14	5	1	0	0	0	83	41-50	57
06:00 PM	0	0	0	2	0	0	15	32	19	4	1	0	0	0	73	46-55	51
07:00 PM	1	0	0	0	0	2	10	14	11	2	1	0	0	0	41	46-55	25
08:00 PM	1	0	0	0	1	6	10	13	3	0	0	0	0	0	34	41-50	23
09:00 PM	0	0	0	1	2	5	7	3	0	0	0	0	0	0	18	36-45	12
10:00 PM	0	0	0	0	0	1	5	4	3	0	0	0	0	0	13	41-50	9
11:00 PM	0	0	0	0	0	0	3	1	0	0	0	0	0	0	4	41-50	4
Day Total	35	0	0	35	62	79	272	486	271	60	13	0	0	0	1313	41-50	758
Percent	2.7%	0%	0%	2.7%	4.7%	6%	20.7%	37%	20.6%	4.6%	1%	0%	0%	0%	1313	41-30	738
AM Peak		12:00 AM				9:00 AM			10:00 AM				12:00 AM		11:00 AM		
Volume	4	0	0	7	13	10	19	42	21	7	2	0	0	0	92		
PM Peak		12:00 PM		1:00 PM	4:00 PM	3:00 PM	4:00 PM	4:00 PM	3:00 PM	12:00 PM			12:00 PM		4:00 PM		
Volume	5	0	0	6	7	8	24	46	29	5	4	0	0	0	116		

SUMMARY - Tube Count - Speed Data

LOCATION: EB	SR 299 e	ast of Su	ıpan Rd													QC JOB	#: 16124307
SPECIFIC LOCA	ATION:															DI	RECTION: EB
CITY/STATE: S	hasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Range	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	1 ace speed	Pace
Grand Total	104	0	16	97	169	295	974	1317	682	140	30	2	0	0	3826	41-50	2291
Percent	2.7%	0%	0.4%	2.5%	4.4%	7.7%	25.5%	34.4%	17.8%	3.7%	0.8%	0.1%	0%	0%	3620	41-30	2291
Cumulative Percent	2.7%	2.7%	3.1%	5.7%	10.1%	17.8%	43.3%	77.7%	95.5%	99.2%	99.9%	100%	100%	100%			
ADT 1275			. ——												Mea	an Speed(Avera Med	ntile: 52 MPH age): 45 MPH dian: 45 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 4 2023

		Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 4 202
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	5	0	0	1	0	0	2	0	0	0	0	0	0	8
01:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
02:00 AM	0	2	0	0	1	0	0	0	0	0	0	0	0	0	3
03:00 AM	0	2	0	0	1	0	0	0	0	0	0	0	0	0	3
04:00 AM	0	5	0	0	0	0	0	2	1	0	0	0	0	1	9
05:00 AM	0	16	3	0	2	0	0	3	1	0	0	0	0	2	27
06:00 AM	0	23	18	0	2	0	0	4	0	0	0	0	0	0	47
07:00 AM	2	51	14	0	3	1	0	7	1	0	0	0	0	2	81
08:00 AM	0	51	10	0	2	0	0	5	1	0	0	0	0	0	69
09:00 AM	0	58	14	0	5	0	0	5	0	0	0	0	0	3	85
10:00 AM	1	42	18	0	3	1	0	7	1	0	0	0	0	6	79
11:00 AM	0	54	12	0	5	0	0	8	0	0	0	0	0	0	79
12:00 PM	1	48	9	0	9	1	0	8	1	0	0	0	0	5	82
01:00 PM	0	53	11	0	4	0	0	6	2	0	0	0	0	3	79
02:00 PM	0	59	11	0	7	0	0	3	0	0	2	0	0	2	84
03:00 PM	0	69	9	0	2	0	0	3	3	0	1	0	0	4	91
04:00 PM	0	103	18	0	2	0	0	5	0	0	0	0	0	1	129
05:00 PM	0	73	10	0	1	0	0	3	0	0	0	0	0	0	87
06:00 PM	0	53	11	0	1	0	0	3	0	0	0	0	0	1	69
07:00 PM	0	30	5	0	1	0	0	1	0	0	0	0	0	0	37
08:00 PM	0	27	4	0	0	0	0	1	0	0	0	0	0	0	32
09:00 PM	1	22	2	0	1	1	0	2	0	0	0	0	0	0	29
10:00 PM	0	10	0	0	0	0	0	0	0	0	0	0	0	0	10
11:00 PM	0	6	1	0	0	0	0	0	0	0	0	0	0	0	7
Day Total	5	863	180	0	53	4	0	78	11	0	3	0	0	30	1227
Percent	0.4%	70.3%	14.7%	0%	4.3%	0.3%	0%	6.4%	0.9%	0%	0.2%	0%	0%	2.4%	1227
ADT 1227															
AM Peak	7:00 AM	9:00 AM	6:00 AM	12:00 AM	9:00 AM	7:00 AM	12:00 AM	11:00 AM	4:00 AM	12:00 AM	12:00 AM	12:00 AM	12:00 AM	10:00 AM	9:00 AI
Volume	2	58	18	0	5	1	0	8	1	0	0	0	0	6	85
PM Peak	12:00 PM	4:00 PM	4:00 PM	12:00 PM	3:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PI				
Volume	1	103	18	0	9	1	0	8	3	0	2	0	0	5	129
mments:															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 5 2023

Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	2	0	1	0	1	2	0	0	0	0	0	0	0	0	6
01:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
02:00 AM	0	3	1	0	1	0	0	1	0	0	0	0	0	0	6
03:00 AM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
04:00 AM	0	6	1	0	1	0	0	1	0	0	0	0	0	0	9
05:00 AM	0	14	5	0	1	0	0	2	0	0	0	0	0	2	24
06:00 AM	0	23	15	0	5	0	0	4	1	0	0	0	0	1	49
07:00 AM	1	37	19	0	4	0	0	3	3	0	0	0	0	1	68
08:00 AM	2	50	9	0	11	2	0	3	0	0	0	0	0	5	82
09:00 AM	0	49	15	0	4	1	0	8	1	0	0	0	0	2	80
10:00 AM	1	61	10	0	5	1	0	11	0	0	0	0	0	2	91
11:00 AM	0	52	13	0	3	1	0	3	1	0	0	0	0	3	76
12:00 PM	1	50	9	0	5	1	0	3	1	0	1	0	0	1	72
01:00 PM	0	61	10	0	7	0	0	3	0	0	0	0	0	4	85
02:00 PM	0	72	10	0	4	0	0	3	1	0	0	0	0	3	93
03:00 PM	0	72	21	0	6	0	0	5	0	0	1	0	0	1	106
04:00 PM	0	100	24	0	1	0	0	5	0	0	2	0	0	4	136
05:00 PM	0	74	16	0	4	0	0	1	0	0	0	0	0	1	96
06:00 PM	0	56	13	0	2	0	0	2	0	0	0	0	0	3	76
07:00 PM	0	24	6	1	1	0	0	0	0	0	0	0	0	1	33
08:00 PM	0	30	2	0	0	0	0	3	0	0	0	0	0	1	36
09:00 PM	0	19	7	0	0	0	0	2	0	0	0	0	0	0	28
10:00 PM	0	13	2	0	0	0	0	0	1	0	0	0	0	1	17
11:00 PM	0	10	1	0	0	0	0	0	0	0	0	0	0	1	12
Day Total	7	880	211	1	66	8	0	63	9	0	4	0	0	37	1286
Percent	0.5%	68.4%	16.4%	0.1%	5.1%	0.6%	0%	4.9%	0.7%	0%	0.3%	0%	0%	2.9%	1200
ADT 1286															
AM Peak	12:00 AM	10:00 AM	7:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	10:00 AM	7:00 AM	12:00 AM	12:00 AM	12:00 AM	12:00 AM	8:00 AM	10:00 AI
Volume	2	61	19	0	11	2	0	11	3	0	0	0	0	5	91
PM Peak	12:00 PM	4:00 PM	4:00 PM	7:00 PM	1:00 PM	12:00 PM	12:00 PM	3:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	1:00 PM	4:00 PN
Volume	1	100	24	1	7	1	0	5	1	0	2	0	0	4	136
mments:															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 6 2023

CITY/STATE: Sr	iasta, CA	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 6 2023
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	∕o Axi Multi	Classed	Total
12:00 AM	0	8	1	0	1	0	0	0	0	0	0	0	0	0	10
01:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
02:00 AM	0	4	2	0	0	0	0	1	0	0	0	0	0	0	7
03:00 AM	0	5	3	0	1	0	0	0	0	0	0	0	0	1	10
04:00 AM	0	7	2	0	1	0	0	4	0	0	0	0	0	0	14
05:00 AM	0	12	2	0	3	0	0	6	0	0	2	0	0	2	27
06:00 AM	1	17	22	0	5	0	0	4	0	0	0	0	0	2	51
07:00 AM	0	44	16	0	7	0	0	7	0	0	0	0	0	2	76
08:00 AM	0	45	19	0	5	0	0	10	0	0	0	0	0	3	82
09:00 AM	0	54	13	0	7	0	0	9	0	0	0	0	0	2	85
10:00 AM	1	52	12	1	5	2	0	9	1	0	0	0	0	1	84
11:00 AM	1	62	14	0	5	0	0	4	1	0	1	0	0	4	92
12:00 PM	0	59	16	0	7	0	0	8	2	0	0	0	0	2	94
01:00 PM	1	53	16	0	10	1	0	3	0	0	0	0	0	1	85
02:00 PM	0	81	10	0	4	0	0	1	0	0	1	0	0	3	100
03:00 PM	1	81	20	0	5	1	0	3	0	0	0	0	0	2	113
04:00 PM	0	82	21	0	5	0	0	3	0	0	0	0	0	5	116
05:00 PM	0	62	15	0	1	0	0	2	0	0	0	0	0	3	83
06:00 PM	1	56	12	0	2	1	0	1	0	0	0	0	0	0	73
07:00 PM	1	31	6	0	2	0	0	0	0	0	0	0	0	1	41
08:00 PM	0	27	5	0	1	0	0	0	0	0	0	0	0	1	34
09:00 PM	1	12	4	0	1	0	0	0	0	0	0	0	0	0	18
10:00 PM	0	8	4	0	0	0	0	1	0	0	0	0	0	0	13
11:00 PM	0	3	0	0	1	0	0	0	0	0	0	0	0	0	4
Day Total	8	866	235	11	79	5	0	76	4	0	4	0	0	35	1313
Percent	0.6%	66%	17.9%	0.1%	6%	0.4%	0%	5.8%	0.3%	0%	0.3%	0%	0%	2.7%	1313
ADT 1313															
AM Peak	6:00 AM	11:00 AM	6:00 AM	10:00 AM	7:00 AM	10:00 AM	12:00 AM	8:00 AM	10:00 AM	12:00 AM	5:00 AM	12:00 AM	12:00 AM	11:00 AM	11:00 AM
Volume	1	62	22	1	7	2	0	10	1	0	2	0	0	4	92
PM Peak	1:00 PM	4:00 PM	4:00 PM	12:00 PM	1:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	4:00 PM	4:00 PM
Volume	1	82	21	0	10	1	0	8	2	0	1	0	0	5	116
omments:															
		222 4.55 014											- 4		4

LOCATION: EB SR 299 east of Supan Rd QC JOB #: 16124307 SPECIFIC LOCATION: **DIRECTION: EB** CITY/STATE: Shasta, CA DATE: Apr 4 2023 - Apr 6 2023 Cars & 2 Axle <5 Axl 2 Axle 6 3 Axle 4 Axle 5 Axle >6 Axl <6 Axl 6 Axle >6 Axl Not Start Time **Bikes Buses** Total Trailers Long Tire Single Single Double Double Double Multi Multi Classed Multi **Grand Total** 20 2609 626 2 198 17 0 217 24 0 11 0 0 102 3826 0% 2.7% Percent 0.5% 68.2% 16.4% 0.1% 5.2% 0.4% 0% 5.7% 0.6% 0% 0.3% 0% ADT 1275

Report generated on 4/11/2023 4:55 PM

Comments:

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		8	6	10		8			8	
01:00 AM		1	2	1		1			1	
02:00 AM		3	6	7		5			5	
03:00 AM		3	3	10		5			5	
04:00 AM		9	9	14		11			11	
05:00 AM		27	24	27		26			26	
06:00 AM		47	49	51		49			49	
07:00 AM		81	68	76		75			75	
08:00 AM		69	82	82		78			78	
09:00 AM		85	80	85		83			83	
10:00 AM		79	91	84		85			85	
11:00 AM		79	76	92		82			82	
12:00 PM		82	72	94		83			83	
01:00 PM		79	85	85		83	-		83	
02:00 PM		84	93	100		92			92	
03:00 PM		91	106	113		103			103	
04:00 PM		129	136	116		127			127	
05:00 PM		87	96	83		89			89	
06:00 PM		69	76	73		73		10	73	
07:00 PM		37	33	41		37	\sim	411	37	
08:00 PM		32	36	34		34			34	
09:00 PM		29	28	18		25			25	
10:00 PM		10	17	13		13	DIMIM	UNII	13	
11:00 PM		7	12	4		8			8	
Day Total		1227	1286	1313		1275			1275	
Weekday Average		96.2%	100.9%	103%					_	
% Week Average		96.2%	100.9%	103%		100%				
AM Peak Volume		9:00 AM 85	10:00 AM 91	11:00 AM 92		10:00 AM 85			10:00 AM 85	
PM Peak Volume		4:00 PM 129	4:00 PM 136	4:00 PM 116		4:00 PM 127			4:00 PM 127	

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124307 DIRECTION: EB, WB

DATE: Apr 4 2023

				DATE: A	pr 4 202
71	66	76	Total	Pace Speed	Numbe
75	70	999	Total	r acc specu	in Pac
0	0	0	12	41-50	10
0	0	0	4	46-55	3
0	0	0	6	36-45	4
0	0	0	12	46-55	9
0	0	0	19	41-50	10
0	0	0	50	41-50	29
0	0	0	80	41-50	49
0	0	0	153	41-50	99
0	0	0	155	41-50	104
0	0	0	185	41-50	133
0	1	0	179	41-50	113
0	0	0	174	46-55	103
0	0	0	169	41-50	103
0	0	0	188	41-50	118
0	1	0	178	46-55	114
0	0	0	177	46-55	106
0	0	0	216	41-50	150
0	0	0	172	46-55	121
0	0	0	116	46-55	72
0	0	0	77	46-55	52
0	0	0	51	41-50	35
0	0	0	34	41-50	20
0	0	0	17	41-50	9
0	0	0	14	36-45	7
0	2	0	2438	41-50	1508
0%	0.1%	0%	+		
			_		
12:00 AM 1					
0	1	0	185		
12:00 PM 1: 0	2:00 PM 1	12:00 PM 0	1 4:00 PM 216		
1				2:00 PM 12:00 PM 4:00 PM 0 0 216	

SPECIFIC LOCATION:

QC JOB #: 16124307 DIRECTION: EB, WB

DATE: Apr 5 2023

Start Time 1 16 21 26 31 36 41 46 12:00 AM 0 0 25 30 35 40 45 50 12:00 AM 0 0 0 0 0 0 2 4 01:00 AM 0 0 0 0 0 0 1 1 02:00 AM 0 0 0 0 0 0 0 1 4 04:00 AM 0 0 0 0 0 0 0 1 4 04:00 AM 0 0 0 0 0 0 7 6 05:00 AM 1 0 0 0 5 11 14 35 07:00 AM 4 0 1 5 3 6 27 45 08:00 AM 6 0 1 3 8 17 27 51		56 60 0 0 1 1 1 3 4 11 13 9 3 12 8 7 5 8	61 65 0 0 0 0 4 0 3 4 0 1 1 0 0 0	66 70 0 0 0 0 0 1 0 0 0 0 0 0 0	71 75 0 0 0 0 0 0 0 0 0 1 1 0 0 0	76 999 0 0 0 0 0 0 0	Total 11 3 8 6 17 54 93 139 192 178 192 178 192 173	41-50 41-50 36-45 41-50 41-50 46-55 46-55 46-55 41-50 41-50	Number in Pace 6 2 6 5 13 29 58 79 111 112 127 94
15 20 25 30 35 40 45 50 12:00 AM 0 0 0 4 0 0 0 0 2 4 01:00 AM 0 0 0 0 0 0 1 0 1 1 02:00 AM 0 0 0 0 0 0 0 0 2 4 0 03:00 AM 0 0 0 0 0 0 0 0 0 1 4 04:00 AM 0 0 0 0 0 0 0 0 0 0 1 4 04:00 AM 0 0 0 0 0 0 0 0 0 0 7 6 05:00 AM 2 0 0 0 0 3 5 11 14 06:00 AM 1 0 0 0 0 0 5 11 14 35 07:00 AM 4 0 1 5 3 6 27 45 08:00 AM 6 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 6 0 0 1 4 14 14 47 94 05:00 PM 8 0 0 1 4 14 14 47 94 05:00 PM 3 0 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 0 0 7 14 12 09:00 PM 1 1 0 0 0 0 1 1 4 11 17	1 0 1 0 3 11 23 34 60 35 40 37 42 48 44 47 43	0 0 1 1 1 3 4 11 13 9 3 12 8 7 5 8 7	0 0 0 0 4 0 3 4 0 1 1 0 0	0 0 0 0 0 1 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 0 1 1 0 0	0 0 0 0 0 0 0 0	11 3 8 6 17 54 93 139 192 178 192 172	41-50 41-50 36-45 41-50 41-50 46-55 46-55 46-55 41-50 41-50	6 2 6 5 13 29 58 79 111 112
01:00 AM 0 0 0 0 1 0 1 1 02:00 AM 0 0 0 0 0 2 4 0 03:00 AM 0 0 0 0 0 0 1 4 04:00 AM 0 0 0 0 0 0 7 6 05:00 AM 1 0 0 0 3 5 7 18 06:00 AM 1 0 0 0 5 11 14 35 07:00 AM 4 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 7	0 1 0 3 11 23 34 60 35 40 37 42 48 44 47 43	0 1 1 1 3 4 11 13 9 3 12 8 7 5 8 7	0 0 0 4 0 3 4 0 1 1 0 0	0 0 0 0 1 0 0 1 0 0 0	0 0 0 0 0 0 0 0 0 1 1 0 0	0 0 0 0 0 0 0 0	3 8 6 17 54 93 139 192 178 192 172	41-50 36-45 41-50 41-50 46-55 46-55 46-55 41-50 41-50	2 6 5 13 29 58 79 111 112 127
02:00 AM 0 0 0 0 2 4 0 03:00 AM 0 0 0 0 0 0 1 4 04:00 AM 0 0 0 0 0 0 7 6 05:00 AM 2 0 0 0 3 5 7 18 06:00 AM 1 0 0 0 5 11 14 35 07:00 AM 4 0 1 5 3 6 27 45 08:00 AM 6 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 7 0	1 0 3 11 23 34 60 35 40 37 42 48 44 47 43	1 1 1 3 4 11 13 9 3 12 8 7 5 8 7	0 0 0 4 0 3 4 0 1 1 0 0	0 0 0 1 0 0 1 0 0 0 0	0 0 0 0 0 0 1 1 0 0	0 0 0 0 0 0 0 0	8 6 17 54 93 139 192 178 192 172	36-45 41-50 41-50 46-55 46-55 46-55 41-50 41-50	6 5 13 29 58 79 111 112
03:00 AM 0 0 0 0 0 1 4 04:00 AM 0 0 0 0 0 7 6 05:00 AM 2 0 0 0 3 5 7 18 06:00 AM 1 0 0 0 5 11 14 35 07:00 AM 4 0 1 5 3 6 27 45 08:00 AM 6 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2	0 3 11 23 34 60 35 40 37 42 48 44 47	1 1 3 4 11 13 9 3 12 8 7 5 8 7	0 0 4 0 3 4 0 1 1 0 0	0 0 1 0 0 1 0 0 0 0 0	0 0 0 0 0 1 1 0 0	0 0 0 0 0 0 0	6 17 54 93 139 192 178 192 172	41-50 41-50 46-55 46-55 46-55 46-55 41-50 41-50	5 13 29 58 79 111 112 127
04:00 AM 0 0 0 0 0 7 6 05:00 AM 2 0 0 0 3 5 7 18 06:00 AM 1 0 0 0 5 11 14 35 07:00 AM 4 0 1 5 3 6 27 45 08:00 AM 6 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 <td>3 11 23 34 60 35 40 37 42 48 44 47</td> <td>1 3 4 11 13 9 3 12 8 7 5 8 7</td> <td>0 4 0 3 4 0 1 1 0 0</td> <td>0 1 0 0 1 0 0 0 0 0</td> <td>0 0 0 0 1 1 0 0</td> <td>0 0 0 0 0 0</td> <td>17 54 93 139 192 178 192 172</td> <td>41-50 46-55 46-55 46-55 46-55 41-50 41-50</td> <td>13 29 58 79 111 112 127</td>	3 11 23 34 60 35 40 37 42 48 44 47	1 3 4 11 13 9 3 12 8 7 5 8 7	0 4 0 3 4 0 1 1 0 0	0 1 0 0 1 0 0 0 0 0	0 0 0 0 1 1 0 0	0 0 0 0 0 0	17 54 93 139 192 178 192 172	41-50 46-55 46-55 46-55 46-55 41-50 41-50	13 29 58 79 111 112 127
05:00 AM 2 0 0 0 3 5 7 18 06:00 AM 1 0 0 0 5 11 14 35 07:00 AM 4 0 1 5 3 6 27 45 08:00 AM 6 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 8 7 40 86 04:00 PM 8 </td <td>11 23 34 60 35 40 37 42 48 44 47</td> <td>3 4 11 13 9 3 12 8 7 5 8 7</td> <td>4 0 3 4 0 1 1 0 0 1</td> <td>1 0 0 1 0 0 0 0 0</td> <td>0 0 0 1 1 0 0</td> <td>0 0 0 0 0</td> <td>54 93 139 192 178 192 172</td> <td>46-55 46-55 46-55 46-55 41-50 41-50</td> <td>29 58 79 111 112 127</td>	11 23 34 60 35 40 37 42 48 44 47	3 4 11 13 9 3 12 8 7 5 8 7	4 0 3 4 0 1 1 0 0 1	1 0 0 1 0 0 0 0 0	0 0 0 1 1 0 0	0 0 0 0 0	54 93 139 192 178 192 172	46-55 46-55 46-55 46-55 41-50 41-50	29 58 79 111 112 127
06:00 AM 1 0 0 0 5 11 14 35 07:00 AM 4 0 1 5 3 6 27 45 08:00 AM 6 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 3<	23 34 60 35 40 37 42 48 44 47	4 11 13 9 3 12 8 7 5 8 7	0 3 4 0 1 1 0 0 1	0 0 1 0 0 0 0	0 0 1 1 0 0 0	0 0 0 0 0	93 139 192 178 192 172	46-55 46-55 46-55 41-50 41-50	58 79 111 112 127
07:00 AM 4 0 1 5 3 6 27 45 08:00 AM 6 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3<	34 60 35 40 37 42 48 44 47	11 13 9 3 12 8 7 5 8 7	3 4 0 1 1 0 0 1	0 1 0 0 0 0 0	0 1 1 0 0 0	0 0 0 0 0	139 192 178 192 172	46-55 46-55 41-50 41-50 41-50	79 111 112 127
08:00 AM 6 0 1 3 8 17 27 51 09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3<	60 35 40 37 42 48 44 47	13 9 3 12 8 7 5 8 7	4 0 1 1 0 0 1	1 0 0 0 0 0	1 0 0 0	0 0 0 0	192 178 192 172	46-55 41-50 41-50 41-50	111 112 127
09:00 AM 3 0 0 5 7 6 36 76 10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 </td <td>35 40 37 42 48 44 47</td> <td>9 3 12 8 7 5 8 7</td> <td>0 1 1 0 0</td> <td>0 0 0 0 0</td> <td>1 0 0 0</td> <td>0 0 0</td> <td>178 192 172</td> <td>41-50 41-50 41-50</td> <td>112 127</td>	35 40 37 42 48 44 47	9 3 12 8 7 5 8 7	0 1 1 0 0	0 0 0 0 0	1 0 0 0	0 0 0	178 192 172	41-50 41-50 41-50	112 127
10:00 AM 2 0 0 4 5 10 46 81 11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 </td <td>40 37 42 48 44 47</td> <td>3 12 8 7 5 8 7</td> <td>1 1 0 0 1</td> <td>0 0 0 0</td> <td>0 0 0 0</td> <td>0 0 0</td> <td>192 172</td> <td>41-50 41-50</td> <td>127</td>	40 37 42 48 44 47	3 12 8 7 5 8 7	1 1 0 0 1	0 0 0 0	0 0 0 0	0 0 0	192 172	41-50 41-50	127
11:00 AM 6 0 1 3 2 16 38 56 12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 0 1 4 11 17 10:00 PM <	37 42 48 44 47 43	12 8 7 5 8 7	1 0 0 1 0	0 0 0 0	0 0 0	0 0	172	41-50	
12:00 PM 2 0 2 1 5 14 36 63 01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 1 4 11 17 10:00 PM 1 0 <td>42 48 44 47 43</td> <td>8 7 5 8 7</td> <td>0 0 1 0</td> <td>0 0 0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0.4</td>	42 48 44 47 43	8 7 5 8 7	0 0 1 0	0 0 0	0	0			0.4
01:00 PM 7 0 2 0 1 5 47 63 02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 0 1 8 8	48 44 47 43	7 5 8 7	0 1 0	0	0		173	46 55	94
02:00 PM 6 0 0 2 4 3 33 77 03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 0 1 8 8	44 47 43	5 8 7	1 0	0		0		46-55	105
03:00 PM 2 0 0 2 8 7 40 86 04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 0 1 8 8	47 43	8 7	0		0		180	46-55	111
04:00 PM 8 0 0 1 4 14 47 94 05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 0 1 8 8	43	7		1		0	175	46-55	121
05:00 PM 3 0 0 0 2 5 38 74 06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 0 1 8 8			0		0	0	201	46-55	133
06:00 PM 3 0 0 0 2 3 21 41 07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 0 1 8 8	11		U	0	0	0	218	41-50	141
07:00 PM 3 0 0 0 0 2 12 18 08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 0 1 8 8	44	14	4	0	0	0	184	46-55	118
08:00 PM 1 0 0 0 0 7 14 12 09:00 PM 0 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 0 1 8 8	42	14	6	0	0	0	132	46-55	83
09:00 PM 0 0 0 0 1 4 11 17 10:00 PM 1 0 0 1 8 8	14	2	2	1	0	0	54	46-55	32
10:00 PM 1 0 0 1 8 8	14	2	0	0	0	0	50	44-53	26
	5	2	0	0	0	0	40	41-50	28
11:00 PM 1 0 0 0 1 0 4 5	3	2	0	0	0	0	24	41-50	16
	1	1	0	0	0	0	13	41-50	9
Day Total 61 0 11 27 62 138 521 935		130	26	4	2	0	2509	46-55	1527
Percent 2.4% 0% 0.4% 1.1% 2.5% 5.5% 20.8% 37.3%	% 23.6%	5.2%	1%	0.2%	0.1%	0%	2309	40-33	1327
AM Peak 8:00 AM 12:00 AM 12:00 AM 7:00 AM 8:00 AM 8:00 AM 10:00 AM 10:00 A	M 8:00 AM	8:00 AM	5:00 AM	5:00 AM		12:00 AM	8:00 AM		
Volume 6 0 4 5 8 17 46 81	60	13	4	1	1	0	192		
PM Peak 4:00 PM 12:00 PM 12:00 PM 2:00 PM 3:00 PM 12:00 PM 1:00 PM 4:00 PM	M 1:00 PM	5:00 PM	6:00 PM	3:00 PM	12:00 PM	12:00 PM	4:00 PM		
Volume 8 0 2 2 8 14 47 94		14	6	1	0	0	218		
Comments:	48								

SPECIFIC LOCATION:

QC JOB #: 16124307 DIRECTION: EB, WB

DATE: Apr 6 2023

CITY/STATE:	Shasta,	CA														DATE: Ap	or 6 202
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
Start Tille	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	race speed	in Pac
12:00 AM	0	0	0	0	0	3	4	8	2	1	0	0	0	0	18	41-50	12
01:00 AM	0	0	0	0	0	0	1	1	2	0	0	0	0	0	4	46-55	3
02:00 AM	1	0	0	0	0	1	4	4	2	2	0	0	0	0	14	41-50	8
03:00 AM	1	0	0	0	1	0	2	5	9	4	1	0	0	0	23	46-55	14
04:00 AM	0	0	0	1	0	1	7	2	6	4	1	0	0	0	22	51-60	10
05:00 AM	2	0	0	0	3	3	11	18	13	2	3	0	0	0	55	46-55	31
06:00 AM	2	0	0	1	0	5	10	31	32	12	0	0	0	0	93	46-55	63
07:00 AM	5	0	0	0	8	1	18	50	49	15	3	1	1	0	151	46-55	99
08:00 AM	5	0	0	1	3	8	27	70	57	15	3	0	0	0	189	46-55	127
09:00 AM	5	0	0	1	6	11	30	73	49	18	0	0	0	0	193	46-55	122
10:00 AM	4	0	0	7	4	11	34	79	50	8	3	0	0	0	200	46-55	129
11:00 AM	5	0	0	6	15	2	21	84	46	8	2	0	0	0	189	46-55	130
12:00 PM	3	0	0	3	6	5	34	74	45	13	0	0	0	0	183	46-55	119
01:00 PM	8	0	0	6	2	7	21	78	60	13	5	1	0	0	201	46-55	138
02:00 PM	6	0	0	0	7	6	29	78	55	10	1	1	0	0	193	46-55	133
03:00 PM	6	0	0	6	6	8	37	95	72	12	2	0	0	0	244	46-55	167
04:00 PM	7	0	0	1	7	9	35	88	46	18	4	1	0	0	216	46-55	134
05:00 PM	5	0	0	0	0	3	36	58	43	17	5	0	0	0	167	46-55	101
06:00 PM	2	0	0	2	0	2	20	43	33	6	3	0	0	0	111	46-55	76
07:00 PM	2	0	0	0	0	3	17	20	17	8	1	0	0	0	68	41-50	37
08:00 PM	2	0	0	0	1	6	14	20	5	1	1	0	0	0	50	41-50	34
09:00 PM	0	0	0	1	3	9	12	5	1	1	0	0	0	0	32	36-45	21
10:00 PM	0	0	0	0	0	1	10	7	3	0	0	0	0	0	21	41-50	17
11:00 PM	0	0	0	1	0	0	3	2	0	1	0	0	0	0	7	41-50	5
Day Total	71	0	0	37	72	105	437	993	697	189	38	4	1	0	2644	46-55	1690
Percent	2.7%	0%	0%	1.4%	2.7%	4%	16.5%	37.6%	26.4%	7.1%	1.4%	0.2%	0%	0%	2044	40-55	1090
AM Peak	7:00 AM	12:00 AM				9:00 AM	10:00 AM			9:00 AM	5:00 AM	7:00 AM		12:00 AM	10:00 AM		
Volume	5	0	0	7	15	11	34	84	57	18	3	1	1	0	200		
PM Peak Volume	1:00 PM 8	12:00 PM 0	12:00 PM 0	1:00 PM 6	2:00 PM 7	4:00 PM 9	3:00 PM 37	3:00 PM 95	3:00 PM 72	4:00 PM 18	1:00 PM 5	1:00 PM 1	12:00 PM 0	12:00 PM 0	3:00 PM 244		
Comments:																	

SUMMARY - Tube Count - Speed Data

LOCATION: EB	SR 299 e	ast of Su	pan Rd													QC JOB	#: 16124307
SPECIFIC LOCA	TION:															DIRECT	ION: EB, WB
CITY/STATE: Sh	hasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Kange	15	20	25	30	35	40	45	50	55	60	65	70	75	999	TOTAL	Pace Speed	Pace
Grand Total	190	0	20	101	198	383	1524	2870	1785	427	80	10	3	0	7501	46.55	4655
Percent	2.5%	0%	0.3%	1.3%	2.6%	5%	20.1%	37.8%	23.5%	5.6%	1.1%	0.1%	0%	0%	7591	46-55	4655
Cumulative Percent	2.5%	2.5%	2.8%	4.1%	6.7%	11.8%	31.8%	69.6%	93.1%	98.8%	99.8%	100%	100%	100%			
ADT 2530															Mea	an Speed(Avera Med	ntile: 53 MPH age): 47 MPH dian: 47 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB, WB

DATE: Apr 4 2023

•	iasta, CA														Apr 4 202
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	9	0	0	1	0	0	2	0	0	0	0	0	0	12
01:00 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	1	4
02:00 AM	0	4	0	0	1	0	0	1	0	0	0	0	0	0	6
03:00 AM	0	8	2	0	1	0	0	1	0	0	0	0	0	0	12
04:00 AM	0	11	2	0	1	0	0	2	1	0	1	0	0	1	19
05:00 AM	0	28	8	0	2	1	0	6	1	0	1	0	0	3	50
06:00 AM	0	48	21	0	3	0	0	7	0	0	0	0	0	1	80
07:00 AM	2	111	20	0	3	1	0	10	1	0	1	0	0	4	153
08:00 AM	0	106	31	0	3	0	0	14	1	0	0	0	0	0	155
09:00 AM	0	130	30	0	9	0	1	10	0	0	2	0	0	3	185
10:00 AM	1	109	34	0	6	1	0	14	1	0	3	0	1	9	179
11:00 AM	1	118	26	0	13	0	0	11	0	0	2	0	0	3	174
12:00 PM	1	106	24	0	11	1	0	14	1	0	5	0	0	6	169
01:00 PM	0	127	25	0	13	0	0	15	2	0	2	0	0	4	188
02:00 PM	0	124	24	1	13	0	0	10	0	0	2	0	1	3	178
03:00 PM	0	125	30	0	7	0	0	5	3	0	1	0	0	6	177
04:00 PM	0	164	31	0	9	0	0	8	1	0	0	0	0	3	216
05:00 PM	0	142	16	0	3	0	0	6	0	0	2	0	0	3	172
06:00 PM	0	93	15	0	2	0	0	4	0	0	0	0	0	2	116
07:00 PM	0	57	13	0	4	0	0	1	0	0	1	0	0	1	77
08:00 PM	0	43	4	0	1	0	0	3	0	0	0	0	0	0	51
09:00 PM	1	26	2	0	1	1	0	3	0	0	0	0	0	0	34
10:00 PM	0	15	0	0	0	0	0	1	0	0	0	0	0	1	17
11:00 PM	0	7	2	0	1	0	0	1	0	0	2	0	0	1	14
Day Total	6	1714	360	1	108	5	1	149	12	0	25	0	2	55	2438
Percent	0.2%	70.3%	14.8%	0%	4.4%	0.2%	0%	6.1%	0.5%	0%	1%	0%	0.1%	2.3%	2438
ADT 2438															
AM Peak	7:00 AM	9:00 AM	10:00 AM	12:00 AM	11:00 AM	5:00 AM	9:00 AM	8:00 AM	4:00 AM	12:00 AM	10:00 AM	12:00 AM	10:00 AM	10:00 AM	9:00 AN
Volume	2	130	34	0	13	1	1	14	1	0	3	0	1	9	185
PM Peak	12:00 PM	4:00 PM	4:00 PM	2:00 PM	1:00 PM		12:00 PM	1:00 PM	3:00 PM	12:00 PM	12:00 PM		2:00 PM	12:00 PM	4:00 PN
Volume	1	164	31	1	13	1	0	15	3	0	5	0	1	6	216
omments:	_			-		-	-			-		-		-	

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124307 DIRECTION: EB, WB DATE: Apr 5 2023

Ī	asta, CA	C 0	2.4.1-		2.4.1.6	2.4.1-	4 4 1-	-F A I	F A 1-		.C.A.I	CAL			Apr 5 202
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	2	5	1	0	1	2	0	0	0	0	0	0	0	0	11
01:00 AM	0	2	0	0	0	0	0	1	0	0	0	0	0	0	3
02:00 AM	0	3	1	0	1	0	0	2	0	0	1	0	0	0	8
03:00 AM	0	4	1	0	0	0	0	1	0	0	0	0	0	0	6
04:00 AM	0	13	1	0	1	0	0	2	0	0	0	0	0	0	17
05:00 AM	0	33	6	0	5	0	0	7	0	0	1	0	0	2	54
06:00 AM	0	54	25	0	6	0	0	6	1	0	0	0	0	1	93
07:00 AM	1	88	34	0	4	0	0	5	3	0	0	0	0	4	139
08:00 AM	2	123	37	0	14	2	0	8	0	0	0	0	0	6	192
09:00 AM	1	115	33	0	6	1	0	13	1	0	6	0	0	2	178
10:00 AM	1	135	24	0	10	1	0	14	0	0	5	0	0	2	192
11:00 AM	0	122	22	0	7	1	0	10	1	0	3	0	0	6	172
12:00 PM	1	121	22	0	10	1	0	12	1	0	3	0	0	2	173
01:00 PM	0	121	26	0	17	0	0	7	1	0	1	0	0	7	180
02:00 PM	0	130	20	0	4	0	0	14	1	0	0	0	0	6	175
03:00 PM	0	145	33	0	9	0	0	10	0	0	2	0	0	2	201
04:00 PM	1	167	28	0	5	0	0	9	0	0	2	0	0	6	218
05:00 PM	0	138	27	0	9	0	0	6	0	0	1	0	0	3	184
06:00 PM	0	92	27	0	5	0	0	5	0	0	0	0	0	3	132
07:00 PM	0	40	8	1	1	0	0	1	0	0	0	0	0	3	54
08:00 PM	0	39	4	0	0	0	0	5	0	0	1	0	0	1	50
09:00 PM	0	27	7	0	1	0	0	3	0	0	2	0	0	0	40
10:00 PM	0	19	2	0	0	0	0	1	1	0	0	0	0	1	24
11:00 PM	0	10	1	0	0	0	0	1	0	0	0	0	0	1	13
Day Total	9	1746	390	1	116	8	0	143	10	0	28	0	0	58	2509
Percent	0.4%	69.6%	15.5%	0%	4.6%	0.3%	0%	5.7%	0.4%	0%	1.1%	0%	0%	2.3%	2303
ADT 2509															
	12:00 AM	10:00 AM	8:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	10:00 AM	7:00 AM	12:00 AM	9:00 AM	12:00 AM	12:00 AM	8:00 AM	8:00 AI
Volume	2	135	37	0	14	2	0	14	3	0	6	0	0	6	192
PM Peak	12:00 PM	4:00 PM	3:00 PM	7:00 PM	1:00 PM	12:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	1:00 PM	4:00 PI
can								14							218

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124307 DIRECTION: EB, WB

CITY/STATE: Sh	nasta, CA													DATE:	Apr 6 2023
Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
Start Time	DIKES	Trailers	Long	Duses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	14	2	0	1	0	0	1	0	0	0	0	0	0	18
01:00 AM	0	3	1	0	0	0	0	0	0	0	0	0	0	0	4
02:00 AM	0	6	4	0	1	0	0	2	0	0	0	0	0	1	14
03:00 AM	0	9	7	0	4	0	0	2	0	0	0	0	0	1	23
04:00 AM	0	13	2	0	2	0	0	5	0	0	0	0	0	0	22
05:00 AM	0	29	8	0	5	0	0	8	0	0	3	0	0	2	55
06:00 AM	1	41	29	0	11	0	0	9	0	0	0	0	0	2	93
07:00 AM	0	94	28	0	10	0	0	14	0	0	0	0	0	5	151
08:00 AM	0	120	34	0	13	0	0	17	0	0	0	0	0	5	189
09:00 AM	1	132	28	0	13	0	0	14	0	0	1	0	0	4	193
10:00 AM	1	131	28	1	14	2	0	16	1	0	2	0	0	4	200
11:00 AM	1	136	25	0	11	0	0	6	1	0	4	0	0	5	189
12:00 PM	0	121	29	0	13	0	0	14	2	0	1	0	0	3	183
01:00 PM	1	130	28	0	18	1	0	13	0	0	2	0	0	8	201
02:00 PM	0	149	23	0	8	0	0	5	0	0	2	0	0	6	193
03:00 PM	1	172	36	0	11	1	0	14	0	0	3	0	0	6	244
04:00 PM	0	147	37	0	10	0	0	11	0	0	4	0	0	7	216
05:00 PM	0	129	25	0	3	0	0	4	0	0	1	0	0	5	167
06:00 PM	1	83	18	0	3	1	0	2	0	0	1	0	0	2	111
07:00 PM	1	47	10	0	4	0	0	4	0	0	0	0	0	2	68
08:00 PM	0	38	6	0	3	0	0	1	0	0	0	0	0	2	50
09:00 PM	1	24	5	0	2	0	0	0	0	0	0	0	0	0	32
10:00 PM	0	14	4	0	2	0	0	1	0	0	0	0	0	0	21
11:00 PM	0	6	0	0	1	0	0	0	0	0	0	0	0	0	7
Day Total	9	1788	417	1	163	5	0	163	4	0	24	0	0	70	2644
Percent	0.3%	67.6%	15.8%	0%	6.2%	0.2%	0%	6.2%	0.2%	0%	0.9%	0%	0%	2.6%	2644
ADT 2644															
AM Peak	6:00 AM	11:00 AM	8:00 AM	10:00 AM	10:00 AM	10:00 AM	12:00 AM	8:00 AM	10:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	7:00 AM	10:00 A
Volume	1	136	34	1	14	2	0	17	1	0	4	0	0	5	200
PM Peak	1:00 PM	3:00 PM	4:00 PM	12:00 PM	1:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	1:00 PM	3:00 PN
Volume	1	172	37	0	18	1	0	14	2	0	4	0	0	8	244
omments:															
	1 4/44/20	222 4 EE DN 4									COLUBER O	1:1 6 .	- 110/1-11-	//	

LOCATION: EB SR 299 east of Supan Rd QC JOB #: 16124307 SPECIFIC LOCATION: **DIRECTION: EB, WB** CITY/STATE: Shasta, CA DATE: Apr 4 2023 - Apr 6 2023 Cars & 2 Axle <5 Axl 2 Axle 6 3 Axle 4 Axle 5 Axle >6 Axl <6 Axl 6 Axle >6 Axl Not Start Time **Bikes Buses** Total Trailers Long Tire Single Single Double Double **Double** Multi Multi Classed Multi **Grand Total** 24 5248 1167 3 387 18 1 455 26 0 77 0 2 183 7591 0% 0% Percent 0.3% 69.1% 15.4% 0% 5.1% 0.2% 6% 0.3% 0% 1% 0% 2.4% ADT 2530

Report generated on 4/11/2023 4:55 PM

Comments:

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB, WB DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		12	11	18		14			14	
01:00 AM		4	3	4		4			4	
02:00 AM		6	8	14		9			9	
03:00 AM		12	6	23		14			14	
04:00 AM		19	17	22		19			19	
05:00 AM		50	54	55		53			53	
06:00 AM		80	93	93		89			89	
07:00 AM		153	139	151		148			148	
08:00 AM		155	192	189		179			179	
09:00 AM		185	178	193		185			185	
10:00 AM		179	192	200		190			190	
11:00 AM		174	172	189		178			178	
12:00 PM		169	173	183		175			175	
01:00 PM		188	180	201		190			190	
02:00 PM		178	175	193		182			182	
03:00 PM		177	201	244		207			207	
04:00 PM		216	218	216		217			217	
05:00 PM		172	184	167		174			174	
06:00 PM		116	132	111		120		ın'	120	
07:00 PM		77	54	68		66	\sim \sim \sim	411	66	
08:00 PM		51	50	50		50			50	
09:00 PM		34	40	32		35	0 0 0 0 0	10.600	35	
10:00 PM		17	24	21		21	JIVIIVI	JINH	21	
11:00 PM		14	13	7		11			11	
Day Total		2438	2509	2644		2530			2530	
% Weekday Average		96.4%	99.2%	104.5%						
% Week Average		96.4%	99.2%	104.5%		100%				
AM Peak		9:00 AM	8:00 AM	10:00 AM		10:00 AM			10:00 AM	
Volume		185	192	200		190			190	
PM Peak		4:00 PM	4:00 PM	3:00 PM		4:00 PM			4:00 PM	
Volume		216	218	244		217			217	

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

CITY/STATE:	: Snasta,	CA														DATE: Ap	or 4 202.
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Number in Pac
12:00 AM	0	0	0	0	0	0	2	2	0	0	0	0	0	0	4	41-50	4
01:00 AM	1	0	0	0	0	0	0	1	1	0	0	0	0	0	3	46-55	2
02:00 AM	0	0	0	0	0	1	1	1	0	0	0	0	0	0	3	36-45	2
03:00 AM	0	0	0	0	0	0	1	4	3	0	1	0	0	0	9	46-55	7
04:00 AM	0	0	0	0	0	0	3	4	1	0	2	0	0	0	10	41-50	7
05:00 AM	1	0	2	0	1	0	4	9	5	1	0	0	0	0	23	46-55	14
06:00 AM	1	0	0	0	0	0	5	14	11	1	1	0	0	0	33	46-55	25
07:00 AM	2	0	0	0	0	0	6	34	23	6	1	0	0	0	72	46-55	57
08:00 AM	0	0	0	0	0	1	14	40	27	4	0	0	0	0	86	46-55	67
09:00 AM	0	0	0	0	0	0	17	61	17	5	0	0	0	0	100	45-54	78
10:00 AM	3	0	0	0	1	1	13	54	23	4	0	1	0	0	100	46-55	77
11:00 AM	3	0	0	0	0	2	20	28	35	6	1	0	0	0	95	46-55	63
12:00 PM	1	0	0	0	1	1	8	45	23	8	0	0	0	0	87	46-55	68
01:00 PM	3	0	0	0	0	3	25	48	25	4	1	0	0	0	109	41-50	73
02:00 PM	1	0	0	0	3	4	13	42	28	3	0	0	0	0	94	46-55	70
03:00 PM	2	0	0	0	1	0	11	36	25	9	2	0	0	0	86	46-55	61
04:00 PM	2	0	0	0	0	3	9	48	18	7	0	0	0	0	87	46-55	66
05:00 PM	3	0	0	1	0	1	13	41	16	8	2	0	0	0	85	46-55	57
06:00 PM	1	0	0	0	0	2	6	16	16	6	0	0	0	0	47	46-55	32
07:00 PM	1	0	0	0	0	2	2	19	12	4	0	0	0	0	40	46-55	31
08:00 PM	0	0	0	0	0	2	3	7	6	0	1	0	0	0	19	46-55	13
09:00 PM	0	0	0	0	0	1	1	2	0	1	0	0	0	0	5	41-50	3
10:00 PM	1	0	0	0	0	1	2	1	1	1	0	0	0	0	7	41-50	3
11:00 PM	1	0	0	0	0	1	3	1	1	0	0	0	0	0	7	38-47	4
Day Total	27	0	2	1	7	26	182	558	317	78	12	1	0	0	1211	46-55	875
Percent	2.2%	0%	0.2%	0.1%	0.6%	2.1%	15%	46.1%	26.2%	6.4%	1%	0.1%	0%	0%			
AM Peak Volume	10:00 AM 3	12:00 AM 0	5:00 AM 2	12:00 AM 0	5:00 AM 1	11:00 AM 2	11:00 AM 20	9:00 AM 61	11:00 AM 35	7:00 AM 6	4:00 AM 2	10:00 AM 1	12:00 AM 0	12:00 AM 0	9:00 AM 100		
PM Peak Volume	1:00 PM 3	12:00 PM 0	12:00 PM 0	5:00 PM 1	2:00 PM 3	2:00 PM 4	1:00 PM 25	1:00 PM 48	2:00 PM 28	3:00 PM 9	3:00 PM 2	12:00 PM 0	12:00 PM 0	12:00 PM 0	1:00 PM 109		

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

CITY/STATE:	Shasta,	CA														DATE: Ap	or 5 202
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	0	1	3	1	0	0	0	0	0	5	43-52	4
01:00 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	36-45	1
02:00 AM	0	0	0	0	0	1	1	0	0	0	0	0	0	0	2	36-45	2
03:00 AM	0	0	0	0	0	0	1	1	0	1	0	0	0	0	3	41-50	2
04:00 AM	0	0	0	0	0	0	2	4	1	1	0	0	0	0	8	41-50	6
05:00 AM	0	0	0	0	2	2	2	10	9	1	3	1	0	0	30	46-55	19
06:00 AM	0	0	0	0	0	0	2	22	16	4	0	0	0	0	44	46-55	38
07:00 AM	3	0	0	0	0	0	5	24	26	10	3	0	0	0	71	46-55	50
08:00 AM	1	0	0	0	0	3	8	36	46	11	3	1	1	0	110	46-55	82
09:00 AM	1	0	0	1	0	3	16	42	27	7	0	0	1	0	98	46-55	69
10:00 AM	0	0	0	0	2	0	21	49	28	1	0	0	0	0	101	46-55	77
11:00 AM	3	0	0	0	0	2	18	39	23	10	1	0	0	0	96	46-55	62
12:00 PM	1	0	0	0	0	10	19	32	34	5	0	0	0	0	101	46-55	66
01:00 PM	3	0	2	0	0	0	21	32	33	4	0	0	0	0	95	46-55	65
02:00 PM	3	0	0	0	1	2	20	29	22	5	0	0	0	0	82	46-55	51
03:00 PM	1	0	0	0	1	3	20	43	23	3	0	1	0	0	95	46-55	66
04:00 PM	3	0	0	0	1	2	13	44	17	2	0	0	0	0	82	46-55	61
05:00 PM	2	0	0	0	2	1	15	37	23	7	1	0	0	0	88	46-55	60
06:00 PM	0	0	0	0	2	0	10	18	20	5	1	0	0	0	56	46-55	38
07:00 PM	2	0	0	0	0	1	2	9	5	1	1	0	0	0	21	46-55	14
08:00 PM	0	0	0	0	0	4	2	3	5	0	0	0	0	0	14	46-55	8
09:00 PM	0	0	0	0	0	2	1	9	0	0	0	0	0	0	12	41-50	10
10:00 PM	0	0	0	0	0	0	2	2	1	2	0	0	0	0	7	41-50	4
11:00 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	26-35	1
Day Total	23	0	2	1	12	36	203	488	360	80	13	3	2	0	4222	46.55	0.40
Percent	1.9%	0%	0.2%	0.1%	1%	2.9%	16.6%	39.9%	29.4%	6.5%	1.1%	0.2%	0.2%	0%	1223	46-55	848
AM Peak Volume	7:00 AM 3	12:00 AM 0	12:00 AM 0	9:00 AM 1	5:00 AM 2	8:00 AM 3	10:00 AM 21	10:00 AM 49	8:00 AM 46	8:00 AM 11	5:00 AM 3	5:00 AM 1	8:00 AM 1	12:00 AM 0	8:00 AM 110		
PM Peak	1:00 PM									5:00 PM			12:00 PM		12:00 PM		
Volume	1:00 PM	12:00 PM 0	1:00 PM 2	12:00 PM 0	5:00 PM 2	12:00 PM 10	1:00 PM 21	4:00 PM 44	12:00 PM 34	5:00 PM 7	5:00 PM 1	3:00 PM 1	0 12:00 PM	0 0	12:00 PM 101		

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

ATE: Apr 6 2023

	1	16	21	26	31	36	41	46	51	56	61	66	71	76			Numbe
Start Time	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	Pace Speed	in Pac
12:00 AM	0	0	0	0	0	1	2	4	1	0	0	0	0	0	8	41-50	6
01:00 AM	0	0	0	0	0	0	0	1	2	0	0	0	0	0	3	46-55	3
02:00 AM	1	0	0	0	0	0	3	2	0	1	0	0	0	0	7	41-50	5
03:00 AM	0	0	0	0	0	0	0	2	6	4	1	0	0	0	13	51-60	10
04:00 AM	0	0	0	0	0	0	0	2	2	3	1	0	0	0	8	51-60	5
05:00 AM	0	0	0	0	0	1	7	6	9	2	3	0	0	0	28	46-55	15
06:00 AM	0	0	0	0	0	0	2	15	20	5	0	0	0	0	42	46-55	35
07:00 AM	3	0	0	0	0	0	3	21	32	11	3	1	1	0	75	46-55	53
08:00 AM	2	0	0	0	0	0	12	37	41	12	3	0	0	0	107	46-55	78
09:00 AM	3	0	0	0	0	1	15	43	32	14	0	0	0	0	108	46-55	75
10:00 AM	3	0	0	0	3	7	15	53	29	5	1	0	0	0	116	46-55	82
11:00 AM	1	0	0	0	2	1	12	42	32	6	1	0	0	0	97	46-55	74
12:00 PM	1	0	0	0	0	0	13	36	31	8	0	0	0	0	89	46-55	67
01:00 PM	7	0	0	0	0	3	7	51	37	9	1	1	0	0	116	46-55	88
02:00 PM	3	0	0	0	1	2	9	41	31	5	0	1	0	0	93	46-55	72
03:00 PM	4	0	0	1	3	0	16	54	43	8	2	0	0	0	131	46-55	97
04:00 PM	2	0	0	0	0	3	11	42	26	13	2	1	0	0	100	46-55	68
05:00 PM	2	0	0	0	0	0	12	25	29	12	4	0	0	0	84	46-55	54
06:00 PM	2	0	0	0	0	2	5	11	14	2	2	0	0	0	38	46-55	25
07:00 PM	1	0	0	0	0	1	7	6	6	6	0	0	0	0	27	41-50	13
08:00 PM	1	0	0	0	0	0	4	7	2	1	1	0	0	0	16	41-50	11
09:00 PM	0	0	0	0	1	4	5	2	1	1	0	0	0	0	14	36-45	9
10:00 PM	0	0	0	0	0	0	5	3	0	0	0	0	0	0	8	41-50	8
11:00 PM	0	0	0	1	0	0	0	1	0	1	0	0	0	0	3	21-30	1
Day Total	36	0	0	2	10	26	165	507	426	129	25	4	1	0	1001		
Percent	2.7%	0%	0%	0.2%	0.8%	2%	12.4%	38.1%	32%	9.7%	1.9%	0.3%	0.1%	0%	1331	46-55	933
AM Peak	7:00 AM		12:00 AM				9:00 AM	10:00 AM	8:00 AM	9:00 AM	5:00 AM	7:00 AM			10:00 AM		
Volume	3	0	0	0	3	7	15	53	41	14	3	1	1	0	116		
PM Peak Volume	1:00 PM 7	12:00 PM 0	12:00 PM 0	3:00 PM 1	3:00 PM 3	9:00 PM 4	3:00 PM 16	3:00 PM 54	3:00 PM 43	4:00 PM 13	5:00 PM 4	1:00 PM 1	12:00 PM 0	12:00 PM 0	3:00 PM 131		

LOCATION: EB	SR 299 e	ast of Su	pan Rd													QC JOB	#: 16124307
SPECIFIC LOCA	TION:															DIR	ECTION: WB
CITY/STATE: SI	hasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Range	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	r acc speca	Pace
Grand Total	86	0	4	4	29	88	550	1553	1103	287	50	8	3	0	3765	46-55	2656
Percent	2.3%	0%	0.1%	0.1%	0.8%	2.3%	14.6%	41.2%	29.3%	7.6%	1.3%	0.2%	0.1%	0%	3703	40-33	2030
Cumulative Percent	2.3%	2.3%	2.4%	2.5%	3.3%	5.6%	20.2%	61.5%	90.8%	98.4%	99.7%	99.9%	100%	100%			
ADT 1255															Mea	an Speed(Avera Med	ntile: 54 MPH age): 48 MPH dian: 48 MPH ode: 48 MPH
Comments:														•			

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 4 2023

		Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 4 202
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	4	0	0	0	0	0	0	0	0	0	0	0	0	4
01:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	1	3
02:00 AM	0	2	0	0	0	0	0	1	0	0	0	0	0	0	3
03:00 AM	0	6	2	0	0	0	0	1	0	0	0	0	0	0	9
04:00 AM	0	6	2	0	1	0	0	0	0	0	1	0	0	0	10
05:00 AM	0	12	5	0	0	1	0	3	0	0	1	0	0	1	23
06:00 AM	0	25	3	0	1	0	0	3	0	0	0	0	0	1	33
07:00 AM	0	60	6	0	0	0	0	3	0	0	1	0	0	2	72
08:00 AM	0	55	21	0	1	0	0	9	0	0	0	0	0	0	86
09:00 AM	0	72	16	0	4	0	1	5	0	0	2	0	0	0	100
10:00 AM	0	67	16	0	3	0	0	7	0	0	3	0	1	3	100
11:00 AM	1	64	14	0	8	0	0	3	0	0	2	0	0	3	95
12:00 PM	0	58	15	0	2	0	0	6	0	0	5	0	0	1	87
01:00 PM	0	74	14	0	9	0	0	9	0	0	2	0	0	1	109
02:00 PM	0	65	13	1	6	0	0	7	0	0	0	0	1	1	94
03:00 PM	0	56	21	0	5	0	0	2	0	0	0	0	0	2	86
04:00 PM	0	61	13	0	7	0	0	3	1	0	0	0	0	2	87
05:00 PM	0	69	6	0	2	0	0	3	0	0	2	0	0	3	85
06:00 PM	0	40	4	0	1	0	0	1	0	0	0	0	0	1	47
07:00 PM	0	27	8	0	3	0	0	0	0	0	1	0	0	1	40
08:00 PM	0	16	0	0	1	0	0	2	0	0	0	0	0	0	19
09:00 PM	0	4	0	0	0	0	0	1	0	0	0	0	0	0	5
10:00 PM	0	5	0	0	0	0	0	1	0	0	0	0	0	1	7
11:00 PM	0	1	1	0	1	0	0	1	0	0	2	0	0	1	7
Day Total	1	851	180	11	55	1	1	71	1	0	22	0	2	25	1211
Percent	0.1%	70.3%	14.9%	0.1%	4.5%	0.1%	0.1%	5.9%	0.1%	0%	1.8%	0%	0.2%	2.1%	
ADT 1211															
AM Peak	11:00 AM	9:00 AM	8:00 AM	12:00 AM	11:00 AM	5:00 AM	9:00 AM	8:00 AM	12:00 AM	12:00 AM	10:00 AM	12:00 AM	10:00 AM	10:00 AM	9:00 AI
Volume	1	72	21	0	8	1	1	9	0	0	3	0	1	3	100
PM Peak	12:00 PM	1:00 PM	3:00 PM	2:00 PM	1:00 PM	12:00 PM	12:00 PM	1:00 PM	4:00 PM	12:00 PM	12:00 PM	12:00 PM	2:00 PM	5:00 PM	1:00 PI
Volume	0	74	21	1	9	0	0	9	1	0	5	0	1	3	109
mments:															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 5 2023

CITY/STATE: Sh	iasta, CA	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 5 2023
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	5	0	0	0	0	0	0	0	0	0	0	0	0	5
01:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
02:00 AM	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2
03:00 AM	0	2	0	0	0	0	0	1	0	0	0	0	0	0	3
04:00 AM	0	7	0	0	0	0	0	1	0	0	0	0	0	0	8
05:00 AM	0	19	1	0	4	0	0	5	0	0	1	0	0	0	30
06:00 AM	0	31	10	0	1	0	0	2	0	0	0	0	0	0	44
07:00 AM	0	51	15	0	0	0	0	2	0	0	0	0	0	3	71
08:00 AM	0	73	28	0	3	0	0	5	0	0	0	0	0	1	110
09:00 AM	1	66	18	0	2	0	0	5	0	0	6	0	0	0	98
10:00 AM	0	74	14	0	5	0	0	3	0	0	5	0	0	0	101
11:00 AM	0	70	9	0	4	0	0	7	0	0	3	0	0	3	96
12:00 PM	0	71	13	0	5	0	0	9	0	0	2	0	0	1	101
01:00 PM	0	60	16	0	10	0	0	4	1	0	1	0	0	3	95
02:00 PM	0	58	10	0	0	0	0	11	0	0	0	0	0	3	82
03:00 PM	0	73	12	0	3	0	0	5	0	0	1	0	0	1	95
04:00 PM	1	67	4	0	4	0	0	4	0	0	0	0	0	2	82
05:00 PM	0	64	11	0	5	0	0	5	0	0	1	0	0	2	88
06:00 PM	0	36	14	0	3	0	0	3	0	0	0	0	0	0	56
07:00 PM	0	16	2	0	0	0	0	1	0	0	0	0	0	2	21
08:00 PM	0	9	2	0	0	0	0	2	0	0	1	0	0	0	14
09:00 PM	0	8	0	0	1	0	0	1	0	0	2	0	0	0	12
10:00 PM	0	6	0	0	0	0	0	1	0	0	0	0	0	0	7
11:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
Day Total	2	866	179	0	50	0	0	80	1	0	24	0	0	21	1223
Percent	0.2%	70.8%	14.6%	0%	4.1%	0%	0%	6.5%	0.1%	0%	2%	0%	0%	1.7%	1225
ADT 1223															
AM Peak	9:00 AM	10:00 AM	8:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	9:00 AM	12:00 AM	12:00 AM	7:00 AM	8:00 AM
Volume	1	74	28	0	5	0	0	7	0	0	6	0	0	3	110
PM Peak	4:00 PM	3:00 PM	1:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	2:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM
Volume	1	73	16	0	10	0	0	11	1	0	2	0	0	3	101
omments:															
		222 4:55 DM											- 110/1-44		

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 6 2023

Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
		Trailers	Long		Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	_
12:00 AM	0	6	1	0	0	0	0	1	0	0	0	0	0	0	8
01:00 AM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
02:00 AM	0	2	2	0	1	0	0	1	0	0	0	0	0	1	7
03:00 AM	0	4	4	0	3	0	0	2	0	0	0	0	0	0	13
04:00 AM	0	6	0	0	1	0	0	1	0	0	0	0	0	0	8
05:00 AM	0	17	6	0	2	0	0	2	0	0	1	0	0	0	28
06:00 AM	0	24	7	0	6	0	0	5	0	0	0	0	0	0	42
07:00 AM	0	50	12	0	3	0	0	7	0	0	0	0	0	3	75
MA 00:80	0	75	15	0	8	0	0	7	0	0	0	0	0	2	107
09:00 AM	1	78	15	0	6	0	0	5	0	0	1	0	0	2	108
10:00 AM	0	79	16	0	9	0	0	7	0	0	2	0	0	3	116
11:00 AM	0	74	11	0	6	0	0	2	0	0	3	0	0	1	97
12:00 PM	0	62	13	0	6	0	0	6	0	0	1	0	0	1	89
01:00 PM	0	77	12	0	8	0	0	10	0	0	2	0	0	7	116
02:00 PM	0	68	13	0	4	0	0	4	0	0	1	0	0	3	93
03:00 PM	0	91	16	0	6	0	0	11	0	0	3	0	0	4	131
04:00 PM	0	65	16	0	5	0	0	8	0	0	4	0	0	2	100
05:00 PM	0	67	10	0	2	0	0	2	0	0	1	0	0	2	84
06:00 PM	0	27	6	0	1	0	0	1	0	0	1	0	0	2	38
07:00 PM	0	16	4	0	2	0	0	4	0	0	0	0	0	1	27
08:00 PM	0	11	1	0	2	0	0	1	0	0	0	0	0	1	16
09:00 PM	0	12	1	0	1	0	0	0	0	0	0	0	0	0	14
10:00 PM	0	6	0	0	2	0	0	0	0	0	0	0	0	0	8
11:00 PM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3
Day Total	1	922	182	0	84	0	0	87	0	0	20	0	0	35	1331
Percent	0.1%	69.3%	13.7%	0%	6.3%	0%	0%	6.5%	0%	0%	1.5%	0%	0%	2.6%	1331
ADT 1331															
AM Peak	9:00 AM	10:00 AM	10:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	7:00 AM	12:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	7:00 AM	10:00 AM
Volume	1	79	16	0	9	0	0	7	0	0	3	0	0	3	116
PM Peak	12:00 PM	3:00 PM	3:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	3:00 PM			4:00 PM	12:00 PM	12:00 PM	1:00 PM	3:00 PM
Volume	0	91	16	0	8	0	0	11	0	0	4	0	0	7	131
omments:	-	= =							-			-			

LOCATION: EB S		of Supan Ro	ł											-	#: 16124307
SPECIFIC LOCAT	-														ECTION: WB
CITY/STATE: Sha	ista, CA												DATE:	Apr 4 2023 -	- Apr 6 2023
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
Grand Total	4	2639	541	1	189	1	1	238	2	0	66	0	2	81	3765
Percent	0.1%	70.1%	14.4%	0%	5%	0%	0%	6.3%	0.1%	0%	1.8%	0%	0.1%	2.2%	3703
ADT 1255															
Comments:															

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		4	5	8		6			6	
01:00 AM		3	1	3		2			2	
02:00 AM		3	2	7		4			4	
03:00 AM		9	3	13		8			8	
04:00 AM		10	8	8		9			9	
05:00 AM		23	30	28		27			27	
06:00 AM		33	44	42		40			40	
07:00 AM		72	71	75		73			73	
08:00 AM		86	110	107		101			101	
09:00 AM		100	98	108		102			102	
10:00 AM		100	101	116		106			106	
11:00 AM		95	96	97		96			96	
12:00 PM		87	101	89		92			92	
01:00 PM		109	95	116		107			107	
02:00 PM		94	82	93		90			90	
03:00 PM		86	95	131		104			104	
04:00 PM		87	82	100		90			90	
05:00 PM		85	88	84		86			86	
06:00 PM		47	56	38		47		In.	47	
07:00 PM		40	21	27		29	\sim \sim \sim	411	29	
08:00 PM		19	14	16		16			16	
09:00 PM		5	12	14		10			10	
10:00 PM		7	7	8		7)MIM	UNII	7	
11:00 PM		7	1	3		4			4	
Day Total		1211	1223	1331		1256			1256	
% Weekday Average		96.4%	97.4%	106%						
% Week Average		96.4%	97.4%	106%		100%				
AM Peak		9:00 AM	8:00 AM	10:00 AM		10:00 AM			10:00 AM	
Volume		100	110	116		106			106	
PM Peak		1:00 PM	12:00 PM	3:00 PM		1:00 PM			1:00 PM	
Volume		109	101	131		107			107	

SPECIFIC LOCATION: CITY/STATE: Sharta CA QC JOB #: 16124308 **DIRECTION: EB**

CITY/STATE:	Shasta,	CA														DATE: Ap	pr 4 202
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	2	2	4	0	0	0	0	0	0	8	41-50	6
01:00 AM	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	46-55	2
02:00 AM	0	0	0	0	0	0	1	1	1	0	0	0	0	0	3	41-50	2
03:00 AM	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	46-55	2
04:00 AM	1	0	0	0	0	1	0	5	1	1	0	0	0	0	9	46-55	6
05:00 AM	0	0	0	0	1	5	7	10	1	2	0	0	0	0	26	41-50	17
06:00 AM	0	0	0	0	0	2	15	21	7	4	1	0	0	0	50	41-50	36
07:00 AM	1	0	0	0	6	9	16	32	10	1	0	0	0	0	75	41-50	48
08:00 AM	1	0	0	0	0	1	22	33	17	4	0	0	0	0	78	41-50	55
09:00 AM	1	0	0	0	0	5	25	32	16	3	0	0	0	0	82	41-50	57
10:00 AM	4	0	0	0	0	5	26	25	6	2	0	0	0	0	68	41-50	51
11:00 AM	1	0	0	0	1	13	19	37	16	6	1	0	0	0	94	41-50	56
12:00 PM	0	0	0	0	2	9	15	27	16	3	0	0	0	0	72	46-55	43
01:00 PM	1	0	0	0	0	10	25	30	13	5	0	0	0	0	84	41-50	55
02:00 PM	3	0	0	0	0	1	15	30	25	4	0	0	0	0	78	46-55	55
03:00 PM	4	0	0	0	0	4	15	25	41	6	2	0	0	0	97	46-55	66
04:00 PM	3	0	0	0	0	1	29	65	21	4	1	1	0	0	125	41-50	94
05:00 PM	2	0	0	0	0	1	20	40	25	2	0	0	0	0	90	46-55	65
06:00 PM	2	0	0	0	0	0	16	23	24	4	0	0	0	0	69	46-55	47
07:00 PM	0	0	0	0	0	0	10	13	9	1	1	0	0	0	34	41-50	23
08:00 PM	0	0	0	0	1	2	12	13	4	0	0	0	0	0	32	41-50	25
09:00 PM	0	0	0	1	1	5	8	7	3	2	1	0	0	0	28	41-50	15
10:00 PM	0	0	0	0	0	0	2	5	1	3	0	0	0	0	11	41-50	7
11:00 PM	0	0	0	0	1	0	2	2	1	1	0	0	0	0	7	41-50	4
Day Total	24	0	0	1	13	76	302	481	261	58	7	1	0	0	1001		
Percent	2%	0%	0%	0.1%	1.1%	6.2%	24.7%	39.3%	21.3%	4.7%	0.6%	0.1%	0%	0%	1224	41-50	783
AM Peak Volume	10:00 AM 4	12:00 AM 0	12:00 AM 0	12:00 AM 0	7:00 AM 6	11:00 AM 13	10:00 AM 26	11:00 AM 37	8:00 AM 17	11:00 AM 6	6:00 AM 1	12:00 AM 0	12:00 AM 0	12:00 AM 0	11:00 AM 94		
PM Peak Volume	3:00 PM 4	12:00 PM 0	12:00 PM 0	9:00 PM 1	12:00 PM 2	1:00 PM 10	4:00 PM 29	4:00 PM 65	3:00 PM 41	3:00 PM 6	3:00 PM 2	4:00 PM 1	12:00 PM 0	12:00 PM 0	4:00 PM 125		

SPECIFIC LOCATION:

QC JOB #: 16124308 **DIRECTION: EB**

CITY/STATE:	Snasta,															DATE: Ap	
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2	41-50	2
01:00 AM	0	0	0	1	0	1	2	0	0	0	0	0	0	0	4	36-45	3
02:00 AM	0	0	0	0	0	0	2	2	0	2	0	0	0	0	6	41-50	4
03:00 AM	0	0	0	0	0	1	0	0	1	1	0	0	0	0	3	51-60	2
04:00 AM	0	0	0	0	0	0	3	4	1	0	0	0	0	0	8	41-50	7
05:00 AM	2	0	0	0	0	0	6	6	5	2	0	0	0	0	21	41-50	12
06:00 AM	1	0	0	0	0	3	9	20	12	4	0	0	0	0	49	46-55	32
07:00 AM	2	0	0	1	7	7	14	23	10	1	0	0	0	0	65	41-50	37
08:00 AM	1	0	0	0	1	8	16	33	11	4	1	0	0	0	75	41-50	49
09:00 AM	2	0	0	0	1	2	19	45	14	1	0	0	0	0	84	41-50	64
10:00 AM	1	0	1	0	0	3	26	29	29	6	2	0	0	0	97	46-55	58
11:00 AM	0	0	0	0	0	8	21	25	11	5	0	0	0	0	70	41-50	46
12:00 PM	0	0	0	0	1	3	24	23	12	6	1	0	0	0	70	41-50	47
01:00 PM	1	0	0	0	0	0	13	43	17	10	0	0	0	0	84	46-55	60
02:00 PM	0	0	0	0	0	9	22	43	14	2	0	0	0	0	90	41-50	65
03:00 PM	2	0	0	0	0	3	33	36	21	7	1	0	0	0	103	41-50	69
04:00 PM	3	0	0	0	0	6	36	49	30	8	1	0	0	0	133	41-50	85
05:00 PM	3	0	0	0	0	1	21	36	31	11	1	0	0	0	104	46-55	67
06:00 PM	5	0	0	0	0	0	7	31	14	8	3	2	0	0	70	46-55	45
07:00 PM	2	0	0	0	0	0	5	16	9	3	1	0	0	0	36	46-55	25
08:00 PM	0	0	0	0	1	4	10	17	3	1	0	0	0	0	36	41-50	27
09:00 PM	1	0	0	0	1	5	7	6	6	0	0	0	0	0	26	41-50	13
10:00 PM	0	0	0	0	0	3	6	10	2	0	0	0	0	0	21	41-50	16
11:00 PM	1	0	0	0	1	2	2	3	2	1	0	0	0	0	12	43-52	5
Day Total	27	0	1	2	13	69	305	501	255	83	11	2	0	0	1269	41-50	806
Percent	2.1%	0%	0.1%	0.2%	1%	5.4%	24%	39.5%	20.1%	6.5%	0.9%	0.2%	0%	0%			
AM Peak Volume	5:00 AM 2	12:00 AM 0	10:00 AM 1	1:00 AM 1	7:00 AM 7	8:00 AM 8	10:00 AM 26	9:00 AM 45	10:00 AM 29	10:00 AM 6	10:00 AM 2	12:00 AM 0	12:00 AM 0	12:00 AM 0	10:00 AM 97		
PM Peak Volume	6:00 PM 5	12:00 PM 0	12:00 PM 0	12:00 PM 0	12:00 PM 1	2:00 PM 9	4:00 PM 36	4:00 PM 49	5:00 PM 31	5:00 PM 11	6:00 PM 3	6:00 PM 2	12:00 PM 0	12:00 PM 0	4:00 PM 133		

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124308 DIRECTION: EB

ATE: Apr 6 2023

CITY/STATE:				26	24	2.0		4.0					74	76		DATE: Ap	
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	0	2	6	3	0	0	0	0	0	11	46-55	9
01:00 AM	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	46-55	2
02:00 AM	0	0	0	0	0	0	4	3	0	2	0	0	0	0	9	41-50	7
03:00 AM	0	0	0	0	0	0	2	3	1	1	0	0	0	0	7	41-50	5
04:00 AM	0	0	0	0	0	2	1	3	2	0	1	0	0	0	9	46-55	5
05:00 AM	1	0	0	0	0	2	11	15	5	0	0	0	0	0	34	41-50	26
06:00 AM	0	0	0	0	1	1	14	16	13	2	0	0	0	0	47	41-50	30
07:00 AM	1	0	0	0	0	2	23	25	14	3	0	0	0	0	68	41-50	48
08:00 AM	0	0	0	0	0	1	19	39	17	5	0	0	0	0	81	41-50	58
09:00 AM	1	0	0	0	0	2	18	36	22	4	0	0	0	0	83	46-55	58
10:00 AM	3	0	0	0	0	3	11	29	22	5	2	0	0	0	75	46-55	51
11:00 AM	0	0	0	0	0	8	26	41	14	7	0	0	0	0	96	41-50	67
12:00 PM	1	0	0	0	0	7	23	35	16	6	0	0	0	0	88	41-50	58
01:00 PM	1	0	0	0	2	8	16	41	16	6	1	0	0	0	91	43-52	57
02:00 PM	0	0	0	0	0	5	19	44	27	4	0	0	0	0	99	46-55	71
03:00 PM	2	0	0	0	3	3	27	39	20	9	0	0	0	0	103	41-50	66
04:00 PM	2	0	0	0	0		48	40	18	6	1	1	0	0	103 123	41-50	88
05:00 PM	0	0	0	0	1	2	13	35	24	7	0	0	0	0	82	46-55	59
06:00 PM	0	0	0	0	0	1	14	35	19	2	0	0	0	0	71	46-55	54
07:00 PM	1	0	0	0	0	1	8	21	10	3	1	0	0	0	71 45	46-55	31
07:00 PM	0	0	0	0	1	5	8	14	3	0	2	0	0	0	33	41-50	22
09:00 PM	0	0	0	0	3	7	5	6	1	0	0	0	0	0	22	36-45	12
10:00 PM	0	0	0	0	0	1	5	1	4	0	0	0	0	0	11	39-48	6
11:00 PM	0	0	0	0	0	1	3	2	0	0	0	0	0	0	6	41-50	5
Day Total	13	0	0	0	11	69	320	530	272	72	8	1	0	0	0	41-50	3
Percent	1%	0%	0%	0%	0.8%	5.3%	24.7%	40.9%	21%	5.6%	0.6%	0.1%	0%	0%	1296	41-50	850
AM Peak		12:00 AM				11:00 AM					10:00 AM				11:00 AM		
Volume	3	0	0	0	1	8	26	41	22	7	2	0	0	0	96		
PM Peak Volume	3:00 PM 2	12:00 PM 0	12:00 PM 0	12:00 PM 0	3:00 PM 3	1:00 PM 8	4:00 PM 48	2:00 PM 44	2:00 PM 27	3:00 PM 9	8:00 PM 2	4:00 PM 1	12:00 PM 0	12:00 PM 0	4:00 PM 123		
volume	2	U	U	U	J	U	40	44	21	3		1	U	U	123		

SUMMARY - Tube Count - Speed Data

LOCATION: WE		west of B	unch Gra	ss Lookou	ıt Rd												#: 16124308
SPECIFIC LOCA																	RECTION: EB
CITY/STATE: Sh	nasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Range	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	Pace Speed	Pace
Grand Total	64	0	1	3	37	214	927	1512	788	213	26	4	0	0	2700	41.50	2420
Percent	1.7%	0%	0%	0.1%	1%	5.6%	24.5%	39.9%	20.8%	5.6%	0.7%	0.1%	0%	0%	3789	41-50	2439
Cumulative Percent	1.7%	1.7%	1.7%	1.8%	2.8%	8.4%	32.9%	72.8%	93.6%	99.2%	99.9%	100%	100%	100%			
ADT 1263	_														Me	an Speed(Avera Med	ntile: 52 MPH nge): 47 MPH dian: 47 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB

DATE: Apr 4 2023

CITY/STATE: Sr	iasta, CA														Apr 4 2023
Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
		Trailers	Long		Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	
12:00 AM	0	5	0	0	1	0	0	2	0	0	0	0	0	0	8
01:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
02:00 AM	0	2	0	0	1	0	0	0	0	0	0	0	0	0	3
03:00 AM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2
04:00 AM	0	6	0	0	0	0	0	2	0	0	0	0	0	1	9
05:00 AM	0	17	1	0	3	0	0	4	0	0	1	0	0	0	26
06:00 AM	0	26	21	0	1	0	0	2	0	0	0	0	0	0	50
07:00 AM	0	44	15	0	4	0	0	11	0	0	0	0	0	1	75
08:00 AM	0	57	10	0	6	0	0	3	1	0	0	0	0	1	78
09:00 AM	0	55	14	0	7	0	0	5	0	0	0	0	0	1	82
10:00 AM	0	36	16	0	3	0	0	9	0	0	0	0	0	4	68
11:00 AM	0	62	16	0	8	0	0	7	0	0	0	0	0	1	94
12:00 PM	0	48	6	0	7	0	0	10	0	0	1	0	0	0	72
01:00 PM	0	61	11	0	3	0	0	7	1	0	0	0	0	1	84
02:00 PM	0	52	9	0	7	0	0	5	0	0	2	0	0	3	78
03:00 PM	0	70	14	1	1	0	0	3	1	0	3	0	0	4	97
04:00 PM	0	98	18	0	1	0	0	5	0	0	0	0	0	3	125
05:00 PM	0	73	11	0	1	0	0	3	0	0	0	0	0	2	90
06:00 PM	0	53	9	0	2	0	0	3	0	0	0	0	0	2	69
07:00 PM	0	29	4	0	0	0	0	1	0	0	0	0	0	0	34
08:00 PM	0	25	5	0	1	0	0	1	0	0	0	0	0	0	32
09:00 PM	0	23	1	0	1	0	0	3	0	0	0	0	0	0	28
10:00 PM	0	11	0	0	0	0	0	0	0	0	0	0	0	0	11
11:00 PM	0	7	0	0	0	0	0	0	0	0	0	0	0	0	7
Day Total	0	863	181	1	59	0	0	86	3	0	7	0	0	24	1224
Percent	0%	70.5%	14.8%	0.1%	4.8%	0%	0%	7%	0.2%	0%	0.6%	0%	0%	2%	1224
ADT															
1224															
1224															
								<u> </u>							
AM Peak	12:00 AM	11:00 AM	6:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	7:00 AM	8:00 AM	12:00 AM	5:00 AM	12:00 AM	12:00 AM	10:00 AM	11:00 AN
Volume	0	62	21	0	8	0	0	11	1	0	1	0	0	4	94
PM Peak	12:00 PM	4:00 PM	4:00 PM	3:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	3:00 PM	12:00 PM	12:00 PM	3:00 PM	4:00 PM
Volume	0	98	18	1	7	0	0	10	1.00 F W	0	3.00 F W	0	0	4	125
comments:	ŭ	- 30	- 10	-	•	<u> </u>			-	J				•	123
minicino.															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB

DATE: Apr 5 2023

CITY/STATE: Sh	iasta, CA														Apr 5 2023
Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
Start Time	DIKCS	Trailers	Long	Duscs	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	0	1	0	1	0	0	0	0	0	0	0	0	0	2
01:00 AM	0	2	0	0	0	0	0	2	0	0	0	0	0	0	4
02:00 AM	0	4	0	0	1	0	0	1	0	0	0	0	0	0	6
03:00 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3
04:00 AM	0	6	1	0	1	0	0	0	0	0	0	0	0	0	8
05:00 AM	0	13	3	0	0	0	0	3	0	0	0	0	0	2	21
06:00 AM	0	21	14	0	6	0	0	6	0	0	1	0	0	1	49
07:00 AM	0	36	17	0	4	0	0	4	0	0	2	0	0	2	65
MA 00:80	0	46	11	0	9	0	0	8	0	0	0	0	0	1	75
09:00 AM	0	55	11	0	8	0	0	7	0	0	1	0	0	2	84
10:00 AM	0	66	12	0	6	1	0	11	0	0	0	0	0	1	97
11:00 AM	0	48	12	0	3	1	0	5	0	0	1	0	0	0	70
12:00 PM	0	50	10	0	4	0	0	5	0	0	1	0	0	0	70
01:00 PM	0	64	8	0	7	0	0	4	0	0	0	0	0	1	84
02:00 PM	0	74	8	0	3	0	0	5	0	0	0	0	0	0	90
03:00 PM	0	74	18	0	5	0	0	4	0	0	0	0	0	2	103
04:00 PM	0	98	20	0	2	0	0	8	0	0	2	0	0	3	133
05:00 PM	0	83	13	0	3	0	0	1	0	0	1	0	0	3	104
06:00 PM	0	53	8	0	2	0	0	2	0	0	0	0	0	5	70
07:00 PM	0	30	3	0	1	0	0	0	0	0	0	0	0	2	36
08:00 PM	0	30	3	0	0	0	0	3	0	0	0	0	0	0	36
09:00 PM	1	19	3	0	0	0	0	2	0	0	0	0	0	1	26
10:00 PM	0	20	1	0	0	0	0	0	0	0	0	0	0	0	21
11:00 PM	0	8	2	0	0	0	0	1	0	0	0	0	0	1	12
Day Total	1	903	179	0	66	2	0	82	0	0	9	0	0	27	1269
Percent	0.1%	71.2%	14.1%	0%	5.2%	0.2%	0%	6.5%	0%	0%	0.7%	0%	0%	2.1%	1203
ADT 1269															
AM Peak	12:00 AM	10:00 AM	7:00 AM	12:00 AM	8:00 AM	10:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	7:00 AM	12:00 AM	12:00 AM	5:00 AM	10:00 AM
Volume	0	66	17	0	9	1	0	11	0	0	2	0	0	2	97
PM Peak	9:00 PM	4:00 PM	4:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	6:00 PM	4:00 PM
		0.0	20	0	7	0	0	0	0	0	2	0	0	-	133
Volume	1	98	20	0	/	0	0	8	0	0	2	0	0	5	155

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB

DATE: Apr 6 2023

J. 1. 1, 0 1. 7. 1. 2. 3. 1.	iasta, CA				0410	2.4.1						C A I			Apr 6 2023
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	10	0	0	1	0	0	0	0	0	0	0	0	0	11
01:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
02:00 AM	0	5	2	0	1	0	0	1	0	0	0	0	0	0	9
03:00 AM	0	4	1	0	1	0	0	1	0	0	0	0	0	0	7
04:00 AM	0	5	2	0	0	0	0	2	0	0	0	0	0	0	9
05:00 AM	0	16	3	0	4	0	0	8	0	0	2	0	0	1	34
06:00 AM	0	22	16	0	4	0	0	5	0	0	0	0	0	0	47
07:00 AM	0	46	10	0	4	0	0	7	0	0	0	0	0	1	68
08:00 AM	0	55	12	0	3	0	0	11	0	0	0	0	0	0	81
09:00 AM	0	57	7	0	8	0	0	10	0	0	0	0	0	1	83
10:00 AM	0	50	6	0	6	0	0	10	0	0	0	0	0	3	75
11:00 AM	0	68	14	0	5	0	0	8	0	0	1	0	0	0	96
12:00 PM	0	59	12	0	7	0	0	8	1	0	0	0	0	1	88
01:00 PM	1	65	12	0	8	0	0	4	0	0	0	0	0	1	91
02:00 PM	0	84	9	1	4	0	0	0	0	0	1	0	0	0	99
03:00 PM	0	80	15	0	4	0	0	2	0	0	0	0	0	2	103
04:00 PM	0	96	16	0	3	0	0	6	0	0	0	0	0	2	123
05:00 PM	0	65	13	0	1	0	0	3	0	0	0	0	0	0	82
06:00 PM	0	61	7	0	2	0	0	1	0	0	0	0	0	0	71
07:00 PM	0	36	4	0	2	0	0	2	0	0	0	0	0	1	45
08:00 PM	1	28	2	0	2	0	0	0	0	0	0	0	0	0	33
09:00 PM	0	17	4	0	1	0	0	0	0	0	0	0	0	0	22
10:00 PM	0	7	3	0	0	0	0	1	0	0	0	0	0	0	11
11:00 PM	0	5	0	0	1	0	0	0	0	0	0	0	0	0	6
Day Total	2	943	170	1	72	0	0	90	1	0	4	0	0	13	1200
Percent	0.2%	72.8%	13.1%	0.1%	5.6%	0%	0%	6.9%	0.1%	0%	0.3%	0%	0%	1%	1296
ADT 1296															
AM Peak	12:00 AM	11:00 AM	6:00 AM	12:00 AM	9:00 AM	12:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	5:00 AM	12:00 AM	12:00 AM	10:00 AM	11:00 AN
Volume	0	68	16	0	8	0	0	11	0	0	2	0	0	3	96
PM Peak	1:00 PM	4:00 PM	4:00 PM	2:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	3:00 PM	4:00 PN
Volume	1	96	16	1	8	0	0	8	1	0	1	0	0	2	123
mments:															

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd QC JOB #: 16124308 SPECIFIC LOCATION: **DIRECTION: EB** CITY/STATE: Shasta, CA DATE: Apr 4 2023 - Apr 6 2023 Cars & 2 Axle <5 Axl 2 Axle 6 3 Axle 4 Axle 5 Axle >6 Axl <6 Axl 6 Axle >6 Axl Not Start Time **Bikes Buses** Total Trailers Long Tire Single Double Double Double Multi Multi Classed Single Multi **Grand Total** 3 2709 530 2 197 2 0 258 4 0 20 0 0 64 3789 0% Percent 0.1% 71.5% 14% 0.1% 5.2% 0.1% 0% 6.8% 0.1% 0% 0.5% 0% 1.7% ADT

Comments:

1263

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION:

DIRECTION: EB
DATE: Apr 4 2023 - Apr 6 2023

QC JOB #: 16124308

CITY/STATE: Shasta, CA

Start Time	Mon	Tue	Wed	Thu	Fri	Average Weekday	Sat	Sun	Average Week	Average Week Profile
		4 Apr 23	5 Apr 23	6 Apr 23		Hourly Traffic			Hourly Traffic	
12:00 AM		8	2	11		7			7	
01:00 AM		2	4	2		3			3	
02:00 AM		3	6	9		6			6	
03:00 AM		2	3	7		4			4	
04:00 AM		9	8	9		9			9	
05:00 AM		26	21	34		27			27	
06:00 AM		50	49	47		49			49	
07:00 AM		75	65	68		69			69	
08:00 AM		78	75	81		78			78	
09:00 AM		82	84	83		83			83	
10:00 AM		68	97	75		80			80	
11:00 AM		94	70	96		87			87	
12:00 PM		72	70	88		77			77	
01:00 PM		84	84	91		86	- 6		86	
02:00 PM		78	90	99		89			89	
03:00 PM		97	103	103		101			101	
04:00 PM		125	133	123		127			127	
05:00 PM		90	104	82		92			92	
06:00 PM		69	70	71		70			70	
07:00 PM		34	36	45		38	\sim		38	
08:00 PM		32	36	33		34			34	
09:00 PM		28	26	22		25			25	
10:00 PM		11	21	11		14	DIVIN		14	
11:00 PM		7	12	6		8			8	
Day Total		1224	1269	1296		1263			1263	
% Weekday		96.9%	100.5%	102.6%						
Average										
% Week Average		96.9%	100.5%	102.6%		100%				
AM Peak		11:00 AM	10:00 AM	11:00 AM		11:00 AM			11:00 AM	
Volume		94	97	96		87			87	
PM Peak		4:00 PM	4:00 PM	4:00 PM		4:00 PM			4:00 PM	
Volume		125	133	123		127			127	
omments:										-

SPECIFIC LOCATION:

CITY/STATE: Shasta, CA

QC JOB #: 16124308 DIRECTION: EB, WB

CITY/STATE:	Shasta,	CA														DATE: Ap	or 4 202
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	3	2	5	0	0	0	0	0	0	10	41-50	7
01:00 AM	0	0	0	0	0	0	0	2	3	0	0	0	0	0	5	46-55	5
02:00 AM	0	0	0	0	0	2	4	2	1	0	0	0	0	0	9	41-50	6
03:00 AM	1	0	0	0	0	0	0	3	4	1	0	0	0	0	9	46-55	7
04:00 AM	1	0	0	0	2	2	1	7	2	2	1	0	0	0	18	46-55	9
05:00 AM	0	0	2	0	1	6	13	22	5	4	0	0	0	0	53	41-50	35
06:00 AM	1	0	0	0	0	3	24	37	11	8	1	0	0	0	85	41-50	61
07:00 AM	1	0	0	0	6	10	24	66	32	3	1	1	0	0	144	46-55	98
08:00 AM	1	0	0	0	0	2	39	75	45	9	0	0	0	0	171	46-55	120
09:00 AM	2	0	0	0	0	10	46	74	39	6	1	1	0	0	179	41-50	120
10:00 AM	7	0	0	0	0	11	41	67	36	13	2	0	0	0	177	41-50	108
11:00 AM	2	0	0	0	1	15	31	79	43	14	1	0	0	0	186	46-55	122
12:00 PM	1	0	0	1	3	13	34	61	41	12	3	1	0	0	170	46-55	102
01:00 PM	1	0	0	0	0	11	41	77	38	9	2	0	0	0	179	41-50	118
02:00 PM	3	0	0	0	1	12	26	66	64	12	1	0	0	0	185	46-55	130
03:00 PM	4	0	0	0	0	4	26	58	66	20	2	0	0	0	180	46-55	124
04:00 PM	4	0	0	1	3	1	41	111	46	9	1	1	0	0	218	46-55	157
05:00 PM	3	0	0	0	0	3	33	67	43	10	3	0	0	0	162	46-55	110
06:00 PM	3	0	0	0	3	1	25	35	43	6	1	0	0	0	117	46-55	78
07:00 PM	0	0	0	0	0	1	15	29	23	4	4	0	0	0	76	46-55	52
08:00 PM	0	0	0	0	1	5	15	19	5	0	0	0	0	0	45	41-50	34
09:00 PM	0	0	0	1	1	7	10	7	4	3	1	0	0	0	34	36-45	17
10:00 PM	0	0	0	0	0	0	5	6	2	4	0	0	0	0	17	41-50	11
11:00 PM	0	0	0	1	1	0	3	5	1	2	0	0	0	0	13	41-50	8
Day Total	35	0	2	4	23	122	499	980	597	151	25	4	0	0			
Percent	1.4%	0%	0.1%	0.2%	0.9%	5%	20.4%	40.1%	24.4%	6.2%	1%	0.2%	0%	0%	2442	46-55	1577
AM Peak	10:00 AM 7	12:00 AM 0	5:00 AM 2	12:00 AM 0	7:00 AM 6	11:00 AM 15	9:00 AM 46	11:00 AM 79	8:00 AM 45	11:00 AM 14	10:00 AM 2		12:00 AM 0	12:00 AM 0	11:00 AM 186		
Volume												1					
PM Peak Volume	3:00 PM 4	12:00 PM 0	12:00 PM 0	12:00 PM 1	12:00 PM 3	12:00 PM 13	1:00 PM 41	4:00 PM 111	3:00 PM 66	3:00 PM 20	7:00 PM 4	12:00 PM 1	12:00 PM 0	12:00 PM 0	4:00 PM 218		

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124308 **DIRECTION:** EB, WB DΔTF: Δnr 5 2023

CITY/STATE:	Shasta,	CA														DATE: A	or 5 202
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numb
otait iiiie	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	1 ace speed	in Pac
12:00 AM	0	0	0	0	0	0	3	4	0	0	0	0	0	0	7	41-50	7
01:00 AM	0	0	0	1	0	1	2	1	0	0	0	0	0	0	5	41-50	3
02:00 AM	0	0	0	0	0	1	2	4	0	2	0	0	0	0	9	41-50	6
03:00 AM	0	0	0	0	0	1	0	1	2	2	0	0	0	0	6	51-60	4
04:00 AM	0	0	0	0	0	1	3	8	3	0	0	0	0	0	15	41-50	11
05:00 AM	2	0	0	2	0	1	12	14	15	5	0	1	0	0	52	46-55	29
06:00 AM	4	0	0	0	0	4	11	42	25	11	1	0	0	0	98	46-55	67
07:00 AM	5	0	0	1	7	8	21	39	34	14	2	1	1	0	133	46-55	73
MA 00:80	2	0	0	0	1	8	35	83	42	17	2	0	0	0	190	46-55	125
09:00 AM	3	0	1	0	1	3	29	77	50	8	2	2	0	0	176	46-55	127
10:00 AM	4	0	1	0	0	4	35	82	59	15	4	0	0	0	204	46-55	141
11:00 AM	3	0	0	0	1	15	42	56	33	15	4	1	0	0	170	41-50	98
12:00 PM	1	0	0	0	4	6	36	59	44	19	2	0	0	0	171	46-55	103
01:00 PM	4	0	0	0	1	2	40	87	35	15	1	0	0	0	185	41-50	127
02:00 PM	2	0	0	0	1	11	42	71	35	4	2	0	0	0	168	41-50	113
03:00 PM	3	0	0	0	0	9	54	71	48	17	1	0	1	0	204	41-50	125
04:00 PM	5	0	0	0	2	8	47	88	43	13	1	0	0	0	207	41-50	135
05:00 PM	5	0	0	0	0	5	39	68	62	16	1	0	0	0	196	46-55	130
06:00 PM	6	0	0	0	0	1	10	58	28	11	4	2	0	0	120	46-55	86
07:00 PM	4	0	0	0	0	3	9	23	15	4	1	0	0	0	59	46-55	38
08:00 PM	0	0	0	0	2	5	12	22	5	1	0	0	0	0	47	41-50	34
09:00 PM	2	0	0	0	1	9	8	11	8	0	0	0	0	0	39	43-52	19
10:00 PM	0	0	0	0	0	3	8	13	5	0	0	0	0	0	29	41-50	21
11:00 PM	1	0	0	0	2	2	3	5	2	1	0	0	0	0	16	41-50	8
Day Total	56	0	2	4	23	111	503	987	593	190	28	7	2	0	2506	46-55	1580
Percent	2.2%	0%	0.1%	0.2%	0.9%	4.4%	20.1%	39.4%	23.7%	7.6%	1.1%	0.3%	0.1%	0%		40 33	1300
AM Peak Volume	7:00 AM 5	12:00 AM 0	9:00 AM 1	5:00 AM 2	7:00 AM 7	11:00 AM 15	11:00 AM 42	8:00 AM 83	10:00 AM 59	8:00 AM 17	10:00 AM 4	9:00 AM 2	7:00 AM 1	12:00 AM 0	10:00 AM 204		
PM Peak Volume	6:00 PM 6	12:00 PM 0	12:00 PM 0	12:00 PM 0	12:00 PM 4	2:00 PM 11	3:00 PM 54	4:00 PM 88	5:00 PM 62	12:00 PM 19	6:00 PM 4	6:00 PM 2	3:00 PM 1	12:00 PM 0	4:00 PM 207		

SPECIFIC LOCATION:

DIRECTION: EB, WB DATE: Apr 6 2023

QC JOB #: 16124308

CITY/STATE: Shasta, CA

Number Start Time Total Pace Speed in Pace 12:00 AM 41-50 01:00 AM 41-50 02:00 AM 41-50 03:00 AM 41-50 04:00 AM 46-55 05:00 AM 41-50 06:00 AM 46-55 07:00 AM 46-55 08:00 AM O 46-55 09:00 AM 46-55 10:00 AM 46-55 11:00 AM 41-50 12:00 PM 46-55 01:00 PM 46-55 02:00 PM 46-55 03:00 PM 46-55 04:00 PM 41-50 05:00 PM 46-55 06:00 PM O 46-55 07:00 PM 46-55 08:00 PM 41-50 09:00 PM 36-45 10:00 PM 41-50 11:00 PM 41-50 O **Day Total** 46-55 0% 0% 0% 0.6% 4.4% 19.8% 24.3% 1.7% 0% 0% Percent 1.8% 39.1% 8.1% 0.2%

8:00 AM

3:00 PM

4:00 PM

9:00 AM

3:00 PM

10:00 AM

3:00 PM

7:00 AM

5:00 PM

4:00 PM

5:00 AM 12:00 AM 12:00 AM

6:00 PM 12:00 PM

Volume
Comments:

AM Peak

Volume

PM Peak

4:00 PM

12:00 PM

12:00 PM

10:00 AM 12:00 AM 12:00 AM 12:00 AM 10:00 AM 11:00 AM 11:00 AM

2:00 PM

3:00 PM

3:00 PM

8:00 AM

3:00 PM

LOCATION: WE		west of B	unch Gra	ss Lookou	t Rd												#: 16124308 ION: EB, WB
SPECIFIC LOCA CITY/STATE: SI															DAT	E: Apr 4 2023	,
Speed Range	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Number in Pace
Grand Total Percent	138 1.8%	0 0%	4 0.1%	9 0.1%	61 0.8%	349 4.6%	1522 20.1%	2997 39.5%	1830 24.1%	553 7.3%	98 1.3%	15 0.2%	3 0%	0 0%	7579	46-55	4827
Cumulative Percent	1.8%	1.8%	1.9%	2%	2.8%	7.4%	27.5%	67%	91.2%	98.5%	99.8%	100%	100%	100%			
ADT 2526	_														Mea	an Speed(Avera Med	ntile: 53 MPI age): 47 MPI dian: 47 MPI ode: 48 MPI
Comments:																	

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB, WB DATE: Apr 4 2023

	lasta, CA	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 4 202
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	7	0	0	1	0	0	2	0	0	0	0	0	0	10
01:00 AM	0	5	0	0	0	0	0	0	0	0	0	0	0	0	5
02:00 AM	0	5	1	0	1	0	0	2	0	0	0	0	0	0	9
03:00 AM	0	6	1	0	1	0	0	0	0	0	0	0	0	1	9
04:00 AM	0	10	3	0	1	0	0	2	0	0	1	0	0	1	18
05:00 AM	0	34	6	0	3	1	0	7	0	0	2	0	0	0	53
06:00 AM	0	50	27	0	2	0	0	5	0	0	0	0	0	1	85
07:00 AM	0	100	24	0	4	0	0	14	1	0	0	0	0	1	144
08:00 AM	0	119	31	0	7	0	0	12	1	0	0	0	0	1	171
09:00 AM	0	121	32	0	11	1	0	10	0	0	2	0	0	2	179
10:00 AM	0	106	36	0	7	0	0	17	0	0	4	0	0	7	177
11:00 AM	0	121	35	0	15	0	0	11	0	0	2	0	0	2	186
12:00 PM	0	112	25	0	13	0	0	16	0	0	4	0	0	0	170
01:00 PM	0	123	27	0	10	0	0	15	1	0	2	0	0	1	179
02:00 PM	0	122	31	0	13	1	0	13	0	0	2	0	0	3	185
03:00 PM	0	126	36	1	5	0	0	4	1	0	3	0	0	4	180
04:00 PM	0	162	31	0	10	0	0	10	0	0	1	0	0	4	218
05:00 PM	0	134	17	0	1	0	0	5	0	0	2	0	0	3	162
06:00 PM	0	92	14	0	3	0	0	4	0	0	1	0	0	3	117
07:00 PM	0	57	14	0	4	0	0	1	0	0	0	0	0	0	76
08:00 PM	0	36	5	0	1	0	0	3	0	0	0	0	0	0	45
09:00 PM	0	28	1	0	1	0	0	4	0	0	0	0	0	0	34
10:00 PM	0	14	2	0	0	0	0	1	0	0	0	0	0	0	17
11:00 PM	0	9	0	0	1	0	0	1	0	0	2	0	0	0	13
Day Total	0	1699	399	11	115	3	0	159	4	0	28	0	0	34	2442
Percent	0%	69.6%	16.3%	0%	4.7%	0.1%	0%	6.5%	0.2%	0%	1.1%	0%	0%	1.4%	2442
ADT 2442															
AM Peak	12:00 AM	9:00 AM	10:00 AM	12:00 AM	11:00 AM	5:00 AM	12:00 AM	10:00 AM	7:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	10:00 AM	11:00 A
Volume	0	121	36	0	15	1	0	17	1	0	4	0	0	7	186
PM Peak	12:00 PM	4:00 PM	3:00 PM	3:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	3:00 PM	4:00 PN
Volume	0	162	36	1	13	1	0	16	1	0	4	0	0	4	218
mments:															

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124308 DIRECTION: EB, WB DATE: Apr 5 2023

	asta, CA	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 5 202
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	5	1	0	1	0	0	0	0	0	0	0	0	0	7
01:00 AM	0	2	0	0	0	0	0	3	0	0	0	0	0	0	5
02:00 AM	0	4	0	0	1	0	0	3	0	0	1	0	0	0	9
03:00 AM	0	5	1	0	0	0	0	0	0	0	0	0	0	0	6
04:00 AM	0	9	4	0	1	0	0	1	0	0	0	0	0	0	15
05:00 AM	0	31	8	0	0	1	0	8	0	0	2	0	0	2	52
06:00 AM	0	51	27	0	7	0	0	8	0	0	1	0	0	4	98
07:00 AM	0	75	40	0	5	0	0	6	0	0	2	0	0	5	133
08:00 AM	0	122	40	0	10	0	0	13	0	0	3	0	0	2	190
09:00 AM	0	111	33	0	10	1	0	14	0	0	4	0	0	3	176
10:00 AM	0	136	30	0	13	1	0	13	0	0	7	0	0	4	204
11:00 AM	0	115	24	0	7	1	0	15	0	0	5	0	0	3	170
12:00 PM	0	121	26	0	9	0	0	12	0	0	2	0	0	1	171
01:00 PM	0	125	26	0	16	0	0	14	0	0	0	0	0	4	185
02:00 PM	0	128	20	0	5	0	0	13	0	0	0	0	0	2	168
03:00 PM	0	150	34	0	8	0	0	8	0	0	1	0	0	3	204
04:00 PM	0	157	24	0	8	0	0	11	0	0	2	0	0	5	207
05:00 PM	0	151	24	0	7	0	0	8	0	0	1	0	0	5	196
06:00 PM	0	86	22	0	2	0	0	4	0	0	0	0	0	6	120
07:00 PM	0	43	9	0	1	0	0	1	0	0	1	0	0	4	59
08:00 PM	0	38	4	0	0	0	0	5	0	0	0	0	0	0	47
09:00 PM	1	26	4	0	1	0	0	3	0	0	2	0	0	2	39
10:00 PM	0	26	2	0	0	0	0	1	0	0	0	0	0	0	29
11:00 PM	0	10	2	0	1	0	0	2	0	0	0	0	0	1	16
Day Total	1	1727	405	0	113	4	0	166	0	0	34	0	0	56	2506
Percent	0%	68.9%	16.2%	0%	4.5%	0.2%	0%	6.6%	0%	0%	1.4%	0%	0%	2.2%	2500
ADT 2506															
AM Peak	12:00 AM	10:00 AM	7:00 AM	12:00 AM		5:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	7:00 AM	10:00 A
Volume	0	136	40	0	13	1	0	15	0	0	7	0	0	5	204
PM Peak	9:00 PM	4:00 PM	3:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	6:00 PM	4:00 PI
Volume	1	157	34	0	16	0	0	14	0	0	2	0	0	6	207

SPECIFIC LOCATION:

QC JOB #: 16124308 DIRECTION: EB, WB

DATE: Apr 6 2023

CITY/STATE: Sh	iasta, CA														Apr 6 202
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	14	1	0	1	0	0	1	0	0	0	0	0	0	17
01:00 AM	0	4	1	0	0	0	0	0	0	0	0	0	0	0	5
02:00 AM	0	8	3	0	2	0	0	3	0	0	0	0	0	0	16
03:00 AM	0	10	6	0	4	0	0	3	0	0	0	0	0	0	23
04:00 AM	0	8	2	0	0	0	0	3	0	0	0	0	0	1	14
05:00 AM	0	35	9	0	6	0	0	10	0	0	3	0	0	1	64
06:00 AM	0	46	28	0	10	0	0	12	0	0	0	0	0	1	97
07:00 AM	0	89	26	0	8	0	0	12	0	0	0	0	0	1	136
08:00 AM	0	125	38	0	12	0	0	19	0	0	0	0	0	2	196
09:00 AM	0	129	23	0	15	0	0	17	0	0	1	0	0	5	190
10:00 AM	0	126	23	0	13	0	0	16	0	0	2	0	0	6	186
11:00 AM	0	138	23	0	14	0	0	10	0	0	3	0	0	4	192
12:00 PM	0	127	22	0	13	0	0	16	1	0	1	0	0	5	185
01:00 PM	1	137	29	0	12	0	0	16	0	0	2	0	0	2	199
02:00 PM	0	155	24	1	10	0	0	2	0	0	2	0	0	4	198
03:00 PM	0	167	39	0	11	0	0	13	0	0	3	0	0	3	236
04:00 PM	0	160	33	1	5	0	0	13	0	0	4	0	0	6	222
05:00 PM	0	131	21	0	3	0	0	5	0	0	1	0	0	1	162
06:00 PM	0	85	18	0	3	0	0	4	0	0	1	0	0	1	112
07:00 PM	0	52	6	0	4	0	0	5	0	0	0	0	0	2	69
08:00 PM	1	39	2	0	3	0	0	2	0	0	0	0	0	1	48
09:00 PM	0	30	5	0	2	0	0	1	0	0	0	0	0	1	39
10:00 PM	0	10	4	0	1	0	0	1	0	0	0	0	0	0	16
11:00 PM	0	8	0	0	1	0	0	0	0	0	0	0	0	0	9
Day Total	2	1833	386	2	153	0	0	184	1	0	23	0	0	47	2624
Percent	0.1%	69.7%	14.7%	0.1%	5.8%	0%	0%	7%	0%	0%	0.9%	0%	0%	1.8%	2631
ADT 2631															
AM Peak	12:00 AM	11:00 AM	8:00 AM	12:00 AM	9:00 AM	12:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	5:00 AM	12:00 AM	12:00 AM	10:00 AM	1A 00:8
Volume	0	138	38	0	15	0	0	19	0	0	3	0	0	6	196
PM Peak	1:00 PM	3:00 PM	3:00 PM	2:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	4:00 PM	3:00 PI
Volume	1	167	39	1	13	0	0	16	1	0	4	0	0	6	236
mments:															

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd

SPECIFIC LOCATION:

CITY/STATE: Shasta, CA

Start Time

Bikes

Cars & 2 Axle

Trailers

Long

DIRECTION: EB, WB

Axle

4 Axle

5 Axl

5 Axle

5 Axl

5 Axle

5 Axl

5 Oxl

5 Oxl

6 Oxl

6 Oxl

7 Oxl

8 Oxl

8 Oxl

8 Oxl

8 Oxl

8 Oxl

9 Oxl

9 Oxl

1 O

Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
Grand Total Percent	3 0%	5259 69.4%	1190 15.7%	3 0%	381 5%	7 0.1%	0 0%	509 6.7%	5 0.1%	0 0%	85 1.1%	0 0%	0 0%	137 1.8%	7579
ADT 2526															
Comments:															

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB, WB DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		10	7	17		11			11	
01:00 AM		5	5	5		5			5	
02:00 AM		9	9	16		11			11	
03:00 AM		9	6	23		13			13	
04:00 AM		18	15	14		16			16	
05:00 AM		53	52	64		56			56	
06:00 AM		85	98	97		93			93	
07:00 AM		144	133	136		138			138	
08:00 AM		171	190	196		186			186	
09:00 AM		179	176	190		182			182	
10:00 AM		177	204	186		189			189	
11:00 AM		186	170	192		183			183	
12:00 PM		170	171	185		175			175	
01:00 PM		179	185	199		188			188	
02:00 PM		185	168	198		184			184	
03:00 PM		180	204	236		207			207	
04:00 PM		218	207	222		216			216	
05:00 PM		162	196	162		173			173	
06:00 PM		117	120	112		116		In.	116	
07:00 PM		76	59	69		68	\sim \sim \sim	411	68	
08:00 PM		45	47	48		47			47	
09:00 PM		34	39	39		37			37	
10:00 PM		17	29	16		21	əmin	UNII	21	
11:00 PM		13	16	9		13			13	
Day Total		2442	2506	2631		2528			2528	
% Weekday Average		96.6%	99.1%	104.1%						
% Week Average		96.6%	99.1%	104.1%		100%				
AM Peak		11:00 AM	10:00 AM	8:00 AM		10:00 AM			10:00 AM	
Volume		186	204	196		189			189	
PM Peak		4:00 PM	4:00 PM	3:00 PM		4:00 PM			4:00 PM	
Volume		218	207	236		216			216	

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd

SPECIFIC LOCATION:

DIRECTION: WB

DIRECTION: WB

CITY/STATE: Shasta, CA DATE: Apr 4 20

CITY/STATE:	Shasta,	CA														DATE: Ap	or 4 2023
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
Start Time	15	20	25	30	35	40	45	50	55	60	65	70	75	999	iotai	1 ace speed	in Pac
12:00 AM	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	31-40	1
01:00 AM	0	0	0	0	0	0	0	1	2	0	0	0	0	0	3	46-55	3
02:00 AM	0	0	0	0	0	2	3	1	0	0	0	0	0	0	6	36-45	5
03:00 AM	1	0	0	0	0	0	0	3	2	1	0	0	0	0	7	46-55	5
04:00 AM	0	0	0	0	2	1	1	2	1	1	1	0	0	0	9	31-40	3
05:00 AM	0	0	2	0	0	1	6	12	4	2	0	0	0	0	27	41-50	18
06:00 AM	1	0	0	0	0	1	9	16	4	4	0	0	0	0	35	41-50	25
07:00 AM	0	0	0	0	0	1	8	34	22	2	1	1	0	0	69	46-55	56
08:00 AM	0	0	0	0	0	1	17	42	28	5	0	0	0	0	93	46-55	70
09:00 AM	1	0	0	0	0	5	21	42	23	3	1	1	0	0	97	46-55	65
10:00 AM	3	0	0	0	0	6	15	42	30	11	2	0	0	0	109	46-55	72
11:00 AM	1	0	0	0	0	2	12	42	27	8	0	0	0	0	92	46-55	69
12:00 PM	1	0	0	1	1	4	19	34	25	9	3	1	0	0	98	46-55	59
01:00 PM	0	0	0	0	0	1	16	47	25	4	2	0	0	0	95	46-55	72
02:00 PM	0	0	0	0	1	11	11	36	39	8	1	0	0	0	107	46-55	75
03:00 PM	0	0	0	0	0	0	11	33	25	14	0	0	0	0	83	46-55	58
04:00 PM	1	0	0	1	3	0	12	46	25	5	0	0	0	0	93	46-55	71
05:00 PM	1	0	0	0	0	2	13	27	18	8	3	0	0	0	72	46-55	45
06:00 PM	1	0	0	0	3	1	9	12	19	2	1	0	0	0	48	46-55	31
07:00 PM	0	0	0	0	0	1	5	16	14	3	3	0	0	0	42	46-55	30
08:00 PM	0	0	0	0	0	3	3	6	_ 1	0	0	0	0	0	13	41-50	9
09:00 PM	0	0	0	0	0	2	2	0	1	1	0	0	0	0	6	36-45	4
10:00 PM	0	0	0	0	0	0	3	1	1	1	0	0	0	0	6	41-50	4
11:00 PM	0	0	0	1	0	0	1	3	0	1	0	0	0	0	6	41-50	4
Day Total	11	0	2	3	10	46	197	499	336	93	18	3	0	0	1218	46-55	835
Percent	0.9%	0%	0.2%	0.2%	0.8%	3.8%	16.2%	41%	27.6%	7.6%	1.5%	0.2%	0%	0%	1210	40-33	033
AM Peak	10:00 AM	12:00 AM	5:00 AM	12:00 AM	4:00 AM	10:00 AM	9:00 AM	8:00 AM	10:00 AM	10:00 AM	10:00 AM	7:00 AM	12:00 AM	12:00 AM	10:00 AM		
Volume	3	0	2	0	2	6	21	42	30	11	2	1	0	0	109		
PM Peak	12:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PM	2:00 PM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	2:00 PM		
Volume	1	0	0	1	3	11	19	47	39	14	3	1	0	0	107		
Comments:																	

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd QC JOB #: 16124308 SPECIFIC LOCATION: **DIRECTION: WB**

CITY/STATE:																DATE: Ap	
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	0	2	3	0	0	0	0	0	0	5	41-50	5
01:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	41-50	1
02:00 AM	0	0	0	0	0	1	0	2	0	0	0	0	0	0	3	41-50	2
03:00 AM	0	0	0	0	0	0	0	1	1	1	0	0	0	0	3	46-55	2
04:00 AM	0	0	0	0	0	1	0	4	2	0	0	0	0	0	7	46-55	6
05:00 AM	0	0	0	2	0	1	6	8	10	3	0	1	0	0	31	46-55	18
06:00 AM	3	0	0	0	0	1	2	22	13	7	1	0	0	0	49	46-55	35
07:00 AM	3	0	0	0	0	1	7	16	24	13	2	1	1	0	68	46-55	40
08:00 AM	1	0	0	0	0	0	19	50	31	13	1	0	0	0	115	46-55	81
09:00 AM	1	0	1	0	0	1	10	32	36	7	2	2	0	0	92	46-55	68
10:00 AM	3	0	0	0	0	1	9	53	30	9	2	0	0	0	107	46-55	83
11:00 AM	3	0	0	0	1	7	21	31	22	10	4	1	0	0	100	46-55	53
12:00 PM	1	0	0	0	3	3	12	36	32	13	1	0	0	0	101	46-55	68
01:00 PM	3	0	0	0	1	2	27	44	18	5	1	0	0	0	101	41-50	71
02:00 PM	2	0	0	0	1	2	20	28	21	2	2	0	0	0	78	46-55	49
03:00 PM	1	0	0	0	0	6	21	35	27	10	0	0	1	0	101	46-55	62
04:00 PM	2	0	0	0	2	2	11	39	13	5	0	0	0	0	74	46-55	52
05:00 PM	2	0	0	0	0	4	18	32	31	5	0	0	0	0	92	46-55	63
06:00 PM	1	0	0	0	0	1	3	27	14	3	1	0	0	0	50	46-55	41
07:00 PM	2	0	0	0	0	3	4	7	6	1	0	0	0	0	23	46-55	13
08:00 PM	0	0	0	0	1	1	2	5	2	0	0	0	0	0	11	45-54	7
09:00 PM	1	0	0	0	0	4	1	5	2	0	0	0	0	0	13	46-55	7
10:00 PM	0	0	0	0	0	0	2	3	3	0	0	0	0	0	8	46-55	6
11:00 PM	0	0	0	0	1	0	1	2	0	0	0	0	0	0	4	41-50	3
Day Total	29	0	1	2	10	42	198	486	338	107	17	5	2	0			_
Percent	2.3%	0%	0.1%	0.2%	0.8%	3.4%	16%	39.3%	27.3%	8.6%	1.4%	0.4%	0.2%	0%	1237	46-55	824
AM Peak Volume	6:00 AM 3	12:00 AM 0	9:00 AM 1	5:00 AM 2	11:00 AM 1	11:00 AM 7	11:00 AM 21	10:00 AM 53	9:00 AM 36	7:00 AM 13	11:00 AM 4	9:00 AM 2	7:00 AM 1	12:00 AM 0	8:00 AM 115		
PM Peak Volume	1:00 PM 3	12:00 PM 0	12:00 PM 0	12:00 PM 0	12:00 PM 3	3:00 PM 6	1:00 PM 27	1:00 PM 44	12:00 PM 32	12:00 PM 13	2:00 PM 2	12:00 PM 0	3:00 PM 1	12:00 PM 0	12:00 PM 101		

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd

SPECIFIC LOCATION:

DIRECTION: WB

SPECIFIC LOCATION:

DIRECTION: WB

CITY/STATE: Shasta, CA

DATE: Apr 6 2023

Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
otare riine	15	20	25	30	35	40	45	50	55	60	65	70	75	999	10ta	r dec speed	in Pac
12:00 AM	0	0	0	0	0	3	1	2	0	0	0	0	0	0	6	36-45	4
01:00 AM	0	0	0	0	0	0	2	1	0	0	0	0	0	0	3	41-50	3
02:00 AM	0	0	0	0	0	0	1	3	3	0	0	0	0	0	7	46-55	6
03:00 AM	0	0	0	0	0	0	4	4	2	4	2	0	0	0	16	41-50	8
04:00 AM	1	0	0	0	0	2	0	1	0	0	1	0	0	0	5	31-40	2
05:00 AM	0	0	0	0	0	0	3	12	8	4	2	1	0	0	30	46-55	20
06:00 AM	1	0	0	0	0	0	7	9	16	15	2	0	0	0	50	51-60	31
07:00 AM	0	0	0	0	0	0	4	26	20	12	6	0	0	0	68	46-55	46
08:00 AM	2	0	0	0	0	3	14	46	36	10	4	0	0	0	115	46-55	82
09:00 AM	4	0	0	0	0	3	15	38	34	12	1	0	0	0	107	46-55	72
10:00 AM	3	0	0	0	2	2	17	43	29	13	2	0	0	0	111	46-55	72
11:00 AM	4	0	0	0	0	1	17	34	29	10	1	0	0	0	96	46-55	63
12:00 PM	4	0	0	0	0	2	16	42	25	7	1	0	0	0	97	46-55	67
01:00 PM	1	0	0	0	0	2	22	43	27	12	1	0	0	0	108	46-55	70
02:00 PM	4	0	0	1	0	4	17	36	31	5	1	0	0	0	99	46-55	67
03:00 PM	1	0	0	0	0	10	14	53	39	14	2	0	0	0	133	46-55	92
04:00 PM	4	0	0	0	0	5	15	42	21	8	3	1	0	0	99	46-55	63
05:00 PM	1	0	0	0	0	2	9	35	23	4	6	0	0	0	80	46-55	58
06:00 PM	1	0	0	0	0	1	2	17	11	7	1	0	1	0	41	46-55	28
07:00 PM	1	0	0	0	1	2	6	5	7	2	0	0	0	0	24	46-55	12
08:00 PM	1	0	0	0	0	1	5	4	2	0	1	1	0	0	15	41-50	9
09:00 PM	1	0	0	0	0	4	7	2	2	1	0	0	0	0	17	36-45	11
10:00 PM	0	0	0	0	0	0	2	1	2	0	0	0	0	0	5	41-50	3
11:00 PM	0	0	0	0	1	0	0	1	1	0	0	0	0	0	3	46-55	2
Day Total	34	0	0	1	4	47	200	500	368	140	37	3	1	0	1225	46.55	0.00
Percent	2.5%	0%	0%	0.1%	0.3%	3.5%	15%	37.5%	27.6%	10.5%	2.8%	0.2%	0.1%	0%	1335	46-55	868
AM Peak Volume	9:00 AM 4	12:00 AM 0	12:00 AM 0	12:00 AM 0	10:00 AM 2	12:00 AM 3	10:00 AM 17	8:00 AM 46	8:00 AM 36	6:00 AM 15	7:00 AM 6	5:00 AM 1	12:00 AM 0	12:00 AM 0	8:00 AM 115		
PM Peak Volume	12:00 PM 4	12:00 PM 0	12:00 PM 0	2:00 PM 1	7:00 PM 1	3:00 PM 10	1:00 PM 22	3:00 PM 53	3:00 PM 39	3:00 PM 14	5:00 PM 6	4:00 PM 1	6:00 PM 1	12:00 PM 0	3:00 PM 133		

SUMMARY - Tube Count - Speed Data

LOCATION: WE	3 SR 299	west of E	Bunch Gra	ss Lookou	ıt Rd												#: 16124308
SPECIFIC LOCA	TION:															DIR	ECTION: WB
CITY/STATE: Sh	iasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Kange	15	20	25	30	35	40	45	50	55	60	65	70	75	999	TOtal	Pace Speed	Pace
Grand Total	74	0	3	6	24	135	595	1485	1042	340	72	11	3	0	2700	46.55	2527
Percent	2%	0%	0.1%	0.2%	0.6%	3.6%	15.7%	39.2%	27.5%	9%	1.9%	0.3%	0.1%	0%	3790	46-55	2527
Cumulative Percent	2%	2%	2%	2.2%	2.8%	6.4%	22.1%	61.3%	88.8%	97.7%	99.6%	99.9%	100%	100%			
ADT 1263															Mea	an Speed(Avera Med	ntile: 54 MPH age): 48 MPH dian: 48 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB

DATE: Apr 4 2023

	,	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 4 202:
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
01:00 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3
02:00 AM	0	3	1	0	0	0	0	2	0	0	0	0	0	0	6
03:00 AM	0	5	1	0	0	0	0	0	0	0	0	0	0	1	7
04:00 AM	0	4	3	0	1	0	0	0	0	0	1	0	0	0	9
05:00 AM	0	17	5	0	0	1	0	3	0	0	1	0	0	0	27
06:00 AM	0	24	6	0	1	0	0	3	0	0	0	0	0	1	35
07:00 AM	0	56	9	0	0	0	0	3	1	0	0	0	0	0	69
08:00 AM	0	62	21	0	1	0	0	9	0	0	0	0	0	0	93
09:00 AM	0	66	18	0	4	1	0	5	0	0	2	0	0	1	97
10:00 AM	0	70	20	0	4	0	0	8	0	0	4	0	0	3	109
11:00 AM	0	59	19	0	7	0	0	4	0	0	2	0	0	1	92
12:00 PM	0	64	19	0	6	0	0	6	0	0	3	0	0	0	98
01:00 PM	0	62	16	0	7	0	0	8	0	0	2	0	0	0	95
02:00 PM	0	70	22	0	6	1	0	8	0	0	0	0	0	0	107
03:00 PM	0	56	22	0	4	0	0	1	0	0	0	0	0	0	83
04:00 PM	0	64	13	0	9	0	0	5	0	0	1	0	0	1	93
05:00 PM	0	61	6	0	0	0	0	2	0	0	2	0	0	1	72
06:00 PM	0	39	5	0	1	0	0	1	0	0	1	0	0	1	48
07:00 PM	0	28	10	0	4	0	0	0	0	0	0	0	0	0	42
08:00 PM	0	11	0	0	0	0	0	2	0	0	0	0	0	0	13
09:00 PM	0	5	0	0	0	0	0	1	0	0	0	0	0	0	6
10:00 PM	0	3	2	0	0	0	0	1	0	0	0	0	0	0	6
11:00 PM	0	2	0	0	1	0	0	1	0	0	2	0	0	0	6
Day Total	0	836	218	0	56	3	0	73	1	0	21	0	0	10	1218
Percent	0%	68.6%	17.9%	0%	4.6%	0.2%	0%	6%	0.1%	0%	1.7%	0%	0%	0.8%	1218
ADT 1218															
AM Peak	12:00 AM	10:00 AM	8:00 AM	12:00 AM	11:00 AM	5:00 AM	12:00 AM	8:00 AM	7:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	10:00 AM	10:00 A
Volume	0	70	21	0	7	1	0	9	1	0	4	0	0	3	109
PM Peak	12:00 PM	2:00 PM	2:00 PM	12:00 PM	4:00 PM	2:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM		12:00 PM	4:00 PM	2:00 PN
Volume	0	70	22	0	9	1	0	8	0	0	3	0	0	1	107
mments:		-		_			-		-		-			-	

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB

DATE: Apr 5 2023

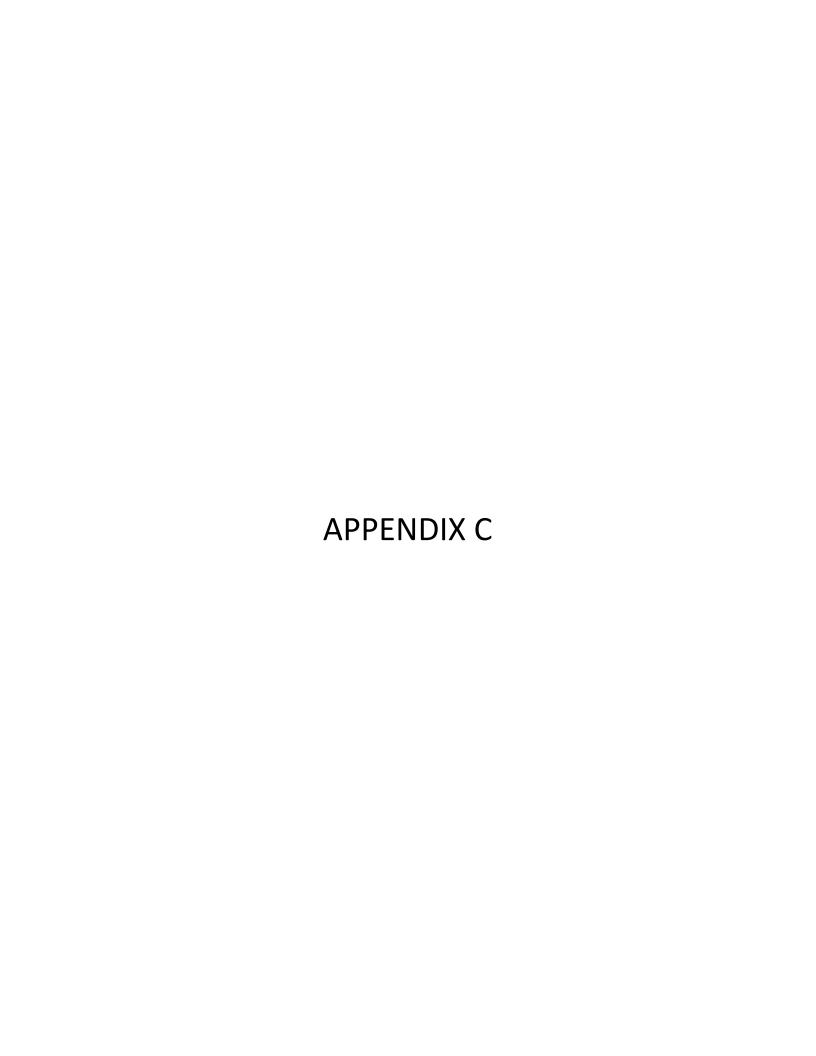
JIT/STATE: SI	lasta, CA														Apr 5 202.
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	5	0	0	0	0	0	0	0	0	0	0	0	0	5
01:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
02:00 AM	0	0	0	0	0	0	0	2	0	0	1	0	0	0	3
03:00 AM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
04:00 AM	0	3	3	0	0	0	0	1	0	0	0	0	0	0	7
05:00 AM	0	18	5	0	0	1	0	5	0	0	2	0	0	0	31
06:00 AM	0	30	13	0	1	0	0	2	0	0	0	0	0	3	49
07:00 AM	0	39	23	0	1	0	0	2	0	0	0	0	0	3	68
08:00 AM	0	76	29	0	1	0	0	5	0	0	3	0	0	1	115
09:00 AM	0	56	22	0	2	1	0	7	0	0	3	0	0	1	92
10:00 AM	0	70	18	0	7	0	0	2	0	0	7	0	0	3	107
11:00 AM	0	67	12	0	4	0	0	10	0	0	4	0	0	3	100
12:00 PM	0	71	16	0	5	0	0	7	0	0	1	0	0	1	101
01:00 PM	0	61	18	0	9	0	0	10	0	0	0	0	0	3	101
02:00 PM	0	54	12	0	2	0	0	8	0	0	0	0	0	2	78
03:00 PM	0	76	16	0	3	0	0	4	0	0	1	0	0	1	101
04:00 PM	0	59	4	0	6	0	0	3	0	0	0	0	0	2	74
05:00 PM	0	68	11	0	4	0	0	7	0	0	0	0	0	2	92
06:00 PM	0	33	14	0	0	0	0	2	0	0	0	0	0	1	50
07:00 PM	0	13	6	0	0	0	0	1	0	0	1	0	0	2	23
08:00 PM	0	8	1	0	0	0	0	2	0	0	0	0	0	0	11
09:00 PM	0	7	1	0	1	0	0	1	0	0	2	0	0	1	13
10:00 PM	0	6	1	0	0	0	0	1	0	0	0	0	0	0	8
11:00 PM	0	2	0	0	1	0	0	1	0	0	0	0	0	0	4
Day Total	0	824	226	0	47	2	0	84	0	0	25	0	0	29	1237
Percent	0%	66.6%	18.3%	0%	3.8%	0.2%	0%	6.8%	0%	0%	2%	0%	0%	2.3%	1257
ADT 1237															
AM Peak	12:00 AM	8:00 AM	8:00 AM	12:00 AM	10:00 AM	5:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	6:00 AM	8:00 AN
Volume	0	76	29	0	7	1	0	10	0	0	7	0	0	3	115
PM Peak	12:00 PM	3:00 PM	1:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	9:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PI
Volume	0	76	18	0	9	0	0	10	0	0	2	0	0	3	101
omments:															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB

DATE: Apr 6 2023

JIT/STATE: SI	iasta, CA														Apr 6 202
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	4	1	0	0	0	0	1	0	0	0	0	0	0	6
01:00 AM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
02:00 AM	0	3	1	0	1	0	0	2	0	0	0	0	0	0	7
03:00 AM	0	6	5	0	3	0	0	2	0	0	0	0	0	0	16
04:00 AM	0	3	0	0	0	0	0	1	0	0	0	0	0	1	5
05:00 AM	0	19	6	0	2	0	0	2	0	0	1	0	0	0	30
06:00 AM	0	24	12	0	6	0	0	7	0	0	0	0	0	1	50
07:00 AM	0	43	16	0	4	0	0	5	0	0	0	0	0	0	68
08:00 AM	0	70	26	0	9	0	0	8	0	0	0	0	0	2	115
09:00 AM	0	72	16	0	7	0	0	7	0	0	1	0	0	4	107
10:00 AM	0	76	17	0	7	0	0	6	0	0	2	0	0	3	111
11:00 AM	0	70	9	0	9	0	0	2	0	0	2	0	0	4	96
12:00 PM	0	68	10	0	6	0	0	8	0	0	1	0	0	4	97
01:00 PM	0	72	17	0	4	0	0	12	0	0	2	0	0	1	108
02:00 PM	0	71	15	0	6	0	0	2	0	0	1	0	0	4	99
03:00 PM	0	87	24	0	7	0	0	11	0	0	3	0	0	1	133
04:00 PM	0	64	17	1	2	0	0	7	0	0	4	0	0	4	99
05:00 PM	0	66	8	0	2	0	0	2	0	0	1	0	0	1	80
06:00 PM	0	24	11	0	1	0	0	3	0	0	1	0	0	1	41
07:00 PM	0	16	2	0	2	0	0	3	0	0	0	0	0	1	24
08:00 PM	0	11	0	0	1	0	0	2	0	0	0	0	0	1	15
09:00 PM	0	13	1	0	1	0	0	1	0	0	0	0	0	1	17
10:00 PM	0	3	1	0	1	0	0	0	0	0	0	0	0	0	5
11:00 PM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3
Day Total	0	890	216	1	81	0	0	94	0	0	19	0	0	34	1225
Percent	0%	66.7%	16.2%	0.1%	6.1%	0%	0%	7%	0%	0%	1.4%	0%	0%	2.5%	1335
ADT 1335															
AM Peak	12:00 AM	10:00 AM	8:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	9:00 AM	8:00 AN
Volume	0	76	26	0	9	0	0	8	0	0	2	0	0	4	115
PM Peak	12:00 PM	3:00 PM	3:00 PM	4:00 PM	3:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	12:00 PM	3:00 PN
Volume	0	87	24	1	7	0	0	12	0	0	4	0	0	4	133
omments:				-	-	-	-		-				-		

- , -	, -														
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
Grand Total Percent	0 0%	2550 67.3%	660 17.4%	1 0%	184 4.9%	5 0.1%	0 0%	251 6.6%	1 0%	0 0%	65 1.7%	0 0%	0 0%	73 1.9%	3790
ADT 1263															
Comments:															


Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB

DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue	Wed	Thu	Fri	Average Weekday	Sat	Sun	Average Week	Average Week Profile
		4 Apr 23	5 Apr 23	6 Apr 23		Hourly Traffic			Hourly Traffic	
12:00 AM		2	5	6		4			4	
01:00 AM		3	1	3		2			2	
02:00 AM		6	3	7		5			5	
03:00 AM		7	3	16		9			9	
04:00 AM		9	7	5		7			7	
05:00 AM		27	31	30		29			29	
06:00 AM		35	49	50		45			45	
07:00 AM		69	68	68		68			68	
08:00 AM		93	115	115		108			108	
09:00 AM		97	92	107		99			99	
10:00 AM		109	107	111		109			109	
11:00 AM		92	100	96		96			96	
12:00 PM		98	101	97		99			99	
01:00 PM		95	101	108		101			101	
02:00 PM		107	78	99		95			95	
03:00 PM		83	101	133		106			106	
04:00 PM		93	74	99		89			89	
05:00 PM		72	92	80		81			81	
06:00 PM		48	50	41		46		In.	46	
07:00 PM		42	23	24		30	\sim \sim \sim	411	30	
08:00 PM		13	11	15		13			13	
09:00 PM		6	13	17		12			12	
10:00 PM		6	8	5		6	DIVIN	UNII	6	
11:00 PM		6	4	3		4			4	
Day Total		1218	1237	1335		1263			1263	
6 Weekday Average		96.4%	97.9%	105.7%						
% Week Average		96.4%	97.9%	105.7%		100%				
AM Peak		10:00 AM	8:00 AM	8:00 AM		10:00 AM			10:00 AM	
Volume		109	115	115		109			109	
PM Peak		2:00 PM	12:00 PM	3:00 PM		3:00 PM			3:00 PM	
Volume		107	101	133		106			106	

CASE_ID	ACCIDENT_YE PRIMARY_RD	SECONDARY_	STATE_ROUT COLL	ISION_SI NUME	BER_KILI NUMB	BER_INJL MOTOR	CYCLE TRUCK_ACCII LATITUDE	LONGITUDE COUNTY	CITY	POINT_X	POINT_Y
8819497	2019 CHURN CREE	I RT 299	299	3	0	2	40.6140213	-122.3494873 SHASTA	REDDING	-122.3534393	40.61416245
90858538	2018 SR-299 E/B TO	CHURN CREE	299	2	0	1 Y	40.61386108	-122.3527832 SHASTA	REDDING	-122.3527832	40.61386108
9286452	2020 RT 299	RT 5	299	3	0	1	40.6124382	-122.3628387 SHASTA	REDDING	-122.3606796	40.6126709
9001532		RT 5	299	4	0	1	40.6140213	-122.3494873 SHASTA	REDDING	-122.3542175	40.61380386
91320575		T I-5	299	4	0	1		-122.3588867 SHASTA	REDDING	-122.3588943	
8711810	2018 CHURN CREE		299	3	0	2		SHASTA	REDDING	-122.3475113	
90985017	2019 SR-299	JIM HARVEY R	299	3	0	2	40 62654877	-122.2921524 SHASTA	UNINCORPOR		40.62654877
91342181	2020 SR-299	JACK PINE LAI	299	4	0	2		-122.2710114 SHASTA	UNINCORPOR		
90701577	2018 SR-299	MOOSE CAMP	299	4	0	1		-121.838707 SHASTA	UNINCORPOR		
90755792		MOOSE CAMP	299	2	0	1		-121.7965088 SHASTA	UNINCORPOR		40.86219025
91248564	2020 SR-299	INTERMOUNT	299	4	0	2		-122.2691574 SHASTA	UNINCORPOR		
91060860	2019 SR-299	WILSON WAY	299	4	0	1		-122.2616577 SHASTA	UNINCORPOR		
90762950	2018 SR-299 W/B	HELENA LN	299	4	0	3		-122.2733536 SHASTA	UNINCORPOR		
90808511	2018 SR-299 W/B	JIM HARVEY R	299	3	0	2		-122.2935028 SHASTA	UNINCORPOR		
91204327	2020 SR-299	HELENA LANE		3	0	2		-122.2933026 SHASTA	UNINCORPOR		
	2020 SR-299 2019 SR-299	BEST LANE	299 299	3	0	2			UNINCORPOR		40.63245773
91157996				3 4	•	1		-122.2641068 SHASTA			
91021148		JIM HARVEY R	299		0	1		-122.2929306 SHASTA	UNINCORPOR		40.62638092
91021813	2019 SR-299 E/B	NEAL LANE	299	3	0	3		-122.2789993 SHASTA	UNINCORPOR		
91274616	2020 SR-299	KERN DR.	299	2	0	1		-122.2555313 SHASTA	UNINCORPOR		40.63426971
91324201	2020 SR-299	WILSON WAY	299	3	0	2		-122.2616119 SHASTA	UNINCORPOR		40.63297272
91151052	2019 SR-299	BUNCH GRAS	299	4	0	1		-121.7687531 SHASTA	UNINCORPOR		40.852314
91104457	2019 SR-299	NEAL LANE	299	4	0	3		-122.2781525 SHASTA	UNINCORPOR		
91204321	2020 SR-299 E/B	DESCHUTES F	299	3	0	1		-122.2492905 SHASTA	UNINCORPOR		40.63624191
90684697	2018 SR-299	E. STILLWATE	299	3	0	4		-122.2967911 SHASTA	UNINCORPOR		40.62555695
91282907	2020 SR-299	BUNCH GRAS	299	3	0	1	40.85227966	-121.7691803 SHASTA	UNINCORPOR	-121.7691803	40.852314
91340043	2020 SR-299	LIVONA LANE	299	2	0	2	40.62860107	-122.282608 SHASTA	UNINCORPOR	-122.2826004	40.62857056
91047179	2019 SR-299	CLASSIC MEA	299	3	0	1	40.66463852	-122.1855621 SHASTA	UNINCORPOR	-122.1855545	40.66463089
90837967	2018 SR-299	WOODMAN LN	299	1	2	0	40.68505096	-122.1483994 SHASTA	UNINCORPOR	-122.1483765	40.68497467
91425650	2020 SR-299	WOODMAN LN	299	1	1	0	40.68233871	-122.1533966 SHASTA	UNINCORPOR	-122.1534348	40.68239212
91205190	2020 SR-299 W/B	DUBOIS RD	299	2	0	1	40.7461319	-122.0624084 SHASTA	UNINCORPOR	-122.0624542	40.74617767
91342176	2020 SR-299	CEDAR CREE!	299	4	0	3	40.77843094	-122.0041733 SHASTA	UNINCORPOR	-122.0041656	40.77837372
90886613	2018 STATE ROUTE	E WOODMAN LA	299	2	0	4	40.68016052	-122.1583633 SHASTA	UNINCORPOR	-122.1583557	40.68014145
90644228	2018 SR-299	SUGAR PINE (299	3	0	1	40.72277069	-122.0819778 SHASTA	UNINCORPOR	-122.0819702	40.72277069
90810688	2018 STATE ROUTE	EMCCANLESS (299	3	0	3	Y 40.76263046	-122.0120773 SHASTA	UNINCORPOR	-122.0120239	40.76260757
91326012	2020 SR-299	SUGAR PINE (299	3	0	1	40.70849991	-122.0904388 SHASTA	UNINCORPOR	-122.0905151	40.70850372
91090774	2019 SR-299	SUGAR PINE (299	3	0	4	40.72045898	-122.0818787 SHASTA	UNINCORPOR	-122.0818558	40.72045517
91302056	2020 SR-299	DU BOIS RD	299	4	0	1	40.74914169	-122.053299 SHASTA	UNINCORPOR	-122.0533295	40.74919128
90854104	2018 SR-299	DUSTY OAKS	299	1	1	0	40.68719101	-122.1363907 SHASTA	UNINCORPOR	-122.1363907	40.68719864
91050412		SUGAR PINE (4	0	1		-122.0761719 SHASTA	UNINCORPOR		
91072818		OLD ALTURAS		1	1	0		-122.2215576 SHASTA	UNINCORPOR		
90809718		OLD ALTURAS	299	2	0	1		-122.2257233 SHASTA	UNINCORPOR		40.64469528
90996953	2019 SR-299	SUGAR PINE (299	3	0	1		-122.0817337 SHASTA	UNINCORPOR		
90919994	2019 SR-299	WOODMAN LA	299	4	0	1		-122.1643524 SHASTA	UNINCORPOR		40.67783737
91083218		OAK RUN RD	299	4	0	1		-122.0183716 SHASTA	UNINCORPOR		
91214975	2020 SR-299	SUGAR PINE (1	1	0		-122.0625381 SHASTA	UNINCORPOR		40.74609756
91144029	2019 SR-299	SUGAR PINE (4	0	1	40.74610136		UNINCORPOR		40.70853424
90808400	2018 SR-299	SEAMAN GULO	299	4	0	2		-122.0962296 SHASTA	UNINCORPOR		40.70333424
			299	3	0	2					
91099443	2019 SR-299	SUGAR PINE (ū	2		-122.0681686 SHASTA	UNINCORPOR		40.74269867
90656470	2018 STATE ROUTI		299	3	0	1	40.73303986		UNINCORPOR		40.7330513
91104434	2019 SR-299	SEAMAN GULC	299	4	0	1		-122.1024094 SHASTA	UNINCORPOR		
91134646		DU BOIS RD	299	4	0	1	40.7469902		UNINCORPOR		
90735661	2018 SR-299	SUGAR PINE (299	3	0	1		-122.0838394 SHASTA	UNINCORPOR		
90928589	2019 STATE ROUTI		299	4	0	1		-122.0837097 SHASTA	UNINCORPOR		40.71331024
90877327	2018 SR-299	OAK RUN RD	299	3	0	1		-122.0627975 SHASTA	UNINCORPOR		
91045708	2019 SR-299	MPM 49.30	299	4	0	1	40.77845001		UNINCORPOR		40.7784729
91179899	2020 SR-299	OLD ALTURAS	299	4	0	1	40.64075089	-122.2319717 SHASTA	UNINCORPOR	-122.2320251	40.64084244

91125452	2019 SR-299	JAVELINA	299	4	0	3		40.69430161	-122.1070709 SHASTA	UNINCORPOR -122.1070938	40.69433975
91308639	2020 SR-299	SEAMAN GULO	299	4	0	1		40.73141098	-122.0760727 SHASTA	UNINCORPOR -122.0760727	40.73141098
91040564	2019 STATE ROUTE	SUGAR PINE (299	4	0	1		40.71950912	-122.0822067 SHASTA	UNINCORPOR -122.082222	40.71951675
91350106	2020 SR-299	DU BOIS RD	299	4	0	1		40.75172043	-122.043457 SHASTA	UNINCORPOR -122.043457	40.75175095
90888718	2018 STATE ROUTE	WOODMAN LA	299	4	0	1		40.68085861	-122.156662 SHASTA	UNINCORPOR -122.1566696	40.6808815
91361577	2020 STATE ROUTE	SUGAR PINE (299	1	1	3	Υ	40.74485016	-122.0633698 SHASTA	UNINCORPOR -122.0633926	40.74487305
91287794	2020 SR-299	TERRY MILL R	299	4	0	2	Υ	40.79309845	-121.9433975 SHASTA	UNINCORPOR -121.9433746	40.79306793
90819703	2018 SR-299	WEBSTER WA	299	4	0	2		40.85292053	-121.9041595 SHASTA	UNINCORPOR -121.9042282	40.85293198
90684368	2018 SR-299	KING MILL RD	299	4	0	1		40.80075073	-121.9389267 SHASTA	UNINCORPOR -121.9389191	40.80075073
91273293	2020 SR-299	WOODHILL DF	299	4	0	1		40.84542084	-121.9145203 SHASTA	UNINCORPOR -121.9145203	40.84545517
90635010	2018 SR-299 W/B	WOODHILL DF	299	4	0	1		40.84569931	-121.9019089 SHASTA	UNINCORPOR -121.9019089	40.8456955
91247262	2020 SR-299	WOODHILL DF	299	4	0	1		40.84613037	-121.9015427 SHASTA	UNINCORPOR -121.9014893	40.84609604
90818855	2018 SR-299	FENDERS FEF	299	1	1	1		40.82154846	-121.9329071 SHASTA	UNINCORPOR -121.9329071	40.82154846
90819804	2018 SR-299	DUNN MOODY	299	2	0	2		40.81800842	-121.9355774 SHASTA	UNINCORPOR -121.9356232	40.81804276
91313828	2020 SR-299	BIG BEND RD	299	2	0	1		40.8655014	-121.9126587 SHASTA	UNINCORPOR -121.912674	40.86553955
90719178	2018 STATE ROUTE	BIG BEND RD	299	3	0	2	Υ	40.8468399	-121.9011612 SHASTA	UNINCORPOR -121.9012146	40.8468399
91272133	2020 SR-299	WOODHILL DF	299	4	0	1		40.85972977	-121.9088516 SHASTA	UNINCORPOR -121.9087982	40.85977554
90965735	2019 SR-299	WOODHILL DF	299	3	0	2		40.84671021	-121.9074936 SHASTA	UNINCORPOR -121.9075089	40.84665298
90873289	2018 STATE ROUTE	TAMARACK RI	299	3	0	1		40.87707138	-121.7395706 SHASTA	UNINCORPOR -121.7395782	40.87708282
91189927	2020 SR-299	BUNCH GRAS:	299	3	0	1 Y		40.85231018	-121.7603226 SHASTA	UNINCORPOR -121.7603226	40.85228729
91316938	2020 SR-299	TAMARACK RI	299	3	0	1 Y		40.87429047	-121.7061768 SHASTA	UNINCORPOR -121.7061996	40.87418365
90952284	2019 SR-299	MOOSE CAMP	299	2	0	1		40.85593033	-121.7442398 SHASTA	UNINCORPOR -121.7444077	40.85620117
90984073	2019 STATE ROUTE	ELM ST.	299	2	0	11	Υ	40.87779999	-121.6768723 SHASTA	UNINCORPOR -121.6768417	40.87776566
91253047	2020 SR-299	PINE STREET	299	4	0	2		40.88008881	-121.6739578 SHASTA	UNINCORPOR -121.6739655	40.88009644
91163903	2020 SR-299	TIMBER DR	299	4	0	3		40.88127136	-121.6725006 SHASTA	UNINCORPOR -121.6725006	40.88127136

Crash Rate = (Number of Crashes) x (1,000,000)

Vehicle Miles of Travel

Fatality Rate = (Number of Victims) x (100,000,000)

Vehicle Miles of Travel

The terms Rural and Urban are not to be confused with Inside and Outside Cities since they are not necessarily the same. Urban areas are defined and approved by the Federal Highway Administration (FHWA) on the general basis of urban characteristics and do not necessarily coincide with city boundaries.

Suburban areas are defined as areas inside city limits but classified as rural, plus areas outside city limits but classified as urban by the FHWA. All areas not classified as urban are rural.

D. Basic or Average Crash Rate Tables

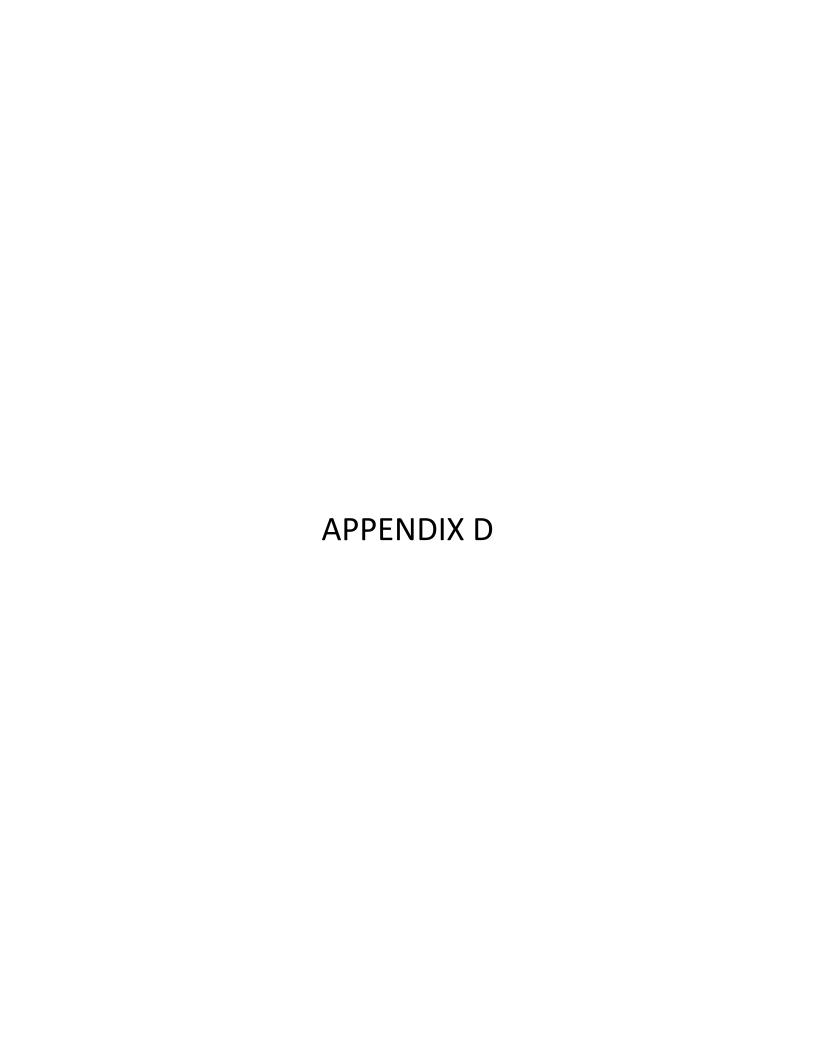
The basic or average crash rate tables begin on page 83. The rates shown were all reviewed and revised during March 2020, with addition of Intersection Rate Group 31 – Roundabout, all access.

The average rates for all highway, intersection and ramp rate groups are primarily based on crash data for the years 2015 through 2019. These five years data were also used to determine the percentages of fatal and injury crashes.

It should be noted that some of the rate groups are based on limited amounts of mileage and travel. The use of these rate groups by local agencies as a standard or average rate for local roads may or may not be entirely appropriate.

E. Pedestrian and Bicycle Fatality and Injury Data

The pedestrian tables begin on page 91. The data contained in these tables includes the number of pedestrians that were involved in crashes on California state highways. Beginning 2012, crosswalks on state highways are included as intersection crash locations.


The bicycle tables begin on page 101. The data contained in these tables include the number of bicyclists that were involved in crashes on California state highways.

The pedestrian and bicyclist data also include crashes in the ramp area 4 and intersection area 6 as defined below.

- Non-state Route Associated with Ramp Area 4 is the area in an interchange on a county road or city street within 100 feet outside the outermost ramp terminal.
- Non-state Route Associated with State Route Intersection Area 6 is when a vehicle leaves the road from or when the crash occurs on a non-state route outside the state right of way limits and within 250 feet from the center of the intersection.

CALIFORNIA STATE HIGHWAYS STATEWIDE TRAVEL AND CRASH RATES

				2020			ates (2018, 201	
LANE	2020	2020		SHES	VICTIMS	_	SHES	VICTIMS
TYPE	ROAD	TRAVEL	TOTAL	FATAL+	FATALITIES	TOTAL	FATAL +	FATALITIES
	MILES	(MVM)	PER	INJURY	PER	PER	INJURY	PER
			MVM	PER MVM	100 MVM	MVM	PER MVM	100 MVM
RURAL (INSIDE + OUT	SIDE CITY)							
	7,058.8	9,766.5	0.99	0.45	3.44	1.03	0.46	3.32
2 AND 3 LN	70.2	252.9	0.85	0.28	1.58	0.96	0.33	2.51
4+ UND	324.1	1,730.2	0.61	0.23	1.56	0.74	0.27	1.53
4+ DIV	7,453.0	11,749.6	0.93	0.41	3.12	0.99	0.43	3.04
SUBTOTAL	718.5	1,550.2	0.68	0.29	2.45	0.72	0.30	2.34
2 AND 3 LN EXP	589.5	3,651.3	0.53	0.19	1.31	0.60	0.21	1.30
4+ DIV EXP	8,761.1	16,951.1	0.82	0.35	2.67	0.88	0.37	2.61
NON FWY	1,720.1	22,914.6	0.46	0.15	0.83	0.49	0.16	0.87
FREEWAY	10,481.2	39,865.7	0.61	0.24	1.61	0.65	0.25	1.60
TOTAL URBAN (INSIDE + OUT	SIDE CITY)							-
	921.2	3,310.4	1.09	0.48	2.45	1.20	0.52	1.95
2 AND 3 LN	86.1	621.4	1.37	0.62	2.09	1.41	0.63	2.32
4+ UND	588.7	6,287.1	1.00	0.50	2.00	1.13	0.56	1.72
	1,595.9	10,218.9	1.05	0.50	2.15	1.17	0.55	1.83
4+ DIV SUBTOTAL	97.8	356.8	0.93	0.37	2.52	0.92	0.35	1.72
2 AND 3 LN EXP	187.3	2,147.5	0.71	0.29	0.79	0.79	0.31	0.93
4+ DIV EXP	1,881.0	12,723.2	0.99	0.46	1.93	1.10	0.50	1.67
NON FWY	2,691.4	120,925.3	0.78	0.24	0.61	0.95	0.30	0.51
FREEWAY	4,572.4	133,648.5	0.80	0.27	0.73	0.96	0.32	0.62
TOTAL STATEWIDE								
	7,980.0	13,076.9	1.02	0.46	3.19	1.07	0.47	2.97
2 AND 3 LN	156.2	874.3	1.22	0.53	1.94	1.29	0.55	2.37
4+ UND	912.8	8,017.3	0.91	0.44	1.91	1.05	0.50	1.68
4+ DIV	9,049.0	21,968.5	0.99	0.45	2.67	1.07	0.48	2.47
SUBTOTAL	816.3	1,907.0	0.73	0.31	2.46	0.76	0.31	2.22
2 AND 3 LN EXP	776.8	5,798.8	0.60	0.23	1.12	0.67	0.25	1.16
4+ DIV EXP	10,642.1	29,674.3	0.89	0.40	2.36	0.97	0.43	2.20
NON FWY	4,411.5	143,839.9	0.73	0.23	0.64	0.88	0.28	0.56
FREEWAY	15,053.6	173,514.2	0.76	0.26	0.93	0.89	0.30	0.84
TOTAL								

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	5/15/2023
Agency	California Energy Commission	Analysis Year	2020
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	PRE- CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 1 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	pacity		·
Volume(V) veh/h	575	Heavy Vehicle Adjustment Factor (fHV)	0.942
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	324
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.16
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	306	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.35
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Posoniod UCSEM Multila	ne Version 7.8.5	Generated: 05/15/2023 16:28:05

HCSTM Multilane Version 7.8.5

Generated: 05/15/2023 16:28:05

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	5/15/2023
Agency	California Energy Commission	Analysis Year	2020
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	PRE- CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	acity		·
Volume(V) veh/h	1100	Heavy Vehicle Adjustment Factor (fHV)	0.936
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	625
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.31
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	11.7
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	В
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	585	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.68
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D
Copyright © 2023 University of Florida, All Rights	Posonyod HCS TM Multila	ne Version 7.8.5	Generated: 05/15/2023 16:29:28

HCSTM Multilane Version 7.8.5

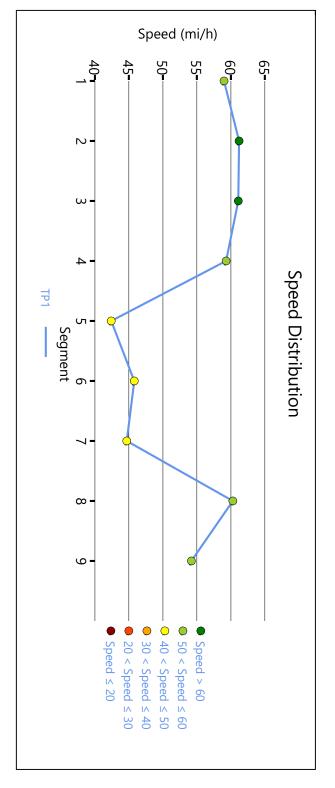
Generated: 05/15/2023 16:29:28

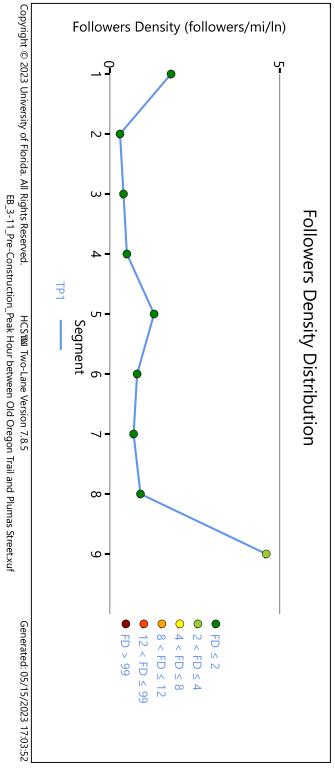
	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	5/15/2023
Agency	California Energy Commission	Analysis Year	2020
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	PRE- CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	1.70
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	5
Median Type	Divided	Total Lateral Clearance (TLC), ft	11
Free-Flow Speed (FFS), mi/h	54.6		
Direction 1 Adjustment Fact	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	475	Heavy Vehicle Adjustment Factor (fHV)	0.951
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	266
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2064
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	1998
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.13
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.2
Total Lateral Clearance Adj. (fLLC)	0.4	Density (D), pc/mi/ln	5.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	253	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.82
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Posonyod UCSTM Multila	ne Version 7.8.5	Generated: 05/15/2023 16:57:4

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	5/15/2023
Agency	California Energy Commission	Analysis Year	2020
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	PRE- CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Fact	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	pacity		
Volume(V) veh/h	575	Heavy Vehicle Adjustment Factor (fHV)	0.950
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	322
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.16
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	306	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.92
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Descried LICC TM Multile	lne Version 7.8.5	Generated: 05/15/2023 16:58:0

		HCS7 Two-Lan	ie Highway Re	eport	
Pro	ject Information				
Analy	rst	Carlos Arias	Date		5/15/2023
Agen	су	Westwood	Analysis Year		2020
Jurisc	liction	Shasta County	Time Period Analy	/zed	Peak Hour
Proje	ct Description	Fountain Wind Two Lane e-w E Bound - Along CA-299E from Old Orego Trail to Plumas Street			United States Customary
		Seg	ment 1		
Veh	icle Inputs				
Segn	nent Type	Passing Zone	Length, ft		22704
Lane	Width, ft	12	Shoulder Width, f	t	6
Spee	d Limit, mi/h	55	Access Point Dens	sity, pts/mi	8.0
Den	nand and Capacity		·		
Direc	tional Demand Flow Rate, veh/h	277	Opposing Deman	d Flow Rate, veh/h	484
Peak	Hour Factor	0.94	Total Trucks, %		3.76
Segn	nent Capacity, veh/h	1700	Demand/Capacity	' (D/C)	0.16
Inte	rmediate Results	·			
Segn	nent Vertical Class	1	Free-Flow Speed,	mi/h	60.6
Spee	d Slope Coefficient	3.71254	Speed Power Coe	fficient	0.48424
PF Slo	ope Coefficient	-1.26145	PF Power Coefficie	ent	0.76719
In Pa	ssing Lane Effective Length?	No	Total Segment De	nsity, veh/mi/ln	1.8
%lmp	proved % Followers	0.0	% Improved Avg S	Speed	0.0
Sub	segment Data				
#	Segment Type	Length, ft F	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	22704 -		-	59.0
Veh	icle Results				
Avera	nge Speed, mi/h	59.0	Percent Followers	, %	37.5
Segn	nent Travel Time, minutes	4.37	Followers Density,	, followers/mi/ln	1.8
Vehic	le LOS	А			
		Seg	ment 2		
Veh	icle Inputs				
	ent Type	Passing Lanes	Length, ft		99999
٠٠.	Width, ft	12	Shoulder Width, f	t	6
Lane			· ·		

Dire	ctional Demand Flow Rate, veh/h	138			Opposing Deman	ıd Flo	w Rate, veh/h	-	
Peak	: Hour Factor	0.94	1		Total Trucks, %			14.90	
Segr	ment Capacity, veh/h	140	0		Demand/Capacity	/ (D/C	<u> </u>	0.10	
Inte	ermediate Results								
Segr	ment Vertical Class	1			Free-Flow Speed,	mi/h		61.2	
Spee	ed Slope Coefficient	7.28	3696		Speed Power Coe	fficie	nt	1.58663	
PF S	lope Coefficient	-0.9	6880		PF Power Coeffici	ent		0.89273	
In Pa	assing Lane Effective Length?	No			Total Segment De	nsity	, veh/mi/ln	0.3	
%lm	proved % Followers	0.0			% Improved Avg	Spee	d	0.0	
Suk	osegment Data							·	
#	Segment Type	Len	gth, ft	Rad	lius, ft	Sup	erelevation, %	Average Speed, mi/h	
1	Tangent	999	99	-				61.2	
Pas	sing Lane Results								
			Faster Lane				Slower Lane		
Flow	Rate, veh/h		92				46		
Perc	entage of Heavy Vehicles (HV%), %		5.96			32.90			
Initia	al Average Speed (Sint), mi/h		61.5				60.6		
Aver	age Speed at Midpoint (SPLmid), mi	/h	63.2						
Perc	ent Followers at Midpoint (PFPLmid)	, %	11.2				5.7		
Vel	nicle Results								
Aver	age Speed, mi/h	61.2	2		Percent Followers	, %		15.3	
Segr	ment Travel Time, minutes	18.5	58		Followers Density	, follo	owers/mi/ln	0.3	
Vehi	cle LOS	А							
			Se	egn	nent 3				
Vel	nicle Inputs								
Segr	ment Type	Pass	sing Lanes		Length, ft			15105	
Lane	· Width, ft	12			Shoulder Width, f	t		6	
Spee	ed Limit, mi/h	55			Access Point Den	sity, p	ots/mi	4.0	
Dei	mand and Capacity	<u> </u>							
Dire	ctional Demand Flow Rate, veh/h	144			Opposing Deman	d Flo	w Rate, veh/h	-	
Peak	: Hour Factor	0.94	1		Total Trucks, %			14.90	
Segr	ment Capacity, veh/h	140	0		Demand/Capacity	/ (D/C	<u> </u>	0.10	
Into	ermediate Results							<u>'</u>	
Sear	ment Vertical Class	1			Free-Flow Speed,	mi/h		61.2	
	ed Slope Coefficient	-			Speed Power Coe			1.54401	
-	lope Coefficient	-	6855		PF Power Coeffici			0.89690	
	assing Lane Effective Length?	No			Total Segment De		, veh/mi/ln	0.4	
	proved % Followers	0.0			% Improved Avg			0.0	
, 01111	p. 0.00 70 1 0110 VVC13	1 0.0			1 .0pioved Avg	Speci	-	1 0.0	


Sub	segment Data								
#	Segment Type	Leng	gth, ft		Radi	ius, ft	Sup	perelevation, %	Average Speed, mi/h
1	Tangent	1510	05		-		-		61.1
Pas	sing Lane Results								
			Faster Lane					Slower Lane	
Flow	Rate, veh/h		96					48	
Perce	entage of Heavy Vehicles (HV%), %		5.96					32.72	
Initia	l Average Speed (Sint), mi/h		61.5					60.6	
Avera	age Speed at Midpoint (SPLmid), n	ni/h	63.2			58.9			
Perce	ent Followers at Midpoint (PFPLmic	d), %	11.5					5.8	
Veh	icle Results								
Avera	age Speed, mi/h	61.1				Percent Followe	rs, %		15.6
Segn	nent Travel Time, minutes	2.81				Followers Densi	ty, follo	owers/mi/ln	0.4
Vehic	le LOS	А							
				Se	egm	nent 4			
Veh	icle Inputs								
Segn	nent Type	Pass	ing Zone			Length, ft			35904
Lane	Width, ft	12				Shoulder Width,	, ft		6
Spee	d Limit, mi/h	55				Access Point De	nsity, p	ots/mi	6.0
Den	nand and Capacity								
Direc	tional Demand Flow Rate, veh/h	144				Opposing Dema	and Flo	w Rate, veh/h	144
Peak	Hour Factor	0.94				Total Trucks, %			14.90
Segm	nent Capacity, veh/h	170	0			Demand/Capaci	mand/Capacity (D/C)		0.08
Inte	ermediate Results								
Segn	nent Vertical Class	2				Free-Flow Speed	d, mi/h		59.8
Spee	d Slope Coefficient	4.53	356			Speed Power Coefficient			0.66486
PF Slo	ope Coefficient	-1.1	7419			PF Power Coeffic	cient		0.79683
In Pa	ssing Lane Effective Length?	Yes				Total Segment Density, veh/mi/ln			0.5
%lmp	proved % Followers	9.4				% Improved Avo	g Spee	d	0.0
Sub	segment Data								
#	Segment Type	Leng	gth, ft		Radi	ius, ft	Sup	perelevation, %	Average Speed, mi/h
1	Tangent	3590	04		-		-		59.3
Veh	icle Results								
Δνατ	age Speed, mi/h	59.3				Percent Followe	rs, %		22.1
Avera	ant Traval Time minutes	6.89				Followers Densi	ty, follo	owers/mi/ln	0.5
	nent Travel Time, minutes								


Vehicle Inputs					
Segment Type	Passing Zone		Length, ft		12144
Measured FFS	Measured		Free-Flow Speed,	mi/h	47.0
Demand and Capacity	Wedsured		Tree flow speed,		47.0
Directional Demand Flow Rate, v	/eh/h 179		Opposing Doman	d Flow Rate, veh/h	179
Peak Hour Factor	0.94		Total Trucks, %	u Flow Rate, ven/n	31.00
Segment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.11
Intermediate Results	1700		Demand, capacity	(5/C)	0.11
	1.		Free-Flow Speed,	• 4	17.0
Segment Vertical Class	4				47.0
Speed Slope Coefficient	30.47189		Speed Power Coef		0.74794
PF Slope Coefficient	-1.43469		PF Power Coefficie		0.80690
In Passing Lane Effective Length			Total Segment De		1.3
%Improved % Followers	7.2		% Improved Avg S	peea	0.0
Subsegment Data					
# Segment Type	Length, ft	R	adius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	12144	-		-	42.4
Vehicle Results					
Average Speed, mi/h	42.4		Percent Followers,	%	30.1
Segment Travel Time, minutes	3.25		Followers Density,	followers/mi/ln	1.2
Vehicle LOS	А				
		Seg	ment 6		
Vehicle Inputs					
Segment Type	Passing Lanes		Length, ft		25872
Measured FFS	Measured		Free-Flow Speed,	mi/h	46.0
Demand and Capacity					•
Directional Demand Flow Rate, v	/eh/h 179		Opposing Demand	d Flow Rate, veh/h	-
Peak Hour Factor	0.94		Total Trucks, %		31.00
Segment Capacity, veh/h	1100		Demand/Capacity	(D/C)	0.16
Intermediate Results					,
Segment Vertical Class	2		Free-Flow Speed,	mi/h	46.0
Speed Slope Coefficient	12.22850		Speed Power Coef	fficient	1.55917
PF Slope Coefficient	-0.91332		PF Power Coefficie		0.77795
In Passing Lane Effective Length	? No		Total Segment De	nsity, veh/mi/ln	0.8
%Improved % Followers	0.0		% Improved Avg S	Speed	0.0
Subsegment Data	<u>'</u>				
# Segment Type	Length, ft	R	adius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	25872	-		-	45.8
3					

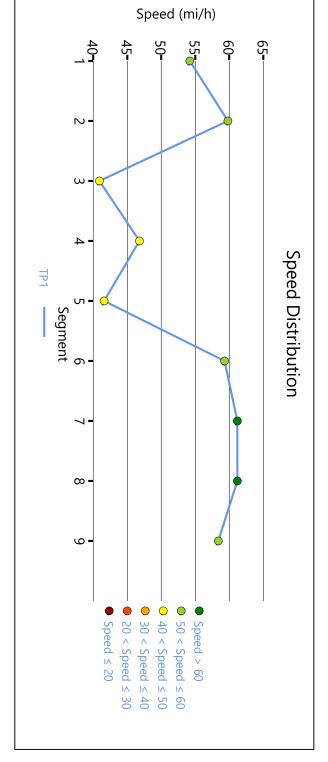
Pas	ssing Lane Results							
			Faster Lane				Slower Lane	
Flov	v Rate, veh/h		115				63	
Perc	entage of Heavy Vehicles (HV%), %		12.40				64.76	
Initi	al Average Speed (Sint), mi/h		74.4				63.6	
Ave	rage Speed at Midpoint (SPLmid), mi	'n	76.5				61.6	
Perc	ent Followers at Midpoint (PFPLmid),	%	8.8				0.0	
Vel	hicle Results							
Ave	rage Speed, mi/h	45.8	3		Percent Followers,	, %		21.3
Seg	ment Travel Time, minutes	6.42			Followers Density,	follo	wers/mi/ln	0.8
Vehi	icle LOS	А						
			Se	egn	nent 7			
Vel	hicle Inputs							
Seg	ment Type	Pass	sing Lanes		Length, ft			30624
Mea	sured FFS	Mea	asured		Free-Flow Speed,	mi/h		47.0
De	mand and Capacity							
Dire	ctional Demand Flow Rate, veh/h	213			Opposing Demand	d Flo	w Rate, veh/h	-
Peal	k Hour Factor	0.94			Total Trucks, %			30.00
Seg	ment Capacity, veh/h	110	0		Demand/Capacity	(D/C	<u> </u>	0.19
Int	ermediate Results							
Seg	ment Vertical Class	4			Free-Flow Speed,	mi/h		47.0
Spe	ed Slope Coefficient	28.7	'3583		Speed Power Coefficient			1.16507
PF S	lope Coefficient	-0.8	2245		PF Power Coefficient			1.06542
In Pa	assing Lane Effective Length?	No			Total Segment Density, veh/mi/ln		0.7	
%lm	proved % Followers	0.0			% Improved Avg S	Speed	t	0.0
Sul	bsegment Data							
#	Segment Type	Leng	gth, ft	Rac	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	306	24	-		-		44.7
Pas	ssing Lane Results							•
			Faster Lane				Slower Lane	
Flov	v Rate, veh/h		135				78	
Perc	entage of Heavy Vehicles (HV%), %		12.00				61.11	
Initi	al Average Speed (Sint), mi/h		72.7				55.9	
Ave	rage Speed at Midpoint (SPLmid), mi	′h	74.7				53.9	
Perc	ent Followers at Midpoint (PFPLmid),	%	11.0				-	
Vel	hicle Results							
	rage Speed, mi/h	44.7	,		Percent Followers,	%		14.6

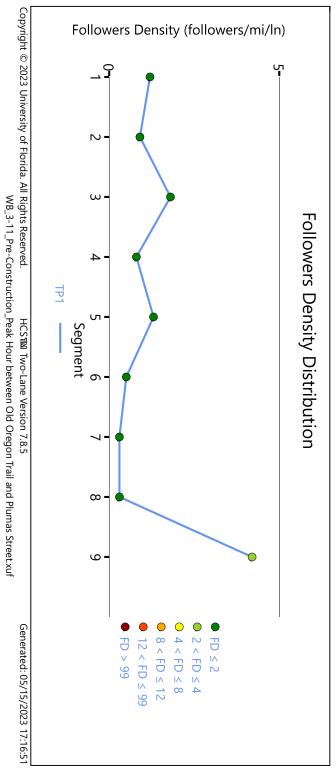
∟sear	nent Travel Time, minutes	7.78	Followers Dens	ity, followers/mi/ln	0.7
_	cle LOS	A		.,,	,
			egment 8		
		36	-ginene o		
Veh	icle Inputs				
Segn	nent Type	Passing Zone	Length, ft		7392
	Width, ft	12	Shoulder Widt	<u> </u>	6
Spee	d Limit, mi/h	55	Access Point D	ensity, pts/mi	5.0
Der	nand and Capacity				
Direc	tional Demand Flow Rate, veh/h	191	Opposing Dem	and Flow Rate, veh/h	197
Peak	Hour Factor	0.94	Total Trucks, %		17.50
Segn	nent Capacity, veh/h	1700	Demand/Capa	city (D/C)	0.11
Inte	ermediate Results				
Segn	nent Vertical Class	1	Free-Flow Spee	ed, mi/h	60.9
Spee	d Slope Coefficient	3.62198	Speed Power C	oefficient	0.54015
PF SI	ope Coefficient	-1.19891	PF Power Coef	icient	0.80879
In Pa	ssing Lane Effective Length?	Yes	Total Segment	Density, veh/mi/ln	0.9
%lmį	proved % Followers	14.0	% Improved Av	⁄g Speed	0.6
Sub	segment Data				
#	Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	7392	-	-	59.9
Veh	icle Results				
Avera	age Speed, mi/h	60.3	Percent Follow	ers, %	27.0
_	age Speed, mi/h nent Travel Time, minutes	60.3		ers, % ity, followers/mi/ln	27.0 0.7
Segm	<u> </u>			•	
Segm	nent Travel Time, minutes	1.39 A		•	
Segm	nent Travel Time, minutes	1.39 A	Followers Dens	•	
Segn Vehice Veh	nent Travel Time, minutes cle LOS	1.39 A	Followers Dens	•	0.7
Vehice Vehice Vehice	nent Travel Time, minutes cle LOS nicle Inputs nent Type	1.39 A	Followers Dense egment 9 Length, ft	ity, followers/mi/ln	
Vehice Veh Segm Lane	nent Travel Time, minutes cle LOS	1.39 A Se	Followers Dens	ity, followers/mi/ln	2640
Vehice Vehice Vehice Vehice Segment Lane Spee	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h	1.39 A Se Passing Constrained 12	Followers Dens egment 9 Length, ft Shoulder Widt	ity, followers/mi/ln	2640 6
Vehice Vehice Vehice Segment Lane Spee	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity	1.39 A Se Passing Constrained 12 55	Followers Dens egment 9 Length, ft Shoulder Widt Access Point D	n, ft ensity, pts/mi	2640 6
Vehice Vehice Vehice Vehice Segm Lane Spee Derr Direct	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h	1.39 A Se Passing Constrained 12	Followers Dens egment 9 Length, ft Shoulder Widt Access Point D Opposing Den	ity, followers/mi/ln	2640 6 22.0
Segm Vehice Veh Segm Lane Spee Derr Direce Peak	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	Passing Constrained 12 55	Followers Dens egment 9 Length, ft Shoulder Widt Access Point D Opposing Den Total Trucks, %	n, ft ensity, pts/mi and Flow Rate, veh/h	0.7 2640 6 22.0
Vehice Vehice Vehice Segm Lane Spee Derr Direct Peak Segm	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h	1.39 A Se Passing Constrained 12 55 463 0.94	Followers Dens egment 9 Length, ft Shoulder Widt Access Point D Opposing Den	n, ft ensity, pts/mi and Flow Rate, veh/h	0.7 2640 6 22.0
Vehice Vehice Vehice Segm Lane Spee Derr Direct Peak Segm Inte	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h crmediate Results	1.39 A Se Passing Constrained 12 55 463 0.94 1700	Followers Dens egment 9 Length, ft Shoulder Widt Access Point D Opposing Dem Total Trucks, % Demand/Capa	n, ft ensity, pts/mi and Flow Rate, veh/h city (D/C)	0.7 2640 6 22.0 - 19.00 0.27
Vehice Vehice Vehice Segm Lane Spee Derr Direce Peak Segm Inte	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h	1.39 A Se Passing Constrained 12 55 463 0.94	Followers Dens egment 9 Length, ft Shoulder Widt Access Point D Opposing Den Total Trucks, %	n, ft ensity, pts/mi and Flow Rate, veh/h city (D/C)	0.7 2640 6 22.0

			С	Vehicle LOS	<
4.1	followers/mi/ln	Followers Density, followers/mi/ln	0.55	Segment Travel Time, minutes	Š
53.6	%	Percent Followers, %	54.2	Average Speed, mi/h	⊳
				Vehicle Results	
54.2	-		2640 -	1 Tangent	
Average Speed, mi/h	Superelevation, %	Radius, ft	Length, ft Ra	# Segment Type	#
				Subsegment Data	S
0.0	speed	% Improved Avg Speed	10.7	%Improved % Followers	%
4.6	nsity, veh/mi/ln	Total Segment Density, veh/mi/ln	Yes	In Passing Lane Effective Length?	=

	HCS7 Two-La	ane	Highway Re	eport	
Project Information					
Analyst	Carlos Arias		Date		4/12/2023
Agency	Westwood		Analysis Year		2020
Jurisdiction	Shasta County		Time Period Analy	zed	Peak Hour
Project Description	Fountain Wind Two La e-w _ West Bound - Al CA-299E from Old Ore Trail to Plumas Street	long	Unit		United States Customary
	S	egm	nent 1		
Vehicle Inputs					
Segment Type	Passing Constrained		Length, ft		2640
Lane Width, ft	12		Shoulder Width, ft	t	6
Speed Limit, mi/h	55		Access Point Dens	ity, pts/mi	22.0
Demand and Capacity					
Directional Demand Flow Rate, veh/h	191		Opposing Demand	d Flow Rate, veh/h	-
Peak Hour Factor	0.94		Total Trucks, %		19.00
Segment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.11
Intermediate Results					
Segment Vertical Class 2		Free-Flow Speed,	mi/h	55.5	
Speed Slope Coefficient	3.88683		Speed Power Coef	fficient	0.44359
PF Slope Coefficient	-1.43208		PF Power Coefficie	ent	0.73380
In Passing Lane Effective Length? No			Total Segment De	nsity, veh/mi/ln	1.2
%Improved % Followers 0.0			% Improved Avg S	Speed	0.0
Subsegment Data					
# Segment Type	Length, ft	Radi	ius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	2640	-		-	54.2
Vehicle Results					
Average Speed, mi/h	54.2		Percent Followers, %		34.7
Segment Travel Time, minutes	0.55		Followers Density, followers/mi/ln		1.2
Vehicle LOS	A		Tollowers Delisity, Iollowers/IIII/III		
	S	egm	nent 2		
Vehicle Inputs					
Segment Type	Passing Zone		Length, ft		7392
Lane Width, ft	12		Shoulder Width, ft	i	6
Speed Limit, mi/h	55		Access Point Dens	ity, pts/mi	5.0
Demand and Capacity					•

Diro	ctional Demand Flow Rate, veh/h	197		Opposing Doman	d Flow Rate, veh/h	191
	Hour Factor	0.94		Total Trucks, %	u riow Rate, ven/ii	17.50
	ment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.12
	. ,	1700		Demand/Capacity	(D/C)	0.12
	ermediate Results					
Segr	ment Vertical Class	1		Free-Flow Speed,	mi/h	60.9
Spee	ed Slope Coefficient	3.62000		Speed Power Coe	fficient	0.54167
PF SI	lope Coefficient	-1.19762		PF Power Coefficie	ent	0.80923
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	0.9
%lm	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Suk	osegment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	7392	-		-	59.8
Veh	nicle Results					
Aver	age Speed, mi/h	59.8		Percent Followers,	, %	27.5
Segr	ment Travel Time, minutes	1.40		Followers Density,	followers/mi/ln	0.9
Vehi	cle LOS	А				
		·	Segn	nent 3		
Vel	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		30624
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	47.0
Der	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	213		Opposing Deman	d Flow Rate, veh/h	213
Peak	Hour Factor	0.94		Total Trucks, %		30.00
Segr	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.13
Inte	ermediate Results					·
Segr	ment Vertical Class	4		Free-Flow Speed,	mi/h	47.0
	ed Slope Coefficient	30.13295		Speed Power Coe	fficient	0.73099
PF SI	lope Coefficient	-1.45615		PF Power Coefficient		0.80231
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		1.8
%lm	proved % Followers	0.0		% Improved Avg Speed		0.0
Suk	osegment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
"		20001			-	40.9
1	Tangent	30624	-			
1	Tangent nicle Results	30624	-			
1 Ve h		40.9	-	Percent Followers,	, %	34.3
1 Veh	nicle Results		-	Percent Followers,		


			Se	gn	nent 4			
Vel	hicle Inputs							
Segi	ment Type	Pass	sing Lanes		Length, ft			25872
Mea	asured FFS	Mea	asured		Free-Flow Speed,	mi/h		47.0
De	mand and Capacity							
Dire	ectional Demand Flow Rate, veh/h	179			Opposing Demand	d Flo	w Rate, veh/h	-
Peak	k Hour Factor	0.94	1		Total Trucks, %			31.00
Segi	ment Capacity, veh/h	110	0		Demand/Capacity	(D/0	<u> </u>	0.16
Int	ermediate Results							
Segi	ment Vertical Class	2			Free-Flow Speed,	mi/h		47.0
Spe	ed Slope Coefficient	12.2	22850		Speed Power Coef	fficie	nt	1.55917
PF S	Slope Coefficient	-0.9	1061		PF Power Coefficie	ent		0.78832
In Pa	assing Lane Effective Length?	No			Total Segment De	nsity	, veh/mi/ln	0.8
%lm	nproved % Followers	0.0			% Improved Avg S	Spee	d	0.0
Sul	bsegment Data							
#	Segment Type	Len	gth, ft	Rac	dius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	258	72	-		-		46.8
Pas	ssing Lane Results		Faster Lane				Slower Lane	
Flow	v Rate, veh/h		115				63	
	centage of Heavy Vehicles (HV%), %		12.40				64.76	
	al Average Speed (Sint), mi/h		74.4				63.6	
	rage Speed at Midpoint (SPLmid), mi,	/h	76.5				61.6	
	ent Followers at Midpoint (PFPLmid),		8.8				0.0	
Vel	hicle Results							
Avei	rage Speed, mi/h	46.8			Percent Followers, %		20.9	
	ment Travel Time, minutes	6.29)		Followers Density,	follo	owers/mi/ln	0.8
Vehi	icle LOS	Α						
			Se	gn	nent 5			
Vel	hicle Inputs							
	ment Type	Pass	sing Zone		Length, ft			12144
	asured FFS	+	asured		Free-Flow Speed,	mi/h		46.0
De	mand and Capacity							
	ectional Demand Flow Rate, veh/h	179			Opposing Demand	d Flo	w Rate, veh/h	179
	k Hour Factor	0.94			Total Trucks, %			31.00
Segi	ment Capacity, veh/h	170			Demand/Capacity	(D/0	<u> </u>	0.11


	ermediate Results					
Seg	ment Vertical Class	4		Free-Flow Speed,	mi/h	46.0
Spe	ed Slope Coefficient	30.47189		Speed Power Coef	fficient	0.74794
PF S	lope Coefficient	-1.43570		PF Power Coefficie	ent	0.80084
In P	assing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	1.3
%lm	proved % Followers	13.9		% Improved Avg S	Speed	0.5
Su	bsegment Data					
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	12144	-		-	41.4
Vel	hicle Results					·
Ave	rage Speed, mi/h	41.6		Percent Followers,	%	30.3
Seg	ment Travel Time, minutes	3.31		Followers Density,	followers/mi/ln	1.1
Veh	icle LOS	А				
			Segn	nent 6		·
Vel	hicle Inputs					
Seg	ment Type	Passing Zone		Length, ft		35904
Lane	e Width, ft	12		Shoulder Width, ft	i	6
Spe	ed Limit, mi/h	55		Access Point Dens	ity, pts/mi	6.0
De	mand and Capacity					·
Dire	ctional Demand Flow Rate, veh/h	144		Opposing Demand	d Flow Rate, veh/h	144
Peal	K Hour Factor	0.94		Total Trucks, %		14.90
Seg	ment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.08
Int	ermediate Results					
				·	: /l-	
Seg	ment Vertical Class	2		Free-Flow Speed,	mi/n	59.8
	ment Vertical Class ed Slope Coefficient	4.53356		Speed Power Coef		0.66486
Spe				 	fficient	
Spe	ed Slope Coefficient	4.53356		Speed Power Coef	fficient	0.66486
Spe PF S	ed Slope Coefficient lope Coefficient	4.53356 -1.17419		Speed Power Coefficient	fficient ent nsity, veh/mi/ln	0.66486 0.79683
Spe PF S In P	ed Slope Coefficient lope Coefficient assing Lane Effective Length?	4.53356 -1.17419 Yes		Speed Power Coefficient Total Segment Dec	fficient ent nsity, veh/mi/ln	0.66486 0.79683 0.5
Spe PF S In P	ed Slope Coefficient Flope Coefficient assing Lane Effective Length? approved % Followers	4.53356 -1.17419 Yes	Rac	Speed Power Coefficient Total Segment Dec	fficient ent nsity, veh/mi/ln	0.66486 0.79683 0.5
Spe PF S In P %Im	ed Slope Coefficient clope Coefficient assing Lane Effective Length? approved % Followers bsegment Data	4.53356 -1.17419 Yes 8.5	Rac -	Speed Power Coefficient Total Segment Des % Improved Avg S	fficient ent nsity, veh/mi/In Speed	0.66486 0.79683 0.5 0.0
Sper PF S In Po %Im Su l #	ed Slope Coefficient clope Coefficient assing Lane Effective Length? aproved % Followers bsegment Data Segment Type	4.53356 -1.17419 Yes 8.5	Rac -	Speed Power Coefficient Total Segment Des % Improved Avg S	fficient ent nsity, veh/mi/In Speed	0.66486 0.79683 0.5 0.0
Spee PF S In Po %Im* Sul # 1	ed Slope Coefficient clope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type Tangent	4.53356 -1.17419 Yes 8.5	Rac -	Speed Power Coefficient Total Segment Des % Improved Avg S	fficient ent nsity, veh/mi/ln speed Superelevation, %	0.66486 0.79683 0.5 0.0
Spee PF S In Po %Im Sul # 1 Vel Ave	ed Slope Coefficient slope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type Tangent hicle Results	4.53356 -1.17419 Yes 8.5 Length, ft 35904	Rac -	Speed Power Coefficient Total Segment Demonstrates & Improved Avg States & Improved Avg	fficient ent ent nsity, veh/mi/ln Speed Superelevation, % -	0.66486 0.79683 0.5 0.0 Average Speed, mi/h 59.3

Vel	nicle Inputs							
Segr	ment Type	Pass	sing Lanes		Length, ft			15105
Lane	e Width, ft	12			Shoulder Width, ft	t		6
Spee	ed Limit, mi/h	55			Access Point Dens	ity, p	ts/mi	4.0
Dei	mand and Capacity							
Dire	ctional Demand Flow Rate, veh/h	138			Opposing Demand	d Flo	w Rate, veh/h	-
Peak	Hour Factor	0.94	ļ		Total Trucks, %			14.90
Segr	ment Capacity, veh/h	140	0		Demand/Capacity	(D/C	<u></u>	0.10
Inte	ermediate Results							
Segr	ment Vertical Class	1			Free-Flow Speed,	mi/h		61.2
Spee	ed Slope Coefficient	7.24			Speed Power Coef	fficie	nt	1.54401
<u> </u>	lope Coefficient	-0.9	6855		PF Power Coefficie			0.89690
In Pa	assing Lane Effective Length?	No			Total Segment De	nsity,	veh/mi/ln	0.3
%lm	proved % Followers	0.0			% Improved Avg S	Speed	<u> </u>	0.0
Sul	bsegment Data							
#	Segment Type	Leng	gth, ft	Rad	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	151	05	-		-		61.2
Passing Lane Results								
Faster Lane							Slower Lane	
Flow Rate, veh/h 92						46		
Percentage of Heavy Vehicles (HV%), % 5.96					32.90			
Initia	al Average Speed (Sint), mi/h		61.5		60.6			
Aver	rage Speed at Midpoint (SPLmid), mi	′h	63.2				58.9	
Perc	ent Followers at Midpoint (PFPLmid),	%	11.1				5.6	
Vel	nicle Results							
Aver	rage Speed, mi/h	61.2)		Percent Followers, %			15.1
Segr	ment Travel Time, minutes	2.81			Followers Density, followers/mi/ln			0.3
Vehi	cle LOS	А						
			Se	gn	nent 8			
Vel	nicle Inputs							
	ment Type	Pass	sing Lanes		Length, ft			99999
۰	e Width, ft	12			Shoulder Width, ft	t		6
Spee	ed Limit, mi/h	55			Access Point Dens	ity, p	ts/mi	4.0
Dei	mand and Capacity							
	ctional Demand Flow Rate, veh/h	138			Opposing Demand	d Flo	w Rate, veh/h	-
_	c Hour Factor	0.94	ļ		Total Trucks, %			14.90
Soar	ment Capacity, veh/h	140	0		Demand/Capacity	(D/C	·)	0.10

Inte	rmediate Results							
	ent Vertical Class	1			Free-Flow Speed,	mi/h		61.2
	d Slope Coefficient	_	 3696		Speed Power Coef			1.58663
	•		16880		PF Power Coefficie		nı	0.89273
	ope Coefficient		70000					
	ssing Lane Effective Length?	No			Total Segment De			0.3
	proved % Followers	0.0			% Improved Avg S	speed	<u> </u>	0.0
Sub	segment Data							
#	Segment Type	Len	gth, ft	Rad	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	999	99	-		-		61.2
Pass	sing Lane Results							
			Faster Lane				Slower Lane	
Flow	Rate, veh/h		92				46	
Perce	ntage of Heavy Vehicles (HV%), %		5.96				32.90	
Initial	Average Speed (Sint), mi/h		61.5				60.6	
Avera	ge Speed at Midpoint (SPLmid), mi	/h	63.2				58.9	
Perce	nt Followers at Midpoint (PFPLmid)	, %	11.2				5.7	
Veh	icle Results							
Avera	ge Speed, mi/h	61.2	<u>)</u>		Percent Followers,	, %		15.3
Segm	ent Travel Time, minutes	18.5	58	Followers Density,	, follo	owers/mi/ln	0.3	
Vehic	le LOS							
			Se	egn	nent 9			
Veh	icle Inputs							
Segm	ent Type	Pass	sing Zone		Length, ft			22704
Lane	Width, ft	12			Shoulder Width, ft	t		6
Speed	d Limit, mi/h	55			Access Point Dens	sity, p	ots/mi	8.0
Den	nand and Capacity							
	tional Demand Flow Rate, veh/h	484			Opposing Demand	d Flo	w Rate, veh/h	277
Peak	Hour Factor	0.94	1		Total Trucks, %		3.76	
Segm	ent Capacity, veh/h	170	0		Demand/Capacity (D/C)		0.28	
Inte	rmediate Results							
Segm	ent Vertical Class	1			Free-Flow Speed,	mi/h		60.6
Speed	d Slope Coefficient	3.65	5687		Speed Power Coef	fficie	nt	0.52021
	ppe Coefficient	-1.2	3195		PF Power Coefficie			0.77833
	ssing Lane Effective Length?	Yes			Total Segment De	nsity	, veh/mi/ln	4.2
	proved % Followers	4.9			% Improved Avg S			0.0
					<u> </u>	-		I
Sub	segment Data							

`					
_	Tangent	22704 -		-	58.4
Vel	Vehicle Results				
Aver	Average Speed, mi/h	58.4	Percent Followers, %		50.4
Segr	Segment Travel Time, minutes	4.42	Followers Density, followers/mi/ln		4.0
Vehi	Vehicle LOS	В			

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2025
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 1 Adjustment Fact	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	666	Heavy Vehicle Adjustment Factor (fHV)	0.942
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	376
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.19
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	7.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	354	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.43
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida. All Rights		ne Version 7.8.5	Generated: 06/09/2023 23:14:36

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2025
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Fact	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	pacity		
Volume(V) veh/h	1160	Heavy Vehicle Adjustment Factor (fHV)	0.936
Peak Hour Factor	0.94	Flow Rate (V _P), pc/h/ln	659
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.33
Direction 2 Speed and Densi	ity		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	12.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	В
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vol.),veh/h	617	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.71
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D
Copyright © 2023 University of Florida. All Rights	Reserved HCSTM Multila	ne Version 7.8.5	Generated: 06/09/2023 23:19:33

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2025
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	1.70
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	5
Median Type	Divided	Total Lateral Clearance (TLC), ft	11
Free-Flow Speed (FFS), mi/h	54.6		
Direction 1 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	566	Heavy Vehicle Adjustment Factor (fHV)	0.951
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	316
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2064
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	1998
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.16
Direction 1 Speed and Densi	ty		·
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.2
Total Lateral Clearance Adj. (fLLC)	0.4	Density (D), pc/mi/ln	5.9
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	301	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.91
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Posaniad UCSIM Multila	ne Version 7.8.5	Generated: 06/09/2023 23:25:55

HCSTM Multilane Version 7.8.5

Generated: 06/09/2023 23:25:55

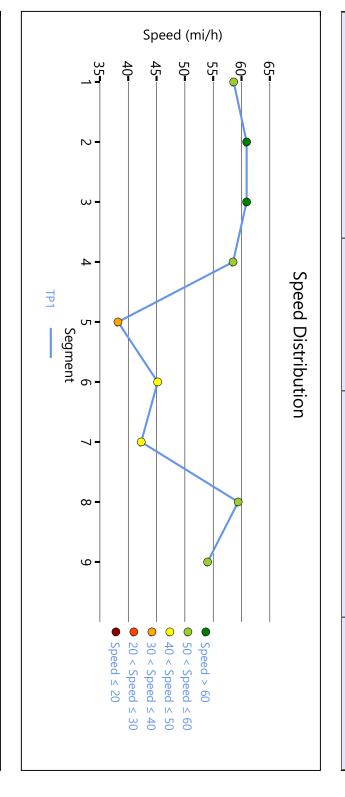
	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2025
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	pacity		·
Volume(V) veh/h	635	Heavy Vehicle Adjustment Factor (fHV)	0.950
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	356
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.18
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.6
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	338	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.97
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida. All Rights	Possenged LCS TOM Multile	ne Version 7.8.5	Generated: 06/09/2023 23:26:55

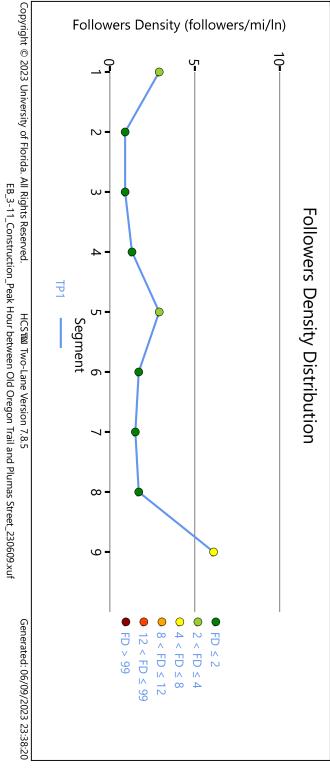
HCSTM Multilane Version 7.8.5

Generated: 06/09/2023 23:26:55

	HCS7 Two	HCS7 Two-Lane Highway Report					
Project Information							
Analyst	Carlos Arias		Date		6/9/2023		
Agency	Westwood		Analysis Year		2025		
Jurisdiction	Shasta County		Time Period Anal	yzed	Peak Hour		
Project Description	Fountain Wind Tw e-w E Bound - Alo CA-299E from Olo Trail to Plumas Str	ong d Oregon	Unit		United States Customary		
		Segn	nent 1				
Vehicle Inputs							
Segment Type	Passing Zone		Length, ft		22704		
Lane Width, ft	12		Shoulder Width,	ft	6		
Speed Limit, mi/h	55		Access Point Den	sity, pts/mi	8.0		
Demand and Capacity							
Directional Demand Flow Rate, veh/h	373	373		nd Flow Rate, veh/h	548		
Peak Hour Factor	0.94		Total Trucks, %		3.76		
Segment Capacity, veh/h	1700	1700 Den		y (D/C)	0.22		
Intermediate Results	·						
Segment Vertical Class	1	1 Free-Flow Speed, mi/h		, mi/h	60.6		
Speed Slope Coefficient	3.72711	3.72711		efficient	0.47597		
PF Slope Coefficient	-1.26788	-1.26788		ient	0.76437		
In Passing Lane Effective Length?	No		Total Segment Do	ensity, veh/mi/ln	2.9		
%Improved % Followers	0.0		% Improved Avg	Speed	0.0		
Subsegment Data							
# Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h		
1 Tangent	22704	-		-	58.6		
Vehicle Results				•			
Average Speed, mi/h	58.6		Percent Followers, %		45.0		
Segment Travel Time, minutes	4.41		Followers Density, followers/mi/ln		2.9		
Vehicle LOS	В						
	<u>'</u>	Segn	nent 2				
Vehicle Inputs							
Segment Type	Passing Lanes		Length, ft		99999		
Lane Width, ft	12		Shoulder Width,	ft	6		
Speed Limit, mi/h	55		Access Point Den		4.0		
Demand and Capacity				· ·			

Directional Demand Flow Rate, veh/h 235 O			Opposing	Opposing Demand Flow Rate, veh/h				
Peak	Hour Factor	0.94	ļ	Total Truck		14.90		
Segment Capacity, veh/h 1400 [Demand/0	Demand/Capacity (D/C) 0.17				
Inte	ermediate Results						<u>'</u>	
Segn	nent Vertical Class	1		Free-Flow	Speed, mi/ł	า	61.2	
Speed Slope Coefficient 7.28696			Speed Pov	ver Coefficie	ent	1.58663		
PF Slope Coefficient -0.96880			PF Power	Coefficient		0.89273		
In Passing Lane Effective Length?			Total Segn	nent Density	y, veh/mi/ln	0.9		
%Improved % Followers 0.0			% Improve	ed Avg Spee	ed	0.0		
Sub	segment Data							
#	Segment Type	Leng	gth, ft	Radius, ft	Su	perelevation, %	Average Speed, mi/h	
1	Tangent	99999 -		-	-		60.9	
Pas	sing Lane Results							
Faster Lane						Slower Lane		
Flow Rate, veh/h 150				85				
Percentage of Heavy Vehicles (HV%), % 5.96								
Initial Average Speed (Sint), mi/h 61.5								
Average Speed at Midpoint (SPLmid), mi/h 63.2								
Avera	Percent Followers at Midpoint (PFPLmid), % 16.8							
	ent Followers at Midpoint (PFPLmid)	, %	16.8			10.0		
Perce	ent Followers at Midpoint (PFPLmid)	, %	16.8			10.0		
Perce Veh	·	60.9		Percent Fc	ollowers, %	10.0	23.4	
Veh	icle Results)			10.0 owers/mi/ln	23.4	
Veh Avera	icle Results age Speed, mi/h	60.9)					
Veh Avera	age Speed, mi/h	60.9	9					
Veh Avera Segm Vehic	age Speed, mi/h	60.9	9	Followers				
Veh Avera Segm Vehic	age Speed, mi/h nent Travel Time, minutes	60.9 18.6 A	9	Followers				
Veh Veh Segm Vehic	age Speed, mi/h ment Travel Time, minutes tle LOS	60.9 18.6 A) 66 Se	Followers egment 3	Density, foll		0.9	
Veh Avera Segm Vehic Veh Segm Lane	age Speed, mi/h ment Travel Time, minutes tle LOS icle Inputs ment Type	60.9 18.6 A) 66 Se	Followers egment 3 Length, ft Shoulder	Density, foll	owers/mi/ln	15105	
Veh Avera Segm Vehic Veh Segm Lane	age Speed, mi/h ment Travel Time, minutes tle LOS icle Inputs ment Type Width, ft	60.9 18.6 A) 66 Se	Followers egment 3 Length, ft Shoulder	Density, foll	owers/mi/ln	0.9 15105 6	
Veh Avera Segm Vehic Veh Segm Lane Spee	icle Results age Speed, mi/h ment Travel Time, minutes cle LOS icle Inputs ment Type Width, ft d Limit, mi/h	60.9 18.6 A	See sing Lanes	Followers Egment 3 Length, ft Shoulder N Access Poi	Density, foll Width, ft	owers/mi/ln	0.9 15105 6	
Veh Segm Vehic Veh Segm Lane Spee Den	icle Results age Speed, mi/h ment Travel Time, minutes tle LOS icle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity	60.9 18.6 A Pass 12 55	Se sing Lanes	Followers Egment 3 Length, ft Shoulder N Access Poi	Width, ft int Density,	owers/mi/ln	0.9 15105 6 4.0	
Vehice Vehice Vehice Vehice Vehice Den Direce Peak	icle Results age Speed, mi/h ment Travel Time, minutes cle LOS icle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	60.9 18.6 A Pass 12 55	See Sing Lanes	Followers Egment 3 Length, ft Shoulder V Access Poi	Width, ft int Density,	owers/mi/ln pts/mi ow Rate, veh/h	0.9 15105 6 4.0	
Vehice Segmund Vehice Segmund Vehice Segmund Vehice Speeumont Vehice Segmund Vehi	age Speed, mi/h ment Travel Time, minutes the LOS icle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity tional Demand Flow Rate, veh/h Hour Factor	60.9 18.6 A Pass 12 55 235 0.94	See Sing Lanes	Followers Egment 3 Length, ft Shoulder V Access Poi	Width, ft int Density, Demand Floors, %	owers/mi/ln pts/mi ow Rate, veh/h	0.9 15105 6 4.0	
Veh Avera Segm Vehic Veh Segm Lane Spee Den Direc Peak Segm	icle Results age Speed, mi/h ment Travel Time, minutes cle LOS icle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h	60.9 18.6 A Pass 12 55 235 0.94	See Sing Lanes	Length, ft Shoulder N Access Poi Opposing Total Truck Demand/C	Width, ft int Density, Demand Floors, %	owers/mi/ln pts/mi ow Rate, veh/h C)	0.9 15105 6 4.0	
Vehice Vehice Vehice Vehice Vehice Vehice Segm Lane Spee Derece Peak Segm Inte	age Speed, mi/h ment Travel Time, minutes the LOS sicle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity tional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h ermediate Results ment Vertical Class	60.9 18.6 A Pass 12 55 235 0.94 140 1	See Sing Lanes	Followers Egment 3 Length, ft Shoulder N Access Poi Opposing Total Truck Demand/O	Width, ft int Density, Demand Flo	owers/mi/ln pts/mi ow Rate, veh/h C)	0.9 15105 6 4.0 - 14.90 0.17	
Vehice Vehice Vehice Vehice Vehice Vehice Segm Lane Spee Der Direce Peak Segm Inte	icle Results age Speed, mi/h ment Travel Time, minutes cle LOS icle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h crmediate Results	Pass 12 55 0.94 140 1 7.24	See Sing Lanes	Followers Egment 3 Length, ft Shoulder V Access Poil Opposing Total Truck Demand/C Free-Flow Speed Pov	Width, ft int Density, Demand Floors, % Capacity (D/	owers/mi/ln pts/mi ow Rate, veh/h C)	0.9 15105 6 4.0 - 14.90 0.17	
Veh Avera Segm Vehic Veh Segm Lane Spee Der Direc Peak Segm Inte Segm Spee PF Sle	age Speed, mi/h ment Travel Time, minutes cle LOS icle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h ermediate Results ment Vertical Class d Slope Coefficient	Pass 12 55 0.94 140 1 7.24	Sessing Lanes	Followers Egment 3 Length, ft Shoulder N Access Poi Opposing Total Truck Demand/O Free-Flow Speed Pov PF Power O	Width, ft int Density, Demand Flo cs, % Capacity (D/ Speed, mi/h ver Coefficient	owers/mi/ln pts/mi ow Rate, veh/h C)	0.9 15105 6 4.0 - 14.90 0.17 61.2 1.54401	


Sub	segment Data								
#	Segment Type	Len	gth, ft		Rad	ius, ft	Superelevati		Average Speed, mi/h
1	Tangent	151	05		-		-		60.9
Pas	sing Lane Results								
			Faster Lane					Slower Lane	
Flow Rate, veh/h 150						85			
Percentage of Heavy Vehicles (HV%), % 5.96					30.60				
Initial Average Speed (Sint), mi/h 61.5							60.7		
Average Speed at Midpoint (SPLmid), mi/h 63.2				59.0					
Percent Followers at Midpoint (PFPLmid), % 16.7				9.9					
Veh	icle Results								
Avera	age Speed, mi/h	60.9)			Percent Followers, %			23.2
Segn	nent Travel Time, minutes	2.82	2			Followers Den	sity, fo	llowers/mi/ln	0.9
Vehic	Vehicle LOS A			·					
				Se	egm	nent 4			
Veh	icle Inputs								
Segn	nent Type	Pas	Passing Zone		Length, ft		35904		
Lane	Width, ft	12	12		Shoulder Widt	h, ft		6	
Spee	Speed Limit, mi/h 55		Access Point D	ensity	, pts/mi	6.0			
Der	nand and Capacity								
Direc	tional Demand Flow Rate, veh/h	240	1			Opposing Demand Flow Rate, veh/h			207
Peak	Hour Factor	0.94	1			Total Trucks, %			14.90
Segn	nent Capacity, veh/h	170	0			Demand/Capacity (D/C)			0.14
Inte	ermediate Results								
Segn	nent Vertical Class	2				Free-Flow Speed, mi/h			59.8
Spee	d Slope Coefficient	4.58	3482			Speed Power Coefficient			0.64081
PF SI	ope Coefficient	-1.1	9424			PF Power Coefficient			0.79047
In Pa	ssing Lane Effective Length?	Yes				Total Segment Density, veh/mi/ln			1.3
%lmp	proved % Followers	8.4				% Improved Avg Speed			0.0
Sub	segment Data								
#	Segment Type	Len	gth, ft		Rad	ius, ft Superel		uperelevation, %	Average Speed, mi/h
1	Tangent	359	04		-		-		58.5
Veh	icle Results								
Aver	age Speed, mi/h	58.5	5			Percent Follow	ers, %		32.1
5 1			7			Followers Density, followers/mi/ln			1.2
	nent Travel Time, minutes	- 1			i ollowers bensity, followers/fill/ill				


Vehicle Inputs							
Segment Type	Passing Zone		Length, ft		12144		
Measured FFS	Measured		Free-Flow Speed,	mi/h	47.0		
			riee-riow speed,	1111/11	47.0		
Demand and Capacity							
Directional Demand Flow Rate, veh				d Flow Rate, veh/h	243		
Peak Hour Factor		0.94			31.00		
egment Capacity, veh/h 1700			Demand/Capacity	(D/C)	0.16		
Intermediate Results							
			Free-Flow Speed,	mi/h	47.0		
Speed Slope Coefficient 30.59918		Speed Power Coe	fficient	0.71659			
PF Slope Coefficient -1.47032		PF Power Coefficie	ent	0.80180			
In Passing Lane Effective Length?	In Passing Lane Effective Length? Yes		Total Segment De	nsity, veh/mi/ln	2.9		
%Improved % Followers	vers 6.2		% Improved Avg S	Speed	0.0		
Subsegment Data							
# Segment Type	Length, ft	Length, ft Rad		Superelevation, %	Average Speed, mi/h		
1 Tangent				-	38.2		
Vehicle Results	·						
Average Speed, mi/h 38.2		Percent Followers,	%	40.7			
Segment Travel Time, minutes 3.61		Followers Density,	followers/mi/ln	2.8			
Vehicle LOS	<u> </u>						
		Seg	ment 6		·		
Vehicle Inputs							
Segment Type	Passing Lanes		Length, ft		25872		
Measured FFS	Measured		Free-Flow Speed,	mi/h	46.0		
Demand and Capacity							
Directional Demand Flow Rate, veh	ı/h 276		Opposing Deman	d Flow Rate, veh/h			
Peak Hour Factor	0.94		Total Trucks, %	, ,	31.00		
Segment Capacity, veh/h	1100		Demand/Capacity	(D/C)	0.25		
Intermediate Results							
Segment Vertical Class	2		Free-Flow Speed,	mi/h	46.0		
Speed Slope Coefficient	12.22850		Speed Power Coe		1.55917		
PF Slope Coefficient	-0.91332		PF Power Coefficie		0.77795		
In Passing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	1.7		
%Improved % Followers	0.0		% Improved Avg S		0.0		
Subsegment Data	·		1	% improved Avg Speed 0.0			
# Segment Type	Length, ft	R	adius, ft	Superelevation, %	Average Speed, mi/h		
1 Tangent	25872	-		-	45.2		
9	=34.=						

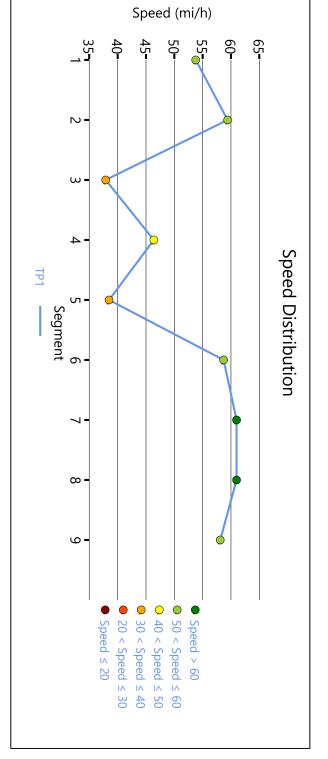
Pas	ssing Lane Results								
Faster Lane							Slower Lane		
Flow Rate, veh/h			169			106			
Perc	entage of Heavy Vehicles (HV%), %		12.40			60.59			
Initial Average Speed (Sint), mi/h			74.3			64.5			
Ave	rage Speed at Midpoint (SPLmid), mi/	'h	76.4			62.4			
Perc	ent Followers at Midpoint (PFPLmid),	%	12.7			0.5			
Vel	hicle Results								
Ave	rage Speed, mi/h	45.2			Percent Followers,	ers, %		28.5	
Seg	ment Travel Time, minutes	6.51			Followers Density,	, follo	wers/mi/ln	1.7	
Vehi	icle LOS	А							
			Se	egn	nent 7			<u>'</u>	
Vel	hicle Inputs								
Seg	ment Type	Pass	sing Lanes Length, ft				30624		
Measured FFS Measured			asured		Free-Flow Speed, mi/h			47.0	
Demand and Capacity								_	
Directional Demand Flow Rate, veh/h 310			0 Opposing Demand Fl			d Flo	ow Rate, veh/h -		
Peak Hour Factor 0.94			70 Total Trucks, %				30.00		
Segment Capacity, veh/h 110			00 Demand/Capacity (D		, (D/C	<u> </u>	0.28		
Int	ermediate Results								
Seg	ment Vertical Class	4	Free-Flow Speed, mi/h			mi/h		47.0	
Spe	ed Slope Coefficient	28.7	3.73583		Speed Power Coefficient		1.16507		
PF S	lope Coefficient	-0.8).82245		PF Power Coefficient		1.06542		
In Pa	assing Lane Effective Length?	No			Total Segment Density, veh/mi/ln		1.5		
%lm	proved % Followers	0.0			Speed		0.0		
Sul	bsegment Data								
#	Segment Type	Leng	gth, ft	Rac	dius, ft Sur		erelevation, %	Average Speed, mi/h	
1	Tangent	306	3 .		-			42.3	
Pas	ssing Lane Results							•	
			Faster Lane				Slower Lane		
Flov	v Rate, veh/h		188				122		
Perc	entage of Heavy Vehicles (HV%), %		12.00				57.68		
Initi	al Average Speed (Sint), mi/h		72.4				56.3		
Ave	rage Speed at Midpoint (SPLmid), mi/	'h	74.4				54.3		
Perc	ent Followers at Midpoint (PFPLmid),	%	15.4				-		
Vel	hicle Results								
	rage Speed, mi/h	42.3			Percent Followers,	%		21.0	

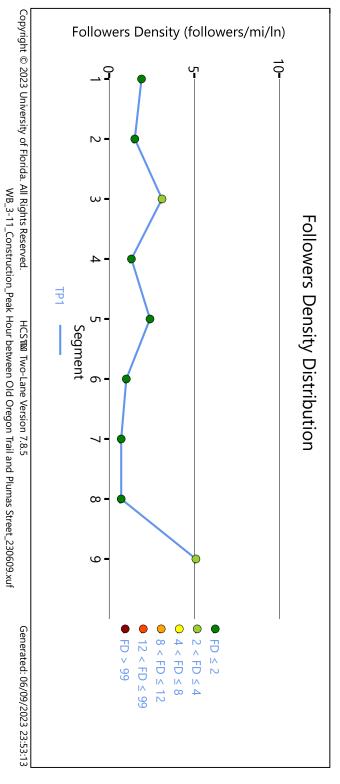
Segment Travel Time, minutes 8.22				Followers Density,	followers/mi/ln	1.5	
_	ehicle LOS A		and the deficiency,	,	-		
		Se	egm	ment 8			
Veh	icle Inputs						
	nent Type	Passing Zone	T	Length, ft		7392	
	Width, ft	12		Shoulder Width, ft	<u> </u>	6	
· ·		Access Point Dens	ity, pts/mi	5.0			
Demand and Capacity							
Directional Demand Flow Rate, veh/h 288			Opposing Deman	d Flow Rate, veh/h	261		
Peak Hour Factor 0.94		Total Trucks, %		17.50			
Segment Capacity, veh/h 1700		1700	1	Demand/Capacity	(D/C)	0.17	
Inte	ermediate Results						
Segment Vertical Class 1				Free-Flow Speed,	mi/h	60.9	
Speed Slope Coefficient		3.64391		Speed Power Coefficient		0.52382	
PF Slope Coefficient		-1.21262		PF Power Coefficient		0.80405	
In Passing Lane Effective Length?		Yes		Total Segment Density, veh/mi/ln		1.7	
%Improved % Followers		13.0		% Improved Avg Speed		0.1	
Subsegment Data							
#	Segment Type	Length, ft Rad		lius, ft Superelevation, %		Average Speed, mi/h	
1	Tangent	7392	-	-		59.3	
Veh	icle Results						
Avera	age Speed, mi/h	59.4		Percent Followers,	%	36.0	
_	age Speed, mi/h nent Travel Time, minutes	59.4 1.41		Percent Followers, Followers Density,		36.0	
Segm	<u> </u>						
Segm	nent Travel Time, minutes	1.41 A					
Segm	nent Travel Time, minutes	1.41 A		Followers Density,			
Segn Vehice Veh	nent Travel Time, minutes cle LOS	1.41 A	egme	Followers Density, ent 9			
Vehice Vehice Vehice	nent Travel Time, minutes	1.41 A	egm	Followers Density,	followers/mi/ln	1.5	
Vehice Veh Segm Lane	nent Travel Time, minutes cle LOS nicle Inputs nent Type	1.41 A Se Passing Constrained	egm	Followers Density, ent 9 Length, ft	followers/mi/ln	2640	
Vehice Vehice Vehice Vehice Segment Lane Spee	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft	1.41 A Se Passing Constrained 12	egm	ent 9 Length, ft Shoulder Width, ft	followers/mi/ln	2640 6	
Vehice Vehice Vehice Segment Lane Spee	nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h	1.41 A Se Passing Constrained 12	egm	ent 9 Length, ft Shoulder Width, ft Access Point Dens	followers/mi/ln	2640 6	
Vehice Vehice Vehice Vehice Segm Lane Spee Derr Direct	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity	Passing Constrained 12 55	egm	ent 9 Length, ft Shoulder Width, ft Access Point Dens	followers/mi/ln ity, pts/mi	2640 6 22.0	
Segm Vehice Veh Segm Lane Spee Derr Direce Peak	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	Passing Constrained 12 55	egm	ent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand	followers/mi/ln ity, pts/mi d Flow Rate, veh/h	2640 6 22.0	
Vehice Vehice Vehice Vehice Segm Lane Spee Derr Direct Peak Segm	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor	Passing Constrained 12 55 560 0.94	egm	ent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand	followers/mi/ln ity, pts/mi d Flow Rate, veh/h	2640 6 22.0	
Vehice Vehice Vehice Segm Lane Spee Derr Direct Peak Segm Inte	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h	Passing Constrained 12 55 560 0.94	egmo	ent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand	followers/mi/ln ity, pts/mi d Flow Rate, veh/h (D/C)	2640 6 22.0	
Vehice Vehice Segm Lane Spee Direct Peak Segm Inte	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h crmediate Results	1.41 A See Passing Constrained 12 55 560 0.94 1700	egme	ent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand Total Trucks, % Demand/Capacity	followers/mi/ln ity, pts/mi d Flow Rate, veh/h (D/C)	2640 6 22.0 - 19.00 0.33	

		0	Vehicle LOS
//ln 5.5	Followers Density, followers/mi/ln	0.56	Segment Travel Time, minutes
58.7	Percent Followers, %	54.0	Average Speed, mi/h
			Vehicle Results
54.0	-	2640 -	1 Tangent
ion, % Average Speed, mi/h	Radius, ft Superelevation, %	Length, ft Rad	# Segment Type
			Subsegment Data
0.0	% Improved Avg Speed	9.7	%Improved % Followers
/ln 6.1	Total Segment Density, veh/mi/ln	Yes	In Passing Lane Effective Length?

HCS7 Tv		o-Lane	e Highway Report				
Project Information							
Analyst	Carlos Arias		Date		6/9/2023		
Agency	Westwood		Analysis Year		2025		
Jurisdiction	Shasta County		Time Period Analy	/zed	Peak Hour		
Project Description	Fountain Wind To e-w _ West Boun CA-299E from Ol Trail to Plumas St	d - Along d Oregon	Unit		United States Customary		
		Segn	nent 1				
Vehicle Inputs							
Segment Type	Passing Constrain	ned	Length, ft		2640		
Lane Width, ft	12		Shoulder Width, f	t	6		
Speed Limit, mi/h	55		Access Point Dens	sity, pts/mi	22.0		
Demand and Capacity							
Directional Demand Flow Rate, veh/	h 255		Opposing Demand Flow Rate, veh/h		-		
Peak Hour Factor	0.94		Total Trucks, %		19.00		
Segment Capacity, veh/h	1700	1700		/ (D/C)	0.15		
Intermediate Results							
Segment Vertical Class	2	2 Free-Flo		mi/h	55.5		
Speed Slope Coefficient	3.88683	3.88683		fficient	0.44359		
PF Slope Coefficient	-1.43208	-1.43208		ent	0.73380		
In Passing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	1.9		
%Improved % Followers	0.0		% Improved Avg	Speed	0.0		
Subsegment Data							
# Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h		
1 Tangent	2640	-		-	53.8		
Vehicle Results							
Average Speed, mi/h	53.8		Percent Followers, %		40.9		
Segment Travel Time, minutes	0.56		Followers Density, followers/mi/ln		1.9		
Vehicle LOS	А						
	·	Segn	nent 2		·		
Vehicle Inputs							
Segment Type	Passing Zone		Length, ft		7392		
Lane Width, ft	12		Shoulder Width, f	t	6		
Speed Limit, mi/h	55		Access Point Dens	sity, pts/mi	5.0		
Demand and Capacity							

Directional Demand Flow Rate, veh/h 261			Opposing Demand Flow Rate, veh/h 288				
			Total Trucks, %	u How Rate, ven/II	17.50		
	ment Capacity, veh/h			Demand/Capacity	, (D/C)	0.15	
Intermediate Results			Demand, capacity	(0,0)	0.13		
		Free-Flow Speed,		60.9			
	ed Slope Coefficient	3.65256		Speed Power Coe		0.51767	
	lope Coefficient			PF Power Coefficie		0.80222	
	ssing Lane Effective Length?	No		Total Segment De		1.5	
%Improved % Followers 0.0			% Improved Avg S	Speed	0.0		
Suk	segment Data						
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	7392	-		-	59.4	
Vehicle Results							
Average Speed, mi/h 59.4				Percent Followers,	, %	33.9	
Segment Travel Time, minutes		1.41		Followers Density,	, followers/mi/ln	1.5	
Vehicle LOS A			Tollowers Density, followers/fill/ill				
			Segn	nent 3			
Vel	nicle Inputs						
Segr	ment Type	Passing Zone		Length, ft		30624	
Mea	sured FFS	Measured		Free-Flow Speed, mi/h		47.0	
Der	mand and Capacity						
Dire	ctional Demand Flow Rate, veh/h	277		Opposing Deman	d Flow Rate, veh/h	310	
Peak	Hour Factor	0.94		Total Trucks, %		30.00	
Segr	nent Capacity, veh/h	1700		Demand/Capacity (D/C)		0.16	
Inte	ermediate Results						
Segr	ment Vertical Class	4		Free-Flow Speed,	mi/h	47.0	
Spee	ed Slope Coefficient	30.30657		Speed Power Coe	fficient	0.69074	
PF SI	lope Coefficient	-1.50563		PF Power Coefficie	ent	0.79558	
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		3.1	
%lm	proved % Followers	0.0		% Improved Avg S	Speed	0.0	
Suk	osegment Data						
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	30624	-		-	37.9	
					•		
Vel	nicle Results						
	age Speed, mi/h	37.9		Percent Followers,	, %	41.8	
Aver		37.9 9.19		Percent Followers, Followers Density,		41.8	


		Se	gn	nent 4					
Vel	hicle Inputs								
Segi	ment Type	Pass	sing Lanes		Length, ft			25872	
Mea	sured FFS	Mea	asured		Free-Flow Speed,	mi/h		47.0	
De	mand and Capacity								
Dire	ctional Demand Flow Rate, veh/h	243			Opposing Demand Flow Rate, veh/h			-	
Peak	k Hour Factor	0.94	1		Total Trucks, %			31.00	
Segi	ment Capacity, veh/h	110	0		Demand/Capacity	(D/C	0.22		
Int	ermediate Results								
Segi	ment Vertical Class	2			Free-Flow Speed,	mi/h		47.0	
Spe	ed Slope Coefficient	12.2	2.22850 Speed Po		Speed Power Coef	Speed Power Coefficient		1.55917	
PF Slope Coefficient -0.91061			1061		PF Power Coefficient			0.78832	
In Passing Lane Effective Length?					Total Segment Density, veh/mi/ln			1.3	
%Improved % Followers 0.0			0.0 % Improved Avg Speed		d	0.0			
Sul	bsegment Data								
#	Segment Type	Len	Length, ft Rac		dius, ft	s, ft Superelevation, %		Average Speed, mi/h	
1	Tangent	258	72		-		46.4		
Pas	ssing Lane Results		Faster Lane				Slower Lane		
Flow	v Rate, veh/h		151						
	rentage of Heavy Vehicles (HV%), %		12.40		91				
	al Average Speed (Sint), mi/h		74.4				64.2		
	rage Speed at Midpoint (SPLmid), mi	/h	76.4		62.2				
	ent Followers at Midpoint (PFPLmid)		11.4				0.3		
	hicle Results						1.0		
Aver	rage Speed, mi/h	46.4	<u> </u>		Percent Followers,	. %		25.8	
	ment Travel Time, minutes	6.33			Followers Density, followers/mi/ln		1.3		
	icle LOS	Α			Pollowers Defisity, Iollowers/IIII/III				
			Se	gn	nent 5				
Vel	hicle Inputs								
	ment Type	Pass	sing Zone		Length, ft			12144	
	Isured FFS	+	asured		Free-Flow Speed,	mi/h		46.0	
	mand and Capacity					,			
	ctional Demand Flow Rate, veh/h	243			Opposing Demand	d Flo	w Rate veh/h	276	
	K Hour Factor	0.94				u 110	Trace, veri/11	31.00	
F P 7 "		1 0.5-	•		Total Trucks, %			1 0 1.00	


	ermediate Results					
Segment Vertical Class 4 Fr			Free-Flow Speed,	mi/h	46.0	
Spe	ed Slope Coefficient	30.65835	30.65835		fficient	0.70288
PF S	Slope Coefficient	-1.48821	-1.48821		ent	0.79349
In Pa	assing Lane Effective Length?	Yes		Total Segment De	ensity, veh/mi/ln	2.4
%lm	proved % Followers	14.0		% Improved Avg	Speed	0.9
Sul	bsegment Data					
#	Segment Type	Length, ft	R	adius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	12144	-		-	38.2
Vel	hicle Results					
Avei	rage Speed, mi/h	38.5		Percent Followers	, %	38.3
Segment Travel Time, minutes 3.58			Followers Density	, followers/mi/ln	2.1	
Vehi	Vehicle LOS A					
			Seg	ment 6		<u>'</u>
Vel	hicle Inputs					
Segi	ment Type	Passing Zone		Length, ft		35904
Lane	e Width, ft	12		Shoulder Width, f	t	6
Spe	ed Limit, mi/h	55		Access Point Dens	sity, pts/mi	6.0
De	mand and Capacity			<u>'</u>		•
Dire	ectional Demand Flow Rate, veh/h	207		Opposing Deman	d Flow Rate, veh/h	240
Peak	k Hour Factor	0.94		Total Trucks, %		14.90
Segr	ment Capacity, veh/h	1700		Demand/Capacity	/ (D/C)	0.12
Int	ermediate Results					
Segi	ment Vertical Class	2		Free-Flow Speed,	mi/h	59.8
Spe	ed Slope Coefficient	4.60786		Speed Power Coe	fficient	0.63042
PF S	Slope Coefficient	-1.20320		PF Power Coeffici	ent	0.78760
	assing Lane Effective Length?	Yes		Total Segment De	ensity, veh/mi/ln	1.0
In Pa	%Improved % Followers 8.6			% Improved Avg	Speed	0.0
		0.0				
%lm		0.0				
%lm	pproved % Followers	Length, ft	R	adius, ft	Superelevation, %	Average Speed, mi/h
%lm	proved % Followers bsegment Data		R -	adius, ft	Superelevation, %	Average Speed, mi/h 58.7
%lm Sul #	bsegment Data Segment Type	Length, ft	R	adius, ft	Superelevation, %	
%Im Sul # 1 Vel	bsegment Data Segment Type Tangent	Length, ft	R	adius, ft Percent Followers	-	
%Im # 1 Vel Aver	bsegment Data Segment Type Tangent hicle Results	Length, ft 35904	R		, %	58.7

Vel	nicle Inputs							
Segment Type Passing Lanes Le			Length, ft			15105		
Lane	e Width, ft	12			Shoulder Width, ft			6
Spee	ed Limit, mi/h	55	55		Access Point Density, pts/mi		4.0	
Dei	mand and Capacity							
Dire	ctional Demand Flow Rate, veh/h	202			Opposing Demand Flow Rate, veh/h			-
Peak	Hour Factor	0.94	ļ		Total Trucks, %			14.90
Segr	ment Capacity, veh/h	140	0		Demand/Capacity (D/C)			0.14
Inte	ermediate Results							
Segr	ment Vertical Class	1			Free-Flow Speed,	mi/h		61.2
Spee	ed Slope Coefficient	7.24			Speed Power Coef	fficie	 nt	1.54401
<u> </u>	PF Slope Coefficient -0.96855		PF Power Coefficie			0.89690		
	assing Lane Effective Length?	No		Total Segment De	nsity,	veh/mi/ln	0.7	
%lm	%Improved % Followers 0.0		% Improved Avg S	Speed	t e	0.0		
Suk	osegment Data							
#	Segment Type	Leng	 gth, ft	Rac	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	15105 -			-	<u>·</u>	61.0	
Pas	sing Lane Results							
			Faster Lane				Slower Lane	
Flow	r Rate, veh/h		131				72	
Perc	entage of Heavy Vehicles (HV%), %		5.96		31.23			
Initia	al Average Speed (Sint), mi/h		61.5		60.7			
Aver	rage Speed at Midpoint (SPLmid), mi,	/h	63.2		58.9			
Perc	ent Followers at Midpoint (PFPLmid),	%	14.9		8.4			
Veł	nicle Results							
Aver	rage Speed, mi/h	61.0)		Percent Followers, %			20.6
Segr	ment Travel Time, minutes	2.81			Followers Density, followers/mi/ln			0.7
Vehi	cle LOS	А			. S. Street Delisity, followers/fill/fill			
			Se	gn	nent 8			
Veł	nicle Inputs							
	ment Type	Pass	sing Lanes		Length, ft			99999
_	e Width, ft	12	<u> </u>		Shoulder Width, ft	t		6
	ed Limit, mi/h	55			Access Point Dens		ts/mi	4.0
	mand and Capacity							
	ctional Demand Flow Rate, veh/h	202			Opposing Demand	d Flo	w Rate, veh/h	-
	Hour Factor	0.94			Total Trucks, %		, ,	14.90
		-			Total Trucks, %			

Inte	ermediate Results							
	nent Vertical Class	1			Free-Flow Speed,	mi/h		61.2
	d Slope Coefficient				Speed Power Coefficient			1.58663
	<u> </u>						0.89273	
	F Slope Coefficient -0.96880			PF Power Coefficient				
	Passing Lane Effective Length? No			Total Segment Density, veh/mi/ln			0.7	
%Improved % Followers 0.0				% Improved Avg Speed 0.0				
Sub	segment Data							
#	Segment Type	Len	3		lius, ft	Sup	perelevation, %	Average Speed, mi/h
1	Tangent	999	99999 -			<u> -</u>		61.0
Pas	sing Lane Results							
Faster Lane						Slower Lane		
Flow	Rate, veh/h		131				72	
Perce	entage of Heavy Vehicles (HV%), %		5.96				31.23	
Initia	l Average Speed (Sint), mi/h		61.5				60.7	
Avera	age Speed at Midpoint (SPLmid), mi	/h	63.2				58.9	
Perce	ent Followers at Midpoint (PFPLmid)	, %	15.0				8.6	
Veh	icle Results							
Avera	age Speed, mi/h	61.0	61.0		Percent Followers,	, %		20.7
Segn	nent Travel Time, minutes	18.6	53		Followers Density, followers/mi/ln		0.7	
Vehic	le LOS	А						
			Se	egn	nent 9			·
Veh	icle Inputs							
Segn	nent Type	Pas	sing Zone		Length, ft			22704
Lane	Width, ft	12			Shoulder Width, ft			6
Spee	d Limit, mi/h	55			Access Point Density, pts/mi			8.0
Der	nand and Capacity							
Direc	tional Demand Flow Rate, veh/h	548			Opposing Demand Flow Rate, veh/h			373
Peak	Hour Factor	0.94	1		Total Trucks, %		3.76	
Segn	nent Capacity, veh/h	170	0		Demand/Capacity	(D/C	<u> </u>	0.32
Inte	ermediate Results							
Segn	nent Vertical Class	1			Free-Flow Speed,	mi/h		60.6
Spee	d Slope Coefficient	3.68	3478		Speed Power Coe	fficie	nt	0.50130
PF SI	ope Coefficient	-1.2	4770		PF Power Coefficie			0.77267
In Pa	ssing Lane Effective Length?	Yes			Total Segment De	nsity	, veh/mi/ln	5.1
%lmp	proved % Followers	4.3			% Improved Avg S	Speed	d	0.0
Sub	segment Data							1

_	Tangent	22704	_	-	58.1
Vel	Vehicle Results				
Aver	Average Speed, mi/h	58.1	Percent Followers, %		54.3
Segr	Segment Travel Time, minutes	4.44	Followers Density, followers/mi/ln		4.9
Vehi	Vehicle LOS	С			

	HCS7 Multilane	Highway Report							
Project Information									
Analyst	PJV	Date	6/9/2023						
Agency	California Energy Commission	Analysis Year	2027						
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR						
Project Description	POST- CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary						
Direction 1 Geometric Data									
Direction 1	Eastbound								
Number of Lanes (N), In	2	Terrain Type	Specific Grade						
Segment Length (L), ft	-	Percent Grade, %	-0.41						
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60						
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0						
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6						
Median Type	Divided	Total Lateral Clearance (TLC), ft	12						
Free-Flow Speed (FFS), mi/h	55.0								
Direction 1 Adjustment Factors									
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975						
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968						
Driver Population CAF	0.968								
Direction 1 Demand and Cap	pacity								
Volume(V) veh/h	583	Heavy Vehicle Adjustment Factor (fHV)	0.942						
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	329						
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072						
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006						
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.16						
Direction 1 Speed and Densi	ty								
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6						
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.1						
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А						
Access Point Density Adjustment (fA)	0.0								
Direction 1 Bicycle LOS									
Flow Rate in Outside Lane (vOL),veh/h	310	Effective Speed Factor (St)	4.79						
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.36						
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С						
Copyright © 2023 University of Florida, All Rights	Posaniad UCSEM Multila	ne Version 7.8.5	Generated: 06/10/2023 00:01:10						

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Multilane Version 7.8.5

Generated: 06/10/2023 00:01:10

	HCS7 Multilane	Highway Report							
Project Information									
Analyst	PJV	Date	6/9/2023						
Agency	California Energy Commission	Analysis Year	2027						
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR						
Project Description	POST- CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary						
Direction 2 Geometric Data									
Direction 2	Westbound								
Number of Lanes (N), In	2	Terrain Type	Specific Grade						
Segment Length (L), ft	-	Percent Grade, %	0.41						
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60						
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0						
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6						
Median Type	Divided	Total Lateral Clearance (TLC), ft	12						
Free-Flow Speed (FFS), mi/h	55.0								
Direction 2 Adjustment Factors									
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975						
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968						
Driver Population CAF	0.968								
Direction 2 Demand and Cap	acity								
Volume(V) veh/h	1108	Heavy Vehicle Adjustment Factor (fHV)	0.936						
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	630						
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072						
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006						
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.31						
Direction 2 Speed and Densi	ty								
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6						
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	11.8						
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	В						
Access Point Density Adjustment (fA)	0.0								
Direction 2 Bicycle LOS									
Flow Rate in Outside Lane (vOL),veh/h	589	Effective Speed Factor (St)	4.79						
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.68						
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D						
Copyright © 2023 University of Florida. All Rights	Recented HCSTM Multila	ne Version 7.8.5	Generated: 06/10/2023 00:02:10						

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Multilane Version 7.8.5

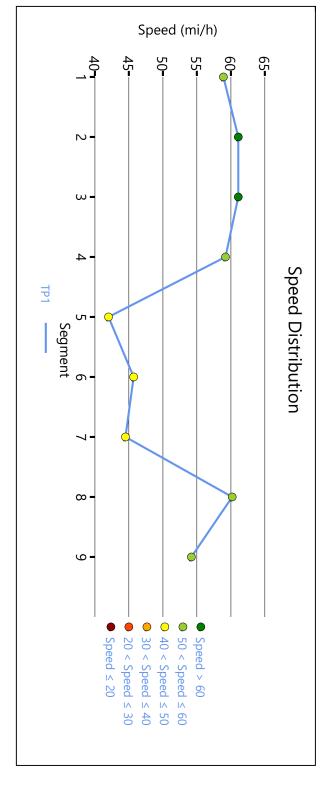
Generated: 06/10/2023 00:02:10

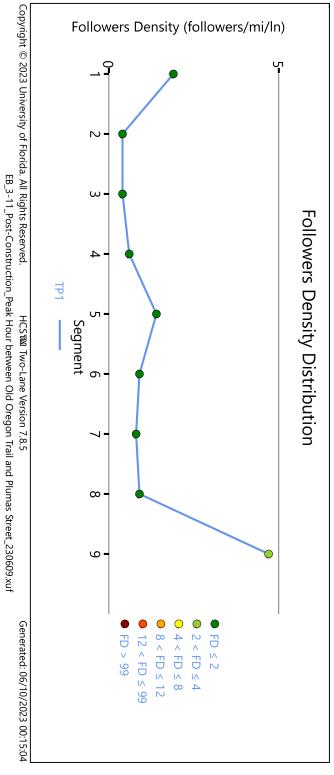
	HCS7 Multilane	Highway Report						
Project Information								
Analyst	PJV	Date	6/9/2023					
Agency	California Energy Commission	Analysis Year	2027					
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR					
Project Description	POST- CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary					
Direction 1 Geometric Data								
Direction 1	Eastbound							
Number of Lanes (N), In	2	Terrain Type	Specific Grade					
Segment Length (L), ft	-	Percent Grade, %	-0.08					
Measured or Base Free-Flow Speed	Base	Grade Length, mi	1.70					
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0					
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	5					
Median Type	Divided	Total Lateral Clearance (TLC), ft	11					
Free-Flow Speed (FFS), mi/h	54.6							
Direction 1 Adjustment Factors								
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975					
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968					
Driver Population CAF	0.968							
Direction 1 Demand and Cap	pacity							
Volume(V) veh/h	483	Heavy Vehicle Adjustment Factor (fHV)	0.951					
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	270					
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2064					
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	1998					
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.14					
Direction 1 Speed and Densi	ty							
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.2					
Total Lateral Clearance Adj. (fLLC)	0.4	Density (D), pc/mi/ln	5.1					
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А					
Access Point Density Adjustment (fA)	0.0							
Direction 1 Bicycle LOS								
Flow Rate in Outside Lane (vOL),veh/h	257	Effective Speed Factor (St)	4.79					
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.83					
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С					
Copyright © 2023 University of Florida, All Rights	Posonyod UCSTM Multila	ne Version 7.8.5	Generated: 06/10/2023 00:06:3					

	HCS7 Multilane	Highway Report						
Project Information								
Analyst	PJV	Date	6/9/2023					
Agency	California Energy Commission	Analysis Year	2027					
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR					
Project Description	POST- CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary					
Direction 2 Geometric Data								
Direction 2	Westbound							
Number of Lanes (N), In	2	Terrain Type	Specific Grade					
Segment Length (L), ft	-	Percent Grade, %	0.08					
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60					
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0					
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6					
Median Type	Divided	Total Lateral Clearance (TLC), ft	12					
Free-Flow Speed (FFS), mi/h	55.0							
Direction 2 Adjustment Factors								
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975					
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968					
Driver Population CAF	0.968							
Direction 2 Demand and Cap	pacity							
Volume(V) veh/h	583	Heavy Vehicle Adjustment Factor (fHV)	0.950					
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	326					
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2072					
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	2006					
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.16					
Direction 2 Speed and Densi	ty							
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6					
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.1					
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А					
Access Point Density Adjustment (fA)	0.0							
Direction 2 Bicycle LOS								
Flow Rate in Outside Lane (vOL),veh/h	310	Effective Speed Factor (St)	4.79					
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.92					
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С					
Copyright © 2023 University of Florida, All Rights	Descried LICC TM Multile	ne Version 7.8.5	Generated: 06/10/2023 00:07:5					

	HCS7 Two-La	ne Highway	Report	
Project Information				
Analyst	Carlos Arias	Date		6/9/2023
Agency	Westwood	Analysis Year		2027
Jurisdiction	Shasta County	Time Period A	nalyzed	Peak Hour
Project Description	Fountain Wind Two Lar e-w E Bound - Along CA-299E from Old Orec Trail to Plumas Street			United States Customary
	Se	gment 1		
Vehicle Inputs				
Segment Type	Passing Zone	Length, ft		22704
Lane Width, ft	12	Shoulder Widt	th, ft	6
Speed Limit, mi/h	55	Access Point D	Density, pts/mi	8.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	285	Opposing Der	mand Flow Rate, veh/h	493
Peak Hour Factor	Peak Hour Factor 0.94		ó	3.76
Segment Capacity, veh/h	1700	Demand/Capa	acity (D/C)	0.17
Intermediate Results	·			
Segment Vertical Class	1	Free-Flow Spe	ed, mi/h	60.6
Speed Slope Coefficient	3.71453	Speed Power (Coefficient	0.48307
PF Slope Coefficient	-1.26236	PF Power Coef	fficient	0.76680
In Passing Lane Effective Length?	No	Total Segment	t Density, veh/mi/ln	1.9
%Improved % Followers	0.0	% Improved A	vg Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	22704	-	-	58.9
Vehicle Results				
Average Speed, mi/h	58.9	Percent Follow	vers, %	38.3
Segment Travel Time, minutes	4.38	Followers Den	sity, followers/mi/ln	1.9
Vehicle LOS	А			
	Se	gment 2		
Vehicle Inputs				
Segment Type	Passing Lanes	Length, ft		99999
Lane Width, ft	12	Shoulder Widt	th, ft	6
Speed Limit, mi/h	55	Access Point D	Density, pts/mi	4.0
Demand and Capacity				

Direc	ctional Demand Flow Rate, veh/h	147		Opposi	Opposing Demand Flow Rate, veh/h		-	
	Hour Factor	0.94	ļ	Total Tr			14.90	
Segr	nent Capacity, veh/h	140	0	Deman	Demand/Capacity (D/C)		0.10	
	ermediate Results							
Segment Vertical Class 1			Free-Flo	ow Speed, mi	61.2			
Spee	ed Slope Coefficient	7.28696		Speed I	Speed Power Coefficient		1.58663	
PF SI	ope Coefficient	·		PF Pow	PF Power Coefficient		0.89273	
In Pa	n Passing Lane Effective Length?		Total Se	Total Segment Density, veh/mi/ln		0.4		
%lm	%Improved % Followers 0.0		% Impr	oved Avg Sp	0.0			
Suk	segment Data							
#	Segment Type	Leng	gth, ft	Radius, ft	S	Superelevation, %	Average Speed, mi/h	
1	Tangent	9999	99	-	-		61.1	
Pas	sing Lane Results							
			Faster Lane			Slower Lane		
Flow	Rate, veh/h		98			49		
Perce	entage of Heavy Vehicles (HV%), %		5.96		32.62			
Initial Average Speed (Sint), mi/h 61.5					60.6			
Average Speed at Midpoint (SPLmid), mi/h 63.2				58.9				
Percent Followers at Midpoint (PFPLmid), % 11.8								
	ent Followers at Midpoint (PFPLmid)	, %	11.8			6.1		
Perce	ent Followers at Midpoint (PFPLmid)	, %	11.8			6.1		
Perce Veh	·	61.1		Percent	Followers, %		16.0	
Veh	nicle Results						16.0	
Veh Avera	age Speed, mi/h	61.1				6		
Veh Avera	age Speed, mi/h	61.1	58		rs Density, fo	6		
Veh Avera Segn Vehice	age Speed, mi/h	61.1	58	Followe	rs Density, fo	6		
Veh Avera Segn Vehic	age Speed, mi/h nent Travel Time, minutes cle LOS	61.1 18.5 A	58	Followe	rs Density, fo	6		
Vehice Perces	age Speed, mi/h ment Travel Time, minutes cle LOS	61.1 18.5 A	58 S €	Follower 3	rs Density, fo	6	0.4	
Vehico Vehico Vehico Segni Lane	age Speed, mi/h nent Travel Time, minutes cle LOS nicle Inputs nent Type	61.1 18.5 A	58 S €	Follower 3 Length, Shoulde	rs Density, fo	6 ollowers/mi/ln	15105	
Vehice Segni	age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft	61.1 18.5 A	58 S €	Follower 3 Length, Shoulde	rs Density, fo	6 ollowers/mi/ln	0.4 15105 6	
Veh Avera Segn Vehic Veh Segn Lane Spee	age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft ed Limit, mi/h	61.1 18.5 A	Se Sing Lanes	Egment 3 Length, Shoulde	ft Point Density	6 ollowers/mi/ln	0.4 15105 6	
Vehice Vehice Vehice Vehice Vehice Direce	age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft ed Limit, mi/h mand and Capacity	61.1 18.5 A Pass 12 55	Se Sing Lanes	Egment 3 Length, Shoulde	ft er Width, ft Point Density	ollowers/mi/ln	0.4 15105 6 4.0	
Vehice Vehice	age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft ed Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	61.1 18.5 A Pass 12 55	Se sing Lanes	Length, Should Access Opposi Total Tr	ft er Width, ft Point Density	ollowers/mi/ln y, pts/mi Flow Rate, veh/h	15105 6 4.0	
Vehice Segni Lane Spee Der Direct Segni Peak	nicle Results age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft ed Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor	61.1 18.5 A Pass 12 55 147 0.94	Se sing Lanes	Length, Should Access Opposi Total Tr	ft er Width, ft Point Density ng Demand I	ollowers/mi/ln y, pts/mi Flow Rate, veh/h	0.4 15105 6 4.0	
Vehice Vehice Vehice Vehice Vehice Vehice Vehice Segn Lane Spee Der Direce Peak Segn Inte	age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft ed Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h	61.1 18.5 A Pass 12 55 147 0.94	Se sing Lanes	Length, Shoulde Access Opposi Total Tr Deman	ft er Width, ft Point Density ng Demand I	ollowers/mi/In y, pts/mi Flow Rate, veh/h	0.4 15105 6 4.0	
Vehice Vehice Vehice Vehice Vehice Vehice Vehice Vehice Vehice Segn Lane Spee Direce Peak Segn Inte	nicle Results age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft ed Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h ermediate Results	61.1 18.5 A Pass 12 55 147 0.94 140	Se sing Lanes	Length, Should Access Opposi Total Tr Deman	ft er Width, ft Point Density ng Demand I ucks, %	ollowers/mi/ln y, pts/mi Flow Rate, veh/h D/C)	0.4 15105 6 4.0 - 14.90 0.10	
Vehice Segn Lane Spee Der Direct Segn Inte	age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft ed Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h ermediate Results ment Vertical Class	61.1 18.5 A Pass 12 55 147 0.94 1400	See Sing Lanes	Egment 3 Length, Shoulde Access Opposi Total Tr Deman	ft er Width, ft Point Density ng Demand I ucks, % d/Capacity (E	ollowers/mi/ln y, pts/mi Flow Rate, veh/h O/C) i/h cient	0.4 15105 6 4.0 - 14.90 0.10	
Vehice Segn Lane Spee Direct Peak Segn Inte	age Speed, mi/h ment Travel Time, minutes cle LOS nicle Inputs ment Type Width, ft ed Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h ermediate Results ment Vertical Class ed Slope Coefficient	61.1 18.5 A Pass 12 55 147 0.94 1400	sing Lanes	Follower	ft er Width, ft Point Density ng Demand I ucks, % d/Capacity (I ow Speed, mi	ollowers/mi/ln y, pts/mi Flow Rate, veh/h O/C) i/h cient	0.4 15105 6 4.0 - 14.90 0.10 61.2 1.54401	


regment Type rangent Ing Lane Results Pate, veh/h Rage of Heavy Vehicles (HV%), % Raverage Speed (Sint), mi/h Re Speed at Midpoint (SPLmid), m	151	Faster Lane	Ra -	adius, ft	Superelevation, %	Average Speed, mi/h
ng Lane Results ate, veh/h tage of Heavy Vehicles (HV%), % average Speed (Sint), mi/h	151	Faster Lane	-		-	61.1
ate, veh/h tage of Heavy Vehicles (HV%), % average Speed (Sint), mi/h						01.1
tage of Heavy Vehicles (HV%), % average Speed (Sint), mi/h						
tage of Heavy Vehicles (HV%), % average Speed (Sint), mi/h					Slower Lane	
verage Speed (Sint), mi/h		98			49	
		5.96			32.62	
e Speed at Midpoint (SPLmid), m		61.5			60.6	
Average Speed at Midpoint (SPLmid), mi/h 63.2					58.9	
t Followers at Midpoint (PFPLmid)	, %	11.7			6.0	
le Results						
e Speed, mi/h	61.1			Percent Followers	5, %	15.9
nt Travel Time, minutes	2.81			Followers Density	, followers/mi/ln	0.4
LOS	А	A				
			Seg	ment 4		
cle Inputs						
nt Type	Pass	sing Zone		Length, ft		35904
idth, ft	12	12		Shoulder Width,	Shoulder Width, ft	
Limit, mi/h	55	55		Access Point Density, pts/mi		6.0
and and Capacity						
onal Demand Flow Rate, veh/h	152			Opposing Demar	nd Flow Rate, veh/h	152
our Factor	0.94	ļ		Total Trucks, %		14.90
nt Capacity, veh/h	170	0		Demand/Capacit	0.09	
mediate Results						
nt Vertical Class	2			Free-Flow Speed,	mi/h	59.8
Slope Coefficient	4.54	1104		Speed Power Coe	efficient	0.66128
e Coefficient	-1.1	7713		PF Power Coeffici	ent	0.79590
ing Lane Effective Length?	Yes			Total Segment De	0.6	
oved % Followers	9.3			% Improved Avg	Speed	0.0
egment Data						
egment Type	Len	gth, ft	Ra	adius, ft	Superelevation, %	Average Speed, mi/h
angent	359	04	-		-	59.2
le Results						
e Speed, mi/h	59.2)		Percent Followers	5, %	23.1
nt Travel Time, minutes	6.90)		Followers Density	, followers/mi/ln	0.5
LOS	А					
n l n s e ir	le Inputs It Travel Time, minutes LOS Ile Inputs Int Type Idth, ft Idth	le Inputs It Travel Time, minutes LOS A Ile Inputs Int Type Idth, ft It Type Idth, ft Ind and Capacity Inal Demand Flow Rate, veh/h Ind Capacity Inal Demand Flow Rate, veh/h Ind Capacity, veh/h Ind Capacity, veh/h It Vertical Class It Vertic	le Inputs In Type In	Seg le Inputs It Type Passing Zone Idth, ft Passing Zone Interpretation of the property of	Segment 4 Inputs Passing Zone Length, ft Shoulder Width, it Inputs Passing Zone Length, ft Passing Zone Length, ft Passing Zone Passing Zone Passing Zone Length, ft Passing Zone Passing Zone Zone Passing Zone Zone Zone Zone Zone Zone Zone Zone	Segment 4 Column


Vehicle Inputs					
Segment Type	Passing Zone		Length, ft		12144
Measured FFS	-	Measured		mi/h	47.0
Demand and Capac			Free-Flow Speed,		47.0
Directional Demand Flow R	-		Opposing Doman	d Flow Rate, veh/h	187
Peak Hour Factor		0.94		u Flow Rate, Ven/n	31.00
Segment Capacity, veh/h		1700		(D/C)	0.11
Intermediate Results		Demand/Capacity	(5/C)	0.11	
				• 4	17.0
Segment Vertical Class	4		Free-Flow Speed,		47.0
Speed Slope Coefficient 30.49005			Speed Power Coe		0.74331
PF Slope Coefficient -1.43973		PF Power Coefficie		0.80616	
	n Passing Lane Effective Length? Yes Total Segment Density			1.4	
%Improved % Followers 7.1			% Improved Avg S	peea	0.0
Subsegment Data					
# Segment Type	Length, ft	Length, ft Rad		Superelevation, %	Average Speed, mi/h
1 Tangent	12144	-	-	-	42.0
Vehicle Results					
Average Speed, mi/h 42.0		Percent Followers,	%	31.1	
Segment Travel Time, minu	tes 3.28		Followers Density,	followers/mi/ln	1.3
Vehicle LOS	A				
		Seg	gment 6		
Vehicle Inputs					
Segment Type	Passing Lanes		Length, ft		25872
Measured FFS	Measured		Free-Flow Speed,	mi/h	46.0
Demand and Capac	ity				•
Directional Demand Flow R	ate, veh/h 187		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.94		Total Trucks, %		31.00
Segment Capacity, veh/h	1100		Demand/Capacity	(D/C)	0.17
Intermediate Resul	ts				•
Segment Vertical Class	2		Free-Flow Speed,	mi/h	46.0
Speed Slope Coefficient	12.22850		Speed Power Coe	fficient	1.55917
PF Slope Coefficient	-0.91332		PF Power Coefficie		0.77795
In Passing Lane Effective Le	ngth? No		Total Segment De	nsity, veh/mi/ln	0.9
%Improved % Followers	0.0		% Improved Avg S	Speed	0.0
Subsegment Data	,				
# Segment Type	Length, ft	F	 Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	25872	-		-	45.7
3.					

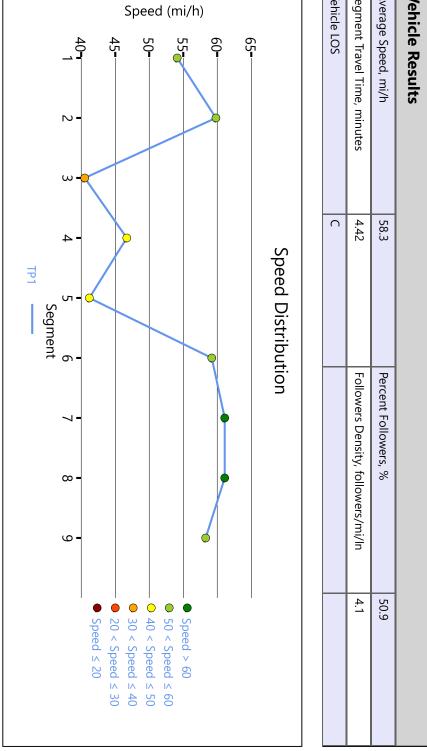
Pas	ssing Lane Results							
			Faster Lane				Slower Lane	
Flov	v Rate, veh/h		120				67	
Perc	entage of Heavy Vehicles (HV%), %		12.40				64.30	
Initi	al Average Speed (Sint), mi/h		74.4				63.7	
Ave	rage Speed at Midpoint (SPLmid), mi	/h	76.4				61.7	
Perc	ent Followers at Midpoint (PFPLmid)	, %	9.2				0.0	
Vel	hicle Results							
Ave	rage Speed, mi/h	45.7	7		Percent Followers	, %		22.0
Seg	ment Travel Time, minutes	6.43	3		Followers Density	, follo	owers/mi/ln	0.9
Vehi	icle LOS	А						
			Se	egn	nent 7			
Vel	hicle Inputs							
Seg	ment Type	Pass	sing Lanes		Length, ft			30624
	sured FFS	_	asured		Free-Flow Speed,	mi/h		47.0
De	mand and Capacity							
Dire	ctional Demand Flow Rate, veh/h	221			Opposing Deman	d Flo	w Rate, veh/h	-
Peal	k Hour Factor	0.94	ļ		Total Trucks, %			30.00
Seg	ment Capacity, veh/h	110	0		Demand/Capacity	/ (D/C	<u> </u>	0.20
Int	ermediate Results							
Segment Vertical Class 4					Free-Flow Speed,	mi/h		47.0
Spe	ed Slope Coefficient	28.7	28.73583		Speed Power Coefficient		1.16507	
PF S	lope Coefficient	-0.8	0.82245		PF Power Coefficient		1.06542	
In Pa	assing Lane Effective Length?	No			Total Segment De	nsity,	, veh/mi/ln	0.8
%lm	proved % Followers	0.0			% Improved Avg	Speed	d	0.0
Sul	bsegment Data							
#	Segment Type	Len	gth, ft	Rac	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	306	24	Ī-		-		44.5
Pas	ssing Lane Results							
			Faster Lane				Slower Lane	
Flov	v Rate, veh/h		140				82	
Perc	entage of Heavy Vehicles (HV%), %		12.00				60.75	
Initi	al Average Speed (Sint), mi/h		72.7				56.0	
Ave	rage Speed at Midpoint (SPLmid), mi	/h	74.7				54.0	
Perc	ent Followers at Midpoint (PFPLmid)	, %	11.4				-	
Vel	hicle Results							
	rage Speed, mi/h	44.5			Percent Followers	0/		15.2

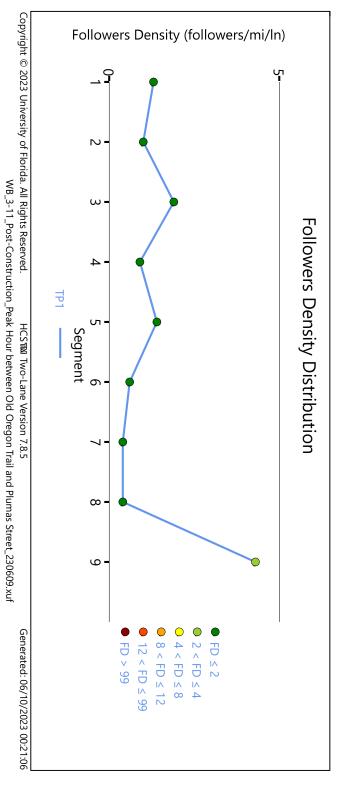
, sear	nent Travel Time, minutes	7.81		Followers Density,	followers/mi/ln	0.8	
_	cle LOS	A		2.12.13.2 2 GH3/ty/	,,		
			eam	ent 8			
Voh	icle Inputs						
		T				I	
	nent Type	Passing Zone		Length, ft		7392	
	Width, ft d Limit, mi/h	55		Shoulder Width, ft Access Point Dens		5.0	
		33		Access Point Dens	ity, pts/iii	3.0	
Der	nand and Capacity						
Direc	tional Demand Flow Rate, veh/h	200		Opposing Demand	d Flow Rate, veh/h	205	
Peak	Hour Factor	0.94		Total Trucks, %		17.50	
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.12	
Inte	ermediate Results						
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	60.9	
Spee	d Slope Coefficient	3.62509	:	Speed Power Coef	fficient	0.53776	
PF SI	ope Coefficient	-1.20092		PF Power Coefficie	ent	0.80811	
In Pa	ssing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	0.9	
%lmp	proved % Followers	13.9		% Improved Avg S	Speed	0.6	
Sub	segment Data						
#	Segment Type	Length, ft	Radiu	us, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	7392	-		-	59.8	
Veh	icle Results						
Avera	Average Speed, mi/h 60.2			5 . 5 !!		27.9	
3 1 1 1			Percent Followers,	%	27.9		
Segn	nent Travel Time, minutes	1.40	_	Followers Density,		0.8	
_	<u> </u>		_				
_	nent Travel Time, minutes	1.40 A					
Vehic	nent Travel Time, minutes	1.40 A		Followers Density,			
Vehic	nent Travel Time, minutes cle LOS	1.40 A	egm	Followers Density, ent 9			
Vehice Vehice Vehice	nent Travel Time, minutes	1.40 A	egm	Followers Density,	followers/mi/ln	0.8	
Vehice Veh Segm Lane	nent Travel Time, minutes cle LOS nicle Inputs nent Type	1.40 A Se Passing Constrained	egm	Followers Density, ent 9 Length, ft	followers/mi/ln	2640	
Vehice Veh Segm Lane Spee	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft	1.40 A Se Passing Constrained 12	egm	Followers Density, ent 9 Length, ft Shoulder Width, ft	followers/mi/ln	0.8 2640 6	
Vehice Vehice Vehice Segment Lane Spee Den	nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h	1.40 A Se Passing Constrained 12	egm	ent 9 Length, ft Shoulder Width, ft Access Point Dens	followers/mi/ln	0.8 2640 6	
Vehice Vehice Vehice Segm Lane Spee Derr Direct	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity	1.40 A Se Passing Constrained 12 55	egm	ent 9 Length, ft Shoulder Width, ft Access Point Dens	followers/mi/ln	2640 6 22.0	
Vehice Vehice Vehice Segm Lane Spee Derr Direce Peak	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	Passing Constrained 12 55	egm	ent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand	followers/mi/ln t ity, pts/mi d Flow Rate, veh/h	2640 6 22.0	
Vehice Vehice Vehice Segm Lane Spee Derr Direct Peak Segm	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor	Passing Constrained 12 55 471 0.94	egm	Followers Density, ent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand	followers/mi/ln t ity, pts/mi d Flow Rate, veh/h	0.8 2640 6 22.0	
Vehice Vehice Vehice Segm Lane Spee Derro Direct Peak Segm Inte	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h	Passing Constrained 12 55 471 0.94	egm	Followers Density, ent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand	followers/mi/ln it ity, pts/mi d Flow Rate, veh/h (D/C)	0.8 2640 6 22.0	
Vehice Vehice Vehice Segm Lane Spee Derr Direct Peak Segm Inte	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h crmediate Results	1.40 A Se Passing Constrained 12 55 471 0.94 1700	egm	ent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand Total Trucks, % Demand/Capacity	followers/mi/ln it ity, pts/mi d Flow Rate, veh/h (D/C)	0.8 2640 6 22.0 - 19.00 0.28	

			С	Vehicle LOS	<
4.2	followers/mi/ln	Followers Density, followers/mi/ln	0.55	Segment Travel Time, minutes	Š
54.1	%	Percent Followers, %	54.2	Average Speed, mi/h	Þ
				Vehicle Results	<
54.2	-		2640 -	1 Tangent	
Average Speed, mi/h	Superelevation, %	Radius, ft	Length, ft Ra	# Segment Type	#
				Subsegment Data	S
0.0	speed	% Improved Avg Speed	10.6	%Improved % Followers	%
4.7	nsity, veh/mi/ln	Total Segment Density, veh/mi/ln	Yes	In Passing Lane Effective Length?	=

	HCS7 Two	o-Lane	Highway F	Report	
Project Information					
Analyst	Carlos Arias		Date		6/9/2023
Agency	Westwood		Analysis Year		2027
Jurisdiction	Shasta County		Time Period Ana	alyzed	Peak Hour
Project Description	Fountain Wind Te-w West Boun CA-299E from Of Trail to Plumas S	ld - Along ld Oregon	Unit		United States Customary
		Segn	nent 1		
Vehicle Inputs					
Segment Type	Passing Constrain	ned	Length, ft		2640
Lane Width, ft	12		Shoulder Width	, ft	6
Speed Limit, mi/h	55		Access Point De	nsity, pts/mi	22.0
Demand and Capacity					
Directional Demand Flow Rate, veh/h	200		Opposing Dema	and Flow Rate, veh/h	-
Peak Hour Factor	0.94		Total Trucks, %		19.00
Segment Capacity, veh/h	1700		Demand/Capaci	ty (D/C)	0.12
Intermediate Results					
Segment Vertical Class	2		Free-Flow Speed	d, mi/h	55.5
Speed Slope Coefficient	3.88683	3.88683		pefficient	0.44359
			PF Power Coeffi	cient	0.73380
In Passing Lane Effective Length?	oefficient -1.43208 PF		Total Segment Density, veh/mi/ln		1.3
%Improved % Followers	0.0				0.0
Subsegment Data					
# Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	2640	-		-	54.1
Vehicle Results	·			•	
Average Speed, mi/h	54.1		Percent Followe	rs, %	35.6
Segment Travel Time, minutes	0.55		Followers Densi	ty, followers/mi/ln	1.3
Vehicle LOS	А				
		Segn	nent 2		
Vehicle Inputs					
Segment Type	Passing Zone		Length, ft		7392
Lane Width, ft	12		Shoulder Width	, ft	6
Speed Limit, mi/h	55		Access Point De		5.0
Demand and Capacity					

Dirac	tional Domand Flour Pata wak /h	205		Opposing Dames	d Flow Rate, veh/h	200
	tional Demand Flow Rate, veh/h Hour Factor	0.94		Total Trucks, %	u riow kate, ven/n	17.50
	Segment Capacity, veh/h 1700 Intermediate Results			Demand/Capacity	(D/C)	0.12
		1700		Demand/Capacity	(D/C)	0.12
Inte	rmediate Results					
Segm	ent Vertical Class	1		Free-Flow Speed,	mi/h	60.9
Speed	d Slope Coefficient	3.62315		Speed Power Coe	fficient	0.53925
PF Slc	ope Coefficient	-1.19967		PF Power Coefficie	ent	0.80854
In Pas	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	1.0
%lmp	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	7392	-		-	59.8
Vehi	icle Results					
Avera	ge Speed, mi/h	59.8		Percent Followers,	. %	28.4
Segm	ent Travel Time, minutes	1.40		Followers Density,	followers/mi/ln	1.0
Vehic	le LOS	А				
			Segn	nent 3		·
Vehi	icle Inputs					
Segm	ent Type	Passing Zone		Length, ft		30624
Meas	Measured FFS Measured Demand and Capacity		Free-Flow Speed,	mi/h	47.0	
Den	nand and Capacity					
Direct	tional Demand Flow Rate, veh/h			Opposing Deman	d Flow Rate, veh/h	221
Peak i	Hour Factor	0.94		Total Trucks, %		30.00
Segm	ent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.13
Inte	rmediate Results					·
Segm	nent Vertical Class	4		Free-Flow Speed,	mi/h	47.0
Speed	d Slope Coefficient	30.14962		Speed Power Coefficient		0.72693
PF Slc	ope Coefficient	-1.46084		PF Power Coefficie	ent	0.80165
In Pas	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	1.9
%lmp	proved % Followers	0.0		% Improved Avg S	Speed	0.0
CL	segment Data					
Sub:		T	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
#	Segment Type	Length, ft	Truc			
	Segment Type Tangent	Length, ft 30624	-		-	40.5
1		-	-		-	40.5
# 1 Veh i	Tangent	-	-	Percent Followers,	%	35.3
# 1 Vehi	Tangent icle Results	30624	-	Percent Followers,		

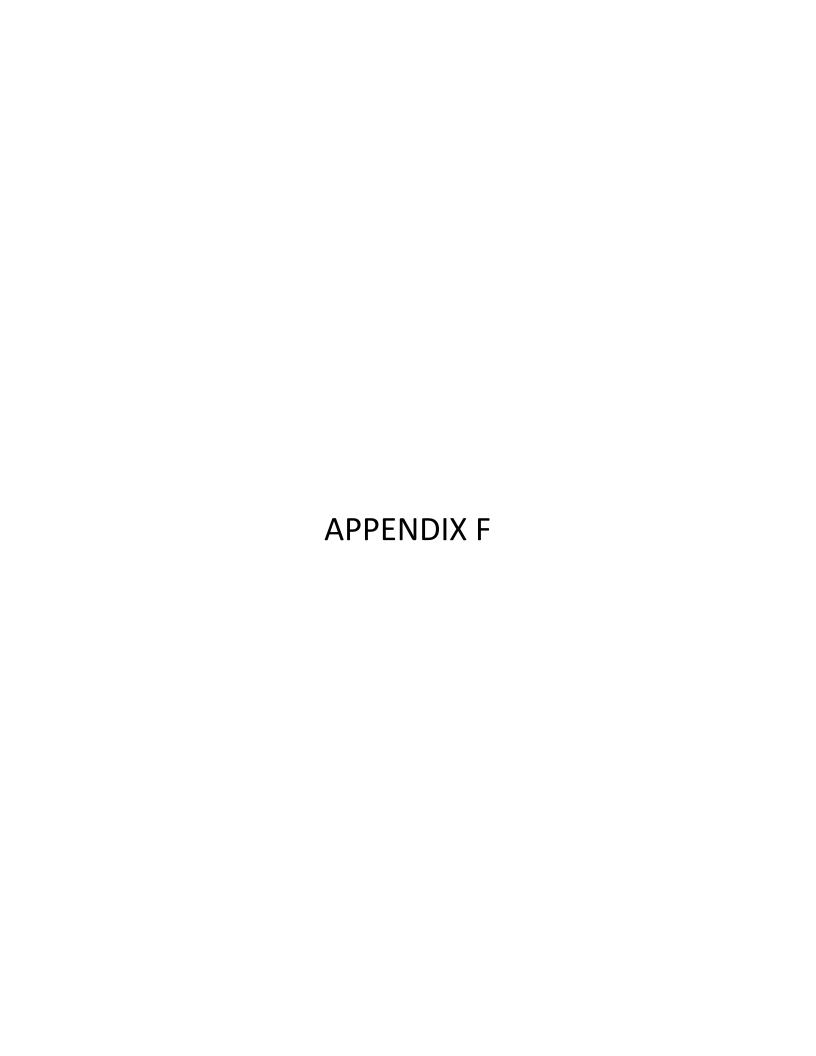

			Se	gn	nent 4				
Vel	hicle Inputs								
Segi	ment Type	Pass	sing Lanes		Length, ft			25872	
Mea	asured FFS	Mea	asured		Free-Flow Speed,	mi/h		47.0	
De	mand and Capacity				<u> </u>				
Dire	ectional Demand Flow Rate, veh/h	187			Opposing Demand	d Flo	w Rate, veh/h	-	
Peak	k Hour Factor	0.94	1		Total Trucks, %			31.00	
Segi	ment Capacity, veh/h	110	0		Demand/Capacity	(D/C	<u> </u>	0.17	
Int	ermediate Results								
Segi	ment Vertical Class	2			Free-Flow Speed,	mi/h		47.0	
Spe	ed Slope Coefficient	12.2	22850		Speed Power Coef	fficie	nt	1.55917	
PF S	Slope Coefficient	-0.9	1061		PF Power Coefficie	ent		0.78832	
In Pa	assing Lane Effective Length?	No			Total Segment De	nsity	, veh/mi/ln	0.9	
%lm	nproved % Followers	0.0			% Improved Avg S	Speed	d	0.0	
Sul	bsegment Data								
#	Segment Type	Len	gth, ft	Rac	dius, ft	Sup	erelevation, %	Average Speed, mi/h	
1	Tangent	258	72	-		-		46.7	
Pas	ssing Lane Results		Factor Lano				Slower Lane		
Faster Lane Flow Rate, veh/h Percentage of Heavy Vehicles (HV%), % 12.40					67				
					64.30				
	al Average Speed (Sint), mi/h		74.4				63.7		
	rage Speed at Midpoint (SPLmid), mi	/h	76.4		61.7				
	cent Followers at Midpoint (PFPLmid)		9.2		0.0				
	hicle Results								
	rage Speed, mi/h	46.7	7		Percent Followers,	%		21.6	
	ment Travel Time, minutes	6.29			Followers Density,		wers/mi/ln	0.9	
	icle LOS	Α			,		,		
			Se	gn	nent 5				
Vel	hicle Inputs								
	ment Type	Pass	sing Zone		Length, ft			12144	
	asured FFS	-	asured		Free-Flow Speed,	mi/h		46.0	
	mand and Capacity	1				,			
	ectional Demand Flow Rate, veh/h	187			Opposing Demand	d Flo	w Rate veh/h	187	
	k Hour Factor	0.94			Total Trucks, %	J 110	rate, verijii	31.00	
	ment Capacity, veh/h	170			Demand/Capacity			0.11	


	ermediate Results					
Seg	ment Vertical Class	4		Free-Flow Speed,	mi/h	46.0
Spe	ed Slope Coefficient	30.49005		Speed Power Coef	ficient	0.74331
PF S	lope Coefficient	-1.44074		PF Power Coefficie	ent	0.80011
In Pa	assing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	1.4
%lm	proved % Followers	14.0		% Improved Avg S	peed	0.5
Sul	bsegment Data					
#	Segment Type	Length, ft	Ra	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	12144	-		-	41.0
Vel	hicle Results					
Ave	rage Speed, mi/h	41.2		Percent Followers,	%	31.4
Seg	ment Travel Time, minutes	3.35		Followers Density,	followers/mi/ln	1.2
Vehi	icle LOS	А				
			Segr	nent 6		
Vel	hicle Inputs					
Seg	ment Type	Passing Zone		Length, ft		35904
Lane	e Width, ft	12		Shoulder Width, ft	:	6
Spe	ed Limit, mi/h	55		Access Point Dens	ity, pts/mi	6.0
De	mand and Capacity					·
Dire	ctional Demand Flow Rate, veh/h	152		Opposing Demand	d Flow Rate, veh/h	152
Peal	k Hour Factor	0.94		Total Trucks, %		14.90
Seg	ment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.09
Int	ermediate Results					
	ment Vertical Class	2		Free-Flow Speed,	mi/h	59.8
Seg				1		
	ed Slope Coefficient			Speed Power Coef	ficient	0.66128
Spe	ed Slope Coefficient Slope Coefficient	4.54104 -1.17713		Speed Power Coefficie		0.66128 0.79590
Spe	<u> </u>				ent	
Spec PF S In Pa	lope Coefficient	-1.17713		PF Power Coefficie	ent nsity, veh/mi/ln	0.79590
Spec PF S In Pa	slope Coefficient assing Lane Effective Length?	-1.17713 Yes		PF Power Coefficie Total Segment Der	ent nsity, veh/mi/ln	0.79590 0.6
Spec PF S In Pa	assing Lane Effective Length?	-1.17713 Yes	Ra	PF Power Coefficie Total Segment Der	ent nsity, veh/mi/ln	0.79590 0.6
Spec PF S In Pa %Im	assing Lane Effective Length? approved % Followers bsegment Data	-1.17713 Yes 8.5	Ra -	PF Power Coefficie Total Segment Del % Improved Avg S	ent nsity, veh/mi/ln speed	0.79590 0.6 0.0
Spec PF S In Pa %Im Sul #	ilope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type	-1.17713 Yes 8.5 Length, ft	Ra -	PF Power Coefficie Total Segment Del % Improved Avg S	ent nsity, veh/mi/ln speed	0.79590 0.6 0.0 Average Speed, mi/h
Spee PF S In Pa %Im Sul # 1	ilope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type Tangent	-1.17713 Yes 8.5 Length, ft	Ra -	PF Power Coefficie Total Segment Del % Improved Avg S	ent nsity, veh/mi/ln speed Superelevation, %	0.79590 0.6 0.0 Average Speed, mi/h
Spee PF S In Pa %Imm Sul # 1 Vel	Isope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type Tangent hicle Results	-1.17713 Yes 8.5 Length, ft 35904	Ra -	PF Power Coefficie Total Segment Del % Improved Avg S	sent nsity, veh/mi/ln speed Superelevation, % -	0.79590 0.6 0.0 Average Speed, mi/h 59.2

Veh	nicle Inputs							
	ment Type	Pass	sing Lanes		Length, ft			15105
	· Width, ft	12			Shoulder Width, ft	t		6
Spee	ed Limit, mi/h	55			Access Point Dens	ity, p	ts/mi	4.0
Der	mand and Capacity							
Dire	ctional Demand Flow Rate, veh/h	147			Opposing Demand	d Flo	w Rate, veh/h	-
Peak	Hour Factor	0.94	1		Total Trucks, %			14.90
Segr	ment Capacity, veh/h	140	0		Demand/Capacity	(D/C	<u> </u>	0.10
Inte	ermediate Results							
Segr	ment Vertical Class	1			Free-Flow Speed,	mi/h		61.2
Spee	ed Slope Coefficient	7.24	1983		Speed Power Coef	fficie	nt	1.54401
	lope Coefficient	-0.9	6855		PF Power Coefficie			0.89690
In Pa	assing Lane Effective Length?	No			Total Segment De	nsity,	veh/mi/ln	0.4
%lm	proved % Followers	0.0			% Improved Avg S	Speed	t	0.0
Suk	osegment Data							
#	Segment Type	Len	gth, ft	Rad	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	151	05	-		-		61.1
Pas	sing Lane Results							
			Faster Lane				Slower Lane	
Flow Rate, veh/h 98						49		
Percentage of Heavy Vehicles (HV%), % 5.96			5.96	32.62				
Initia	al Average Speed (Sint), mi/h		61.5					
Aver	age Speed at Midpoint (SPLmid), mi,	/h	63.2			58.9		
Perce	ent Followers at Midpoint (PFPLmid),	%				6.0		
Vel	nicle Results							
Aver	age Speed, mi/h	61.1			Percent Followers, %			15.9
Segr	ment Travel Time, minutes	2.81	l		Followers Density, followers/mi/ln		wers/mi/ln	0.4
Vehi	cle LOS	А			Pollowers Density, Ioliowers/IIII/III			
			Se	gn	nent 8			
Ver	nicle Inputs							
	ment Type	Pass	sing Lanes		Length, ft			99999
	Width, ft	12			Shoulder Width, ft	t		6
	ed Limit, mi/h	55			Access Point Dens		ts/mi	4.0
	mand and Capacity							
	ctional Demand Flow Rate, veh/h	147			Opposing Demand	d Flo	w Rate, veh/h	-
	: Hour Factor	0.94			Total Trucks, %			14.90
					1			T. Control of the con

	rmediate Results								
	ent Vertical Class	1			Free-Flow Speed,	mi/h		61.2	
	d Slope Coefficient	_	 3696		Speed Power Coef			1.58663	
	<u> </u>		16880		PF Power Coefficie		nı	0.89273	
	ope Coefficient		70000						
	ssing Lane Effective Length?	No			Total Segment De			0.4	
	roved % Followers	0.0			% Improved Avg S	speed	<u> </u>	0.0	
Sub	segment Data								
#	Segment Type	Len	gth, ft	Rad	lius, ft	Sup	erelevation, %	Average Speed, mi/h	
1	Tangent	999	99	-		-		61.1	
Pass	sing Lane Results								
			Faster Lane				Slower Lane		
Flow	Rate, veh/h		98				49		
Perce	ntage of Heavy Vehicles (HV%), %		5.96				32.62		
Initial	Average Speed (Sint), mi/h		61.5				60.6		
Avera	ge Speed at Midpoint (SPLmid), mi	/h	63.2		58.9				
Percent Followers at Midpoint (PFPLmid), % 11.8				58.9 6.1					
Veh	icle Results								
Avera	ge Speed, mi/h	61.1	1		Percent Followers,	, %		16.0	
Segm	ent Travel Time, minutes	18.5	58		Followers Density,	, follo	owers/mi/ln	0.4	
Vehic	le LOS	А							
			Se	egn	nent 9			·	
Veh	icle Inputs								
Segm	ent Type	Pass	sing Zone		Length, ft			22704	
Lane	Width, ft	12			Shoulder Width, ft			6	
Speed	d Limit, mi/h	55			Access Point Dens	nsity, pts/mi		8.0	
Den	nand and Capacity								
Direc	tional Demand Flow Rate, veh/h	493			Opposing Demand Flow Rate, veh/h			285	
Peak	Hour Factor	0.94	1		Opposing Demand Flow Rate, veh/h Total Trucks, %			3.76	
Segm	ent Capacity, veh/h	170	0		Demand/Capacity	(D/C	<u> </u>	0.29	
Inte	rmediate Results								
Segm	ent Vertical Class	1			Free-Flow Speed,	mi/h		60.6	
Speed	d Slope Coefficient	3.65	5951		Speed Power Coef	fficie	nt	0.51835	
	ppe Coefficient	-1.2	3352		PF Power Coefficie			0.77779	
	sing Lane Effective Length?	Yes			Total Segment De	nsity,	, veh/mi/ln	4.3	
	roved % Followers	4.8			% Improved Avg S			0.0	
					1	-		1	
Sub	segment Data								

1	Tangent	22704	-	-	58.3
Vel	Vehicle Results				
Aver	Average Speed, mi/h	58.3	Percent Followers, %	%	50.9
Segr	Segment Travel Time, minutes	4.42	Followers Density, followers/mi/ln	followers/mi/ln	4.1
Vehi	Vehicle LOS	С			



APPENDIX E – Potential Transportation Environmental Protection Measures for the Fountain Wind Project

D	M		Implem	entation	
Resource Category	Measure	Preconstruction	Construction	Operations	Decommissioning
Transportation					
TRANS-1	[Project] will coordinate with CalTrans and Shasta County to	X	X		
	implement a Transportation and Traffic Management Plan				
	that minimizes risks and inconvenience to the public, while				
	ensuring safe and efficient construction of the Project. The				
	plan will focus on turbine component deliveries, traffic and				
	circulation primarily within and in the vicinity of the Project				
	area. It will be designed to minimize potential hazards from				
	increased truck traffic and worker traffic and to minimize				
	impacts to traffic flow in the vicinity of the Project.				
TRANS-2	To minimize conflicts between Project traffic and background		X		
	traffic, deliveries of project components will be scheduled				
	around local volume peaks to the extent feasible.				
TRANS-3	Road clearances may include temporarily blocking road		Х		Х
	intersections via construction cones and/or staffing blocked				
	intersections with a traffic-control flagger to allow haul trucks				
	sole access to the road while delivering Project components.				
	If required, public road closures are not expected to exceed				
	15 minutes during each/any road closure event.				
TRANS-4	The Project will coordinate with CalTrans to determine	Х	Х		
	whether temporary speed limit reductions during				
	construction are applicable where Project access points				
	intersect with State Highway 299.				
TRANS-5	Construction deliveries would be coordinated to avoid major		Х		
	traffic-generating events in Redding, to the extent practicable.				
TRANS-6	The Project would coordinate with local law enforcement, to		X		Х
	manage traffic flows and monitor traffic speed during				
	deliveries.				
TRANS-7	All staging activities and parking of equipment and vehicles		Х		
	would occur within the Project Area and would not occur on				
	maintained State Highways or County roads.				

December Cotonomi	Manager		Implem	entation	
Resource Category	Measure	Preconstruction	Construction	Operations	Decommissioning
TRANS-8	Equipment and material deliveries to the site would be		X		X
	performed by professional transportation companies familiar				
	with the type of equipment, loads involved, and U.S. DOT,				
	CalTrans, and Shasta County regulations.				
TRANS-9	Road signs would be erected to notify travelers and local		Х		
	residents that construction is occurring in the area and				
	provide information regarding the timing and route for				
	oversized vehicle movements and deliveries. The				
	erection/placement of road signs and the Project construction				
	activities would be performed in accordance with the Shasta				
	County and CalTrans requirements.				
TRANS-10	Escort vehicles would assist delivery of oversized turbine		Х		
	components to give drivers additional warning of oversized				
	loads.				

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	1		1100	4	¥	
Traffic Vol, veh/h	116	51	33	62	0	0
Future Vol, veh/h	116	51	33	62	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		Stop -	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage, #		_		0	0	
Grade, %	0	_	_	0	0	-
Peak Hour Factor	92	92	92	92	92	92
	92	92	92	92	92	92
Heavy Vehicles, %						
Mvmt Flow	126	55	36	67	0	0
Major/Minor Ma	ajor1	N	Major2	1	Minor1	
Conflicting Flow All	0	0	181	0	293	154
Stage 1	_	-	-	-	154	-
Stage 2	-	-	-	-	139	-
Critical Hdwy	-	_	4.12	_	6.42	6.22
Critical Hdwy Stg 1	_	_		_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	_		2.218		3.518	
Pot Cap-1 Maneuver	_	_	1394		698	892
•		-			874	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	888	-
Platoon blocked, %	-	-	1001	-	0-4	000
Mov Cap-1 Maneuver	-	-	1394	-	679	892
Mov Cap-2 Maneuver	-	-	-	-	679	-
Stage 1	-	-	-	-	874	-
Stage 2	-	-	-	-	864	-
Approach	EB		WB		NW	
HCM Control Delay, s	0		2.7		0	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	IWLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		_	_	_	1394	_
HCM Lane V/C Ratio		_	_		0.026	_
HCM Control Delay (s)		0	_	_	7.7	0
HCM Lane LOS		A	_	_	Α	A
HCM 95th %tile Q(veh)		A		_	0.1	- -
		-	-	-	0.1	-

Synchro 11 Report Page 1 AM During Construction

Intersection						
Int Delay, s/veh	0.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽	בטול	TTDL	₩ <u>Ы</u>	₩.	HOIN
Traffic Vol, veh/h	76	40	27	103	0	0
Future Vol, veh/h	76	40	27	103	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- Stop	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage		_	_	0	0	
Grade, %	, # 0	-	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	83	43	29	112	0	0
IVIVIIIL FIUW	00	43	29	112	U	U
Major/Minor N	Major1	N	Major2	1	Minor1	
Conflicting Flow All	0	0	126	0	275	105
Stage 1	-	-	-	-	105	-
Stage 2	-	-	-	-	170	-
Critical Hdwy	-	_	4.12	_	6.42	6.22
Critical Hdwy Stg 1	_	-	-	-	5.42	-
Critical Hdwy Stg 2	_	-	-	_	5.42	_
Follow-up Hdwy	_	_	2.218	_	3.518	3.318
Pot Cap-1 Maneuver	-	-	1460	_	715	949
Stage 1	_	_	00	_	919	-
Stage 2	_	_	_	_	860	_
Platoon blocked, %	<u>-</u>	_		_	500	
Mov Cap-1 Maneuver	_		1460	_	700	949
Mov Cap-1 Maneuver	<u>-</u>		1700	_	700	-
Stage 1		-		-	919	
•	-	-	-	-	842	
Stage 2	<u>-</u>	<u>-</u>	-	-	042	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.6		0	
HCM LOS					A	
					,,	
1 (2)		IDI 4	EDT	E55	14/51	MACT
Minor Lane/Major Mvm	t ſ	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		-	-	-	1460	-
HCM Lane V/C Ratio		-	-	-	0.02	-
HCM Control Delay (s)		0	-	-	7.5	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		-	-	-	0.1	-

AM During Construction Synchro 11 Report Page 2

Intersection						
Int Delay, s/veh	1.3					
		EDD	WDL	WDT	N IV A /I	NIMP
	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	\$	^	^	<u>4</u>	₩	40
Traffic Vol, veh/h	138	0	0	155	27	18
Future Vol, veh/h	138	0	0	155	27	18
Conflicting Peds, #/hr	_ 0	_ 0	0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	150	0	0	168	29	20
Major/Minor Ma	ajor1	ı	Major2		Minor1	
Conflicting Flow All	0	0	150	0	318	150
Stage 1	-	-	150	-	150	150
Stage 2	_	_	-	_	168	-
	-	-	4.12	_	6.42	6.22
Critical Hdwy	-	-	4.12	-		
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	- 040	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1431	-	675	896
Stage 1	-	-	-	-	878	-
Stage 2	-	-	-	-	862	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1431	-	675	896
Mov Cap-2 Maneuver	-	-	-	-	675	-
Stage 1	-	-	-	-	878	-
Stage 2	-	-	-	-	862	-
Approach	EB		WB		NW	
	0		0		10.1	
HCM LOS	U		U			
HCM LOS					В	
Minor Lane/Major Mvmt	N	IWLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		749	-	-	1431	-
HCM Lane V/C Ratio		0.065	-	-	-	-
HCM Control Delay (s)		10.1	-	_	0	-
HCM Lane LOS		В	-	-	A	-
HCM 95th %tile Q(veh)		0.2	-	-	0	-
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						

Synchro 11 Report Page 1 PM During Construction

Intersection						
Int Delay, s/veh	1.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			4	¥	
Traffic Vol, veh/h	161	0	0	126	22	15
Future Vol, veh/h	161	0	0	126	22	15
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storag		_	_	0	0	_
Grade, %	0,# 0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
		2				2
Heavy Vehicles, %	2		2	2	2	
Mvmt Flow	175	0	0	137	24	16
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	175	0	312	175
Stage 1	-	-	-	-	175	-
Stage 2	_	_	_	_	137	_
Critical Hdwy	_	_	4.12	_	6.42	6.22
Critical Hdwy Stg 1	_		7.12	_	5.42	0.22
Critical Hdwy Stg 2	_		_		5.42	_
Follow-up Hdwy	_	_	2.218	_	3.518	
Pot Cap-1 Maneuver		-	1401		681	868
•	-	-	1401	-	855	000
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	890	-
Platoon blocked, %	-	-	1.10.1	-	004	000
Mov Cap-1 Maneuver		-	1401	-	681	868
Mov Cap-2 Maneuver	-	-	-	-	681	-
Stage 1	-	-	-	-	855	-
Stage 2	-	-	-	-	890	-
Annroach	EB		WB		NB	
Approach						
HCM Control Delay, s	0		0		10.1	
HCM LOS					В	
Minor Lane/Major Mvr	nt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		746	-		1401	
HCM Lane V/C Ratio		0.054	_	_	-	<u>-</u>
HCM Control Delay (s	.)	10.1	_	_	0	
HCM Lane LOS	7)	В	_	-	A	_
HCM 95th %tile Q(veh	2)	0.2			0	
	1)	U.Z	-	-	U	-

PM During Construction Synchro 11 Report Page 2

0.2 EBT \$\frac{1}{4}\$ 44 44 0	EBR 4	WBL	WBT	NWL	NWR
1 44 44					NWR
1 44 44					INVVI
44 44	4		41	W. 19	
44	4	1		Y	0
	1	4	166	0	0
	4	4	166	0	0
	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-		-	None	-	None
-	-	-	-	0	-
, # 0	-	-	0	0	-
0	-	-	0	0	-
					92
	2			2	2
48	4	4	180	0	0
Major1	ı	Major?	The state of the s	Minor1	
	U				50
	-				-
-	-	-			-
-	-	4.12	-		6.22
-	-	-	-		-
-	-	-	-		-
-	-	2.218	-	3.518	3.318
-	-	1554	-	750	1018
-	-	-	-	972	-
-	-	-	-	844	-
-	-		-		
-	-	1554	-	748	1018
_	_	_	_		-
_	_	_	_		_
_	_	_	_		_
				J 1	
EB		WB		NW	
0		0.2		0	
				Α	
.4 .	11/1/1 1	EDT	EDD	WDI	WDT
nt N	NVVLN I	EBT	EBR	WBL	WBT
	-	-	-	1554	-
			_	0.003	-
	-	-			
	0	-	-	7.3	0
)					
	92 2 48 Major1 0 - - - - - - - - - -	92 92 2 2 48 4 Major1 N 0 0	92 92 92 2 2 2 48 4 4 Major1 Major2 0 0 52 4.12 2.218 - 1554 1554 1554 1554	92 92 92 92 2 2 2 2 48 4 4 180 Major1 Major2 I 0 0 52 0 1554 1554	92 92 92 92 92 2 2 2 2 2 48 4 4 180 0 Major1 Major2 Minor1 0 0 52 0 238 50 188 4.12 - 6.42 5.42 5.42 5.42 - 1554 - 750 972 844 1554 - 1554 - 748 1554 - 748 972 841 EB WB NW 0 0.2 0 A

Post Construction - AM Synchro 11 Report Page 1

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			र्स	¥	
Traffic Vol, veh/h	135	4	4	49	0	0
Future Vol, veh/h	135	4	4	49	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	_	-	-	-	0	-
Veh in Median Storage	e,# 0	_	_	0	0	-
Grade, %	0	-	-	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	147	4	4	53	0	0
WWWIICHIOW	1-77	4	-	00	U	U
Major/Minor	Major1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	151	0	210	149
Stage 1	-	-	-	-	149	-
Stage 2	-	-	-	-	61	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	_
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1430	-	778	898
Stage 1	_	-	-	_	879	-
Stage 2	-	_	-	-	962	_
Platoon blocked, %	_	-		_		
Mov Cap-1 Maneuver	_	_	1430	_	776	898
Mov Cap-2 Maneuver	_	_	-	_	776	-
Stage 1	_	_	_	_	879	_
Stage 2	_	_	_	_	959	_
Olage 2					555	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		0	
HCM LOS					Α	
Minor Long/Major M.	at N	JDI 51	EDT	EDD	WDI	WBT
Minor Lane/Major Mvn	iit I	NBLn1	EBT	EBR	WBL	
Capacity (veh/h)		-	-	-		-
HCM Lane V/C Ratio		-	-		0.003	-
HCM Control Delay (s)		0	-	-	7.5	0
HCM Lane LOS		Α	-	-	A 0	Α
HCM 95th %tile Q(veh	١	_	_	_		-

Synchro 11 Report Page 2 Post Construction - AM

Intersection						
Int Delay, s/veh	0.2					
		EDD	MDI	WET	A IV A /I	AIVA
	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	₽			4	Y	
Traffic Vol, veh/h	197	0	0	144	4	4
Future Vol, veh/h	197	0	0	144	4	4
Conflicting Peds, #/hr	0	0	0	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	214	0	0	157	4	4
Major/Minor	-i1		Mais = 0		\ Alimand	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	214	0	371	214
Stage 1	-	-	-	-	214	-
Stage 2	-	-	-	-	157	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1356	-	630	826
Stage 1	-	-	-	-	822	-
Stage 2	-	-	-	-	871	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1356	_	630	826
Mov Cap-2 Maneuver	_	_	-	_	630	-
Stage 1	_	_	_	_	822	_
Stage 2			_	_	871	_
Glaye Z	_	_	_		011	_
Approach	EB		WB		NW	
HCM Control Delay, s	0		0		10.1	
HCM LOS					В	
Minardana/Mail Mail		\A/I 4	ГОТ	EDD	MDI	MOT
Minor Lane/Major Mvmt	N	WLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		715	-	-	1356	-
HCM Lane V/C Ratio		0.012	-	-	-	-
HCM Control Delay (s)		0.012 10.1	-	-	0	-
		0.012				

Synchro 11 Report Page 1 Post Construction - PM

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>₽</u>	LDN	WDL		INDL M	אסוז
Traffic Vol, veh/h	201	0	0	ર્લ 138	4	4
Future Vol, veh/h	201	0	0	138	4	4
	201	0	0	0	0	0
Conflicting Peds, #/hr						
Sign Control RT Channelized	Free -	Free None	Free -	Free None	Stop	Stop None
					-	ivone -
Storage Length	- 4 0	-	-	0	0	
Veh in Median Storage		-				-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	218	0	0	150	4	4
Major/Minor	Major1	ľ	Major2	N	/linor1	
Conflicting Flow All	0	0	218	0	368	218
Stage 1	-	-	- 10	-	218	-
Stage 2	<u>-</u>	_	<u>-</u>	<u>-</u>	150	_
Critical Hdwy	_	_	4.12	_	6.42	6.22
Critical Hdwy Stg 1	_	_	7.12		5.42	0.22
Critical Hdwy Stg 2		_	_	-	5.42	
, ,	-	=	2.218	-	3.518	
Follow-up Hdwy	-	-	1352	-		
Pot Cap-1 Maneuver	-	-	1352	-	632	822
Stage 1	-	-	-	-	818	-
Stage 2	-	-	-	-	878	-
Platoon blocked, %	-	-	40=0	-	000	000
Mov Cap-1 Maneuver	-	-	1352	-	632	822
Mov Cap-2 Maneuver	-	-	-	-	632	-
Stage 1	-	-	-	-	818	-
Stage 2	-	-	-	-	878	-
Approach	EB		WB		NB	
	0		0		10.1	
HCM Control Delay, s	U		U			
HCM LOS					В	
Minor Lane/Major Mvm	nt N	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		715	-		1352	-
HCM Lane V/C Ratio		0.012	_	_	-	_
HCM Control Delay (s)		10.1	_	_	0	_
HCM Lane LOS		В	_	_	A	_
HCM 95th %tile Q(veh))	0	_	_	0	_
	/					

Synchro 11 Report Page 2 Post Construction - PM



Table 9-25. Suggested Left-Turn Treatment Guidelines Based on Results from Benefit–Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas (16)

Left-Turn Lane Peak-Hour Volume (veh/h)	Three-Leg Intersection, Major-Road Two-Lane Highway Peak-Hour Volume (veh/h/ln) that Warrants a Bypass Lane	Three-Leg Intersection, Major-Road Two-Lane Highway Peak-Hour Volume (veh/h/ln) that Warrants a Left-Turn Lane	Four-Leg Intersection, Major-Road Two-Lane Highway Peak-Hour Volume (veh/h/ln) that Warrants/a Left-Turn Lane
5	50	200	150
10	50	100	\50
15	< 50	100	≫
20	< 50	50	₹ 50
25	< 50	50	< 50
30	< 50	50	< 50
35	< 50	50	< 50
40	< 50	50	< 50
45	< 50	50	< 50
50 or More	< 50	50	< 50

Note: These guidelines apply where the major road is uncontrolled and the minor-road approaches are stop- or yield-controlled. Both the left-turn peak-hour volume and the major-rad volume warrants should be met as shown in Figure 9-36.

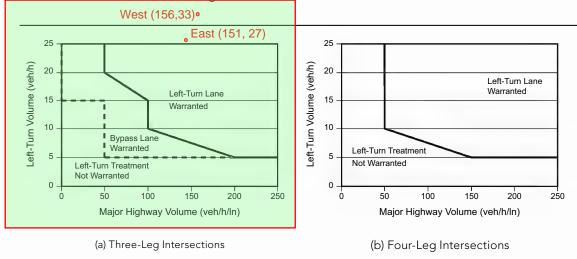


Figure 9-36. Suggested Left-Turn Treatment Warrants Based on Results from Benefit–Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas (16)

<u>The construction and post construction volumes have been applied using the AASHTO warrants</u> above, and have yielded the following results:

Data Request Identifier	Request Source	Topic	Information	Adequate	Information Required To Make AFC Conform With Regulations	Applicant Response
	Deficiency Letter Matrix	Traffic and Transportation	provide a discussion of the existing site conditions, the expected direct, indirect and cumulative impacts due to the construction, operation and maintenance of the project, the measures proposed to mitigate adverse environmental impacts of the project, the effectiveness of the proposed measures, and any monitoring plans proposed to verify the effectiveness of the mitigation.	No	Please expand the analysis of Impact 3.14-2. Impact 3.14-2 of Secion 3.14.3 (Direct and Indirect Effects) presents the analysis of the project relative to CEQA Guidelines Section 15064.3(b), which relates to the evaluation of a project's transportation impacts. Specifically, analysis using vehicle miles of travel (VMT) is identified as the most appropriate measure for the analysis of transportation impacts. The analysis of Impact 3.14-2 relies on GHG analysis in Sections 3.10, GHG Emissions, since the intent of SB 743 is to encourage land use and transportation planning decisions and investments that reduce VMT threshold, the County decided to rely on an established environmental standard that is protective of resources of legislative concern. The less-than-significant impact finding is in part a result of a potential net offset of annual CO2e emissions with implementation (i.e., due to ongoing power generation). The VMT analysis demonstrates that the project will result in a short-term increase in VMT during construction. However, no discussion or analysis is presented of potential TDM strategies (carpooling, ridesharing, etc) or other measures that could be implemented to reduce VMT during construction, although identified in Appendix H, Page 17.	See Section 8.1 of the Updated TIA for discussion of carpooling as a means to reduce construction-related VMT.
	Deficiency Letter Matrix	Traffic and Transportation	A regional transportation setting, on topographic maps (scale of 1:250,000), identifying the project location and major transportation facilities. Include a reference to the transportation element of any applicable local or regional plan.	No	Please update Section 3.14.1.3 (Regulatory Setting) of the DEIR Transportation Section. The Regulatory Setting should include reference to the Regional Transportation Plan & Sustainable Communities Strategy for the Shasta Region and Caltrans Transportation Concept reports for each State route in the study area. Also please verify the scale of Exhibit 1 of the Traffic report.	The Regulatory Setting section of the CEC EIR made a reference to the Regional Transporation Plan and Sustainable Communities Strategy for the Shasta Region (2015) and the Route 299 TCR (210). Links to these documents are provided here: https://dot.ca.gov/-/media/dot-media/district-1/documents/Signed-FINAL-299-TCR-12_10-a11y and https://www.srta.ca.gov/142/Regional-Transportation-Plan. Table 1.2 of the Updated TIA for more information about the functional classification, truck route designations, and weight and load limitations of California State Route 299. Exhibit 1 is scaled as printed.
TRAF-004	Deficiency Letter Matrix	Traffic and Transportation	An identification, on topographic maps at a scale of 1:24,000, and a description of existing and planned roads, rail lines, (including light rail), bike trails, airports, bus routes serving the project vicinity, pipelines, and canals in the project area affected by or serving the proposed facility. For each road identified, include the following, where applicable:	No	Please expand the description of regional and local roadways affected and/or serving the proposed project. For logical study segments, the descriptions should summarize the roadway functional classification number of directional travel lanes, posted speed limits, average daily traffic volumes served, applicable weight restrictions, and truck route designation. Also please verify the scale of Exhibit 1 of the Traffic report.	The requested information is included in Tables 1.1 and 1.2 of the revised report. Each exhibit is scaled as printed.
TRAF-005	Deficiency Letter Matrix	Traffic and Transportation	Road classification and design capacity;	No	Please update the capacities documented in Table 3.14-2. The hourly capacities presented are base capacity values, representative of ideal conditions. Base capacities do not account for the impacts of heavy vehicles, grades or other sources of friction that will lower the capacity of a freeway or highway lane.	The capacities have been updated in Table 1.1 of the revised report as requested.
TRAF-006a	Deficiency Letter Matrix	Traffic and Transportation	Current daily average and peak traffic counts;	No	Please collect new average daily vehicle traffic counts. Traffic data from Caltrans Traffic Census Program, representing 2017 conditions, is documented. The data provided through the Caltrans Traffic Census Program are traffic volume estimates and not actual counts. In addition, the data is pre COVID-19 Pandemic and does not capture post pandemic changes in travel behavior. 24-hour vehicle classification traffic counts should be collected (in 15-minute increments) for a minimum three days (Tuesday, Wednesday, Thursday), during a representative time of year.	Average Daily Vehicle Traffic Counts have been collected near the projected access locations and are presented in Table 1.1 of the report. Raw traffic data is included in Appendix B of the report.
TRAF-007	Deficiency Letter Matrix	Traffic and Transportation	Current and projected levels of service before project development, during construction, and during project operation;	No	Please update roadway capacity and intersection operations analysis. As outlined above, the roadway capacity analysis was conducted using base capacity values that do not account for the impacts of heavy vehicles, grades or other sources of friction that will lower the capacity of a freeway or highway lane. In addition, the analysis needs to be updated based on new traffic count data.	The analyses have been revised as requested. Results are presented in Table 1.1 and Appendix D of the Updated TIA.
TRAF-008	Deficiency Letter Matrix	Traffic and Transportation	Weight and load limitations;	No	Please expand the description of regional and local roadways affected and/or serving the proposed project. Identify weight and load limitations on study roadways.	The requested information is included in Table 1.2 of the revised report.
TRAF-009	Deficiency Letter Matrix	Traffic and Transportation	Estimated percentage of current traffic flows for passenger vehicles and trucks; and	No	Please collect new average daily vehicle traffic counts. The heavy vehicle percentages from Caltrans Traffic Census Program on SR 299 are provided. The data is pre COVID-19 Pandemic and does not capture post pandemic changes in travel behavior. 24-hour vehicle classification traffic counts should be collected (in 15-minute increments) for a minimum three days (Tuesday, Wednesday, Thursday), during a representative time of year when construction is anticipated.	Average Daily Vehicle Traffic Counts have been collected near the projected access locations and are presented in Table 1.1 of the report. Raw traffic data is included in Appendix B of the report.
TRAF-010	Deficiency Letter Matrix	Traffic and Transportation	An identification of any road features affecting public safety.	No	Please collect collision records on study roadways. Collect and map the most recent 3- year collision data available for the study corridors to identify locations where road features or characteristics may be affecting public safety. Expand impact discussion Impact 3.14-3 to incorporate relevant findings of collision analysis.	The requested information is included in Table 1.2 of the revised report.

Data Request Identifier	Request Source	Topic	Information	Adequate	Information Required To Make AFC Conform With Regulations	Applicant Response
TRAF-006b	Deficiency Letter Matrix	Traffic and Transportation	An assessment of the construction and operation impacts of the proposed project on the transportation facilities identified in $(g)(5)(C)$. Also include anticipated project specific traffic, estimated changes to daily average and peak traffic counts, levels of service, and traffic/truck mix, and the impact of construction of any facilities identified in $(g)(5)(C)$.	No	Please see above.	Please refer to Table 1.1 and Section 8.0 of the Updated TIA.
	Deficiency Letter Matrix	Traffic and Transportation	Tables that identify laws, regulations, ordinances, standards, adopted local, regional, state, and federal land use plans, leases, and permits applicable to the proposed project, and a discussion of the applicability of, and conformance with each. The table or matrix shall explicitly reference pages in the application wherein conformance, with each law or standard during both construction and operation of the facility is discussed.	No	The Law, Ordinance, Regulation, or Standard Consistency Matrix (TN 248290) doees not identify the specific Shasta County Code ordinances or standards that are applicable during constrution and operation of the proposed facility.	See Section 8.1 of the Updated TIA; Please also see LORS Matrix submitted as TN# 249636.
	Deficiency Letter Matrix	Traffic and Transportation	The name, title, phone number, address (required), and email address (if known), of an official who was contacted within each agency, and provide the name of the official who will serve as a contact person for Commission staff.	No	Please provide agency contact information. The DEIR list of federal, state, and local agencies consulted does not include the contact's phone number, address, email address, or the subject matter relevant to the contact. The list does not indicate who should sere as the contact person for Commission staff.	N/A. Applicant to provide requested information outside of traffic study. Please see table with local agency contact information submitted as TN# 249533.
TRAF-004	Follow-up Questions	Traffic and Transportation	A description of the methodology applied and the software used to complete the capacity analysis is missing.	. No	Not provided by CEC with follow-up questions	Roadway capacity analysis was performed with HCS Software for the pre-construction, construction, and post-construction scenarios. Traffic data collected by Caltrans in 2020 and roadway characteristics observed from desktop review (i.e., speed limit, number and width of lanes, etc.) were used to calculate roadway capacity. Project access Level of Service (LOS) methodology is described in Section 8.2.
TRAF-010	Follow-up Questions	Traffic and Transportation	An analysis of the collision records is missing. Table 1.2 of the revised report (TN# 250644) includes total number of collisions. However, no information is provided relative to how the collision rates compare to statewide averages for similar facilities or how the characteristics of the roadway that may be affecting public safety or contributing to the reported collisions?	No	Not provided by CEC with follow-up questions	Noted. To facilitate statewide crash averages for similar facilities' in California, crash comparisons were initially performed for the most recent year, 2020. However, due to the Covid-19 pandemic, Westwood expanded crash data analysis to include the years 2018, 2019, and 2020, to ensure any pandemic outliers did not skew data analysis. To include the expanded data set, Table 1.2 was updated, and Table 1.3 was added to reflect additional crash analysis within boundaries of the project site commuter and delivery routes, in conjunction with statewide data (see Appendix C). The crash rates along the roadway segments of SR 299 are less than the statewide averages for similar 4-lane divided and 2/3-lane facilities.