DOCKETED	
Docket Number:	23-OPT-01
Project Title:	Fountain Wind Project
TN #:	250644
Document Title:	Fountain Wind Traffic Study_06152023
Description:	N/A
Filer:	Caitlin Barns
Organization:	Stantec Consulting Services, Inc.
Submitter Role:	Applicant Consultant
Submission Date:	6/16/2023 11:42:47 AM
Docketed Date:	6/16/2023

Westwood

TRAFFIC STUDY
Fountain Wind Power

Shasta County, California June 10, 2023

Prepared For:

Fountain Wind Project

Shasta County, California Project Number: 0023714.00

Date: 6/10/2023

Prepared for:

ConnectGEN

Prepared by:

CONTENTS

1.0	INTRODUCTION	1
2.0	PROJECT ACCESS	1
3.0	EXISTING TRAFFIC CONDITIONS	1
4.0	CONSTRUCTION TRAFFIC OVERVIEW	5
5.0	CONSTRUCTION & SCHEDULE	9
6.0	OVERSIZED LOADS AND PERMITTING	10
7.0	CONSTRUCTION TRAFFIC MANAGEMENT PLAN	12
8.0	ANALYSIS	14
9.0	SIGNAGE	22
10.0	SUMMARY	22
FIG	SURES	
FIGU	RE 1 – CONSTRUCTION PEAK HOUR CONDITIONS	.19
FIGIL	RE 2 – POST CONSTRUCTION PEAK HOUR CONDITIONS	20

EXHIBITS

EXHIBIT 1 - PR	OJECT SITE PLAN	24
EXHIBIT 2 - RE	GIONAL DELIVERY ROUTES	25
EXHIBIT 3 - LO	CAL DELIVERY ROUTES	26
EXHIBIT 4 - FO	DUNTAIN WIND PROJECT – ESTIMATED VEHICLE TRIPS DURING AND POST	
CONSTRUCTIO	DN	27
TABLES		
	padway Segment Traffic Information Summary	
Table 1.2 – Ro	padway Segment Geometric and Crash Information	4
APPENDI	IX	
APPENDIX A	Burney Express Schedule	
	Truck Route Exhibit	
	Caltrans Traffic Census Program 2020 Annual Average Daily Traffic	c (AADT)
	Volumes	
	Caltrans Traffic Census Program 2020 Truck Volumes and Percentages	
	Roadway Grade Exhibits	
APPENDIX B	April 4, 5, and 6, 2023 – Volume, Speed, and Classification Counts near p	roposed
ADDENIDIV C	Site Entrances	
APPENDIX C APPENDIX D	Crash Diagrams	
	Highway Capacity Software Calculations	Fauntain
APPENDIX E	Potential Transportation Environmental Protection Measures for the Wind Project	rountain
APPENDIX F	Synchro Level of Service Calculations	
APPENDIX G	AASHTO Guidance for Left Turn Lanes on Two-Lane Highways (AASHT	O Green
	Book, Seventh Edition)	
APPENDIX H	Responses to California Energy Commission Comments	

1.0 INTRODUCTION

The Fountain Wind project is proposed as a 205 MW wind project consisting of 48 wind turbines with associated access roads, collection system, meteorological (MET) towers, operations and maintenance facility (O&M), staging yards, substation, and interconnection. The construction of the Fountain Wind project will generally require conventional construction worker personal vehicles, logging trucks, aggregate dump trucks, concrete ready-mix trucks, single unit and semi-tractor trailer trucks, crawler cranes, and a limited number of specialized transportation vehicles for the oversize/overweight vehicles associated with the delivery of wind turbine components and substation main power transformers (MPTs).

The scope of this report is to determine the total number of vehicles entering the project site from public roads and to calculate the approximate peak hourly traffic entering the site from public roads.

This report also contains responses to comments made by the California Energy Commission (CEC). A spreadsheet containing point-by-point responses to CEC comments is contained in **Appendix H**.

2.0 PROJECT ACCESS

Traffic entering the project site is composed of commuter trips for construction workers and delivery trips for materials and equipment. Materials and equipment deliveries include aggregate, concrete, and water, as well as turbines, electrical equipment and cables, and items such as reinforcing steel and forms for concrete foundations.

All traffic will reach the site using State Route (SR) 299 (see **Exhibit 1**). Deliveries of manufactured components (e.g., turbine components and turbine blades) will likely originate from the east and travel from Reno, Nevada to the site via US 395 and SR 299. These deliveries would be scheduled to avoid the peak hours of traffic on SR 299 and the scheduled first trip of the westbound Burney Express bus departing Burney at 5:50 am and arriving in Redding at 7:15 am (see **Appendix A**).

Locally sourced materials such as aggregate and water will likely come from Burney, located approximately 6 miles to the east of the project site, or from pits and quarries east of Burney. If the concrete is not batched on-site, there are several concrete plants in Redding about 35 miles to the west of the project site that can provide concrete during project construction.

Project workers will most likely commute from towns located both to the east and to the west of the project. The Burney Express does not appear to be a convenient option for commuters (see **Appendix A**). Redding is the largest town in the region. Other towns west of the project are very small and not likely to be able to accommodate many project

workers. Several small towns including Burney, Fall River Mills, and McArthur are located east of the project and may also accommodate project workers. Based on the relative size of towns located to the east and west of the project site, this study assumes that 60 percent of the commuting traffic travels to the site from the west and that 40 percent travels to the site from the east on SR 299. **Exhibits 2 and 3** illustrate the assumed regional and local delivery routes for manufactured components, turbine blades, and building materials and the anticipated commuter routes. SR 299 is a Terminal Access (STAA) truck route (see **Appendix A**).

Two access roads are proposed to coincide with existing logging roads at the intersections with SR 299 (see **Exhibit 1**). The West Access is proposed along a road called G Line, which intersects with SR 299 approximately 37 miles east of the interchange with I-5 in Redding. There is a widened shoulder at this intersection, but no turn lanes.

The East Access is approximately eight miles west of Burney. This access is proposed along an existing and unnamed logging road that provides access to the area south of SR 299. As with the other access points, there is a widened shoulder at this access, but no turn lanes.

As points of reference, the Shasta Green plant lies along SR 299 approximately 4.4 miles east of the East Access, and the Sierra Pacific Industries plant lies another 1.2 miles to the east of that. The Shasta Green plant has both eastbound and westbound turn lanes along SR 299. The Sierra Pacific Industries plant has no turn lanes.

The nearby Hatchet Ridge Wind Farm accesses SR 299 at Bunch Grass Lookout Road. This access is approximately one mile east of the East Access for the Fountain Wind project. Both eastbound and westbound turn lanes serve the Hatchet Ridge access. Bunch Grass Lookout Road is located at a four-way intersection on SR 299, with Terry Mill Road accessing to the south.

3.0 EXISTING TRAFFIC CONDITIONS

According to the Caltrans 2020 listing of Annual Average Daily Traffic (AADT) volumes (see **Appendix A**), urban centers on each end of SR 229 record the highest traffic volumes, then diminish significantly in the rural and mountainous areas in between. There are nine daily and peak hour count locations listed between I-5 in Redding, California, and Plumas Street in Burney, California¹.

The highest existing two-way AADT on SR 299 is 18,800 vehicles per day at I-5 in Redding where the highway has a four-lane freeway alignment. The highest existing two-way peak hour volume is 2,200 vehicles per hour. The capacity of a lane along a freeway segment is calculated as a function of the Free-Flow Speed (FFS), which is affected by the

¹ CalTrans Traffic Census Program.

percentage of heavy trucks traveling along the segment (see **Appendix A**), the average grade of the segment (see **Appendix A**), and either the observed free-flow speed or the average number of access points per mile within the segment.

The two access roads for the Fountain Wind project are all located within the segment of SR 299 between Big Bend Road and Tamarack Road. Volume, speed, and classification counts were collected at two locations along this segment on April 4, April 5, and April 6, 2023 (see **Appendix B**). The observed AADT along this segment was 1.55 times less than the 2020 Caltrans AADT collected along this segment. Additionally, the observed truck percentage along this segment was 1.4 times higher than the 2020 Caltrans observed truck percentage.

Roadway segment traffic volume and capacity information is summarized in **Table 1.1**. Roadway segment geometric and crash information (see **Appendix C**) are summarized in **Table 1.2**.

Roadway capacity calculations are included in **Appendix D**. The roadway segments that are affected by project traffic are anticipated to have sufficient capacity for construction demand and post-construction demand.

Westwood

							Table	e 1.1 - F	Roadv	vay S	egme	nt Tr	affic	Info	orma	ation	Su	mr	nary							
Segment Number	Road Name	Location	Milepost (From- To)	2020 C AADT W	Two-	2023 O AA	bserved	2020 C Peak Ho W	altrans <u>ur</u> Two-	2023 0	bserved <u>Hour</u>		ruction	Po Constr Peak	st- uction	Heavy			Capa pc/ł	acity	Pre-Cons LOS Bet C (D/	ter than ?	C	ruction tter than C? (C) f	LOS Be ⁻	nstruction tter than C? (C) f
				Ahead	Back	EB	WB	EB (Ahead)	EB (Back)	EB	WB	EB	WB	EB	WB	(%)	SUT	TT	EB	WB	EB	WB	EB	WB	EB	WB
0		I-5 Junction (Redding)	24.8																							
1		I-5 to Hawley Road	24.9-25.5	10800	18800			575 ^c	1100°			666 ^e	1160 e	583 e	1108 e	4.73	17	83	2006	2006	(YES)-A 0.16	(YES)-B 0.31	(YES)-A 0.19	(YES)-B 0.33	(YES)-A 0.16	(YES)-B 0.31
2		Hawley Road to Old Oregon Trail	25.5 -27.2	9500	10800			475 ^c	575 ^c			566 e	635 ^e	483 e	583 ^e	3.76	23	77	1998	2006	(YES)-A 0.13	(YES)-A 0.16	(YES)-A 0.16	(YES)-A 0.18	(YES)-A 0.14	(YES)-A 0.16
3		Old Oregon Trail to Deschutes Road	27.2-31.5	4750	7700			260°	455 ^c			351 ^e	515 ^e	268 ^e	463 ^e	3.76 ^a			1700	1700	(YES)-A 0.16	(YES)-B 0.28	(YES)-B 0.22	(YES)-C 0.32	(YES)-A 0.17	(YES)-C 0.29
4		Deschutes Road to Terry Mill Road	31.5-53.3	3950	3900			130°	130°			221 ^e	190 e	138 ^e	138 ^e	14.9 ^a		-	1400	1400	(YES)-A 0.1	(YES)-A 0.1	(YES)-A 0.17	(YES)-A 0.14	(YES)-A 0.1	(YES)-A 0.1
5	CA-299 E	Terry Mill Road to Big Bend Road	53.5-60.1	3350	3550			135°	135°			226 e	195 ^e	143 e	143 e	14.9ª		<u> </u>	1700	1700	(YES)-A 0.08	(YES)-A 0.08	(YES)-A 0.14	(YES)-A 0.12	(YES)-A 0.09	(YES)-A 0.09
6		Big Bend Road to Site Entrance 1	60.1-62.3	3350 a	3550 a	1275 b	1255 b	168 ^{a&c&g}	168 ^{a&c&g}	138 ^{b&d}	133 ^{b&d}	259 e	228 ^e	176 e	176 ^e	31 ^b			1700	1700	(YES)-A 0.11	(YES)-A 0.11	(YES)-B 0.16	(YES)-A 0.14	(YES)-A 0.11	(YES)-A 0.11
7		Site Entrance 1 to Site Entrance 2	62.3-67.3	3250 a	3350 a	1269 a	1259 ^a	168 ^{a&c&g}	168 ^{a&c&g}	161 ^{a&b&d}	133 ^{a&b&d}	259 e	228 ^e	176 e	176 ^e	31 ^b			1100	1100	(YES)-A 0.16	(YES)-A 0.16	(YES)-A 0.25	(YES)-A 0.22	(YES)-A 0.17	(YES)-A 0.17
8		Site Entrance 2 to Tamarack Road	67.3 -73.1	3150	3150	1263 b	1263 b	200°	200°	161 ^{b&d}	126 ^{b&d}	291 ^e	260 e	208 e	208 ^e	30 ^b		-	1100	1700	(YES)-A 0.19	(YES)-A 0.13	(YES)-A 0.28	(YES)-B 0.16	(YES)-A 0.20	(YES)-A 0.13
9		Tamarack Road to Elm Street	73.1-74.5	3600	2400			180 ^c	185°			271 ^e	245 ^e	188 ^e	193 ^e	17.5			1700	1700	(YES)-A 0.11	(YES)-A 0.12	(YES)-A 0.17	(YES)-A 0.15	(YES)-A 0.12	(YES)-A 0.12
10		Elm Street to Plumas Street (Burney)	74.5-75.0	8200	3600			435 ^c	180°			526 e	240 e	443 e	188 e	19			1700	1700	(YES)-C 0.27	(YES)-A 0.11	(YES)-C 0.33	(YES)-A 0.15	(YES)-C 0.28	(YES)-A 0.12
(b) - Obser (c) - Number divided by to (d) - Peak F (e) - Peak h (f) - Demar	ned Value from the ved Value for some state of the vector of vec	rom Neighborin rom counts perf ppendix A were re assumption of eq from QC - Wer is used the high	ormed on Ap presentatives of ual traffic in ea e Adjusted us est AM or PM	oril 4, 5, an of two-way t ach direction sing a corre 1 Volumes.	d 6 of 202 traffic. Thes n. ection facto	3 e Numbers or of 1.55	are					1	ı													

Westwood

						Table	e 1.2 - F	Roadwa	y Segme	nt Ge	eometr	ric and (Crash Ir	nformatio	on					
Segment Number	Road Name	Location	Milepost (From- To)	Length (mi)	Surface / Condition	Elevation Start (ft)	Elevation End (ft)		Westbound Average Grade		Shoulder Width (ft)	Number of Directional Travel Lanes	Passing Zones	Roadway Functional Classification	Passing Zones	Average Access Points per Mile	Truck Route Designation	Weight and Load Limitations	Number of Crashes	Posted Speed Limit
0		I-5 Junction (Redding)	24.8			640														
1		I-5 to Hawley Road	24.9 - 25.5	0.6		641	628	-0.41	0.41			2		Principal Arterial		0			5	
2		Hawley Road to Old Oregon Trail	25.5 -27.2	1.7		628	621	-0.08	0.08				n/a			0			1	
3		Old Oregon Trail to Deschutes Road	27.2 - 31.5	4.3		621	539	-0.36	0.36				Passing Zones		Passing Zones	8			23	
4		Deschutes Road to Terry Mill Road	31.5 - 53.3	21.8		539	2092	1.35	-1.35				Passing Lanes		Passing Lanes	4			54	
5	CA-299 E	Terry Mill Road to Big Bend Road	53.5 - 60.1	6.8	Asphalt / Good	2092	3128	2.89	-2.89	12	6		Passing Lanes EB only		Passing Lanes EB only	6	Terminal Access / STAA Route	80000 lb Max	6	55
6		Big Bend Road to Site Entrance	60.1 - 62.3	2.3		3128	3640	4.22	-4.22				Passing Zones		Passing Zones	3			0	
7		Site Entrance 1 to Site Entrance 2	62.3 - 67.3	4.9		3640	4215	2.22	-2.22			1	Passing Lanes	Minor Arterial	Passing Lanes	2			6	
8		Site Entrance 2 to Tamarack Road	67.3 -73.1	5.8		4215	3209	-3.29	3.29				Passing Lanes EB only		Passing Lanes EB only	2			14	
9		Tamarack Road to Elm Street	73.1 - 74.5	1.4		3209	3189	-0.27	0.27				Passing Zones		Passing Zones	5			3	
10		Elm Street to Plumas Street (Burney)	74.5 - 75.0	0.5		3189	3125	-2.42	2.42				Constricted		Constricted	22			3	

4.0 CONSTRUCTION TRAFFIC OVERVIEW

Westwood estimated the full construction period traffic volume based on the types of delivery, construction, operations, maintenance, and worker vehicles required during the various phases of the project. Westwood estimated trips into and out of the development area based on the projected number of deliveries, the required types of equipment and material, and the projected number of employees necessary to complete the project over the estimated construction period. Typically, the selected construction contractor will determine the project timeline. These volumes of trips were calculated using a spreadsheet that lists every known phase of construction with corresponding equipment, material, and numbers of employees, which are then averaged over the course of the project period.

During construction, the project will employ an estimated maximum number of 199 workers/day during the peak period of construction, which include construction workers, project management staff, equipment operators, survey staff, and delivery vehicle drivers during the peak period. The calculation of workers and delivery vehicles was developed using a construction estimation based on time and materials and using crew productivity data from RS Means, an industry-standard construction cost estimating software package. The total number of trips was determined by using the number of employees in each of the categories listed above, dividing that number by an estimated vehicle occupancy of 2 employees and multiplying by the number of workdays for each employee category. Typically, construction projects show a bell-curve distribution of workers through the construction period. Initial site mobilization and early site preparation work will have fewer workers. The number of workers will build to a peak during the period of greatest activity. As construction draws to a close, the average number of workers per day will decrease as crews complete their work.

As a result, the estimated number of workdays and total number of two-way trips for each category are:

- 250 days for commuters (36,966 total two-way trips);
- 250 days for equipment (262 total two-way trips);
- 250 days for aggregate deliveries (26,749 total two-way trips);
- 200 days for turbine deliveries (5,909 total two-way trips);
- 230 days for concrete deliveries (5,140 total two-way trips);
- 250 days for miscellaneous materials deliveries (560 total two-way trips) and;
- 250 days for water deliveries (8,418 total two-way trips)

Thus, over the estimated two-year construction period, the total number of all two-way trips is approximately 84,003 trips.

After the construction of the wind farm, operations, and maintenance traffic will be limited to a few passenger vehicle trips per day.

General summaries of the construction work tasks, and related delivery and construction vehicles are listed below.

4.1 WORK TASKS

Work Tasks are generally listed in chronological order, but extensive overlap can be expected depending on the contractor's scheduling.

- Survey the project site and set construction stakes
- Install and maintain erosion and sediment control
- Timber removal/clear and grub laydown, substations, O&M, access roads, and turbine pads areas
- Grade field office and O&M locations
- Deliver and Install Field Office trailers
- Grade temporary laydown areas
- Improve logging roads/construct access roads grade and place aggregate
- Erect security fencing enclosing laydown yards and facilities
- Excavate turbine foundations
- Place foundation mud mat
- Place foundation reinforcing
- Place foundation forms
- Place foundation concrete
- Strip forms
- Backfill foundations
- Unload turbine components
- Erect turbine tower sections using base crane
- Erect top turbine tower section, nacelle, hub, and blades using topping crane
- Grade transformer pad areas
- Install turbine transformers
- Connect turbine to transformer wiring
- Grade substation and switching substation areas
- Construct substation and O&M foundations
- Trench underground collector system (34.5kV)
- Install overhead collection system lines (34.5kV)
- Construct O&M Facility
- Construct substation and switching substation equipment and main power transformer foundations
- Install step-up substation and switching substation equipment and Supervisory Control and Data Acquisition (SCADA)
- Place step-up substation and switching substation aggregate
- Install security fence around step-up substation and switching substation
- Connect step-up substation to switching substation
- Connect switching substation to transmission line
- Test and commission equipment

- Remove field offices, security fencing, and replace topsoil
- Remove staging area security fences and replace topsoil
- Restore, revegetate, and remove temporary erosion and sediment control

4.2 CONSTRUCTION EQUIPMENT

Examples of the types of equipment generally used in wind farm construction are listed below. **Exhibit 4** lists the number and type of equipment assumed for construction:

- Erosion and sediment control silt fence trenchers
- Timber harvest/removal typical forestry equipment such as feller-bunchers, shears, skidders, hydro-axe, and logging trucks
- Grading (field office location, staging areas, O&M facility, step-up substation, and switching substation) – medium bulldozers, scrapers, road grader, compaction rollers, and water trucks
- Logging road/access road improvements medium bulldozers, road grader, scrapers, compaction rollers, and water trucks
- Materials handling equipment (unloading wind turbine components) hydraulic (helper) cranes, small flat-bed trailers pulled by pick-up trucks, heavy crawler cranes
- Security fencing skid-steer with auger attachment, and hydraulic post driver attachment, and hand tools for each crew
- Turbine foundations medium bulldozer, excavator, hydraulic crane, and concrete pump truck
- Tower base erection hydraulic (helper) cranes and base crane
- Tower top/nacelle/hub/blades erection hydraulic cranes and topper crane
- Pad mounted transformers at each turbine truck mounted or mobile hydraulic crane
- Turbine wiring hand tools
- 34.5 kV underground collector trenching specialized trenching equipment, cable plows, and back hoes, cable reel trailers
- 34.5 kV overhead collection line backhoe with auger attachment, specialized pole setting equipment (boom trucks), bucket trucks, cable reel trailers
- O&M and substation equipment foundations back hoe
- Substation construction bulldozer, backhoe, compaction roller, water trucks, mobile hydraulic crane, large crane (MPT)
- Switching substation construction bulldozers, backhoes, compaction rollers, water trucks, mobile hydraulic crane
- Substation to interconnect transmission line foundation auger mounted on back hoe, mobile hydraulic crane
- O&M Building mobile hydraulic crane
- Removal of temporary aggregate (field office location and staging areas) Front end loader

 Revegetation and removal of erosion and sediment control – chisel plow (decompaction), small tractor and tilling equipment, skid steer loader, hydro-seeding/hydro-mulching equipment

4.3 MATERIALS

Examples of materials used in the construction of wind farms is listed below. **Exhibit 4** lists the materials assumed for construction:

- Silt fence, bio log, and other erosion and sediment control materials
- Aggregate (access roads, staging areas, O&M facility, substations)
- Security fencing (field office location, staging areas, substations)
- Field Offices and storage trailers
- Formwork for foundations (equipment pads, O&M, substation transformers and equipment, and switching substation equipment)
- Rebar for above concrete foundations
- Concrete for wind turbine foundations and transformer pads
- Concrete for O&M facility foundation
- Concrete for substation foundations (Main Power Transformer (MPT), electrical equipment, and control building)
- O&M Building materials
- Collection system wiring (underground and overhead)
- Electrical equipment (transformers, switch gear, circuit breakers, junction boxes, conduit, SCADA, etc.)
- Structural steel for substation racking
- Structural steel poles for overhead collection line
- Main power transformers
- Transmission line cables (from switching substation to transmission line)
- Water for aggregate/backfill compaction, vegetation establishment, and dust control
- Miscellaneous consumables
- Plant stock, seed, and mulch

4.4 MATERIAL DELIVERY VEHICLES

The types of vehicles used for material deliveries is listed below. **Exhibit 4** lists the material delivery vehicles assumed for construction:

- Semi-Trailer Flatbed Trucks for hauling logs off of site
- Single Unit Flatbed Trucks Erosion and sediment control materials, plant stock, seed, and mulch, miscellaneous consumables
- Gravel Semi-Trailer Dump Trucks with a 16 cubic yard load capacity (loose volume) with an approximate gross vehicle weight of 80,000 pounds and a load weight of approximately 40,000 pounds.
- Field office trailers (one 40' x 12' for PM use; 12' x 36' triple wide for subs use)

- Concrete Trucks- with a 10 CY capacity, weighing approximately 69,000 pounds
- Semi-Trailer Flat Bed security fence, concrete forms, rebar, O&M building components, transformers, miscellaneous turbine materials, structural steel for substations, electrical equipment for substation, Non-permit load size 8'-6" x 8'-6" x 48'-0", gross vehicle weight 80,000 pounds, up to 45,000 pound loads
- Cable trailers 34.5 kV underground, 34.5 kV overhead, and overhead transmission from switching substation to transmission line
- Overhead collection system pole trailers
- Water trucks 4000 gallon capacity, single unit tank trucks, weighing approximately 59,000 pounds
- Lowboy Multi-Axel Trailer Main power transformer, substation control building
- Workers' trucks (Pick-up trucks –average 1.5 occupants)

4.5 EQUIPMENT DELIVERY VEHICLES

Types of vehicles used for the delivery of construction equipment:

- Lowboy semi-trailer Logging equipment, bulldozers, scrapers, compaction rollers, road grader, excavator, trenching equipment, backhoes, hydraulic (helper) cranes, crawler cranes, skid steer loaders, trenchers, cable plows, agricultural plows
- Single unit flatbed truck Hydro much/hydro-seed equipment
- Small flatbed trailers towed behind pick-up trucks for small equipment and tools

5.0 CONSTRUCTION & SCHEDULE

Construction of wind farms requires that a few tasks be repeated across the project site. Some sequencing of tasks is required, but many tasks may overlap across the site for efficient scheduling. The construction of the operations and maintenance facility, substation, switching substation, and underground and overhead collection systems can overlap with other tasks or can be exceptions, depending on the scheduling of and priority of precedent activities.

For the purpose of determining the daily volume of traffic, construction time is estimated to take approximately two years (approximately 250 business days), with construction occurring only during the spring, summer, and fall. Wind farm sites are large and allow many crews to work simultaneously without interfering with one another. Nevertheless, the size of the project (number of wind turbines) impacts the construction time significantly because the cost of mobilizing the large cranes required for turbine erection is high, and because the cranes are in such high demand that mobilizing a small number of cranes is typical on wind projects.

6.0 OVERSIZED LOADS AND PERMITTING

The logistics of delivering the oversized loads for the wind turbines, with the use of specialized transportation vehicles, also creates schedule constraints. A Transportation Management Plan would be prepared to minimize impacts from the transportation of oversized loads and to direct deliveries to off-peak hours.

Trucks carrying turbine components such as blades and nacelles will be oversized and will be required to be accompanied by pilot cars. Oversized load transportation permits will be obtained in coordination with CalTrans.

These oversized trucks would likely be required to travel over bridges and overpasses. Weight and size limits may require detours in accordance with Caltrans direction. A logistical route analysis that focuses more on geometrics and bridge capacity will be performed following the final selection of the turbine model to be used for the project. Because there is direct project access to the state highway, and based on the fact that the adjacent Hatchet Ridge project delivered oversized components along this same infrastructure, the existing highway and bridge geometrics will likely be able to accommodate the planned deliveries. This will be verified by a logistical route survey when a turbine manufacturer, turbine model, and contractor have been selected.

Westwood has contacted Caltrans' Office of Transportation Permits. This office reviews and approves oversize/overweight permits along state highways. They have responded that any specific weight and height limitations would only be determined once a contractor has been selected and a Route Request Permit defining the origin and destination of the equipment/components is requested. The Caltrans variance coordinator will then review the request and issue the permit.

Variance permits are required for anything over 53 feet in length with a maximum kingpin of 43 feet. A variance permit would be required for each blade or component delivery.

Once the requested route permit has been received by Caltrans, it will take up to thirty days to review and issue the permit. Bridge ratings will be tested depending on the loads forecast for each component and delivery vehicle.

Also, the Transportation Permit office states that even though SR 299 is identified as a "Blue Route" and pilot cars will be assumed for each blade delivery vehicle, the contractor will likely be required to contract with the California Highway Patrol (CHP) for escorts.

As far as roadway connections to SR 299, Caltrans Transportation Permits Office noted that coordination with the District 2 Encroachments Office will be required to determine what additional planning or roadway improvements would be needed to accommodate the oversized loads. A "Swept Path Analysis" must be completed that shows turn-by-turn

impacts that might be experienced by the oversized loads along SR 299 or at side road intersections.

In summary, the sizes and weights of the selected components, the dimensions of the vehicles delivering them, the delivery routes and the route surveys will be completed as part of the Caltrans review process.

Nevertheless, all deliveries of components and materials for the Fountain Wind project will be similar to those of the Hatchet Ridge project, with the exception of turbine blade deliveries. Fountain is proposing WTG ranging from 3 to 7.2 MW. WTG models in the lower size range of those proposed will have similar blade lengths as the 2.3 MW Siemens WTGs constructed on Hatchet Ridge. The largest blade length proposed for Fountain would be approximately 261' in length, which would be approximately 90' longer than those delivered to Hatchet Ridge. Although Fountain may utilize longer blade lengths, the haul trucks will include rear-axle steering capabilities, thereby mitigating potential turning constraints.

Caltrans roads are designed to comply with the state Highway Design Manual. Vehicular design speeds are listed for various highway types. For conventional rural highways, the following design speeds are listed:

Flat terrain 55-70 mph
 Rolling terrain 50-60 mph
 Mountainous terrain 40-50 mph

It is uncertain as to which design speed SR 299 is designed. It is likely that the design speed varies throughout its length – flat to rolling near Redding, rolling to mountainous near Montgomery Creek and Hillcrest.

According to the Caltrans Highway Design Manual, the k-value is the distance in feet required to achieve a 1% change in grade. Thus, the following k-values are listed under each condition:

- For stopping sight distances on crest vertical curves, the k-value = 68 feet when design speed is 40 mph
- For stopping sight distances on crest vertical curves, the k-value = 139 feet when design speed is 50 mph
- For stopping sight distances on sag vertical curves, the k-value = 62 feet when design speed is 40 mph
- For stopping sight distances on sag vertical curves, the k-value = 97 feet when design speed is 50 mph

According to a "desktop review", there appear to be no underpasses along SR 299 east of I-5. There are two overpasses, however – one at Churn Creek Road and one at Old Oregon Trail on the east side of Redding. Further to the east, there appear to be two creek crossings (Salt Creek Bridge 6-49 and Cedar Creek Bridge 6-20) along SR 299 between I-5 and the proposed access roadways for Fountain Wind. There is one creek crossing along SR 299 between the proposed access roads for Fountain Wind and Burney (Burney Creek Bridge 6-12). As of this writing, weight limits for these bridges have not been determined.

Regarding horizontal curves, a "desktop review" of SR 299 shows three curves with radii less than 1,000 feet. SR 299 has a curve with a radius of approximately 600 feet near Montgomery Creek. SR 299 has a curve with a radius of approximately 700 feet near Hillcrest. Near Burney, there appears to be a curve with a radius of approximately 650 feet.

The speed limit along SR 299 is 55 mph for trucks with three or more axles, but there are places along SR 299 where the advisory speed drops to 40 and 45 mph approaching the sharper curves. Also, there are passing lanes at some of the steeper inclines.

The geometry resulting from the basic highway design criteria appears to exceed the requirements for turbine component delivery, which requires a minimum k-value in the range of 20 (and which comfortably falls within the k-values of the highway design above). Further, turbine component delivery specifications require a minimum horizontal curve of 200'. Therefore, while it appears there is little risk that the turbine delivery vehicles will not be able to navigate the existing geometry of the highway, a route survey by a permit service and a "swept path" analysis will be able to verify this statement and support Caltrans authorizations.

Upon approach to the site, turbine deliveries will be directed to proceed directly to the appropriate turbine pad sites for offloading. Construction access points off SR 299 will provide adequate turning radii to ingress/egress the site with minimal time required for turning maneuvers. Because the turbine pad sites are distributed throughout the site and not directly adjacent to state SR 299, if queuing were to occur, it is expected that the queues would take place on access roads near the turbine pad sites – wholly within the project site.

7.0 CONSTRUCTION TRAFFIC MANAGEMENT PLAN

A Construction Traffic Management Plan (CTMP) will be developed and presented once the construction contractor has been selected. Upon selection, the contractor will review the site and available aggregate and water sources. The contractor will provide input on project staging and equipment delivery that will be incorporated and used to define the CTMP. Therefore, the CTMP will be specific to the construction approach and phasing, as well as specific to the location and environment, of the project area.

Specifically, the CTMP will be implemented for the Fountain Wind Project site during construction to address the safety requirements of the project. This plan will reflect the assessment conducted to define the plan, as well as the details of the plan itself. The CTMP will include:

- A consideration of the existing traffic, pedestrian, and cycling activity along SR 299 as well as the related road/intersection operations;
- A determination of the route that minimizes conflicts with emergency vehicles between staging/loading sites and proposed wind turbine sites;
- An articulation plan to manage construction traffic in a manner that minimizes the potential impact on local wildlife;
- The specific measures to be implemented during the construction phase of the project, which incorporate the principles and guidelines of the Caltrans Transportation Permits Manual; and
- Any additional environmental protection measures that the project proposed to further avoid or minimize potential impacts to traffic and safety. **Appendix E** of this report includes a list of potential Environmental Protection Measures (EPMs) that may be applicable for inclusion in the CTMP prepared for the Fountain Wind project.

The ConnectGen/Westwood Team will work with the contractor to ensure that key transportation considerations related to residents and businesses along SR 299 and within Shasta County and the planned construction of wind turbines are sensitive to the following:

- Potential conflicts between construction-related traffic and the day-to-day activities associated with the local area, including local travel by car, school bus, bicycle, or on foot as well as the movement of logging equipment;
- The need to ensure that residents and emergency response agencies are aware of the temporary conditions during construction that could affect traffic mobility and safety in various parts of the county depending on the location of the work sites; and,
- The need to ensure that local wildlife and its habitat are not adversely impacted by the construction traffic associated with the project.

The ConnectGen/Westwood Team will work with the contractor to develop a public information strategy to ensure that communication of the traffic plan will be shared with the residents and businesses in the area. This includes installing Road Restriction Notice Signs near all work sites a minimum of one week before any lane closures or detours. This will allow residents to effectively plan their routes, and mitigate the overall impact caused by the work and deliveries to the site. An activity forecast report shall be provided to the California Energy Commission and Shasta County outlining construction activity a minimum of two weeks before any work commencing.

8.0 ANALYSIS

The traffic impacts of the Fountain Wind Project were evaluated with three different analyses during the project construction period and after the project construction period. **Vehicle Miles Traveled** (VMT) were calculated per the requirements of California Senate Bill 743. **Intersection Level of Service** (LOS) was analyzed at the intersections of the two Project access roads with SR 299. **Left Turn Warrants** were also evaluated at the intersections of the two Project access roads with SR 299.

8.1 VMT ANALYSIS

California Senate Bill 743 was signed into law in 2013 in order to utilize VMT to review the potential impact of land use projects on the State Highway System. As of July 1, 2020, the state of California has fully adopted a change in the California Environmental Quality Act (CEQA) significant impact methodology for transportation impacts to use VMT as opposed to LOS. The intent of SB 743 is to align transportation impacts under CEQA with the State's overall goals of increasing long-term sustainability by encouraging infill development, increasing reliance on mass transit, and reducing greenhouse gas (GHG) emissions. VMT analysis focuses on automobile and light-duty truck trips, although heavy duty truck trips can be included in the analysis for convenience (OPR, 2018). Construction trips typically are not analyzed in a VMT analysis because they are temporary and would not impact overall per capita VMT in the region; however, they are provided here for informational purposes. Note also that CEQA Guidelines section 15064.3 (b)(3) suggests that analysis of VMT from construction traffic be qualitative. This same section also suggests that the focus be on automobile (e.g. passenger vehicle) trips.

VMT is calculated by multiplying the amount of daily traffic on a roadway segment by the length of the segment, then summing all the segments (see **Exhibit 4**). Westwood estimated the number of trips taken by trucks and other vehicles to haul equipment, material, aggregate, turbines, concrete, water, and employees. Westwood then estimated the mileage that would be logged to perform these trips during the two-year construction period.

For this analysis, it was assumed that deliveries of manufactured components (i.e., turbine components and blades) will likely originate from the east and travel from Reno, Nevada to the site via US 395, SR 139, and SR 299. Similarly, the Project identified other equipment and materials would be delivered prior to construction from the city of Redding to the west and the town of Burney to the east. From these calculations, it is estimated that the total VMT during the construction period will be **4,766,749 vehicle miles traveled** (see **Exhibit 4**) based on the

following number of workdays and total VMT of two-way trips for each trip category:

- 250 days for commuters (1,256,844 total two-way VMT)
- 250 days for equipment (13,100 total two-way VMT)
- 250 days for aggregate trips (534,980 total two-way VMT)
- 250 days for turbine deliveries (2,025,068 total two-way VMT)
- 250 days for concrete deliveries (257,000 total two-way VMT)
- 250 days for miscellaneous materials deliveries (27,978 total two-way VMT) and;
- 250 days for water deliveries (168,360 total two-way VMT)

As provided above, the majority of VMT results from delivery of turbine components, due to the long distance traveled from Reno, NV. Construction commuter trips are the next largest contributor to construction VMT, due to the number of daily trips from construction workers. However, most of these workers are expected to come from the region and would not represent a large influx of commutes, but rather a redistribution from other construction sites in the region to the Project site. Note again that all of these vehicle miles travelled are temporary and would cease to occur following completion of construction. SB 743 was enacted to chiefly address on-going sources of greenhouse gas emissions from land use projects such as residential, office, and retail developments and not to address temporary construction traffic for renewable energy projects.

The post-construction VMT would be much less. Westwood assumed there would be four(4) vehicles per day utilized for operations and maintenance of the wind farm. It is assumed that each vehicle would be traveling an average of 60 miles per day from their place of origin to the wind farm for inspection, maintenance, and operation, and then return. Therefore, the total VMT per day post-construction is estimated to be **240 vehicle miles traveled**. Per capita daily VMT for the permanent employees at the facility is estimated to be approximately **30 vehicle miles per day**.

It is recommended that in adopting a VMT significance threshold for this project, the California Energy Commission choose a metric that takes into account that the ultimate goal and purpose of the project is to create a utility-scale electricity generation source with near-zero GHG emissions and to displace the generation of electricity through the use of GHG-emitting fossil fuels. As set forth in the Shasta County Draft EIR on VMT:

The intent of SB 743 is to encourage land use and transportation planning decisions and investments to reduce VMT and thereby contribute to the reduction of GHG emissions, as required by Assembly Bill 32. Therefore, for purposes of this Project, the Project's impact to VMT would be significant if it would conflict with an applicable plan, policy or regulation adopted for

the purpose of reducing the emissions of GHGs. The evalution of Impact 3.10-2 in Section 3.10, GHG Emissions, concludes that the Project would result in a less-than-significant impact related to a potential conflict with an applicable plan, policy or regulation adopted for the purpose of reducing GHG emissions, aso too would result in a less-than-significant transportation impact relating to VMTs.

Shasta County Draft EIR at p. 3.14-12.

Naturally, travel to and from the project is temporarily increased during construction. However, long-term travel to the project is negligible post-construction. Any potential reduction in VMT would likely occur in the construction phase, through the implementation of various Transportation Demand Management (TDM) programs that are designed to reduce trips. These programs are anticipated to provide other benefits such as reduction in travel times, parking requirements, traffic congestion and air pollution. All of these benefits can be achieved by reducing trips and shifting travel times and modes. Measures such as carpooling for construction workers between the site and hotels/residences in both Redding and Burney can reduce the total VMT during construction. Given the location of the site, carpooling is likely the only feasible method for reducing construction VMT, as there are no public transit facilities that serve the project site.

Additionally, most workers will arrive at the site in the early morning, and stay onsite all day, leaving in the late afternoon or early evening outside of peak hours. Accordingly, project construction will not adversely affect traffic conditions (as discussed further below).

Finally, heavy construction equipment and wind turbine components (e.g., blades, nacelles) would be delivered to the Project Site using area roadways, some of which may require transport by oversize/overweight vehicles. The transport of these materials would require Caltrans review. Further, heavy equipment associated with these components would not be hauled to/from the site daily, but rather would be hauled in and out on an as needed basis. Heavy vehicle deliveries also will arrive outside peak hours to facilitate smooth flow of traffic. The Project would implement a CTMP, as well as identify anticipated construction delivery times and vehicle travel routes to potential conflicts with other travelers. Accordingly, no significant environmental impacts are anticipated from the use of oversized vehicles to transport large turbine components.

8.2 PROJECT ACCESS LOS ANALYSIS

A **Level of Service** (LOS) analysis measured delay per vehicle and operational performance. The LOS analysis was performed using the traffic engineering industry-standard software package *Synchro/SimTraffic* for AM and PM peak hour conditions for periods during and after construction. It is noted that LOS-A generally represents free-flow conditions, while LOS-F generally represents gridlock conditions.

To estimate peak hour conditions, Westwood used the peak hour volumes that were collected on April 4, 5, and 6 (see **Appendix A**). Since the observed AADT along the segment were significantly lower than the AADT collected by Caltrans in 2020, these peak hour volumes were multiplied by a factor of 1.55, consistent with the difference in observed AADT along this segment and the 2020 Caltrans AADT collected along this segment. For the commuter traffic it was assumed that 60% of the peak hour background traffic would be coming to and from the west, while 40% would be coming to and from the east.

Directional distribution of the construction, equipment and material delivery trips was made based on the number of projected wind turbines along each access road. Therefore, it was assumed that 56% of the construction trips would use the West Access Road, and 44% would use the East Access Road. Construction trips were assigned based on these percentages.

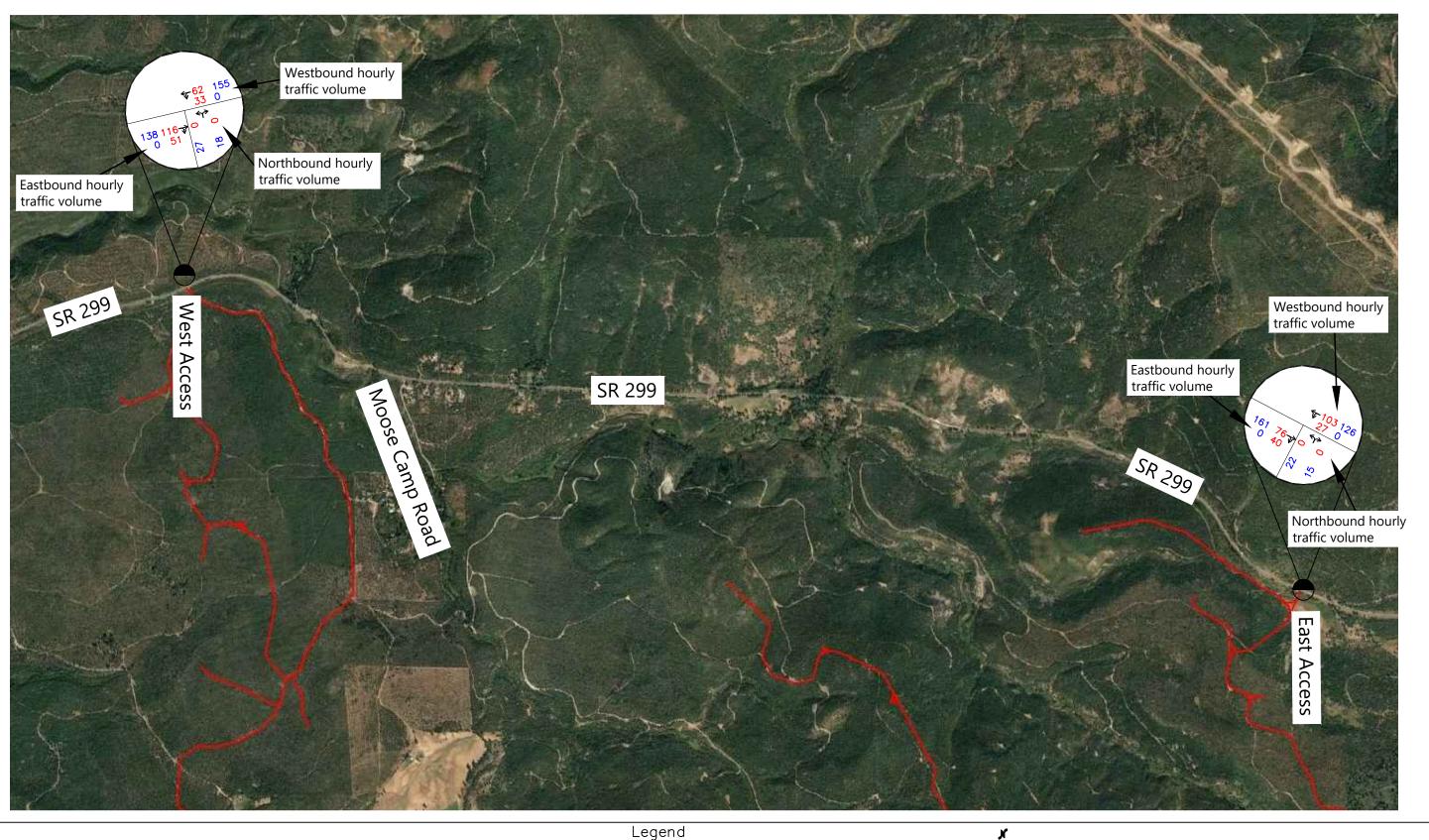
Consistent with the proposed CTMP, it is assumed that heavy vehicle trips will occur outside the peak hours and only commuter trips will affect the peak hour traffic movements. Consistent with information provided by ConnectGen, seventy-five percent (75%) of the commuting workers are anticipated to arrive during a morning hour of 6am – 7am. Forty percent (40%) of the commuting workers are anticipated to leave the site during an afternoon peak hour of 5pm – 6pm.

Figure 1 shows the resulting turning movements projected during the construction phase of the project. The red numbers indicate the AM peak hour directional flow (either left turn, through traffic, or right turn). Likewise, blue numbers represent the PM peak hour turning volumes. **Table 2** lists the resulting levels of service by both intersection and movement in the construction phase of the project.

Table 2 - Level of Service - During and Post Construction

		CO	NSTRUCTIO	N CONDITI	ONS	POST (CONSTRUCT	ION COND	ITIONS
INTERSECTION	TRAFFIC	А	М	Р	М	А	М	Р	М
INVERSECTION	MANEUVER	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
INTERSECTION CO	NTDOL		TW	'SC			TW	'SC	
INTERSECTION CO	NIKOL		Unmiti	gated			Unmiti	gated	
	Overall	А	1.0	А	1.3	А	0.2	А	0.2
	NBL	А	0.00	В	10.10	А	0.00	В	10.10
	NBR	А	0.00	А	0.00	А	0.00	А	0.00
#1 SR-299 and West Access	EBT	А	0.00	А	0.00	А	0.00	А	0.00
	EBR	А	0.00	А	0.00	А	0.00	А	0.00
	WBL	А	7.70	Α	0.00	А	7.30	А	0.00
	WBT	А	0.00	А	0.00	А	0.00	А	0.00
INTERSECTION CO	NTDOL		TW	'SC			TW	'SC	
INTERSECTION CO	NIROL		Unmiti	gated			Unmiti	gated	
	Overall	А	0.8	А	1.2	А	0.2	А	0.2
	NBL	А	0.00	В	10.10	А	0.00	В	10.10
	NBR	А	0.00	А	0.00	А	0.00	А	0.00
#2 SR-299 and East Access	EBT	А	0.00	А	0.00	А	0.00	А	0.00
	EBR	А	0.00	А	0.00	А	0.00	А	0.00
	WBL	А	7.50	А	0.00	А	7.50	А	0.00
	WBT	А	0.00	А	0.00	А	0.00	А	0.00

(Source: Westwood Professional Services, 2023)


NBL – Northbound Left; NBR – Northbound Right; EBT – Eastbound Through; EBR – Eastbound Right; WBL – Westbound Left; WBT – Westbound Through

In the post-construction (i.e., day-to-day operation and maintenance) scenario, there are a minimal number of employees accessing the site for operations and maintenance activities. Therefore, it was assumed a total of eight (8) operations and maintenance workers in four (4) commuter vehicles daily would be entering any of the access points during the AM peak hour from the east and west, and four would be exiting east/westbound during the PM peak hour.

Figure 2 shows the resulting turning movements projected during the post-construction phase of the project. **Table 2** also lists the resulting levels of service by both intersection and movement in the day-to-day operation and maintenance of the project.

Detailed Level of Service calculations are included in **Appendix F**.

Commuting vehicles are anticipated to enter and exit the site during the AM and PM peak hours with minimal delay under construction conditions and post-construction conditions.

FOUNTAIN WIND POWER - SHASTA COUNTY, CA CONSTRUCTION PEAK HOUR CONDITIONS

LANE DESIGNATION

AM PEAK HOUR TRAFFIC VOLUME

PM PEAK HOUR TRAFFIC VOLUME

SIGNALIZED INTERSECTION

UNSIGNALIZED INTERSECTION

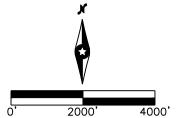
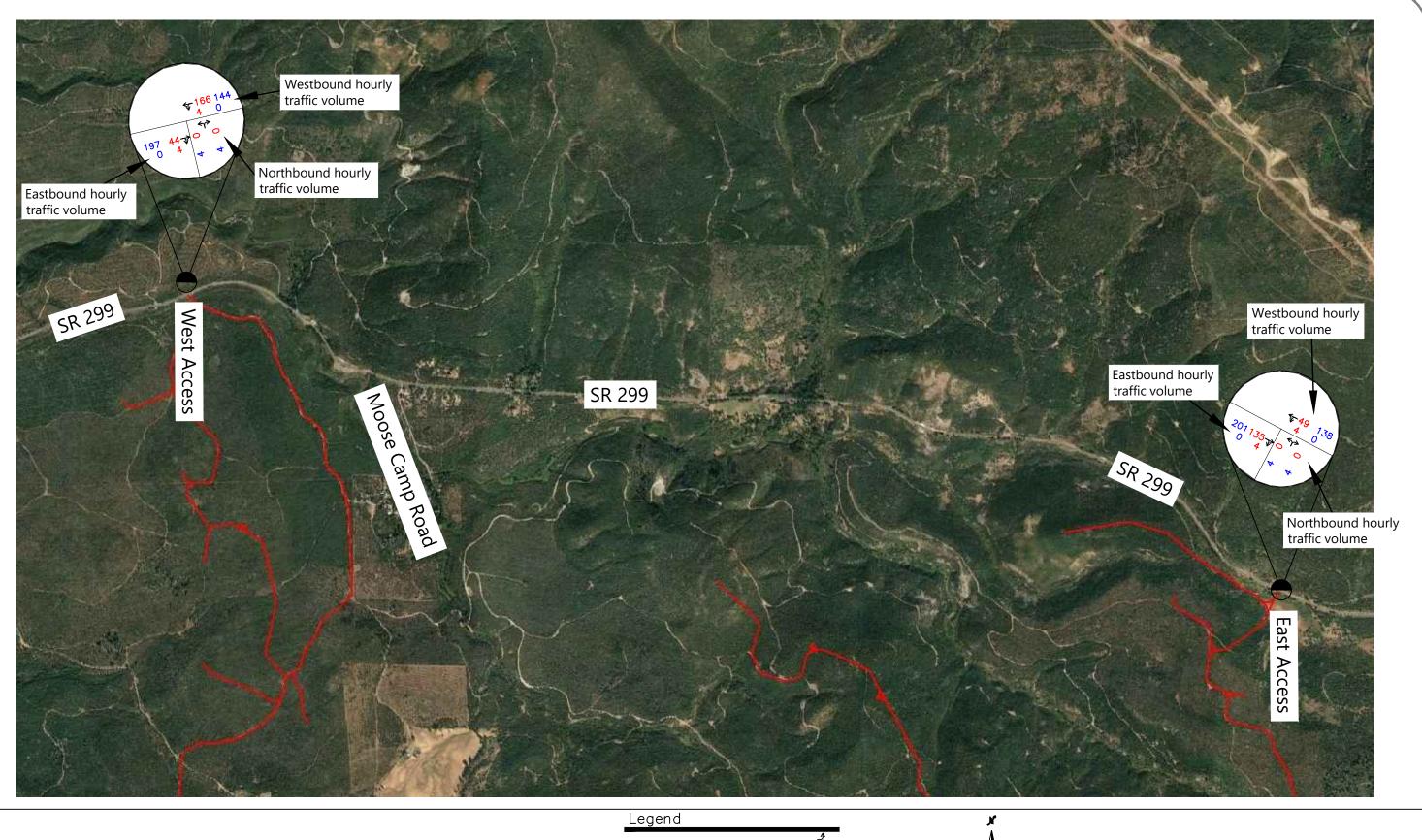
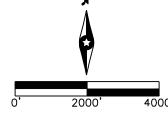



FIGURE 1
Westwood


Phone (702) 284-5300 Fax (702) 284-5399 westwoodps.com Westweed Professional Services, Inc. 5725 W. Badura Avenue, Suite 100 Las Vegas, NV 89118

FOUNTAIN WIND POWER - SHASTA COUNTY, CA POST CONSTRUCTION PEAK HOUR CONDITIONS

LANE DESIGNATION AM PEAK HOUR TRAFFIC VOLUME PM PEAK HOUR TRAFFIC VOLUME SIGNALIZED INTERSECTION UNSIGNALIZED INTERSECTION

XX XX

5725 W. Badura Avenue, Suite 100 Las Vegas, NV 89118

8.3 PROJECT ACCESS LEFT TURN LANE WARRANT ANALYSIS

To test whether any access required left turn lanes, Westwood utilized <u>AASHTO Green Book</u>, <u>2018 Edition</u> Table 9-25, "Suggested Left-Turn Treatment Guidelines Based on Results from Benefit-Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas". Westwood calculated whether any project intersection met the guidelines for bypass lanes or left turn lanes on the two-lane highway. **Appendix G** of this document shows that access point left turn lanes are necessary during the AM and PM peak hour in the construction scenario. This analysis assumes that peak hour traffic will only be impacted by commuter traffic for the project. Shifting the arrival of at least seventy-five percent (75%) of the commuting AM hour traffic to 6am – 7am, promoting carpooling, and adding ingressing left turn lanes for commuters traveling to the site from Burney would further reduce congestion at project access intersections. Commuters from Burney could also be directed to drive westbound past both accesses and enter the Hillcrest Rest Area located approximately 1.6 miles to the west of the project site to turn around and head eastbound to turn right into the project site.

² Table 9-25, Suggested Left-Turn Treatment Guidelines Based on Results from Benefit-Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas, <u>A Policy on Geometric Design of Highways and Streets</u>, 7th Edition, American Association of State Highway and Transportation Officials, Washington, DC, 2018.

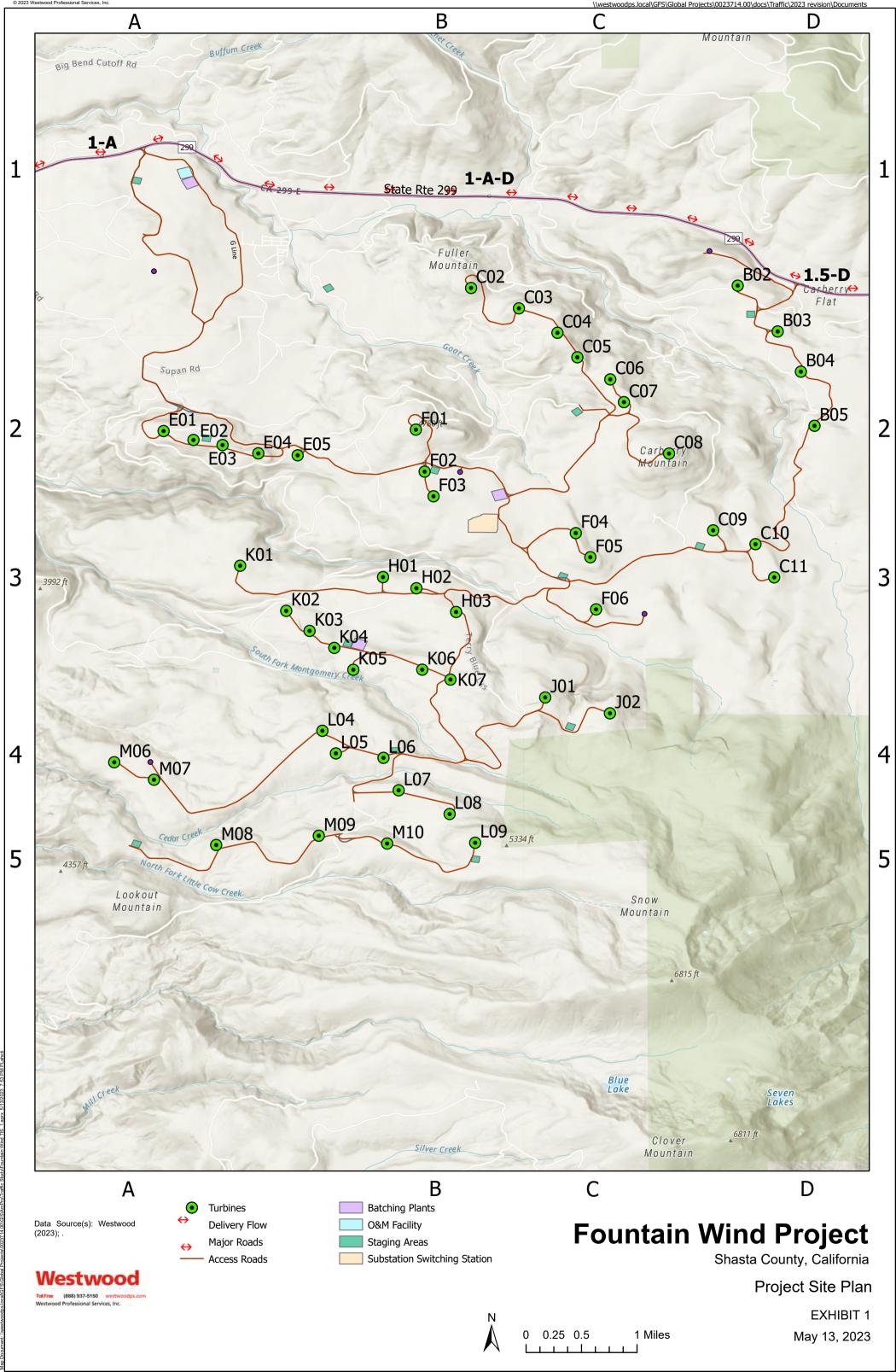
9.0 SIGNAGE

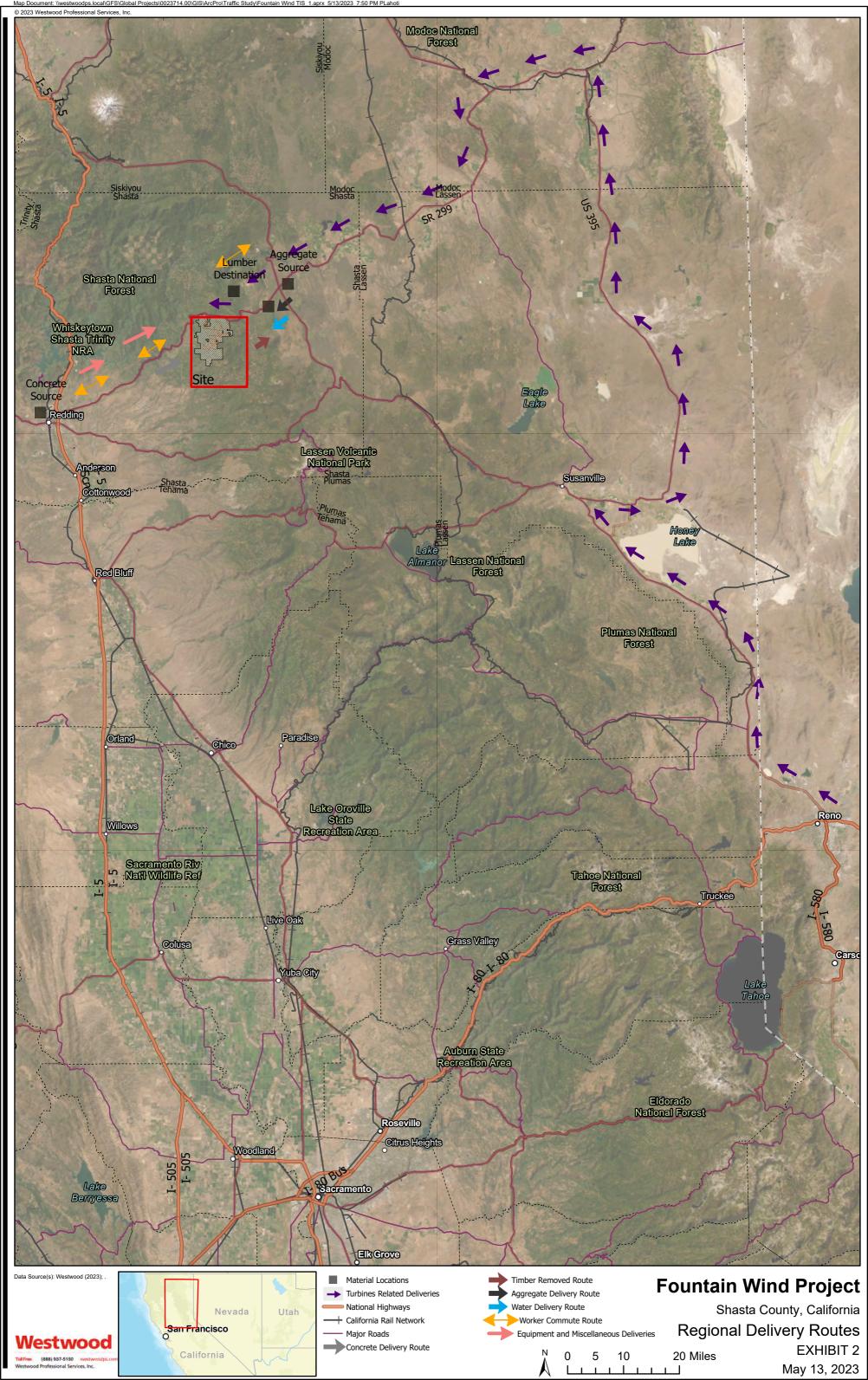
The number of trucks turning from SR 299 onto the access roads may require advance warning signs based on sight distance. Caltrans may require any of the following to signs to be installed along SR 299 in advance of the access roads during construction.

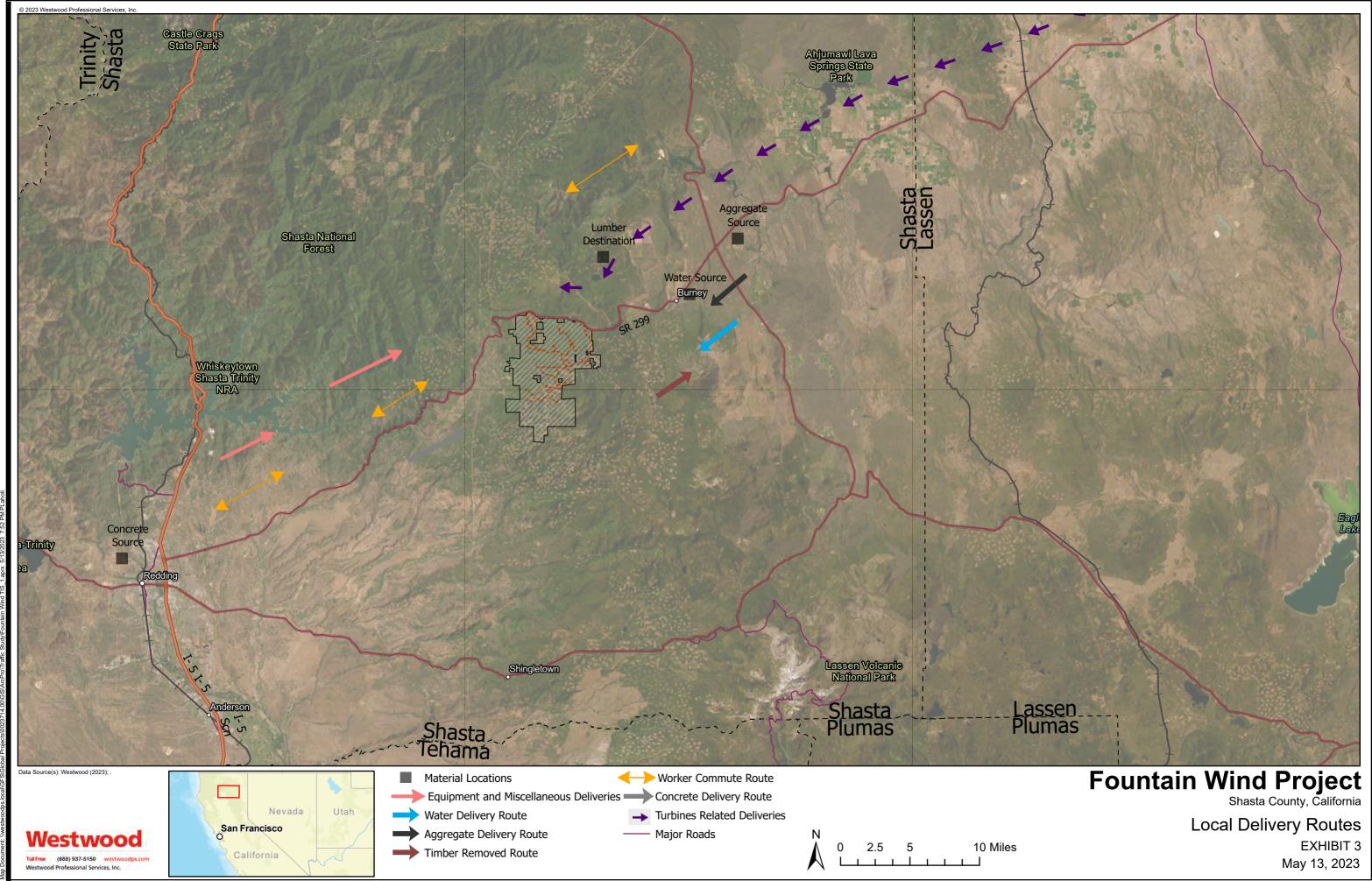
(These signs may be black on orange for construction)

10.0 SUMMARY

During construction, the project will employ an estimated maximum number of 199 workers/day during the peak period of construction, which include construction workers, project management staff, equipment operators, survey staff, and delivery vehicle drivers during the peak period. Thus, over the estimated two-year construction period, the total number of all two-way trips is approximately 84,003 trips.


After construction of the wind farm, operations and maintenance traffic will be limited to a few passenger vehicle trips per day.


Westwood estimated that the total VMT during the construction period will be 4,766,749 vehicle miles traveled. The total VMT per day post-construction is assumed to be 240 vehicle miles traveled. Per capita daily VMT during operations is estimated to be 30 miles per day. It is recommended that in adopting a VMT significance threshold for this project, the California Energy Commission choose a metric that takes into account that the ultimate goal and purpose of the project is to create a utility-scale electricity generation source with near-zero GHG emissions and to displace the generation of electricity through the use of GHG-emitting fossil fuels. Naturally, travel to and from the project is temporarily increased during construction. However, long-term travel to the project is negligible post-construction. Any potential reduction in VMT would likely occur in the construction phase, through the implementation of various Transportation Demand Management (TDM) programs that are designed to reduce trips. These programs are anticipated to provide other benefits such as reduction in travel times, parking requirements, traffic congestion and air pollution. All of these benefits can be achieved by reducing trips and shifting travel times and modes. Measures such as carpooling for construction workers between the site and hotels/residences in both Redding and Burney can reduce the total VMT during construction. Given the location of the site, carpooling is likely the only feasible method for reducing construction VMT, as there are no public transit facilities that serve the project site.


Commuting vehicles are anticipated to enter and exit the site during the AM and PM peak hours with minimal delay under construction conditions and post-construction conditions.

Both project access intersections meet the warrants for left turn lanes during the AM and PM peak hour in the construction scenario. Shifting the arrival of at least seventy-five percent (75%) of the commuting AM peak hour traffic to 6am – 7am, promoting carpooling, and adding ingressing left turn lanes for commuters traveling to the site from Burney would further reduce congestion at project access intersections. Commuters from Burney could also be directed to drive westbound past both accesses and enter the Hillcrest Rest Area located approximately 1.6 miles to the west of the project site to turn around and head eastbound to turn right into the project site.

Exhibit 4 - Fountain Wind Project - Estimated Vehicle Trips During Construction

	Exhibit 4	- Founta		Project -	- Estimated Vehicle T	rips During	Construction
		Number of	Estimated Gross	Load Weight			
Vehicles	•	Two-Way Truck Trips	Vehicle Weight	(Pounds)	Miles	VMT	Notes/ Assumptions
Commuter Trips - Pick-up trucks			(Pounds)				
Total Pick-up Trucks Two-Way Trips	18483	36,966				1,256,844	Assume 60% trips from West and 40% trips from East
Peak Number of Pick-up Truck Trips/Day	100	200					
Equipment							
Feller Buncher (logging)	2	4	71,711		50	200	2 nos. (Cat 522B)
Logging Trucks Skidder	8 2	16 4	35,000 41,000		50 50	800 200	8 Flat-Bed Semi Trailers and Tractors 2 skidders
Bulldozer (medium) Scraper	14	28 8	57,440 93,000		50 50	1,400 400	14 nos. (Cat D7 Bulldozers) 4 nod. (Cat 627K's)
Drum Compactor	4	16	41,000		50	800	8 Cat CS41B
Skid Steer Loader Road Grader	13 3	26 6	4,000 42,647		50 50	1,300 300	13 nos. (Cat 272D2) 3 nos. (Cat 12M)
Excavator Transhing Favinment	5	10	66,250		50	500	5 nos. (Cat 326F) 4 nos. (Wolfe 7000)
Trenching Equipment Backhoe Loader (includes setting collector system pole		8	52,000 24,000		50 50	400 400	4 nos. (Cat 415F2)
Cable Reel Truck (Includes auger for pole foundations Concrete Pump Truck	5) 7 2	14 4	46,000 46,000		50 50	700 200	7 nos. (Includes manlift basket for rigging poles) 2 nos. (Schwing 31 XT)
Mobile Hydraulic Crane	19	38	117,235		50	1,900	19 nos. (Grove RT890E)
Rubber Tired Forklifts Hydro Axe	2	14 4	52,000 52,000		50 50	700 200	7 nos. (Forklift) 2 nos.
Boom Lift Large Crawler Crane	12 4	24 8	93,000 794,000		50 50	1,200 400	12 nos. 4 nos. (Terrex Demag CC2800-1)
Equipments	114	240	734,000	<u> </u>	30	12,000	Assume all trips from SR 299 West - Schedule to avoid peak hours
Mahila Hama (Field Office)		22	50.000	40.000		4.400	Assume all twins from CD 200 Mast. Cabadula to social module to some
Mobile Home (Field Office)	11	22	60,000	40,000	50	1,100	Assume all trips from SR 299 West - Schedule to avoid peak hours
Total Equipments Trips	125	262			50	13,100	
Materials							
Erosion and Sediment Control Materials Public Road Aggregate	4 60	8 121	45,000 80,000	10,000 40,200	20 20	160 2,420	Based on perimeter control on one side of road length Based on 2000 feet of public road improvements, 6" depth
Access Road Aggregate	9,005	18,011	80,000	40,200	20	360,220	Based on 42 miles of access roads, 8 trucks
Temporary Laydown Area Aggregate Substation Aggregate	1,923 218	3,846 437	80,000 80,000	40,200 40,200	20 20	76,920 8,740	Based on 18 staging areas totaling 44 acres Based on a 5 acre substation
O&M/Field Office Aggregate	218	437	80,000	40,200	20	8,740	Based on a 5 acre O&M/Field Office Area
Switching Substation Aggregate	655	1,311	80,000	40,200	20	26,220	Based on an 15 acre switching substation
Total Aggregate for Compaction Deliveries	12,084	24,171				483,420	Assume all trips from SR 299 East - Schedule to avoid peak hours
Substation Rock	328	656	80,000	40,200	20	13,120	Based on a 3.5 acre substation
Field Office/O&M Rock Switching Substation Rock	230 721	460 1,442	80,000 80,000	40,200 40,200	20 20	9,200 28,840	Based on a 3.5 acre O&M/Field Office Area Based on an 11 acre battery storage system
Concrete Aggregate	10	20	80,000	40,200	20	400	Based on Aggregate equal to 76% of weight
Total Aggregate Deliveries for structures	1289	2,578	26,159	Tons	1	51,560	Assume all trips from SR 299 East - Schedule to avoid peak hours
	•				4		
Total Aggregate Deliveries	13,373	26,749				534,980	Assume all trips from SR 299 East - Schedule to avoid peak hours
Wind Turbine Tower Base	40	06		452.400	355	24.400	D
Wind Turbine Tower Base Wind Turbine Tower Lower Mid-Section	48 48	96 96		153,400 120,100	255 255	24,480 24,480	Based on GE 3.4 137, HH 110m Based on GE 3.4 137, HH 110m
Wind Turbine Tower Upper Mid-Section Wind Turbine Tower Top Section	48 48	96 96		112,850 86,900	255 255	24,480 24,480	Based on GE 3.4 137, HH 110m Based on GE 3.4 137, HH 110m
Wind Turbine Nacelle	48	96		150,700	255	24,480	Based on GE 3.4 137
Wind Turbine Hub Wire and Cable - Underground Colletion System	48 38	96 76	80,000	88,050 45,000	255 255	24,480 19,380	Based on GE 3.4 137 Based on 3 conductors, 1.9 pounds/foot
Wire and Cable - Overhead Collection System	12	24	80,000	45,000	255	6,120	Based on 3 conductors, 2.1 pounds/foot
Overhead Collection Line Poles Transmission Line Poles	85 77	170 154	30,000 27,000	15,000 12,000	255 255	43,223 39,270	Assume 250' wire span, 4 - 2000 pound Poles per trailer Assume 750' wire span, 1 - 8000 pound Pole per trailer
Met Poles	5	10	·		255	2,550	Assume 1 Met Pole can be carried on a single truck
Transformers Miscellaneous Turbine Components	48 192	96 384	80,000 80,000	45,000 45,000	255 255	24,480 97,920	Based on 3.5 MW transformer Based on 4 miscellaneous deliveries per turbine
Pilot Cars (Front and Back) Wind Turbine Blades (3)	1,490 144	2979 288		37,750	255 255	759,645 177,120	Pilot Cars for Wind Turbines Based on GE 3.4 137
Pilot Cars for blades (Front and Back)	576	1152		37,730	255	708,480	Pilot Cars for Wind Turbines Blades
Total Turbine Related Deliveries	2,234	5,909		3,989		2,025,068	Assume all trips from SR 299 East and US-395 from Reno - Schedule to avoid peak hours
	1 −,20 ⁻¹	-,505		2,000			
Concrete for Turbine Foundations	2400	4,800	69,000	40,000	50	240,000	48 turbines
Concrete Pump Trucks Concrete for Substation Foundations	2 41	4 82	69,000	40,000	50 50	200	2 trucks Based on 2 MPT - Foundation 8'-6" x 24'-0" x 1'-4"
Concrete for Switching Station Foundations	41 41	82	69,000	40,000	50	4,100 4,100	Based on 40' container each with 6 foundation pies
Concrete for Overhead Collection System Pole Foundati Concrete for Transformer Pads	ons 25 48	50 96	40,332 41,180	11,332 12,180	50 50	2,500 4,800	Assume 1 concrete foundations (terminations & angles) Assume Pad 9' \times 9' \times 1'
Concrete for O&M Building	13	26	69,000	40,000	50	1,300	Based on foundation wall 78' x 70' x 1' thick x 5' deep + 4" floor slab
Total Concrete Deliveries	2,570	5,140	24,946	CuYds		257,000	Assume all trips from SR 299 West - Schedule to avoid peak hours
	, ,	4			1		
Cement for Concrete Batch Plant Formwork	2 2	4 3.84	80,000 80,000	40,000 45,000	50 50	198 192	Based on Aggregate equal to 16% of weight Based on 25 reuses of forms
Reinforcing Steel (Rebar)	96 20	192	80,000	45,000	50	9,600	Based on 45 tons per turbine
Building Materials Structural Steel - Substation	20 4	40 9	80,000 80,000	45,000 45,000	50 50	2,000 444	Based on 5460 square foot prefabricated metal building Based on 200,000 Pounds of Structural Steel
Structural Steel - Switching Substation	4	8 20	80,000	45,000	50	400	Based on 200,000 Pounds of Structural Steel
Elecrical Equipment - Substation Elecrical Equipment - Switchingsubstation	10 10	20 20	80,000 80,000	45,000 45,000	50 50	1,000 1,000	Includes Control Building, switch gear, capacitors, etc. Includes Control Building, switch gear, capacitors, etc.
CMP Culverts Chain Link Fence	4 7	8 14	80,000 80,000	45,000 45,000	50 50	400 724	Culvert Extensions and new culverts Based on 30,600 linear feet of fence at 10.65 pounds/ ft
Micellaneous Consumables	26	52	60,000	20,000	50	2,600	10 Trucks
Fuel Deliveries Sanitation	25 52	50 104	26,000 50,000	7,000 10,000	50 50	2,500 5,200	Based on 2000 Gallons/week ea. of diesel on-road & off road Based on weekly maintenance visits
Plant Stock, Seed and Mulch	17	34	52,600	12,800	50	1,719	Based on 2.5 tons/acre
Total Miscellaneous Deliveries	280	560				27,978	Assume all trips from SR 299 West - Schedule to avoid peak hours
Water (Compaction)	1,228	2456	33,400	0	20	49,120	Based on 20 gallons/ton of aggregate (Roads, Laydown, etc.)
Water (Dust Control) Water (Vegetation establishment)	2,869	5738 220	33,400	0	20	114,760	Based on 300 gallons/acre/day of Road, staging, and field office area areas, 6 trucks Based on 10,000 gallons/acre of Laydown areas
Water (Vegetation establishment) Water (Concrete Batching)	110 2	4	33,400 33,400	0 0	20 20	4,400 80	Based on Aggregate equal to 8% of weight
Total Water	4,209	8,418	16,826,893	Gallons		168,360	Assume all trips from SR 299 East- Schedule to avoid peak hours
i otai watei	4,203	0, 1 10	±0,020,033	Janons		100,300	and the second second second to avoid peak flours
Total Trips	41,274	84,003			TOTAL VMT	4,766,749	
-							

Exhibit 4	- Fountair	Wind P	roject - Estimat	ed Vehic	cle Trips - Post-Construction
Vehicles	Number of One way Truck Trips	Number of One way Truck Trips	Miles	VMT	Notes/ Assumptions
Pick-Up Trucks - 8 Full time Employees Total Pick-up Trucks	4	8	50 - West ; 10 - East	240	
Equipment Equipment Operators	0	l		0	Assume all trips on SR 299 West
Mobile Home (Field Office)	0		50	0	
Materials Total Aggregate for Compaction Deliveries	0]		0	Assume all trips on SR 299 East
Concrete Aggregate	0		0	0	Based on Aggregate equal to 76% of weight
Total Aggregate Deliveries	0	l		0	Assume all trips on SR 299 East
Total Turbine Related Deliveries	0	1		0	Assume all trips on SR 299 west - Schedule to avoid peak hours
Total Concrete Deliveries	0	1		0	Assume all trips on SR 299 west
Cement for Concrete Batch Plant	0		0	0	Based on Aggregate equal to 16% of weight
Total Miscellaneous Deliveries	0]		0	Assume all trips on SR 299 West
Total Water	0]		0	Assume all trips on SR 299 East
	Trucks				
SR 299 West	2	4		200]
SR 299 East	2	4		40	
Total Trips	4	8	TOTAL VMT	240	

Burney Express is provided by the County of Shasta and operated by RABA. This service is outside of the RABA Service Area.

Route and Stops

Burney Express mostly travels on SR 299, connecting Burney on the east to Redding on the west.

Burney Express stops include:

- · Burney (@ Burney Sporting Goods)
- · Montgomery Creek (@ Montgomery Creek Library)
- · Round Mountain (@ Round Mountain Store/Cafe)
- Bella Vista (@ My-T Fine Foods)
- · Shasta College
- · Redding (@ Downtown Transit Center)

Schedule

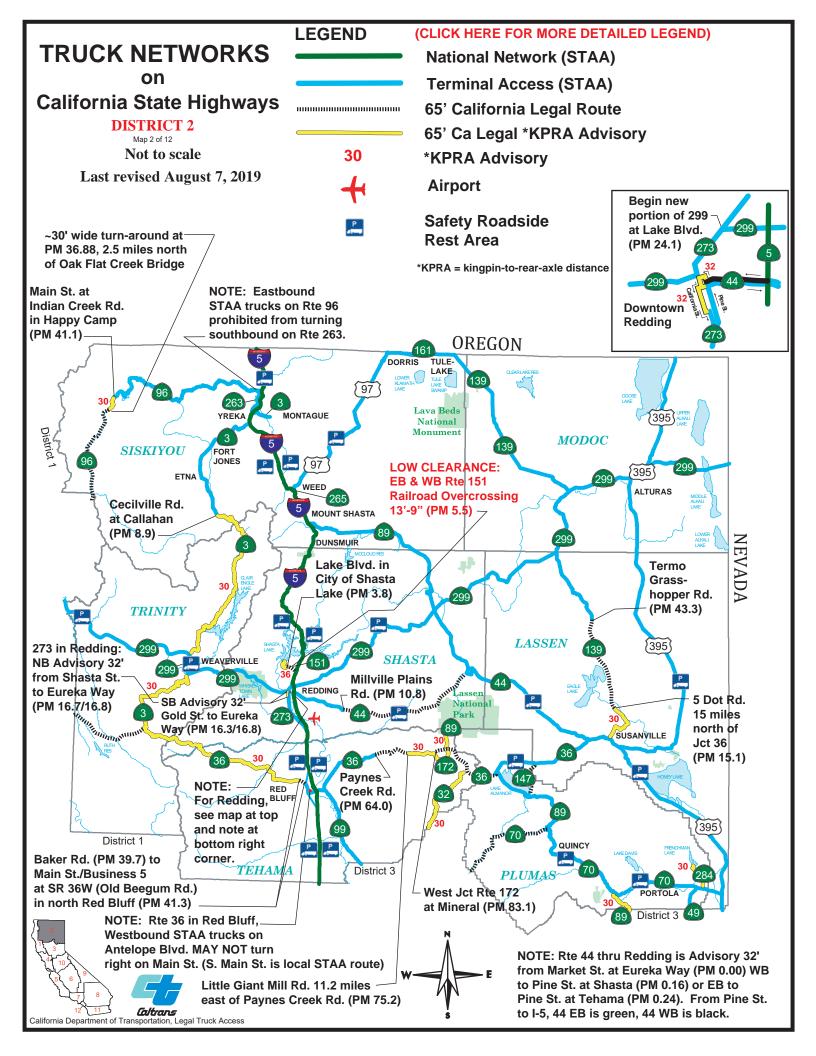
Burney Express provides three trips in each direction during the weekdays.

WESTBOUND											
	Burney	Montg Creek	Round Mtn	Bella Vista	Shasta College	Redding					
1st Trip	5:50 am	6:15 am	6:25 am	6:55 am	7:05 am	7:15 am					
2nd Trip	11:50 am	12:15 pm	12:25 pm	12:55 pm	1:05 pm	1:15 pm					
3rd Trip	3:50 pm	4:15 pm	4:25 pm	4:55 pm	5:05 pm	5:15 pm					

	EASTBOUND										
	Redding	Shasta College	Bella Vista	Round Mtn	Montg Creek	Burney					
1st Trip	10:25 am	10:35 am	10:45 am	11:15 am	11:25 am	11:50 am					
2nd Trip	2:25 pm	2:35 pm	2:45 pm	3:15 pm	3:25 pm	3:50 pm					
3rd Trip	5:35 pm	5:45 pm	5:55 pm	6:25 pm	6:35 pm	7:00 pm					

There is no service on the weekends.

There is no service on the following holidays:


 New Year's Day (January 1st), Memorial Day (last Monday of May), Independence Day (July 4th), Labor Day (first Monday of September), Thanksgiving Day (fourth Thursday of November), or Christmas Day (December 25th).

Fares

	то											
FROM	Shasta College/ Bella Vista	Round Mtn/ Montg Creek	Burney	Redding								
Redding	\$2.00	\$3.50	\$5.00	in the second								
Burney	\$3.50	\$2.00		\$5.00								

Additional Resources

Rural Transit in Shasta County

TRUCK MAP LEGEND TRUCK LENGTHS & ROUTES

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

Click here for the Truck Network Map

CALIFORNIA LEGAL ROUTES California Legal trucks (black trucks) can travel on STAA routes (green and blue routes), CA Legal routes (black routes), and Advisory routes (yellow routes). CA Legal trucks have access to the entire State highway system except where prohibited (some red routes).

Semitrailer length: no limit

KPRA* : 40 feet maximum for two or more axles,

38 feet maximum for single-axle trailers

Overall length : 65 feet maximum *(KPRA = kingpin-to-rear-axle)

California Legal Truck Tractor - Semitrailer - Trailer (Doubles)

Option A

Trailer length: 28 feet 6 inches maximum (each trailer)

Overall length: 75 feet maximum

Option B

Trailer length: one trailer 28 feet 6 inches maximum

other trailer may be longer than 28 feet 6 inches

Overall length: 65 feet maximum

CA LEGAL ADVISORY ROUTES - CA Legal trucks only; however, *travel not advised* if KPRA length is over posted value. KPRA advisories range from 30 to 38 feet.

STAA ROUTES The STAA Network allows the "interstate" STAA trucks which are the green trucks shown below. The STAA Network consists of the National Network (green routes, primarily interstates) and Terminal Access routes (blue, primarily State routes). ("STAA" = federal Surface Transportation Assistance Act of 1982.)

(Click here for the Truck Network Map.)

Interstate "STAA" Truck Tractor - Semitrailer

Semitrailer length: 48 feet maximum

KPRA* : no limit

Overall length : no limit *(KPRA = kingpin-to-rear-axle)

Semitrailer length: over 48 feet up to 53 feet maximum KPRA: 40 feet maximum for two or more axles,

38 feet maximum for single-axle trailers

Overall length : no limit

Interstate "STAA" Truck Tractor - Semitrailer - Trailer (Doubles)

Trailer length: 28 feet 6 inches maximum (each trailer)

Overall length: no limit

Terminal Access - Interstate "STAA" trucks may travel on State highways that exhibit this sign.

Service Access - Interstate "STAA" trucks may travel up to one road mile from the off ramp to obtain services (food, fuel, lodging, repairs), provided the route displays this sign.

SPECIAL RESTRICTIONS - Route restricted for vehicle length or weight, cargo type, or number of axles. Click here for the list of Special Route Restrictions.

CalTrans Traffic Census Program 2020 Annual Average Daily Traffic (AADT) Volumes

DISTRICT	ROUTE	RTE_SFX COUNTY	PM_PFX	ESCRIPTION W L	BACK PEAK HOUR	BACK_PEAK_MADT	BACK_AADT	AHEAD_PEAK_HOUI	AHEAD_PEAK_MAD	AHEAD_AADT
02	2 299	SHA	24.822	REDDING, JCT. RTE. 5		_		2200	22500	18800
02	2 299	SHA	25.540	HAWLEY ROAD	2200	22500	18800	1150	12500	10800
02	2 2 9 9	SHA	27.239	OLD OREGON TRAIL	1150	12500	10800	950	10500	9500
02	2 299	SHA	31.460	DESCHUTES ROAD	910	8200	7700	520	6000	4750
02	2 299	SHA	53.263	TERRY MILL ROAD	260	4850	3900	260	4900	3950
02	2 299	SHA	60.050	BIG BEND ROAD	270	4400	3550	270	4150	3350
02	2 299	SHA	73.130	TAMARACK ROAD	400	4450	3150	400	4450	3150
02	2 299	SHA	74.480	ELM ST	370	4050	2400	360	4200	3600
02	2 299	SHA	74.980	BURNEY, PLUMAS ST	360	4200	3600	870	9600	8200

CalTrans Traffic Census Program 2020 Truck Volumes and Percentages

	RTE_SFX DIST	CNTY POSTMII E PEX	POSTMILE	POSTMILE_SFX	LEG	DESCRIPTION	VEHICLE_AADT_TOTA	TRUCK_AADT_TOTAL	TRK_PERCENT_TOT	TRK_2_AXLE	TRK_3_AXLE	TRK_4_AXLE	TRK_5_AXLE	TRK_2_AXLE_PCT	TRK_3_AXLE_PCT	TRK_4_AXLE_PCT	TRK_5_AXLE_PCT	EAL YFAR VFR	EST
299	02 S	HA	24.822	A	٦	REDDING, JCT. RTE. 5	18800	890	4.73	552	94	11	233	62.02	10.56	1.24	26.18	110 20) V
299	02 S	HA	25.540	A	Ą	HAWLEY ROAD	10800	406	3.76	69	84	19	234	17.07	20.73	4.63	57.56	94 16	6 E
299	02 S	HA	27.239	A	4	OLD OREGON TRAIL	9500	357	3.76	81	47	10	219	22.66	13.29	2.72	61.33	84 16	6 E
299	02 S	HA	60.050	Е	3	BIG BEND ROAD	3550	529	14.90	93	76	13	347	17.59	14.35	2.55	65.51	132 16	ε
299	02 S	HA	72.640	()	HAYNES ROAD	3150	615	19.52	168	159	3	285	27.32	25.85	0.49	46.34	119 19) V
299	02 S	HA	73.130	A	4	TAMARACK ROAD	3150	551	17.49	197	83	5	266	35.75	15.06	0.91	48.28	107 20) V
299	02 S	HA	74.980	E	3	BURNEY, PLUMAS STREET	3600	684	19.00	259	104	9	312	37.87	15.20	1.32	45.61	128 20) E

main (702) 284-5300

Elevations At Locations of Interest Along CA-299E

	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Average Section Average Slope
Between I-5 and Hawley Road	24.9 - 25.5	0.6	641	628	-0.41

maln (702) 284-5300

Elevations At Locations of Interest Along CA-299E

Mile Post 27.2 Elevation 621 ft

Mile Post 25.5 Elevation 628 ft

	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Slope
Between Hawley Road and Old Oregon Trail	25.5 - 27.2	1.7	628	621	0.1

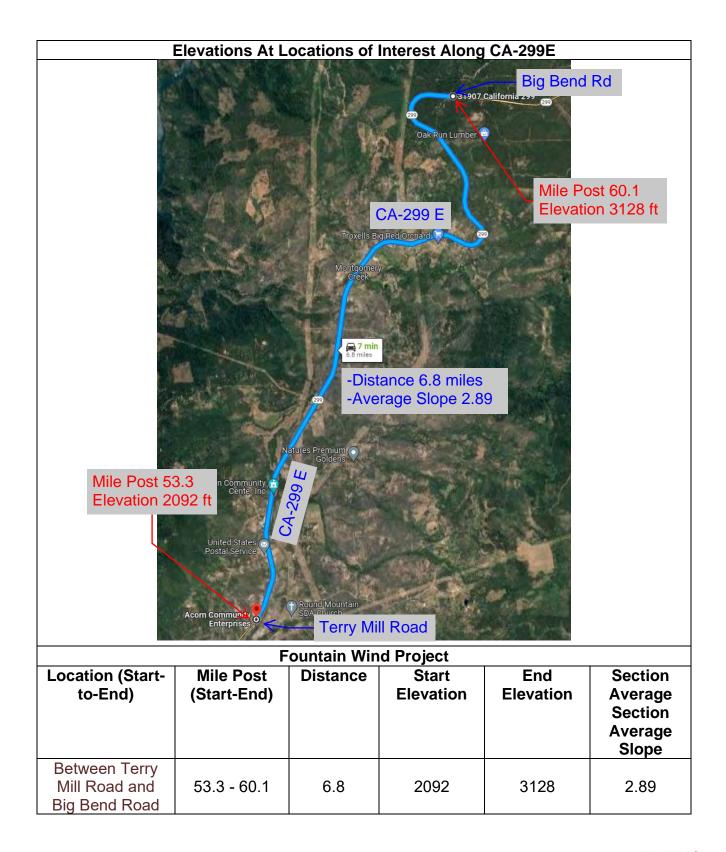
main (702) 284-5300

Elevations At Locations of Interest Along CA-299E

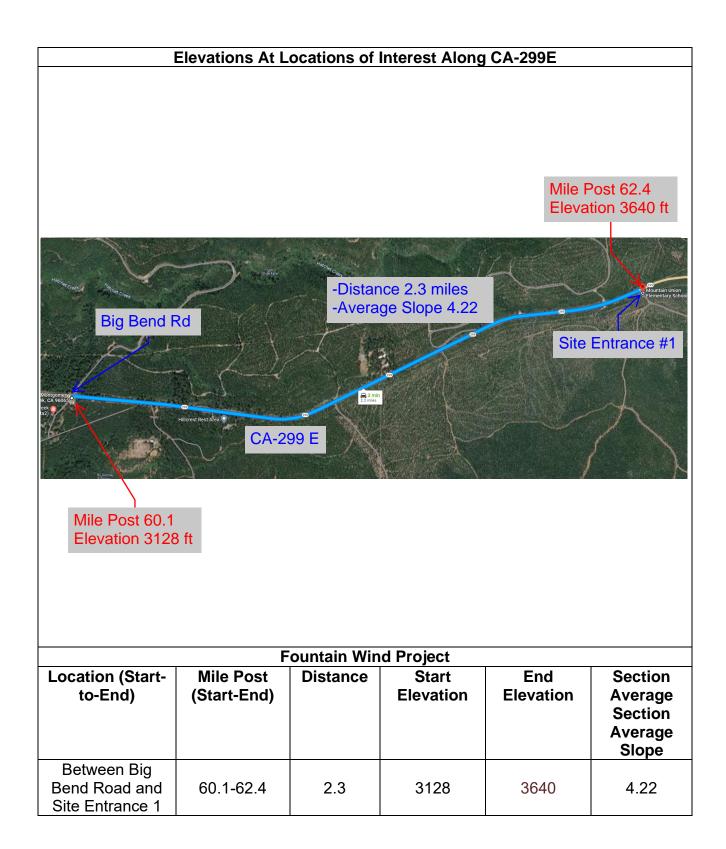
Mile Post 31.5 Elevation 539 ft

	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Section Average Slope
Between Old Trail and Deschutes Road	27.2 - 31.5	4.3	621	539	-0.36

maln (702) 284-5300


Elevations At Locations of Interest Along CA-299E

Deschutes Road


	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Section Average Slope
Between Deschutes Road and Terry Mill Road	31.5 - 53.3	21.8	539	2092	1.35

main (702) 284-5300

main (702) 284-5300

maln (702) 284-5300

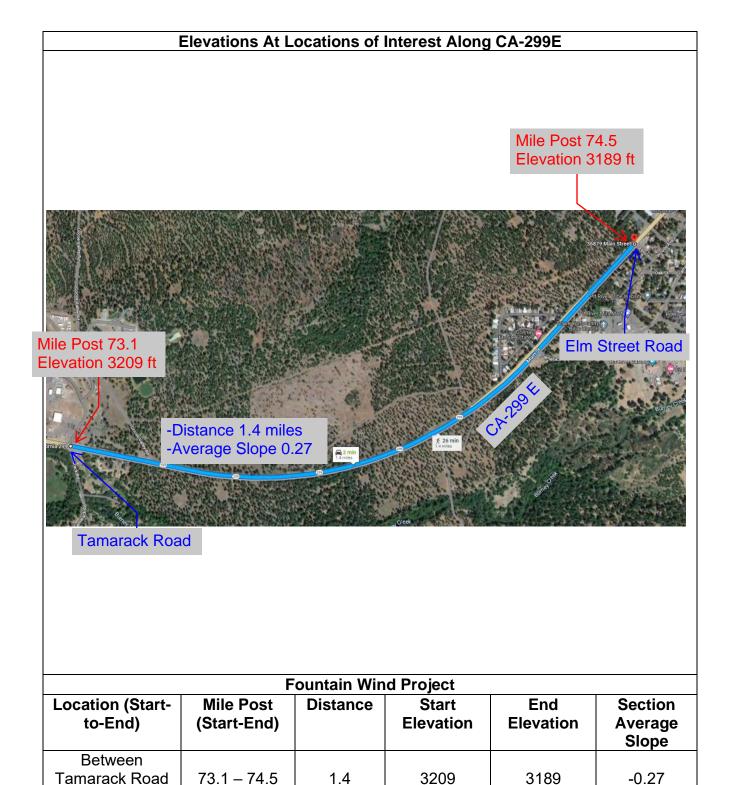
Elevations At Locations of Interest Along CA-299E

Mile Post 62.4 Elevation 3640 ft

Site Entrance #2

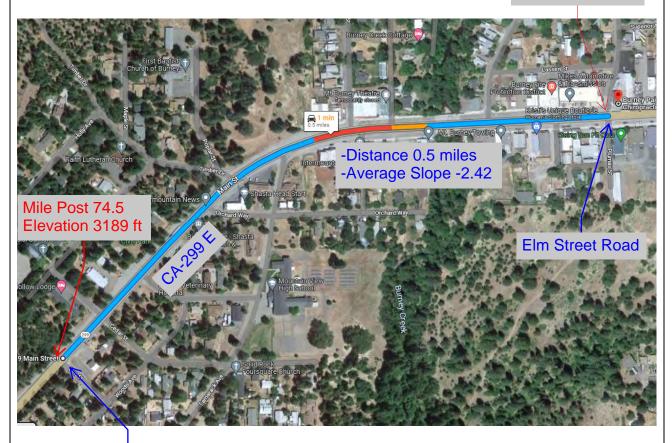
	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Slope
Between Site Entrance 1 and Site Entrance 2	62.4-67.3	4.9	3640	4215	2.22

maln (702) 284-5300

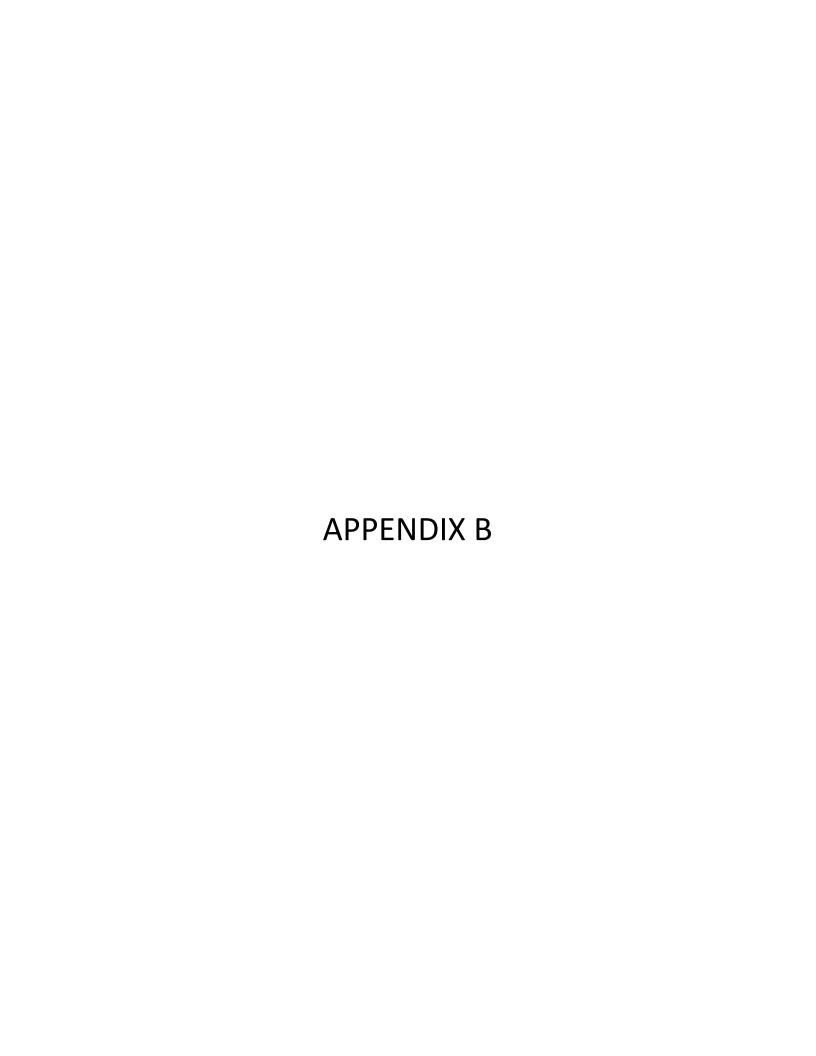

Elevations At Locations of Interest Along CA-299E

	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Slope
Between Site Entrance 2 and Tamarack Road	67.3 – 73.1	5.8	4215	3209	-3.29

and Elm Street


maln (702) 284-5300

main (702) 284-5300


Elevations At Locations of Interest Along CA-299E

Mile Post 75.0 Elevation 3125 ft

Elm Street Road

	F	ountain Win	d Project		
Location (Start- to-End)	Mile Post (Start-End)	Distance	Start Elevation	End Elevation	Section Average Slope
Between Elm Street Plumas Street (Burney)	74.5 – 75.0	0.5	3189	3125	-2.42

SPECIFIC LOCATION: CITY/STATE: Shasta. CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 4 202

CITY/STATE:	Shasta,	CA														DATE: Ap	or 4 2023
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
Start Tille	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	race speed	in Pac
12:00 AM	0	0	0	0	1	1	5	1	0	0	0	0	0	0	8	39-48	6
01:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	41-50	1
02:00 AM	0	0	0	0	0	2	0	1	0	0	0	0	0	0	3	31-40	2
03:00 AM	0	0	0	0	0	0	1	0	2	0	0	0	0	0	3	46-55	2
04:00 AM	1	0	0	0	1	1	3	0	3	0	0	0	0	0	9	36-45	4
05:00 AM	2	0	1	1	3	3	11	5	1	0	0	0	0	0	27	41-50	16
06:00 AM	0	0	0	1	1	6	22	8	7	2	0	0	0	0	47	41-50	30
07:00 AM	3	0	4	1	3	9	36	23	1	1	0	0	0	0	81	41-50	59
08:00 AM	0	0	0	0	4	10	28	22	5	0	0	0	0	0	69	41-50	50
09:00 AM	3	0	0	3	6	6	31	24	11	1	0	0	0	0	85	41-50	55
10:00 AM	6	0	0	11	2	3	22	24	11	0	0	0	0	0	79	41-50	46
11:00 AM	0	0	0	6	8	9	14	27	13	2	0	0	0	0	79	41-50	41
12:00 PM	5	0	0	5	7	4	27	23	7	4	0	0	0	0	82	41-50	50
01:00 PM	3	0	0	2	2	12	19	26	14	1	0	0	0	0	79	41-50	45
02:00 PM	2	0	0	0	5	8	22	30	14	2	0	1	0	0	84	41-50	52
03:00 PM	4	0	0	4	6	2	23	33	12	5	2	0	0	0	91	41-50	56
04:00 PM	1	0	0	2	0	6	51	42	22	4	1	0	0	0	129	41-50	93
05:00 PM	0	0	0	0	0	4	16	47	17	3	0	0	0	0	87	46-55	64
06:00 PM	1	0	0	0	5	10	13	18	22	0	0	0	0	0	69	46-55	40
07:00 PM	0	0	0	0	0	5	9	10	11	2	0	0	0	0	37	46-55	21
08:00 PM	0	0	0	0	1	6	14	11	0	0	0	0	0	0	32	41-50	25
09:00 PM	0	0	2	0	2	4	13	4	2	1	1	0	0	0	29	41-50	17
10:00 PM	0	0	0	0	0	1	3	3	2	1	0	0	0	0	10	41-50	6
11:00 PM	0	0	0	0	0	2	1	1	2	1	0	0	0	0	7	36-45	3
Day Total	31	0	7	36	57	114	384	384	179	30	4	1	0	0	1227	41-50	768
Percent	2.5%	0%	0.6%	2.9%	4.6%	9.3%	31.3%	31.3%	14.6%	2.4%	0.3%	0.1%	0%	0%	1227	41-50	708
AM Peak		12:00 AM	7:00 AM	10:00 AM		8:00 AM				6:00 AM			12:00 AM		9:00 AM		
Volume	6	0	4	11	8	10	36	27	13	2	0	0	0	0	85		
PM Peak	12:00 PM 5	12:00 PM 0	9:00 PM 2	12:00 PM 5	12:00 PM 7	1:00 PM 12	4:00 PM 51	5:00 PM 47	4:00 PM 22	3:00 PM 5	3:00 PM 2	2:00 PM 1	12:00 PM 0	12:00 PM 0	4:00 PM 129		
Volume	5	U	2	5	/	12	21	47	22	5	2	1	U	U	129		

SPECIFIC LOCATION:

QC JOB #: 16124307 **DIRECTION: EB**

CITY/STATE:																DATE: Ap	
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	4	0	0	0	1	1	0	0	0	0	0	0	6	16-25	4
01:00 AM	0	0	0	0	1	0	0	1	0	0	0	0	0	0	2	26-35	1
02:00 AM	0	0	0	0	0	1	3	0	1	1	0	0	0	0	6	36-45	4
03:00 AM	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	41-50	3
04:00 AM	0	0	0	0	0	0	5	2	2	0	0	0	0	0	9	41-50	7
05:00 AM	2	0	0	0	1	3	5	8	2	2	1	0	0	0	24	41-50	13
06:00 AM	1	0	0	0	5	11	12	13	7	0	0	0	0	0	49	41-50	25
07:00 AM	1	0	1	5	3	6	22	21	8	1	0	0	0	0	68	41-50	43
08:00 AM	5	0	1	3	8	14	19	15	14	2	1	0	0	0	82	41-50	34
09:00 AM	2	0	0	4	7	3	20	34	8	2	0	0	0	0	80	41-50	54
10:00 AM	2	0	0	4	3	10	25	32	12	2	1	0	0	0	91	41-50	57
11:00 AM	3	0	1	3	2	14	20	17	14	2	0	0	0	0	76	41-50	37
12:00 PM	1	0	2	1	5	4	17	31	8	3	0	0	0	0	72	41-50	48
01:00 PM	4	0	0	0	1	5	26	31	15	3	0	0	0	0	85	41-50	57
02:00 PM	3	0	0	2	3	1	13	48	22	0	1	0	0	0	93	46-55	70
03:00 PM	1	0	0	2	7	4	20	43	24	5	0	0	0	0	106	46-55	67
04:00 PM	5	0	0	1	3	12	34	50	26	5	0	0	0	0	136	41-50	84
05:00 PM	1	0	0	0	0	4	23	37	21	7	3	0	0	0	96	41-50	60
06:00 PM	3	0	0	0	0	3	11	23	22	9	5	0	0	0	76	46-55	45
07:00 PM	1	0	0	0	0	1	10	9	9	1	1	1	0	0	33	41-50	19
08:00 PM	1	0	0	0	0	3	12	9	9	2	0	0	0	0	36	41-50	21
09:00 PM	0	0	0	0	1	2	10	8	5	2	0	0	0	0	28	41-50	18
10:00 PM	1	0	0	1	0	1	6	6	2	0	0	0	0	0	17	41-50	12
11:00 PM	1	0	0	0	0	0	4	5	1	1	0	0	0	0	12	41-50	9
Day Total	38	0	9	26	50	102	318	447	232	50	13	1	0	0	1200	41.50	7.05
Percent	3%	0%	0.7%	2%	3.9%	7.9%	24.7%	34.8%	18%	3.9%	1%	0.1%	0%	0%	1286	41-50	765
AM Peak Volume	8:00 AM 5	12:00 AM 0	12:00 AM 4	7:00 AM 5	8:00 AM 8	8:00 AM 14	10:00 AM 25	9:00 AM 34	8:00 AM 14	5:00 AM 2	5:00 AM 1	12:00 AM 0	12:00 AM 0	12:00 AM 0	10:00 AM 91		
PM Peak	4:00 PM	12:00 PM		2:00 PM	3:00 PM	4:00 PM	4:00 PM	4:00 PM	4:00 PM	6:00 PM	6:00 PM	7:00 PM	12:00 PM		4:00 PM		
Volume	4.00 PIVI 5	0	2	2.00 PIVI 2	7 7	4.00 PM	34	50	26	9	5 5	7.00 PM	0	0	136		

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 6 2023

1 1 1 5 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 30 0 0 0 0 1 0 1	31 35 0 0 0 1 0 3 0 8	36 40 2 0 1 0 1 2 5	41 45 2 1 1 2 7 4	46 50 4 0 2 3 0 12	51 55 1 0 2 3 4	56 60 1 0 1	61 65 0 0	66 70 0 0	71 75 0 0 0	76 999 0 0 0	10 1 7	Pace Speed 41-50 36-45 46-55	Number in Pace 6 1 4
		0 0 0 0 1 0 1	0 0 0 1 0 3	2 0 1 0 1 2 5	2 1 1 2 7 4	4 0 2 3 0	1 0 2 3	1 0 1	0 0 0	0	0 0	0	10 1 7	41-50 36-45	6 1
) (() () () () () () () () () () () () (0 0 0 1 0 1	0 0 1 0 3 0	0 1 0 1 2 5	1 1 2 7 4	0 2 3 0	0 2 3	0 1	0	0	0	0	1 7	36-45	1
) () () () () () () () () () (0 0 1 0 1 0	0 1 0 3 0	1 0 1 2 5	1 2 7 4	2 3 0	2 3	1	0				7		
L (()) (()) ()) () () () () () () () () () () () () () (0 0 0 0 0 0 0 0 0 0	0 1 0 1 0	1 0 3 0	0 1 2 5	2 7 4	3 0	3		•	0	0	0		46-55	4
) (2 2 (2 2 (3 3 (4)	0 0 0 0 0 0 0	1 0 1 0	0 3 0	1 2 5	7 4	0		0	^						
2 (2 2 (2 3 (2	0 0 0	0 1 0	3	2 5	4		4		0	0	0	0	10	46-55	6
2 (2 2 (2 3 (2	0 0 0	1 0	0	5		12	•	1	0	0	0	0	14	36-45	8
? () } ()	0 0	0	•		0	12	4	0	0	0	0	0	27	43-52	16
3 (0		8	-	8	16	12	7	0	0	0	0	51	46-55	28
2 (1		1	15	29	17	4	0	0	0	0	76	46-55	46
) 0		3	8	15	33	16	3	0	0	0	0	82	46-55	49
. (1	6	10	15	30	17	4	0	0	0	0	85	46-55	47
	0	7	1	4	19	26	21	3	2	0	0	0	84	46-55	47
. (0	6	13	1	9	42	14	2	1	0	0	0	92	46-55	56
2 (0	3	6	5	21	38	14	5	0	0	0	0	94	41-50	59
. (0	6	2	4	14	27	23	4	4	0	0	0	85	46-55	50
3 (0	0	6	4	20	37	24	5	1	0	0	0	100	46-55	61
2 (0	5	3	8	21	41	29	4	0	0	0	0	113	46-55	70
5 (0	1	7	6	24	46	20	5	2	0	0	0	116	41-50	70
3 (0	0	0	3	24	33	14	5	1	0	0	0	83	41-50	57
) (0	2	0	0	15	32	19	4	1	0	0	0	73	46-55	51
. (0	0	0	2	10	14	11	2	1	0	0	0	41	46-55	25
. (0	0	1	6	10	13	3	0	0	0	0	0	34	41-50	23
) (0	1	2	5	7	3	0	0	0	0	0	0	18	36-45	12
) (0	0	0	1	5	4	3	0	0	0	0	0	13	41-50	9
) (0	0	0	0	3	1	0	0	0	0	0	0	4	41-50	4
		35	62	79	272	486	271	60	13	0	0	0	1313	41-50	758
7% 0	% 0%	2.7%	4.7%	6%	20.7%	37%	20.6%	4.6%	1%	0%	0%	0%	1313	41 30	730
AM 12:00	AM 12:00 A	M 10:00 AM	11:00 AM	9:00 AM	10:00 AM	11:00 AM	10:00 AM	6:00 AM	10:00 AM	12:00 AM	12:00 AM	12:00 AM	11:00 AM		
1 (0	7	13	10	19	42	21	7	2	0	0	0	92		
PM 12:00	PM 12:00 P	M 1:00 PM	4:00 PM	3:00 PM	4:00 PM	4:00 PM	3:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PM		
5 (0	6	7	8	24	46	29	5	4	0	0	0	116		
1	(C)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 6 0 0 0 0 0 0 5 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0	0 0 6 2 0 0 0 6 2 0 0 0 6 6 0 0 5 3 0 0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 0 0 0 0 1 2 0 4.7% AM 12:00 AM 12:00 AM 10:00 AM 11:00 AM 0 0 7 13	0 0 6 2 4 0 0 0 6 4 0 0 0 5 3 8 0 0 1 7 6 0 0 0 0 0 3 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 1 6 0 0 0 1 6 0 0 0 1 2 5 0 0 0 0 1 6 0 0 0 1 2 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 6 0 0 0 7 13 10	0 0 6 2 4 14 0 0 0 6 4 20 0 0 5 3 8 21 0 0 1 7 6 24 0 0 0 0 0 3 24 0 0 0 2 0 0 15 0 0 0 0 2 0 0 15 0 0 0 0 1 6 10 0 0 0 1 6 24 0 0 0 3 24 0 0 0 3 24 0 0 0 3 5 7 0 0 0 0 1 5 7 0 0 0 0 1 5 7 0 0 0 0 0 1 5 7 0 0 0 0 0 0 3 0 0 0 0 3 5 62 0 0 0 35 62 79 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 6 2 4 14 27 0 0 0 6 4 20 37 0 0 5 3 8 21 41 0 0 1 7 6 24 46 0 0 0 0 0 3 24 33 0 0 0 2 0 0 15 32 0 0 0 0 0 2 10 14 0 0 0 0 1 6 10 13 0 0 0 1 2 5 7 3 0 0 0 1 2 5 7 3 0 0 0 0 1 5 4 0 0 0 0 0 1 5 4 0 0 0 0 0 0 3 1 0 0 0 0 3 1 0 0 0 0 3 1 0 0 0 0 0 3 1 0 0 0 0 0 3 1 0 0 0 0 3 1 0 0 0 0 0 3 1 0 0 0 0 0 3 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 6 2 4 14 27 23 0 0 0 0 6 4 20 37 24 0 0 0 5 3 8 21 41 29 0 0 0 1 7 6 24 46 20 0 0 0 0 0 3 24 33 14 0 0 0 2 0 0 15 32 19 0 0 0 0 0 2 10 14 11 0 0 0 0 1 6 10 13 3 0 0 1 2 5 7 3 0 0 0 0 1 2 5 7 3 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 6 2 4 14 27 23 4 5 0 0 0 0 0 6 4 20 37 24 5 0 0 0 5 3 8 21 41 29 4 0 0 0 1 7 6 24 46 20 5 0 0 0 0 0 0 3 24 33 14 5 0 0 0 2 0 0 15 32 19 4 0 0 0 0 0 0 0 2 10 14 11 2 0 0 0 0 0 1 6 10 13 3 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 6 2 4 14 27 23 4 4 1	0 0 0 6 2 4 14 27 23 4 5 1 0 0 0 0 0 6 4 20 37 24 5 1 0 0 0 0 5 3 8 21 41 29 4 0 0 0 0 0 1 7 6 24 46 20 5 2 0 0 0 0 0 0 3 24 33 14 5 1 0 0 0 0 2 0 0 15 32 19 4 1 0 0 0 0 0 0 1 6 10 13 32 19 4 1 0 0 0 0 0 1 6 10 13 3 0 0 0 0 0 0 1 2 5 7 3 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 35 62 79 272 486 271 60 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 6 2 4 14 27 23 4 4 0 0 0 0 0 0 0 6 4 20 37 24 5 1 0 0 0 0 0 5 3 8 21 41 29 4 0 0 0 0 0 0 1 7 6 24 46 20 5 2 0 0 0 0 0 0 0 3 24 33 14 5 1 0 0 0 0 0 2 0 0 15 32 19 4 1 0 0 0 0 0 0 0 2 10 14 11 2 1 0 0 0 0 0 0 0 1 6 10 13 3 0 0 0 0 0 0 0 1 2 5 7 3 0 0 0 0 0 0 0 1 2 5 7 3 0 0 0 0 0 0 0 0 1 6 10 13 3 0 0 0 0 0 0 0 0 1 2 5 7 3 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 3 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 3 1 5 4 3 0 0 0 0 0 0 0 0 0 0 0 3 5 62 79 272 486 271 60 13 0 0 0 0 0 0 0 0 0 35 62 79 272 486 271 60 13 0 0 0 0 0 0 0 0 35 62 79 272 486 271 60 13 0 0 0 0 0 0 0 0 35 62 79 272 486 271 60 13 0 0 0 0 0 0 0 0 35 62 79 272 486 271 60 13 0 0 0 0 0 0 0 0 0 3 5 62 79 272 486 271 60 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 6 2 4 14 27 23 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 6 2 4 14 27 23 4 4 0 0 0 0 0 1 100	0 0 6 2 4 14 27 23 4 4 0 0 0 0 0 85 46-55 0 0 0 0 6 4 20 37 24 5 1 0 0 0 0 100 46-55 0 0 0 5 3 8 21 41 29 4 0 0 0 0 0 0 113 46-55 0 0 0 1 7 6 24 46 20 5 2 0 0 0 0 0 116 41-50 0 0 0 0 0 3 24 33 14 5 1 0 0 0 0 0 83 41-50 0 0 0 2 0 0 15 32 19 4 1 0 0 0 0 0 73 46-55 0 0 0 0 0 1 16 115 32 19 4 1 0 0 0 0 73 46-55 0 0 0 0 0 1 6 10 13 32 19 4 1 0 0 0 0 0 73 46-55 0 0 0 0 0 1 6 10 13 3 0 0 0 0 0 0 14 46-55 0 0 0 0 0 1 6 10 13 3 0 0 0 0 0 0 34 41-50 0 0 0 1 6 10 13 3 0 0 0 0 0 0 0 18 36-45 0 0 0 0 1 1 2 5 7 3 0 0 0 0 0 0 0 0 18 36-45 0 0 0 0 0 1 1 5 4 3 0 0 0 0 0 0 0 13 41-50 0 0 0 0 1 1 5 4 3 0 0 0 0 0 0 0 1 3 41-50 0 0 0 0 0 0 0 0 0 1 3 41-50 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 41-50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SUMMARY - Tube Count - Speed Data

LOCATION: EB	SR 299 e	ast of Su	pan Rd													QC JOB	#: 16124307
SPECIFIC LOCA	TION:															DI	RECTION: EB
CITY/STATE: Sh	nasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
speed Kalige	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	race speed	Pace
Grand Total	104	0	16	97	169	295	974	1317	682	140	30	2	0	0	3826	41-50	2291
Percent	2.7%	0%	0.4%	2.5%	4.4%	7.7%	25.5%	34.4%	17.8%	3.7%	0.8%	0.1%	0%	0%	3620	41-50	2291
Cumulative Percent	2.7%	2.7%	3.1%	5.7%	10.1%	17.8%	43.3%	77.7%	95.5%	99.2%	99.9%	100%	100%	100%			
ADT 1275															Mea	an Speed(Avera Med	ntile: 52 MPH age): 45 MPH dian: 45 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 4 2023

		Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 4 202.
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	5	0	0	1	0	0	2	0	0	0	0	0	0	8
01:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
02:00 AM	0	2	0	0	1	0	0	0	0	0	0	0	0	0	3
03:00 AM	0	2	0	0	1	0	0	0	0	0	0	0	0	0	3
04:00 AM	0	5	0	0	0	0	0	2	1	0	0	0	0	1	9
05:00 AM	0	16	3	0	2	0	0	3	1	0	0	0	0	2	27
06:00 AM	0	23	18	0	2	0	0	4	0	0	0	0	0	0	47
07:00 AM	2	51	14	0	3	1	0	7	1	0	0	0	0	2	81
08:00 AM	0	51	10	0	2	0	0	5	1	0	0	0	0	0	69
09:00 AM	0	58	14	0	5	0	0	5	0	0	0	0	0	3	85
10:00 AM	1	42	18	0	3	1	0	7	1	0	0	0	0	6	79
11:00 AM	0	54	12	0	5	0	0	8	0	0	0	0	0	0	79
12:00 PM	1	48	9	0	9	1	0	8	1	0	0	0	0	5	82
01:00 PM	0	53	11	0	4	0	0	6	2	0	0	0	0	3	79
02:00 PM	0	59	11	0	7	0	0	3	0	0	2	0	0	2	84
03:00 PM	0	69	9	0	2	0	0	3	3	0	1	0	0	4	91
04:00 PM	0	103	18	0	2	0	0	5	0	0	0	0	0	1	129
05:00 PM	0	73	10	0	1	0	0	3	0	0	0	0	0	0	87
06:00 PM	0	53	11	0	1	0	0	3	0	0	0	0	0	1	69
07:00 PM	0	30	5	0	1	0	0	1	0	0	0	0	0	0	37
08:00 PM	0	27	4	0	0	0	0	1	0	0	0	0	0	0	32
09:00 PM	1	22	2	0	1	1	0	2	0	0	0	0	0	0	29
10:00 PM	0	10	0	0	0	0	0	0	0	0	0	0	0	0	10
11:00 PM	0	6	1	0	0	0	0	0	0	0	0	0	0	0	7
Day Total	5	863	180	0	53	4	0	78	11	0	3	0	0	30	1227
Percent	0.4%	70.3%	14.7%	0%	4.3%	0.3%	0%	6.4%	0.9%	0%	0.2%	0%	0%	2.4%	
ADT 1227															
AM Peak	7:00 AM	9:00 AM	6:00 AM	12:00 AM	9:00 AM	7:00 AM	12:00 AM	11:00 AM	4:00 AM	12:00 AM	12:00 AM	12:00 AM	12:00 AM	10:00 AM	9:00 AN
Volume	2	58	18	0	5	1	0	8	1	0	0	0	0	6	85
PM Peak	12:00 PM	4:00 PM	4:00 PM	12:00 PM	3:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PN				
Volume	1	103	18	0	9	1	0	8	3	0	2	0	0	5	129
mments:															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 5 2023

CITY/STATE: Sr	iasta, CA	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 5 2023
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	2	0	1	0	1	2	0	0	0	0	0	0	0	0	6
01:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
02:00 AM	0	3	1	0	1	0	0	1	0	0	0	0	0	0	6
03:00 AM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
04:00 AM	0	6	1	0	1	0	0	1	0	0	0	0	0	0	9
05:00 AM	0	14	5	0	1	0	0	2	0	0	0	0	0	2	24
06:00 AM	0	23	15	0	5	0	0	4	1	0	0	0	0	1	49
07:00 AM	1	37	19	0	4	0	0	3	3	0	0	0	0	1	68
08:00 AM	2	50	9	0	11	2	0	3	0	0	0	0	0	5	82
09:00 AM	0	49	15	0	4	1	0	8	1	0	0	0	0	2	80
10:00 AM	1	61	10	0	5	1	0	11	0	0	0	0	0	2	91
11:00 AM	0	52	13	0	3	1	0	3	1	0	0	0	0	3	76
12:00 PM	1	50	9	0	5	1	0	3	1	0	1	0	0	1	72
01:00 PM	0	61	10	0	7	0	0	3	0	0	0	0	0	4	85
02:00 PM	0	72	10	0	4	0	0	3	1	0	0	0	0	3	93
03:00 PM	0	72	21	0	6	0	0	5	0	0	1	0	0	1	106
04:00 PM	0	100	24	0	1	0	0	5	0	0	2	0	0	4	136
05:00 PM	0	74	16	0	4	0	0	1	0	0	0	0	0	1	96
06:00 PM	0	56	13	0	2	0	0	2	0	0	0	0	0	3	76
07:00 PM	0	24	6	1	1	0	0	0	0	0	0	0	0	1	33
08:00 PM	0	30	2	0	0	0	0	3	0	0	0	0	0	1	36
09:00 PM	0	19	7	0	0	0	0	2	0	0	0	0	0	0	28
10:00 PM	0	13	2	0	0	0	0	0	1	0	0	0	0	1	17
11:00 PM	0	10	1	0	0	0	0	0	0	0	0	0	0	1	12
Day Total	7	880	211	1	66	8	0	63	9	0	4	0	0	37	1286
Percent	0.5%	68.4%	16.4%	0.1%	5.1%	0.6%	0%	4.9%	0.7%	0%	0.3%	0%	0%	2.9%	1200
ADT 1286															
AM Peak	12:00 AM	10:00 AM	7:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	10:00 AM	7:00 AM	12:00 AM	12:00 AM	12:00 AM	12:00 AM	8:00 AM	10:00 AN
Volume	2	61	19	0	11	2	0	11	3	0	0	0	0	5	91
PM Peak	12:00 PM	4:00 PM	4:00 PM	7:00 PM	1:00 PM	12:00 PM	12:00 PM	3:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	1:00 PM	4:00 PM
Volume	1	100	24	1	7	1	0	5	1	0	2	0	0	4	136
mments:															
		22 4 55 514										!!			

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 6 2023

CITY/STATE: Sr	iasta, CA	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 6 2023
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	∕o Axi Multi	Classed	Total
12:00 AM	0	8	1	0	1	0	0	0	0	0	0	0	0	0	10
01:00 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
02:00 AM	0	4	2	0	0	0	0	1	0	0	0	0	0	0	7
03:00 AM	0	5	3	0	1	0	0	0	0	0	0	0	0	1	10
04:00 AM	0	7	2	0	1	0	0	4	0	0	0	0	0	0	14
05:00 AM	0	12	2	0	3	0	0	6	0	0	2	0	0	2	27
06:00 AM	1	17	22	0	5	0	0	4	0	0	0	0	0	2	51
07:00 AM	0	44	16	0	7	0	0	7	0	0	0	0	0	2	76
08:00 AM	0	45	19	0	5	0	0	10	0	0	0	0	0	3	82
09:00 AM	0	54	13	0	7	0	0	9	0	0	0	0	0	2	85
10:00 AM	1	52	12	1	5	2	0	9	1	0	0	0	0	1	84
11:00 AM	1	62	14	0	5	0	0	4	1	0	1	0	0	4	92
12:00 PM	0	59	16	0	7	0	0	8	2	0	0	0	0	2	94
01:00 PM	1	53	16	0	10	1	0	3	0	0	0	0	0	1	85
02:00 PM	0	81	10	0	4	0	0	1	0	0	1	0	0	3	100
03:00 PM	1	81	20	0	5	1	0	3	0	0	0	0	0	2	113
04:00 PM	0	82	21	0	5	0	0	3	0	0	0	0	0	5	116
05:00 PM	0	62	15	0	1	0	0	2	0	0	0	0	0	3	83
06:00 PM	1	56	12	0	2	1	0	1	0	0	0	0	0	0	73
07:00 PM	1	31	6	0	2	0	0	0	0	0	0	0	0	1	41
08:00 PM	0	27	5	0	1	0	0	0	0	0	0	0	0	1	34
09:00 PM	1	12	4	0	1	0	0	0	0	0	0	0	0	0	18
10:00 PM	0	8	4	0	0	0	0	1	0	0	0	0	0	0	13
11:00 PM	0	3	0	0	1	0	0	0	0	0	0	0	0	0	4
Day Total	8	866	235	11	79	5	0	76	4	0	4	0	0	35	1313
Percent	0.6%	66%	17.9%	0.1%	6%	0.4%	0%	5.8%	0.3%	0%	0.3%	0%	0%	2.7%	1313
ADT 1313															
AM Peak	6:00 AM	11:00 AM	6:00 AM	10:00 AM	7:00 AM	10:00 AM	12:00 AM	8:00 AM	10:00 AM	12:00 AM	5:00 AM	12:00 AM	12:00 AM	11:00 AM	11:00 AM
Volume	1	62	22	1	7	2	0	10	1	0	2	0	0	4	92
PM Peak	1:00 PM	4:00 PM	4:00 PM	12:00 PM	1:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	4:00 PM	4:00 PM
Volume	1	82	21	0	10	1	0	8	2	0	1	0	0	5	116
omments:															
		222 4.55 014											- 4		4

LOCATION: EB SR 299 east of Supan Rd QC JOB #: 16124307 SPECIFIC LOCATION: **DIRECTION: EB** CITY/STATE: Shasta, CA DATE: Apr 4 2023 - Apr 6 2023 Cars & 2 Axle <5 Axl 2 Axle 6 3 Axle 4 Axle 5 Axle >6 Axl <6 Axl 6 Axle >6 Axl Not Start Time **Bikes Buses** Total Trailers Long Tire Single Single Double Double Double Multi Multi Classed Multi **Grand Total** 20 2609 626 2 198 17 0 217 24 0 11 0 0 102 3826 0% 2.7% Percent 0.5% 68.2% 16.4% 0.1% 5.2% 0.4% 0% 5.7% 0.6% 0% 0.3% 0% ADT 1275

Report generated on 4/11/2023 4:55 PM

Comments:

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB

DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		8	6	10		8			8	
01:00 AM		1	2	1		1			1	
02:00 AM		3	6	7		5			5	
03:00 AM		3	3	10		5			5	
04:00 AM		9	9	14		11			11	
05:00 AM		27	24	27		26			26	
06:00 AM		47	49	51		49			49	
07:00 AM		81	68	76		75			75	
08:00 AM		69	82	82		78			78	
09:00 AM		85	80	85		83			83	
10:00 AM		79	91	84		85			85	
11:00 AM		79	76	92		82			82	
12:00 PM		82	72	94		83			83	
01:00 PM		79	85	85		83			83	
02:00 PM		84	93	100		92			92	
03:00 PM		91	106	113		103			103	
04:00 PM		129	136	116		127			127	
05:00 PM		87	96	83		89			89	
06:00 PM		69	76	73		73		In:	73	
07:00 PM		37	33	41		37	\sim \sim \sim	411	37	
08:00 PM		32	36	34		34			34	
09:00 PM		29	28	18		25		100 600	25	
10:00 PM		10	17	13		13	DIVINI	UNII	13	
11:00 PM		7	12	4		8			8	
Day Total		1227	1286	1313		1275			1275	
% Weekday Average		96.2%	100.9%	103%						
% Week Average		96.2%	100.9%	103%		100%				
AM Peak Volume		9:00 AM 85	10:00 AM 91	11:00 AM 92		10:00 AM 85			10:00 AM 85	
PM Peak Volume		4:00 PM 129	4:00 PM 136	4:00 PM 116		4:00 PM 127			4:00 PM 127	

SPECIFIC LOCATION:

QC JOB #: 16124307 **DIRECTION:** EB, WB

CITY/STATE:	Snasta,	LA														DATE: Ap	or 4 202
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	1	1	7	3	0	0	0	0	0	0	12	41-50	10
01:00 AM	1	0	0	0	0	0	0	2	1	0	0	0	0	0	4	46-55	3
02:00 AM	0	0	0	0	0	3	1	2	0	0	0	0	0	0	6	36-45	4
03:00 AM	0	0	0	0	0	0	2	4	5	0	1	0	0	0	12	46-55	9
04:00 AM	1	0	0	0	1	1	6	4	4	0	2	0	0	0	19	41-50	10
05:00 AM	3	0	3	1	4	3	15	14	6	1	0	0	0	0	50	41-50	29
06:00 AM	1	0	0	1	1	6	27	22	18	3	1	0	0	0	80	41-50	49
07:00 AM	5	0	4	1	3	9	42	57	24	7	1	0	0	0	153	41-50	99
08:00 AM	0	0	0	0	4	11	42	62	32	4	0	0	0	0	155	41-50	104
09:00 AM	3	0	0	3	6	6	48	85	28	6	0	0	0	0	185	41-50	133
10:00 AM	9	0	0	11	3	4	35	78	34	4	0	1	0	0	179	41-50	113
11:00 AM	3	0	0	6	8	11	34	55	48	8	1	0	0	0	174	46-55	103
12:00 PM	6	0	0	5	8	5	35	68	30	12	0	0	0	0	169	41-50	103
01:00 PM	6	0	0	2	2	15	44	74	39	5	1	0	0	0	188	41-50	118
02:00 PM	3	0	0	0	8	12	35	72	42	5	0	1	0	0	178	46-55	114
03:00 PM	6	0	0	4	7	2	34	69	37	14	4	0	0	0	177	46-55	106
04:00 PM	3	0	0	2	0	9	60	90	40	11	1	0	0	0	216	41-50	150
05:00 PM	3	0	0	1	0	5	29	88	33	11	2	0	0	0	172	46-55	121
06:00 PM	2	0	0	0	5	12	19	34	38	6	0	0	0	0	116	46-55	72
07:00 PM	1	0	0	0	0	7	11	29	23	6	0	0	0	0	77	46-55	52
08:00 PM	0	0	0	0	1	8	17	18	6	0	1	0	0	0	51	41-50	35
09:00 PM	0	0	2	0	2	5	14	6	2	2	1	0	0	0	34	41-50	20
10:00 PM	1	0	0	0	0	2	5	4	3	2	0	0	0	0	17	41-50	9
11:00 PM	1	0	0	0	0	3	4	2	3	1	0	0	0	0	14	36-45	7
Day Total	58	0	9	37	64	140	566	942	496	108	16	2	0	0	2438	41.50	1508
Percent	2.4%	0%	0.4%	1.5%	2.6%	5.7%	23.2%	38.6%	20.3%	4.4%	0.7%	0.1%	0%	0%	2438	41-50	1508
AM Peak Volume	10:00 AM 9	12:00 AM 0	7:00 AM 4	10:00 AM 11	11:00 AM 8	8:00 AM 11	9:00 AM 48	9:00 AM 85	11:00 AM 48	11:00 AM 8	4:00 AM 2	10:00 AM 1	12:00 AM 0	12:00 AM 0	9:00 AM 185		
		12:00 PM	9:00 PM		12:00 PM	1:00 PM	4:00 PM	4:00 PM	2:00 PM	3:00 PM	3:00 PM		12:00 PM		4:00 PM		
Volume	6	0 0	2	5 5	8 8	1.00 PM	60 60	90	42	3.00 PM	4	2.00 PIVI 1	0	0	216		

SPECIFIC LOCATION:

QC JOB #: 16124307 DIRECTION: EB, WB

DATE: Apr 5 2023

CITY/STATE:	Shasta,	CA														DATE: Ap	pr 5 202
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numb
Start rille	15	20	25	30	35	40	45	50	55	60	65	70	75	999	IOLAI	Pace Speed	in Pac
12:00 AM	0	0	4	0	0	0	2	4	1	0	0	0	0	0	11	41-50	6
01:00 AM	0	0	0	0	1	0	1	1	0	0	0	0	0	0	3	41-50	2
02:00 AM	0	0	0	0	0	2	4	0	1	1	0	0	0	0	8	36-45	6
03:00 AM	0	0	0	0	0	0	1	4	0	1	0	0	0	0	6	41-50	5
04:00 AM	0	0	0	0	0	0	7	6	3	1	0	0	0	0	17	41-50	13
05:00 AM	2	0	0	0	3	5	7	18	11	3	4	1	0	0	54	46-55	29
06:00 AM	1	0	0	0	5	11	14	35	23	4	0	0	0	0	93	46-55	58
07:00 AM	4	0	1	5	3	6	27	45	34	11	3	0	0	0	139	46-55	79
08:00 AM	6	0	1	3	8	17	27	51	60	13	4	1	1	0	192	46-55	111
09:00 AM	3	0	0	5	7	6	36	76	35	9	0	0	1	0	178	41-50	112
10:00 AM	2	0	0	4	5	10	46	81	40	3	1	0	0	0	192	41-50	127
11:00 AM	6	0	1	3	2	16	38	56	37	12	1	0	0	0	172	41-50	94
12:00 PM	2	0	2	1	5	14	36	63	42	8	0	0	0	0	173	46-55	105
01:00 PM	7	0	2	0	1	5	47	63	48	7	0	0	0	0	180	46-55	111
02:00 PM	6	0	0	2	4	3	33	77	44	5	1	0	0	0	175	46-55	121
03:00 PM	2	0	0	2	8	7	40	86	47	8	0	1	0	0	201	46-55	133
04:00 PM	8	0	0	1	4	14	47	94	43	7	0	0	0	0	218	41-50	141
05:00 PM	3	0	0	0	2	5	38	74	44	14	4	0	0	0	184	46-55	118
06:00 PM	3	0	0	0	2	3	21	41	42	14	6	0	0	0	132	46-55	83
07:00 PM	3	0	0	0	0	2	12	18	14	2	2	1	0	0	54	46-55	32
08:00 PM	1	0	0	0	0	7	14	12	14	2	0	0	0	0	50	44-53	26
09:00 PM	0	0	0	0	1	4	11	17	5	2	0	0	0	0	40	41-50	28
10:00 PM	1	0	0	1	0	1	8	8	3	2	0	0	0	0	24	41-50	16
11:00 PM	1	0	0	0	1	0	4	5	1	1	0	0	0	0	13	41-50	9
Day Total	61	0	11	27	62	138	521	935	592	130	26	4	2	0	2509	46-55	1527
Percent	2.4%	0%	0.4%	1.1%	2.5%	5.5%	20.8%	37.3%	23.6%	5.2%	1%	0.2%	0.1%	0%	2303	40-33	1327
AM Peak	8:00 AM	12:00 AM		7:00 AM	8:00 AM	8:00 AM	10:00 AM		8:00 AM	8:00 AM	5:00 AM	5:00 AM		12:00 AM	8:00 AM		
Volume	6	0	4	5	8	17	46	81	60	13	4	1	1	0	192		
PM Peak	4:00 PM	12:00 PM		2:00 PM	3:00 PM	12:00 PM	1:00 PM	4:00 PM	1:00 PM	5:00 PM	6:00 PM		12:00 PM		4:00 PM		
Volume	8	0	2	2	8	14	47	94	48	14	6	1	0	0	218		

SPECIFIC LOCATION:

QC JOB #: 16124307 DIRECTION: EB, WB

DATE: Apr 6 2023

CITY/STATE:	Shasta,	CA														DATE: Ap	or 6 202
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
Start Tille	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	race speed	in Pac
12:00 AM	0	0	0	0	0	3	4	8	2	1	0	0	0	0	18	41-50	12
01:00 AM	0	0	0	0	0	0	1	1	2	0	0	0	0	0	4	46-55	3
02:00 AM	1	0	0	0	0	1	4	4	2	2	0	0	0	0	14	41-50	8
03:00 AM	1	0	0	0	1	0	2	5	9	4	1	0	0	0	23	46-55	14
04:00 AM	0	0	0	1	0	1	7	2	6	4	1	0	0	0	22	51-60	10
05:00 AM	2	0	0	0	3	3	11	18	13	2	3	0	0	0	55	46-55	31
06:00 AM	2	0	0	1	0	5	10	31	32	12	0	0	0	0	93	46-55	63
07:00 AM	5	0	0	0	8	1	18	50	49	15	3	1	1	0	151	46-55	99
08:00 AM	5	0	0	1	3	8	27	70	57	15	3	0	0	0	189	46-55	127
09:00 AM	5	0	0	1	6	11	30	73	49	18	0	0	0	0	193	46-55	122
10:00 AM	4	0	0	7	4	11	34	79	50	8	3	0	0	0	200	46-55	129
11:00 AM	5	0	0	6	15	2	21	84	46	8	2	0	0	0	189	46-55	130
12:00 PM	3	0	0	3	6	5	34	74	45	13	0	0	0	0	183	46-55	119
01:00 PM	8	0	0	6	2	7	21	78	60	13	5	1	0	0	201	46-55	138
02:00 PM	6	0	0	0	7	6	29	78	55	10	1	1	0	0	193	46-55	133
03:00 PM	6	0	0	6	6	8	37	95	72	12	2	0	0	0	244	46-55	167
04:00 PM	7	0	0	1	7	9	35	88	46	18	4	1	0	0	216	46-55	134
05:00 PM	5	0	0	0	0	3	36	58	43	17	5	0	0	0	167	46-55	101
06:00 PM	2	0	0	2	0	2	20	43	33	6	3	0	0	0	111	46-55	76
07:00 PM	2	0	0	0	0	3	17	20	17	8	1	0	0	0	68	41-50	37
08:00 PM	2	0	0	0	1	6	14	20	5	1	1	0	0	0	50	41-50	34
09:00 PM	0	0	0	1	3	9	12	5	1	1	0	0	0	0	32	36-45	21
10:00 PM	0	0	0	0	0	1	10	7	3	0	0	0	0	0	21	41-50	17
11:00 PM	0	0	0	1	0	0	3	2	0	1	0	0	0	0	7	41-50	5
Day Total	71	0	0	37	72	105	437	993	697	189	38	4	1	0	2644	46-55	1690
Percent	2.7%	0%	0%	1.4%	2.7%	4%	16.5%	37.6%	26.4%	7.1%	1.4%	0.2%	0%	0%	2044	40-55	1090
AM Peak	7:00 AM 5	12:00 AM 0	12:00 AM 0	10:00 AM 7	11:00 AM 15	9:00 AM 11	10:00 AM 34		8:00 AM 57	9:00 AM 18	5:00 AM 3	7:00 AM 1	7:00 AM 1	12:00 AM 0	10:00 AM 200		
Volume								84									
PM Peak Volume	1:00 PM 8	12:00 PM 0	12:00 PM 0	1:00 PM 6	2:00 PM 7	4:00 PM 9	3:00 PM 37	3:00 PM 95	3:00 PM 72	4:00 PM 18	1:00 PM 5	1:00 PM 1	12:00 PM 0	12:00 PM 0	3:00 PM 244		
Comments:																	

SUMMARY - Tube Count - Speed Data

LOCATION: EB	SR 299 e	ast of Su	pan Rd													QC JOB	#: 16124307
SPECIFIC LOCA	TION:															DIRECT	ION: EB, WB
CITY/STATE: SI	nasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Kange	15	20	25	30	35	40	45	50	55	60	65	70	75	999	TOTAL	Pace Speed	Pace
Grand Total	190	0	20	101	198	383	1524	2870	1785	427	80	10	3	0	7501	46 55	4655
Percent	2.5%	0%	0.3%	1.3%	2.6%	5%	20.1%	37.8%	23.5%	5.6%	1.1%	0.1%	0%	0%	7591	46-55	4655
Cumulative Percent	2.5%	2.5%	2.8%	4.1%	6.7%	11.8%	31.8%	69.6%	93.1%	98.8%	99.8%	100%	100%	100%			
ADT 2530															Mea	an Speed(Avera Med	ntile: 53 MPH age): 47 MPH dian: 47 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB, WB DATE: Apr 4 2023

IIY/STATE: Sh		Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 4 202
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	9	0	0	1	0	0	2	0	0	0	0	0	0	12
01:00 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	1	4
02:00 AM	0	4	0	0	1	0	0	1	0	0	0	0	0	0	6
03:00 AM	0	8	2	0	1	0	0	1	0	0	0	0	0	0	12
04:00 AM	0	11	2	0	1	0	0	2	1	0	1	0	0	1	19
05:00 AM	0	28	8	0	2	1	0	6	1	0	1	0	0	3	50
06:00 AM	0	48	21	0	3	0	0	7	0	0	0	0	0	1	80
07:00 AM	2	111	20	0	3	1	0	10	1	0	1	0	0	4	153
08:00 AM	0	106	31	0	3	0	0	14	1	0	0	0	0	0	155
09:00 AM	0	130	30	0	9	0	1	10	0	0	2	0	0	3	185
10:00 AM	1	109	34	0	6	1	0	14	1	0	3	0	1	9	179
11:00 AM	1	118	26	0	13	0	0	11	0	0	2	0	0	3	174
12:00 PM	1	106	24	0	11	1	0	14	1	0	5	0	0	6	169
01:00 PM	0	127	25	0	13	0	0	15	2	0	2	0	0	4	188
02:00 PM	0	124	24	1	13	0	0	10	0	0	2	0	1	3	178
03:00 PM	0	125	30	0	7	0	0	5	3	0	1	0	0	6	177
04:00 PM	0	164	31	0	9	0	0	8	1	0	0	0	0	3	216
05:00 PM	0	142	16	0	3	0	0	6	0	0	2	0	0	3	172
06:00 PM	0	93	15	0	2	0	0	4	0	0	0	0	0	2	116
07:00 PM	0	57	13	0	4	0	0	1	0	0	1	0	0	1	77
08:00 PM	0	43	4	0	1	0	0	3	0	0	0	0	0	0	51
09:00 PM	1	26	2	0	1	1	0	3	0	0	0	0	0	0	34
10:00 PM	0	15	0	0	0	0	0	1	0	0	0	0	0	1	17
11:00 PM	0	7	2	0	1	0	0	1	0	0	2	0	0	1	14
Day Total	6	1714	360	1	108	5	1	149	12	0	25	0	2	55	2420
Percent	0.2%	70.3%	14.8%	0%	4.4%	0.2%	0%	6.1%	0.5%	0%	1%	0%	0.1%	2.3%	2438
ADT 2438															
AM Peak	7:00 AM	9:00 AM	10:00 AM	12:00 AM	11:00 AM	5:00 AM	9:00 AM	8:00 AM	4:00 AM	12:00 AM	10:00 AM	12:00 AM	10:00 AM	10:00 AM	9:00 AI
Volume	2	130	34	0	13	1	1	14	1	0	3	0	1	9	185
PM Peak	12:00 PM	4:00 PM	4:00 PM	2:00 PM	1:00 PM	12:00 PM	12:00 PM	1:00 PM	3:00 PM	12:00 PM	12:00 PM	12:00 PM	2:00 PM	12:00 PM	4:00 PI
Volume	1	164	31	1	13	1	0	15	3	0	5	0	1	6	216
mments:															

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124307 DIRECTION: EB, WB DATE: Apr 5 2023

1	asta, CA	C 0	2.4.1-		2.4.1.6	2.4.1-	4.4.1-	.E.A.1	F A 1-		.C.A.I	C A I	. C A .		Apr 5 202
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	2	5	1	0	1	2	0	0	0	0	0	0	0	0	11
01:00 AM	0	2	0	0	0	0	0	1	0	0	0	0	0	0	3
02:00 AM	0	3	1	0	1	0	0	2	0	0	1	0	0	0	8
03:00 AM	0	4	1	0	0	0	0	1	0	0	0	0	0	0	6
04:00 AM	0	13	1	0	1	0	0	2	0	0	0	0	0	0	17
05:00 AM	0	33	6	0	5	0	0	7	0	0	1	0	0	2	54
06:00 AM	0	54	25	0	6	0	0	6	1	0	0	0	0	1	93
07:00 AM	1	88	34	0	4	0	0	5	3	0	0	0	0	4	139
08:00 AM	2	123	37	0	14	2	0	8	0	0	0	0	0	6	192
09:00 AM	1	115	33	0	6	1	0	13	1	0	6	0	0	2	178
10:00 AM	1	135	24	0	10	1	0	14	0	0	5	0	0	2	192
11:00 AM	0	122	22	0	7	1	0	10	1	0	3	0	0	6	172
12:00 PM	1	121	22	0	10	1	0	12	1	0	3	0	0	2	173
01:00 PM	0	121	26	0	17	0	0	7	1	0	1	0	0	7	180
02:00 PM	0	130	20	0	4	0	0	14	1	0	0	0	0	6	175
03:00 PM	0	145	33	0	9	0	0	10	0	0	2	0	0	2	201
04:00 PM	1	167	28	0	5	0	0	9	0	0	2	0	0	6	218
05:00 PM	0	138	27	0	9	0	0	6	0	0	1	0	0	3	184
06:00 PM	0	92	27	0	5	0	0	5	0	0	0	0	0	3	132
07:00 PM	0	40	8	1	1	0	0	1	0	0	0	0	0	3	54
08:00 PM	0	39	4	0	0	0	0	5	0	0	1	0	0	1	50
09:00 PM	0	27	7	0	1	0	0	3	0	0	2	0	0	0	40
10:00 PM	0	19	2	0	0	0	0	1	1	0	0	0	0	1	24
11:00 PM	0	10	1	0	0	0	0	1	0	0	0	0	0	1	13
Day Total	9	1746	390	1	116	8	0	143	10	0	28	0	0	58	2509
Percent	0.4%	69.6%	15.5%	0%	4.6%	0.3%	0%	5.7%	0.4%	0%	1.1%	0%	0%	2.3%	2303
ADT 2509															
	12:00 AM	10:00 AM	8:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	10:00 AM	7:00 AM	12:00 AM	9:00 AM	12:00 AM	12:00 AM	8:00 AM	8:00 A
Volume	2	135	37	0	14	2	0	14	3	0	6	0	0	6	192
PM Peak	12:00 PM	4:00 PM	3:00 PM	7:00 PM	1:00 PM	12:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	1:00 PM	4:00 PI
I IVI I CUR															

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124307 DIRECTION: EB, WB

CITY/STATE: Sh	iasta, CA													DATE:	Apr 6 2023
Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
Start Time	DIKES	Trailers	Long	buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	iotai
12:00 AM	0	14	2	0	1	0	0	1	0	0	0	0	0	0	18
01:00 AM	0	3	1	0	0	0	0	0	0	0	0	0	0	0	4
02:00 AM	0	6	4	0	1	0	0	2	0	0	0	0	0	1	14
03:00 AM	0	9	7	0	4	0	0	2	0	0	0	0	0	1	23
04:00 AM	0	13	2	0	2	0	0	5	0	0	0	0	0	0	22
05:00 AM	0	29	8	0	5	0	0	8	0	0	3	0	0	2	55
06:00 AM	1	41	29	0	11	0	0	9	0	0	0	0	0	2	93
07:00 AM	0	94	28	0	10	0	0	14	0	0	0	0	0	5	151
08:00 AM	0	120	34	0	13	0	0	17	0	0	0	0	0	5	189
09:00 AM	1	132	28	0	13	0	0	14	0	0	1	0	0	4	193
10:00 AM	1	131	28	1	14	2	0	16	1	0	2	0	0	4	200
11:00 AM	1	136	25	0	11	0	0	6	1	0	4	0	0	5	189
12:00 PM	0	121	29	0	13	0	0	14	2	0	1	0	0	3	183
01:00 PM	1	130	28	0	18	1	0	13	0	0	2	0	0	8	201
02:00 PM	0	149	23	0	8	0	0	5	0	0	2	0	0	6	193
03:00 PM	1	172	36	0	11	1	0	14	0	0	3	0	0	6	244
04:00 PM	0	147	37	0	10	0	0	11	0	0	4	0	0	7	216
05:00 PM	0	129	25	0	3	0	0	4	0	0	1	0	0	5	167
06:00 PM	1	83	18	0	3	1	0	2	0	0	1	0	0	2	111
07:00 PM	1	47	10	0	4	0	0	4	0	0	0	0	0	2	68
08:00 PM	0	38	6	0	3	0	0	1	0	0	0	0	0	2	50
09:00 PM	1	24	5	0	2	0	0	0	0	0	0	0	0	0	32
10:00 PM	0	14	4	0	2	0	0	1	0	0	0	0	0	0	21
11:00 PM	0	6	0	0	1	0	0	0	0	0	0	0	0	0	7
Day Total	9	1788	417	1	163	5	0	163	4	0	24	0	0	70	2644
Percent	0.3%	67.6%	15.8%	0%	6.2%	0.2%	0%	6.2%	0.2%	0%	0.9%	0%	0%	2.6%	2044
ADT 2644															
AM Peak	6:00 AM	11:00 AM	8:00 AM	10:00 AM	10:00 AM	10:00 AM	12:00 AM	8:00 AM	10:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	7:00 AM	10:00 AN
Volume	1	136	34	1	14	2	0	17	1	0	4	0	0	5	200
PM Peak	1:00 PM	3:00 PM	4:00 PM	12:00 PM	1:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	1:00 PM	3:00 PN
Volume	1	172	37	0	18	1	0	14	2	0	4	0	0	8	244
omments:															
		222 4:55 014												,, .	

LOCATION: EB SR 299 east of Supan Rd QC JOB #: 16124307 SPECIFIC LOCATION: **DIRECTION: EB, WB** CITY/STATE: Shasta, CA DATE: Apr 4 2023 - Apr 6 2023 Cars & 2 Axle <5 Axl 2 Axle 6 3 Axle 4 Axle 5 Axle >6 Axl <6 Axl 6 Axle >6 Axl Not Start Time **Bikes Buses** Total Trailers Long Tire Single Single Double Double **Double** Multi Multi Classed Multi **Grand Total** 24 5248 1167 3 387 18 1 455 26 0 77 0 2 183 7591 0% 0% Percent 0.3% 69.1% 15.4% 0% 5.1% 0.2% 6% 0.3% 0% 1% 0% 2.4% ADT 2530

Report generated on 4/11/2023 4:55 PM

Comments:

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net)

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: EB, WB DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		12	11	18		14			14	
01:00 AM		4	3	4		4			4	
02:00 AM		6	8	14		9			9	
03:00 AM		12	6	23		14			14	
04:00 AM		19	17	22		19			19	
05:00 AM		50	54	55		53			53	
06:00 AM		80	93	93		89			89	
07:00 AM		153	139	151		148			148	
08:00 AM		155	192	189		179			179	
09:00 AM		185	178	193		185			185	
10:00 AM		179	192	200		190			190	
11:00 AM		174	172	189		178			178	
12:00 PM		169	173	183		175			175	
01:00 PM		188	180	201		190			190	
02:00 PM		178	175	193		182			182	
03:00 PM		177	201	244		207			207	
04:00 PM		216	218	216		217			217	
05:00 PM		172	184	167		174			174	
06:00 PM		116	132	111		120		In.	120	
07:00 PM		77	54	68		66	\sim \sim \sim	411	66	
08:00 PM		51	50	50		50			50	
09:00 PM		34	40	32		35			35	
10:00 PM		17	24	21		21	DMM	UNII	21	
11:00 PM		14	13	7		11			11	
Day Total		2438	2509	2644		2530			2530	
% Weekday Average		96.4%	99.2%	104.5%						
% Week Average		96.4%	99.2%	104.5%		100%				
AM Peak		9:00 AM	8:00 AM	10:00 AM		10:00 AM			10:00 AM	
Volume		185	192	200		190			190	
PM Peak		4:00 PM	4:00 PM	3:00 PM		4:00 PM			4:00 PM	
Volume		216	218	244		217			217	

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 4 2023

CITY/STATE:	Shasta,	CA														DATE: Ap	or 4 202
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	race speed	in Pace
12:00 AM	0	0	0	0	0	0	2	2	0	0	0	0	0	0	4	41-50	4
01:00 AM	1	0	0	0	0	0	0	1	1	0	0	0	0	0	3	46-55	2
02:00 AM	0	0	0	0	0	1	1	1	0	0	0	0	0	0	3	36-45	2
03:00 AM	0	0	0	0	0	0	1	4	3	0	1	0	0	0	9	46-55	7
04:00 AM	0	0	0	0	0	0	3	4	1	0	2	0	0	0	10	41-50	7
05:00 AM	1	0	2	0	1	0	4	9	5	1	0	0	0	0	23	46-55	14
06:00 AM	1	0	0	0	0	0	5	14	11	1	1	0	0	0	33	46-55	25
07:00 AM	2	0	0	0	0	0	6	34	23	6	1	0	0	0	72	46-55	57
08:00 AM	0	0	0	0	0	1	14	40	27	4	0	0	0	0	86	46-55	67
09:00 AM	0	0	0	0	0	0	17	61	17	5	0	0	0	0	100	45-54	78
10:00 AM	3	0	0	0	1	1	13	54	23	4	0	1	0	0	100	46-55	77
11:00 AM	3	0	0	0	0	2	20	28	35	6	1	0	0	0	95	46-55	63
12:00 PM	1	0	0	0	1	1	8	45	23	8	0	0	0	0	87	46-55	68
01:00 PM	3	0	0	0	0	3	25	48	25	4	1	0	0	0	109	41-50	73
02:00 PM	1	0	0	0	3	4	13	42	28	3	0	0	0	0	94	46-55	70
03:00 PM	2	0	0	0	1	0	11	36	25	9	2	0	0	0	86	46-55	61
04:00 PM	2	0	0	0	0	3	9	48	18	7	0	0	0	0	87	46-55	66
05:00 PM	3	0	0	1	0	1	13	41	16	8	2	0	0	0	85	46-55	57
06:00 PM	1	0	0	0	0	2	6	16	16	6	0	0	0	0	47	46-55	32
07:00 PM	1	0	0	0	0	2	2	19	12	4	0	0	0	0	40	46-55	31
08:00 PM	0	0	0	0	0	2	3	7	6	0	1	0	0	0	19	46-55	13
09:00 PM	0	0	0	0	0	1	1	2	0	1	0	0	0	0	5	41-50	3
10:00 PM	1	0	0	0	0	1	2	1	1	1	0	0	0	0	7	41-50	3
11:00 PM	1	0	0	0	0	1	3	1	1	0	0	0	0	0	7	38-47	4
Day Total	27	0	2	1	7	26	182	558	317	78	12	1	0	0	1211	46-55	875
Percent	2.2%	0%	0.2%	0.1%	0.6%	2.1%	15%	46.1%	26.2%	6.4%	1%	0.1%	0%	0%			
AM Peak		12:00 AM		12:00 AM	5:00 AM	11:00 AM		9:00 AM	11:00 AM		4:00 AM	10:00 AM			9:00 AM		
Volume	3	0	2	0	1	2	20	61	35	6	2	1	0	0	100		
PM Peak	1:00 PM	12:00 PM			2:00 PM	2:00 PM	1:00 PM	1:00 PM	2:00 PM	3:00 PM		12:00 PM			1:00 PM		
Volume	3	0	0	1	3	4	25	48	28	9	2	0	0	0	109		

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

CITY/STATE:	Shasta,															DATE: Ap	pr 5 202
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	0	1	3	1	0	0	0	0	0	5	43-52	4
01:00 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	36-45	1
02:00 AM	0	0	0	0	0	1	1	0	0	0	0	0	0	0	2	36-45	2
03:00 AM	0	0	0	0	0	0	1	1	0	1	0	0	0	0	3	41-50	2
04:00 AM	0	0	0	0	0	0	2	4	1	1	0	0	0	0	8	41-50	6
05:00 AM	0	0	0	0	2	2	2	10	9	1	3	1	0	0	30	46-55	19
06:00 AM	0	0	0	0	0	0	2	22	16	4	0	0	0	0	44	46-55	38
07:00 AM	3	0	0	0	0	0	5	24	26	10	3	0	0	0	71	46-55	50
08:00 AM	1	0	0	0	0	3	8	36	46	11	3	1	1	0	110	46-55	82
09:00 AM	1	0	0	1	0	3	16	42	27	7	0	0	1	0	98	46-55	69
10:00 AM	0	0	0	0	2	0	21	49	28	1	0	0	0	0	101	46-55	77
11:00 AM	3	0	0	0	0	2	18	39	23	10	1	0	0	0	96	46-55	62
12:00 PM	1	0	0	0	0	10	19	32	34	5	0	0	0	0	101	46-55	66
01:00 PM	3	0	2	0	0	0	21	32	33	4	0	0	0	0	95	46-55	65
02:00 PM	3	0	0	0	1	2	20	29	22	5	0	0	0	0	82	46-55	51
03:00 PM	1	0	0	0	1	3	20	43	23	3	0	1	0	0	95	46-55	66
04:00 PM	3	0	0	0	1	2	13	44	17	2	0	0	0	0	82	46-55	61
05:00 PM	2	0	0	0	2	1	15	37	23	7	1	0	0	0	88	46-55	60
06:00 PM	0	0	0	0	2	0	10	18	20	5	1	0	0	0	56	46-55	38
07:00 PM	2	0	0	0	0	1	2	9	5	1	1	0	0	0	21	46-55	14
08:00 PM	0	0	0	0	0	4	2	3	5	0	0	0	0	0	14	46-55	8
09:00 PM	0	0	0	0	0	2	1	9	0	0	0	0	0	0	12	41-50	10
10:00 PM	0	0	0	0	0	0	2	2	1	2	0	0	0	0	7	41-50	4
11:00 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	26-35	1
Day Total	23	0	2	1	12	36	203	488	360	80	13	3	2	0	4222	46.55	0.40
Percent	1.9%	0%	0.2%	0.1%	1%	2.9%	16.6%	39.9%	29.4%	6.5%	1.1%	0.2%	0.2%	0%	1223	46-55	848
AM Peak Volume	7:00 AM 3	12:00 AM 0	12:00 AM 0	9:00 AM 1	5:00 AM 2	8:00 AM 3	10:00 AM 21	10:00 AM 49	8:00 AM 46	8:00 AM 11	5:00 AM 3	5:00 AM 1	8:00 AM 1	12:00 AM 0	8:00 AM 110		
PM Peak Volume	1:00 PM 3	12:00 PM 0	1:00 PM 2	12:00 PM 0	5:00 PM 2	12:00 PM 10	1:00 PM 21	4:00 PM 44	12:00 PM 34	5:00 PM 7	5:00 PM 1	3:00 PM 1	12:00 PM 0	12:00 PM 0	12:00 PM 101		

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

OATE: Apr 6 202

Shasta,	CA														DATE: Ap	or 6 202
1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
e 15	20	25	30	35	40	45	45 50	55	60	65	70	75	999	TOTAL	Pace Speed	in Pace
0	0	0	0	0	1	2	4	1	0	0	0	0	0	8	41-50	6
0	0	0	0	0	0	0	1	2	0	0	0	0	0	3	46-55	3
1	0	0	0	0	0	3	2	0	1	0	0	0	0	7	41-50	5
0	0	0	0	0	0	0	2	6	4	1	0	0	0	13	51-60	10
0	0	0	0	0	0	0	2	2	3	1	0	0	0	8	51-60	5
0	0	0	0	0	1	7	6	9	2	3	0	0	0	28	46-55	15
0	0	0	0	0	0	2	15	20	5	0	0	0	0	42	46-55	35
3	0	0	0	0	0	3	21	32	11	3	1	1	0	75	46-55	53
2	0	0	0	0	0	12	37	41	12	3	0	0	0	107	46-55	78
3	0	0	0	0	1	15	43	32	14	0	0	0	0	108	46-55	75
3	0	0	0	3	7	15	53	29	5	1	0	0	0	116	46-55	82
1	0	0	0	2	1	12	42	32	6	1	0	0	0	97	46-55	74
1	0	0	0	0	0	13	36	31	8	0	0	0	0	89	46-55	67
7	0	0	0	0	3	7	51	37	9	1	1	0	0	116	46-55	88
3	0	0	0	1	2	9	41	31	5	0	1	0	0	93	46-55	72
4	0	0	1	3	0	16	54	43	8	2	0	0	0	131	46-55	97
2	0	0	0	0	3	11	42	26	13	2	1	0	0	100	46-55	68
2	0	0	0	0	0	12	25	29	12	4	0	0	0	84	46-55	54
2	0	0	0	0	2	5	11	14	2	2	0	0	0	38	46-55	25
1	0	0	0	0	1	7	6	6	6	0	0	0	0	27	41-50	13
1	0	0	0	0	0	4	7	2	1	1	0	0	0	16	41-50	11
0	0	0	0	1	4	5	2	1	1	0	0	0	0	14	36-45	9
0	0	0	0	0	0	5	3	0	0	0	0	0	0	8	41-50	8
0	0	0	1	0	0	0	1	0	1	0	0	0	0	3	21-30	1
36	0	0	2	10	26	165	507	426	129	25	4	1	0	1331	46-55	933
2.7%	0%	0%	0.2%	0.8%	2%	12.4%	38.1%	32%	9.7%	1.9%	0.3%	0.1%	0%	1331	10 33	333
7:00 AM	12:00 AM	12:00 AM	12:00 AM	10:00 AM	10:00 AM	9:00 AM	10:00 AM	8:00 AM	9:00 AM	5:00 AM	7:00 AM	7:00 AM	12:00 AM	10:00 AM		
3	0	0	0	3	7	15	53	41	14	3	1	1	0	116		
1:00 PM	12:00 PM	12:00 PM	3:00 PM	3:00 PM	9:00 PM	3:00 PM	3:00 PM	3:00 PM	4:00 PM	5:00 PM	1:00 PM	12:00 PM	12:00 PM	3:00 PM		
7	0	0	1	3	4	16	54	43	13	4	1	0	0	131		
	1 15 0 0 0 1 0 0 0 3 2 3 3 1 1 7 3 4 2 2 2 1 1 0 0 0 0 3 3 2 7 3 3 4 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 20 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 1 0 0 3 0 0 1 0 0 7 0 0 3 0 0 4 0 0 2 0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 36 0 2.7% 0%	1 16 21 15 20 25 0 0 0 0 0 0 0 1 0 3 0 0 3 0 0 1 0 0 1 0 0 3 0 0 1 0 0 7 0 0 3 0 0 1 0 0 7 0 0 3 0 0 2 0 0 3 0 0 4 0	1 16 21 26 15 20 25 30 0 0 0 0 0 0 0 0 1 0 3 0 0 0 3 0 0 0 3 0 0 0 1 0 0 0 3 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 1 0 0 0 1 0	1 16 21 26 31 15 20 25 30 35 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	1 16 21 26 31 36 15 20 25 30 35 40 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0	1 16 21 26 31 36 41 15 20 25 30 35 40 45 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 15 3 0 0 0 0 12 15 3 0 0 0 0 12 15 1 12 0 0 0 0 1	1 16 21 26 31 36 41 46 15 20 25 30 35 40 45 50 0 0 0 0 0 0 0 0 1 2 4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	1 16 21 26 31 36 41 46 51 15 20 25 30 35 40 45 50 55 0 0 0 0 0 0 0 0 1 2 4 1 2 4 1 0 0 0 0 0 0 0 0 1 2 2 1 0 0 0 0 0 0 0	1 16 21 26 31 36 41 46 51 56 15 60 15 20 25 30 35 40 45 50 55 60 10 0 0 0 0 0 1 2 4 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 0 1 0 0 1 0 0 0 0	1 16 21 26 31 36 41 46 51 56 61 15 20 25 30 35 40 45 50 55 60 60 65 60 60 60 60 60 60 60 60 60 60 60 60 60	1 16 21 26 31 36 41 46 51 56 61 66 15 20 25 30 35 40 45 50 55 60 65 70 0 0 0 0 0 0 0 1 2 4 1 0 0 0 0 0 1 2 0 0 1 0 0 0 1 0 0 0 0 0	1 16 21 26 31 36 41 46 51 56 61 66 71 15 20 25 30 35 40 45 50 55 60 65 70 75 0 0 0 0 0 0 0 0 1 2 4 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 1 0 0 0 0 0 0 0 0 0 0 2 15 20 5 0 0 0 3 0 0 0 0 0 0 0 1 7 6 9 2 3 0 0 0 0 0 0 0 0 0 0 2 15 20 5 0 0 0 0 3 0 0 0 0 0 0 1 7 6 9 2 3 0 0 0 0 0 0 0 0 0 0 1 7 6 9 2 3 0 0 3 0 0 0 0 0 0 1 2 37 41 12 3 1 1 2 0 0 0 0 0 0 1 2 37 41 12 3 0 0 0 3 0 0 0 0 0 0 1 2 37 41 12 3 0 0 3 0 0 0 0 0 1 1 5 43 32 14 0 0 0 0 3 0 0 0 0 0 1 1 5 43 32 14 0 0 0 0 3 0 0 0 0 0 3 7 15 53 29 5 1 0 0 0 1 0 0 0 0 0 0 3 7 15 53 29 5 1 0 0 0 1 0 0 0 0 0 0 0 1 2 2 1 12 42 32 6 1 0 0 0 1 0 0 0 0 0 0 0 0 1 2 2 1 1 1 2 42 32 6 1 0 0 1 0 0 0 0 0 0 0 0 1 2 2 1 1 1 2 42 32 6 1 0 0 1 0 0 0 0 0 0 0 0 1 2 2 9 41 31 5 0 1 1 0 3 0 0 0 0 0 0 0 3 7 5 5 3 41 3 5 0 1 1 0 2 0 0 0 0 0 0 0 1 2 2 9 4 1 31 5 0 1 1 0 3 0 0 0 0 0 0 0 3 7 5 6 6 6 6 6 0 0 0 3 0 0 0 0 0 1 1 2 2 9 4 1 31 5 0 1 1 0 4 0 0 0 1 3 0 16 54 43 8 2 0 0 2 0 0 0 0 0 0 0 3 1 7 6 6 6 6 0 0 0 2 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 3 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 3 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 3 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 3 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 3 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 3 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 3 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 3 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0	1 16 21 26 31 36 41 46 51 56 61 66 71 76 15 20 25 30 35 40 45 50 55 60 65 70 75 999 0 0 0 0 0 0 0 1 2 4 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 2 0 0 0 0	1 16 21 26 31 36 41 46 51 56 61 66 71 76 99 Total 15 20 25 30 35 40 45 50 55 60 65 70 75 999 Total 0 0 0 0 0 0 0 1 2 4 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 1 2 4 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 2 4 1 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 2 2 6 4 1 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 2 2 6 4 1 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 2 2 6 4 1 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 2 2 5 3 1 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 1 7 6 6 9 2 3 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 2 15 20 5 0 0 0 0 0 0 28 3 0 0 0 0 0 0 0 0 3 21 32 32 11 33 1 1 0 0 75 2 0 0 0 0 0 0 0 0 12 37 41 12 3 0 0 0 0 107 3 0 0 0 0 0 0 1 1 15 43 32 14 0 0 0 0 0 107 3 0 0 0 0 0 3 7 15 53 29 5 1 0 0 0 0 0 108 3 0 0 0 0 0 3 7 15 53 29 5 1 1 0 0 0 0 0 116 1 0 0 0 0 0 2 1 1 12 42 32 32 6 1 0 0 0 0 0 116 1 0 0 0 0 0 2 1 1 12 42 42 32 6 1 0 0 0 0 0 97 1 0 0 0 0 0 1 3 7 51 37 9 1 1 0 0 0 0 116 3 0 0 0 0 0 0 1 3 7 51 37 9 1 1 0 0 0 0 116 3 0 0 0 0 0 0 1 3 7 51 37 9 1 1 0 0 0 0 0 188 7 0 0 0 0 0 0 3 7 7 51 37 9 1 1 0 0 0 0 13 2 0 0 0 0 0 0 1 3 7 51 37 9 1 1 0 0 0 0 116 3 0 0 0 0 1 3 3 7 51 37 9 1 1 0 0 0 0 13 4 0 0 0 1 3 3 0 16 54 43 8 2 2 0 0 0 0 13 1 0 0 0 0 0 1 3 3 1 4 2 2 2 0 0 0 0 3 84 2 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 3 84 2 0 0 0 0 0 0 1 7 6 6 6 6 6 0 0 0 0 133 3 0 0 0 0 0 1 7 6 6 6 6 6 0 0 0 0 0 38 1 0 0 0 0 0 0 1 7 6 6 6 6 6 0 0 0 0 0 38 1 0 0 0 0 0 1 4 5 5 2 1 1 10 0 0 0 0 38 1 0 0 0 0 0 0 1 4 5 5 2 1 1 10 0 0 0 0 38 1 0 0 0 0 0 0 1 4 5 5 2 1 1 10 0 0 0 0 0 38 1 0 0 0 0 0 0 1 4 5 5 2 1 1 10 0 0 0 0 0 38 1 0 0 0 0 0 0 1 4 5 5 2 1 1 10 0 0 0 0 0 38 1 0 0 0 0 0 0 1 4 5 5 2 1 1 10 0 0 0 0 0 33 1 1 0 0 0 0 0 0 0 1 4 5 5 2 1 1 1 0 0 0 0 0 0 33 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0	1 16 21 26 31 36 41 46 51 56 61 66 71 76 999 Total Pace Speed 15 20 25 30 35 40 45 50 55 60 65 70 75 999 Total Pace Speed 0 0 0 0 0 0 0 0 0 1 2 4 1 0 0 0 0 0 0 0 3 8 11-50 0 0 0 0 0 0 0 0 0 1 2 4 1 0 0 0 0 0 0 0 3 3 4-55 1 0 0 0 0 0 0 0 0 0 0 0 2 4 6 4 1 0 0 0 0 0 0 7 7 11-50 0 0 0 0 0 0 0 0 0 0 0 0 2 2 6 4 1 0 0 0 0 0 0 13 51-60 0 0 0 0 0 0 0 0 0 0 0 2 2 6 4 1 0 0 0 0 0 0 28 46-55 0 0 0 0 0 0 0 0 1 7 6 9 2 3 0 0 0 0 28 46-55 3 0 0 0 0 0 0 0 3 21 132 11 32 11 0 0 0 0 28 46-55 2 0 0 0 0 0 0 0 0 3 21 132 11 3 1 1 0 75 46-55 2 0 0 0 0 0 0 0 0 12 37 41 122 30 0 0 0 0 107 46-55 3 0 0 0 0 0 0 0 1 15 43 32 11 32 11 0 0 0 0 107 46-55 3 0 0 0 0 0 0 0 1 15 5 43 32 11 32 11 0 0 0 0 108 46-55 3 0 0 0 0 0 0 0 1 15 5 33 29 5 1 0 0 0 0 0 108 46-55 1 0 0 0 0 0 2 1 1 12 42 32 6 1 1 0 0 0 0 0 108 46-55 1 0 0 0 0 0 0 2 1 1 12 42 32 6 1 1 0 0 0 0 0 108 46-55 1 0 0 0 0 0 0 0 1 3 7 15 53 29 5 1 0 0 0 0 0 108 46-55 1 0 0 0 0 0 0 0 1 3 7 5 1 37 9 1 1 0 0 0 0 93 46-55 2 0 0 0 0 0 0 0 0 1 3 7 5 1 37 9 1 1 0 0 0 0 93 46-55 2 0 0 0 0 0 0 0 0 1 3 7 5 1 37 9 1 1 0 0 0 16 46-55 3 0 0 0 0 0 0 0 1 3 7 5 1 37 9 1 1 0 0 0 16 46-55 3 0 0 0 0 0 0 0 1 3 7 5 1 37 9 1 1 0 0 0 16 46-55 4 0 0 0 1 1 3 0 16 54 43 8 2 0 0 0 0 0 89 46-55 2 0 0 0 0 0 0 0 1 7 6 6 6 6 0 0 0 0 0 89 46-55 1 0 0 0 0 0 0 0 1 7 6 6 6 6 6 0 0 0 0 0 84 46-55 1 0 0 0 0 0 0 0 1 7 6 6 6 6 6 0 0 0 0 0 84 46-55 1 0 0 0 0 0 0 0 1 7 6 6 6 6 6 0 0 0 0 0 84 46-55 1 0 0 0 0 0 0 1 0 7 6 6 6 6 6 0 0 0 0 0 0 84 46-55 1 0 0 0 0 0 0 1 0 7 6 6 6 6 6 0 0 0 0 0 0 84 46-55 1 0 0 0 0 0 0 1 0 7 6 6 6 6 6 0 0 0 0 0 0 84 46-55 1 0 0 0 0 0 0 0 1 1 7 6 6 6 6 6 0 0 0 0 0 0 84 46-55 1 0 0 0 0 0 0 1 1 7 6 6 6 6 6 0 0 0 0 0 0 84 46-55 1 0 0 0 0 0 0 0 1 1 7 6 6 6 6 6 0 0 0 0 0 0 14 46-55 2 0 0 0 0 0 0 0 1 1 7 6 6 6 6 6 0 0 0 0 0 0 84 41-50 0 0 0 0 0 1 1 0 26 165 507 426 129 25 4 1 0 0 0 0 0 84 41-50 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

LOCATION: EB	SR 299 e	ast of Su	pan Rd													QC JOB	#: 16124307
SPECIFIC LOCA	TION:															DIR	ECTION: WB
CITY/STATE: SI	nasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Range	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	1 ace speed	Pace
Grand Total	86	0	4	4	29	88	550	1553	1103	287	50	8	3	0	3765	46-55	2656
Percent	2.3%	0%	0.1%	0.1%	0.8%	2.3%	14.6%	41.2%	29.3%	7.6%	1.3%	0.2%	0.1%	0%	3703	40-33	2030
Cumulative	2.3%	2.3%	2.4%	2.5%	3.3%	5.6%	20.2%	61.5%	90.8%	98.4%	99.7%	99.9%	100%	100%			
Percent	2.570	2.570	2.470	2.570	3.370	3.070	20.270	01.570	30.070	30.470	33.770	33.370	10070	10070			
ADT 1255															Me	an Speed(Avera Me	ntile: 54 MPH age): 48 MPH dian: 48 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 4 2023

IIY/STATE: Sh	<u> </u>	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 4 202
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	4	0	0	0	0	0	0	0	0	0	0	0	0	4
01:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	1	3
02:00 AM	0	2	0	0	0	0	0	1	0	0	0	0	0	0	3
03:00 AM	0	6	2	0	0	0	0	1	0	0	0	0	0	0	9
04:00 AM	0	6	2	0	1	0	0	0	0	0	1	0	0	0	10
05:00 AM	0	12	5	0	0	1	0	3	0	0	1	0	0	1	23
06:00 AM	0	25	3	0	1	0	0	3	0	0	0	0	0	1	33
07:00 AM	0	60	6	0	0	0	0	3	0	0	1	0	0	2	72
08:00 AM	0	55	21	0	1	0	0	9	0	0	0	0	0	0	86
09:00 AM	0	72	16	0	4	0	1	5	0	0	2	0	0	0	100
10:00 AM	0	67	16	0	3	0	0	7	0	0	3	0	1	3	100
11:00 AM	1	64	14	0	8	0	0	3	0	0	2	0	0	3	95
12:00 PM	0	58	15	0	2	0	0	6	0	0	5	0	0	1	87
01:00 PM	0	74	14	0	9	0	0	9	0	0	2	0	0	1	109
02:00 PM	0	65	13	1	6	0	0	7	0	0	0	0	1	1	94
03:00 PM	0	56	21	0	5	0	0	2	0	0	0	0	0	2	86
04:00 PM	0	61	13	0	7	0	0	3	1	0	0	0	0	2	87
05:00 PM	0	69	6	0	2	0	0	3	0	0	2	0	0	3	85
06:00 PM	0	40	4	0	1	0	0	1	0	0	0	0	0	1	47
07:00 PM	0	27	8	0	3	0	0	0	0	0	1	0	0	1	40
08:00 PM	0	16	0	0	1	0	0	2	0	0	0	0	0	0	19
09:00 PM	0	4	0	0	0	0	0	1	0	0	0	0	0	0	5
10:00 PM	0	5	0	0	0	0	0	1	0	0	0	0	0	1	7
11:00 PM	0	1	1	0	1	0	0	1	0	0	2	0	0	1	7
Day Total	1	851	180	1	55	1	1	71	1	0	22	0	2	25	1211
Percent	0.1%	70.3%	14.9%	0.1%	4.5%	0.1%	0.1%	5.9%	0.1%	0%	1.8%	0%	0.2%	2.1%	1211
ADT 1211															
AM Peak	11:00 AM	9:00 AM	8:00 AM	12:00 AM	11:00 AM	5:00 AM	9:00 AM	8:00 AM	12:00 AM	12:00 AM	10:00 AM	12:00 AM	10:00 AM	10:00 AM	9:00 AI
Volume	1	72	21	0	8	1	1	9	0	0	3	0	1	3	100
PM Peak	12:00 PM	1:00 PM	3:00 PM	2:00 PM	1:00 PM	12:00 PM	12:00 PM	1:00 PM	4:00 PM	12:00 PM	12:00 PM	12:00 PM	2:00 PM	5:00 PM	1:00 PI
Volume	0	74	21	1	9	0	0	9	1	0	5	0	1	3	109
mments:															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 5 2023

CITY/STATE: Sh	iasta, CA	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 5 2023
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	5	0	0	0	0	0	0	0	0	0	0	0	0	5
01:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
02:00 AM	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2
03:00 AM	0	2	0	0	0	0	0	1	0	0	0	0	0	0	3
04:00 AM	0	7	0	0	0	0	0	1	0	0	0	0	0	0	8
05:00 AM	0	19	1	0	4	0	0	5	0	0	1	0	0	0	30
06:00 AM	0	31	10	0	1	0	0	2	0	0	0	0	0	0	44
07:00 AM	0	51	15	0	0	0	0	2	0	0	0	0	0	3	71
08:00 AM	0	73	28	0	3	0	0	5	0	0	0	0	0	1	110
09:00 AM	1	66	18	0	2	0	0	5	0	0	6	0	0	0	98
10:00 AM	0	74	14	0	5	0	0	3	0	0	5	0	0	0	101
11:00 AM	0	70	9	0	4	0	0	7	0	0	3	0	0	3	96
12:00 PM	0	71	13	0	5	0	0	9	0	0	2	0	0	1	101
01:00 PM	0	60	16	0	10	0	0	4	1	0	1	0	0	3	95
02:00 PM	0	58	10	0	0	0	0	11	0	0	0	0	0	3	82
03:00 PM	0	73	12	0	3	0	0	5	0	0	1	0	0	1	95
04:00 PM	1	67	4	0	4	0	0	4	0	0	0	0	0	2	82
05:00 PM	0	64	11	0	5	0	0	5	0	0	1	0	0	2	88
06:00 PM	0	36	14	0	3	0	0	3	0	0	0	0	0	0	56
07:00 PM	0	16	2	0	0	0	0	1	0	0	0	0	0	2	21
08:00 PM	0	9	2	0	0	0	0	2	0	0	1	0	0	0	14
09:00 PM	0	8	0	0	1	0	0	1	0	0	2	0	0	0	12
10:00 PM	0	6	0	0	0	0	0	1	0	0	0	0	0	0	7
11:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
Day Total	2	866	179	0	50	0	0	80	1	0	24	0	0	21	1223
Percent	0.2%	70.8%	14.6%	0%	4.1%	0%	0%	6.5%	0.1%	0%	2%	0%	0%	1.7%	1225
ADT 1223															
AM Peak	9:00 AM	10:00 AM	8:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	9:00 AM	12:00 AM	12:00 AM	7:00 AM	8:00 AM
Volume	1	74	28	0	5	0	0	7	0	0	6	0	0	3	110
PM Peak	4:00 PM	3:00 PM	1:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	2:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM
Volume	1	73	16	0	10	0	0	11	1	0	2	0	0	3	101
omments:															
		222 4:55 DM											- 110/1-44		

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 6 2023

Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
		Trailers	Long		Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	
12:00 AM	0	6	1	0	0	0	0	1	0	0	0	0	0	0	8
01:00 AM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
02:00 AM	0	2	2	0	1	0	0	1	0	0	0	0	0	1	7
03:00 AM	0	4	4	0	3	0	0	2	0	0	0	0	0	0	13
04:00 AM	0	6	0	0	1	0	0	1	0	0	0	0	0	0	8
05:00 AM	0	17	6	0	2	0	0	2	0	0	1	0	0	0	28
06:00 AM	0	24	7	0	6	0	0	5	0	0	0	0	0	0	42
07:00 AM	0	50	12	0	3	0	0	7	0	0	0	0	0	3	75
08:00 AM	0	75	15	0	8	0	0	7	0	0	0	0	0	2	107
09:00 AM	1	78	15	0	6	0	0	5	0	0	1	0	0	2	108
10:00 AM	0	79	16	0	9	0	0	7	0	0	2	0	0	3	116
11:00 AM	0	74	11	0	6	0	0	2	0	0	3	0	0	1	97
12:00 PM	0	62	13	0	6	0	0	6	0	0	1	0	0	1	89
01:00 PM	0	77	12	0	8	0	0	10	0	0	2	0	0	7	116
02:00 PM	0	68	13	0	4	0	0	4	0	0	1	0	0	3	93
03:00 PM	0	91	16	0	6	0	0	11	0	0	3	0	0	4	131
04:00 PM	0	65	16	0	5	0	0	8	0	0	4	0	0	2	100
05:00 PM	0	67	10	0	2	0	0	2	0	0	1	0	0	2	84
06:00 PM	0	27	6	0	1	0	0	1	0	0	1	0	0	2	38
07:00 PM	0	16	4	0	2	0	0	4	0	0	0	0	0	1	27
08:00 PM	0	11	1	0	2	0	0	1	0	0	0	0	0	1	16
09:00 PM	0	12	1	0	1	0	0	0	0	0	0	0	0	0	14
10:00 PM	0	6	0	0	2	0	0	0	0	0	0	0	0	0	8
11:00 PM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3
Day Total	1	922	182	0	84	0	0	87	0	0	20	0	0	35	1331
Percent	0.1%	69.3%	13.7%	0%	6.3%	0%	0%	6.5%	0%	0%	1.5%	0%	0%	2.6%	1551
ADT 1331															
AM Peak	9:00 AM	10:00 AM	10:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	7:00 AM	12:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	7:00 AM	10:00 AN
Volume	1	79	16	0	9	0	0	7	0	0	3	0	0	3	116
PM Peak	12:00 PM	3:00 PM	3:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	3:00 PM			4:00 PM	12:00 PM	12:00 PM	1:00 PM	3:00 PM
Volume	0	91	16	0	8	0	0	11	0	0	4	0	0	7	131
omments:	-			-	-	-	-		-		-			-	

LOCATION: EB S		of Supan Ro	d											-	# : 16124307
SPECIFIC LOCAT	-														ECTION: WB
CITY/STATE: Sha	ista, CA												DATE:	4pr 4 2023 -	- Apr 6 2023
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
Grand Total	4	2639	541	1	189	1	1	238	2	0	66	0	2	81	3765
Percent	0.1%	70.1%	14.4%	0%	5%	0%	0%	6.3%	0.1%	0%	1.8%	0%	0.1%	2.2%	3703
ADT 1255															
Comments:															

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124307 DIRECTION: WB

DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		4	5 Apr 23	8 8		6			6	
01:00 AM		3	1	3		2			2	
02:00 AM		3	2	7		4			4	
03:00 AM		9	3	13		8			8	
04:00 AM		10	8	8		9			9	
05:00 AM		23	30	28		27			27	
06:00 AM		33	44	42		40			40	
07:00 AM		72	71	75		73			73	
08:00 AM		86	110	107		101	-		101	
09:00 AM		100	98	108		102			102	
10:00 AM		100	101	116		106			106	
11:00 AM		95	96	97		96			96	
12:00 PM		87	101	89		92			92	
01:00 PM		109	95	116		107	-0.		107	
02:00 PM		94	82	93		90			90	
03:00 PM		86	95	131		104			104	
04:00 PM		87	82	100		90			90	
05:00 PM		85	88	84		86			86	
06:00 PM		47	56	38		47		In.	47	
07:00 PM		40	21	27		29	\sim	411	29	
08:00 PM		19	14	16		16			16	
09:00 PM		5	12	14		10		1.10.600	10	
10:00 PM		7	7	8		7 7	DIVIN	UNII	7	
11:00 PM		7	1	3		4			4	
Day Total		1211	1223	1331		1256			1256	
% Weekday Average		96.4%	97.4%	106%						
% Week Average		96.4%	97.4%	106%		100%				
AM Peak		9:00 AM	8:00 AM	10:00 AM		10:00 AM			10:00 AM	
Volume		100	110	116		106			106	
PM Peak		1:00 PM	12:00 PM	3:00 PM		1:00 PM			1:00 PM	
Volume		109	101	131		107			107	

SPECIFIC LOCATION:

QC JOB #: 16124308 **DIRECTION: EB**

CITY/STATE:																DATE: Ap	,
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	2	2	4	0	0	0	0	0	0	8	41-50	6
01:00 AM	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	46-55	2
02:00 AM	0	0	0	0	0	0	1	1	1	0	0	0	0	0	3	41-50	2
03:00 AM	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	46-55	2
04:00 AM	1	0	0	0	0	1	0	5	1	1	0	0	0	0	9	46-55	6
05:00 AM	0	0	0	0	1	5	7	10	1	2	0	0	0	0	26	41-50	17
06:00 AM	0	0	0	0	0	2	15	21	7	4	1	0	0	0	50	41-50	36
07:00 AM	1	0	0	0	6	9	16	32	10	1	0	0	0	0	75	41-50	48
08:00 AM	1	0	0	0	0	1	22	33	17	4	0	0	0	0	78	41-50	55
09:00 AM	1	0	0	0	0	5	25	32	16	3	0	0	0	0	82	41-50	57
10:00 AM	4	0	0	0	0	5	26	25	6	2	0	0	0	0	68	41-50	51
11:00 AM	1	0	0	0	1	13	19	37	16	6	1	0	0	0	94	41-50	56
12:00 PM	0	0	0	0	2	9	15	27	16	3	0	0	0	0	72	46-55	43
01:00 PM	1	0	0	0	0	10	25	30	13	5	0	0	0	0	84	41-50	55
02:00 PM	3	0	0	0	0	1	15	30	25	4	0	0	0	0	78	46-55	55
03:00 PM	4	0	0	0	0	4	15	25	41	6	2	0	0	0	97	46-55	66
04:00 PM	3	0	0	0	0	1	29	65	21	4	1	1	0	0	125	41-50	94
05:00 PM	2	0	0	0	0	1	20	40	25	2	0	0	0	0	90	46-55	65
06:00 PM	2	0	0	0	0	0	16	23	24	4	0	0	0	0	69	46-55	47
07:00 PM	0	0	0	0	0	0	10	13	9	1	1	0	0	0	34	41-50	23
08:00 PM	0	0	0	0	1	2	12	13	4	0	0	0	0	0	32	41-50	25
09:00 PM	0	0	0	1	1	5	8	7	3	2	1	0	0	0	28	41-50	15
10:00 PM	0	0	0	0	0	0	2	5	1	3	0	0	0	0	11	41-50	7
11:00 PM	0	0	0	0	1	0	2	2	1	1	0	0	0	0	7	41-50	4
Day Total	24	0	0	1	13	76	302	481	261	58	7	1	0	0			
Percent	2%	0%	0%	0.1%	1.1%	6.2%	24.7%	39.3%	21.3%	4.7%	0.6%	0.1%	0%	0%	1224	41-50	783
AM Peak Volume	10:00 AM 4	12:00 AM 0	12:00 AM 0	12:00 AM 0	7:00 AM 6	11:00 AM 13	10:00 AM 26	11:00 AM 37	8:00 AM 17	11:00 AM 6	6:00 AM 1	12:00 AM 0	12:00 AM 0	12:00 AM 0	11:00 AM 94		
PM Peak		12:00 PM		9:00 PM	12:00 PM	1:00 PM	4:00 PM	4:00 PM	3:00 PM	3:00 PM	3:00 PM	4:00 PM	12:00 PM		4:00 PM		
Volume	4	0	0	1	2	100 FW	29	65	41	6	2	1	0	0	125		

SPECIFIC LOCATION:

QC JOB #: 16124308 DIRECTION: EB

Start Time 1 16 15 20 12:00 AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21 26 25 30 0 0 0 1 0 0 0 0 0 0	31 35 0 0 0	36 40 0 1 0	41 45 1 2	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Number in Pace
01:00 AM	0 1 0 0 0 0 0 0	0	1			0	^							III I acc
02:00 AM 0 03:00 AM 0 04:00 AM 0 05:00 AM 2 06:00 AM 1 07:00 AM 2 08:00 AM 1 09:00 AM 2 10:00 AM 1 11:00 AM 0 12:00 PM 0 01:00 PM 1 02:00 PM 0 03:00 PM 2 04:00 PM 3 05:00 PM 3 06:00 PM 5 07:00 PM 2 08:00 PM 0 09:00 PM 1 10:00 PM 0 11:00 PM 1 10:00 PM 0 10:00 PM 0	0 0 0 0 0 0	0		2		-	0	0	0	0	0	2	41-50	2
03:00 AM 0 0 04:00 AM 0 0 05:00 AM 2 0 06:00 AM 1 0 07:00 AM 2 0 08:00 AM 1 0 09:00 AM 2 0 10:00 AM 1 0 11:00 AM 0 0 12:00 PM 0 0 01:00 PM 1 0 02:00 PM 0 0 03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0	0 0 0		0		0	0	0	0	0	0	0	4	36-45	3
04:00 AM 0 0 0 0 05:00 AM 2 0 06:00 AM 1 0 07:00 AM 2 0 08:00 AM 1 0 09:00 AM 1 0 09:00 AM 1 0 01:00 PM 0 0 0 01:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 5 0 07:00 PM 0 0 09:00 PM 1 0 09:00 PM 1 0 00:00 PM 1 0 0 0 00:00 PM 1 0 0 0 0 00:00 PM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0	U	2	2	0	2	0	0	0	0	6	41-50	4
05:00 AM 2 0 06:00 AM 1 0 07:00 AM 2 0 08:00 AM 1 0 09:00 AM 2 0 10:00 AM 1 0 11:00 AM 0 0 12:00 PM 0 0 01:00 PM 1 0 02:00 PM 0 0 03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 1 0 10:00 PM 1 0 10:00 PM 1 0		-	1	0	0	1	1	0	0	0	0	3	51-60	2
06:00 AM 1 0 07:00 AM 2 0 08:00 AM 1 0 09:00 AM 2 0 10:00 AM 1 0 11:00 AM 0 0 12:00 PM 0 0 01:00 PM 1 0 02:00 PM 0 0 03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0	0 0	0	0	3	4	1	0	0	0	0	0	8	41-50	7
07:00 AM 2 0 08:00 AM 1 0 09:00 AM 2 0 10:00 AM 1 0 11:00 AM 0 0 12:00 PM 0 0 01:00 PM 1 0 02:00 PM 0 0 03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0		0	0	6	6	5	2	0	0	0	0	21	41-50	12
08:00 AM 1 0 09:00 AM 2 0 10:00 AM 1 0 11:00 AM 1 0 0 12:00 PM 0 0 0 00:00 PM 2 0 0 00:00 PM 3 0 00:00 PM 3 0 00:00 PM 3 0 00:00 PM 5 0 00:00 PM 5 0 00:00 PM 2 0 00:00 PM 2 0 00:00 PM 0 00:00 PM 0 00:00 PM 1 0 0 0 00:00 PM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0	3	9	20	12	4	0	0	0	0	49	46-55	32
09:00 AM 2 0 10:00 AM 1 0 11:00 AM 0 0 12:00 PM 0 0 01:00 PM 1 0 02:00 PM 0 0 03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 11:00 PM 1 0 Day Total 27 0	0 1	7	7	14	23	10	1	0	0	0	0	65	41-50	37
10:00 AM 1 0 1:00 AM 0 0 12:00 PM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	1	8	16	33	11	4	1	0	0	0	75	41-50	49
11:00 AM 0 0 12:00 PM 0 0 01:00 PM 1 0 02:00 PM 0 0 03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0	0 0	1	2	19	45	14	1	0	0	0	0	84	41-50	64
12:00 PM 0 0 01:00 PM 1 0 02:00 PM 0 0 03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0	1 0	0	3	26	29	29	6	2	0	0	0	97	46-55	58
01:00 PM	0 0	0	8	21	25	11	5	0	0	0	0	70	41-50	46
01:00 PM	0 0	1	3	24	23	12	6	1	0	0	0	70	41-50	47
02:00 PM 0 03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0	0 0	0	0	13	43	17	10	0	0	0	0	84	46-55	60
03:00 PM 2 0 04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0	0 0	0	9	22	43	14	2	0	0	0	0	90	41-50	65
04:00 PM 3 0 05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0	0 0	0	3	33	36	21	7	1	0	0	0	103	41-50	69
05:00 PM 3 0 06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0	0 0	0	6	36	49	30	8	1	0	0	0	133	41-50	85
06:00 PM 5 0 07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0	0 0	0	1	21	36	31	11	1	0	0	0	104	46-55	67
07:00 PM 2 0 08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0	0 0	0	0	7	31	14	8	3	2	0	0	70	46-55	45
08:00 PM 0 0 09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0	0 0	0	0	5	16	9	3	1	0	0	0	36	46-55	25
09:00 PM 1 0 10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0	0 0	1	4	10	17	3	1	0	0	0	0	36	41-50	27
10:00 PM 0 0 11:00 PM 1 0 Day Total 27 0	0 0	1	5	7	6	6	0	0	0	0	0	26	41-50	13
11:00 PM 1 0 Day Total 27 0	0 0	0	3	6	10	2	0	0	0	0	0	21	41-50	16
Day Total 27 0	0 0	1	2	2	3	2	1	0	0	0	0	12	43-52	5
Percent 2.1% 0%	1 2	13	69	305	501	255	83	11	2	0	0			
	0.1% 0.2%	1%	5.4%	24%	39.5%	20.1%	6.5%	0.9%	0.2%	0%	0%	1269	41-50	806
AM Peak 5:00 AM 12:00 AM 10	1000 414 100 414	7,00,414	0.00 AM	10:00 AM	0.00 414	10:00 AM	10:00 AM	10.00 444	12.00 AAA	12.00 AM	12:00 AM	10.00 ANA		
AM Peak 5:00 AM 12:00 AM 10 Volume 2 0	10:00 AM 1:00 AM	7:00 AM 7	8:00 AM 8	10:00 AM 26	9:00 AM 45	10:00 AM 29	10:00 AM 6	10:00 AM 2	12:00 AM 0	12:00 AM 0	12:00 AM 0	10:00 AM 97		
PM Peak 6:00 PM 12:00 PM 12 Volume 5 0	1 1	12:00 PM	2:00 PM 9	4:00 PM 36	4:00 PM 49	5:00 PM 31	5:00 PM 11	6:00 PM 3	6:00 PM 2	12:00 PM 0	12:00 PM 0	4:00 PM 133		

SPECIFIC LOCATION: CITY/STATE: Sharta CA QC JOB #: 16124308 **DIRECTION: EB**

CITY/STATE:	Shasta,															DATE: Ap	or 6 202
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	0	2	6	3	0	0	0	0	0	11	46-55	9
01:00 AM	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	46-55	2
02:00 AM	0	0	0	0	0	0	4	3	0	2	0	0	0	0	9	41-50	7
03:00 AM	0	0	0	0	0	0	2	3	1	1	0	0	0	0	7	41-50	5
04:00 AM	0	0	0	0	0	2	1	3	2	0	1	0	0	0	9	46-55	5
05:00 AM	1	0	0	0	0	2	11	15	5	0	0	0	0	0	34	41-50	26
06:00 AM	0	0	0	0	1	1	14	16	13	2	0	0	0	0	47	41-50	30
07:00 AM	1	0	0	0	0	2	23	25	14	3	0	0	0	0	68	41-50	48
08:00 AM	0	0	0	0	0	1	19	39	17	5	0	0	0	0	81	41-50	58
09:00 AM	1	0	0	0	0	2	18	36	22	4	0	0	0	0	83	46-55	58
10:00 AM	3	0	0	0	0	3	11	29	22	5	2	0	0	0	75	46-55	51
11:00 AM	0	0	0	0	0	8	26	41	14	7	0	0	0	0	96	41-50	67
12:00 PM	1	0	0	0	0	7	23	35	16	6	0	0	0	0	88	41-50	58
01:00 PM	1	0	0	0	2	8	16	41	16	6	1	0	0	0	91	43-52	57
02:00 PM	0	0	0	0	0	5	19	44	27	4	0	0	0	0	99	46-55	71
03:00 PM	2	0	0	0	3	3	27	39	20	9	0	0	0	0	103	41-50	66
04:00 PM	2	0	0	0	0	7	48	40	18	6	1	1	0	0	123	41-50	88
05:00 PM	0	0	0	0	1	2	13	35	24	7	0	0	0	0	82	46-55	59
06:00 PM	0	0	0	0	0	1	14	35	19	2	0	0	0	0	71	46-55	54
07:00 PM	1	0	0	0	0	1	8	21	10	3	1	0	0	0	45	46-55	31
08:00 PM	0	0	0	0	1	5	8	14	3	0	2	0	0	0	33	41-50	22
09:00 PM	0	0	0	0	3	7	5	6	1	0	0	0	0	0	22	36-45	12
10:00 PM	0	0	0	0	0	1	5	1	4	0	0	0	0	0	11	39-48	6
11:00 PM	0	0	0	0	0	1	3	2	0	0	0	0	0	0	6	41-50	5
Day Total	13	0	0	0	11	69	320	530	272	72	8	1	0	0	1296	41-50	850
Percent	1%	0%	0%	0%	0.8%	5.3%	24.7%	40.9%	21%	5.6%	0.6%	0.1%	0%	0%	1290	41-30	830
AM Peak Volume	10:00 AM 3	12:00 AM 0	12:00 AM 0	12:00 AM 0	6:00 AM 1	11:00 AM 8	11:00 AM 26	11:00 AM 41	9:00 AM 22	11:00 AM 7	10:00 AM 2	12:00 AM 0	12:00 AM 0	12:00 AM 0	11:00 AM 96		
PM Peak	3:00 PM					1:00 PM			2:00 PM	3:00 PM			12:00 PM				
Volume	3:00 PM	12:00 PM 0	0 12:00 PIVI	12:00 PM 0	3:00 PM 3	1:00 PM 8	4:00 PM 48	2:00 PM 44	2:00 PM 27	3:00 PM 9	8:00 PM 2	4:00 PM 1	0 PM	0 PM	4:00 PM 123		

LOCATION: WI	3 SR 299	west of B	unch Gra	ss Lookou	ıt Rd												#: 16124308
SPECIFIC LOCA																	RECTION: EB
CITY/STATE: SI	nasta, CA	ı													DAT	ΓΕ: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Kalige	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	Pace Speed	Pace
Grand Total	64	0	1	3	37	214	927	1512	788	213	26	4	0	0	3789	41.50	2439
Percent	1.7%	0%	0%	0.1%	1%	5.6%	24.5%	39.9%	20.8%	5.6%	0.7%	0.1%	0%	0%	3/89	41-50	2439
Cumulative Percent	1.7%	1.7%	1.7%	1.8%	2.8%	8.4%	32.9%	72.8%	93.6%	99.2%	99.9%	100%	100%	100%			
ADT 1263	_														Me	an Speed(Avera	ntile: 52 MPH age): 47 MPH dian: 47 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB

DATE: Apr 4 2023

CITY/STATE: Sr	iasta, CA														Apr 4 2023
Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
		Trailers	Long		Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	
12:00 AM	0	5	0	0	1	0	0	2	0	0	0	0	0	0	8
01:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
02:00 AM	0	2	0	0	1	0	0	0	0	0	0	0	0	0	3
03:00 AM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2
04:00 AM	0	6	0	0	0	0	0	2	0	0	0	0	0	1	9
05:00 AM	0	17	1	0	3	0	0	4	0	0	1	0	0	0	26
06:00 AM	0	26	21	0	1	0	0	2	0	0	0	0	0	0	50
07:00 AM	0	44	15	0	4	0	0	11	0	0	0	0	0	1	75
08:00 AM	0	57	10	0	6	0	0	3	1	0	0	0	0	1	78
09:00 AM	0	55	14	0	7	0	0	5	0	0	0	0	0	1	82
10:00 AM	0	36	16	0	3	0	0	9	0	0	0	0	0	4	68
11:00 AM	0	62	16	0	8	0	0	7	0	0	0	0	0	1	94
12:00 PM	0	48	6	0	7	0	0	10	0	0	1	0	0	0	72
01:00 PM	0	61	11	0	3	0	0	7	1	0	0	0	0	1	84
02:00 PM	0	52	9	0	7	0	0	5	0	0	2	0	0	3	78
03:00 PM	0	70	14	1	1	0	0	3	1	0	3	0	0	4	97
04:00 PM	0	98	18	0	1	0	0	5	0	0	0	0	0	3	125
05:00 PM	0	73	11	0	1	0	0	3	0	0	0	0	0	2	90
06:00 PM	0	53	9	0	2	0	0	3	0	0	0	0	0	2	69
07:00 PM	0	29	4	0	0	0	0	1	0	0	0	0	0	0	34
08:00 PM	0	25	5	0	1	0	0	1	0	0	0	0	0	0	32
09:00 PM	0	23	1	0	1	0	0	3	0	0	0	0	0	0	28
10:00 PM	0	11	0	0	0	0	0	0	0	0	0	0	0	0	11
11:00 PM	0	7	0	0	0	0	0	0	0	0	0	0	0	0	7
Day Total	0	863	181	1	59	0	0	86	3	0	7	0	0	24	1224
Percent	0%	70.5%	14.8%	0.1%	4.8%	0%	0%	7%	0.2%	0%	0.6%	0%	0%	2%	1224
ADT															
1224															
1224															
								<u> </u>							
AM Peak	12:00 AM	11:00 AM	6:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	7:00 AM	8:00 AM	12:00 AM	5:00 AM	12:00 AM	12:00 AM	10:00 AM	11:00 AN
Volume	0	62	21	0	8	0	0	11	1	0	1	0	0	4	94
PM Peak	12:00 PM	4:00 PM	4:00 PM	3:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	3:00 PM	12:00 PM	12:00 PM	3:00 PM	4:00 PM
Volume	0	98	18	1	7	0	0	10	1.00 F W	0	3.00 F W	0	0	4	125
comments:	ŭ	- 30	- 10	-	•	<u> </u>			-	J				•	123
minicino.															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB

DATE: Apr 5 2023

CITY/STATE: Sh	iasta, CA														Apr 5 2023
Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
Start Time	DIKCS	Trailers	Long	Duscs	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	0	1	0	1	0	0	0	0	0	0	0	0	0	2
01:00 AM	0	2	0	0	0	0	0	2	0	0	0	0	0	0	4
02:00 AM	0	4	0	0	1	0	0	1	0	0	0	0	0	0	6
03:00 AM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3
04:00 AM	0	6	1	0	1	0	0	0	0	0	0	0	0	0	8
05:00 AM	0	13	3	0	0	0	0	3	0	0	0	0	0	2	21
06:00 AM	0	21	14	0	6	0	0	6	0	0	1	0	0	1	49
07:00 AM	0	36	17	0	4	0	0	4	0	0	2	0	0	2	65
MA 00:80	0	46	11	0	9	0	0	8	0	0	0	0	0	1	75
09:00 AM	0	55	11	0	8	0	0	7	0	0	1	0	0	2	84
10:00 AM	0	66	12	0	6	1	0	11	0	0	0	0	0	1	97
11:00 AM	0	48	12	0	3	1	0	5	0	0	1	0	0	0	70
12:00 PM	0	50	10	0	4	0	0	5	0	0	1	0	0	0	70
01:00 PM	0	64	8	0	7	0	0	4	0	0	0	0	0	1	84
02:00 PM	0	74	8	0	3	0	0	5	0	0	0	0	0	0	90
03:00 PM	0	74	18	0	5	0	0	4	0	0	0	0	0	2	103
04:00 PM	0	98	20	0	2	0	0	8	0	0	2	0	0	3	133
05:00 PM	0	83	13	0	3	0	0	1	0	0	1	0	0	3	104
06:00 PM	0	53	8	0	2	0	0	2	0	0	0	0	0	5	70
07:00 PM	0	30	3	0	1	0	0	0	0	0	0	0	0	2	36
08:00 PM	0	30	3	0	0	0	0	3	0	0	0	0	0	0	36
09:00 PM	1	19	3	0	0	0	0	2	0	0	0	0	0	1	26
10:00 PM	0	20	1	0	0	0	0	0	0	0	0	0	0	0	21
11:00 PM	0	8	2	0	0	0	0	1	0	0	0	0	0	1	12
Day Total	1	903	179	0	66	2	0	82	0	0	9	0	0	27	1269
Percent	0.1%	71.2%	14.1%	0%	5.2%	0.2%	0%	6.5%	0%	0%	0.7%	0%	0%	2.1%	1203
ADT 1269															
AM Peak	12:00 AM	10:00 AM	7:00 AM	12:00 AM	8:00 AM	10:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	7:00 AM	12:00 AM	12:00 AM	5:00 AM	10:00 AM
Volume	0	66	17	0	9	1	0	11	0	0	2	0	0	2	97
PM Peak	9:00 PM	4:00 PM	4:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	6:00 PM	4:00 PM
		0.0	20	0	7	0	0	0	0	0	2	0	0	-	133
Volume	1	98	20	0	/	0	0	8	0	0	2	0	0	5	155

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB

DATE: Apr 6 2023

SITY/STATE: Sh	iasta, CA		0.4.1		2412	2.1	4 4 1					C A 1			Apr 6 2023
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	10	0	0	1	0	0	0	0	0	0	0	0	0	11
01:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
02:00 AM	0	5	2	0	1	0	0	1	0	0	0	0	0	0	9
03:00 AM	0	4	1	0	1	0	0	1	0	0	0	0	0	0	7
04:00 AM	0	5	2	0	0	0	0	2	0	0	0	0	0	0	9
05:00 AM	0	16	3	0	4	0	0	8	0	0	2	0	0	1	34
06:00 AM	0	22	16	0	4	0	0	5	0	0	0	0	0	0	47
07:00 AM	0	46	10	0	4	0	0	7	0	0	0	0	0	1	68
08:00 AM	0	55	12	0	3	0	0	11	0	0	0	0	0	0	81
09:00 AM	0	57	7	0	8	0	0	10	0	0	0	0	0	1	83
10:00 AM	0	50	6	0	6	0	0	10	0	0	0	0	0	3	75
11:00 AM	0	68	14	0	5	0	0	8	0	0	1	0	0	0	96
12:00 PM	0	59	12	0	7	0	0	8	1	0	0	0	0	1	88
01:00 PM	1	65	12	0	8	0	0	4	0	0	0	0	0	1	91
02:00 PM	0	84	9	1	4	0	0	0	0	0	1	0	0	0	99
03:00 PM	0	80	15	0	4	0	0	2	0	0	0	0	0	2	103
04:00 PM	0	96	16	0	3	0	0	6	0	0	0	0	0	2	123
05:00 PM	0	65	13	0	1	0	0	3	0	0	0	0	0	0	82
06:00 PM	0	61	7	0	2	0	0	1	0	0	0	0	0	0	71
07:00 PM	0	36	4	0	2	0	0	2	0	0	0	0	0	1	45
08:00 PM	1	28	2	0	2	0	0	0	0	0	0	0	0	0	33
09:00 PM	0	17	4	0	1	0	0	0	0	0	0	0	0	0	22
10:00 PM	0	7	3	0	0	0	0	1	0	0	0	0	0	0	11
11:00 PM	0	5	0	0	1	0	0	0	0	0	0	0	0	0	6
Day Total	2	943	170	1	72	0	0	90	1	0	4	0	0	13	1296
Percent	0.2%	72.8%	13.1%	0.1%	5.6%	0%	0%	6.9%	0.1%	0%	0.3%	0%	0%	1%	1290
ADT 1296															
AM Peak	12:00 AM	11:00 AM	6:00 AM	12:00 AM	9:00 AM	12:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	5:00 AM	12:00 AM	12:00 AM	10:00 AM	11:00 A
Volume	0	68	16	0	8	0	0	11	0	0	2	0	0	3	96
PM Peak	1:00 PM	4:00 PM	4:00 PM	2:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	3:00 PM	4:00 PN
Volume	1	96	16	1	8	0	0	8	1	0	1	0	0	2	123
mments:															

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd QC JOB #: 16124308 SPECIFIC LOCATION: **DIRECTION: EB** CITY/STATE: Shasta, CA DATE: Apr 4 2023 - Apr 6 2023 Cars & 2 Axle <5 Axl 2 Axle 6 3 Axle 4 Axle 5 Axle >6 Axl <6 Axl 6 Axle >6 Axl Not Start Time **Bikes Buses** Total Trailers Long Tire Single Double Double Double Multi Multi Classed Single Multi **Grand Total** 3 2709 530 2 197 2 0 258 4 0 20 0 0 64 3789 0% Percent 0.1% 71.5% 14% 0.1% 5.2% 0.1% 0% 6.8% 0.1% 0% 0.5% 0% 1.7% ADT

Comments:

1263

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB

DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		8	2	11		7			7	
01:00 AM		2	4	2		3			3	
02:00 AM		3	6	9		6			6	
03:00 AM		2	3	7		4			4	
04:00 AM		9	8	9		9			9	
05:00 AM		26	21	34		27			27	
06:00 AM		50	49	47		49			49	
07:00 AM		75	65	68		69			69	
08:00 AM		78	75	81		78			78	
09:00 AM		82	84	83		83			83	
10:00 AM		68	97	75		80			80	
11:00 AM		94	70	96		87			87	
12:00 PM		72	70	88		77			77	
01:00 PM		84	84	91		86			86	
02:00 PM		78	90	99		89			89	
03:00 PM		97	103	103		101			101	
04:00 PM		125	133	123		127			127	
05:00 PM		90	104	82		92			92	
06:00 PM		69	70	71		70		In:	70	
07:00 PM		34	36	45		38	\sim \sim \sim	411	38	
08:00 PM		32	36	33		34			34	
09:00 PM		28	26	22		25			25	
10:00 PM		11	21	11		14	DIVIN	UNII	14	
11:00 PM		7	12	6		8			8	
Day Total		1224	1269	1296		1263			1263	
% Weekday Average		96.9%	100.5%	102.6%						
% Week Average		96.9%	100.5%	102.6%		100%				
AM Peak Volume		11:00 AM 94	10:00 AM 97	11:00 AM 96		11:00 AM 87			11:00 AM 87	
PM Peak Volume		4:00 PM 125	4:00 PM 133	4:00 PM 123		4:00 PM 127			4:00 PM 127	

SPECIFIC LOCATION:

CITY/STATE: Shasta CA

QC JOB #: 16124308 DIRECTION: EB, WB DATE: Anr 4 2023

															DATE: Ap	or 4 2023
-	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
)	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	1 acc specu	in Pac
	0	0	0	0	3	2	5	0	0	0	0	0	0	10	41-50	7
	0	0	0	0	0	0	2	3	0	0	0	0	0	5	46-55	5
	0	0	0	0	2	4	2	1	0	0	0	0	0	9	41-50	6
	0	0	0	0	0	0	3	4	1	0	0	0	0	9	46-55	7
	0	0	0	2	2	1	7	2	2	1	0	0	0	18	46-55	9
	0	2	0	1	6	13	22	5	4	0	0	0	0	53	41-50	35
	0	0	0	0	3	24	37	11	8	1	0	0	0	85	41-50	61
	0	0	0	6	10	24	66	32	3	1	1	0	0	144	46-55	98
	0	0	0	0	2	39	75	45	9	0	0	0	0	171	46-55	120
	0	0	0	0	10	46	74	39	6	1	1	0	0	179	41-50	120
	0	0	0	0	11	41	67	36	13	2	0	0	0	177	41-50	108
	0	0	0	1	15	31	79	43	14	1	0	0	0	186	46-55	122
	0	0	1	3	13	34	61	41	12	3	1	0	0	170	46-55	102
	0	0	0	0	11	41	77	38	9	2	0	0	0	179	41-50	118
	0	0	0	1	12	26	66	64	12	1	0	0	0	185	46-55	130
	0	0	0	0	4	26	58	66	20	2	0	0	0	180	46-55	124
	0	0	1	3	1	41	111	46	9	1	1	0	0	218	46-55	157
	0	0	0	0	3	33	67	43	10	3	0	0	0	162	46-55	110
	0	0	0	3	1	25	35	43	6	1	0	0	0	117	46-55	78
	0	0	0	0	1	15	29	23	4	4	0	0	0	76	46-55	52
	0	0	0	1	5	15	19	5	0	0	0	0	0	45	41-50	34
	0	0	1	1	7	10	7	4	3	1	0	0	0	34	36-45	17
	0	0	0	0	0	5	6	2	4	0	0	0	0	17	41-50	11
	0	0	1	1	0	3	5	1	2	0	0	0	0	13	41-50	8
	0	2	4	23	122	499	980	597	151	25	4	0	0	2442	46-55	1577
6	0%	0.1%	0.2%	0.9%	5%	20.4%	40.1%	24.4%	6.2%	1%	0.2%	0%	0%	2442	40-33	13//
		5:00 AM	12:00 AM		11:00 AM		11:00 AM			10:00 AM		12:00 AM		11:00 AM		
	0	2	0	6	15	46	79	45	14	2	1	0	0	186		
	00 PM 0	12:00 PM 0	12:00 PM 1	12:00 PM 3	12:00 PM 13	1:00 PM 41	4:00 PM 111	3:00 PM 66	3:00 PM 20	7:00 PM 4	12:00 PM 1	12:00 PM 0	12:00 PM 0	4:00 PM 218		
PΝ	00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	1:00 PM	4:00 PM	3:00 PM	3:00 PM	7:00 P	M	M 12:00 PM	M 12:00 PM 12:00 PM	M 12:00 PM 12:00 PM 12:00 PM	M 12:00 PM 12:00 PM 12:00 PM 4:00 PM	M 12:00 PM 12:00 PM 12:00 PM 4:00 PM

SPECIFIC LOCATION:

CITY/STATE: Shasta, CA

QC JOB #: 16124308 **DIRECTION: EB, WB**

DATE: Apr 5 2023 Number Start Time Total Pace Speed in Pace 12:00 AM 41-50 01:00 AM 41-50 02:00 AM 41-50 03:00 AM 51-60 04:00 AM 41-50 05:00 AM 46-55 06:00 AM 46-55 07:00 AM 46-55 08:00 AM 46-55 09:00 AM 46-55 10:00 AM 46-55 11:00 AM 41-50 12:00 PM 46-55 01:00 PM 41-50 02:00 PM 41-50 03:00 PM 41-50 04:00 PM 41-50 05:00 PM 46-55 06:00 PM O 46-55 07:00 PM 46-55 08:00 PM 41-50 09:00 PM 43-52 10:00 PM 41-50 11:00 PM 41-50 O **Day Total** 46-55 2.2% 0% 0.1% 0.2% 0.9% 4.4% 39.4% 23.7% 0.1% 0% Percent 20.1% 7.6% 1.1% 0.3% **AM Peak** 7:00 AM 12:00 AM 9:00 AM 5:00 AM 7:00 AM 11:00 AM 11:00 AM 8:00 AM 10:00 AM 8:00 AM 10:00 AM 9:00 AM 7:00 AM 12:00 AM 10:00 AM Volume PM Peak 6:00 PM 12:00 PM 12:00 PM 12:00 PM 12:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 6:00 PM 3:00 PM 12:00 PM 4:00 PM 12:00 PM Volume Comments:

SPECIFIC LOCATION:

QC JOB #: 16124308 **DIRECTION:** EB, WB

CITY/STATE:																DATE: A	
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	3	3	8	3	0	0	0	0	0	17	41-50	11
01:00 AM	0	0	0	0	0	0	2	2	1	0	0	0	0	0	5	41-50	4
02:00 AM	0	0	0	0	0	0	5	6	3	2	0	0	0	0	16	41-50	11
03:00 AM	0	0	0	0	0	0	6	7	3	5	2	0	0	0	23	41-50	13
04:00 AM	1	0	0	0	0	4	1	4	2	0	2	0	0	0	14	46-55	6
05:00 AM	1	0	0	0	0	2	14	27	13	4	2	1	0	0	64	41-50	41
06:00 AM	1	0	0	0	1	1	21	25	29	17	2	0	0	0	97	46-55	54
07:00 AM	1	0	0	0	0	2	27	51	34	15	6	0	0	0	136	46-55	85
08:00 AM	2	0	0	0	0	4	33	85	53	15	4	0	0	0	196	46-55	138
09:00 AM	5	0	0	0	0	5	33	74	56	16	1	0	0	0	190	46-55	130
10:00 AM	6	0	0	0	2	5	28	72	51	18	4	0	0	0	186	46-55	123
11:00 AM	4	0	0	0	0	9	43	75	43	17	1	0	0	0	192	41-50	118
12:00 PM	5	0	0	0	0	9	39	77	41	13	1	0	0	0	185	46-55	118
01:00 PM	2	0	0	0	2	10	38	84	43	18	2	0	0	0	199	46-55	127
02:00 PM	4	0	0	1	0	9	36	80	58	9	1	0	0	0	198	46-55	138
03:00 PM	3	0	0	0	3	13	41	92	59	23	2	0	0	0	236	46-55	151
04:00 PM	6	0	0	0	0	12	63	82	39	14	4	2	0	0	222	41-50	145
05:00 PM	1	0	0	0	1	4	22	70	47	11	6	0	0	0	162	46-55	117
06:00 PM	1	0	0	0	0	2	16	52	30	9	1	0	1	0	112	46-55	82
07:00 PM	2	0	0	0	1	3	14	26	17	5	1	0	0	0	69	46-55	43
08:00 PM	1	0	0	0	1	6	13	18	5	0	3	1	0	0	48	41-50	31
09:00 PM	1	0	0	0	3	11	12	8	3	1	0	0	0	0	39	36-45	23
10:00 PM	0	0	0	0	0	1	7	2	6	0	0	0	0	0	16	41-50	9
11:00 PM	0	0	0	0	1	1	3	3	1	0	0	0	0	0	9	41-50	6
Day Total	47	0	0	1	15	116	520	1030	640	212	45	4	1	0			
Percent	1.8%	0%	0%	0%	0.6%	4.4%	19.8%	39.1%	24.3%	8.1%	1.7%	0.2%	0%	0%	2631	46-55	1670
AM Peak Volume	10:00 AM 6	12:00 AM 0	12:00 AM 0	12:00 AM 0	10:00 AM 2	11:00 AM 9	11:00 AM 43	8:00 AM 85	9:00 AM 56	10:00 AM 18	7:00 AM 6	5:00 AM 1	0	12:00 AM 0	8:00 AM 196		
PM Peak Volume	4:00 PM 6	12:00 PM 0	12:00 PM 0	2:00 PM 1	3:00 PM 3	3:00 PM 13	4:00 PM 63	3:00 PM 92	3:00 PM 59	3:00 PM 23	5:00 PM 6	4:00 PM 2	6:00 PM 1	12:00 PM 0	3:00 PM 236		

LOCATION: W	B SR 299	west of B	unch Gra	ss Lookou	ıt Rd											QC JOB	#: 16124308
SPECIFIC LOCA	ATION:															DIRECT	ION: EB, WB
CITY/STATE: SI	hasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Speed Range	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Number in
Speed Name	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	1 ace speed	Pace
Grand Total	138	0	4	9	61	349	1522	2997	1830	553	98	15	3	0	7579	46-55	4827
Percent	1.8%	0%	0.1%	0.1%	0.8%	4.6%	20.1%	39.5%	24.1%	7.3%	1.3%	0.2%	0%	0%	7379	40-33	4027
Cumulative Percent	1.8%	1.8%	1.9%	2%	2.8%	7.4%	27.5%	67%	91.2%	98.5%	99.8%	100%	100%	100%			
ADT 2526															Mea	an Speed(Avera Med	ntile: 53 MPH age): 47 MPH dian: 47 MPH lode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB, WB

DATE: Apr 4 2023

Start Time	Bikes	Cars &	2 Axle	Buses	2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Total
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	7	0	0	1	0	0	2	0	0	0	0	0	0	10
01:00 AM	0	5	0	0	0	0	0	0	0	0	0	0	0	0	5
02:00 AM	0	5	1	0	1	0	0	2	0	0	0	0	0	0	9
03:00 AM	0	6	1	0	1	0	0	0	0	0	0	0	0	1	9
04:00 AM	0	10	3	0	1	0	0	2	0	0	1	0	0	1	18
05:00 AM	0	34	6	0	3	1	0	7	0	0	2	0	0	0	53
06:00 AM	0	50	27	0	2	0	0	5	0	0	0	0	0	1	85
07:00 AM	0	100	24	0	4	0	0	14	1	0	0	0	0	1	144
08:00 AM	0	119	31	0	7	0	0	12	1	0	0	0	0	1	171
09:00 AM	0	121	32	0	11	1	0	10	0	0	2	0	0	2	179
10:00 AM	0	106	36	0	7	0	0	17	0	0	4	0	0	7	177
11:00 AM	0	121	35	0	15	0	0	11	0	0	2	0	0	2	186
12:00 PM	0	112	25	0	13	0	0	16	0	0	4	0	0	0	170
01:00 PM	0	123	27	0	10	0	0	15	1	0	2	0	0	1	179
02:00 PM	0	122	31	0	13	1	0	13	0	0	2	0	0	3	185
03:00 PM	0	126	36	1	5	0	0	4	1	0	3	0	0	4	180
04:00 PM	0	162	31	0	10	0	0	10	0	0	1	0	0	4	218
05:00 PM	0	134	17	0	1	0	0	5	0	0	2	0	0	3	162
06:00 PM	0	92	14	0	3	0	0	4	0	0	1	0	0	3	117
07:00 PM	0	57	14	0	4	0	0	1	0	0	0	0	0	0	76
08:00 PM	0	36	5	0	1	0	0	3	0	0	0	0	0	0	45
09:00 PM	0	28	1	0	1	0	0	4	0	0	0	0	0	0	34
10:00 PM	0	14	2	0	0	0	0	1	0	0	0	0	0	0	17
11:00 PM	0	9	0	0	1	0	0	1	0	0	2	0	0	0	13
Day Total	0	1699	399	1	115	3	0	159	4	0	28	0	0	34	2442
Percent	0%	69.6%	16.3%	0%	4.7%	0.1%	0%	6.5%	0.2%	0%	1.1%	0%	0%	1.4%	2442
ADT 2442															
AM Peak	12:00 AM	9:00 AM	10:00 AM			5:00 AM	12:00 AM		7:00 AM				12:00 AM		11:00 A
Volume	0	121	36	0	15	1	0	17	1	0	4	0	0	7	186
PM Peak	12:00 PM	4:00 PM	3:00 PM	3:00 PM	12:00 PM	2:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	3:00 PM	4:00 P
Volume	0	162	36	1	13	1	0	16	1	0	4	0	0	4	218

SPECIFIC LOCATION: CITY/STATE: Shasta CA QC JOB #: 16124308 DIRECTION: EB, WB DATE: Apr 5 2023

	asta, CA	Cars &	2 Axle		2 Axle 6	3 Axle	4 Axle	<5 Axl	5 Axle	>6 Axl	<6 Axl	6 Axle	>6 Axl	Not	Apr 5 202
Start Time	Bikes	Trailers	Long	Buses	Tire	Single	Single	Double	Double	Double	Multi	Multi	Multi	Classed	Total
12:00 AM	0	5	1	0	1	0	0	0	0	0	0	0	0	0	7
01:00 AM	0	2	0	0	0	0	0	3	0	0	0	0	0	0	5
02:00 AM	0	4	0	0	1	0	0	3	0	0	1	0	0	0	9
03:00 AM	0	5	1	0	0	0	0	0	0	0	0	0	0	0	6
04:00 AM	0	9	4	0	1	0	0	1	0	0	0	0	0	0	15
05:00 AM	0	31	8	0	0	1	0	8	0	0	2	0	0	2	52
06:00 AM	0	51	27	0	7	0	0	8	0	0	1	0	0	4	98
07:00 AM	0	75	40	0	5	0	0	6	0	0	2	0	0	5	133
08:00 AM	0	122	40	0	10	0	0	13	0	0	3	0	0	2	190
09:00 AM	0	111	33	0	10	1	0	14	0	0	4	0	0	3	176
10:00 AM	0	136	30	0	13	1	0	13	0	0	7	0	0	4	204
11:00 AM	0	115	24	0	7	1	0	15	0	0	5	0	0	3	170
12:00 PM	0	121	26	0	9	0	0	12	0	0	2	0	0	1	171
01:00 PM	0	125	26	0	16	0	0	14	0	0	0	0	0	4	185
02:00 PM	0	128	20	0	5	0	0	13	0	0	0	0	0	2	168
03:00 PM	0	150	34	0	8	0	0	8	0	0	1	0	0	3	204
04:00 PM	0	157	24	0	8	0	0	11	0	0	2	0	0	5	207
05:00 PM	0	151	24	0	7	0	0	8	0	0	1	0	0	5	196
06:00 PM	0	86	22	0	2	0	0	4	0	0	0	0	0	6	120
07:00 PM	0	43	9	0	1	0	0	1	0	0	1	0	0	4	59
08:00 PM	0	38	4	0	0	0	0	5	0	0	0	0	0	0	47
09:00 PM	1	26	4	0	1	0	0	3	0	0	2	0	0	2	39
10:00 PM	0	26	2	0	0	0	0	1	0	0	0	0	0	0	29
11:00 PM	0	10	2	0	1	0	0	2	0	0	0	0	0	1	16
Day Total	1	1727	405	0	113	4	0	166	0	0	34	0	0	56	2506
Percent	0%	68.9%	16.2%	0%	4.5%	0.2%	0%	6.6%	0%	0%	1.4%	0%	0%	2.2%	2500
ADT 2506															
AM Peak	12:00 AM	10:00 AM	7:00 AM	12:00 AM		5:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	7:00 AM	10:00 A
Volume	0	136	40	0	13	1	0	15	0	0	7	0	0	5	204
PM Peak	9:00 PM	4:00 PM	3:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	6:00 PM	4:00 PI
Volume	1	157	34	0	16	0	0	14	0	0	2	0	0	6	207

SPECIFIC LOCATION:
CITY/STATE: Shasta CA

QC JOB #: 16124308 DIRECTION: EB, WB

DATE: Apr 6 2023

CITY/STATE: Sh	iasta, CA														Apr 6 202
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	14	1	0	1	0	0	1	0	0	0	0	0	0	17
01:00 AM	0	4	1	0	0	0	0	0	0	0	0	0	0	0	5
02:00 AM	0	8	3	0	2	0	0	3	0	0	0	0	0	0	16
03:00 AM	0	10	6	0	4	0	0	3	0	0	0	0	0	0	23
04:00 AM	0	8	2	0	0	0	0	3	0	0	0	0	0	1	14
05:00 AM	0	35	9	0	6	0	0	10	0	0	3	0	0	1	64
06:00 AM	0	46	28	0	10	0	0	12	0	0	0	0	0	1	97
07:00 AM	0	89	26	0	8	0	0	12	0	0	0	0	0	1	136
08:00 AM	0	125	38	0	12	0	0	19	0	0	0	0	0	2	196
09:00 AM	0	129	23	0	15	0	0	17	0	0	1	0	0	5	190
10:00 AM	0	126	23	0	13	0	0	16	0	0	2	0	0	6	186
11:00 AM	0	138	23	0	14	0	0	10	0	0	3	0	0	4	192
12:00 PM	0	127	22	0	13	0	0	16	1	0	1	0	0	5	185
01:00 PM	1	137	29	0	12	0	0	16	0	0	2	0	0	2	199
02:00 PM	0	155	24	1	10	0	0	2	0	0	2	0	0	4	198
03:00 PM	0	167	39	0	11	0	0	13	0	0	3	0	0	3	236
04:00 PM	0	160	33	1	5	0	0	13	0	0	4	0	0	6	222
05:00 PM	0	131	21	0	3	0	0	5	0	0	1	0	0	1	162
06:00 PM	0	85	18	0	3	0	0	4	0	0	1	0	0	1	112
07:00 PM	0	52	6	0	4	0	0	5	0	0	0	0	0	2	69
08:00 PM	1	39	2	0	3	0	0	2	0	0	0	0	0	1	48
09:00 PM	0	30	5	0	2	0	0	1	0	0	0	0	0	1	39
10:00 PM	0	10	4	0	1	0	0	1	0	0	0	0	0	0	16
11:00 PM	0	8	0	0	1	0	0	0	0	0	0	0	0	0	9
Day Total	2	1833	386	2	153	0	0	184	1	0	23	0	0	47	2624
Percent	0.1%	69.7%	14.7%	0.1%	5.8%	0%	0%	7%	0%	0%	0.9%	0%	0%	1.8%	2631
ADT 2631															
AM Peak	12:00 AM	11:00 AM	8:00 AM	12:00 AM	9:00 AM	12:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	5:00 AM	12:00 AM	12:00 AM	10:00 AM	1A 00:8
Volume	0	138	38	0	15	0	0	19	0	0	3	0	0	6	196
PM Peak	1:00 PM	3:00 PM	3:00 PM	2:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	4:00 PM	3:00 PI
Volume	1	167	39	1	13	0	0	16	1	0	4	0	0	6	236
mments:															

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd

SPECIFIC LOCATION:

CITY/STATE: Shasta, CA

DATE: Apr 4 2023 - Apr 6 2023

Carrolle Ca

Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
Grand Total Percent	3 0%	5259 69.4%	1190 15.7%	3 0%	381 5%	7 0.1%	0 0%	509 6.7%	5 0.1%	0 0%	85 1.1%	0 0%	0 0%	137 1.8%	7579
ADT 2526															
Comments:															

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: EB, WB

DATE: Apr 4 2023 - Apr 6 2023 Average Weekday Tue Wed Thu Fri Sat Mon Sun **Average Week** Start Time **Average Week Profile** 4 Apr 23 5 Apr 23 6 Apr 23 **Hourly Traffic Hourly Traffic** 12:00 AM 01:00 AM 02:00 AM 03:00 AM 04:00 AM 05:00 AM 06:00 AM 07:00 AM MA 00:80 09:00 AM 10:00 AM 11:00 AM 12:00 PM 01:00 PM 02:00 PM 03:00 PM 04:00 PM 05:00 PM 06:00 PM 07:00 PM 08:00 PM 09:00 PM 10:00 PM 11:00 PM Day Total % Weekday 96.6% 99.1% 104.1% Average % Week 96.6% 99.1% 104.1% 100% Average AM Peak 11:00 AM 10:00 AM 8:00 AM 10:00 AM 10:00 AM Volume PM Peak 4:00 PM 4:00 PM 3:00 PM 4:00 PM 4:00 PM Volume Comments:

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB DATE: Apr 4 2023

CITY/STATE:																DATE: Ap	
Start Time	1 15	16 20	21 25	26 30	31 35	36 40	41 45	46 50	51 55	56 60	61 65	66 70	71 75	76 999	Total	Pace Speed	Numb in Pac
12:00 AM	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	31-40	1
01:00 AM	0	0	0	0	0	0	0	1	2	0	0	0	0	0	3	46-55	3
02:00 AM	0	0	0	0	0	2	3	1	0	0	0	0	0	0	6	36-45	5
03:00 AM	1	0	0	0	0	0	0	3	2	1	0	0	0	0	7	46-55	5
04:00 AM	0	0	0	0	2	1	1	2	1	1	1	0	0	0	9	31-40	3
05:00 AM	0	0	2	0	0	1	6	12	4	2	0	0	0	0	27	41-50	18
06:00 AM	1	0	0	0	0	1	9	16	4	4	0	0	0	0	35	41-50	25
07:00 AM	0	0	0	0	0	1	8	34	22	2	1	1	0	0	69	46-55	56
08:00 AM	0	0	0	0	0	1	17	42	28	5	0	0	0	0	93	46-55	70
09:00 AM	1	0	0	0	0	5	21	42	23	3	1	1	0	0	97	46-55	65
10:00 AM	3	0	0	0	0	6	15	42	30	11	2	0	0	0	109	46-55	72
11:00 AM	1	0	0	0	0	2	12	42	27	8	0	0	0	0	92	46-55	69
12:00 PM	1	0	0	1	1	4	19	34	25	9	3	1	0	0	98	46-55	59
01:00 PM	0	0	0	0	0	1	16	47	25	4	2	0	0	0	95	46-55	72
02:00 PM	0	0	0	0	1	11	11	36	39	8	1	0	0	0	107	46-55	75
03:00 PM	0	0	0	0	0	0	11	33	25	14	0	0	0	0	83	46-55	58
04:00 PM	1	0	0	1	3	0	12	46	25	5	0	0	0	0	93	46-55	71
05:00 PM	1	0	0	0	0	2	13	27	18	8	3	0	0	0	72	46-55	45
06:00 PM	1	0	0	0	3	1	9	12	19	2	1	0	0	0	48	46-55	31
07:00 PM	0	0	0	0	0	1	5	16	14	3	3	0	0	0	42	46-55	30
08:00 PM	0	0	0	0	0	3	3	6	_ 1	0	0	0	0	0	13	41-50	9
09:00 PM	0	0	0	0	0	2	2	0	1	1	0	0	0	0	6	36-45	4
10:00 PM	0	0	0	0	0	0	3	1	1	1	0	0	0	0	6	41-50	4
11:00 PM	0	0	0	1	0	0	1	3	0	1	0	0	0	0	6	41-50	4
Day Total	11	0	2	3	10	46	197	499	336	93	18	3	0	0			
Percent	0.9%	0%	0.2%	0.2%	0.8%	3.8%	16.2%	41%	27.6%	7.6%	1.5%	0.2%	0%	0%	1218	46-55	835
AM Peak Volume	10:00 AM 3	12:00 AM 0	5:00 AM 2	12:00 AM 0	4:00 AM 2	10:00 AM 6	9:00 AM 21	8:00 AM 42	10:00 AM 30	10:00 AM 11	10:00 AM 2	7:00 AM 1	12:00 AM 0	12:00 AM 0	10:00 AM 109		
PM Peak		12:00 PM			4:00 PM	2:00 PM	12:00 PM	1:00 PM	2:00 PM	3:00 PM		12:00 PM			2:00 PM		
Volume	12.00 PIVI	0	0	12.00 PM	3	2.00 PM 11	19	47	39	14	3	12.00 PIVI	0	0	2.00 PM 107		

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd

QC JOB #: 16124308

SPECIFIC LOCATION:

DIRECTION: WB

CITY/STATE: Shasta, CA

CITY/STATE:	Shasta,	CA														DATE: Ap	or 5 202
Start Time	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Pace Speed	Numbe
Start Time	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	race speed	in Pac
12:00 AM	0	0	0	0	0	0	2	3	0	0	0	0	0	0	5	41-50	5
01:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	41-50	1
02:00 AM	0	0	0	0	0	1	0	2	0	0	0	0	0	0	3	41-50	2
03:00 AM	0	0	0	0	0	0	0	1	1	1	0	0	0	0	3	46-55	2
04:00 AM	0	0	0	0	0	1	0	4	2	0	0	0	0	0	7	46-55	6
05:00 AM	0	0	0	2	0	1	6	8	10	3	0	1	0	0	31	46-55	18
06:00 AM	3	0	0	0	0	1	2	22	13	7	1	0	0	0	49	46-55	35
07:00 AM	3	0	0	0	0	1	7	16	24	13	2	1	1	0	68	46-55	40
08:00 AM	1	0	0	0	0	0	19	50	31	13	1	0	0	0	115	46-55	81
09:00 AM	1	0	1	0	0	1	10	32	36	7	2	2	0	0	92	46-55	68
10:00 AM	3	0	0	0	0	1	9	53	30	9	2	0	0	0	107	46-55	83
11:00 AM	3	0	0	0	1	7	21	31	22	10	4	1	0	0	100	46-55	53
12:00 PM	1	0	0	0	3	3	12	36	32	13	1	0	0	0	101	46-55	68
01:00 PM	3	0	0	0	1	2	27	44	18	5	1	0	0	0	101	41-50	71
02:00 PM	2	0	0	0	1	2	20	28	21	2	2	0	0	0	78	46-55	49
03:00 PM	1	0	0	0	0	6	21	35	27	10	0	0	1	0	101	46-55	62
04:00 PM	2	0	0	0	2	2	11	39	13	5	0	0	0	0	74	46-55	52
05:00 PM	2	0	0	0	0	4	18	32	31	5	0	0	0	0	92	46-55	63
06:00 PM	1	0	0	0	0	1	3	27	14	3	1	0	0	0	50	46-55	41
07:00 PM	2	0	0	0	0	3	4	7	6	1	0	0	0	0	23	46-55	13
08:00 PM	0	0	0	0	1	1	2	5	2	0	0	0	0	0	11	45-54	7
09:00 PM	1	0	0	0	0	4	1	5	2	0	0	0	0	0	13	46-55	7
10:00 PM	0	0	0	0	0	0	2	3	3	0	0	0	0	0	8	46-55	6
11:00 PM	0	0	0	0	1	0	1	2	0	0	0	0	0	0	4	41-50	3
Day Total	29	0	1	2	10	42	198	486	338	107	17	5	2	0	1237	46-55	824
Percent	2.3%	0%	0.1%	0.2%	0.8%	3.4%	16%	39.3%	27.3%	8.6%	1.4%	0.4%	0.2%	0%	1237	40-33	024
AM Peak		12:00 AM	9:00 AM		11:00 AM					7:00 AM	11:00 AM	9:00 AM		12:00 AM	8:00 AM		
Volume	3	0	1	2	1	7	21	53	36	13	4	2	1	0	115		
PM Peak	1:00 PM				12:00 PM		1:00 PM	1:00 PM		12:00 PM		12:00 PM		12:00 PM	12:00 PM		
Volume	3	0	0	0	3	6	27	44	32	13	2	0	1	0	101		

LOCATION: WB SR 299 west of Bunch Grass Lookout Rd

SPECIFIC LOCATION:

DIRECTION: WB
CITY/STATE: Shasta, CA

DATE: Apr 6 2023

Number Start Time Total Pace Speed in Pace 12:00 AM 36-45 01:00 AM 41-50 02:00 AM 46-55 03:00 AM 41-50 04:00 AM 31-40 05:00 AM 46-55 06:00 AM 51-60 07:00 AM 46-55 08:00 AM O 46-55 09:00 AM 46-55 10:00 AM 46-55 11:00 AM 46-55 12:00 PM 46-55 01:00 PM O 46-55 02:00 PM 46-55 03:00 PM 46-55 04:00 PM 46-55 05:00 PM 46-55 06:00 PM O 46-55 07:00 PM 46-55 08:00 PM 41-50 09:00 PM 36-45 10:00 PM 41-50 11:00 PM 46-55 n O **Day Total** 46-55 2.5% 0% 0% 0.1% 0.3% 3.5% 15% 27.6% 2.8% 0.1% 0% Percent 37.5% 10.5% 0.2% **AM Peak** 9:00 AM 12:00 AM 12:00 AM 12:00 AM 10:00 AM 12:00 AM 10:00 AM 8:00 AM 8:00 AM 6:00 AM 7:00 AM 5:00 AM 12:00 AM 12:00 AM 8:00 AM Volume PM Peak 12:00 PM 12:00 PM 12:00 PM 2:00 PM 7:00 PM 3:00 PM 1:00 PM 3:00 PM 3:00 PM 5:00 PM 4:00 PM 6:00 PM 12:00 PM 3:00 PM 3:00 PM Volume Comments:

SUMMARY - Tube Count - Speed Data

LOCATION: WE	3 SR 299	west of E	Bunch Gra	ss Lookou	ıt Rd												#: 16124308
SPECIFIC LOCA	TION:															DIR	ECTION: WB
CITY/STATE: Sh	iasta, CA														DAT	E: Apr 4 2023	- Apr 6 2023
Conned Donne	1	16	21	26	31	36	41	46	51	56	61	66	71	76	Total	Dogo Coood	Number in
Speed Range	15	20	25	30	35	40	45	50	55	60	65	70	75	999	Total	Pace Speed	Pace
Grand Total	74	0	3	6	24	135	595	1485	1042	340	72	11	3	0	2700	46.55	2527
Percent	2%	0%	0.1%	0.2%	0.6%	3.6%	15.7%	39.2%	27.5%	9%	1.9%	0.3%	0.1%	0%	3790	46-55	2527
Cumulative Percent	2%	2%	2%	2.2%	2.8%	6.4%	22.1%	61.3%	88.8%	97.7%	99.6%	99.9%	100%	100%			
ADT 1263															Mea	an Speed(Avera Med	ntile: 54 MPH age): 48 MPH dian: 48 MPH ode: 48 MPH
Comments:																	

Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB DATE: Apr 4 2023

12:00 AM 01:00 AM 02:00 AM 02:00 AM 03:00 AM 04:00 AM 05:00 AM	0 0 0 0 0	Cars & Trailers 2 3 3 5	2 Axle Long 0 0	Buses 0 0	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl 6 Axl		>6 Axl	Not	Total
01:00 AM 02:00 AM 03:00 AM 04:00 AM 05:00 AM	0 0 0 0	3 3	0	_	0				Double	Double	Multi	Multi	Multi	Classed	
02:00 AM 03:00 AM 04:00 AM 05:00 AM	0 0 0	3	-	0		0	0	0	0	0	0	0	0	0	2
03:00 AM 04:00 AM 05:00 AM	0 0		1		0	0	0	0	0	0	0	0	0	0	3
04:00 AM 05:00 AM	0	5	_	0	0	0	0	2	0	0	0	0	0	0	6
05:00 AM			1	0	0	0	0	0	0	0	0	0	0	1	7
	^	4	3	0	1	0	0	0	0	0	1	0	0	0	9
06:00 AM	0	17	5	0	0	1	0	3	0	0	1	0	0	0	27
	0	24	6	0	1	0	0	3	0	0	0	0	0	1	35
07:00 AM	0	56	9	0	0	0	0	3	1	0	0	0	0	0	69
08:00 AM	0	62	21	0	1	0	0	9	0	0	0	0	0	0	93
09:00 AM	0	66	18	0	4	1	0	5	0	0	2	0	0	1	97
10:00 AM	0	70	20	0	4	0	0	8	0	0	4	0	0	3	109
11:00 AM	0	59	19	0	7	0	0	4	0	0	2	0	0	1	92
12:00 PM	0	64	19	0	6	0	0	6	0	0	3	0	0	0	98
01:00 PM	0	62	16	0	7	0	0	8	0	0	2	0	0	0	95
02:00 PM	0	70	22	0	6	1	0	8	0	0	0	0	0	0	107
03:00 PM	0	56	22	0	4	0	0	1	0	0	0	0	0	0	83
04:00 PM	0	64	13	0	9	0	0	5	0	0	1	0	0	1	93
05:00 PM	0	61	6	0	0	0	0	2	0	0	2	0	0	1	72
06:00 PM	0	39	5	0	1	0	0	1	0	0	1	0	0	1	48
07:00 PM	0	28	10	0	4	0	0	0	0	0	0	0	0	0	42
08:00 PM	0	11	0	0	0	0	0	2	0	0	0	0	0	0	13
09:00 PM	0	5	0	0	0	0	0	1	0	0	0	0	0	0	6
10:00 PM	0	3	2	0	0	0	0	1	0	0	0	0	0	0	6
11:00 PM	0	2	0	0	1	0	0	1	0	0	2	0	0	0	6
Day Total	0	836	218	0	56	3	0	73	1	0	21	0	0	10	1218
Percent	0%	68.6%	17.9%	0%	4.6%	0.2%	0%	6%	0.1%	0%	1.7%	0%	0%	0.8%	1216
ADT 1218															
AM Peak 12	2:00 AM	10:00 AM	8:00 AM	12:00 AM	11:00 AM	5:00 AM	12:00 AM	8:00 AM	7:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	10:00 AM	10:00 AN
Volume	0	70	21	0	7	1	0	9	1	0	4	0	0	3	109
	2:00 PM	2:00 PM	2:00 PM	12:00 PM	4:00 PM	2:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	12:00 PM	4:00 PM	2:00 PN
Volume	0	70	22	0	9	1	0	8	0	0	3	0	0	1	107
omments:															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB

DATE: Apr 5 2023

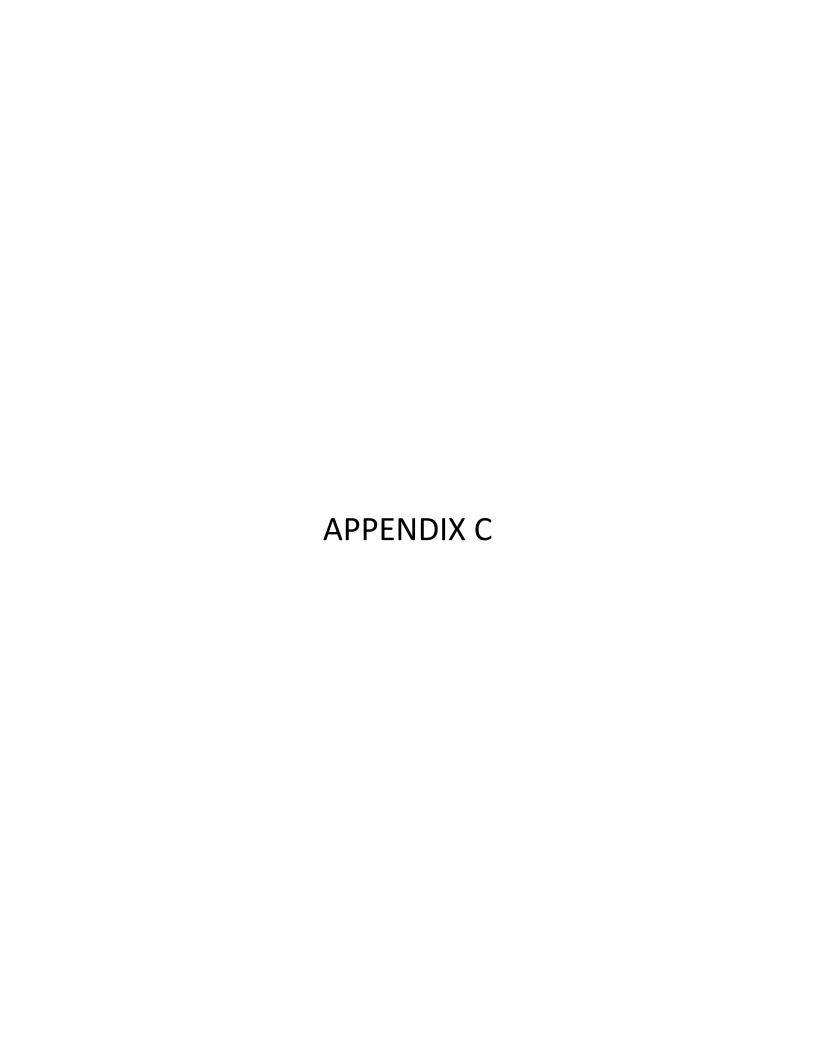
JIT/STATE: SI	lasta, CA														Apr 5 202.
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	5	0	0	0	0	0	0	0	0	0	0	0	0	5
01:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
02:00 AM	0	0	0	0	0	0	0	2	0	0	1	0	0	0	3
03:00 AM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
04:00 AM	0	3	3	0	0	0	0	1	0	0	0	0	0	0	7
05:00 AM	0	18	5	0	0	1	0	5	0	0	2	0	0	0	31
06:00 AM	0	30	13	0	1	0	0	2	0	0	0	0	0	3	49
07:00 AM	0	39	23	0	1	0	0	2	0	0	0	0	0	3	68
08:00 AM	0	76	29	0	1	0	0	5	0	0	3	0	0	1	115
09:00 AM	0	56	22	0	2	1	0	7	0	0	3	0	0	1	92
10:00 AM	0	70	18	0	7	0	0	2	0	0	7	0	0	3	107
11:00 AM	0	67	12	0	4	0	0	10	0	0	4	0	0	3	100
12:00 PM	0	71	16	0	5	0	0	7	0	0	1	0	0	1	101
01:00 PM	0	61	18	0	9	0	0	10	0	0	0	0	0	3	101
02:00 PM	0	54	12	0	2	0	0	8	0	0	0	0	0	2	78
03:00 PM	0	76	16	0	3	0	0	4	0	0	1	0	0	1	101
04:00 PM	0	59	4	0	6	0	0	3	0	0	0	0	0	2	74
05:00 PM	0	68	11	0	4	0	0	7	0	0	0	0	0	2	92
06:00 PM	0	33	14	0	0	0	0	2	0	0	0	0	0	1	50
07:00 PM	0	13	6	0	0	0	0	1	0	0	1	0	0	2	23
08:00 PM	0	8	1	0	0	0	0	2	0	0	0	0	0	0	11
09:00 PM	0	7	1	0	1	0	0	1	0	0	2	0	0	1	13
10:00 PM	0	6	1	0	0	0	0	1	0	0	0	0	0	0	8
11:00 PM	0	2	0	0	1	0	0	1	0	0	0	0	0	0	4
Day Total	0	824	226	0	47	2	0	84	0	0	25	0	0	29	1227
Percent	0%	66.6%	18.3%	0%	3.8%	0.2%	0%	6.8%	0%	0%	2%	0%	0%	2.3%	1237
ADT 1237															
AM Peak	12:00 AM	8:00 AM	8:00 AM	12:00 AM	10:00 AM	5:00 AM	12:00 AM	11:00 AM	12:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	6:00 AM	8:00 AN
Volume	0	76	29	0	7	1	0	10	0	0	7	0	0	3	115
PM Peak	12:00 PM	3:00 PM	1:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	9:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PI
Volume	0	76	18	0	9	0	0	10	0	0	2	0	0	3	101
omments:															

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB

DATE: Apr 6 2023

JIT/STATE: SI	iasta, CA														Apr 6 ZUZ
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
12:00 AM	0	4	1	0	0	0	0	1	0	0	0	0	0	0	6
01:00 AM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	3
02:00 AM	0	3	1	0	1	0	0	2	0	0	0	0	0	0	7
03:00 AM	0	6	5	0	3	0	0	2	0	0	0	0	0	0	16
04:00 AM	0	3	0	0	0	0	0	1	0	0	0	0	0	1	5
05:00 AM	0	19	6	0	2	0	0	2	0	0	1	0	0	0	30
06:00 AM	0	24	12	0	6	0	0	7	0	0	0	0	0	1	50
07:00 AM	0	43	16	0	4	0	0	5	0	0	0	0	0	0	68
08:00 AM	0	70	26	0	9	0	0	8	0	0	0	0	0	2	115
09:00 AM	0	72	16	0	7	0	0	7	0	0	1	0	0	4	107
10:00 AM	0	76	17	0	7	0	0	6	0	0	2	0	0	3	111
11:00 AM	0	70	9	0	9	0	0	2	0	0	2	0	0	4	96
12:00 PM	0	68	10	0	6	0	0	8	0	0	1	0	0	4	97
01:00 PM	0	72	17	0	4	0	0	12	0	0	2	0	0	1	108
02:00 PM	0	71	15	0	6	0	0	2	0	0	1	0	0	4	99
03:00 PM	0	87	24	0	7	0	0	11	0	0	3	0	0	1	133
04:00 PM	0	64	17	1	2	0	0	7	0	0	4	0	0	4	99
05:00 PM	0	66	8	0	2	0	0	2	0	0	1	0	0	1	80
06:00 PM	0	24	11	0	1	0	0	3	0	0	1	0	0	1	41
07:00 PM	0	16	2	0	2	0	0	3	0	0	0	0	0	1	24
08:00 PM	0	11	0	0	1	0	0	2	0	0	0	0	0	1	15
09:00 PM	0	13	1	0	1	0	0	1	0	0	0	0	0	1	17
10:00 PM	0	3	1	0	1	0	0	0	0	0	0	0	0	0	5
11:00 PM	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3
Day Total	0	890	216	1	81	0	0	94	0	0	19	0	0	34	1335
Percent	0%	66.7%	16.2%	0.1%	6.1%	0%	0%	7%	0%	0%	1.4%	0%	0%	2.5%	1333
ADT 1335															
AM Peak	12:00 AM	10:00 AM	8:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	8:00 AM	12:00 AM	12:00 AM	10:00 AM	12:00 AM	12:00 AM	9:00 AM	8:00 AN
Volume	0	76	26	0	9	0	0	8	0	0	2	0	0	4	115
PM Peak	12:00 PM	3:00 PM	3:00 PM	4:00 PM	3:00 PM	12:00 PM	12:00 PM	1:00 PM	12:00 PM	12:00 PM	4:00 PM	12:00 PM	12:00 PM	12:00 PM	3:00 PN
Volume	0	87	24	1	7	0	0	12	0	0	4	0	0	4	133
omments:						-						-			

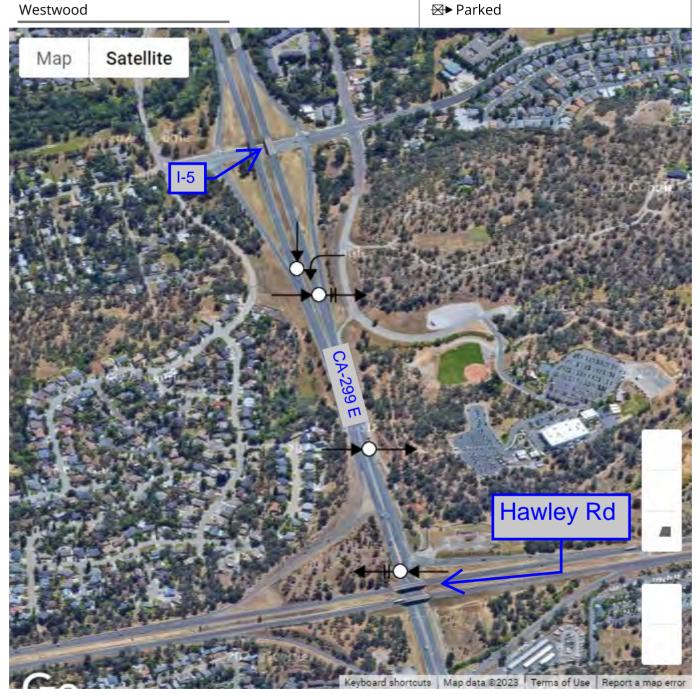
- , -	, -														
Start Time	Bikes	Cars & Trailers	2 Axle Long	Buses	2 Axle 6 Tire	3 Axle Single	4 Axle Single	<5 Axl Double	5 Axle Double	>6 Axl Double	<6 Axl Multi	6 Axle Multi	>6 Axl Multi	Not Classed	Total
Grand Total Percent	0 0%	2550 67.3%	660 17.4%	1 0%	184 4.9%	5 0.1%	0 0%	251 6.6%	1 0%	0 0%	65 1.7%	0 0%	0 0%	73 1.9%	3790
ADT 1263															
Comments:															


Report generated on 4/11/2023 4:55 PM

SPECIFIC LOCATION: CITY/STATE: Shasta, CA QC JOB #: 16124308 DIRECTION: WB

DATE: Apr 4 2023 - Apr 6 2023

Start Time	Mon	Tue 4 Apr 23	Wed 5 Apr 23	Thu 6 Apr 23	Fri	Average Weekday Hourly Traffic	Sat	Sun	Average Week Hourly Traffic	Average Week Profile
						•			•	
12:00 AM		2	5	6		4			4	_
01:00 AM		3	1	3		2			2	L
02:00 AM		6	3	7		5			5	
03:00 AM		7	3	16		9			9	
04:00 AM		9	7	5		7			7	
05:00 AM		27	31	30		29			29	
06:00 AM		35	49	50		45			45	
07:00 AM		69	68	68		68			68	
08:00 AM		93	115	115		108			108	
09:00 AM		97	92	107		99			99	
10:00 AM		109	107	111		109			109	
11:00 AM		92	100	96		96			96	
12:00 PM		98	101	97		99			99	
01:00 PM		95	101	108		101			101	
02:00 PM		107	78	99		95			95	
03:00 PM		83	101	133		106			106	
04:00 PM		93	74	99		89			89	
05:00 PM		72	92	80		81	-		81	
06:00 PM		48	50	41		46		III	46	
07:00 PM		42	23	24		30		411	30	
08:00 PM		13	11	15		13			13	
09:00 PM		6	13	17		12	01.000	1.10.619	12	
10:00 PM		6	8	5		6	JIVIIVI	UNII	6	
11:00 PM		6	4	3		4			4	
Day Total		1218	1237	1335		1263			1263	
% Weekday Average		96.4%	97.9%	105.7%						
% Week Average		96.4%	97.9%	105.7%		100%				
AM Peak Volume		10:00 AM 109	8:00 AM 115	8:00 AM 115		10:00 AM 109			10:00 AM 109	
PM Peak Volume		2:00 PM 107	12:00 PM 101	3:00 PM 133		3:00 PM 106			3:00 PM 106	



C. SH DI GR M

Primary Street: CA-299E Secondary Street: Between I-5 and Hawley Road Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash 0 Injury Crash 4 Mapped 4 Not Drawn 1 5 Total

🎊 Pedestrian → Straight **∮** Left Turn **ॐ** Bicycle → Right Turn **◆** U-Turn Fatal Crash → Overturned Injury Crash **√►** Ran Off Road **---** Stopped

Date Created: 04/11/2023

Created by TIMS (https://tims.berkeley.edu) © UC Regents, 2014-2023

C. SH DI GR M

Primary Street: CA-299E

Secondary Street:

Between Hawley Road and Old (

Time Period:

3 Years

Agency Name:

Westwood

Mapping Summary: Fatal Crash 0 Injury Crash 1 Mapped 1 Not Drawn 0 Total

→ Straight

∮ Left Turn

→ Right Turn

◆ U-Turn

→ Overturned

√► Ran Off Road

--- Stopped

⋈► Parked

🎊 Pedestrian

ॐ Bicycle

Fatal Crash

Injury Crash

Date Created: 04/11/2023

Created by TIMS (https://tims.berkeley.edu) © UC Regents, 2014-2023

Primary Street:
CA-299E
Secondary Street:
Between Old Trail and Deschute
Time Period:
3 Years

Agency Name: Westwood Mapping Summary:
Fatal Crash 0
Injury Crash 16
Mapped 16
Not Drawn 7
Total 23

: 0 = 16 16 =

Injury Crash

→ Overturned → Ran Off Road

→ Stopped

Parked

Primary Street:
CA-299E
Secondary Street:
Between Old Trail and Deschute
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 0
Injury Crash 16
Mapped 16
Not Drawn 7
Total 23

Straight

Y:

U-Turn

Ran Off Road

Pedestrian

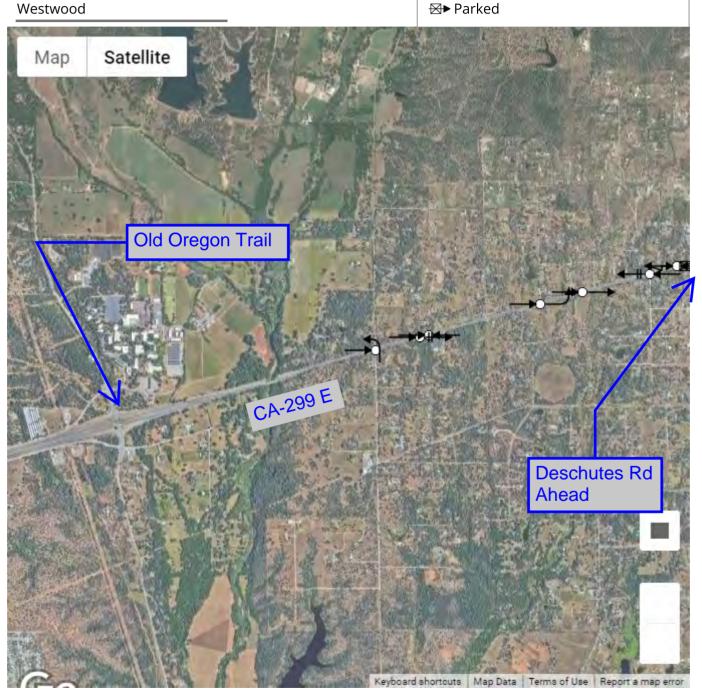
Pedestrian

Pedestrian

Pedestrian

Discrete

Bicycle


Object

Fatal Crash

Injury Crash

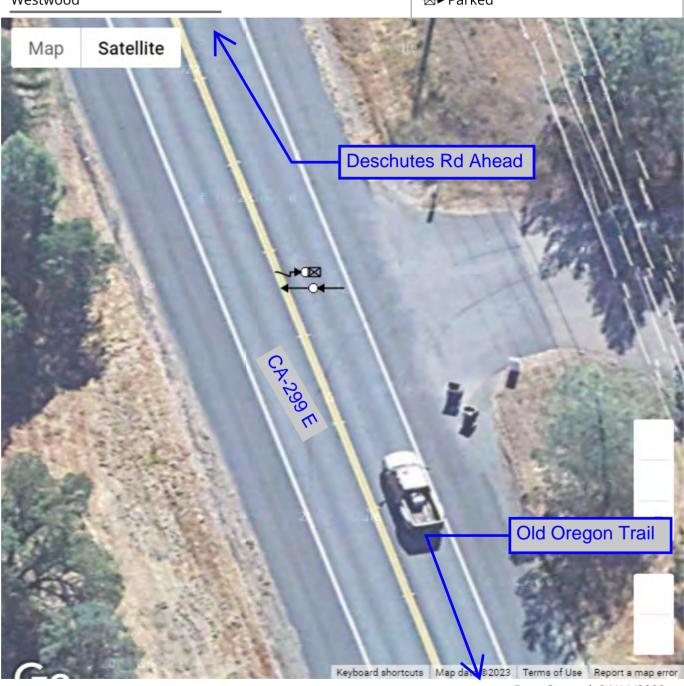
Stopped

Parked

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Between Old Trail and Deschute

Time Period:


3 Years

Agency Name: Westwood Mapping Summary:
Fatal Crash 0
Injury Crash 16
Mapped 16
Not Drawn 7
Total 23

√► Ran Off Road

→ Stopped

⋈► Parked

Date Created: 04/11/2023

Primary Street: CA-299E

Secondary Street:

Between Old Trail and Deschute

Time Period:

3 Years

Agency Name:

Westwood

Mapping Summary: Fatal Crash 0 Injury Crash 16 Mapped 16 Not Drawn 7 Total 23 → Straight

∮ Left Turn

→ Right Turn

◆ U-Turn

→ Overturned

→ Ran Off Road

--- Stopped

⋈► Parked

🎊 Pedestrian **ॐ** Bicycle

Fatal Crash

Injury Crash

Date Created: 04/11/2023

Primary Street:

CA-299E

Secondary Street:

Between Old Trail and Deschute

Time Period:

3 Years

Agency Name:

Westwood

Mapping Summary: Fatal Crash 0 Injury Crash 16 Mapped 16 Not Drawn 7 Total 23 → Straight

∮ Left Turn

→ Right Turn

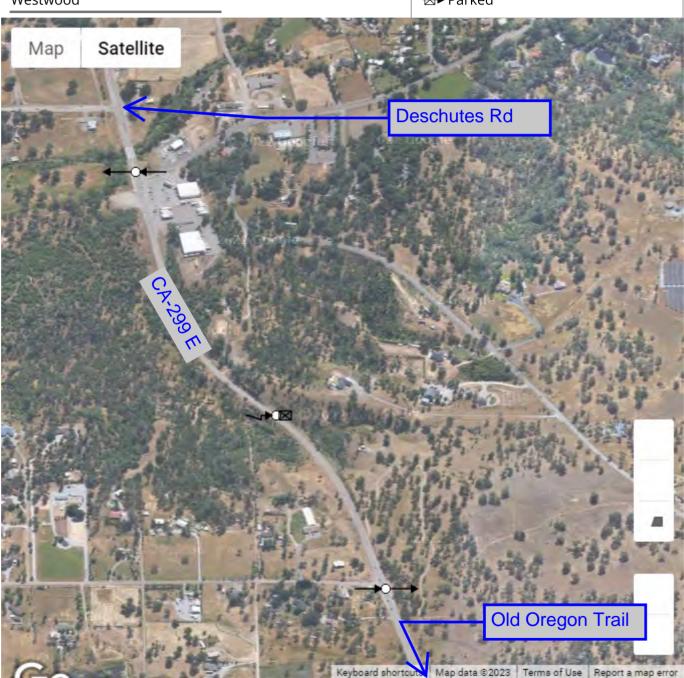
◆ U-Turn

→ Overturned

√► Ran Off Road

--- Stopped

⋈► Parked



🎊 Pedestrian

ॐ Bicycle

Fatal Crash

Injury Crash

Date Created: 04/11/2023

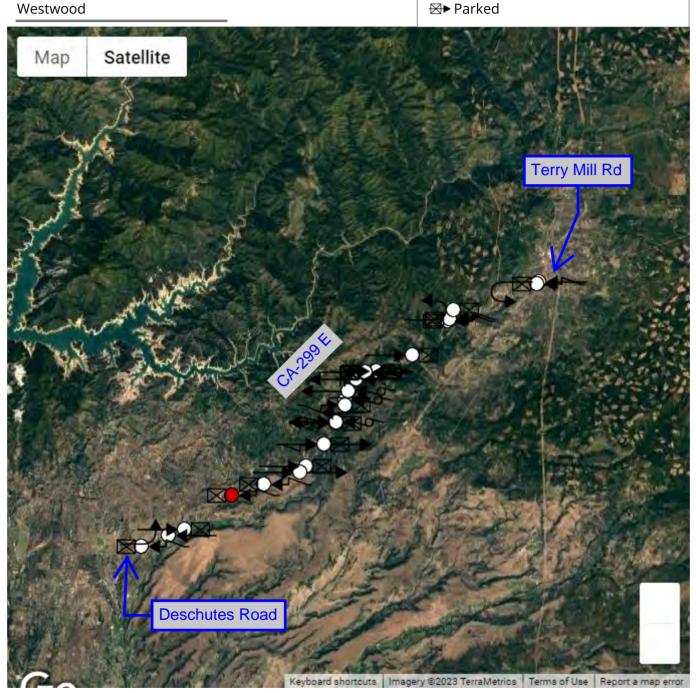
Primary Street: CA-299E Secondary Street: Deschutes Rd to Terry Mill Rd Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash 2 Injury Crash 30 Mapped 30 Not Drawn 22 Total 54

→ Straight **∮** Left Turn → Right Turn

◆ U-Turn

🎊 Pedestrian


ॐ Bicycle

Fatal Crash Injury Crash

→ Overturned → Ran Off Road

--- Stopped

⋈► Parked

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Deschutes Rd to Terry Mill Rd
Time Period:
3 Years

Agency Name:

Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54

Straight

→ Straight

→ Left Turn

→ Right Turn

30

30

32

→ Overturned

→ Ran Off Road

→ Stopped

→ Straight

→ Pedestrian

→ Bicycle

→ Object

→ Fatal Crash

○ Injury Crash

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Deschutes Rd to Terry Mill Rd
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:

Deschutes Rd to Terry Mill Rd Time Period: 3 Years

Agency Name: Westwood Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:

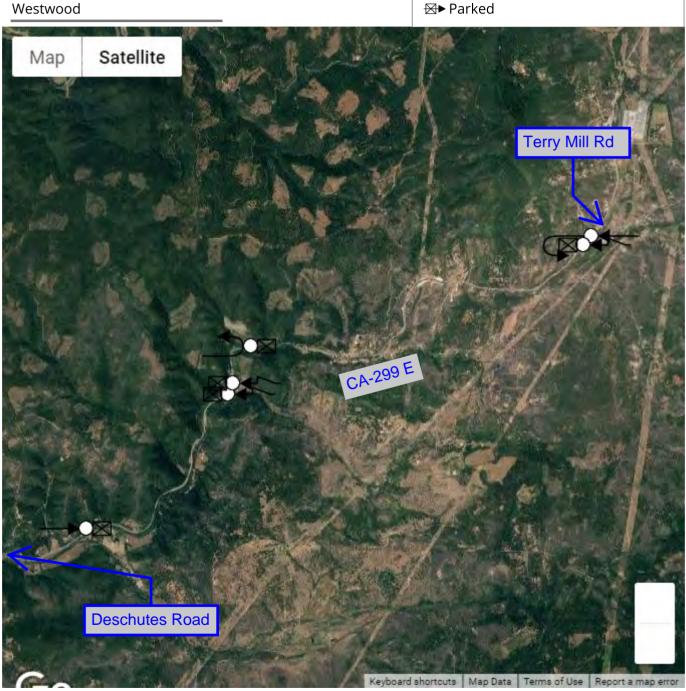
<u>Deschutes Rd to Terry Mill Rd</u> Time Period: 3 Years

Agency Name: Westwood Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Deschutes Rd to Terry Mill Rd
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54


Date Created: 04/11/2023

--- Stopped

C. □SH DI□GR□M

Primary Street:
CA-299E
Secondary Street:
Deschutes Rd to Terry Mill Rd
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54

Date Created: 04/11/2023

Westwood

C. □SH DI□GR□M

Primary Street: CA-299E Secondary Street: Deschutes Rd to Terry Mill Rd Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash 0 Injury Crash 5 5 Mapped Not Drawn Total 6

- 🎊 Pedestrian → Straight
- **∮** Left Turn → Right Turn
- **◆** U-Turn
- Fatal Crash Injury Crash
- → Overturned
- → Ran Off Road
- **---** Stopped
- **⋈►** Parked



Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Site Entrance #1 to #2 Time Period: 3 Years Agency Name: Westwood

Mapping Summary:		
Fatal Crash	0	
Injury Crash	4	
Mapped	4	
Not Drawn	2	
Total	6	

→ Straight	🏂 Pedestrian
f Left Turn	<i>∌</i> Bicycle
→ Right Turn	⊠ Object
U-Turn	Fatal Crash
→ Overturned	o Injury Crash
¬ → Ran Off Road	
# → Stopped	
	Left Turn → Right Turn → U-Turn → Overturned → Ran Off Road

Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Site Entrance 2 and Tamarack Ro Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash 0 Injury Crash 11 Mapped 11 Not Drawn 3 Total 14


🎊 Pedestrian → Straight **∮** Left Turn → Right Turn **◆** U-Turn Fatal Crash → Overturned Injury Crash **√►** Ran Off Road **---** Stopped **⋈►** Parked

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Site Entrance 2 and Tamarack Ro
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 0
Injury Crash 11
Mapped 11
Not Drawn 3
Total 14

Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Tamarack Rd and Elm St Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash 0 Injury Crash 3 Mapped 3 Not Drawn 0 3 Total

🎊 Pedestrian → Straight **∮** Left Turn → Right Turn **◆** U-Turn Fatal Crash → Overturned Injury Crash → Ran Off Road **---** Stopped

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Elm St to Plumas St
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 0
Injury Crash 3
Mapped 3
Not Drawn 0
Total 3

Date Created: 04/11/2023

Primary Street: CA-299E

Secondary Street:

Between Hawley Road and Old (

Time Period:

3 Years

Agency Name:

Westwood

Mapping Summary: Fatal Crash 0 Injury Crash 1 Mapped 1 Not Drawn 0 Total

→ Straight

∮ Left Turn

→ Right Turn

◆ U-Turn

→ Overturned

√► Ran Off Road

--- Stopped

⋈► Parked

🎊 Pedestrian

Fatal Crash

o Injury Crash

Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Between Old Trail and Deschute Time Period: 3 Years Agency Name: Westwood

Mapping Summary: Fatal Crash 0 Injury Crash 16 Mapped 16 Not Drawn 7 Total 23

🎊 Pedestrian → Straight **∮** Left Turn → Right Turn **◆** U-Turn Fatal Crash o Injury Crash → Overturned √► Ran Off Road **---** Stopped **⋈►** Parked

Date Created: 04/11/2023

23

C. □SH DI□GR□M

Primary Street:

CA-299E

Secondary Street:

Between Old Trail and Deschute

Time Period:

3 Years

Agency Name: Westwood

Mapping Summary: Fatal Crash 0 Injury Crash 16 Mapped 16 Not Drawn 7

Total

→ Straight

∮ Left Turn

→ Right Turn

◆ U-Turn

→ Overturned

→ Ran Off Road

--- Stopped

⋈► Parked

🎊 Pedestrian

Fatal Crash

Injury Crash

Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Between Old Trail and Deschute Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash 0 Injury Crash 16 Mapped 16 Not Drawn 7 23 Total

→ Straight 🎊 Pedestrian **∮** Left Turn → Right Turn **◆** U-Turn Fatal Crash → Overturned Injury Crash √► Ran Off Road **---** Stopped

Date Created: 04/11/2023

Primary Street: CA-299E

Secondary Street:

Between Old Trail and Deschute

Time Period:

3 Years

Agency Name:

Westwood

Mapping Summary: Fatal Crash 0 Injury Crash 16 Mapped 16 Not Drawn 7 Total 23 → Straight

◆ U-Turn

∮ Left Turn

Fatal Crash Injury Crash

🎊 Pedestrian

→ Overturned

√► Ran Off Road

→ Right Turn

--- Stopped

⋈► Parked

Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Between Old Trail and Deschute Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash Injury Crash Mapped Not Drawn Total

🎊 Pedestrian → Straight **∮** Left Turn 0 → Right Turn 16 **◆** U-Turn Fatal Crash 16 o Injury Crash → Overturned 7 **√▶** Ran Off Road 23 **---** Stopped **⋈►** Parked

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Between Deschutes Road and Te
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 2
Injury Crash 28
Mapped 30
Not Drawn 22
Total 52

→ Straight

→ Left Turn
→ Right Turn

→ U-Turn
→ Overturned
→ Ran Off Road

→ Stopped

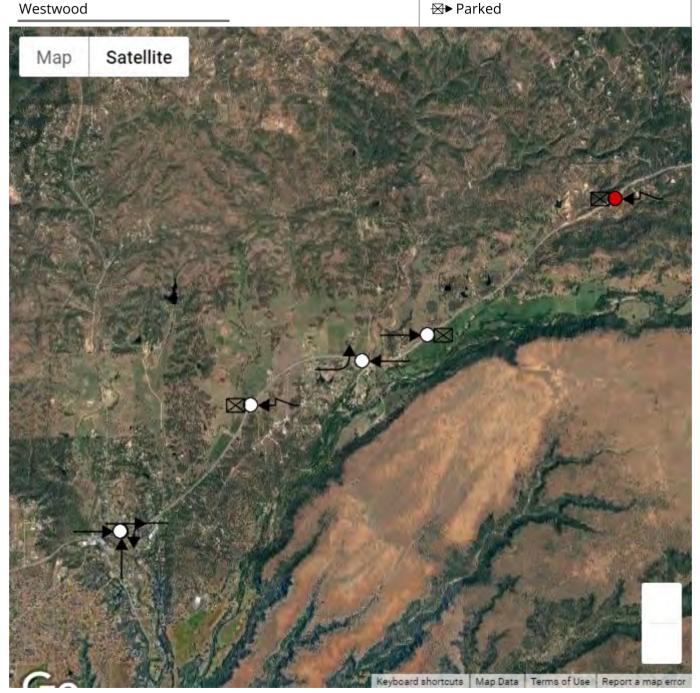
Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Between Deschutes Road and Te
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54

→ Straight

→ Left Turn


→ Right Turn

→ U-Turn

→ Overturned

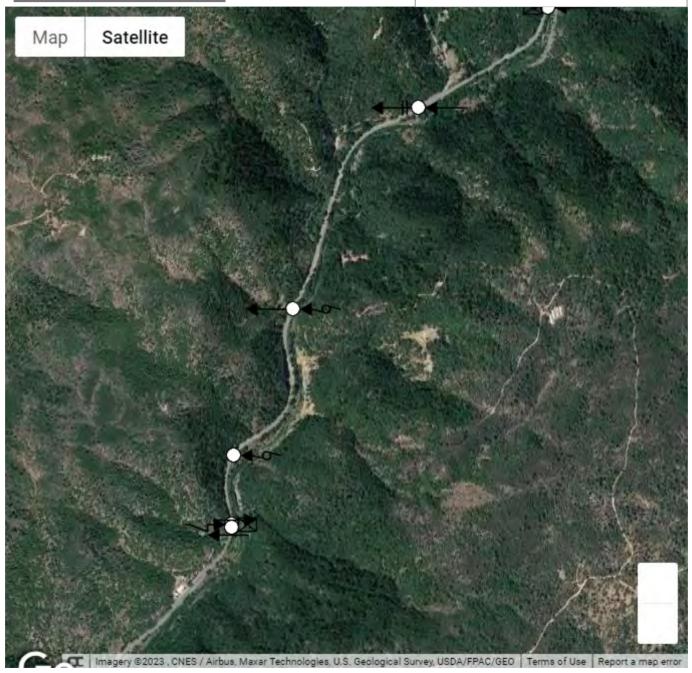
→ Ran Off Road

→ Stopped

Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Between Deschutes Road and Te Time Period: 3 Years Agency Name: Westwood

Mapping Summary: Fatal Crash 2 Injury Crash 30 Mapped 32 Not Drawn 22 Total 54


🎊 Pedestrian → Straight **∮** Left Turn → Right Turn **◆** U-Turn Fatal Crash → Overturned o Injury Crash → Ran Off Road **---** Stopped **⋈**► Parked

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Between Deschutes Road and Te
Time Period:
3 Years
Agency Name:
Westwood

Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Between Deschutes Road and Te
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54



Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Between Deschutes Road and Te Time Period: 3 Years Agency Name: Westwood

Mapping Summary: Fatal Crash 2 Injury Crash 30 Mapped 32 Not Drawn 22 Total 54

🎊 Pedestrian → Straight **∮** Left Turn → Right Turn **◆** U-Turn Fatal Crash → Overturned Injury Crash → Ran Off Road **---** Stopped **⋈**► Parked

Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Deschutes Rd toTerry Mill Rd Time Period: 3 Years Agency Name: Westwood

Mapping Summary: Fatal Crash 2 Injury Crash 30 Mapped 32 Not Drawn 22 Total 54

🎊 Pedestrian → Straight **∮** Left Turn → Right Turn **◆** U-Turn Fatal Crash → Overturned Injury Crash √► Ran Off Road **---** Stopped **⋈**► Parked

Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Deschutes Rd toTerry Mill Rd
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 2
Injury Crash 30
Mapped 32
Not Drawn 22
Total 54

Straight

✓ Pedestrian

✓ Bicycle

✓ Right Turn

✓ Object

✓ U-Turn

✓ Overturned

✓ Ran Off Road

--- Stopped

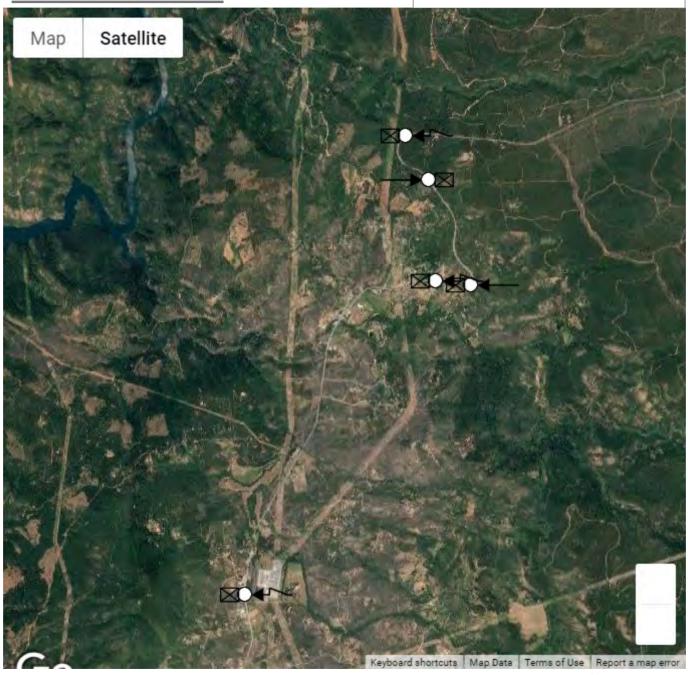
Date Created: 04/11/2023

Westwood

C. □SH DI□GR□M

Primary Street: CA-299E Secondary Street: Deschutes Rd to Terry Mill Rd Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash 0 Injury Crash 5 5 Mapped Not Drawn 1 Total 6


- → Straight **∮** Left Turn
- 🎊 Pedestrian
- - Fatal Crash o Injury Crash
- → Overturned

→ Right Turn

- √► Ran Off Road
- **---** Stopped

◆ U-Turn



Date Created: 04/11/2023

Primary Street:
CA-299E
Secondary Street:
Site Entrance #1 to #2
Time Period:
3 Years
Agency Name:
Westwood

Mapping Summary:		
Fatal Crash	0	
Injury Crash	4	
Mapped	4	
Not Drawn	2	
Total	6	

	→ Straight	🏂 Pedestrian
	- Straight	M redestrian
;	f Left Turn	<i>₫</i> ₹\ Bicycle
0	→ Right Turn	⊠ Object
4	_ ੯ U-Turn	Fatal Crash
4	→ Overturned	o Injury Crash
2	√▶ Ran Off Road	
6	→ Stopped	
	⋈> Parked	

Date Created: 04/11/2023

Primary Street: CA-299E Secondary Street: Site Entrance 2 and Tamarack Ro Time Period: 3 Years Agency Name:

Mapping Summary: Fatal Crash 0 Injury Crash 11 Mapped 11 Not Drawn 3 Total 14

🎊 Pedestrian → Straight **∮** Left Turn → Right Turn **◆** U-Turn Fatal Crash → Overturned Injury Crash √► Ran Off Road **---** Stopped

Date Created: 04/11/2023

Westwood

C. SH DI GR M

Primary Street:
CA-299E
Secondary Street:
Site Entrance 2 and Tamarack Ro
Time Period:
3 Years
Agency Name:

Mapping Summary:
Fatal Crash 0
Injury Crash 11
Mapped 11
Not Drawn 3
Total 14

--- Stopped

⋈► Parked

Date Created: 04/11/2023

C. SH DI GR M

Primary Street:
CA-299E
Secondary Street:
Tamarack Rd and Elm St
Time Period:
3 Years
Agency Name:

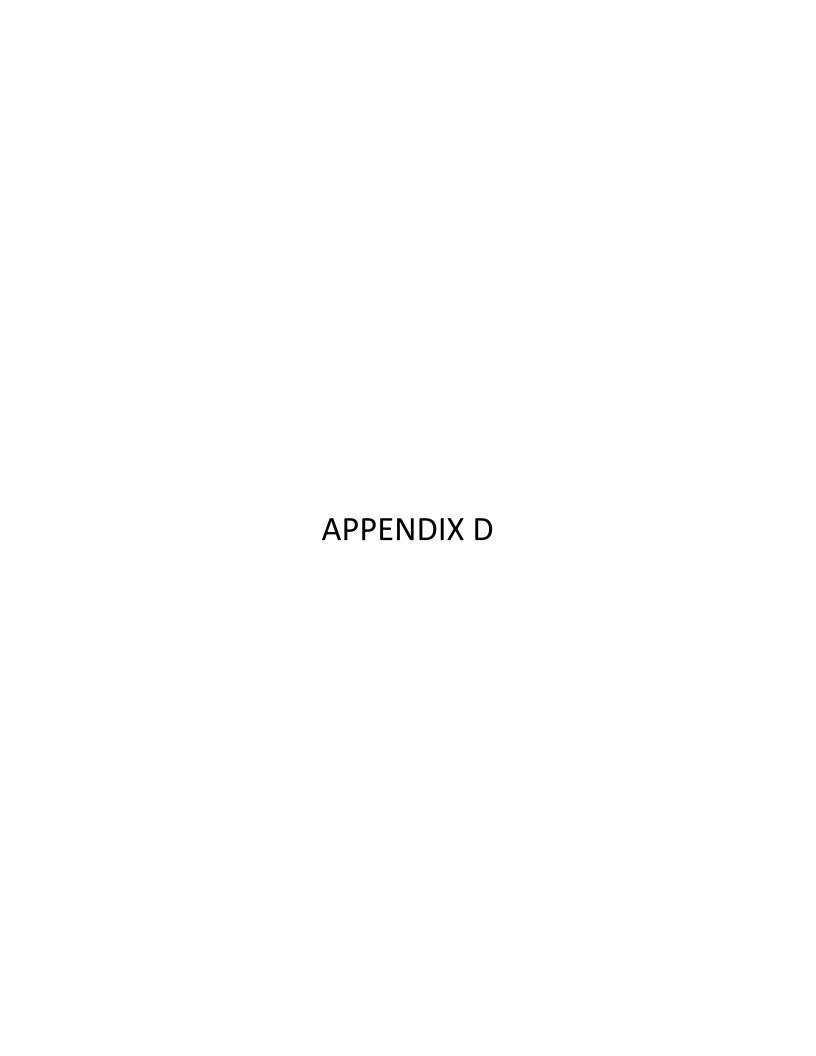
Mapping Summary:
Fatal Crash 0
Injury Crash 3
Mapped 3
Not Drawn 0
Total 3

Date Created: 04/11/2023

Created by TIMS (https://tims.berkeley.edu) © UC Regents, 2014-2023

C. SH DI GR M

Primary Street:
CA-299E
Secondary Street:
Elm St to Plumas St
Time Period:
3 Years
Agency Name:


Mapping Summary:
Fatal Crash 0
Injury Crash 3
Mapped 3
Not Drawn 0
Total 3

--- Stopped

Westwood **⋈**► Parked Satellite Map pard shortcuts | Imagery ©2023 , CNES / Airbus, Maxar Technologies, USDA/FPAC/GEO | Terms of Use | Report a map error

Date Created: 04/11/2023

Created by TIMS (https://tims.berkeley.edu) © UC Regents, 2014-2023

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	5/15/2023
Agency	California Energy Commission	Analysis Year	2020
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	PRE- CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 1 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	575	Heavy Vehicle Adjustment Factor (fHV)	0.942
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	324
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.16
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	306	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.35
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Posaniad UCSEM Multila	ne Version 7.8.5	Generated: 05/15/2023 16:28:05

HCSTM Multilane Version 7.8.5

Generated: 05/15/2023 16:28:05

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	5/15/2023
Agency	California Energy Commission	Analysis Year	2020
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	PRE- CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	pacity		
Volume(V) veh/h	1100	Heavy Vehicle Adjustment Factor (fHV)	0.936
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	625
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.31
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	11.7
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	В
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	585	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.68
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D
Copyright © 2023 University of Florida, All Rights	Posonyod UCSTM Multila	ne Version 7.8.5	Generated: 05/15/2023 16:29:28

HCSTM Multilane Version 7.8.5

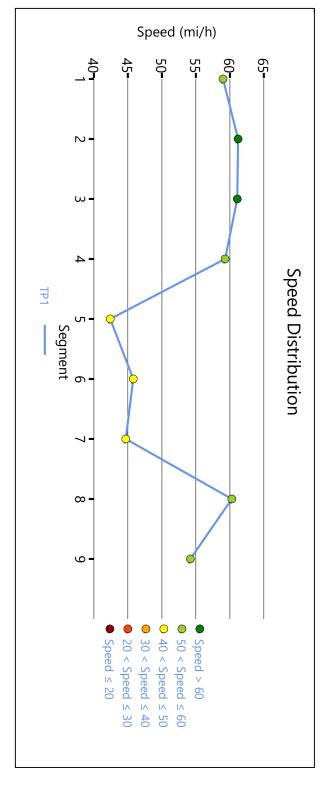
Generated: 05/15/2023 16:29:28

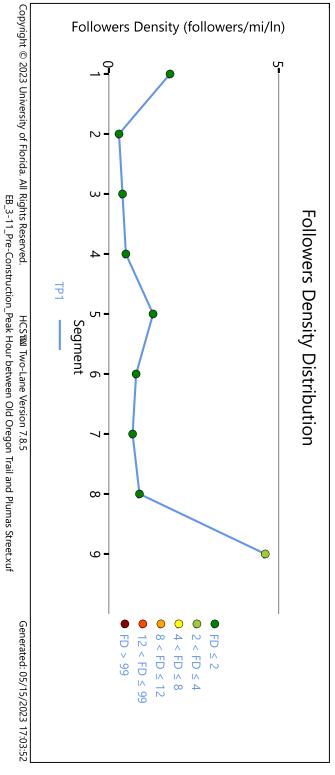
	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	5/15/2023
Agency	California Energy Commission	Analysis Year	2020
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	PRE- CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	1.70
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	5
Median Type	Divided	Total Lateral Clearance (TLC), ft	11
Free-Flow Speed (FFS), mi/h	54.6		
Direction 1 Adjustment Fact	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	475	Heavy Vehicle Adjustment Factor (fHV)	0.951
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	266
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2064
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	1998
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.13
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.2
Total Lateral Clearance Adj. (fLLC)	0.4	Density (D), pc/mi/ln	5.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	253	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.82
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Descried LICC TM Multile	lne Version 7.8.5	Generated: 05/15/2023 16:57:4

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	5/15/2023
Agency	California Energy Commission	Analysis Year	2020
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	PRE- CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Fact	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	pacity		
Volume(V) veh/h	575	Heavy Vehicle Adjustment Factor (fHV)	0.950
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	322
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.16
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	306	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.92
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Descried LICC TM Multile	lne Version 7.8.5	Generated: 05/15/2023 16:58:0

	HCS7 Two-	Lane	Highway F	Report		
Project Information						
Analyst	Carlos Arias		Date		5/15/2023	
Agency	Westwood		Analysis Year		2020	
Jurisdiction	Shasta County		Time Period Analyzed		Peak Hour	
Project Description	Fountain Wind Two e-w E Bound - Alon CA-299E from Old Trail to Plumas Stre	ng Oregon	Unit		United States Customary	
		Segn	nent 1			
Vehicle Inputs						
Segment Type	Passing Zone		Length, ft		22704	
Lane Width, ft	12		Shoulder Width,	ft	6	
Speed Limit, mi/h	55		Access Point De	nsity, pts/mi	8.0	
Demand and Capacity						
Directional Demand Flow Rate, veh/h	277		Opposing Dema	nd Flow Rate, veh/h	484	
Peak Hour Factor	0.94		Total Trucks, %		3.76	
Segment Capacity, veh/h 1700		Demand/Capaci	ty (D/C)	0.16		
Intermediate Results						
Segment Vertical Class	1		Free-Flow Speed	l, mi/h	60.6	
Speed Slope Coefficient	3.71254		Speed Power Co	efficient	0.48424	
PF Slope Coefficient	-1.26145		PF Power Coeffic	cient	0.76719	
In Passing Lane Effective Length?	No		Total Segment D	ensity, veh/mi/ln	1.8	
%Improved % Followers	0.0		% Improved Avg Speed		0.0	
Subsegment Data						
# Segment Type	Length, ft	Rad	ius, ft	Superelevation, %	Average Speed, mi/h	
1 Tangent	22704	-	-		59.0	
Vehicle Results						
Average Speed, mi/h	59.0		Percent Follower	rs, %	37.5	
Segment Travel Time, minutes	4.37		Followers Density, followers/mi/ln		1.8	
Vehicle LOS	А					
		Segn	nent 2			
Vehicle Inputs						
Segment Type	Passing Lanes		Length, ft		99999	
÷ *				ft	6	
Lane Width, ft	12		Shoulder Width, ft		•	

Direc	tional Demand Flow Rate, veh/h	138		Opposing I	Demand Flo	ow Rate, veh/h	-
Peak	Hour Factor	0.94	 1	Total Truck	s, %		14.90
Segn	nent Capacity, veh/h	140	0	Demand/C	apacity (D/	C)	0.10
Inte	ermediate Results						•
Segn	nent Vertical Class	1		Free-Flow S	Speed, mi/h	1	61.2
Spee	d Slope Coefficient	7.28	3696	Speed Pow	Speed Power Coefficient		1.58663
PF SI	ope Coefficient	-0.9	6880	PF Power C	oefficient	0.89273	
In Pa	ssing Lane Effective Length?	No		Total Segm	ent Density	0.3	
%lm _l	proved % Followers	0.0		% Improve	d Avg Spee	0.0	
Suk	segment Data			•			
#	Segment Type	Leng	gth, ft	Radius, ft	Su	perelevation, %	Average Speed, mi/h
1	Tangent	9999	99	-	-		61.2
Pas	sing Lane Results						
			Faster Lane			Slower Lane	
Flow	Rate, veh/h		92			46	
Perce	entage of Heavy Vehicles (HV%), %		5.96			32.90	
Initia	l Average Speed (Sint), mi/h		61.5			60.6	
۸۷۰۰	Average Speed at Midpoint (SPLmid), mi/h 63.2				58.9		
Aver	Percent Followers at Midpoint (PFPLmid), % 11.2				5.7		
	·	, %	11.2			5.7	
Perce	·	, %	11.2			5.7	
Perce Veh	ent Followers at Midpoint (PFPLmid)	61.2		Percent Fol	lowers, %	5.7	15.3
Veh	ent Followers at Midpoint (PFPLmid)		2			5.7 owers/mi/ln	15.3
Veh Avera	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h	61.2	2				
Veh Avera	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes	61.2	2 58				
Veh Avera Segn Vehic	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes	61.2	2 58	Followers [
Veh Avera Segn Vehic	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS	61.2 18.5 A	2 58	Followers [
Vehice Vehice	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS	61.2 18.5 A	2 58 S €	Followers E	Density, foll		0.3
Vehico Vehico Vehico Segni Lane	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type	61.2 18.5 A	2 58 S €	Followers E	Density, foll	owers/mi/ln	15105
Vehice Segni	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft	61.2 18.5 A	2 58 S €	Egment 3 Length, ft Shoulder V	Density, foll	owers/mi/ln	0.3 15105 6
Veh Avera Segn Vehic Veh Segn Lane Spee	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h	61.2 18.5 A	Se sing Lanes	Followers E egment 3 Length, ft Shoulder V Access Poin	Vidth, ft	owers/mi/ln	0.3 15105 6
Vehice Segni Lane Spee Der	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity	61.2 18.5 A Pass 12 55	Se sing Lanes	Followers E egment 3 Length, ft Shoulder V Access Poin	Vidth, ft nt Density, p	owers/mi/ln	0.3 15105 6 4.0
Vehice Ve	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	61.2 18.5 A Pass 12 55	Se Se	Followers E egment 3 Length, ft Shoulder V Access Poin	Vidth, ft nt Density, poemand Flo	owers/mi/ln pts/mi ow Rate, veh/h	0.3 15105 6 4.0
Vehice Segni Lane Spee Der Direct Segni Peak	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor	61.2 18.5 A Pass 12 55	Se Se	Followers E egment 3 Length, ft Shoulder V Access Poin Opposing I Total Truck	Vidth, ft nt Density, poemand Flo	owers/mi/ln pts/mi ow Rate, veh/h	0.3 15105 6 4.0
Vehice Vehice Vehice Vehice Vehice Vehice Vehice Vehice Segn Lane Spee Der Direce Peak Segn Inte	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h	61.2 18.5 A Pass 12 55	Se Se	Followers E egment 3 Length, ft Shoulder V Access Poin Opposing I Total Truck	Vidth, ft Int Density, polytoperate of the po	owers/mi/ln pts/mi ow Rate, veh/h	0.3 15105 6 4.0
Vehice Vehice Vehice Vehice Vehice Vehice Vehice Vehice Vehice Segn Lane Spee Direct Peak Segn Inte	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h ermediate Results	61.2 18.5 A Pass 12 55 144 0.94 140	Se Se	Egment 3 Length, ft Shoulder V Access Poin Opposing I Total Truck Demand/C	Vidth, ft Int Density, polyage of the Demand Floors, % Interpretable o	owers/mi/ln pts/mi ow Rate, veh/h C)	0.3 15105 6 4.0 - 14.90 0.10
Veh Avera Segn Vehic Veh Segn Lane Spee Direc Peak Segn Inte	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h ermediate Results nent Vertical Class	61.2 18.5 A Pass 12 55 144 0.94 1400	See Sing Lanes	Followers E Pegment 3 Length, ft Shoulder V Access Poir Opposing I Total Truck Demand/C	Vidth, ft Demand Flo s, % apacity (D/ Speed, mi/h er Coefficie	owers/mi/ln pts/mi ow Rate, veh/h C)	0.3 15105 6 4.0 - 14.90 0.10
Vehice Segn Lane Speee Direct Peak Segn Inte	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h ment Travel Time, minutes cle LOS sicle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h ermediate Results ment Vertical Class d Slope Coefficient	61.2 18.5 A Pass 12 55 144 0.94 1400	Sessing Lanes	Followers E Pegment 3 Length, ft Shoulder W Access Poin Opposing I Total Truck Demand/C Free-Flow S Speed Pow PF Power C	Density, following for the property of the pro	owers/mi/ln pts/mi ow Rate, veh/h C)	0.3 15105 6 4.0 - 14.90 0.10 61.2 1.54401


Suk	osegment Data								
#	Segment Type	Leng	gth, ft		Radi	ius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	1510)5		-		1-		61.1
Pas	sing Lane Results								
			Faster Lane					Slower Lane	
Flow	Rate, veh/h		96					48	
Perce	entage of Heavy Vehicles (HV%), %		5.96					32.72	
Initia	ıl Average Speed (Sint), mi/h		61.5					60.6	
Aver	age Speed at Midpoint (SPLmid), n	ni/h	63.2					58.9	
Perce	ent Followers at Midpoint (PFPLmic	d), %	11.5					5.8	
Veł	nicle Results								
Aver	age Speed, mi/h	61.1				Percent Follower	rs, %		15.6
Segr	nent Travel Time, minutes	2.81				Followers Densit	y, follo	wers/mi/ln	0.4
Vehi	cle LOS	А							
				Se	egm	ent 4			
Vel	nicle Inputs								
Segr	nent Type	Pass	ing Zone			Length, ft			35904
Lane	Width, ft	12	12			Shoulder Width, ft		6	
Spee	ed Limit, mi/h	55				Access Point Der	nsity, p	ts/mi	6.0
Dei	mand and Capacity								
Dire	ctional Demand Flow Rate, veh/h	144				Opposing Dema	nd Flo	w Rate, veh/h	144
Peak	Hour Factor	0.94				Total Trucks, %			14.90
Segr	nent Capacity, veh/h	1700)			Demand/Capacit	ty (D/C	. .)	0.08
Inte	ermediate Results								
Segr	nent Vertical Class	2				Free-Flow Speed	d, mi/h		59.8
Spee	ed Slope Coefficient	4.53	356			Speed Power Co	efficier	nt	0.66486
PF SI	ope Coefficient	-1.1	7419			PF Power Coefficient		0.79683	
In Pa	ssing Lane Effective Length?	Yes				Total Segment Density, veh/mi/ln			0.5
%lm	proved % Followers	9.4				% Improved Avg	Speed	l l	0.0
Suk	osegment Data								
#	Segment Type	Leng	gth, ft		Radi	ius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	3590)4		-		-		59.3
Vel	nicle Results								
Aver	age Speed, mi/h	59.3				Percent Follower	rs, %		22.1
	nent Travel Time, minutes	6.89				Followers Densit	y, follo	wers/mi/ln	0.5
Segr									


Vel	hicle Inputs					
Seg	ment Type	Passing Zone		Length, ft		12144
Mea	sured FFS	Measured		Free-Flow Speed, mi/h		47.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	179		Opposing Demand	d Flow Rate, veh/h	179
Peal	k Hour Factor	0.94		Total Trucks, %		31.00
Seg	ment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.11
Int	ermediate Results					
Seg	ment Vertical Class	4		Free-Flow Speed,	mi/h	47.0
Spe	ed Slope Coefficient	30.47189		Speed Power Coef	fficient	0.74794
PF S	lope Coefficient	-1.43469		PF Power Coefficie	ent	0.80690
In Pa	assing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	1.3
%lm	proved % Followers	7.2		% Improved Avg S	Speed	0.0
Sul	bsegment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	12144 -			-	42.4
Vel	hicle Results		•			
Ave	rage Speed, mi/h	42.4		Percent Followers,	. %	30.1
Seg	ment Travel Time, minutes	3.25		Followers Density, followers/mi/ln		1.2
Vehi	icle LOS	А		Tollowers Berlsty, Tollowers, Tilly		
		S	egn	nent 6		·
Vel	hicle Inputs					
Seg	ment Type	Passing Lanes		Length, ft		25872
Mea	asured FFS	Measured		Free-Flow Speed,	mi/h	46.0
De	mand and Capacity					
	ectional Demand Flow Rate, veh/h	179		Opposing Demand	d Flow Rate, veh/h	-
Peal	K Hour Factor	0.94		Total Trucks, %		31.00
Seg	ment Capacity, veh/h	1100		Demand/Capacity (D/C)		0.16
Int	ermediate Results			<u> </u>		
Seg	ment Vertical Class	2		Free-Flow Speed, mi/h		46.0
	ed Slope Coefficient	12.22850		Speed Power Coef		1.55917
	ilope Coefficient	-0.91332		PF Power Coefficie		0.77795
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	0.8
	proved % Followers	0.0		% Improved Avg S		0.0
Sul	bsegment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	25872	-		-	45.8

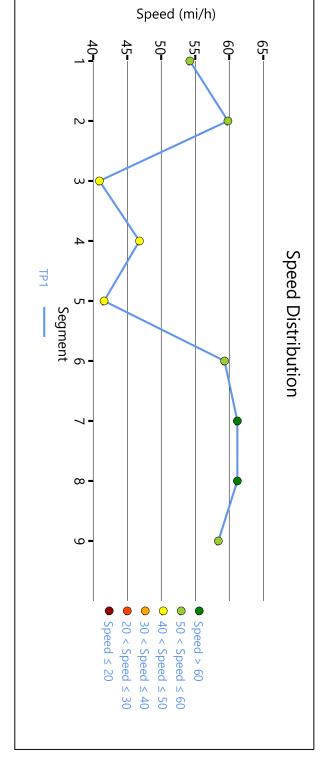
Pas	ssing Lane Results							
			Faster Lane				Slower Lane	
Flov	v Rate, veh/h		115			63		
Perc	centage of Heavy Vehicles (HV%), %		12.40			64.76		
Initi	al Average Speed (Sint), mi/h		74.4			63.6		
Ave	rage Speed at Midpoint (SPLmid), mi,	/h	76.5				61.6	
Perc	ent Followers at Midpoint (PFPLmid),	%	8.8			0.0		
Vel	hicle Results							
Ave	rage Speed, mi/h	45.8	}		Percent Followers,	, %		21.3
Seg	ment Travel Time, minutes	6.42)		Followers Density,	follo	wers/mi/ln	0.8
Veh	icle LOS	А						
			Se	egn	nent 7			
Vel	hicle Inputs							
Seg	ment Type	Pass	sing Lanes		Length, ft			30624
	asured FFS		asured		Free-Flow Speed,	mi/h		47.0
De	mand and Capacity							
Dire	ectional Demand Flow Rate, veh/h	213			Opposing Deman	d Flo	w Rate, veh/h	-
Peal	k Hour Factor	0.94	0.94		Total Trucks, %			30.00
Seg	ment Capacity, veh/h	110	0		Demand/Capacity (D/C)		0.19	
Int	ermediate Results							
Seg	ment Vertical Class	4			Free-Flow Speed,	mi/h		47.0
Spe	ed Slope Coefficient	28.7	'3583		Speed Power Coe	fficie	nt	1.16507
PF S	Slope Coefficient	-0.8	2245		PF Power Coefficient		1.06542	
In P	assing Lane Effective Length?	No			Total Segment Density, veh/mi/ln		0.7	
%lm	proved % Followers	0.0			% Improved Avg Speed		0.0	
Su	bsegment Data	<u> </u>						
#	Segment Type	Leng	gth, ft	Rac	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	306	24	-		-		44.7
Pas	ssing Lane Results							
			Faster Lane				Slower Lane	
Flov	Flow Rate, veh/h 135					78		
Perc	centage of Heavy Vehicles (HV%), %		12.00				61.11	
Initi	al Average Speed (Sint), mi/h		72.7				55.9	
Ave	rage Speed at Midpoint (SPLmid), mi,	/h	74.7				53.9	
Perc	ent Followers at Midpoint (PFPLmid),	%	11.0				-	
Vel	hicle Results							
	rage Speed, mi/h	44.7	,		Percent Followers,	%		14.6

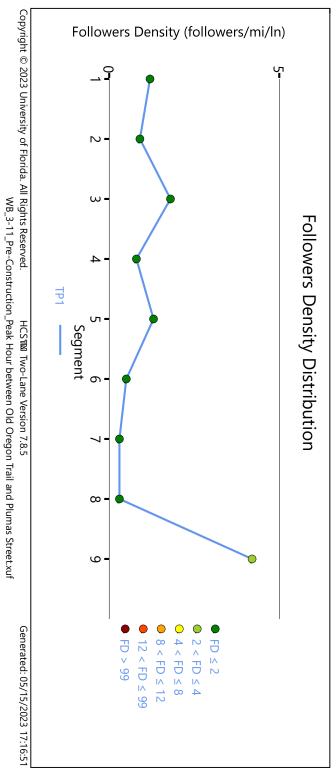
Seam	nent Travel Time, minutes	7.78	T	Followers Density,	followers/mi/ln	0.7
_	:le LOS	A		. Jee. Jensity,		
			eam	ent 8		
.	*-11		-9111			
	icle Inputs					
Segn	nent Type	Passing Zone		Length, ft		7392
	Width, ft	12		Shoulder Width, f		6
Spee	d Limit, mi/h	55		Access Point Dens	ity, pts/mi	5.0
Der	nand and Capacity					
Direc	tional Demand Flow Rate, veh/h	191		Opposing Deman	d Flow Rate, veh/h	197
Peak	Hour Factor	0.94		Total Trucks, %		17.50
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.11
Inte	ermediate Results					
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	60.9
Spee	d Slope Coefficient	3.62198		Speed Power Coe	fficient	0.54015
PF SI	ope Coefficient	-1.19891		PF Power Coefficie	ent	0.80879
In Pa	ssing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	0.9
%lmį	proved % Followers	14.0		% Improved Avg S	Speed	0.6
Sub	segment Data					
#	Segment Type	Length, ft	Radio	lius, ft Superelevation, %		Average Speed, mi/h
1	Tangent	7392	_	-		59.9
Veh	icle Results					
7611	icle results					
	age Speed, mi/h	60.3		Percent Followers,	%	27.0
Avera		60.3		Percent Followers, Followers Density,		27.0 0.7
Avera Segm	age Speed, mi/h					
Avera Segm	age Speed, mi/h nent Travel Time, minutes	1.39 A				
Avera Segm Vehic	age Speed, mi/h nent Travel Time, minutes :le LOS	1.39 A		Followers Density,		
Avera Segm Vehice	age Speed, mi/h nent Travel Time, minutes cle LOS	1.39 A	egm	Followers Density,		
Segn Vehice Veh	age Speed, mi/h nent Travel Time, minutes :le LOS	1.39 A	egm	Followers Density,	followers/mi/ln	0.7
Avera Segm Vehice Veh Segm Lane	age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type	1.39 A Se	egm	Followers Density, ent 9 Length, ft	followers/mi/ln	2640
Vehice Vehice Vehice Vehice Segm Lane Spee	age Speed, mi/h nent Travel Time, minutes tle LOS icle Inputs nent Type Width, ft	1.39 A Se Passing Constrained 12	egm	Followers Density, ent 9 Length, ft Shoulder Width, ft	followers/mi/ln	0.7 2640 6
Vehice Vehice Vehice Vehice Segment Lane Spee	age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h	1.39 A Se Passing Constrained 12	egm	Followers Density, Tent 9 Length, ft Shoulder Width, ft Access Point Dens	followers/mi/ln	0.7 2640 6
Vehice Ve	age Speed, mi/h nent Travel Time, minutes cle LOS icle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity	1.39 A Se Passing Constrained 12 55	egm	Followers Density, Tent 9 Length, ft Shoulder Width, ft Access Point Dens	followers/mi/ln	2640 6 22.0
Vehice Vehice Vehice Segm Lane Spee Derece Peak	age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	1.39 A Se Passing Constrained 12 55	egm	Followers Density, Tent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demand	followers/mi/ln t ity, pts/mi d Flow Rate, veh/h	0.7 2640 6 22.0
Vehice Vehice Vehice Vehice Vehice Vehice Segm Lane Spee Derr Direce Peak Segm	age Speed, mi/h nent Travel Time, minutes cle LOS icle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor	1.39 A Se Passing Constrained 12 55 463 0.94	egm	Followers Density, The state of the state o	followers/mi/ln t ity, pts/mi d Flow Rate, veh/h	0.7 2640 6 22.0
Vehice Vehice Vehice Vehice Vehice Vehice Segme Lane Spee Derrece Peak Segme Interes	age Speed, mi/h nent Travel Time, minutes cle LOS icle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h ermediate Results	1.39 A Se Passing Constrained 12 55 463 0.94	egm	Followers Density, Tent 9 Length, ft Shoulder Width, ft Access Point Dens Opposing Demandor Total Trucks, % Demand/Capacity	followers/mi/ln it ity, pts/mi d Flow Rate, veh/h (D/C)	0.7 2640 6 22.0
Vehice Vehice Vehice Vehice Vehice Vehice Vehice Segm Lane Spee Derr Direct Peak Segm Inte	age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h	1.39 A See Passing Constrained 12 55 463 0.94 1700	egm	Followers Density, The state of the state o	followers/mi/ln tity, pts/mi d Flow Rate, veh/h (D/C)	0.7 2640 6 22.0 - 19.00 0.27

			С	Vehicle LOS	<u>~</u>
4.1	followers/mi/ln	Followers Density, followers/mi/ln	0.55	Segment Travel Time, minutes	Se
53.6	%	Percent Followers, %	54.2	Average Speed, mi/h	Þ
				Vehicle Results	<
54.2	-		2640 -	1 Tangent	
Average Speed, mi/h	Superelevation, %	Radius, ft	Length, ft Ra	# Segment Type	#
				Subsegment Data	S
0.0	peed	% Improved Avg Speed	10.7	%Improved % Followers	%
4.6	nsity, veh/mi/ln	Total Segment Density, veh/mi/ln	Yes	In Passing Lane Effective Length?	5

	HCS7 Two	o-Lane	Highway	Report		
Project Information						
Analyst	Carlos Arias		Date		4/12/2023	
Agency	Westwood		Analysis Year		2020	
Jurisdiction	Shasta County		Time Period Ar	nalyzed	Peak Hour	
Project Description	Fountain Wind Te-w _ West Boun CA-299E from Ol Trail to Plumas S	ld - Along ld Oregon	Unit		United States Customary	
		Segn	nent 1			
Vehicle Inputs						
Segment Type	Passing Constrain	ned	Length, ft		2640	
Lane Width, ft	12		Shoulder Widt	h, ft	6	
Speed Limit, mi/h	55		Access Point D	ensity, pts/mi	22.0	
Demand and Capacity						
Directional Demand Flow Rate, veh/h	191		Opposing Dem	nand Flow Rate, veh/h	-	
Peak Hour Factor	0.94		Total Trucks, %		19.00	
Segment Capacity, veh/h 1700		Demand/Capa	city (D/C)	0.11		
Intermediate Results						
Segment Vertical Class	2		Free-Flow Spe	ed, mi/h	55.5	
Speed Slope Coefficient	3.88683		Speed Power C	Coefficient	0.44359	
PF Slope Coefficient	-1.43208		PF Power Coef	ficient	0.73380	
In Passing Lane Effective Length?	No		Total Segment	Density, veh/mi/ln	1.2	
%Improved % Followers	0.0		% Improved A	/g Speed	0.0	
Subsegment Data						
# Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h	
1 Tangent	2640	-	-		54.2	
Vehicle Results		·				
Average Speed, mi/h	54.2		Percent Follow	ers, %	34.7	
Segment Travel Time, minutes	0.55		Followers Density, followers/mi/ln		1.2	
Vehicle LOS	А					
		Segn	nent 2			
Vehicle Inputs						
Segment Type	Passing Zone		Length, ft		7392	
	-			h ft	6	
Lane Width, ft	12		Shoulder Width, ft		0	

Diroc	ctional Demand Flow Rate, veh/h	197		Onnosing Doman	d Flow Rate, veh/h	191
	Hour Factor	0.94		Total Trucks, %	u now rate, ven/n	17.50
	nent Capacity, veh/h	1700		Demand/Capacity	, (D/C)	0.12
	ermediate Results	1700		Demand/Capacity (D/C)		0.12
				,		
	nent Vertical Class	1		Free-Flow Speed,		60.9
•	d Slope Coefficient	3.62000		Speed Power Coe		0.54167
	ope Coefficient	-1.19762		PF Power Coefficie		0.80923
	ssing Lane Effective Length?	No		Total Segment De		0.9
%lm _l	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	7392	-		-	59.8
Veh	nicle Results					
Avera	age Speed, mi/h	59.8	Percent Followers, S		, %	27.5
Segn	nent Travel Time, minutes	1.40	Followers Density,		, followers/mi/ln	0.9
Vehic	cle LOS	А				
			Segn	nent 3		
Veh	nicle Inputs					
Segn	nent Type	Passing Zone		Length, ft		30624
Meas	sured FFS	Measured Free-Flow Speed,		mi/h	47.0	
Der	mand and Capacity					
Direc	ctional Demand Flow Rate, veh/h	213		Opposing Deman	d Flow Rate, veh/h	213
Peak	Hour Factor	0.94		Total Trucks, %		30.00
Segn	nent Capacity, veh/h	1700		Demand/Capacity	' (D/C)	0.13
Inte	ermediate Results					·
Segn	nent Vertical Class	4		Free-Flow Speed, mi/h		47.0
Spee	d Slope Coefficient	30.13295		Speed Power Coefficient		0.73099
PF SI	ope Coefficient	-1.45615		PF Power Coefficient		0.80231
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	1.8
%lm _l	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	30624	-		-	40.9
Veh	icle Results					·
	age Speed, mi/h	40.9		Percent Followers,	, %	34.3
Avera	-					
	nent Travel Time, minutes	8.51		Followers Density,	, followers/mi/ln	1.8


		gn	nent 4					
Vel	hicle Inputs							
Segi	ment Type	Pass	sing Lanes		Length, ft			25872
Mea	asured FFS	Mea	asured		Free-Flow Speed, mi/h		47.0	
De	mand and Capacity				<u> </u>			
Dire	ectional Demand Flow Rate, veh/h	179			Opposing Demand Flow Rate, veh/h		w Rate, veh/h	-
Peak	k Hour Factor	0.94	1		Total Trucks, %			31.00
Segi	ment Capacity, veh/h	110	0		Demand/Capacity (D/C)		<u> </u>	0.16
Int	ermediate Results							
Segi	ment Vertical Class	2			Free-Flow Speed,	mi/h		47.0
Spe	ed Slope Coefficient	12.2	12.22850		Speed Power Coefficient		1.55917	
PF S	Slope Coefficient	-0.9	-0.91061		PF Power Coefficie	ent		0.78832
In Pa	assing Lane Effective Length?	No	No		Total Segment De	nsity	, veh/mi/ln	0.8
%lm	proved % Followers	0.0	0.0 % I		% Improved Avg S	% Improved Avg Speed		0.0
Sul	bsegment Data							
#	Segment Type	Len	ngth, ft Radius, ft		dius, ft	Superelevation, %		Average Speed, mi/h
1	Tangent	258	25872 -			-		46.8
Pas	ssing Lane Results		Faster Lane				Slower Lane	
Flow	v Rate, veh/h		115		63			
	centage of Heavy Vehicles (HV%), %		12.40		64.76			
	al Average Speed (Sint), mi/h		74.4		63.6			
	rage Speed at Midpoint (SPLmid), mi,	/h	76.5		61.6			
	ent Followers at Midpoint (PFPLmid),		8.8		0.0			
Vel	hicle Results							
Aver	rage Speed, mi/h	46.8	<u> </u>		Percent Followers, %			20.9
	ment Travel Time, minutes	6.29)		Followers Density, followers/mi/ln		0.8	
Vehi	icle LOS	Α			remembers 2 charty, remembers, may may			
			Se	gn	nent 5			
Vel	hicle Inputs							
	ment Type	Pass	sing Zone		Length, ft			12144
	asured FFS	-	asured		Free-Flow Speed,	mi/h		46.0
De	mand and Capacity							
	ectional Demand Flow Rate, veh/h	179			Opposing Demand	d Flo	w Rate, veh/h	179
	k Hour Factor	0.94			Total Trucks, %		, 4	31.00
	ment Capacity, veh/h	170			Demand/Capacity	(D/0		0.11


	Intermediate Results							
Segi	ment Vertical Class	4		Free-Flow Speed,	mi/h	46.0		
Spe	ed Slope Coefficient	30.47189		Speed Power Coef	ficient	0.74794		
PF S	lope Coefficient	-1.43570		PF Power Coefficie	ent	0.80084		
In Pa	assing Lane Effective Length?	Yes	Yes		nsity, veh/mi/ln	1.3		
%lm	proved % Followers	13.9		% Improved Avg S	Speed	0.5		
Sul	bsegment Data					·		
#	Segment Type	Length, ft	Ra	adius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	12144	-		-	41.4		
Vel	nicle Results							
Aver	rage Speed, mi/h	41.6		Percent Followers,	%	30.3		
Segi	ment Travel Time, minutes	3.31		Followers Density,	followers/mi/ln	1.1		
Vehi	cle LOS	А						
			Seg	ment 6		•		
Vel	nicle Inputs							
Segi	ment Type	Passing Zone		Length, ft		35904		
Lane	e Width, ft	12		Shoulder Width, ft		6		
Spe	ed Limit, mi/h	55		Access Point Dens	ity, pts/mi	6.0		
De	mand and Capacity					•		
Dire	ctional Demand Flow Rate, veh/h	144		Opposing Demand	d Flow Rate, veh/h	144		
Peak	Hour Factor	0.94		Total Trucks, %		14.90		
Segr	ment Capacity, veh/h	1700		Demand/Capacity (D/C)		0.08		
Int	ermediate Results							
		2		Francisco Consort	: /l-	1-00		
Segr	ment Vertical Class			Free-Flow Speed,	mi/n	59.8		
	ed Slope Coefficient	4.53356		Speed Power Coef		0.66486		
Spe				 	ficient			
Spee PF S	ed Slope Coefficient	4.53356		Speed Power Coef	ficient	0.66486		
Spee PF S In Pa	ed Slope Coefficient lope Coefficient	4.53356 -1.17419		Speed Power Coefficie	fficient ent nsity, veh/mi/ln	0.66486 0.79683		
Spee PF S In Pa %Im	ed Slope Coefficient lope Coefficient assing Lane Effective Length?	4.53356 -1.17419 Yes		Speed Power Coefficient Total Segment Den	fficient ent nsity, veh/mi/ln	0.66486 0.79683 0.5		
Spee PF S In Pa %Im	ed Slope Coefficient lope Coefficient assing Lane Effective Length?	4.53356 -1.17419 Yes	Ra	Speed Power Coefficient Total Segment Den	fficient ent nsity, veh/mi/ln	0.66486 0.79683 0.5		
Spee PF S In Pa	ed Slope Coefficient lope Coefficient assing Lane Effective Length? aproved % Followers bsegment Data	4.53356 -1.17419 Yes 8.5	Ra	Speed Power Coefficient PF Power Coefficient Total Segment Delay Mind Improved Avg S	fficient ent nsity, veh/mi/In Speed	0.66486 0.79683 0.5 0.0		
Spee PF S In Pa %Im Sul #	lope Coefficient lope Coefficient assing Lane Effective Length? aproved % Followers bsegment Data Segment Type	4.53356 -1.17419 Yes 8.5	Rá	Speed Power Coefficient PF Power Coefficient Total Segment Delay Mind Improved Avg S	fficient ent nsity, veh/mi/In Speed	0.66486 0.79683 0.5 0.0		
Spee PF S In Pa %Im Sul # 1	ed Slope Coefficient lope Coefficient assing Lane Effective Length? aproved % Followers bsegment Data Segment Type Tangent	4.53356 -1.17419 Yes 8.5	Ra -	Speed Power Coefficient PF Power Coefficient Total Segment Delay Mind Improved Avg S	ficient ent nsity, veh/mi/ln speed Superelevation, %	0.66486 0.79683 0.5 0.0		
Spee Spee Spee Spee Spee Spee Spee Spee	ed Slope Coefficient lope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type Tangent hicle Results	4.53356 -1.17419 Yes 8.5 Length, ft 35904	Rá	Speed Power Coefficient PF Power Coefficient Total Segment Deading % Improved Avg Segment adius, ft	fficient ent ent sity, veh/mi/ln speed Superelevation, % -	0.66486 0.79683 0.5 0.0 Average Speed, mi/h 59.3		

Veh	nicle Inputs							
Segr	ment Type	Pass	sing Lanes		Length, ft			15105
	· Width, ft	12			Shoulder Width, ft			6
Spee	ed Limit, mi/h	55			Access Point Dens	Access Point Density, pts/mi		4.0
Der	mand and Capacity							
Dire	ctional Demand Flow Rate, veh/h	138			Opposing Demand Flow Rate, veh/h			-
Peak	Hour Factor	0.94	1		Total Trucks, %			14.90
Segr	ment Capacity, veh/h	140	0		Demand/Capacity (D/C)			0.10
Inte	ermediate Results							
Segr	ment Vertical Class	1			Free-Flow Speed,	mi/h		61.2
Spee	ed Slope Coefficient	7.24			Speed Power Coefficient			1.54401
	lope Coefficient	-0.9			PF Power Coefficie			0.89690
	assing Lane Effective Length?	No			Total Segment De	nsity,	veh/mi/ln	0.3
%lm	proved % Followers	0.0			% Improved Avg S	Speed	t e	0.0
Suk	osegment Data							
#	Segment Type	Len	gth, ft	 lius, ft	Sup	erelevation, %	Average Speed, mi/h	
1	Tangent		15105 -		-	<u> </u>	61.2	
Pas	sing Lane Results							
			Faster Lane				Slower Lane	
Flow Rate, veh/h 92			46					
Percentage of Heavy Vehicles (HV%), % 5.96			32.90					
Initia	al Average Speed (Sint), mi/h		61.5				60.6	
Aver	age Speed at Midpoint (SPLmid), mi	/h	63.2		58.9			
Perce	ent Followers at Midpoint (PFPLmid),	%	11.1		5.6			
Vel	nicle Results							
Aver	rage Speed, mi/h	61.2	<u>)</u>		Percent Followers, %			15.1
Segr	ment Travel Time, minutes	2.81	 [Followers Density, followers/mi/ln			0.3
Vehi	cle LOS	А						
			Se	gn	nent 8			
Ver	nicle Inputs							
	ment Type	Pass	sing Lanes		Length, ft			99999
	Width, ft	12			Shoulder Width, ft	t		6
	ed Limit, mi/h	55			Access Point Dens		ts/mi	4.0
	mand and Capacity							
	ctional Demand Flow Rate, veh/h	138			Opposing Demand	d Flo	w Rate, veh/h	-
	: Hour Factor	0.94			Total Trucks, %			14.90
1					Total Trucks, %			I

Intermediate Results									
	nent Vertical Class	1			Free-Flow Speed,	mi/h		61.2	
	ed Slope Coefficient	_	 3696		Speed Power Coe		1.58663		
	ope Coefficient		6880		PF Power Coefficie		<u>.</u>	0.89273	
	ssing Lane Effective Length?	No.3			Total Segment De		veh/mi/ln	0.3	
	proved % Followers	0.0			% Improved Avg S				
	osegment Data	0.0			% improved Avg s	эреес	<u> </u>	0.0	
#	Segment Type	Lon	gth, ft	Pac	ius, ft Superelevation, %		Average Speed, mi/h		
1	Tangent		99999 -			-		61.2	
	sing Lane Results	1333						10.12	
			Faster Lane				Slower Lane		
Flow Rate, veh/h 92			46						
	entage of Heavy Vehicles (HV%), %		5.96				32.90		
			61.5						
	3 1 7 7			60.6 58.9					
	ent Followers at Midpoint (PFPLmid),		63.2 11.2				5.7		
	nicle Results								
	age Speed, mi/h	61.2	61.2		Percent Followers, %		15.3		
	nent Travel Time, minutes	+	18.58		Followers Density, followers/mi/ln		0.3		
	cle LOS	Α	.50 Tollowers		,				
			Se	egn	nent 9			_	
Veh	icle Inputs			_					
Segn	nent Type	Pass	sing Zone		Length, ft			22704	
	Width, ft	12			Shoulder Width, ft		6		
Spee	ed Limit, mi/h	55			Access Point Density, pts/mi			8.0	
Der	nand and Capacity								
Direc	ctional Demand Flow Rate, veh/h	484			Opposing Demand Flow Rate, veh/h		277		
Peak	Hour Factor	0.94	1		Total Trucks, %		3.76		
Segn	nent Capacity, veh/h	170	0		Demand/Capacity (D/C)		0.28		
Inte	ermediate Results							·	
Segn	nent Vertical Class	1			Free-Flow Speed,	mi/h		60.6	
Spee	d Slope Coefficient	3.65	5687		Speed Power Coe	fficie	nt	0.52021	
PF SI	ope Coefficient	-1.2	3195		PF Power Coefficie	ent		0.77833	
In Pa	ssing Lane Effective Length?	Yes			Total Segment De	nsity	, veh/mi/ln	4.2	
%lm	proved % Followers	4.9			% Improved Avg S	Speed	d	0.0	
Suk	segment Data								
#	Segment Type	Len	gth, ft	Rac	lius, ft	Sun	erelevation, %	Average Speed, mi/h	

_		22704			π ₀ Δ
-	landenr	22/04		-	30.4
Vel	Vehicle Results				
Aver	Average Speed, mi/h	58.4	Percent Followers, %		50.4
Segr	Segment Travel Time, minutes	4.42	Followers Density, followers/mi/ln		4.0
Vehi	Vehicle LOS	В			

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2025
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 1 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	acity		
Volume(V) veh/h	666	Heavy Vehicle Adjustment Factor (fHV)	0.942
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	376
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.19
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	7.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	354	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.43
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Posonyod HCS IIM Multila	ne Version 7.8.5	Generated: 06/09/2023 23:14:36

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2025
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	pacity		
Volume(V) veh/h	1160	Heavy Vehicle Adjustment Factor (fHV)	0.936
Peak Hour Factor	0.94	Flow Rate (V _p), pc/h/ln	659
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.33
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	12.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	В
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	617	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.71
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D
Copyright © 2023 University of Florida. All Rights	Reserved HCSTM Multila	ne Version 7.8.5	Generated: 06/09/2023 23:19:33

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2025
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	1.70
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	5
Median Type	Divided	Total Lateral Clearance (TLC), ft	11
Free-Flow Speed (FFS), mi/h	54.6		
Direction 1 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	acity		
Volume(V) veh/h	566	Heavy Vehicle Adjustment Factor (fHV)	0.951
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	316
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2064
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	1998
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.16
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.2
Total Lateral Clearance Adj. (fLLC)	0.4	Density (D), pc/mi/ln	5.9
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	301	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.91
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Posaniod UCSEM Multila	ne Version 7.8.5	Generated: 06/09/2023 23:25:55

HCSTM Multilane Version 7.8.5

Generated: 06/09/2023 23:25:55

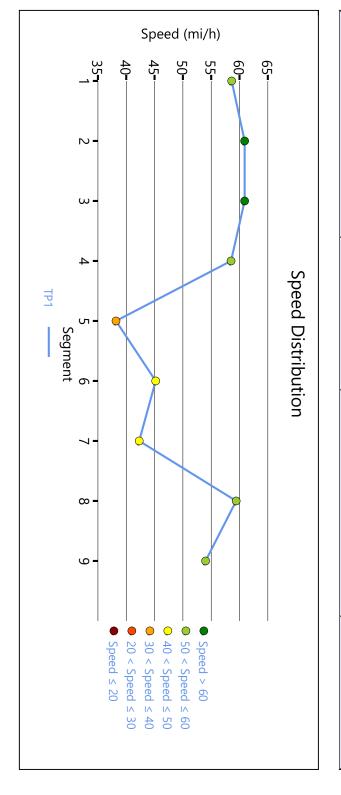
	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2025
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	acity		
Volume(V) veh/h	635	Heavy Vehicle Adjustment Factor (fHV)	0.950
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	356
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.18
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.6
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	338	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.97
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Posonyod HCS TM Multila	ne Version 7.8.5	Generated: 06/09/2023 23:26:55

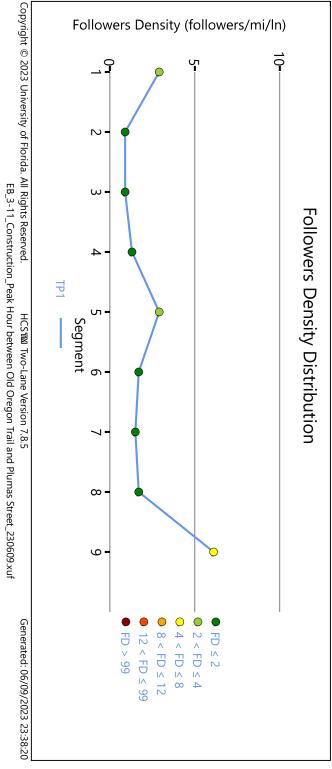
HCSTM Multilane Version 7.8.5

Generated: 06/09/2023 23:26:55

	HCS7 Two-	Lane	e Highway Report		
Project Information					
Analyst	Carlos Arias		Date		6/9/2023
Agency	Westwood		Analysis Year		2025
Jurisdiction	Shasta County		Time Period Analy	/zed	Peak Hour
Project Description	Fountain Wind Two e-w E Bound - Alon CA-299E from Old C Trail to Plumas Stree	g Oregon	Unit		United States Customary
		Segn	nent 1		
Vehicle Inputs					
Segment Type	Passing Zone		Length, ft		22704
Lane Width, ft	12		Shoulder Width, ft		6
Speed Limit, mi/h	55		Access Point Dens	sity, pts/mi	8.0
Demand and Capacity					
Directional Demand Flow Rate, veh/h	373		Opposing Deman	d Flow Rate, veh/h	548
Peak Hour Factor	0.94		Total Trucks, %		3.76
Segment Capacity, veh/h	1700		Demand/Capacity	/ (D/C)	0.22
Intermediate Results					
Segment Vertical Class	1		Free-Flow Speed, mi/h		60.6
Speed Slope Coefficient	3.72711		Speed Power Coefficient		0.47597
PF Slope Coefficient	-1.26788		PF Power Coeffici	ent	0.76437
In Passing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		2.9
%Improved % Followers	0.0		% Improved Avg Speed		0.0
Subsegment Data					
# Segment Type	Length, ft	Rad	lius, ft Superelevation, %		Average Speed, mi/h
1 Tangent	22704	-		-	58.6
Vehicle Results					
Average Speed, mi/h	58.6		Percent Followers, %		45.0
Segment Travel Time, minutes	4.41		Followers Density, followers/mi/ln		2.9
Vehicle LOS	В				
	·	Segn	nent 2		
Vehicle Inputs					
Segment Type	Passing Lanes		Length, ft		99999
Lane Width, ft	12		Shoulder Width, f	t	6
Speed Limit, mi/h	55		Access Point Dens	sity, pts/mi	4.0
Demand and Capacity	·		•		·

0.94 1400 1 7.28696		Total Trucks, % Demand/Capacity (Free-Flow Speed, m	D/C)	14.90	
1 7.28696			(D/C)	0.17	
7.28696		Free-Flow Speed in			
7.28696		Free-Flow Speed m			
		1	ni/h	61.2	
_		Speed Power Coeff	1.58663		
-0.96880		PF Power Coefficient		0.89273	
No		Total Segment Density, veh/mi/ln		0.9	
0.0		% Improved Avg Speed		0.0	
9		dius, ft	Superelevation, %	Average Speed, mi/h	
99999	-		-	60.9	
Passing Lane Results Faster Lane			Slower Lane		
Flow Rate, veh/h 150			85		
5.96			30.60		
61.5			60.7		
i/h 63.2		59.0			
Percent Followers at Midpoint (PFPLmid), % 16.8			10.0		
60.9		Percent Followers, %		23.4	
18.66		Followers Density, 1	followers/mi/ln	0.9	
А					
	Segn	nent 3			
Passing Lar	es	Length, ft		15105	
12		Shoulder Width, ft		6	
55		Access Point Density, pts/mi		4.0	
•				·	
235		Opposing Demand	-		
0.94		Total Trucks, %		14.90	
1400		Demand/Capacity ((D/C)	0.17	
1		Free-Flow Speed m	Free-Flow Speed, mi/h		
		· ·		61.2 1.54401	
7.24983 -0.96855		Free-Flow Speed, m Speed Power Coeff PF Power Coefficier	icient	61.2 1.54401 0.89690	
7.24983		Speed Power Coeff	icient nt	1.54401	
	Length, ft 99999	Length, ft Race	Length, ft Radius, ft 99999 -	Length, ft	


Sub	segment Data								
#	Segment Type	Length, ft Radiu			ius, ft	Superelevation, %		Average Speed, mi/h	
1	Tangent	151	15105 -		-		-		60.9
Pas	sing Lane Results								
			Faster Lane					Slower Lane	
Flow	Rate, veh/h		150					85	
Percentage of Heavy Vehicles (HV%), % 5.96								30.60	
Initia	l Average Speed (Sint), mi/h		61.5					60.7	
Avera	age Speed at Midpoint (SPLmid), n	ni/h	63.2					59.0	
Perce	ent Followers at Midpoint (PFPLmid	d), %	16.7					9.9	
Veh	icle Results								
Avera	age Speed, mi/h	60.9)			Percent Follow	ers, %		23.2
Segn	nent Travel Time, minutes	2.82	2			Followers Dens	ity, fo	llowers/mi/ln	0.9
Vehic	ile LOS	А							
				Se	egm	nent 4			
Veh	icle Inputs								
Segn	nent Type	Pass	sing Zone			Length, ft			35904
Lane	Width, ft	12				Shoulder Width, ft			6
Spee	d Limit, mi/h	55				Access Point D	ensity,	pts/mi	6.0
Der	nand and Capacity								
Direc	tional Demand Flow Rate, veh/h	240				Opposing Demand Flow Rate, veh/h			207
Peak	Hour Factor	0.94	ļ			Total Trucks, %			14.90
Segn	nent Capacity, veh/h	170	0			Demand/Capa	city (D	/C)	0.14
Inte	ermediate Results								
Segn	nent Vertical Class	2				Free-Flow Speed, mi/h			59.8
Spee	d Slope Coefficient	4.58	3482			Speed Power Coefficient			0.64081
PF SI	ope Coefficient	-1.1	9424			PF Power Coefficient			0.79047
In Pa	ssing Lane Effective Length?	Yes				Total Segment Density, veh/mi/ln			1.3
%lmp	proved % Followers	8.4				% Improved Avg Speed 0.0			
Sub	segment Data								
#	Segment Type	Len	gth, ft		Radi	ius, ft	Sı	uperelevation, %	Average Speed, mi/h
1	Tangent	359	04		-		-		58.5
Veh	icle Results								
Δνετ	age Speed, mi/h	58.5	j			Percent Follow	ers, %		32.1
Aven	ant Traval Time minutes	6.97	7			Followers Dens	ity, fo	llowers/mi/ln	1.2
	nent Travel Time, minutes								


Vel	nicle Inputs						
Segi	ment Type	Passing Zone		Length, ft		12144	
Mea	Measured FFS Measured		Free-Flow Speed,	mi/h	47.0		
De	mand and Capacity						
Dire	ctional Demand Flow Rate, veh/h	276		Opposing Deman	d Flow Rate, veh/h	243	
Peak	Hour Factor	0.94		Total Trucks, %		31.00	
Segi	ment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.16	
Int	ermediate Results						
Segi	ment Vertical Class	4		Free-Flow Speed,	mi/h	47.0	
Spe	ed Slope Coefficient	30.59918		Speed Power Coe	fficient	0.71659	
PF S	lope Coefficient	-1.47032		PF Power Coefficie	ent	0.80180	
In Pa	assing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	2.9	
%lm	proved % Followers	6.2		% Improved Avg S	Speed	0.0	
Sul	bsegment Data						
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	12144	-		-	38.2	
Vel	nicle Results						
Aver	rage Speed, mi/h	38.2		Percent Followers,	. %	40.7	
Segi	ment Travel Time, minutes	3.61		Followers Density,	followers/mi/ln	2.8	
Vehi	cle LOS	В	}				
		S	egn	nent 6			
Vel	nicle Inputs						
Segi	ment Type	Passing Lanes		Length, ft		25872	
	sured FFS	Measured		Free-Flow Speed,	mi/h	46.0	
De	mand and Capacity						
Dire	ctional Demand Flow Rate, veh/h	276		Opposing Deman	d Flow Rate, veh/h	-	
Peak	c Hour Factor	0.94		Total Trucks, %		31.00	
Segi	ment Capacity, veh/h	1100		Demand/Capacity	(D/C)	0.25	
Int	ermediate Results			<u>'</u>			
Segi	ment Vertical Class	2		Free-Flow Speed,	mi/h	46.0	
Spe	ed Slope Coefficient	12.22850		Speed Power Coe	fficient	1.55917	
PF S	lope Coefficient	-0.91332		PF Power Coefficie	ent	0.77795	
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	1.7	
%lm	proved % Followers	0.0		% Improved Avg S	Speed	0.0	
Sul	bsegment Data						
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	25872	-		-	45.2	

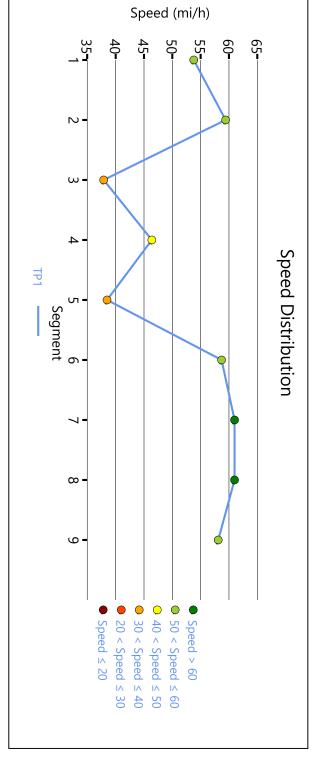
Pas	ssing Lane Results								
		Faster Lane				Slower Lane			
Flov	v Rate, veh/h		169				106		
Perc	entage of Heavy Vehicles (HV%), %		12.40				60.59		
Initia	al Average Speed (Sint), mi/h		74.3				64.5		
Ave	rage Speed at Midpoint (SPLmid), mi	/h	76.4				62.4		
Perc	Percent Followers at Midpoint (PFPLmid), % 12.7					0.5			
Vel	hicle Results								
Ave	rage Speed, mi/h	45.2	2		Percent Followers	, %		28.5	
Seg	ment Travel Time, minutes	6.51			Followers Density	, follo	wers/mi/ln	1.7	
Vehi	icle LOS	А							
			Se	egn	nent 7				
Vel	hicle Inputs								
Seg	ment Type	Pass	sing Lanes		Length, ft			30624	
	asured FFS		asured		Free-Flow Speed,	mi/h		47.0	
De	mand and Capacity								
Dire	ectional Demand Flow Rate, veh/h	310			Opposing Deman	d Flo	w Rate, veh/h	-	
Peal	k Hour Factor	0.94	ļ		Total Trucks, %			30.00	
Seg	ment Capacity, veh/h	110	0		Demand/Capacity	/ (D/C	<u> </u>	0.28	
Int	ermediate Results								
Seg	ment Vertical Class	4	Free-Flow Speed, r			mi/h		47.0	
Spe	ed Slope Coefficient	28.7	73583	Speed Power Coe	fficie	nt	1.16507		
PF S	lope Coefficient	-0.8	.82245		PF Power Coefficient			1.06542	
In Pa	assing Lane Effective Length?	No			Total Segment De	nsity,	veh/mi/ln	1.5	
%lm	proved % Followers	0.0	% Improved Avg Spec			Speed	ed 0.0		
Sul	bsegment Data							·	
#	Segment Type	Len	gth, ft	Rac	lius, ft	Sup	erelevation, %	Average Speed, mi/h	
1	Tangent	306	24	-		-		42.3	
Pas	ssing Lane Results							·	
			Faster Lane				Slower Lane		
Flov	v Rate, veh/h		188				122		
Perc	centage of Heavy Vehicles (HV%), %		12.00				57.68		
Initi	al Average Speed (Sint), mi/h		72.4				56.3		
Ave	rage Speed at Midpoint (SPLmid), mi	/h	74.4				54.3		
Perc	ent Followers at Midpoint (PFPLmid)	, %	15.4				-		
Vel	hicle Results								
	rage Speed, mi/h	42.3	<u> </u>		Percent Followers	0/		21.0	

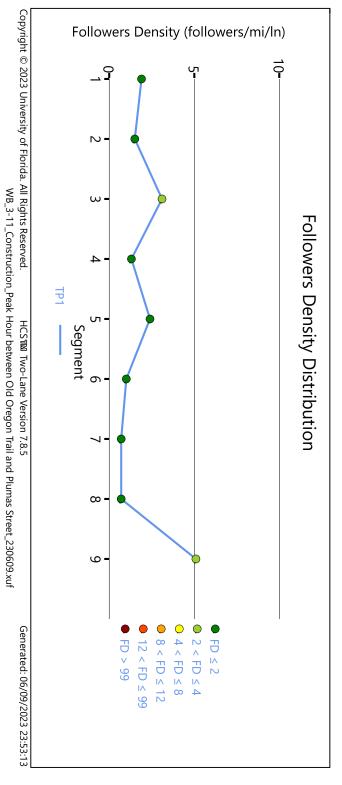
Seam	nent Travel Time, minutes	8.22	Fo	ollowers Density,	followers/mi/ln	1.5	
	Vehicle LOS A		, ,				
			egme	ent 8			
Voh	icle Inputs						
		In . 7	Ι.	.1. 6.		7202	
	nent Type	Passing Zone		ength, ft ———— houlder Width, ft		7392	
	Width, ft d Limit, mi/h	55		ccess Point Dens		5.0	
		33	A	CCess Point Dens	ity, pts/iii	3.0	
Den	nand and Capacity						
Direc	tional Demand Flow Rate, veh/h	288	O	pposing Demand	d Flow Rate, veh/h	261	
Peak	Hour Factor	0.94		otal Trucks, %		17.50	
Segn	nent Capacity, veh/h	1700	De	emand/Capacity	(D/C)	0.17	
Inte	ermediate Results						
Segn	nent Vertical Class	1	Fr	ree-Flow Speed,	mi/h	60.9	
Spee	d Slope Coefficient	3.64391	Sp	peed Power Coef	ficient	0.52382	
PF SI	ope Coefficient	-1.21262	PF	F Power Coefficie	ent	0.80405	
In Pa	ssing Lane Effective Length?	Yes		otal Segment Dei	nsity, veh/mi/ln	1.7	
%lmp	proved % Followers	13.0		Improved Avg S	peed	0.1	
Sub	segment Data						
#	Segment Type	Length, ft	Radius,	s, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	7392	-	-		59.3	
Veh	icle Results						
Avera	age Speed, mi/h	59.4					
3 1		39.4	Pe	ercent Followers,	%	36.0	
_	nent Travel Time, minutes	1.41		ercent Followers, ollowers Density,		36.0 1.5	
Segm	<u> </u>						
Segm	nent Travel Time, minutes	1.41 A		ollowers Density,			
Segm	nent Travel Time, minutes	1.41 A	Fo	ollowers Density,			
Segm Vehice Veh	nent Travel Time, minutes cle LOS	1.41 A	egme	ollowers Density, ent 9			
Segm Vehice Veh Segm	nent Travel Time, minutes	1.41 A	egme	ollowers Density,	followers/mi/ln	1.5	
Vehico Veh Segm Lane	nent Travel Time, minutes cle LOS nicle Inputs nent Type	1.41 A Se	egme Le	ent 9	followers/mi/ln	2640	
Vehice Vehice Vehice Vehice Segmine Lane Speed	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft	1.41 A Se Passing Constrained 12	egme Le	ent 9 ength, ft	followers/mi/ln	1.5 2640 6	
Vehice Vehice Vehice Segment Lane Speed	nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h	1.41 A Se Passing Constrained 12	egme Le Sr Ad	ent 9 ength, ft houlder Width, ft	followers/mi/ln	1.5 2640 6	
Vehice Vehice Vehice Vehice Segm Lane Speed Den Direc	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity	1.41 A Se Passing Constrained 12 55	egme Le Sh Ad	ent 9 ength, ft houlder Width, ft	followers/mi/ln ity, pts/mi	2640 6 22.0	
Segm Vehice Veh Segm Lane Speed Den Direct Peak	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	Passing Constrained 12 55	egmer Le Sh Ad	ent 9 ength, ft houlder Width, ft ccess Point Dens	followers/mi/ln ity, pts/mi d Flow Rate, veh/h	2640 6 22.0	
Vehice Vehice Vehice Segm Lane Speed Den Direct Peak Segm	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor	Passing Constrained 12 55 560 0.94	egmer Le Sh Ad	ent 9 ength, ft houlder Width, ft ccess Point Dens opposing Demand	followers/mi/ln ity, pts/mi d Flow Rate, veh/h	2640 6 22.0	
Vehice Vehice Vehice Segm Lane Speed Den Direct Peak Segm Inte	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h	Passing Constrained 12 55 560 0.94	Egmel Le Sh Ad	ent 9 ength, ft houlder Width, ft ccess Point Dens opposing Demand	followers/mi/ln ity, pts/mi d Flow Rate, veh/h (D/C)	2640 6 22.0	
Vehice Vehice Vehice Segm Lane Speed Direct Peak Segm Inte	nent Travel Time, minutes cle LOS nicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h crmediate Results	1.41 A See Passing Constrained 12 55 560 0.94 1700	Egmen Lee Sh Ad	ent 9 ength, ft houlder Width, ft ccess Point Dens pposing Demand otal Trucks, %	followers/mi/ln ity, pts/mi d Flow Rate, veh/h (D/C)	1.5 2640 6 22.0 - 19.00 0.33	

Vehic	Segn	Avera	Veh	1	#	Sub	%Imp	In Pa
Vehicle LOS	Segment Travel Time, minutes	Average Speed, mi/h	Vehicle Results	Tangent	Segment Type	Subsegment Data	%Improved % Followers	In Passing Lane Effective Length?
С	0.56	54.0		2640 -	Length, ft		9.7	Yes
	Followers Density, followers/mi/ln	Percent Followers, %			Radius, ft		% Improved Avg Speed	Total Segment Density, veh/mi/ln
	followers/mi/ln	%		-	Superelevation, %		peed	nsity, veh/mi/ln
	5.5	58.7		54.0	Average Speed, mi/h		0.0	6.1

	HCS7 Two	o-Lane	Highway	Report		
Project Information						
Analyst	Carlos Arias		Date		6/9/2023	
Agency	Westwood		Analysis Year		2025	
Jurisdiction	Shasta County		Time Period An	alyzed	Peak Hour	
Project Description Fountain Wind Two Lar e-w _ West Bound - Ald CA-299E from Old Ore Trail to Plumas Street			Unit		United States Customary	
		Segn	nent 1			
Vehicle Inputs						
Segment Type	Passing Constrai	ned	Length, ft		2640	
Lane Width, ft	12		Shoulder Width	n, ft	6	
Speed Limit, mi/h	55		Access Point De	ensity, pts/mi	22.0	
Demand and Capacity						
Directional Demand Flow Rate, veh/h	255	255		and Flow Rate, veh/h	-	
Peak Hour Factor	0.94	0.94			19.00	
Segment Capacity, veh/h	1700	1700		city (D/C)	0.15	
Intermediate Results						
Segment Vertical Class	2		Free-Flow Spee	ed, mi/h	55.5	
Speed Slope Coefficient	3.88683	3.88683		oefficient	0.44359	
PF Slope Coefficient	-1.43208		PF Power Coeff	icient	0.73380	
In Passing Lane Effective Length?	No	No		Density, veh/mi/ln	1.9	
%Improved % Followers	0.0	0.0		g Speed	0.0	
Subsegment Data						
# Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h	
1 Tangent	2640	-		-	53.8	
Vehicle Results						
Average Speed, mi/h	53.8		Percent Followers, %		40.9	
Segment Travel Time, minutes	0.56		Followers Density, followers/mi/ln		1.9	
Vehicle LOS	А					
	·	Segn	nent 2			
Vehicle Inputs						
Segment Type	Passing Zone		Length, ft		7392	
<u> </u>			_	n ft	6	
Lane Width, ft	12		Shoulder Width	1, 10	0	

Directional Demand Flow Rate, veh/h 261				Opposing Deman	288	
	Hour Factor			Total Trucks, %	u How Rate, ven/II	17.50
	nent Capacity, veh/h	1700		Demand/Capacity	, (D/C)	0.15
	ntermediate Results		Demand, capacity	(0,0)	0.13	
		1				
	ent Vertical Class	1		Free-Flow Speed,		60.9
•	d Slope Coefficient	3.65256		Speed Power Coe		0.51767
	ope Coefficient	-1.21772		PF Power Coefficie		0.80222
	n Passing Lane Effective Length?		Total Segment De		1.5	
%lmp	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	7392	-		-	59.4
Veh	icle Results					
Avera	ge Speed, mi/h	59.4		Percent Followers,	, %	33.9
Segm	ent Travel Time, minutes	1.41		Followers Density,	, followers/mi/ln	1.5
Vehic	le LOS	А				
			Segn	nent 3		
Veh	icle Inputs					
Segm	ent Type	Passing Zone		Length, ft		30624
Meas	ured FFS	Measured		Free-Flow Speed,	mi/h	47.0
Den	nand and Capacity					
Direc	tional Demand Flow Rate, veh/h	277		Opposing Deman	d Flow Rate, veh/h	310
Peak	Hour Factor	0.94		Total Trucks, %		30.00
Segm	ent Capacity, veh/h	1700		Demand/Capacity	' (D/C)	0.16
Inte	rmediate Results					
Segm	ent Vertical Class	4		Free-Flow Speed,	mi/h	47.0
Speed	d Slope Coefficient	30.30657		Speed Power Coefficient		0.69074
PF Slo	ope Coefficient	-1.50563		PF Power Coefficient		0.79558
In Pas	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	3.1
%lmp	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	30624	-		-	37.9
Veh	icle Results	•				
		37.9		Percent Followers, %		41.8
Avera	ige Speed, mi/h			Followers Density, followers/mi/ln		
	nent Travel Time, minutes	9.19		Followers Density,	, followers/mi/ln	3.1


			Se	gn	nent 4			
Veh	nicle Inputs							
Segn	ment Type	Pas	sing Lanes		Length, ft			25872
Mea	sured FFS	Mea	asured		Free-Flow Speed, 1	mi/h		47.0
Der	mand and Capacity							
Direc	ctional Demand Flow Rate, veh/h	243			Opposing Demand	d Flo	w Rate, veh/h	-
Peak	Hour Factor	0.94	1		Total Trucks, %			31.00
Segn	ment Capacity, veh/h	110	0		Demand/Capacity	(D/C	<u> </u>	0.22
Inte	ermediate Results							
Segn	ment Vertical Class	2			Free-Flow Speed, 1	mi/h		47.0
Spee	ed Slope Coefficient	12.2	22850		Speed Power Coef	ficie	nt	1.55917
PF SI	lope Coefficient	-0.9	1061		PF Power Coefficie	ent		0.78832
In Pa	ssing Lane Effective Length?	No			Total Segment Der	nsity	, veh/mi/ln	1.3
%lm	proved % Followers	0.0			% Improved Avg S	Speed	d	0.0
Suk	segment Data							
#	Segment Type	Len	gth, ft	Rad	dius, ft Supe		erelevation, %	Average Speed, mi/h
1	Tangent	258	72	-	-			46.4
Pas	sing Lane Results		Factor Lane				Slower Lane	
Elovu	Rate, veh/h		Faster Lane				91	
	entage of Heavy Vehicles (HV%), %		12.40				61.80	
	al Average Speed (Sint), mi/h		74.4			64.2		
	age Speed at Midpoint (SPLmid), mi	/h	76.4				62.2	
	ent Followers at Midpoint (PFPLmid)		11.4		0.3			
	nicle Results	7 70					0.0	
	age Speed, mi/h	46.4	1		Percent Followers,	%		25.8
	ment Travel Time, minutes	6.33			Followers Density, followers/mi/ln		1.3	
	cle LOS	A			Tollowers Density, followers/ffil/fil			
			Se	ean	nent 5			
Vel	nicle Inputs							
	ment Type	Pass	sing Zone		Length, ft			12144
	sured FFS	+	asured		Free-Flow Speed, i	mi/h		46.0
	mand and Capacity	1				.,		
_ 	mana and capacity	242			On a seine Demon	4 El ^	w Pate yeh/h	276
	ctional Domand Flour Data wah/h	1 /1 . 1			Opposing Demand Flow Rate, veh/h			
Direc	ctional Demand Flow Rate, veh/h Hour Factor	0.94			Total Trucks, %	J FIO	w Nate, verijii	31.00


	ermediate Results					
Segment Vertical Class 4				Free-Flow Speed,	46.0	
Spe	ed Slope Coefficient	30.65835		Speed Power Coef	fficient	0.70288
PF S	ppe Coefficient -1.48821			PF Power Coefficie	ent	0.79349
In Pa	assing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	2.4
%lm	proved % Followers	14.0		% Improved Avg S	Speed	0.9
Sul	bsegment Data					
#	Segment Type	Length, ft	Length, ft Rad		Superelevation, %	Average Speed, mi/h
1	Tangent	12144	-		-	38.2
Vel	hicle Results					
Ave	rage Speed, mi/h	38.5		Percent Followers,	%	38.3
Segi	ment Travel Time, minutes	3.58		Followers Density,	followers/mi/ln	2.1
Vehi	icle LOS	А				
			Segr	ment 6		<u>'</u>
Vel	hicle Inputs					
Segi	ment Type	Passing Zone		Length, ft	35904	
Lane	e Width, ft	12		Shoulder Width, ft	i	6
Spe	ed Limit, mi/h	55		Access Point Dens	ity, pts/mi	6.0
De	mand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	207		Opposing Demand	240	
Peak	k Hour Factor	0.94		Total Trucks, %	14.90	
Segi	ment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.12
Int	ermediate Results					
Segment Vertical Class		2		Free-Flow Speed,	mi/h	59.8
Segi						
	ed Slope Coefficient	4.60786		Speed Power Coef	fficient	0.63042
Spe		4.60786 -1.20320		Speed Power Coefficient		
Spee	ed Slope Coefficient			·	ent	0.63042
Spec PF S In Pa	ed Slope Coefficient Slope Coefficient	-1.20320		PF Power Coefficie	ent nsity, veh/mi/ln	0.63042 0.78760
Spee PF S In Pa %Im	ed Slope Coefficient Slope Coefficient assing Lane Effective Length?	-1.20320 Yes		PF Power Coefficie Total Segment De	ent nsity, veh/mi/ln	0.63042 0.78760 1.0
Spee PF S In Pa %Im	ed Slope Coefficient Slope Coefficient assing Lane Effective Length? approved % Followers	-1.20320 Yes	Rac	PF Power Coefficie Total Segment De	ent nsity, veh/mi/ln	0.63042 0.78760 1.0
Spee PF S In Pa %Im	ed Slope Coefficient Slope Coefficient assing Lane Effective Length? approved % Followers bsegment Data	-1.20320 Yes 8.6	Rad	PF Power Coefficie Total Segment De	ent nsity, veh/mi/ln Speed	0.63042 0.78760 1.0 0.0
Spee PF S In Pa %Im Sul #	ed Slope Coefficient Slope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type	-1.20320 Yes 8.6 Length, ft	Rac -	PF Power Coefficie Total Segment De	ent nsity, veh/mi/ln Speed	0.63042 0.78760 1.0 0.0 Average Speed, mi/h
Spee PF S In Pa %Im Sul # 1	ed Slope Coefficient Slope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type Tangent	-1.20320 Yes 8.6 Length, ft	Rad -	PF Power Coefficie Total Segment De	ent nsity, veh/mi/ln Speed Superelevation, %	0.63042 0.78760 1.0 0.0 Average Speed, mi/h
Spee PF S In Pa %Im Sul # 1 Vel	ed Slope Coefficient Slope Coefficient assing Lane Effective Length? approved % Followers bsegment Data Segment Type Tangent hicle Results	-1.20320 Yes 8.6 Length, ft 35904	Rad	PF Power Coefficient Total Segment Des % Improved Avg States dius, ft	sent nsity, veh/mi/ln Speed Superelevation, % -	0.63042 0.78760 1.0 0.0 Average Speed, mi/h 58.7

Voh	icle Inputs							
	•	Dr.	sing Law -		Longth ft			15105
	nent Type Width, ft	Pass 12	sing Lanes		Length, ft Shoulder Width, ft			15105
	d Limit, mi/h	55			Access Point Dens		ts/mi	4.0
		33			Access Folit Delis	ity, p	15/1111	4.0
Den	nand and Capacity							
Direc	tional Demand Flow Rate, veh/h	202			Opposing Demand	d Flo	w Rate, veh/h	-
Peak	Hour Factor	0.94	<u> </u>		Total Trucks, %			14.90
Segn	nent Capacity, veh/h	140	0		Demand/Capacity	(D/C	<u>()</u>	0.14
Inte	ermediate Results							
Segn	nent Vertical Class	1			Free-Flow Speed,	mi/h		61.2
Spee	d Slope Coefficient	7.24	1983		Speed Power Coef	fficier	nt	1.54401
PF SI	ope Coefficient	-0.9	6855		PF Power Coefficie	ent		0.89690
In Pa	ssing Lane Effective Length?	No			Total Segment De	nsity,	veh/mi/ln	0.7
%lmp	proved % Followers	0.0			% Improved Avg S	Speed	t	0.0
Sub	segment Data							
#	Segment Type	Len	gth, ft	Rad	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	151	15105 -			-		61.0
Pas	sing Lane Results							
			Faster Lane				Slower Lane	
Flow	Rate, veh/h		131				72	
Perce	entage of Heavy Vehicles (HV%), %		5.96				31.23	
Initia	l Average Speed (Sint), mi/h		61.5				60.7	
Avera	age Speed at Midpoint (SPLmid), mi/l	h	63.2				58.9	
Perce	ent Followers at Midpoint (PFPLmid),	%	14.9				8.4	
Veh	icle Results							
Avera	age Speed, mi/h	61.0)		Percent Followers,	%		20.6
Segn	nent Travel Time, minutes	2.81			Followers Density,	follo	wers/mi/ln	0.7
Vehic	cle LOS	Α						
			Se	gn	nent 8			
Veh	icle Inputs							
	nent Type	Pass	sing Lanes		Length, ft			99999
	Width, ft	12	<u> </u>		Shoulder Width, ft	t		6
	d Limit, mi/h	55			Access Point Dens		ts/mi	4.0
	mand and Capacity							<u>'</u>
	tional Demand Flow Rate, veh/h	202			Opposing Demand	d Flo	w Rate, veh/h	-
_	Hour Factor	0.94	<u> </u>		Total Trucks, %			14.90

Inte	ermediate Results							
	nent Vertical Class	1			Free-Flow Speed,	mi/h		61.2
	d Slope Coefficient	-	 3696		Speed Power Coe			1.58663
	ope Coefficient	-	6880		PF Power Coefficie			0.89273
	ssing Lane Effective Length?	No			Total Segment De		voh/mi/ln	0.03273
	proved % Followers	0.0			% Improved Avg S			0.0
•		0.0			% improved Avg s	speed	u 	0.0
	segment Data	1.	6		и с	l c		
#	Segment Type		gth, ft	Rac	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	999	99	-		<u> -</u>		61.0
Pas	sing Lane Results							
			Faster Lane				Slower Lane	
Flow	Rate, veh/h		131				72	
Perce	entage of Heavy Vehicles (HV%), %		5.96				31.23	
Initia	l Average Speed (Sint), mi/h		61.5				60.7	
Avera	age Speed at Midpoint (SPLmid), mi	/h	63.2				58.9	
Percent Followers at Midpoint (PFPLmid), % 15.0						8.6		
Veh	icle Results							
Avera	age Speed, mi/h	61.0)		Percent Followers,	, %		20.7
Segn	nent Travel Time, minutes	18.6	53		Followers Density,	, follo	owers/mi/ln	0.7
Vehic	ile LOS	А						
			Se	gn	nent 9			
Veh	icle Inputs							
Segn	nent Type	Pass	sing Zone		Length, ft			22704
Lane	Width, ft	12			Shoulder Width, f	t		6
Spee	d Limit, mi/h	55			Access Point Dens	ity, p	ots/mi	8.0
Der	nand and Capacity							
Direc	tional Demand Flow Rate, veh/h	548			Opposing Deman	d Flo	w Rate, veh/h	373
Peak	Hour Factor	0.94	1		Total Trucks, %			3.76
Segn	nent Capacity, veh/h	170	0		Demand/Capacity (D/C)			0.32
Inte	ermediate Results							
Segn	nent Vertical Class	1			Free-Flow Speed,	mi/h		60.6
Spee	d Slope Coefficient	3.68	3478		Speed Power Coe	fficie	nt	0.50130
PF SI	ope Coefficient	-1.2	4770		PF Power Coefficie	ent		0.77267
In Pa	ssing Lane Effective Length?	Yes			Total Segment De	nsity	, veh/mi/ln	5.1
%lmp	proved % Followers	4.3			% Improved Avg S	Speed	d	0.0
Sub	segment Data							
			gth, ft		lius, ft	Sup		Average Speed, mi/h

	Tangent	22704	-	-	58.1
Vel	Vehicle Results				
Aver	Average Speed, mi/h	58.1	Percent Followers, %		54.3
Segr	Segment Travel Time, minutes	4.44	Followers Density, followers/mi/ln		4.9
Vehi	Vehicle LOS	С			

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2027
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	POST- CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 1 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	583	Heavy Vehicle Adjustment Factor (fHV)	0.942
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	329
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.16
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.1
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	310	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.36
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida. All Rights	Reserved HCSTM Multila	ne Version 7.8.5	Generated: 06/10/2023 00:01:10

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Multilane Version 7.8.5

Generated: 06/10/2023 00:01:10

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2027
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	POST- CONSTRUCTION_Segment 1- Eastbound - between I-5 and Hawley Road	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.41
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	acity		·
Volume(V) veh/h	1108	Heavy Vehicle Adjustment Factor (fHV)	0.936
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	630
Total Trucks, %	4.73	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	30	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	70	Volume-to-Capacity Ratio (v/c)	0.31
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	11.8
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	В
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	589	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.68
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D
Copyright © 2023 University of Florida. All Rights	Recented HCSTM Multila	ne Version 7.8.5	Generated: 06/10/2023 00:02:10

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Multilane Version 7.8.5

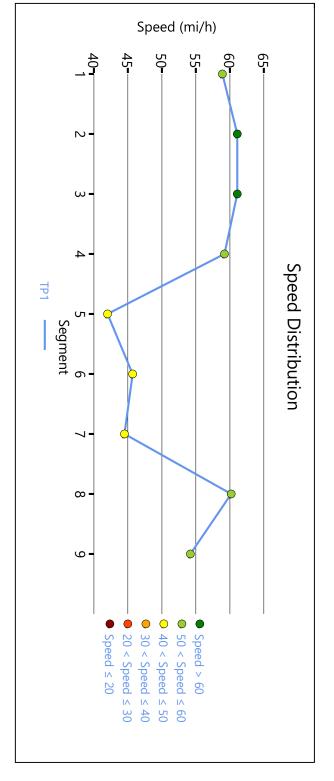
Generated: 06/10/2023 00:02:10

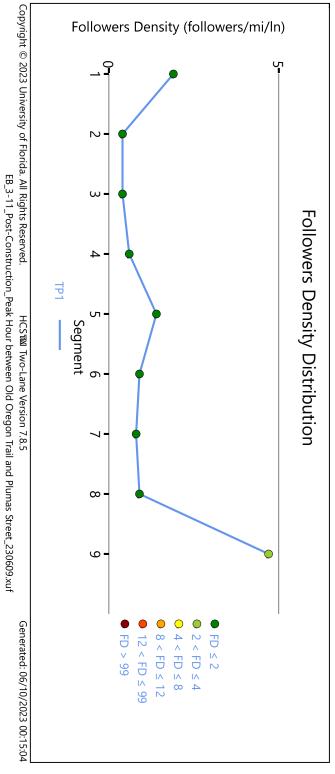
	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2027
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	POST- CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 1 Geometric Data			
Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	-0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	1.70
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	5
Median Type	Divided	Total Lateral Clearance (TLC), ft	11
Free-Flow Speed (FFS), mi/h	54.6		
Direction 1 Adjustment Fact	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 1 Demand and Cap	pacity		
Volume(V) veh/h	483	Heavy Vehicle Adjustment Factor (fHV)	0.951
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	270
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2064
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	1998
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.14
Direction 1 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.2
Total Lateral Clearance Adj. (fLLC)	0.4	Density (D), pc/mi/ln	5.1
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 1 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	257	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.83
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
Copyright © 2023 University of Florida, All Rights	Posonyod UCSTM Multila	ne Version 7.8.5	Generated: 06/10/2023 00:06:3

	HCS7 Multilane	Highway Report	
Project Information			
Analyst	PJV	Date	6/9/2023
Agency	California Energy Commission	Analysis Year	2027
Jurisdiction	Shasta County	Time Period Analyzed	PEAK HOUR
Project Description	POST- CONSTRUCTION_Segment 2 - Eastbound - between Hawley Road and Old Oregon Trail	Unit	United States Customary
Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	-	Percent Grade, %	0.08
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.60
Base Free-Flow Speed (BFFS), mi/h	55.0	Access Point Density, pts/mi	0.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	Divided	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	55.0		
Direction 2 Adjustment Factor	ors		
Driver Population	Mostly Familiar	Final Speed Adjustment Factor (SAF)	0.975
Driver Population SAF	0.975	Final Capacity Adjustment Factor (CAF)	0.968
Driver Population CAF	0.968		
Direction 2 Demand and Cap	pacity		
Volume(V) veh/h	583	Heavy Vehicle Adjustment Factor (fHV)	0.950
Peak Hour Factor	0.94	Flow Rate (Vp), pc/h/ln	326
Total Trucks, %	3.76	Capacity (c), pc/h/ln	2072
Single-Unit Trucks (SUT), %	23	Adjusted Capacity (cadj), pc/h/ln	2006
Tractor-Trailers (TT), %	77	Volume-to-Capacity Ratio (v/c)	0.16
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	53.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.1
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	0.0		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL),veh/h	310	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	2.92
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	С
ı Copyright © 2023 University of Florida. All Rights	Posonyod HCS TIM Multila	ne Version 7.8.5	Generated: 06/10/2023 00:07:58

	HCS7 Two-l	_ane	Highway Re	eport	
Project Information					
Analyst	Carlos Arias		Date		6/9/2023
Agency	Westwood		Analysis Year		2027
Jurisdiction	Shasta County		Time Period Analy	/zed	Peak Hour
Project Description	Fountain Wind Two e-w E Bound - Along CA-299E from Old C Trail to Plumas Stree	g Oregon	Unit		United States Customary
	:	Segn	nent 1		
Vehicle Inputs					
Segment Type	Passing Zone		Length, ft		22704
Lane Width, ft	12		Shoulder Width, f	t	6
Speed Limit, mi/h	55		Access Point Dens	sity, pts/mi	8.0
Demand and Capacity					
Directional Demand Flow Rate, veh/h	285		Opposing Deman	d Flow Rate, veh/h	493
Peak Hour Factor	0.94		Total Trucks, %		3.76
Segment Capacity, veh/h	1700		Demand/Capacity	/ (D/C)	0.17
Intermediate Results					
Segment Vertical Class	1		Free-Flow Speed,	mi/h	60.6
Speed Slope Coefficient	3.71453		Speed Power Coe	fficient	0.48307
PF Slope Coefficient	-1.26236		PF Power Coefficion	ent	0.76680
In Passing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	1.9
%Improved % Followers	0.0		% Improved Avg	Speed	0.0
Subsegment Data					
# Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	22704	-		-	58.9
Vehicle Results					
Average Speed, mi/h	58.9		Percent Followers	, %	38.3
Segment Travel Time, minutes	4.38		Followers Density	, followers/mi/ln	1.9
Vehicle LOS	А				
		Segn	nent 2		
Vehicle Inputs					
Segment Type	Passing Lanes		Length, ft		99999
Lane Width, ft	12		Shoulder Width, f	t	6
Speed Limit, mi/h	55		Access Point Dens	sity, pts/mi	4.0
Demand and Capacity	•		•		·

Direc	ctional Demand Flow Rate, veh/h	147		Opposing D	emand Flo	Opposing Demand Flow Rate, veh/h		
Peak	Hour Factor	0.94	1	Total Trucks			14.90	
Segn	nent Capacity, veh/h	140	0	Demand/Ca	pacity (D/	 C)	0.10	
Inte	ermediate Results						<u>'</u>	
Segn	nent Vertical Class	1		Free-Flow S	peed, mi/h	1	61.2	
Spee	d Slope Coefficient	7.28	3696	Speed Powe	er Coefficie	ent	1.58663	
PF SI	ope Coefficient	-0.9	6880	PF Power Co	pefficient		0.89273	
In Pa	ssing Lane Effective Length?	No		Total Segme	ent Density	/, veh/mi/ln	0.4	
%lm _l	proved % Followers	0.0		% Improved	l Avg Spee	d	0.0	
Suk	segment Data							
#	Segment Type	Leng	gth, ft	Radius, ft	Sup	perelevation, %	Average Speed, mi/h	
1	Tangent	9999	99	-	-		61.1	
Pas	sing Lane Results							
			Faster Lane			Slower Lane		
Flow	ate, veh/h 98				49			
Perce	entage of Heavy Vehicles (HV%), % 5.96					32.62		
Initia	Initial Average Speed (Sint), mi/h 61.5					60.6		
Average Speed at Midpoint (SPLmid), mi/h 63.2					58.9			
aver	Percent Followers at Midpoint (PFPLmid), % 11.8				1			
	·	, %	11.8			6.1		
Perce	·	, %	11.8			6.1		
Perce Veh	ent Followers at Midpoint (PFPLmid)	61.1		Percent Foll	owers, %	6.1	16.0	
Veh	ent Followers at Midpoint (PFPLmid)			Percent Foll Followers D			16.0	
Veh Avera	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h	61.1						
Veh Avera	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes	61.1	58					
Veh Avera Segn Vehice	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes	61.1	58	Followers D				
Veh Avera Segn Vehic	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS	61.1 18.5 A	58	Followers D				
Vehice Vehice Segni	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS	61.1 18.5 A	Se	Followers D	ensity, follo		0.4	
Vehice Perceive Vehice Perceive Vehice Perceive Vehice Perceive Pe	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type	61.1 18.5 A	Se	Followers D egment 3 Length, ft	ensity, follo	owers/mi/ln	15105	
Vehice Segni	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft	61.1 18.5 A	Se	Followers D egment 3 Length, ft Shoulder W	ensity, follo	owers/mi/ln	0.4 15105 6	
Veh Avera Segn Vehic Veh Segn Lane Spee	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h	61.1 18.5 A	Se Sing Lanes	Followers D egment 3 Length, ft Shoulder W Access Poin	ensity, follo idth, ft t Density, p	owers/mi/ln	0.4 15105 6	
Vehice Vehice Vehice Vehice Vehice Direce	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity	61.1 18.5 A Pass 12 55	Se Sing Lanes	Followers D egment 3 Length, ft Shoulder W Access Poin	ensity, follo	owers/mi/ln	15105 6 4.0	
Vehice Ve	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h	61.1 18.5 A Pass 12 55	Se Se	Followers D egment 3 Length, ft Shoulder W Access Poin Opposing D	idth, ft t Density, p Demand Flo	owers/mi/ln ots/mi ow Rate, veh/h	15105 6 4.0	
Vehice Segni Lane Spee Der Direct Segni Peak Segni Peak	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor	61.1 18.5 A Pass 12 55 147 0.94	Se Se	Followers D Pegment 3 Length, ft Shoulder W Access Poin Opposing D Total Trucks	idth, ft t Density, p Demand Flo	owers/mi/ln ots/mi ow Rate, veh/h	15105 6 4.0	
Vehice Vehice Vehice Vehice Vehice Vehice Vehice Vehice Segni Lane Spee Der Direce Peak Segni Inte	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h	61.1 18.5 A Pass 12 55 147 0.94	Se Se	Followers D Pegment 3 Length, ft Shoulder W Access Poin Opposing D Total Trucks	ensity, following idth, ft t Density, poemand Floor, %	owers/mi/ln ots/mi ow Rate, veh/h	15105 6 4.0	
Vehice Vehice Vehice Vehice Vehice Vehice Vehice Vehice Segn Lane Spee Direct Peak Segn Inte	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h ermediate Results	61.1 18.5 A Pass 12 55 147 0.94 140	Se Se	Followers D egment 3 Length, ft Shoulder W Access Poin Opposing D Total Trucks, Demand/Ca	idth, ft t Density, p Demand Flo , % apacity (D/0	owers/mi/ln ots/mi ow Rate, veh/h	15105 6 4.0 - 14.90 0.10	
Vehico Vehico Vehico Vehico Vehico Segni Lane Spee Direc Peak Segni Inte Segni Spee	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h nent Travel Time, minutes cle LOS sicle Inputs nent Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor nent Capacity, veh/h ermediate Results nent Vertical Class	61.1 18.5 A Pass 12 55 147 0.94 140	sing Lanes	Followers D Pegment 3 Length, ft Shoulder W Access Poin Opposing D Total Trucks Demand/Ca Free-Flow S	idth, ft t Density, pemand Flo pacity (D/o	owers/mi/ln ots/mi ow Rate, veh/h	15105 6 4.0 - 14.90 0.10	
Vehice Segn Lane Speee Direct Peak Segn Inte	ent Followers at Midpoint (PFPLmid) sicle Results age Speed, mi/h ment Travel Time, minutes cle LOS sicle Inputs ment Type Width, ft d Limit, mi/h mand and Capacity ctional Demand Flow Rate, veh/h Hour Factor ment Capacity, veh/h ermediate Results ment Vertical Class d Slope Coefficient	61.1 18.5 A Pass 12 55 147 0.94 140	Sessing Lanes	Followers D Pegment 3 Length, ft Shoulder W Access Poin Opposing D Total Trucks Demand/Ca Free-Flow S Speed Power	ensity, following idth, ft t Density, pemand Floor, % spacity (D/or peed, mi/her Coefficient	owers/mi/ln ots/mi ow Rate, veh/h C)	0.4 15105 6 4.0 - 14.90 0.10 61.2 1.54401	


Subsegment Data							
# Segment Type	Len	gth, ft		Radius, ft	9	Superelevation, %	Average Speed, mi/h
1 Tangent	151	05		-	1	-	61.1
Passing Lane Results							
		Faster Lane				Slower Lane	
Flow Rate, veh/h		98				49	
Percentage of Heavy Vehicles (HV9	%), %	5.96				32.62	
Initial Average Speed (Sint), mi/h		61.5				60.6	
Average Speed at Midpoint (SPLm	id), mi/h	63.2				58.9	
Percent Followers at Midpoint (PFF	Lmid), %	11.7				6.0	
Vehicle Results							
Average Speed, mi/h	61.	1		Percent Follo	wers, %	6	15.9
Segment Travel Time, minutes	2.8	1		Followers De	nsity, f	ollowers/mi/ln	0.4
Vehicle LOS	А						
			Se	gment 4			
Vehicle Inputs							
Segment Type	Pas	sing Zone		Length, ft			35904
Lane Width, ft	12			Shoulder Wid	dth, ft		6
Speed Limit, mi/h	55			Access Point	Densit	y, pts/mi	6.0
Demand and Capacity							
Directional Demand Flow Rate, vel	n/h 152			Opposing De	emand	Flow Rate, veh/h	152
Peak Hour Factor	0.94	4		Total Trucks,	%		14.90
Segment Capacity, veh/h	170	0		Demand/Cap	acity (l	D/C)	0.09
Intermediate Results							
Segment Vertical Class	2			Free-Flow Sp	eed, m	ii/h	59.8
Speed Slope Coefficient	4.54	4104		Speed Power	Coeffi	cient	0.66128
PF Slope Coefficient	-1.1	7713		PF Power Co	efficien	t	0.79590
In Passing Lane Effective Length?	Yes			Total Segme	nt Dens	sity, veh/mi/ln	0.6
%Improved % Followers	9.3			% Improved	Avg Sp	eed	0.0
Subsegment Data							
# Segment Type	Len	gth, ft		Radius, ft	9	Superelevation, %	Average Speed, mi/h
1 Tangent	359	04		-			59.2
Vehicle Results							
Average Speed, mi/h	59.2	2		Percent Follo	wers, %	6	23.1
Segment Travel Time, minutes	6.90)		Followers De	nsity, f	ollowers/mi/ln	0.5
Vehicle LOS	А						
			<u>د</u> -	gment 5			


Vel	hicle Inputs					
Seg	ment Type	Passing Zone		Length, ft		12144
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	47.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	187		Opposing Demand	d Flow Rate, veh/h	187
Peal	K Hour Factor	0.94		Total Trucks, %		31.00
Seg	ment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.11
Int	ermediate Results					
Seg	ment Vertical Class	4		Free-Flow Speed,	mi/h	47.0
Spe	ed Slope Coefficient	30.49005		Speed Power Coef	ficient	0.74331
PF S	lope Coefficient	-1.43973		PF Power Coefficie	ent	0.80616
In Pa	assing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	1.4
%lm	proved % Followers	7.1		% Improved Avg S	Speed	0.0
Sul	bsegment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	12144	-		-	42.0
Vel	hicle Results					·
Ave	rage Speed, mi/h	42.0		Percent Followers,	%	31.1
Seg	ment Travel Time, minutes	3.28		Followers Density,	followers/mi/ln	1.3
Vehi	icle LOS	А				
		S	egn	nent 6		
Vel	hicle Inputs					
Seg	ment Type	Passing Lanes		Length, ft		25872
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	46.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	187		Opposing Demand	d Flow Rate, veh/h	-
Peal	K Hour Factor	0.94		Total Trucks, %		31.00
Seg	ment Capacity, veh/h	1100		Demand/Capacity	(D/C)	0.17
Int	ermediate Results			<u>'</u>		
Segi	ment Vertical Class	2		Free-Flow Speed,	mi/h	46.0
Spe	ed Slope Coefficient	12.22850		Speed Power Coef	ficient	1.55917
PF S	lope Coefficient	-0.91332		PF Power Coefficie	ent	0.77795
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	0.9
%lm	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sul	bsegment Data					
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	25872	-		-	45.7

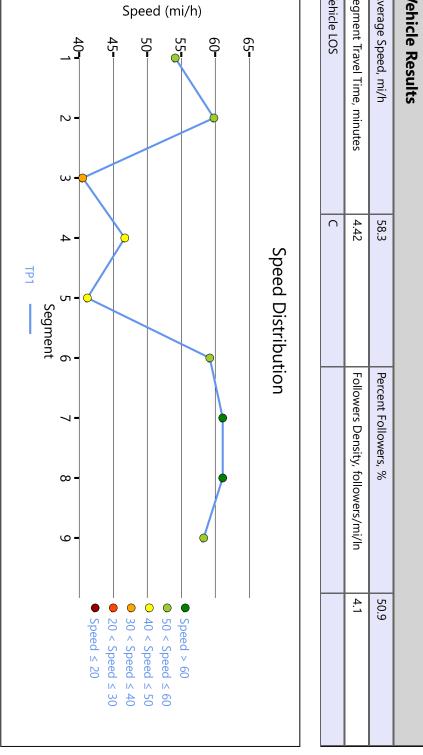
Pas	ssing Lane Results							
			Faster Lane				Slower Lane	
Flov	v Rate, veh/h		120				67	
Perc	entage of Heavy Vehicles (HV%), %		12.40				64.30	
Initi	al Average Speed (Sint), mi/h		74.4				63.7	
Ave	rage Speed at Midpoint (SPLmid), mi	/h	76.4				61.7	
Perc	ent Followers at Midpoint (PFPLmid)	, %	9.2				0.0	
Vel	hicle Results							
Ave	rage Speed, mi/h	45.7	7		Percent Followers	, %		22.0
Seg	ment Travel Time, minutes	6.43	3		Followers Density	, follo	owers/mi/ln	0.9
Vehi	icle LOS	А						
			Se	egn	nent 7			
Vel	hicle Inputs							
Seg	ment Type	Pass	sing Lanes		Length, ft			30624
	nsured FFS	_	asured		Free-Flow Speed,	mi/h		47.0
De	mand and Capacity							
Dire	ectional Demand Flow Rate, veh/h	221			Opposing Deman	d Flo	w Rate, veh/h	-
		0.94	1		Total Trucks, %			30.00
Seg	ment Capacity, veh/h	110	0		Demand/Capacity	/ (D/C	<u> </u>	0.20
Int	ermediate Results							
Seg	ment Vertical Class	4			Free-Flow Speed,	mi/h		47.0
Spe	ed Slope Coefficient	28.7	73583		Speed Power Coe	fficie	nt	1.16507
PF S	Slope Coefficient	-0.8	2245		PF Power Coeffici	ent		1.06542
In Pa	assing Lane Effective Length?	No			Total Segment De	Segment Density, veh/mi/ln		0.8
%lm	proved % Followers	0.0			% Improved Avg	Speed		
Sul	bsegment Data							
#	Segment Type	Len	gth, ft	Rac	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	306	24	-		-		44.5
Pas	ssing Lane Results							
			Faster Lane				Slower Lane	
Flov	v Rate, veh/h		140				82	
Perc	entage of Heavy Vehicles (HV%), %		12.00				60.75	
Initi	al Average Speed (Sint), mi/h		72.7				56.0	
Ave	rage Speed at Midpoint (SPLmid), mi	/h	74.7				54.0	
Perc	ent Followers at Midpoint (PFPLmid)	, %	11.4				-	
Vel	hicle Results							
	rage Speed, mi/h	44.5			Percent Followers	0/		15.2

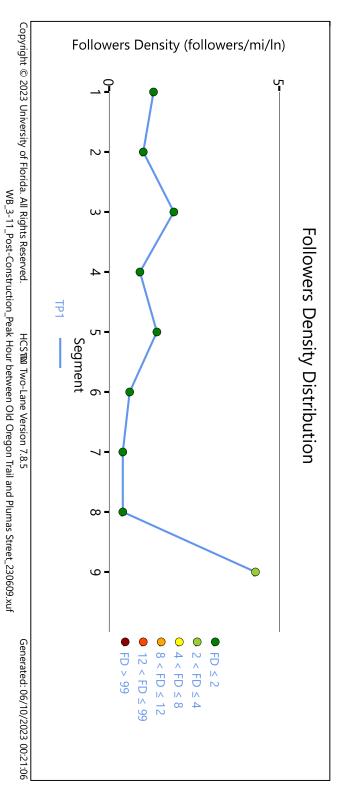
Sean	nent Travel Time, minutes	7.81		Followers Density,	followers/mi/ln	0.8
	cle LOS	A		- cc.rera Beriaity,		
			an	nent 8		
		36	.g''			
Veh	icle Inputs					
Segn	nent Type	Passing Zone		Length, ft		7392
Lane	Width, ft	12		Shoulder Width, ft	t	6
Spee	d Limit, mi/h	55		Access Point Dens	ity, pts/mi	5.0
Der	nand and Capacity					
Direc	tional Demand Flow Rate, veh/h	200		Opposing Demand	d Flow Rate, veh/h	205
Peak	Hour Factor	0.94		Total Trucks, %		17.50
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.12
Inte	ermediate Results					
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	60.9
Spee	d Slope Coefficient	3.62509		Speed Power Coef	fficient	0.53776
PF SI	ope Coefficient	-1.20092		PF Power Coefficie	ent	0.80811
In Pa	ssing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	0.9
%lm _l	oroved % Followers	13.9		% Improved Avg S	Speed	0.6
Sub	segment Data					
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	7392	-		-	59.8
Veh	nicle Results					
Aver	age Speed, mi/h	60.2		Percent Followers,	%	27.9
Segn	nent Travel Time, minutes	1.40		Followers Density,	followers/mi/ln	0.8
Vehic	cle LOS	А				
		Se	gn	nent 9		
Veh	icle Inputs					
	nent Type	Passing Constrained		Length, ft		2640
	Width, ft	12		Shoulder Width, ft	·	6
	d Limit, mi/h	55		Access Point Dens		22.0
	mand and Capacity			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7. L	
	ctional Demand Flow Rate, veh/h	471		Opposing Damas	d Flow Rate, veh/h	-
	Hour Factor	0.94		Total Trucks, %	u How Rate, vell/II	19.00
	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.28
Segn	ermediate Results	1700		Demand/Capacity		0.20
les 4	rmediate Results					
		1.		I		Ι
Segn	nent Vertical Class	1		Free-Flow Speed,		56.6
Segn		1 3.59598 -1.36655		Free-Flow Speed, Speed Power Coef PF Power Coefficie	fficient	56.6 0.41674 0.74751

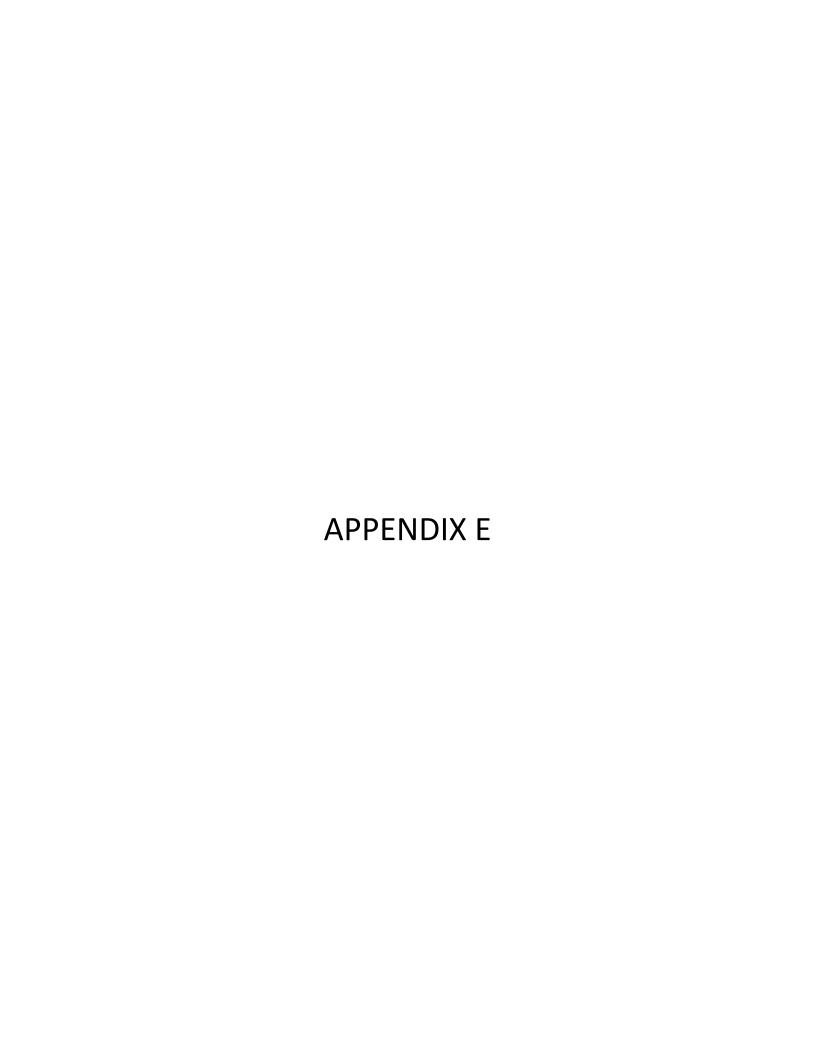
			С	Vehicle LOS	É
4.2	followers/mi/ln	Followers Density, followers/mi/ln	0.55	Segment Travel Time, minutes	Š
54.1	%	Percent Followers, %	54.2	Average Speed, mi/h	Þ
				Vehicle Results	<
54.2	-		2640 -	1 Tangent	1
Average Speed, mi/h	Superelevation, %	Radius, ft	Length, ft Ra	# Segment Type	#
				Subsegment Data	S
0.0	peed	% Improved Avg Speed	10.6	%Improved % Followers	%
4.7	nsity, veh/mi/ln	Total Segment Density, veh/mi/ln	Yes	In Passing Lane Effective Length?	5

	HCS7 Two	o-Lane	Highway	Report	
Project Information					
Analyst	Carlos Arias		Date		6/9/2023
Agency	Westwood		Analysis Year		2027
Jurisdiction	Shasta County		Time Period A	nalyzed	Peak Hour
Project Description	Fountain Wind T e-w _ West Boun CA-299E from O Trail to Plumas S	ld - Along ld Oregon	Unit		United States Customary
		Segn	nent 1		
Vehicle Inputs					
Segment Type	Passing Constrai	ned	Length, ft		2640
Lane Width, ft	12		Shoulder Widt	h, ft	6
Speed Limit, mi/h	55		Access Point D	ensity, pts/mi	22.0
Demand and Capacity					
Directional Demand Flow Rate, veh/h	200		Opposing Der	nand Flow Rate, veh/h	-
Peak Hour Factor	0.94		Total Trucks, %)	19.00
Segment Capacity, veh/h	1700		Demand/Capa	city (D/C)	0.12
Intermediate Results					
Segment Vertical Class	2		Free-Flow Spe	ed, mi/h	55.5
Speed Slope Coefficient	3.88683		Speed Power	Coefficient	0.44359
PF Slope Coefficient	-1.43208		PF Power Coef	ficient	0.73380
In Passing Lane Effective Length?	No		Total Segment	Density, veh/mi/ln	1.3
%Improved % Followers	0.0		% Improved A	vg Speed	0.0
Subsegment Data					
# Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	2640	-		-	54.1
Vehicle Results					
Average Speed, mi/h	54.1		Percent Follow	vers, %	35.6
Segment Travel Time, minutes	0.55		Followers Den	sity, followers/mi/ln	1.3
Vehicle LOS	А				
	·	Segn	nent 2		
Vehicle Inputs					
Segment Type	Passing Zone		Length, ft		7392
• •			Shoulder Widt	h ft	6
Lane Width, ft	12		3110ulder Widi	11, 10	•

Dira	etional Domand Flow Bata wak /h	205		Opposing Dames	d Flow Rate, veh/h	200
	ctional Demand Flow Rate, veh/h Hour Factor	0.94		Total Trucks, %	u riow kate, ven/n	17.50
	nent Capacity, veh/h	1700		Demand/Capacity	· (D (C)	0.12
		1700		Demand/Capacity	(D/C)	0.12
	ermediate Results					
	nent Vertical Class	1		Free-Flow Speed,		60.9
	d Slope Coefficient	3.62315		Speed Power Coe		0.53925
	ope Coefficient	-1.19967		PF Power Coefficie		0.80854
	ssing Lane Effective Length?	No		Total Segment De		1.0
%lm _l	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	7392	-		-	59.8
Veh	nicle Results					
Aver	age Speed, mi/h	59.8		Percent Followers,	, %	28.4
Segn	nent Travel Time, minutes	1.40		Followers Density,	, followers/mi/ln	1.0
Vehic	cle LOS	А				
			Segn	nent 3		
Veh	nicle Inputs					
Segn	nent Type	Passing Zone		Length, ft		30624
Meas	sured FFS	Measured		Free-Flow Speed,	mi/h	47.0
Der	mand and Capacity					·
Direc	ctional Demand Flow Rate, veh/h	221		Opposing Deman	d Flow Rate, veh/h	221
Peak	Hour Factor	0.94		Total Trucks, %		30.00
Segn	nent Capacity, veh/h	1700		Demand/Capacity	' (D/C)	0.13
Inte	ermediate Results					·
Segn	nent Vertical Class	4		Free-Flow Speed,	mi/h	47.0
Spee	d Slope Coefficient	30.14962		Speed Power Coe	fficient	0.72693
PF SI	ope Coefficient	-1.46084		PF Power Coefficie	ent	0.80165
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	1.9
%lm _l	proved % Followers	0.0		% Improved Avg S	Speed	0.0
Sub	segment Data	·				
#	Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	30624	-		-	40.5
Veh	icle Results					
	age Speed, mi/h	40.5		Percent Followers,	, %	35.3
Aver	age speed, IIII/II					
	nent Travel Time, minutes	8.59		Followers Density,	, followers/mi/ln	1.9

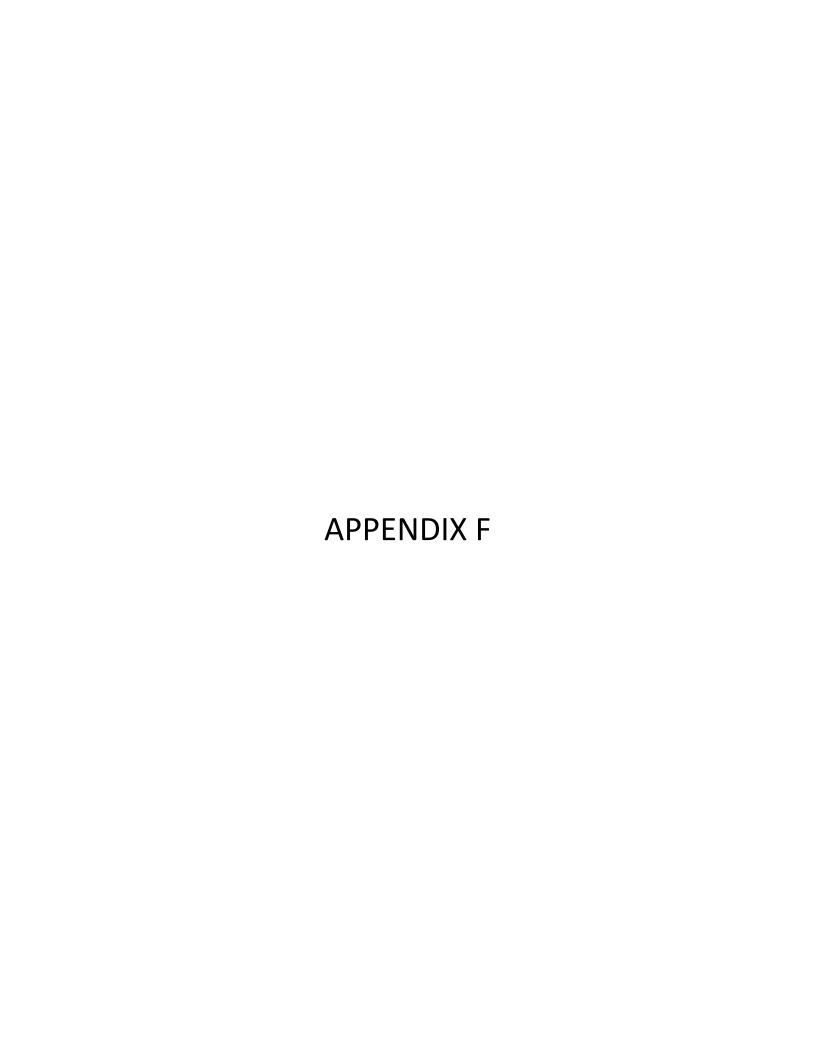

			Se	gn	nent 4			
Vel	hicle Inputs							
Segi	ment Type	Pass	sing Lanes		Length, ft			25872
Mea	asured FFS	Mea	asured		Free-Flow Speed,	mi/h		47.0
De	mand and Capacity				<u> </u>			
Dire	ectional Demand Flow Rate, veh/h	187			Opposing Demand	d Flo	w Rate, veh/h	-
Peak	k Hour Factor	0.94	1		Total Trucks, %			31.00
Segi	ment Capacity, veh/h	110	0		Demand/Capacity	(D/0	<u> </u>	0.17
Int	ermediate Results							
Segi	ment Vertical Class	2			Free-Flow Speed,	mi/h		47.0
Spe	ed Slope Coefficient	12.2	22850		Speed Power Coef	fficie	nt	1.55917
PF S	Slope Coefficient	-0.9	1061		PF Power Coefficie	ent		0.78832
In Pa	assing Lane Effective Length?	No			Total Segment De	nsity	, veh/mi/ln	0.9
%lm	proved % Followers	0.0			% Improved Avg S	Spee	d	0.0
Sul	bsegment Data							
#	Segment Type	Len	gth, ft	Rac	dius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	258	72	-		-		46.7
Pas	ssing Lane Results		Faster Lane				Slower Lane	
Flow	v Rate, veh/h		120				67	
	centage of Heavy Vehicles (HV%), %		12.40				64.30	
	al Average Speed (Sint), mi/h		74.4				63.7	
	rage Speed at Midpoint (SPLmid), mi,	/h	76.4				61.7	
Perc	ent Followers at Midpoint (PFPLmid),	, %	9.2				0.0	
Vel	hicle Results							
Avei	rage Speed, mi/h	46.7	7		Percent Followers,	%		21.6
Segi	ment Travel Time, minutes	6.29)		Followers Density,	follo	owers/mi/ln	0.9
Vehi	icle LOS	Α						
			Se	gn	nent 5			
Vel	hicle Inputs							
	ment Type	Pass	sing Zone		Length, ft			12144
	asured FFS	-	asured		Free-Flow Speed,	mi/h		46.0
De	mand and Capacity							
	ectional Demand Flow Rate, veh/h	187			Opposing Demand	d Flo	w Rate, veh/h	187
	k Hour Factor	0.94			Total Trucks, %			31.00
Sogi	ment Capacity, veh/h	170			Demand/Capacity	(D/0	<u> </u>	0.11


	ermediate Results					
Segr	ment Vertical Class	4		Free-Flow Speed,	mi/h	46.0
Spe	ed Slope Coefficient	30.49005		Speed Power Coef	fficient	0.74331
PF S	lope Coefficient	-1.44074		PF Power Coefficie	ent	0.80011
In Pa	assing Lane Effective Length?	Yes		Total Segment De	nsity, veh/mi/ln	1.4
%lm	proved % Followers	14.0		% Improved Avg S	Speed	0.5
Suk	osegment Data					
#	Segment Type	Length, ft	R	Radius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	12144	-		-	41.0
Vel	nicle Results					
Aver	age Speed, mi/h	41.2		Percent Followers,	%	31.4
Segr	ment Travel Time, minutes	3.35		Followers Density,	followers/mi/ln	1.2
Vehi	cle LOS	Α				
			Seg	ment 6		
Vel	nicle Inputs					
Segr	ment Type	Passing Zone		Length, ft		35904
Lane	· Width, ft	12		Shoulder Width, ft	i	6
Spe	ed Limit, mi/h	55		Access Point Dens	ity, pts/mi	6.0
Dei	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	152		Opposing Demand	d Flow Rate, veh/h	152
Peak	Hour Factor	0.94		Total Trucks, %		14.90
. can				Demand/Capacity	(D/C)	0.09
	nent Capacity, veh/h	1700				
Segr	ment Capacity, veh/h ermediate Results	1700				
Segr		2		Free-Flow Speed,	mi/h	59.8
Segr Inte	ermediate Results					59.8 0.66128
Segr Inte Segr Spee	ermediate Results ment Vertical Class	2		Free-Flow Speed,	fficient	
Segr Segr Spee PF SI	ermediate Results ment Vertical Class ed Slope Coefficient	2 4.54104		Free-Flow Speed, I	fficient	0.66128
Segr Segr Spee PF SI In Pa	ermediate Results ment Vertical Class ed Slope Coefficient lope Coefficient	2 4.54104 -1.17713		Free-Flow Speed, Speed Power Coef PF Power Coefficie	fficient ent nsity, veh/mi/ln	0.66128 0.79590
Segr Segr Spee PF SI In Pa	ermediate Results ment Vertical Class ed Slope Coefficient lope Coefficient assing Lane Effective Length?	2 4.54104 -1.17713 Yes		Free-Flow Speed, Speed Power Coefficient Total Segment Dec	fficient ent nsity, veh/mi/ln	0.66128 0.79590 0.6
Segrification Segrification Part	ermediate Results ment Vertical Class ed Slope Coefficient lope Coefficient assing Lane Effective Length? proved % Followers	2 4.54104 -1.17713 Yes	R	Free-Flow Speed, Speed Power Coefficient Total Segment Dec	fficient ent nsity, veh/mi/ln	0.66128 0.79590 0.6
Segr Inte Segr Spee PF SI In Pa %Im	ermediate Results ment Vertical Class ed Slope Coefficient lope Coefficient assing Lane Effective Length? proved % Followers psegment Data	2 4.54104 -1.17713 Yes 8.5	R	Free-Flow Speed, I Speed Power Coef PF Power Coefficie Total Segment Del % Improved Avg S	fficient ent nsity, veh/mi/In Speed	0.66128 0.79590 0.6 0.0
Segrification Segrification Speed PF SI In Pa %Im Suk # 1	ermediate Results ment Vertical Class ed Slope Coefficient lope Coefficient assing Lane Effective Length? proved % Followers psegment Data Segment Type	2 4.54104 -1.17713 Yes 8.5	R -	Free-Flow Speed, I Speed Power Coef PF Power Coefficie Total Segment Del % Improved Avg S	fficient ent nsity, veh/mi/In Speed	0.66128 0.79590 0.6 0.0
Segri Into Segri Spee PF SI In Pa %Im Suk # 1	ermediate Results ment Vertical Class ed Slope Coefficient lope Coefficient assing Lane Effective Length? proved % Followers proved Data Segment Type Tangent	2 4.54104 -1.17713 Yes 8.5	R	Free-Flow Speed, I Speed Power Coef PF Power Coefficie Total Segment Del % Improved Avg S	fficient ent nsity, veh/mi/ln speed Superelevation, %	0.66128 0.79590 0.6 0.0
Segrification Segrification Speed PF SI In Pa Wilm Suk # 1 Veh	ermediate Results ment Vertical Class ed Slope Coefficient lope Coefficient assing Lane Effective Length? proved % Followers DSegment Data Segment Type Tangent Dicle Results	2 4.54104 -1.17713 Yes 8.5 Length, ft 35904	R	Free-Flow Speed, I Speed Power Coefficie PF Power Coefficie Total Segment Del % Improved Avg S	fficient ent ent nsity, veh/mi/ln Speed Superelevation, % -	0.66128 0.79590 0.6 0.0 Average Speed, mi/h 59.2


Voh	icle Inputs							
	•	Dan	sing Lange		Longth ft			15105
	nent Type Width, ft	12	sing Lanes		Length, ft Shoulder Width, ft			6
	d Limit, mi/h	55			Access Point Dens		ts/mi	4.0
		33			Access Folit Delis	ity, p	15/1111	4.0
Der	mand and Capacity							
Direc	tional Demand Flow Rate, veh/h	147			Opposing Demand	d Flo	w Rate, veh/h	-
Peak	Hour Factor	0.94	ļ		Total Trucks, %			14.90
Segn	nent Capacity, veh/h	140	0		Demand/Capacity	(D/C	5)	0.10
Inte	ermediate Results							
Segn	nent Vertical Class	1			Free-Flow Speed,	mi/h		61.2
Spee	d Slope Coefficient	7.24	1983		Speed Power Coef	fficier	nt	1.54401
PF SI	ope Coefficient	-0.9	6855		PF Power Coefficie	ent		0.89690
In Pa	ssing Lane Effective Length?	No			Total Segment De	nsity,	veh/mi/ln	0.4
%lm	proved % Followers	0.0			% Improved Avg S	Speed	d	0.0
Sub	segment Data							
#	Segment Type	Leng	gth, ft	Rad	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	1510	05	-		-		61.1
Pas	sing Lane Results							
			Faster Lane				Slower Lane	
Flow	Rate, veh/h		98				49	
Perce	entage of Heavy Vehicles (HV%), %		5.96				32.62	
Initia	l Average Speed (Sint), mi/h		61.5				60.6	
Avera	age Speed at Midpoint (SPLmid), mi/l	h	63.2				58.9	
Perce	ent Followers at Midpoint (PFPLmid),	%	11.7				6.0	
Veh	icle Results							
Avera	age Speed, mi/h	61.1			Percent Followers,	%		15.9
Segn	nent Travel Time, minutes	2.81			Followers Density,	follo	wers/mi/ln	0.4
Vehic	cle LOS	Α						
			Se	gn	nent 8			•
Veh	nicle Inputs							
	nent Type	Pass	sing Lanes		Length, ft			99999
	Width, ft	12	<i>y</i>		Shoulder Width, ft	t		6
	d Limit, mi/h	55			Access Point Dens		ts/mi	4.0
	mand and Capacity					2 - 1		
	ctional Demand Flow Rate, veh/h	147			Opposing Demand	d Flo	w Rate veh/h	-
						J 110		14.90
Peak	Hour Factor	0.94			Total Trucks, %			1 14.90

Inte	ermediate Results							
	nent Vertical Class	1			Free-Flow Speed,	mi/h		61.2
	d Slope Coefficient	_	 3696		Speed Power Coe			1.58663
	ope Coefficient		16880		PF Power Coefficie		iit .	0.89273
	ssing Lane Effective Length?	No.3			Total Segment De		voh/mi/ln	0.69273
		0.0			% Improved Avg S			0.4
•	proved % Followers	0.0			% improved Avg s	speed	u .	0.0
	segment Data	Τ.				l.		1
#	Segment Type		gth, ft	Rac	lius, ft	Sup	erelevation, %	Average Speed, mi/h
1	Tangent	999	99	-		<u> -</u>		61.1
Pas	sing Lane Results							
			Faster Lane				Slower Lane	
Flow	Rate, veh/h		98				49	
Perce	entage of Heavy Vehicles (HV%), %		5.96				32.62	
Initia	l Average Speed (Sint), mi/h		61.5				60.6	
Avera	age Speed at Midpoint (SPLmid), mi	/h	63.2				58.9	
Perce	ent Followers at Midpoint (PFPLmid)	, %	11.8				6.1	
Veh	icle Results							
Avera	age Speed, mi/h	61.1	1		Percent Followers,	, %		16.0
Segn	nent Travel Time, minutes	18.5	58		Followers Density,	, follo	owers/mi/ln	0.4
Vehic	ile LOS	А						
			Se	gn	nent 9			
Veh	icle Inputs							
Segn	nent Type	Pas	sing Zone		Length, ft			22704
Lane	Width, ft	12			Shoulder Width, f	t		6
Spee	d Limit, mi/h	55			Access Point Dens	sity, p	ots/mi	8.0
Der	nand and Capacity							
Direc	tional Demand Flow Rate, veh/h	493			Opposing Deman	d Flo	w Rate, veh/h	285
Peak	Hour Factor	0.94	1		Total Trucks, %			3.76
Segn	nent Capacity, veh/h	170	0		Demand/Capacity	(D/C	<u>-</u>	0.29
Inte	ermediate Results							
Segn	nent Vertical Class	1			Free-Flow Speed,	mi/h		60.6
Spee	d Slope Coefficient	3.65	5951		Speed Power Coe	fficie	nt	0.51835
PF SI	ope Coefficient	-1.2	3352		PF Power Coefficie	ent		0.77779
In Pa	ssing Lane Effective Length?	Yes			Total Segment De	nsity	, veh/mi/ln	4.3
%lmp	proved % Followers	4.8			% Improved Avg S	Speed	d	0.0
Sub	segment Data							
		_	gth, ft		lius, ft	Sup		Average Speed, mi/h

	Tangent	22704	-	-	58.3
Vel	Vehicle Results				
Aver	Average Speed, mi/h	58.3	Percent Followers, %	%	50.9
Segr	Segment Travel Time, minutes	4.42	Followers Density, followers/mi/ln	followers/mi/ln	4.1
Vehi	Vehicle LOS	С			



APPENDIX E – Potential Transportation Environmental Protection Measures for the Fountain Wind Project

D	M		Implem	entation	
Resource Category	Measure	Preconstruction	Construction	Operations	Decommissioning
Transportation					
TRANS-1	[Project] will coordinate with CalTrans and Shasta County to	X	Х		
	implement a Transportation and Traffic Management Plan				
	that minimizes risks and inconvenience to the public, while				
	ensuring safe and efficient construction of the Project. The				
	plan will focus on turbine component deliveries, traffic and				
	circulation primarily within and in the vicinity of the Project				
	area. It will be designed to minimize potential hazards from				
	increased truck traffic and worker traffic and to minimize				
	impacts to traffic flow in the vicinity of the Project.				
TRANS-2	To minimize conflicts between Project traffic and background		X		
	traffic, deliveries of project components will be scheduled				
	around local volume peaks to the extent feasible.				
TRANS-3	Road clearances may include temporarily blocking road		X		X
	intersections via construction cones and/or staffing blocked				
	intersections with a traffic-control flagger to allow haul trucks				
	sole access to the road while delivering Project components.				
	If required, public road closures are not expected to exceed				
	15 minutes during each/any road closure event.				
TRANS-4	The Project will coordinate with CalTrans to determine	X	X		
	whether temporary speed limit reductions during				
	construction are applicable where Project access points				
	intersect with State Highway 299.				
TRANS-5	Construction deliveries would be coordinated to avoid major		X		
	traffic-generating events in Redding, to the extent practicable.				
TRANS-6	The Project would coordinate with local law enforcement, to		X		X
	manage traffic flows and monitor traffic speed during				
	deliveries.				
TRANS-7	All staging activities and parking of equipment and vehicles		Х		
	would occur within the Project Area and would not occur on				
	maintained State Highways or County roads.				

Danauman Catanama	Managema		Implem	entation	
Resource Category	Measure	Preconstruction	Construction	Operations	Decommissioning
TRANS-8	Equipment and material deliveries to the site would be		X		X
	performed by professional transportation companies familiar				
	with the type of equipment, loads involved, and U.S. DOT,				
	CalTrans, and Shasta County regulations.				
TRANS-9	Road signs would be erected to notify travelers and local		Х		
	residents that construction is occurring in the area and				
	provide information regarding the timing and route for				
	oversized vehicle movements and deliveries. The				
	erection/placement of road signs and the Project construction				
	activities would be performed in accordance with the Shasta				
	County and CalTrans requirements.				
TRANS-10	Escort vehicles would assist delivery of oversized turbine		X		
	components to give drivers additional warning of oversized				
	loads.				

Intersection						
Int Delay, s/veh	1					
		ED.5	14/5:	VA/D.T.	A IV A 71	A IVA (TO
	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	₽			र्भ	¥	
Traffic Vol, veh/h	116	51	33	62	0	0
Future Vol, veh/h	116	51	33	62	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
3	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	4 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	126	55	36	67	0	0
				.	· ·	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	181	0	293	154
Stage 1	-	-	-	-	154	-
Stage 2	-	-	-	-	139	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-		3.318
Pot Cap-1 Maneuver	-	-	1394	-	698	892
Stage 1	-	_	_	-	874	-
Stage 2	_	_	_	-	888	-
Platoon blocked, %	_	_		_	300	
Mov Cap-1 Maneuver	_	_	1394	_	679	892
Mov Cap-1 Maneuver		_	1004	_	679	- 092
Stage 1	_	_	-	-	874	
•	-	-		-		
Stage 2	-	-	-	-	864	-
Approach	EB		WB		NW	
HCM Control Delay, s	0		2.7		0	
HCM LOS	-				A	
					1	
N. P		NA /1 4	EST		14/51	MACT
Minor Lane/Major Mvmt	N	WLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		-	-		1394	-
HCM Lane V/C Ratio		-	-	-	0.026	-
HCM Control Delay (s)		0	-	-	7.7	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		-	-	-	0.1	-

Synchro 11 Report Page 1 AM During Construction

Intersection						
Int Delay, s/veh	0.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		LDK	VVDL			NDK
Lane Configurations	}	40	97	4 103	Y	0
Traffic Vol. veh/h	76 76	40	27	103	0	0
Future Vol, veh/h	/6 0	40	27	103	0	0
Conflicting Peds, #/hr	-	0 Eroo	0 Eroo	0 Eroo	0 Stop	O Stop
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	
Storage Length	- 4 0	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	83	43	29	112	0	0
Major/Minor N	/lajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	126	0	275	105
Stage 1	-	-	120	-	105	105
Stage 1	-		-	-	170	-
		-	4.12		6.42	6.22
Critical Hdwy	-		4.12	-		6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	
Critical Hdwy Stg 2	-	-	2.040	-	5.42	2 240
Follow-up Hdwy	-	-	2.218			
Pot Cap-1 Maneuver	-	-	1460	-	715	949
Stage 1	-	-	_	-	919	-
Stage 2	-	-	-	-	860	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1460	-	700	949
Mov Cap-2 Maneuver	-	-	-	-	700	-
Stage 1	-	-	-	-	919	-
Stage 2	_	_			842	-
Annroach	EB		WB		NB	
Approach						
HCM Control Delay, s	0		1.6		0	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)			-		1460	-
HCM Lane V/C Ratio		-	-	-	0.02	-
HCM Control Delay (s)		0	-	-	7.5	0
HCM Lane LOS		A	-	-	7.5 A	A
. IOITI LUITO LUU		Λ.				
HCM 95th %tile Q(veh)			_	_	0.1	_

AM During Construction Synchro 11 Report Page 2

Intersection						
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	1>	LDIX	TTDL	<u>₩</u>	₩.	144414
Traffic Vol, veh/h	138	0	0	155	27	18
Future Vol, veh/h	138	0	0	155	27	18
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	150	0	0	168	29	20
WWW.CT IOW	100	J	V	100	20	20
	/lajor1	N	Major2	<u> </u>	Minor1	
Conflicting Flow All	0	0	150	0	318	150
Stage 1	-	-	-	-	150	-
Stage 2	-	-	-	-	168	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1431	-	675	896
Stage 1	-	-	-	-	878	-
Stage 2	-	-	-	-	862	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	_	1431	-	675	896
Mov Cap-2 Maneuver	-	-	-	-	675	-
Stage 1	_	_	_	_	878	-
Stage 2	_	_	_	_	862	_
Jugo 2					302	
Approach	EB		WB		NW	
HCM Control Delay, s	0		0		10.1	
HCM LOS					В	
Minor Lane/Major Mvmt	ı N	IWLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	- 11	749	-	LDIX	1431	-
HCM Lane V/C Ratio		0.065	-	-	1431	-
HCM Control Delay (s)		10.1	-		0	-
HCM Lane LOS		10.1	_	<u>-</u>	A	-
HCM 95th %tile Q(veh)		0.2			0	-
HOW SOUL WILL CALLED		0.2	_		U	_

PM During Construction Synchro 11 Report Page 1

Intersection						
Int Delay, s/veh	1.2					
		EDD	WDI	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\$	^	^	4	₩	45
Traffic Vol, veh/h	161	0	0	126	22	15
Future Vol, veh/h	161	0	0	126	22	15
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	175	0	0	137	24	16
Major/Minor N	//ajor1	ı	Major2		Minor1	
Conflicting Flow All	0	0	175	0	312	175
Stage 1	-	-	-	-	175	-
Stage 2	_	_	_	_	137	_
Critical Hdwy			4.12	_	6.42	6.22
Critical Hdwy Stg 1	_	-	4.12	_	5.42	0.22
		-	_		5.42	
Critical Hdwy Stg 2	-	-	2 240	-		
Follow-up Hdwy	-	-	2.218			
Pot Cap-1 Maneuver	-	-	1401	-	681	868
Stage 1	-	-	-	-	855	-
Stage 2	-	-	-	-	890	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1401	-	681	868
Mov Cap-2 Maneuver	-	-	-	-	681	-
Stage 1	-	-	-	-	855	-
Stage 2	-	-	-	-	890	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		10.1	
HCM LOS	U		U		В	
HCWI LOS					D	
Minor Lane/Major Mvmt	t 1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		746	-	-	1401	-
HCM Lane V/C Ratio		0.054	-	-	-	-
HCM Control Delay (s)		10.1	-	-	0	-
HCM Lane LOS		В	-	-	Α	-
HCM 95th %tile Q(veh)		0.2	-	-	0	-

Synchro 11 Report Page 2 PM During Construction

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	1>	LDIN	VVDL	₩ <u>₩</u>	NVL.	INVVIX
Traffic Vol, veh/h	44	4	4	166	0	0
Future Vol, veh/h	44	4	4	166	0	0
<u> </u>	0	0	0	0	0	0
Conflicting Peds, #/hr						
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	48	4	4	180	0	0
Major/Minor Ma	ajor1	N	Major2		Minor1	
Conflicting Flow All	0	0	52	0	238	50
Stage 1	-	U	52	-	50	50
•		-				
Stage 2	-	-	4 40	-	188	6.00
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-		
Pot Cap-1 Maneuver	-	-	1554	-	750	1018
Stage 1	-	-	-	-	972	-
Stage 2	-	-	-	-	844	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1554	-	748	1018
Mov Cap-2 Maneuver	-	-	-	-	748	-
Stage 1	-	-	-	-	972	-
Stage 2	-	-	-	-	841	-
y						
			1675		.	
Approach	EB		WB		NW	
HCM Control Delay, s	0		0.2		0	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	IWLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	- 1\				1554	1101
HCM Lane V/C Ratio		-	-	-	0.003	-
		0	-		7.3	0
HCM Control Dolov (a)			-	_	1.3	U
HCM Long LOS						
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		A	-	-	A 0	A

Post Construction - AM Synchro 11 Report Page 1

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			4	¥	
Traffic Vol, veh/h	135	4	4	49	0	0
Future Vol, veh/h	135	4	4	49	0	0
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		_		-	None
Storage Length	-	-	_	-	0	-
Veh in Median Storag	ae.# 0	_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	147	4	4	53	0	0
IVIVIIILI IOW	171		7	55	U	U
Major/Minor	Major1	ľ	Major2	ľ	Minor1	
Conflicting Flow All	0	0	151	0	210	149
Stage 1	-	-	-	-	149	-
Stage 2	-	-	-	-	61	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	_
Follow-up Hdwy	_	_	2.218	_	3.518	3.318
Pot Cap-1 Maneuver	-	-	1430	-	778	898
Stage 1	_	_	-	_	879	-
Stage 2	_	_	_	_	962	_
Platoon blocked, %	_	_		_	002	
Mov Cap-1 Maneuver		_	1430	_	776	898
Mov Cap-1 Maneuver		<u>-</u>	-	-	776	-
Stage 1	<u> </u>				879	
Stage 2	-	-	_	_	959	_
Staye 2	-	-	-	-	303	<u>-</u>
Approach	EB		WB		NB	
HCM Control Delay, s	s 0		0.6		0	
HCM LOS					Α	
		151 (14	14/5-
Minor Lane/Major Mv	mt l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		-	-	-		-
HCM Lane V/C Ratio		-	-	-	0.003	-
HCM Control Delay (s	s)	0	-	-	7.5	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(vel	h)	-	-	-	0	-

Synchro 11 Report Page 2 Post Construction - AM

Intersection						
Int Delay, s/veh	0.2					
		EDD	MA	WET	A IV A /I	AIVAID
	EBT	EBR	WBL	WBT	NWL	NWR
Lane Configurations	₽			4	N.	
Traffic Vol, veh/h	197	0	0	144	4	4
Future Vol, veh/h	197	0	0	144	4	4
Conflicting Peds, #/hr	0	0	0	0	0	0
3	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	† 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	214	0	0	157	4	4
Majan/Minan Ma	-:1		/aia#0		\ 1:1	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	214	0	371	214
Stage 1	-	-	-	-	214	-
Stage 2	-	-	-	-	157	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1356	-	630	826
Stage 1	-	-	-	-	822	-
Stage 2	-	-	-	-	871	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	_	_	1356	-	630	826
Mov Cap-2 Maneuver	-	_	-	-	630	-
Stage 1	_	_	_	_	822	_
Stage 2	_	_	_	_	871	<u>-</u>
Olugo Z	_				57.1	
Approach	EB		WB		NW	
HCM Control Delay, s	0		0		10.1	
HCM LOS					В	
Minan Lana /Maian Munat	N.	NA/I A	EDT	EDD	WDI	WDT
Minor Lane/Major Mvmt	IN	WLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		715	-	-	1356	-
HCM Lane V/C Ratio		0.012	-	-	-	-
HCM Control Delay (s)		10.1	-	-	0	-
HCM Lane LOS		В	-	-	Α	-
HCM 95th %tile Q(veh)		0	-	-	0	-

Synchro 11 Report Page 1 Post Construction - PM

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	101 13	EDI	WDL		INDL M	NDR
Traffic Vol, veh/h	201	0	٥	વ 138	4	4
Future Vol, veh/h	201	0	0	138	4	4
-	0	0	0	0	0	0
Conflicting Peds, #/hr						
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	- 4 0	-	-	-	0	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	218	0	0	150	4	4
Major/Minor	Major1	ı	Major2	N	/linor1	
Conflicting Flow All	0	0	218	0	368	218
Stage 1	-	-	- 10	-	218	210
Stage 2	_	_	_	<u> </u>	150	-
Critical Hdwy			4.12		6.42	6.22
	_	-	4.12	_	5.42	0.22
Critical Hdwy Stg 1		-	_	-		-
Critical Hdwy Stg 2	-	-	2 240	-	5.42	2 240
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1352	-	632	822
Stage 1	-	-	-	-	818	-
Stage 2	-	-	-	-	878	-
Platoon blocked, %	-	-	40=0	-	000	000
Mov Cap-1 Maneuver	-	-	1352	-	632	822
Mov Cap-2 Maneuver	-	-	-	-	632	-
Stage 1	-	-	-	-	818	-
Stage 2	-	-	-	-	878	-
Approach	EB		WB		NB	
	0		0		10.1	
HCM Control Delay, s	U		U			
HCM LOS					В	
Minor Lane/Major Mvn	nt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		715	-		1352	-
HCM Lane V/C Ratio		0.012	_	_	-	_
HCM Control Delay (s)		10.1	_	_	0	_
HCM Lane LOS		В	_	_	A	_
HCM 95th %tile Q(veh)	0	_	_	0	_
	1					

Synchro 11 Report Page 2 Post Construction - PM

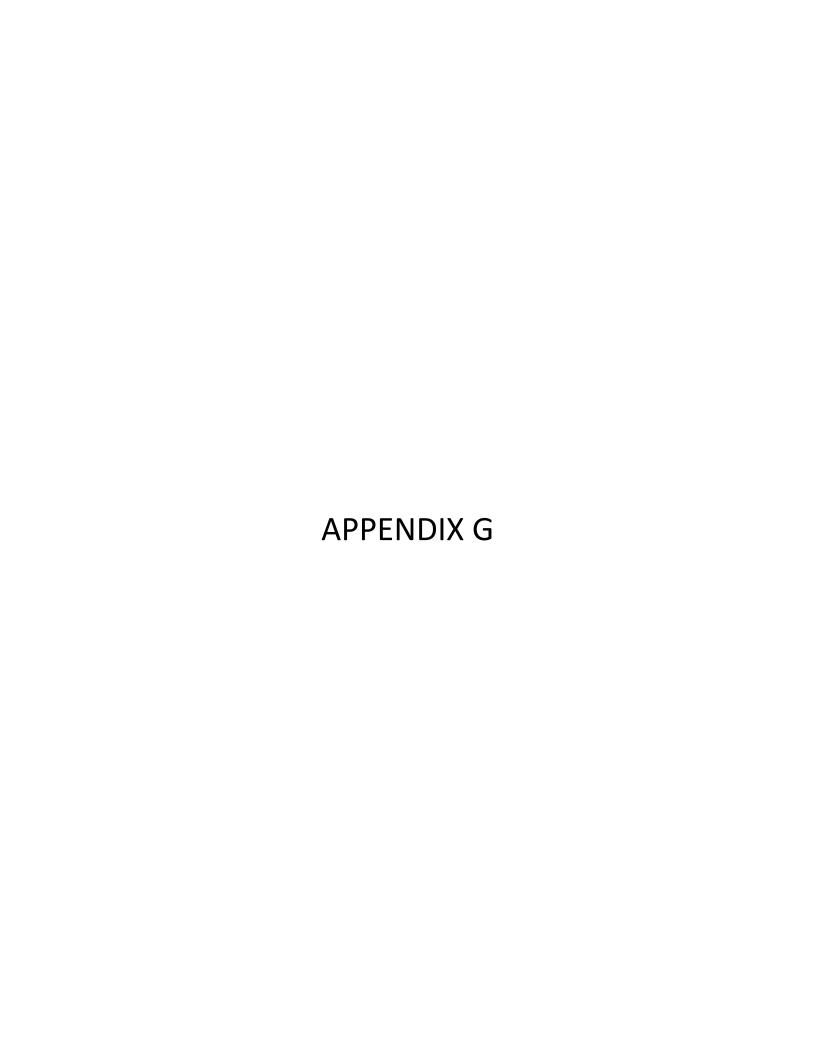


Table 9-25. Suggested Left-Turn Treatment Guidelines Based on Results from Benefit–Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas (16)

Left-Turn Lane Peak-Hour Volume (veh/h)	Three-Leg Intersection, Major-Road Two-Lane Highway Peak-Hour Volume (veh/h/ln) that Warrants a Bypass Lane	Three-Leg Intersection, Major-Road Two-Lane Highway Peak-Hour Volume (veh/h/ln) that Warrants a Left-Turn Lane	Four-Leg Intersection, Major-Road Two-Lane Highway Peak-Hour Volume (veh/h/ln) that Warrants/a Left-Turn Lane
5	50	200	150
10	50	100	\50
15	< 50	100	• ✓
20	< 50	50	£ 50\
25	< 50	50	< 50
30	< 50	50	< 50
35	< 50	50	< 50
40	< 50	50	< 50
45	< 50	50	< 50
50 or More	< 50	50	< 50

Note: These guidelines apply where the major road is uncontrolled and the minor-road approaches are stop- or yield-controlled. Both the left-turn peak-hour volume and the major-rad volume warrants should be met as shown in Figure 9-36.

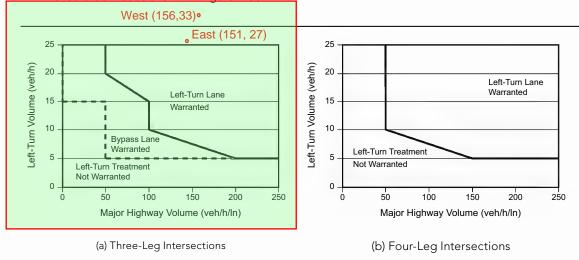


Figure 9-36. Suggested Left-Turn Treatment Warrants Based on Results from Benefit–Cost Evaluations for Intersections on Two-Lane Highways in Rural Areas (16)

<u>The construction and post construction volumes have been applied using the AASHTO warrants</u> above, and have yielded the following results:

Data Request Identifier	Request Source	Topic	Reviewer	Siting Regulations	Information	Opt-In Page Number And Section Number	Original Determination of Adequacy	Information Required To Make OPT Conform With Regulations	Response Date	Applicant Response No. 1
TRAF- 001	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (1)	provide a discussion of the existing site conditions, the expected direct, indirect and cumulative impacts due to the construction, operation and maintenance of the project, the measures proposed to mitigate adverse environmental impacts of the project, the effectiveness of the proposed measures, and any monitoring plans proposed to verify the effectiveness of the mitigation.	TN 248288-16: DEIR Transportation; Section 3.14.3.2, Pages 3.14-10 – 3.14-16 TN 248288-14: DEIR Greenhouse Gas Emissions; Section 3.10.3.2, Pages 3.10-17 – 3.14-19 NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 17 File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please expand the analysis of Impact 3.14-2 Impact 3.14-2 of Section 3.14-3 (Direct and Indirect Effects) presents the analysis of the project relative to CEQA Guidelines Section 15064.3(b), which relates to the evaluation of a project's transportation impacts. Specifically, analysis using vehicle miles of travel (VMT) is identified as the most appropriate measure for the analysis of transportation impacts. The analysis of Impact 3.14-2 relies on GHG analysis in Section 3.10, GHG Emissions, since the intent of SB 743 is to encourage land use and transportation planning decisions and investments that reduce VMT, thereby reducing GHG emissions. As explained in Section 3.14-2, absent an adopted VMT threshold, the County decided to rely on an established environmental standard that is protective of resources of legislative concern. The less-thansignificant impact finding is in part a result of a potential net offset of annual CO2e emissions with implementation (i.e., due to ongoing power generation). The VMT analysis demonstrates that the project will result in a short-term increase in VMT during construction. However, no discussion or analysis is presented of potential TDM strategies (carpooling, ridesharing, etc) or other measures that could be implemented to reduce VMT during construction, although identified in Appendix H, Page 17.	16-Jun	See Section 8.1 of the Updated TIA for discussion of carpooling as a means to reduce construction-related VMT.

Data Request Identifier	Request Source	Topic	Reviewer	Siting Regulations	Information	Opt-In Page Number And Section Number	Original Determination of Adequacy	Information Required To Make OPT Conform With Regulations	Response Date	Applicant Response No. 1
TRAF- 002	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (A)	A regional transportation setting, on topographic maps (scale of 1:250,000), identifying the project location and major transportation facilities. Include a reference to the transportation element of any applicable local or regional plan.	TN 248288-16: DEIR Transportation; Section 3.14.1.3 (Regulatory Setting), Page 3.14-5 TN 248320-3-16: Traffic Report; Page 8 (Exhibit 1) NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 20 (Exhibit 1) File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please update Section 3.14.1.3 (Regulatory Setting) of the DEIR Transportation Section. The Regulatory Setting should include reference to the Regional Transportation Plan & Sustainable Communities Strategy for the Shasta Region and Caltrans Transportation Concept Reports for each State route in the study area. Also please verify the Scale of Exhibit 1 of the Traffic report.	16-Jun	Discussion of the Regional Transportation Plan & Sustainable Communities Strategy for the Shasta Region and the applicable Caltrans TCRs were added to the updated LORS matrix (TN# 249636). The Regulatory Setting section of the CEC EIR made a reference to the Regional Transporation Plan and Sustainable Communities Strategy for the Shasta Region (2015) and the Route 299 TCR (210). Links to these documents are provided here: https://dot.ca.gov/-/media/dot-media/district-1/documents/Signed-FINAL-299-TCR-12_10-a11y and https://www.srta.ca.gov/142/Regional-Transportation-Plan. Table 1.2 of the Updated TIA for more information about the functional classification, truck route designations, and weight and load limitations of California State Route 299. Exhibit 1 is scaled as printed.
TRAF- 003	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (C)	An identification, on topographic maps at a scale of 1:24,000, and a description of existing and planned roads, rail lines, (including light rail), bike trails, airports, bus routes serving the project vicinity, pipelines, and canals in the project area affected by or serving the proposed facility. For each road identified, include the following, where applicable:	TN 248288-16: DEIR Transportation; Section 3.14.1.2 (Environmental Setting), Page 3.14-2 TN 248320-3-16: Traffic Report, Page 1-2 NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 1-2 File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please expand the description of regional and local roadways affected and/or serving the proposed project. For logical study segments, the descriptions should summarize the roadway functional classification number of directional travel lanes, posted speed limits, average daily traffic volumes served, applicable weight restrictions, and truck route designation. Also please verify the scale of Exhibit 1 of the Traffic report.	16-Jun	The requested information is included in Tables 1.1 and 1.2 of the revised report. Each exhibit is scaled as printed.

Data Request Identifier	Request Source	Topic	Reviewer	Siting Regulations	Information	Opt-In Page Number And Section Number	Original Determination of Adequacy	Information Required To Make OPT Conform With Regulations	Response Date	Applicant Response No. 1
TRAF- 004	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (C) (i)	Road classification and design capacity;	TN 248288-16: DEIR Transportation; Section 3.14.1.2 (Environmental Setting), Page 3.14-4 (Table 3.14-2) NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 2-3. File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please update the capacities documented in Table 3.14-2. The hourly capacities presented are base capacity values, representative of ideal conditions. Base capacities do not account for the impacts of heavy vehicles, grades or other sources of friction that will lower the capacity of a freeway or highway lane.	16-Jun	The capacities have been updated in Table 1.1 of the revised report as requested.
TRAF- 005	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (C) (ii)	Current daily average and peak traffic counts;	TN 248288-16: DEIR Transportation; Section 3.14.1.2 (Environmental Setting), Page 3.14-2 – 3.14-4, (Table 3.14-1 and Table 3.14-2) TN 248320-3-16: Traffic Report, Page 8 (Exhibit 2) NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 2-3, Page 21-22 (Exhibit 2) File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please collect new average daily vehicle traffic counts. Traffic data from Caltrans Traffic Census Program, representing 2017 conditions, is documented. The data provided through the Caltrans Traffic Census Program are traffic volume estimates and not actual counts. In addition, the data is pre COVID-19 Pandemic and does not capture post pandemic changes in travel behavior. 24-hour vehicle classification traffic counts should be collected (in 15-minute increments) for a minimum three days (Tuesday, Wednesday, Thursday), during a representative time of year.	16-Jun	Average Daily Vehicle Traffic Counts have been collected near the projected access locations and are presented in Table 1.1 of the report. Raw traffic data is included in Appendix B of the report.

Data Request Identifier	Request Source	Topic	Reviewer	Siting Regulations	Information	Opt-In Page Number And Section Number	Original Determination of Adequacy	Information Required To Make OPT Conform With Regulations	Response Date	Applicant Response No. 1
TRAF- 006	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (D)	An assessment of the construction and operation impacts of the proposed project on the transportation facilities identified in (g)(5)(C). Also include anticipated project specific traffic, estimated changes to daily average and peak traffic counts, levels of service, and traffic/truck mix, and the impact of construction of any facilities identified in (g)(5)(C).	TN 248288-16: DEIR Transportation NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11 File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please see above.	16-Jun	Please see above.
TRAF- 007	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (C) (iii)	Current and projected levels of service before project development, during construction, and during project operation;	TN 248288-16: DEIR Transportation; Section 3.14.1.2 (Environmental Setting), Page 3.14-3 – 3.14-4, (Table 3.14-2) NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 12-16 File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please update roadway capacity and intersection operations analysis. As outlined above, the roadway capacity analysis was conducted using base capacity values that do not account for the impacts of heavy vehicles, grades or other sources of friction that will lower the capacity of a freeway or highway lane. In addition, the analysis needs to be updated based on new traffic count data.	16-Jun	The analyses have been revised as requested. Results are presented in Table 1.1 and Appendix D of the Updated TIA.
TRAF- 008	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (C) (iv)	Weight and load limitations;	TN 248288-16: DEIR Transportation; Section 3.14.1.2 (Environmental Setting), Page 3.14-2 TN 248320-3-16: Traffic Report, Page 1-2 NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 1-2 File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please expand the description of regional and local roadways affected and/or serving the proposed project. Identify weight and load limitations on study roadways.	16-Jun	The requested information is included in Table 1.2 of the revised report.

Data Request Identifier	Request Source	Topic	Reviewer	Siting Regulations	Information	Opt-In Page Number And Section Number	Original Determination of Adequacy	Information Required To Make OPT Conform With Regulations	Response Date	Applicant Response No. 1
TRAF- 009	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (C) (v)	Estimated percentage of current traffic flows for passenger vehicles and trucks; and	TN 248288-16: DEIR Transportation; Section 3.14.1.2 (Environmental Setting), Page 3.14-2 TN 248320-3-16: Traffic Report, Page 1-2 NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 1-2 File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please collect new average daily vehicle traffic counts. The heavy vehicle percentages from Caltrans Traffic Census Program on SR 299 are provided. The data is pre COVID-19 Pandemic and does not capture post pandemic changes in travel behavior. 24-hour vehicle classification traffic counts should be collected (in 15-minute increments) for a minimum three days (Tuesday, Wednesday, Thursday), during a representative time of year when construction is anticipated.	16-Jun	Average Daily Vehicle Traffic Counts have been collected near the projected access locations and are presented in Table 1.1 of the report. Raw traffic data is included in Appendix B of the report.
TRAF- 010	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (C) (vi)	An identification of any road features affecting public safety.	TN 248288-16: DEIR Transportation; Section 3.14.1.2 (Environmental Setting), Page 3.14-2 – 3.14-4, Section 3.14.3.2 (Page 3.14-13 – 3.14-15 TN 248320-3-16: Traffic Report, Page 1-2 NOT DOCKETED: Fountain Wind Project Draft EIR Appendix H (Transportation), Westwood Traffic Study, Fountain Wind Power, Shasta County, California, February 11, 2020, Page 2-3 File was obtained from the following site on 1/30/2023: https://www.shastacounty. gov/sites/default/files/fileat tachments/planning/page/3 361/appendix_h_transporta tion.pdf	No	Please collect collision records on study roadways. Collect and map the most recent 3- year collision data available for the study corridors to identify locations where road features or characteristics may be affecting public safety. Expand impact discussion Impact 3.14-3 to incorporate relevant findings of collision analysis.	16-Jun	The requested information is included in Table 1.2 of the revised report.
TRAF- 011	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (i) (1) (A)	Tables that identify laws, regulations, ordinances, standards, adopted local, regional, state, and federal land use plans, leases, and permits applicable to the proposed project, and a discussion of the applicability of, and conformance with each. The table or matrix shall explicitly reference pages in the application wherein conformance, with each law or standard during both	TN 248290: Labor Regs Consistency Matrix	No	The Law, Ordinance, Regulation, or Standard Consistency Matrix (TN 248290) does not identify the specific Shasta County Code ordinances or standards that are applicable during construction and operation of the proposed facility.	12-Apr	Updated LORS Consistency Matrix (TN# 249636) and General Plan Consistency Matrix (TN# 249635) were provided on April 12, 2023.

Data Request Identifier	Request Source	Topic	Reviewer	Siting Regulations	Information	Opt-In Page Number And Section Number	Original Determination of Adequacy	Information Required To Make OPT Conform With Regulations	Response Date	Applicant Response No. 1
					construction and operation of the facility is discussed; and					
TRAF- 012	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (g) (5) (E)	A discussion of project-related hazardous materials to be transported to or from the project during construction and operation of the project, including the types, estimated quantities, estimated number of trips, anticipated routes, means of transportation, and any transportation hazards associated with such transport.	TN 248288-13: DEIR Hazards and Hazardous Materials; Section 3.11.3.2, Page 3.11-9 – 3.11-10 TN 248288-16: DEIR Transportation; Section 3.14.3.2, Page 3.14-13 TN 248288-2: DEIR Description of Project and Alternatives; Section 2.4.8.3, Table 2-3 (Hazardous Materials), Pages 2-26	Yes	N/A	N/A	N/A
TRAF- 013	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (i) (1) (B)	Tables that identify each agency with jurisdiction to issue applicable permits, leases, and approvals or to enforce identified laws, regulations, standards, and adopted local, regional, state and federal land use plans, and agencies that would have permit approval or enforcement authority, but for the exclusive authority of the Commission to certify sites and related facilities.	TN 248322: Executive Summary and Project Description; pages 16-17 (Table 3)	Yes	N/A	N/A	N/A
TRAF- 014	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (i) (2)	The name, title, phone number, address (required), and email address (if known), of an official who was contacted within each agency, and provide the name of the official who will serve as a contact person for Commission staff.	Not Docketed: Fountain Wind Project Draft EIR Chapter 5 (Report Preparation), Section 5.4 (Entities Consulted and Recipients of the Draft EIR and/or the Notice of Availability), pages 5- 3 to 5-5 File was obtained from the following site: https://www.shastacounty. gov/planning/page/draft- eir- fountain-wind-project	No	Please provide agency contact information. The DEIR list of federal, state, and local agencies consulted does not include the contact's phone number, address, or email address. The list does not indicate who should serve as the contact person for Commission staff.	3-Apr	Table of applicable permits, agency contact information, and the schedule to obtain legally binding enforceable agreement(s) with community-based organizations and/or permitting entities was submitted on April 3, 2023 (TN# 249533).
TRAF- 015	Deficiency Letter Matrix	Traffic and Transportation	Robinson Islam Kerr	Appendix B (i) (3)	A schedule indicating when permits outside the authority of the Commission will be obtained and the steps the applicant has taken or plans to take to obtain such permits.	TN 248322: Executive Summary and Project Description; Section 5 (Project Permits), Table 3 (List of Potential Permits and Status), pages 16 to 17	No	Please provide schedule for obtaining permits. The "List of Potential Permits and Status" provided in Table 3 does not identify the steps involved or the schedule for obtaining the permits that are outside the authority of the commission.	3-Apr	Table of applicable permits, agency contact information, and the schedule to obtain legally binding enforceable agreement(s) with community-based organizations and/or permitting entities was submitted on April 3, 2023 (TN# 249533).