DOCKETED				
Docket Number:	16-OIR-06			
Project Title:	Project Title: Senate Bill 350 Disadvantaged Community Advisory Group			
TN # : 250645				
Document Title:	Item 5 b and C - Demand Side Grid Support and Stack Analysis			
Description:	N/A			
Filer:	Dorothy Murimi			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	6/16/2023 12:51:45 PM			
Docketed Date:	6/16/2023			

Item 5(b): CEC Staff Presentation on Demand Side Grid Support Program and Distributed Electricity Backup Assets Program

Presenter: Ashley Emery, Manager, Reliability Reserve Incentives Branch Reliability, Renewable Energy & Decarbonization Incentives (RREDI) Division June 2023

Strategic Reliability Reserve (AB 205)

	Demand Side Grid Support (DSGS)	Distributed Electricity Backup Assets (DEBA)		
Funding	\$295 Million (Over 5 Years)	\$700 Million (Over 5 Years)		
Incentivized Activities	Use of load reduction resources during extreme events	Purchase of cleaner and more efficient distributed energy assets that would serve as on-call emergency supply or load reduction		
Eligibility	Statewide	Statewide		
Program Status	Launched Aug 2022 Incorporation lessons learns	Under Development		

1. Demand-response, including batteries

2. Renewable and zero-emission resources

3. Near zero-emission resources

4. Biomethane and fossil gas resources

5. Conventional diesel and gas

Demand Side Grid Support (DSGS) Program

Enrollment

- DSGS providers (utilities and aggregators) enroll with CEC
- Electric customers enroll with DSGS providers (or CEC in limited circumstances)
- DSGS providers report participation to CEC

Balancing authority issues an energy emergency alert (EEA)

Participation

- DSGS providers notify customers
- Customers reduce load

Payment

۲

ullet

- DSGS provider pays incentives to customers for incremental load reduction
- CEC pays DSGS providers incentives and administrative costs

DSGS Impact: Estimates Based on **Enrollment**

Over 44 Individual Entities Participated

Over 315 MW Enrolled

Total Estimated MW Enrolled to Dispatch Each Day

7

Distributed Electricity Backup Assets Program

- Available statewide
- Funding recipients must participate as an on-call emergency resource
- Eligible Projects:

Efficiency	Incremental Clean
Upgrades to	Energy Additions at
Existing Power	Existing Power
Plants	Plants

Distributed Clean On-Peak Electricity Supply (Generation and/or Storage)

Equipment or Systems to Enable Demand Flexibility

Bulk Grid Investments

Efficiency upgrades, maintenance, and capacity additions to existing power generators

- Equipment upgrades
- Clean back-up generation or storage
- Waste heat to energy

Distributed Resources

New zero- or low-emission technologies, including, but not limited to, fuel cells or energy storage, at existing or new facilities

- Load flexibility controls, SCADA systems, demand-response aggregation software
- Battery storage
- Fuel cells
- Linear generators
- Microgrids
- Vehicle-to-grid integration
- Pumped hydro
- Combined heat and power
- Other emerging technologies

Potential DEBA Project Evaluation Criteria

Portfolio Diversity	Project selections will support a diverse portfolio of resources
Loading Order	Aims to achieve electricity reliability and prioritizes feasible, cost-effective demand response and efficiency resources, then feasible, cost-effective renewable and zero-emission resources, and then feasible, cost-effective conventional resources (statute)
Resource Longevity	 Anticipated useful life of the resources in relation to the state's climate and air quality requirements (statute)
Capacity	 Emergency supply and/or load reduction available to the state Maximum hours available for dispatch during peak load events (4-10pm)
Cost	 \$/MW for portion of project budget requested from DEBA Eligible matching funds or other committed project financing
Readiness	 Estimated project completion date Anticipated interconnection or supply chain delays
Equity	 Benefits to Disadvantaged Communities and/or low-to moderate income communities Tribal resiliency
Co-Benefits	Benefits beyond energy system reliability, including critical infrastructure resilience (emergency services, potable water, wastewater)

DEBA Development Plan

DSGS Program Email: <u>DSGS@energy.ca.gov</u> DEBA Program Email: <u>DEBA@energy.ca.gov</u>

Ashley Emery, Manager Ashley.Emery@energy.ca.gov

Docket: 22-RENEW-01

Item 5(c): CEC Staff Presentation on Stack Analysis

Disadvantaged Communities Advisory Group Meeting June 16, 2023

Introduction & Context

David Erne, Deputy Director, Reliability and Emergency Planning, Energy Assessments Division

Three Reliability Challenges in California

Planning Processes

- Improve ability to account for climate change-induced weather variability
- Ensure timely and sufficient procurement across all jurisdictions
- Improve processes associated with interconnection and permitting

Scaling Resources

- Expand diversity of resources
 - Demand-side (e.g., more demand flexibility)
 - Supply-side (e.g., long-lead resources)

Extreme Events

Augment Strategic Reliability Reserve

Challenges Remain to Timely Deployment of Authorized Resources

- Success requires record resource build rates, which are impacted by:
 - Supply chain vulnerabilities
 - Interconnection and permitting delays
 - Increasing prices and competition for equipment
- Uncertainties in availability of existing resources
 - Hydro
 - West-wide tight RA market

Figure 1: Summer Reliability Risk Area Summary

	Seasonal Risk Assessment Summary
High	Potential for insufficient operating reserves in normal peak conditions
Elevated	Potential for insufficient operating reserves in above-normal conditions
Low	Sufficient operating reserves expected

Source: NERC 2022 Summer Reliability Assessment

Success Requires Sustained Record Build Rates

- CAISO maximum and average build rates since 2011 by technology type
- Average build rates are generally insufficient
- Maximum build insufficient in the near terr

Coordinated activities

- Reliability analyses
- Resource tracking
- Contingency tracking
- Entity-specific emergency actions tied to CAISO System Operations Emergency Plan
- Real-time communication at senior levels

Summer 2023 Reliability Outlook

Summer Reliability

June 16, 2023

CEC Summer Stack Analysis

Purpose:

- Deterministic approach
- Assess average and extreme conditions
- Inform need for contingencies

Considers extreme conditions:

- High demand days like summer 2020 and 2022
- Increased levels of unplanned outages
- Import availability
- Inputs and assumptions developed in collaboration with

CPUC, DWR and CAISO

Stack analysis is updated as new information becomes available

Source: CEC

Condition Relative to 1-in- 2 Forecast	Operating Reserves	Outages	Demand Variability	Coincidental Fire Risk	Notes
Current RA Planning Standard – 17% (current expected demand)	6%	5%	6%		16% for 2023 & 17% beginning 2024
2020 Equivalent Event: Additional capacity needed to weather heat event like 2020	6%	7.5%	9%	4,000 MW	9% higher demand over median, and 2.5% higher levels of outages
2022 Equivalent Event: Additional capacity needed to weather heat event like 2022 Source: CEC	6%	7.5%	12.5%	4,000 MW	12.5% higher demand over median, and 2.5% higher levels of outages

- Wind and solar
 - Hourly profiles based on generation on highload days from 2014-2022
- Batteries
 - Discharge limited to 4 hours across peak hours
- Demand response
 - From CPUC DR Allocations, adjusted by Load Impact Protocol and distribution loss factors
 - Increased by 6% since operating reserves aren't carried for reduced load
- Hydro
 - adjustments based on CDWR projections

	Wind			Solar			Battery					
	Time PDT	Jul	Aug	Sep	Time PDT	Jul	Aug	Sep	Time PDT	Jul	Aug	Sep
	4PM- 5PM	0.38	0.28	0.17	4PM- 5PM	0.71	0.72	0.64	4PM- 5PM	0.39	0.31	0.00
	5PM- 6PM	0.45	0.34	0.21	5PM- 6PM	0.57	0.55	0.41	5PM- 6PM	0.39	0.31	0.64
k	6PM- 7PM	0.48	0.40	0.24	6PM- 7PM	0.33	0.26	0.10	6PM- 7PM	0.60	0.95	0.83
	7PM- 8PM	0.51	0.44	0.29	7PM- 8PM	0.07	0.03	0.00	7PM- 8PM	1.00	1.00	1.00
	8PM- 9PM	0.52	0.49	0.34	8PM- 9PM	0.00	0.00	0.00	8PM- 9PM	1.00	1.00	1.00
	9PM- 10PM	0.55	0.51	0.32	9PM- 10PM	0.00	0.00	0.00	9PM- 10PM	0.61	0.43	0.54

Source: California Energy Commission staff with California ISO data

Resource Mix Comparison

- Improvements
 - DWR forecasts greater hydro generation, which contributes <u>800 MW</u>
 - Average Resource Adequacy imports increased, contributing <u>500 MW</u>
- Demand Adjustments
 - Updated hydro conditions result in <u>500 MW of pump load</u> added at peak hours

		September 2023- February Update (MWs)	September 2023- May Update (MWs)	Change (MWs)
	Supply			
	Demand Response	1,274	1,274	- 0
	Existing Resources	44,817	45,646	▲ 829
	New Batteries (Nameplate)	1,759	2,106	▲ 347
	New Hybrid (Nameplate)	1,061	1,452	▲ 391
*	Resource Adequacy Imports	5,500	6,000	▲ 500
	Total	54,411	56,478	2067
	Demand			
	2022 Forecasted Peak Demand	46,827	46,829	▲2
•	Pump Load Adjustment at Net Peak	0	500	▲ 500
	Shortfalls/Surplus			
	Planning Standard	1,538	2,348	▲ 810
	2020 Event Equivalent	-1,038	-228	▲ 810
	2022 Event Equivalent	-2,676	-1,867	▲ 809

Results are for CAISO for September 2023

Overall improved outlook for the summer under all scenarios due to:

- Improved hydro
- Increased imports

	Projected September Surplus Need for Contingencies			
	February Update	May Update		
Under Expected Demand	1,538	2,348		
2020 Equivalent Event	-1,038	-228		
2022 Equivalent Event	-2,676	-1,867		

Green is surplus, Red is shortfall

Shortfalls do not include coincident catastrophic fire risk

Note: Going into summer 2022, the forecasted shortfalls under **2020 and 2022 equivalent** event would have been **3,000 and 7,000 MW**, respectively.

Туре	Contingency Resource	July	August	September	Note
	DWR ESSRRP*	148	148	148	Recent update
SRR	Demand Side Grid Support	315	400	450	Recent update
	Distributed Energy Backup Assets (under development)	0	0	0	Recent update
	Ratepayer Programs (ELRP, Smart Thermostats, etc.)**	905	964	984	Recent Update
CPUC	Imports Beyond Stack	300	250	250	Recent Update
	Capacity at Co-gen or Gas Units Above Resource Adequacy	518	499	160	Recent Update
DWR	DWR SWP***	0	0	0	Pending
	Balancing Authority Emergency Transfers	500	500	500	Recent update
Non-Program	Thermal Resources Beyond Limits: Gen Limits	60	60	60	Recent update
	Thermal Resources Beyond Limits: Gen Limits Needing 202c	25	25	25	Recent update
	Total	2,771	2,846	2,577	

*Does not include additional 144 MW of projects that are not online yet but expected to be available for summer. **Does not reflect actual 2022 ELRP performance. More discussion is needed to project forecasted available MWs. ***These resources are projected one week ahead, but given current hydro forecasts, several hundred MWs are expected.

Thank you!